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ABSTRACT
We develop an account of how mutually inconsistent models of the same
target system can provide coherent information about the system. Our
account makes use of ideas from the debate surrounding robustness
analysis and draws on the idea of a shared structure among models. To
illustrate, we consider a case study from international trade-theory.
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1. Introduction

In scientific practice, we often find situations where scientists use two or more mutually inconsistent
models together to study one and the same target system. Morrison (2011), for example, points out
that in physics, we can currently find over 30 mutually inconsistent models of the atomic nucleus in
use. Parker (2010a, 2010b), to give another example, discusses the use of so-called ensemble prediction
methods in climate science, where varieties of model structures under different initial conditions and
parameter settings are used to make weather or climate predictions about the same climate system.

This use of families of mutually inconsistent models presents us with an epistemological problem,
known in the literature as the problem of inconsistent models, see Chakravartty (2010), Massimi (2018),
and Morrison (2011, 2015):1

1 The Problem of Inconsistent Models. How can several mutually inconsistent models together
provide coherent information (explanations, predictions,
…) about their shared target system?

The aim of this paper is to formulate a novel, broadly structural approach to the problem of incon-
sistent models. The main advantage of our approach is that it can even be applied in situations
where models of one and the same phenomenon differ in their most fundamental assumptions.

Existing accounts of how families of mutually inconsistent models can provide coherent infor-
mation typically address the problems arising from inconsistency by relativizing the use of
models to contexts. The idea is that if each model in an inconsistent family is used in different
kinds of contexts, for different purposes, then the mutual inconsistency of the models no longer
poses an epistemological problem. That is, for example, the approach of perspectival realists, like
Giere (2006), Chakravartty (2010), and Massimi (2018); or of model pluralists, like Aydinonat (2018)
and Grüne-Yanoff and Marchionni (2018).

But such approaches reach their limits when different mutually inconsistent models are used to
account for one and the same phenomenon concerning their shared target system. Think, for
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instance, of Parker’s analysis of ensembles of climate models being used to predict the weather of a
given climate system. Here, there don’t seem to be different contexts which allow us to avoid the
problem arising from the inconsistencies between the models in the ensemble.

Parker (2010a, 2010b) argues that in the case of ensemble prediction methods, the point is to
show which results are invariant across a set of mutually inconsistent models, in order to reduce
uncertainty that derives from not knowing the exact model structure, precise initial conditions or
specific parameter settings. But note that on an approach like Parker’s, all we get is information
about the probability of a certain outcome – in this case, climate predictions. In contrast, the
approach that we develop in this paper allows us to extract explanatory information from classes
of mutually inconsistent models: a shared explanation of a single phenomenon across potentially
fundamentally different models.

In order to formulate our approach, we will draw inspiration from the philosophical debate on
robustness analysis, i.e. the scientific method of (ostensibly) confirming results by showing that
they are invariant across different, possibly mutually inconsistent models (Lisciandra, 2017). Weis-
berg (2006, 2012) proposes an account of robustness analysis, according to which we establish
so-called robust theorems of the form:

. ‘Ceteris paribus, if [common causal structure] obtains, then [robust property] will obtain.’ (Weis-
berg, 2006, p. 738)

The idea that we will pursue in this paper is that if we can establish a robust theorem with respect
to a class of models, then we can take the claim that the common structure explains the robust prop-
erty to be shared information across these models. In other words, while the models may disagree on
all sorts of things, they agree on the claim that the shared structure explains the robust property.

While we draw on ideas from robustness analysis, we’d like to emphasize that we’re primarily
interested in information not confirmation. That is, we’re trying to provide an account of how
mutually inconsistent models can coherently say something about a shared target system, not an
account of whether what they say is true, confirmed, or the like. One might want to argue in the
spirit of Ylikoski and Kuorikoski (2010), for example, that if an explanation is shared across fundamen-
tally different models, this shows that the explanation is non-sensitive and thus has greater explana-
tory power. Indeed, following Lehtinen (2016, 2018) one might argue that the robust result receives
(indirect) confirmation from its robustness. Such claims, however attractive, are orthogonal to our
purposes in this paper: though the claims are compatible with what we’re saying, they go in
another direction.

In order to illustrate our approach to inconsistent models, we will consider a case study from
international trade theory: the case of the so-called gravity equations (Anderson, 2011; Head &
Mayer, 2014). These equations model international trade flows roughly analogously to Newtonian
gravity: the trade flow between two countries is proportional to the product of their economic
‘masses’ (in the simplest case: GDP) and inversely proportional to their (square) distance. Gravity
has been introduced into trade theory as an econometric model by Tinbergen (1962). Anderson
describes it as ‘one of the most successful empirical models in economics’ (Anderson, 2011,
p. 133). Theoretical foundations seemed shaky at first – the first theoretical justification for gravity
was given by Anderson (1979) only in 1979 – but today derivations in various competing, mutually
inconsistent trade models are known, see, e.g. Eaton and Kortum (2002), Bergstrand (1985), Deardorff
(1998), Anderson (1979), and Anderson and Van Wincoop (2003)2

In our case study, we’ll take a closer look at the so-called structural gravity equations, a special
form of the gravity equations introduced by Anderson and Van Wincoop (2003).3 What makes struc-
tural gravity a fruitful case-study for our approach is that structurally identical, isomorphic gravity
equations can be derived in many different, mutually inconsistent trade models: despite making fun-
damentally different assumptions, these models share a common ‘gravity structure.’ We’ll look at
how this gravity structure is used by Anderson and Van Wincoop (2003), Arkolakis et al. (2012),
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and Allen et al. (2020) to provide explanatory results. These explanations, we argue, are examples of
shared explanatory information across the different, mutually inconsistent models.

What sets these structural gravity explanations apart from other robust theorems in economics,
such as the ones discussed in Kuorikoski et al. (2010), is that the gravity structure used in the expla-
nations is not the core causal structure of the models involved. The models are built around different
trade-theories and mechanisms explaining international trade flows. But, as it turns out, they all
instantiate one and the same gravity structure, albeit in different ways.

Here is an overview of the rest of the paper. In Section 2, we shall briefly clarify our view on scien-
tific models and what it means for two models to be mutually inconsistent. In Section 3, we outline
the specific version of the problem of inconsistent models we shall address in this paper. Section 4
contains our case study of the gravity equations in international trade theory. In Section 5, we draw
some philosophical conclusions and give an outlook.

2. Models and inconsistency

Following Frigg and Hartmann (2018, Section 1), we can distinguish two fundamentally different
uses of scientific models.4 One function of models is to interpret scientific theories by providing a
model of their laws and assumptions (Frigg & Hartmann, 2018, Section 1.3) This use of models is
central to the so-called semantic view of scientific theories, which roughly states that a scientific
theory is a collection of models, e.g. Landry (2007), Suppe (1989), Suppes (1960, 2002), and Van Fraas-
sen (1980). The other function of models is to study selected aspects of the world. A model used with
this function has a target system: a phenomenon, an object, a complex system of objects, a set of
data, or the like.5 Models of the atom, for example, have the atom as their target system, climate
models have a region’s climate as their target system, and so on. In this paper, we’re primarily con-
cerned with this second use of models, which Frigg and Hartmann call ‘representational’ (Frigg &
Hartmann, 2018, Section 1.1–2).

