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ABSTRACT

Presented within this work is a new method for inertial orbit estimation of an object, either known

or unknown, adaptable to a network of low-cost observation satellites. The observation satellites

would only require a monocular camera for line of sight measurements. Using the line of sight

measurements of each observer, a pair of orthogonal geometric planes that intersect both the ob-

servation satellite and the target are created. The intersection of the two planes in the inertial frame

defines the new measurement model that is implemented with multiple observation nodes. Total

system observability is analyzed and the instantaneous (per node) observability is used to remove

“bad" measurements from the system. The measurement model is used in an extended Kalman fil-

ter framework and the measurement noise nonlinear transformation is addressed. Three cases are

presented; first, the minimum number of required observation nodes to produce accurate results if

determined. Then, a smaller number of observation nodes is analyzed to highlight the use of the

instantaneous observability and its deleterious effect on the filter performance. Finally, the method

is expanded out to multiple observation satellites in a constellation. For all cases, the results show

that this method is capable of producing accurate orbit estimation that converges in a short time.
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CHAPTER 1: INTRODUCTION

Currently, the task of performing orbit determination is mainly accomplished by a series of ground-

based optical and radar observation stations. These ground-based stations can be limited by various

atmospheric conditions, including weather. In the case of the optical observation stations, they can

only be utilized during night time hours and are effected by light pollution. With the ever increasing

number of space flight operations and the limitations of ground-based observers, a gap in coverage

begins to emerge. This gap can be filled with a network of low-cost observation satellite nodes,

Figure 1.1, that are capable of providing accurate and highly efficient real-time orbit estimation of

satellites, spacecraft, and other unknown objects.

Figure 1.1: Illustration of a network of observation satellites.

With the expansion of both private and commercial space flights, autonomous rendezvous and on-

orbit servicing could benefit the most from having such a network in place [1]–[4]. Furthermore,

another application to benefit would be operations involving space debris tracking and removal.

Currently it is believed that the number of debris in Earth orbit is approximately 500,000 [5] and

exponentially increasing due to collisions [6]. According to NASA planetary defense program

office, only a fraction of the larger Near Earth Objects (NEOs) are tracked and classified due to the
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limitations of ground-based observers. When combined with the current network of ground based

observations, a network of observation satellites has the potential of improving the tracking and

identification of NEOs [7].

Literature Review

The literature of orbit determination and estimation is rich with several seminal contributions that

date back to Gauss and Laplace. Early angles-only initial orbit determination (IOD) of Gauss [8]

and Laplace [9] relied on ground based angle measurements to determine the orbit of celestial

bodies. With the advent of space flight, iterative methods have been proposed, e.g. the Double-r

method [10] and the Gooding method [11]. In general, IOD is used to provide an initial guess for

other estimation and filtering techniques. A comprehensive comparison of widely used IOD meth-

ods is presented in [12]. Nonlinear least squares, e.g. Gauss least squares differential correction

(GLSDC), is also capable of providing accurate orbit determination using a variety of measure-

ment methods [13]. A multitude of filtering techniques have also been studied in the literature for

Earth-based and space-based measurement models. A space-based angles-only orbit estimation

approach using an extended Kalman filter (EKF) formulation in spherical coordinates is studied in

[14]. The measurement model and the dynamics are transformed into a spherical coordinate sys-

tem and the results are compared with the EKF implementation in Cartesian coordinates. Several

other works focused on comparing the performance of different estimation techniques for various

measurement models [13], [15]–[17]. The unscented Kalman filter (UKF) and the EKF have been

extensively studied in these works highlighting there advantages and limitations as a result of the

measurements sampling time, the measurement model, the sensitivity towards the initial covari-

ance, the accuracy and the computational time. For example, Teixeira, Santillo, Erwin, et al. [16]

used a range-only and a range, azimuth and elevation space-based measurement models to com-
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pare the EKF and the UKF while varying the sampling time. Their results show that the UKF

has better convergence characteristics with sparser sampling whereas the EKF has an advantage in

computational efficiency.

There are a variety of measurement methods available to perform orbit determination [18]. Some

examples of these methods include azimuth and elevation angles and range measurements, and

azimuth and elevation angles only measurements. Azimuth and elevation angles and range mea-

surements can be acquired using either radar or LiDAR [19]–[22]. Angles only measurements

can simply be acquired by observing an object using a telescope or a monocular camera [23]–

[29]. Unfortunately, the use of angles-only measurements for space-based orbit determination has

proven challenging in the past. It has mainly been proposed for orbit estimation during single

purpose, close proximity missions. Because of the close proximity, most studies have been mainly

focused on relative orbit dynamics. Using the linearized Clohessy-Wiltshire-Hill (CWH) equa-

tions for relative motion with a single observer, Woffinden and Geller [30] showed that the system

is non-observable due to the absence of range measurements.

To overcome the observability problem, studies have shown that when using higher order or the

full nonlinear relative dynamics, the system can become observable [23]–[25]. Butcher, Wang, and

Lovell [23] verified that when using the first order CWH equations with angles only measurements,

the system is non-observable. They then went on to perform analysis by including the second and

third order terms of the Taylor expansion as well as the full nonlinear relative dynamic model.

They were able to show that with each higher order term there was an increase in observability

and a decrease in error and that the third order expansion performed equally to the full nonlinear

dynamics. Others have approached this problem by providing a second measurement perspective

during sequential measurements, showing that by applying a specific control input, either transla-

tional or rotational, the system will become observable for select scenarios [25]–[27]. It has also

been shown that it is possible to come up with an optimal control to maximize the observability
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while minimizing the number of maneuvers during a rendezvous scenario [28], [29]. Besides not

being observable at all time, this approach also has the drawback of requiring the continuous use

of propellant, limiting its service life. Geller and Klein [31] showed that these results can be pro-

duced without the control input, simply by offsetting the imaging camera and taking that offset

into account in the system dynamics. However, there were still several instances where the system

was non-observable.

Another approach to using line of sight measurements has been to introduce a second monocular

camera on a secondary or deputy spacecraft [32], [33]. With this approach, in order to use relative

motion dynamics, the measurements of the secondary spacecraft have to be a function of the states

of the primary spacecraft. Wang, Zhang, Zhou, et al. [34] proposed a similar method of using

a secondary spacecraft but in inertial frame. However, it required that the ranging information

between the primary and secondary spacecraft to be available. In Li, Wang, and Zheng [35], using

only dual-point of view observations, it was shown to be capable of orbit determination in the

inertial frame without the need for any range information. It was also shown that the accuracy of

the orbit determination was higher when the orbit of the observer and the placement of the camera

on the observers were optimized to maximize exposure of the target to the observers.

Objectives

The objectives of this thesis are to:

• Develop a measurement model that is capable of accurately performing orbit estimation

using only angle measurements from multiple independent observation nodes.

• Validate the measurement models ability to perform orbit estimation on an unknown target

in orbit.
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Outline

Chapter 2 presents the derivation of the new measurement model, how the estimation scheme was

implemented, and observability analysis performed.

Chapter 3 discuses the numerical simulation used to validate the new measurement model and

analyzes the results.

Chapter 4 summarizes the conclusions of this thesis as well as future work to be explored.
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CHAPTER 2: MULTI-NODE ORBIT ESTIMATION

Measurement Model

The proposed measurement model revolves around the facts that any line in three dimensional

space can be defined as the intersection of two planes, Figure 2.1A, and that any point is defined

as the intersection of two lines [36], Figure 2.1B. To define a plane, the essential ingredients are

the surface normal of the plane, [nx ny nz], and a known point on the plane, [X Y Z]. Any other

point on the plane, [x y z], can be expressed as

[

nx ny nz

][

x y z

]T

= nxX +nyY +nzZ (2.1)

When using planes to define a line, a surface normal from each of the intersecting planes, [nx1 ny1

nz1 ] and [nx2 ny2 nz2 ], and a common known point, [X Y Z], are required. Any point on the line

is expressed as







nx1 ny1 nz1

nx2 ny2 nz2







[

x y z

]T

=







nx1X +ny1Y +nz1Z

nx2X +ny2Y +nz2Z






(2.2)