In the literature, we find several different versions of the representational view as well as alterna-
tive accounts. Criteria for representational adequacy include, among others, isomorphism (Van
Fraassen, 1980), similarity (Giere, 1988; Teller, 2001; Weisberg, 2012) or partial similarity (Mäki,
2006, 2009). Accounts that are not based on representational functions of models are for instance
Morgan and Morrison’s (Morgan & Morrison, 1999), who view models as mediators. Knuuttila
(2005, 2011) as epistemic artifacts and Grüne-Yanoff as heuristic devices.6 In this paper, we wish
to leave open from what the epistemic value of scientific models derives, be it representational accu-
racy, explanatory power, or yet something different. For most of the points we wish to raise in this
paper, the precise answer to the question doesn’t matter and we shall, accordingly, leave it open.

As Frigg and Hartmann point out (Frigg & Hartmann, 2018, Section 1.1), the two functions of
models – models of theories and models of target systems – do not exclude each other: a model
can be both an interpretation of a scientific theory and function as a scientific device for the study
of a target system. Take a simple pendulum model, for example. This a model interprets the laws
of mechanics over a simple set-up of a point-mass swinging on a massless cord in some background
space-time, and as such, it can be viewed as a model of the theory. But at the same time, the simple
pendulummodel can also be used to predict the behavior of a real-world pendulum, for example. But
the use of scientific models as epistemic devices is broader. As Morrison (1999, pp. 48–53) points out,
‘theoretical’models, like the simple pendulummodel we just sketched, are typically in need of correc-
tions to become amore realistic model of its target system. These corrections, however, are not driven
by considerations coming from the interpreted theory, but rather from the ‘real world’ behavior of the
target system. More generally, Morrison argues in Morrison (1999) that models as scientific devices are
autonomous agents: they are neither (entirely) derived from nor constitutive of scientific theories.7

In scientific practice, models as scientific devices come in many shapes and forms: they come as
set-theoretic structures (e.g. space-time structures in physics), as mathematical equations (e.g.
general equilibrium models in economics), or even computational algorithms (e.g. evolutionary
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models in computational biology). In the following, we shall take this heterogeneity of modelsat face
value, i.e. we will reason about models as they are presented in scientific practice. Borrowing a
phrase from French (who works on the semantic approach to theories), we ‘keep quiet on the ontol-
ogy of models’ (French, 2010).8

Let’s now turn to the central concept of two models being mutually inconsistent. We can dis-
tinguish different ways in which two models of the same target system can be mutually inconsistent
depending on where the inconsistency is located.

Perhaps the most direct way concerns models which share essentially the same assumptions, but
which have different initial conditions, variable settings, parameter settings, or the like. Think, for
example, of a climate simulation run on a range of different initial conditions, each time producing
a different result (discussed by Parker, 2010b, p. 988 under the label ‘initial condition ensembles’).
These models contradict each other with respect to the values of the variables in the initial variable
setting and all the consequences of those. We shall call models which are mutually inconsistent in
this sense factually inconsistent with each other since they agree on the structure of the target
system, as it were, while disagreeing about the facts.

More involved ways for different models of the same target system to be mutually inconsistent
arise when two models use different assumptions in a more robust sense. But first note that the
fact that two models use different representations of the same target system expressed in
different assumptions, this doesn’t necessarily mean that the models are mutually inconsistent:
different models can represent the same target system in different but fundamentally compatible
ways (Frigg & Hartmann, 2018, Section 1). Morrison (2011, pp. 344–346), for example, discusses
models from fluid dynamics, which make different but fundamentally compatible assumptions
about the nature of turbulent fluids, see Morrison (2011, p. 346).9

Among models with different incompatible assumptions, we may distinguish relatively harmless
cases of mutual inconsistency (at least from our current perspective), viz. cases where idealizing
assumptions, tractability assumptions, or the like are concerned. Scientific models typically involve
a certain degree of idealization and assumptions made for mathematical tractability, cf. Frigg and
Hartmann (2018, Section 1) and Kuorikoski et al. (2010, pp. 547–548). The effect of these kind of auxili-
ary assumptions on scientific results is studied extensively in the literature on robustness analysis, cf.,
e.g. Kuorikoski et al. (2010), Lehtinen (2016, 2018), Lisciandra (2017), and Weisberg (2006). But from
the perspective of the multiple models problem, the issues raised by conflicting auxiliary assump-
tions are not particularly pressing. As long as what Kuorikoski et al. (2010, p. 547) call the ‘substantial’
assumptions of two models are compatible with each other, these substantial assumptions can
ground shared information provided by the models. The substantial assumptions of a model describe
its ‘core causal mechanism’ (see Kuorikoski et al., 2010, p. 547), so even if the auxiliaries of twomodels
conflict but their substantial assumptions are compatible, then we can take them to coherently
describe the same causal structure. In fact, this idea underlies standard robustness analysis
methods, where we test whether a result remains invariant under change of auxiliary assumptions,
while keeping the substantial assumptions the same (Kuorikoski et al., 2010; Weisberg, 2006).

If, however, two models of the same target system are based on conflicting substantial assump-
tions, we’re dealing with a kind of inconsistency that directly gives rise to the problem of inconsistent
models. If two models are based on different, incompatible substantial assumptions, they ascribe to
their target system a different core causal mechanism. This makes it prima facie unclear how they can
coherently agree on claims that they make about their target system. In the following, we shall call
models that are based on different substantial assumptions (in the sense of Kuorikoski et al., 2010),
conceptually inconsistent models since they appear to conceptualize their target system in funda-
mentally different, incompatible ways. The models of international trade in our case study,
Section 4, are mutually inconsistent in precisely this, conceptual way.

Having discussed the different ways in which pairs of models can be jointly inconsistent, we will
now move to a discussion of where standard approaches to the problem of multiple models reach
their limits.
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3. The problem of multiple models

We’d like to begin by pointing out that the problem of inconsistent models is particularly pressing if
we take a realist view of models, according to which the epistemic value of a model derives from its
representational accuracy (Frigg & Hartmann, 2018, Section 5.1). But two mutually inconsistent
models cannot both accurately represent the same target system. So, on a realist view of models,
it’s prima facie unclear how families of inconsistent models can have any combined epistemic
value at all.

But there’s also a problem if we take a more anti-realist view of models, like the one of Cartwright
(1983), according to which the epistemic value of a model derives from its explanatory power. In
mainstream epistemology, consistency is standardly assumed to be a necessary condition for coher-
ence.10 So, there is the obvious question of how a family of mutually inconsistent models can provide
a coherent explanation concerning their shared target system.

A simple solution to the problem of inconsistent models would be to chalk it up to scientific dis-
agreement. The idea would be to say that inconsistent models are used because scientists disagree
about the relevant facts (in the case of factual inconsistency) or the structure of the nature of the
target system (in the case of conceptual inconsistency). We don’t doubt that there are cases
where this is the correct explanation for why inconsistent models are used. But, at the same time,
it’s clear that the explanation doesn’t work in all cases. There are several known examples, both his-
torical and contemporary, where mutually inconsistent models are used by a scientific community
which is fully aware of the inconsistencies but continues to use the models side-by-side regardless.

For a historic example, consider the following (widely publicized) quote by Infeld and Einstein on
the particle-wave duality in the physical study of light:

But what is light really? Is it a wave or a shower of photons? There seems no likelihood for forming a consistent
description of the phenomena of light by a choice of only one of the two languages. It seems as though we must
use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a
new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the
phenomena of light, but together they do. (Einstein & Infeld, 1938, pp. 262–263)

The point here is that (at least relative to the state of physics in 1938) we seem to need two
mutually inconsistent models to provide the full scientific picture of a certain phenomenon –
light. A similar situation seems to apply in the case of atomic models discussed by Morrison in Mor-
rison (2011) (mentioned in the introduction). And yet another example is the case of ensemble pre-
diction methods discussed by Parker (2010a, 2010b), where inconsistent models are used side-by-
side to reduce uncertainty about several aspects of a highly-complex phenomenon. Also in econ-
omics, as Aydinonat (2018) points out, the situation where economists work with multiple models
of the same target system might rather be the norm than the exception. Our point here is that
there are different reasons for why inconsistent models are used in science, some of which are
taken into account by the different solutions to the problem of inconsistent models in the literature.

In the realist camp, authors like Chakravartty (2010) and Massimi (2018) use the resources of per-
spectival realism (Giere, 2006) to address the problem of multiple models. The idea is, roughly, that
the different members of an inconsistent family of models look at their shared target system from
different perspectives, under which different features of the target systemmay emerge. And to prop-
erly model the target system from one perspective may require us to make certain assumptions
which are inconsistent with those required to model the system from another perspective. But
these inconsistencies are innocuous for the perspectival realist. Giere (2006), for example, argues
that there are ultimately only perspectival facts. Chakravartty (2010) argues instead that if the fea-
tures that a system exhibits under a given perspective are dispositional, we may even learn non-per-
spectival facts about the target system via perspectival modeling.

In a similar spirit, proponents of model pluralism in the social sciences, like Aydinonat (2018) and
Grüne-Yanoff and Marchionni (2018), argue that we can use inconsistent families of models to study
the same target system, as long as different models in the family are useful for different purposes.
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The idea is, roughly, that phenomena in the social sciences can be so complex that they cannot be
captured by just one single, overarching model. We need several, possibly mutually inconsistent
models, each of which applies to a different context in which the phenomenon occurs. It is the
task of the modeler, then, to select the right model for a given context.11 So, on this approach, a
family of mutually inconsistent models functions like a ‘bag of tricks’ for studying a complex,
many-facetted phenomenon.

Each of these accounts provides a way in which a family of mutually inconsistent models can
provide coherent information about a shared target system. But note that what these approaches
have in common is that they avoid the epistemic problems arising from inconsistency by using
different models for different contexts – different perspectives, in the case of perspectival realism,
and different purposes in the case of model pluralism. On these accounts, inconsistent families of
models essentially provide a mosaic account of their target system, where each individual model
works like a tile contributing to the bigger, overall mosaic picture. Such a mosaic approach,
however, has difficulties when the mutually inconsistent models in question are used to explain
one and the same aspect of their target system.

Consider the case of ensembles of climate models discussed by Parker (2010a, 2010b), for
example. These models not only share the same target system (viz. a given climate system), but
they also aim to account for the same aspect of that system (viz. the climate or weather over a
given period). The ensemble methods in fact provide examples of factually inconsistent models
(viz. initial condition ensembles) and conceptually inconsistent models (viz. multiple model ensem-
bles) where the mosaic approach fails. Here, mosaic approaches seem to reach their limits: there are
no different perspectives or contexts in play, we use the inconsistent models to make predictions
about the target system in the same respect in a fixed context. It’s precisely these kinds of situations,
where multiple mutually inconsistent models are used to account for the same aspect of a shared
target system, that we focus on in this paper.

Parker (2010a, 2010b) argues that in the case of ensemble prediction methods, the point is to
reduce uncertainty concerning the adequate model structure, precise initial conditions, or specific
parameter settings. Based on this observation, Parker discusses how and under which conditions,
we can obtain probabilistic predictions from ensemble results (Parker, 2010b). But note that
Parker’s account only provides us with a way of obtaining information about the (probable) truth
of a claim about the target system. Typically, however, we do not only care about whether a
result holds, but also why it holds – in other words, we want an explanation of the results – and
this is what the ensemble method is not equipped to (or even intended to) provide.

Take the case of global warming under increased atmospheric CO2, for example. This result is
robust across different climate models, and the ensemble method allows us to infer probabilistic pre-
dictions from that (Parker, 2010a, pp. 270–271). But, what the ensemble method does not provide us
with is an explanation of the underlying phenomenon.12 In order to properly understand the predic-
tion, it would be desirable to have a scientific explanation of why we get global warming under
increased atmospheric CO2. The relevant questions are: Which aspect of the world’s climate system
necessitates this result? Which laws of nature underlie it? And so on. Especially when it comes to con-
ceptually inconsistent climate models, at least prima facie, the ensemble prediction methods seems
ill-equipped to handle these sorts of questions: there are no clear standards for model comparison
that can be used with conceptually inconsistent models, i.e. models based on different core causal
structures. To be clear, the ensemble method does very well what it’s intended to do – to provide
predictions about the degree of climate change – our point here is that we cannot use it straight-
forwardly for our purpose. What we wish to provide is an account of how even what we call concep-
tually inconsistent models, i.e. models of the same target system that are based on incompatible sub-
stantial assumptions, can provide shared scientific explanations of one and the same aspect of their
shared target system.

The idea that we shall explore in the following is that even if two models use incompatible sub-
stantial assumptions, i.e. they ascribe a different core causal structure to their shared target system,
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they can still share a common structure – and this common structure can ground shared information
provided by these models. The case study of the following section will provide an example of this.
But before we will conduct the study, we will briefly discuss criteria for shared structure among fun-
damentally different models and how such a shared structure can ground shared information.

How can we show that two models whose fundamental assumptions are incompatible share a
common structure? Clearly, concepts like structure preserving maps (isomorphism, partial isomorph-
ism, morphism, etc.) from the debate of the semantic view of theories (see, e.g. Da Costa & French,
1990; French & da Costa, 2000; Landry, 2007) will not be of much help here. These criteria are not
only too strict, moreover they require that the models in question are set-theoretic structures: struc-
ture preserving maps are functions which require well-defined domains, ranges, and structural com-
ponents to be preserved. But given the heterogeneity of models assumed in this paper (see p. 5), this
is a highly dubious assumption. It is unclear, for example, what a morphism between an equation
based model, which is essentially just a system of equations, and a computer simulation model
could even look like – there are no underlying sets that can be used as the domains of the functions,
the models don’t have comparable algebraic structures, and so on. The situation is only made worse
by the fact that we’re interested in models with fundamentally different substantial assumptions, i.e.
models whose mathematical structure can be very different. In short, given the heterogeneity of
models, it’s unreasonable to expect a single, clear criterion for structural similarity across two
models – especially if these models are fundamentally different.

Luckily, however, the situation we find ourselves in is not that different from the usual situation in
robustness analysis, where we’re trying to compare models with the same core causal structure but
different auxiliary assumptions (tractability assumptions, idealizations, etc.), cf. Lehtinen (2016, 2018),
Weisberg (2006); Weisberg and Reisman (2008) and especially Kuorikoski et al. (2010, pp. 545–549).
According to Weisberg (2006, p. 738), the question whether two models exhibit the same core struc-
ture in this sense is ultimately a scientific question – and as such it can be answered in different ways:
We can show, for example, that a model instantiates a structure mathematically, by deriving it as in
the case of the differential equation models; or, we can show it empirically, by observing the pattern
as in the individual based models. It ultimately depends on the specific assumptions of the models
where dealing with and the kind of structure we’re interested in.

The main difference to the usual situation in robustness analysis is that in the case of models with
fundamentally different assumptions, we’re not interested in the core causal structures of the models
– those are different by assumption – rather, we’re interested in what we might call a shared periph-
eral structure. In the following section, we’ll provide an example of a family of trade-models with
fundamentally different assumptions about the core mechanisms explaining international trade,
which nevertheless share a common peripheral structure about certain trade-patterns, which is cap-
tured in a special set of equations (the gravity equations mentioned in the introduction). This per-
ipheral ‘gravity structure’ is instantiated in different ways in the different models, witnessed by
different derivations, based on different assumptions, etc. – but it is still, as we’ll argue, a shared
structure.

Once we’ve established that there is a shared structure across the inconsistent models, we’ll argue
that this shared structure grounds shared information provided by the models. We shall argue that
the shared structure can ground this information by means of robust theorems of the form:

. ‘Ceteris paribus, if [common (peripheral) structure] obtains, then [robust property] obtains.’

If such a theorem can be established, we argue, every model that shares in the common structure
has access to a structurally similar explanation of the robust property. In our case study, the shared
structure will be a shared gravity structure, which, as we’ll show, has been used to account for
different scientific claims in the literature – providing us with an example of shared information
across mutually inconsistent models.
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It might be worth reiterating that what we’re interested in here is the problem of inconsistent
models: how can mutually inconsistent models, especially models with incompatible substantial
assumptions, jointly provide coherent information about a shared target system. The main motiv-
ation for us is the fact that scientists apparently do use such families of models – our case study
will provide an example of this. But at the same time, the case study might be of interest for the
debate on robustness analysis, too. As we mentioned above, the literature on robustness analysis
typically focuses on cases where the shared structure across models is a shared core causal structure,
cf. Kuorikoski et al. (2010). The examples we provide in our case study, instead, appear to be genuine
cases of robustness where the relevant structure is not the main causal mechanism of the models. It
might thus be interesting to evaluate the case from the perspective of confirmation (using Lehtinen,
2016, 2018), explanatory values (using Ylikoski & Kuorikoski, 2010), or the general role of robustness
in economics (using Kuorikoski et al., 2010). But, alas, this work goes beyond the scope of the present
paper.

We’d to conclude this section with a remark: in the philosophical literature on inconsistent
models, it has been questioned whether the problem of inconsistent models is amenable to philo-
sophical analysis or if it is ‘essentially a scientific problem of consistency and coherence in theoretical
knowledge’ (Morrison, 2011, p. 351). For instance, Morrison voices skepticism concerning the pro-
spects of a philosophical solution to the problem of inconsistent nuclear models in physics. She
points out that their success depends precisely on those assumptions that give rise to their incon-
sistency with models. In light of this, we’d like to point out that we don’t aim to provide a general
solution of the problem of inconsistent models, which can be applied to any family of mutually
inconsistent models and gives us coherent information on what they provide. Rather, we aim to
show that in some cases, families of inconsistent models can provide a coherent explanation of a
phenomenon via shared structure. The case of the gravity equations is one such example, but we
argue that the strategy developed in this paper promises more fruitful applications.

4. Case study: international trade and gravity

In this section, we conduct our case study on the gravity equations in international trade theory. In
Section 4.1, we begin with a brief overview of ‘classical’ trade theories. In Section 4.2, we briefly
provide some background on gravity and it’s role in international trade theory. In Section 4.3, we
discuss structural gravity as an example of shared structure across inconsistent models doing expla-
natory work. In Section 4.4, we conclude with a philosophical outlook and discussion.

4.1. International trade theory and the gravity equations

Trade theory is a field of economics that encompasses several, often inconsistent models to explain
various aspects of trade. Generally speaking, international trade theory aims at answering questions
such as:

. Why do countries trade?

. What goods do they trade?

. How much do countries trade and with whom?

The field is intertwined with policy and political implications as different models of trade predict
different consequences on countries’ economic growth, on income inequality, or on which countries
or sectors will benefit from trade and which will suffer. In what follows, we will compare two classical
families of models of international trade: models based on comparative advantage and models of
specialization. We will provide the main intuitions behind these two groups, with a particular empha-
sis on the differences that make such models inconsistent with each other.

Before going into the detail, the main ideas behind the two families of model are:
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. Models that are based on comparative advantage explain that countries trade with each other
because it is favorable for them to export those goods they have a comparative advantage to
produce. This means, those goods that they can produce more efficiently than other goods, as
compared to another country.

. Models of specialization explain that countries trade with others to take advantage of the inherent
benefits of specialization, which allows large-scale production.

Models of comparative advantage.
The concept of comparative advantage lies at the heart of a number of models of international trade,
among them the Ricardian model of international trade and the Hecksher-Ohlin model. Even though
bothmodels share theconceptofcomparativeadvantage, theydecline it indifferentways. Letus seehow.

Ricardo’s model
Ricardo’s model explains trade on the basis of countries’ differences in their technology, which deter-
mines different productivity functions across countries.

As an example, suppose that one country is relatively more efficient at producing cloth than wine,
as compared to another country; and that the opposite holds for the other country, which is rela-
tively more efficient at producing wine than cloth. The model shows the conditions under which
it is convenient for the two countries to trade that good they are more efficient at producing,
even only in relative terms.

To see this, let us consider the Ricardian model in some more detail.13 Suppose that we have only
two countries – Home and Foreign – two goods – 1 and 2 – and the only factor of production in the
two countries is labor. We also assume that labor is mobile across sectors within countries but not
across countries.

First, we denote the productivity of labor ai at home and a∗i in the foreign country. The pro-
ductivity of labor indicates the labor needed per unit of production, for instance, the hours it
takes to produce a unit of good 1. The total labor supply at home is L and abroad L∗. Clearly,
labor is a limited resource, and this sets a constraint on the total amount of goods that can be pro-
duced, i.e. a trade-off between the two goods, which is also called opportunity cost. The opportunity
cost of good 1 in terms of good 2 represents the units of good 2 that could have been produced with
the resources used to produce good 1. A production possibility frontier indicates how much of one
good can be produced given the production of the other good and vice versa.

In order to establish the actual production of goods at Home, we need to consider the prices of
the two goods p1 and p2. Assuming that there are no profits over the produced goods, the wage of a
worker (w) corresponds to the price per unit of a produced good over the unit of labor, i.e.
w1 = p1/a1 and w2 = p2/a2. Wages in sector 1 are higher than in sector 2 when p1/p2 . a2/a1.
Given that workers prefer to maximize their wages, production will specialize in sector 1 if
p1/p2 . a2/a1; it will specialize in sector 2 if p1/p2 , a2/a1; and an economy will produce both
goods if p1/p2 = a2/a1.

Suppose that Home has a comparative advantage in producing good 1, i.e. a1/a2 , a∗1/a
∗
2. This

implies that at Home the relative price of good 1 is lower than that abroad, at least when the two
countries do not trade.

Let us now consider what happens when countries engage in international trade. Given that
Home relative price of good 1 is lower than abroad, then it is efficient for Home to trade Good 1
on the world market and for Foreign to buy it and vice versa for Good 2. Thus, we can focus on
the situation where pa , p , pa∗, where p is the world price. In this case, Home will fully specialize
in good 1 and trade it at the relative price p . pa; a similar line of reasoning applies to Foreign for
good 2. This allows us to conclude that both countries are better off under free trade. In other words,
by producing good 1 and trading it for good 2, Home can have more units of good 2 than it would
have under autarky. The same applies to Foreign for good 1.
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We have already seen that Ricardo’s model makes a number of assumptions, such as that there is
only one factor of production and labor mobility across sectors. Beyond these, it assumes perfect
competition and constant returns to scale. It also assumes that tastes are identical and homo-
geneous. These assumptions determine a number of consequences, such as that each country
will only produce that good in which it has a comparative advantage. It also implies that everyone
within one country will benefit from international trade. Many of these consequences are clearly not
observed in the real world: countries do not specialize in just one good, and not everyone benefits
from international trade. Nevertheless, Ricardo’s model is considered to be important as the basic
idea of the model, i.e. that a country will trade the goods in which its productivity is relatively
high, is still confirmed by the evidence. Krugman, Melitz, and Obstfeld, for instance, summarize
the empirical evidence on the Ricardian model this way:

‘Does the Ricardian model make accurate predictions about actual international trade flows? The answer is a
heavily qualified yes. Clearly there are a number of ways in which the Ricardian model makes misleading pre-
dictions. […] In spite of these failings, however, the basic prediction of the Ricardian model – that countries
should tend to export those goods in which their productivity is relatively high – has been strongly
confirmed by a number of studies over the years.’ (Krugman et al., 2012, p. 45)

The Hecksher-Ohlin model
The H-O model also builds on comparative advantage, even though it is a different kind of compara-
tive advantage than in the Ricardian model. In the H-O model, unlike in Ricardo’s model, there are no
differences in the production function between countries, i.e. in their technologies. The model
assumes that trading depends on other factors of productivity beyond labor, i.e. land and capital.
The main difference between countries is in their relative endowment of factors of production,
such as land, capital, and labor.

Let us look at the H-O model in some more detail.14 Suppose that there are two countries – Home
and Foreign – two goods – 1 and 2 – and two factors of production – labor (L) and capital (K). In the
model, Home and Foreign differ in the relative endowment of factors of production. Home is rela-
tively labor abundant if it has a ratio of labor to capital that is higher relative to that of the other
country. In this case, Foreign is relatively capital abundant:

L/K . L∗/K∗ (1)

Goods differ in their relative factor intensity, which is the intensity with which factors are employed in
the production of goods, i.e. the ratio of resources needed for production. For instance, good 1 is
relatively labor intensive if it requires more labor to capital than good 2 and, conversely, good 2
is relatively capital intensive:

L1/K1 . L2/K2 (2)

Other assumptions of the model are that the factors of production are mobile across sectors within
countries, but not across countries, and that tastes are identical and homogeneous.

Under these assumptions, the H-O model shows that each country will export the good that uses
its relatively abundant factor intensively. To see this, let us focus on our example where Home is rela-
tively labor abundant, while Foreign is capital abundant. Recall also that good 1 is relatively labor
intensive and good 2 relatively capital intensive. This implies that Home produces more of good 1
than good 2, as compared to Foreign, and that the price of good 1 at home is lower than abroad
and vice versa.

When the two countries start trading, the relative price of the goods tend to converge. This way,
for the same relative price, Home will have a larger relative supply of good 1 than Foreign.

Since the model assumes that tastes are identical and homogeneous, the demand curve will be
the same for both countries. With trade, a new relative price of good 1 will settle somewhere
between the pre-trade prices. Since the relative price of good 1 increases for Home as compared
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to pre-trade levels, Home will export good 1 and Foreign will export good 2. This way, Home special-
izes more in good 1 and exports it in exchange for more units of good 2 than in the absence of trade.
The opposite holds for Foreign, which specializes more in good 2 and exports it in exchange for more
units of good 1 than in the absence of trade.

This way, the H-O model shows that each country will export that good that uses intensively the
factor which is relative abundant in the country. In other words, the model explains trade on the
basis of the proportion of factor availability and the relative intensity with which factors are used
in producing goods.

Attempts to use the H-O model to explain empirical data have been keeping international trade
theorists busy, starting at least from the work of Leontief (1953) until the present time. Authors typi-
cally agree that the assumption that technologies are the same across countries is problematic, and
that international trade is largely driven by differences in the productivity of labor. For instance,
according to Feenstra:

‘The H-O model is hopelessly inadequate as an explanation for historical or modern trade pattern unless we
allow for technological differences across countries. For this reason, the Ricardian model is as relevant today
as it has always been.’ (Feenstra, 2015, p. 1).

Other authors praise the empirical merits of the H-O model especially for its ability to explain
pattern of international trade in specific contexts, such as trade between developing and devel-
oped countries (on this, see, e.g. Krugman et al., 2012; Leamer, 2012).15 Leamer’s (2012) view on
the H-O model is more nuanced. According to him, attempts to ‘try to grasp the data tightly to
determine if trade, technologies, and factor endowments conform with the HOV [Heckscher-
Ohlin-Vaneck] predictions have found what seem like serious inaccuracies in the HOV model’.
On the other hand, however, studies that ‘take the central prediction of the HO framework
to be that the structure of trade is correlated (in some way) with relative factor supplies
(measured some how) […] are much more favorable to the HO framework’ (Leamer, 2012,
pp. 121–122).

Before we move on to models of specialization, it is worth focusing more closely on Leamer’s view
of the role of economic models, as it is different than the role emphasized. In the Ohlin Lectures that
he delivered in 2009, which served as the basis for his 2012 book ‘The Craft of Economics’, Leamer
argues that economic models should be appraised in terms of their fruitfulness. In his own words:
‘Our goal as economists should be usefulness and insights, not necessarily validity. A model can
be valid, but entirely useless or worse misleading. And […] a model/framework/thought can be
insightful, even if it isn’t valid.’ (Leamer, 2012, p. 16). He also says: ‘I will argue that the primary
goal of economic modeling is not to predict or to explain, but instead to assist in the design of gov-
ernment market interventions.’ (p. 6, italics added).

Leamer distinguishes between theoretical and empirical models and stresses that the great econ-
omist is the one who is able to find a balance between the two. An important part of the economists’
work, which according to Leamer is often neglected, is to move from a theoretical model to an
empirical model by means of specifying the former so that it can serve as a basis for empirical
testing. In this respect, he claims that the assumptions used in theoretical models are ‘abstractions
to make a point, not abstractions purposefully chosen to approximate the real world.’ (Leamer, 2012,
p. 108)

Leamer’s view on the relation between theoretical models and empirical models would require an
extensive detour, but the main point that is relevant to us here is that he claims that the purpose of
theoretical economic models is not to explain phenomena.16 We leave it open if Leamer is right on
the purpose of economic models and we bracket the substantial question of what exactly is that
makes theoretical models helpful for policy interventions. We are interested in a different, narrower
question, which is: can inconsistent models explain a given phenomenon and, if so, under what con-
ditions? We argue, as it will become clearer in the next sections, that one way in which inconsistent
models can explain is by means of their shared structure.
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Models of specialization
Models that explain trade on the basis of specialization give up several assumptions that are present
in the two previous models and in particular they abandon constant returns to scale in favor of
increasing returns to scale. Unlike models of comparative advantage, which show that differences
between countries explain why they import or export a certain product, models of specialization
explain why even countries that are similar to each other, in terms of factors of production, can
still gain from trade.

Intuitively, it is easy to see the logic underlying models of specialization: suppose that two
countries have the same factors of production and that each of them produces two goods for the
domestic market. Assume also that these goods are in industries where we have economies of
scale. Then, the supply curve for both goods is forward-falling – the more units are produced, the
lower the price, as the average cost of production falls. In the absence of trade, each country has
only access to their domestic market. Given that a domestic market might be too small to reap
the benefits of a scale economy, countries that open up to trade can gain from it.17

It is also important to emphasize that in models of specialization, the potential benefits from trade
do not derive from comparative advantage, since countries are endowed with the same factors of
production by assumption. Models of specialization typically also relax the assumption of perfect
competition in favor of monopolistic competition. Under perfect competition, countries produce
homogeneous goods, which means, there are no differences in the quality of goods they
produce. By contrast, under monopolistic competition, countries differentiate the production of
similar products. This way, models of specialization gained support and credibility as they are
able to explain the high and increasing proportion of trade of similar products between similar
countries worldwide (Krugman, 2009, p. 561).18

Notice that, by contrast, comparative advantage models do not explain intra-industry trade, as
they predict that countries with similar resources will not trade with each other. But given that
the actual world shows high level of intra-industry trade, to many economists this seemed like a
knockdown argument against comparative advantage models in favor of models of specialization:

‘These theories [Ricardo and H-O] provided good explanations of the trade patterns in the first half of the 20th
century. But as many researchers began to observe, comparative advantage seemed less relevant in the
modern world. Today, most trade takes place between countries with similar technologies and similar
factor proportions; quite similar goods are often both exported and imported by the same country. […]
Under such circumstances, how could intra-industry trade be explained? The traditional view, that a given
country would have a comparative advantage in terms of technology or factor endowments when producing
a particular type of textile, seems far-fetched as an explanation.’ (The Royal Swedish Academy of Science, 2008,
p. 1).

This view, however, is not unanimously shared by economists. According to Leamer (2012), for
instance, it would be a mistake to abandon the H-O model, as the model still helps us illuminating pat-
terns of international trade in ways that models of specialization do not (see, on this, also Evenett &
Keller, 2002). To see Leamer’s argument, let us focus on a specific point, which concerns the role of
distance in trade. Models of specialization include distance as a determinant of trade that, simplifying
things, affects the price of goods this way: the larger the distance that goods have to travel, the higher
their price. In the H-Omodels, by contrast, there are no costs of commerce – the only role of distance is
that labor and capital cannot move across countries (Leamer, 2012).19

Nevertheless, according to Leamer, the role of distance has been overestimated in the literature.
In Blum and Leamer (2004), Leamer shows that agricultural goods are the least affected by distance
whereas manufacturing goods are negatively affected by distance. The main upshot is that the H-O
model cannot be neglected because, even when accounting for the role of distance, differences in
resource endowments still matter to international trade. Another reason why Leamer is not willing to
discard the H-O model is that he claims it can shed light on labor market effects of trade via the
Stolper-Samuelson model, and, relatedly, affects trade on income inequality (Blum & Leamer,
2004). In Leamer’s words:
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‘In conclusion, […] the HO model continues to provide surprising insights. Not only is it useful as a theory. It
accurately explains many prominent features of the patterns of international trade, and it is an essential ingre-
dient in any study of the impact of globalization on the U.S. work force.’ (Leamer, 1995).

Inconsistent models
Let us recapitulate where we stand. The previous two families of models, i.e. comparative advantage
models and models of specialization, explain trade in diametrically opposite ways. The idea of com-
parative advantage is that countries trade with each other because of their differences. It is either
because they are endowed with different resources, or because of their different technology, that it
is efficient for them to exchange those goods they can produce comparatively better than others.
Models of specialization, by contrast, do not need any differences between countries in terms of
factors of production or technologies. Countries that are similar to each other with respect to their
endowment of resources gain nevertheless from trade because of the benefits of expanding markets.

The two groups of models make considerably different assumptions to get to their results: perfect
competition and constant returns to scale on the one hand and imperfect competition and increas-
ing returns to scale on the other hand. Even though these two families are based on different
assumptions and provide ‘rival’ explanations, economists usually do not claim that there is one
model of international trade that is in absolute terms better than the others (Krugman, 2011).
These models are usually presented as models each of which highlight some important features
of the phenomena.

Krugman (2011), for instance, compares the two previous approaches side by side. According to
him, the history of international trade can be divided into eras where comparative advantage ‘ruled’
as against others where specialization dominated trade flows. At the same time, he also claims that it
would be a mistake to think that only comparative advantage explains the whole story of inter-
national trade even in those phases dominated by comparative advantage.

In Krugman’s words:

‘[E]ven during comparative advantage eras increasing returns in the form of localized external economies plays a
significant role. […] [I]ncreasing returns […] have historically played an important role in world trade even in
eras when comparative advantage seems to reign supreme.’ (Krugman, 2011, p. 51).

4.2. Traditional gravity

In its simplest form, the gravity model states that the trade flow between two countries is pro-
portional to (the product of) their ‘economic masses’ and inversely proportional to their ‘distance.’
This idea gives rise to the simple gravity equation:

Xi,j = g
XiX j

di,j
, (3)

where Xi,j is the bilateral trade flow between i and j, g is a ‘gravitational constant’ of proportionality, Xi
and X j are the ‘economic masses’ of i and j, and di,j is the ‘distance’ between the two countries. These
variables can be instantiated in various ways, but in the most straight-forward simple gravity models
Xi, X j are simply the GDP’s of i and j and di,j their physical distance.

Simple gravity entered economics as an econometric data model in the studies of Tinbergen
(1962). The model has been quite successful empirically and found several policy applications, cf.
Van Bergeijk and Brakman (2010), Head and Mayer (2014), Anderson (2011), and Kabir et al.
(2017). A striking example of the empirical success of the gravity equations is the study of Havryly-
shyn et al. (1991), who used gravity estimates to predict with surprising accuracy how trade patterns
would be changed by the fall of the Iron Curtain, see Van Bergeijk and Brakman (2010, p. 7).

Despite their empirical success and usefulness in policy applications, economists were initially
skeptical of gravity because of its perceived lack a solid theoretical (microeconomic) foundation.

JOURNAL OF ECONOMIC METHODOLOGY 13



Leamer and Levinsohn, e.g. lament: ‘The gravity models are strictly descriptive. They lack a theoreti-
cal underpinning so that once the facts are out, it is not clear what to make of them’ (Leamer & Levin-
sohn, 1995, p. 1387).

This skepticism, however, was ultimately dispelled by a plenitude of derivations of gravity
equations in a wide range of different trade models. To name just a few:

. Eaton and Kortum (2002) derive gravity in a Ricardian model of trade;

. Deardorff (1998) gives a derivation of gravity equations that are consistent with the assumptions
of Heckscher-Ohlin models;

. Anderson (1979) and Anderson and Van Wincoop (2003) provide a derivation in models of com-
parative advantage.

A particular driving force for theoreticians to derive gravity was to avoid their favorite model of
international trade being falsified by the empirically robust data encoded in the gravity equations
(Deardorff, 1998, p. 7). This worry, however, is dispelled by derivations in models of essentially all
major trade theories. As Deardorff concludes: ‘because the gravity equation appears to characterize
a large class of models, its use for empirical tests of any of them is suspect’ (Deardorff, 1998, p. 21).

For our purposes, however, the fact that all these mutually inconsistent models derive gravity
equations holds philosophical promise: it supports the hypothesis that there is a shared structure
among these models that can be used to provide a common explanation of (empirically observed)
trade-flow patterns. We shall investigate this hypothesis in the remainder of this section, for this
purpose, we’ll take a closer look at the so-called structural gravity model.

4.3. Structural gravity

The structural gravity model was developed by Anderson and Van Wincoop (2003, 2004) as a sol-
ution to McCallum’s infamous ‘border puzzle’ for gravity (McCallum, 1995). This puzzle essentially
consists in the fact that simple gravity models over-predict trade between U.S. states and Canadian
provinces taken as units of trade-flow analysis. A simplified summary of the problem is this: since U.S.
states and adjacent Canadian provinces are physically close, gravity predicts high trade volumes
between them; in reality, however, we observe an apparent trade-destroying fact at the U.S.-Cana-
dian border; the states and provinces disproportionally trade among themselves rather than across
the border. The only way for gravity models to accommodate this seemed to be by means of ad hoc
dummy variables, which makes for a theoretically unsatisfactory solution.20

To address the puzzle, Anderson and van Wincoop focus on what they’ve coined ‘multilateral
resistance parameters’ in gravity. In a model of specialization with identical homothetic preferences,
approximated by a utility function with constant elasticity of substitution (CES) σ, Anderson and van
Wincoop derive the gravity equation (4) subject to conditions (5) and (6), which implicitly define the
resistance terms Pi and P j respectively:

Xi,j = XiX j

Xw

di,j
P jP j

( )1−s

(4)

(Pi)
1−s =

∑
j

di,j
P j

( )1−s X j

Xw
(5)

(P j)
1−s =

∑
j

di,j
P j

( )1−s Xi
Xw

(6)

In these equations, Xw is the global ‘economic mass’ and P j is j’s outward multilateral resistance,
while P j is j’s inward multilateral resistance, both measuring i’s and j’s ease of market access, intuitively.
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Something that’s particularly interesting to note for our purposes is that by implicitly defining the
resistance terms Pi and P j via Equations (5) and (6), Anderson and van Wincoop tie their gravity
equation to the internal structure of their model – whence the name ‘structural gravity.’ In fact, as
Anderson (2011, p. 142) points out, we can solve (6) and (7) – up to a multiplicative constant –
from Xi, X j and d1−s

i,j for all i,j.
Anderson and van Wincoop go on to empirically estimate the parameters of their model for the

case of U.S. states and Canadian provinces, which allows them to solve McCallum’s border puzzle.
They find that, via their resistance terms, the international border has a trade-reducing effect of
around 20–50% (Anderson & Van Wincoop, 2003).

The derivation of structural gravity by Anderson and van Wincoop is what’s called a ‘demand side’
derivation, since its based on assumptions about demand (homothetic preferences with CES). As it
turns out, however, structurally identical, isomorphic gravity equations can also be derived from the
supply side. Such a derivation can be provided in Eaton and Kortum’s Ricardian trade model (Eaton &
Kortum, 2002). In their model, it is determined probabilistically whether a country is likely to provide
a certain good to another country based on a so-called Fréchet distribution with a variation par-
ameter θ that is common to all countries. The equations that can be derived in Eaton and Kortum
are (see Yotov et al., 2016, pp. 57–59 for a detailed derivation):

Xi,j = XiX j

Xw

di,j
P jP j

( )u

(7)

(Pi)
u =

∑
j

di,j
P j

( )u X j

Xw
(8)

(P j)
u =

∑
j

di,j
P j

( )u Xi
Xw

(9)

Note that the only difference between Equations (4)–(6) and (7)–(9) is that the variation parameter θ
is substituted for 1− s, which allows us to argue that the two sets of equations express one and the
same structure. This structure can be represented by the following parametized equations:

Xi,j = XiX j

Xw

di,j
P jP j

( )X
(10)

(Pi)
X =

∑
j

di,j
P j

( )X X j

Xw
(11)

(P j)
X =

∑
j

di,j
P j

( )X Xi
Xw

(12)

If we set the parameter X to 1− s, we obtain Equations (4)–(6); if, instead, we set X to θ, we obtain
Equations (7)–(9).

What conclusions can we draw from this? First, we wish to argue that the two mutually inconsist-
ent models (cf. Table 1), Anderson and van Wincoop’s model of specialization on the one side and
Eaton and Kortum’s Ricardian model on the other side, share a common gravity structure, expressed
by the parametized equations (10)–(12). This structure is instantiated in different ways in the two
models – on the demand side in Anderson and van Wincoop’s model and on the supply side in
Eaton and Kortum’s model – witnessed by different derivations, but the mathematical structure is
the same.

This means that the two models have in principle access to structurally similar explanations of
empirical phenomena if they are based on the structural gravity equations. One could, for
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example, try to provide a Ricardian answer to McCallum’s border puzzle, which is structurally iden-
tical to Anderson and vanWincoop’s solution, by empirically estimating the model parameters in (7)–
(9) – though this has not been done to the best of our knowledge.

We do, however, find economic studies in the literature that make use of the shared structure
between these mutually inconsistent models to provide theoretical explanations. We mention two:

. Arkolakis et al. (2012) introduce a welfare formula that, under certain assumptions, arises in a large
class of trade models, including the models of Anderson and van Wincoop and Eaton and Kortum.
A central result of Arkolakis et al. is that, in the setting of the paper, the gains from trade are invar-
iant under the parameters of the isomorphic gravity equations (Arkolakis et al., 2012, pp. 117–118)
(cf. also Yotov et al., 2016, p. 3 on this point). Very roughly, we can reformulate this result as a
robust theorem in Weisberg’s sense as follows:

Ceteris paribus, if [same gravity parameters], then [same gains from trade].

Here the ‘ceteris paribus’ clause covers the model structure needed for the welfare formula to
hold. Arkolakis et al. use this robust result to argue that new trade models don’t provide new
insights into the question of gains from trade: since both old and new models are in the class
of models for which the theorem holds, the welfare gains in these models are the same. That
is, by means of their robust theorem, Arkolakis et al. extract shared information from a class of
mutually inconsistent models of the same phenomenon.

. The study of Allen et al. (2020) provides another example. The authors of this study show that in a
large class of models (again including the models of both Anderson and van Wincoop as well as
Eaton and Kortum), the existence of equilibria and the counterfactual predictions concerning
trade flows, incomes, and prices purely depends on the parameters of the isomorphic gravity
equations:

Ceteris paribus, if [same gravity parameters], then [same counterfactual predictions].

Again, it seems that what Arkolakis et al. are doing here is to extract information from a large class
of mutually inconsistent models by means of a shared gravity structure.

Table 1. The assumptions underlying the three models presented in the section.

Inconsistent assumptions between comparative
advantage models and models of specialization

Inconsistent assumptions between
Ricardo’s model and H-O model

Comparative
advantage

Ricardo • Constant return to scale • Countries differ in production
technology (productivity)

• Perfect competition • Labor is mobile across sectors
within countries

• Two countries, home and foreign
• Two goods, 1 and 2
• Tastes are identical homogeneous

H-O
model

• Constant return to scale • Countries differ in their factor
endowment

• Perfect competition • No differences in technology
across countries

• Two countries, home and foreign • Factors of production are mobile
across sectors within countries

• Two goods, 1 and 2
• Tastes are identical homogeneous

Models of
specialization

• Economies of scale

• Monopolistic competition
• Each firm produces a good that is similar to but
differentiated from the goods that other firms in the
industry produce
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We claim that these two studies provide clear examples of economic work where information is
extracted from mutually inconsistent models (we’ve focused on Ricardian and New Trade models)
via a shared structure (the structural gravity equations). From the perspective of the inconsistent
models problem, our story ends here: we have an instance of shared information across mutually
inconsistent models by means of a shared structure. We leave an evaluation of the case study
from the perspective of robustness analysis, especially in the context of Kuorikoski et al.’s approach
to economic modeling as robustness analysis, for future work.

5. Conclusion

In this paper, we have focused on conceptually inconsistent models, i.e. models with different sub-
stantial assumptions, of the same target system. These models differ from each other along multiple
lines, ranging from their variables to their relations. Inconsistent models represent the same target
system in mutually incompatible ways. As we have seen, this inevitably raises a number of questions:
How can inconsistent models jointly provide a coherent explanation of the same phenomenon? And
in case they lead to the same result, what can we conclude from that?

We argued that the ‘quick’ reaction of discarding the problem as a case of mere scientific dis-
agreement is too fast. As we have discussed in this paper, it is often the case that scientists work
with families of inconsistent models, and not with the purpose of finding the right model, or of dis-
missing the wrong models in favor of better models. Rather, they often use inconsistent models sim-
ultaneously as a source of information about the system of interest. We have provided examples
from physics, climate science and economics.

But even though scientists are working with inconsistent models, the question remains: what is
the rationale behind this practice? In this paper, we have observed that some of the standard
answers provided in the literature fall short, at least in some instances where inconsistent models
are used. In particular, the ideas from perspectival realism and model pluralism do not apply to
cases where inconsistent models refer to the same phenomenon in the same target system. We
have argued that one possible way in which families of inconsistent models jointly explain a
given phenomenon in such situations is by sharing an underlying structure, which is responsible
for the phenomenon of interest. If we can show that the different representations the models
display share an underlying structure that determines the result, then we have a reason to claim
that the models jointly explain the same phenomenon via this structure. This way, we can go
beyond the differences that the models exhibit at the surface level.

International trade theory is a case in point: models of international trade make different assump-
tions and use different variables to describe flows of international trade. And yet, economic practice
suggests that if we want to understand a complex phenomenon such as international trade, we
cannot rely on just one single overarching model. We need several, different, possibly inconsistent
models to tackle the problem at issue. Moreover, inconsistent models of international trade are all
compatible with the data encoded in the gravity equations. Therefore, they cannot be discarded
on the basis of the (same) observational evidence. By showing that they converge on the same
result in virtue of their underlying structure, we can understand how they can be used together
in a meaningful way. In this paper, we proposed the use of structural gravity in the studies of Arko-
lakis et al. (2012) and Allen et al. (2020) as examples of precisely this.

In doing so, we have shown a possible way in which inconsistent models can be used together
and jointly explain a result. If we would only focus on the inconsistencies across them, and consider
them as cases of scientific disagreement, we would loose an important part of what scientists can do
with them.

We’d like to conclude with a brief remark on a promising connection between the approach we’ve
endorsed in this paper and structural realism (Ladyman, 2019; Ladyman & Ross, n.d.). A natural view
for a structural realist to take is that what makes a model a good model of its target system is that it
accurately captures the structure of reality. Adopting such a view would give us an interesting line of
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support for the answer to the problem of inconsistent models that we’ve described in this paper. The
idea would be that a family of mutually inconsistent models can provide an explanation of a
phenomenon in the real world by deriving that result from a shared structure that latches on to
the actual structure of the target system in reality. In fact, the case study we’ve conducted in this
paper, might provide an interesting case in point here, especially in light of the general suitability
of structural realism to provide an account of economics (Ross, 2008). Obviously, much more
would need to be said to turn this into a philosophically acceptable account, this is just an open
question to develop in future research.

Notes

1. In this paper, we don’t focus on models that are inconsistent in the sense of one model containing contradicting
assumptions. For an overview of the literature on inconsistent science in this sense, see Bueno and Vickers
(2014). In the following, when we speak of ‘inconsistent models’, we always mean ‘mutually inconsistent
models’.

2. For an overview of the history of gravity in trade theory, see Head and Mayer (2014, Section 1.2).
3. See Yotov et al. (2016) for an overview of structural gravity and, in particular, its applications in policy.
4. For an overview of the vast philosophical literature on scientific models, see Frigg and Hartmann (2018).
5. For a more detailed discussion of the concept of a target system, see Elliott-Graves (2014).
6. See Basso et al. (2017) for an overview of scientific models’ epistemic functions.
7. For a discussions of the implications of this view, see Frigg and Hartmann (2018, Section 4.2) and the essays in

Morgan and Morrison (1999).
8. For an overview of the different views on the ontology of models in the literature, see Frigg and Hartmann (2018,

Section 2).
9. The question in virtue of what two models based on incompatible assumptions can be considered models of the

same target system is intriguingly complex, but we shall not address it in this paper. For more on this question,
see the discussion of the problem of style in Frigg (2006); Frigg and Nguyen (2017).

10. But see Easwaran and Fitelson (2015) and Hughes (2017) for a critical discussion.
11. In his book ‘Economic Rules’, Rodrik (2017) provides an illuminating example of model pluralism in economics.

Consider a question such as: ‘Does a reduction in the government fiscal deficit hamper or stimulate economic
activity?’ (Rodrik, 2017, p. 18). According to a standard macroeconomic model, the answer to the question is that
fiscal cuts hamper economic activity. But, the model that shows this result makes a number of assumptions, such
as the particular monetary policy a government implements. Under a different monetary policy, a different
answer would follow. Therefore, in order to explain the relation between fiscal cutbacks and economic activity,
we need a family of models that make different assumptions among which to select the one that applies to the
context of interest.

12. I fact, the ensemble method does not aim to do that (see also below). There are well-known explanations of why
global warming occurs via the greenhouse effect, for an overview, see, e.g. Jain (1993). But our point here is
different: it’s just that the ensemble method as discussed by Parker does not allow us to extract explanatory
information from families of mutually inconsistent models.

13. In what follows, we are mainly following Feenstra (2015); the interested reader can refer to Feenstra and Taylor
(2008), and Krugman et al. (2012).

14. In what follows, we are mainly drawing on Krugman et al. (2012); the interested reader can refer to Feenstra
(2015) and Feenstra and Taylor (2008)

15. On this note, according to Leamer: ‘The HO framework successfully explains why Latin American tropical
countries with abundant natural resources and abundant workforces with low educational attainment export
coffee and bananas and oil and minerals, while Asian countries with less abundant natural resources export
apparel and footwear.’ (Leamer & Stern, 2006, pp. 5–6)

16. See Ross (2014) for a discussion of Leamer’s view on theoretical models in macroeconomics in particular.
17. Notice that models of specialization do not rely on increasing returns throughout the range of the production

function. The key relationship is a minimal efficient scale that is larger than the extent of the domestic market.
18. To be more precise, models of specialization predict international trade even under perfect competition at the

firm level. See, on this, the distinction between internal economies of scale and external economies of scale, as
explained for instance in Krugman et al. (2012).

19. On this aspect:

‘An HO model has a very peculiar external geography with countries infinitely far apart as far as the
migration of factors of production is concerned (including capital as well as labor), but infinitesimally
close to each other as far as the cost of commerce is concerned.’ (Leamer, 2012, p. 108)
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20. See Head and Mayer (2014), Anderson (2011), and Yotov et al. (2016) for a more detailed account of the devel-
opment of structural gravity.
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