The point of two intersecting lines can then be expressed as



















nx1,1 ny1,1 nz1,1

nx1,2 ny1,2 nz1,2

nx2,1 ny2,1 nz2,1

nx2,2 ny2,2 nz2,2



















[

x y z

]T

=



















nx1,1X1 +ny1,1Y1 +nz1,1Z1

nx1,2X1 +ny1,2Y1 +nz1,2Z1

nx2,1X2 +ny2,1Y2 +nz2,1Z2

nx2,2X2 +ny2,2Y2 +nz2,2Z2



















(2.3)
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Assuming the form,

Ax = b (2.4)

the solution for the point of intersection is

x = (AT A)−1AT b (2.5)

y

z

x

n1

n2

(A)

y

z

x

n2,2

n2,1

n1,2

n1,1

(B)

Figure 2.1: (A) Two intersecting planes creating a line. (B) Two intersecting lines, represented by
planes, creating a point.

In the case of multiple satellites, for each observation node, starting with the monocular camera,

two angle measurements, elevation (El) and azimuth (Az), are measured as shown in Figure 2.2.

With these angle measurements, a line of sight unit vector ( ˆLOS) can be created, pointing from the

observation node to the target in the body frame of the observation node.

ˆLOS
Body

Obs→Tar =













cosEl sinAz

cosEl cosAz

sinEl













(2.6)
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y

z

x

Az

El

Figure 2.2: Angle measurements

The ˆLOS can be rotated from the body frame to the local vertical, local horizontal (LVLH) frame

of the observation node,

ˆLOS
LV LH

Obs→Tar =













1 0 0

0 cosφ −sinφ

0 sinφ cosφ

























cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

























cosψ −sinψ 0

sinψ cosψ 0

0 0 1













ˆLOS
Body

Obs→Tar (2.7)

Where φ , θ , and ψ are the Euler angles, Figure 2.3A, roll, pitch, and yaw of the observation node,

respectively. ˆLOS can then be rotated from the LVLH frame of the observation node to the ECI
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frame, Figure 2.3B,

ˆLOS
ECI

Obs→Tar =













cosΘ −sinΘ 0

sinΘ cosΘ 0

0 0 1

























1 0 0

0 cos i −sin i

0 sin i cos i

























cosΩ −sinΩ 0

sinΩ cosΩ 0

0 0 1













ˆLOS
LV LH

Obs→Tar (2.8)

where, i is the inclination angle, Ω is the longitude of the ascending node, and Θ is the true longi-

tude defined as the sum of the true anomaly and the argument of periapsis, all for the observation

node. From here on, unless otherwise stated, all vectors and measurements are assumed to be in

the ECI frame.

z

x

y

θ

ψ

φ

(A)

i

xECI

yECI

zECI

Ω

Θ

xLV LH

yLV LH

zLV LH

(B)

Figure 2.3: (A) Euler angles. (B) LVLH coordinate system.

With multiple observation nodes observing a single target, multiple ˆLOS vectors are created as

shown in Figure 2.4 for N number of observation nodes. From Figure 2.4, the ˆLOS from each

observation node to the target can be represented as,
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y

z

x

Observer1

Observer2

ObserverN

Target

O

R
O
bs1

RObs2

R
O
bs
N

R
Tar

ˆLOSObs1→Tar

ˆLOSObs2→Tar

ˆLOSObsN→Tar

Figure 2.4: Line of sight vectors for N observation nodes.

ˆLOSObs1→Tar =

[

x̂Obs1→Tar ŷObs1→Tar ẑObs1→Tar

]T

ˆLOSObs2→Tar =

[

x̂Obs2→Tar ŷObs2→Tar ẑObs2→Tar

]T

...

ˆLOSObsN→Tar =

[

x̂ObsN→Tar ŷObsN→Tar ẑObsN→Tar

]T

(2.9)
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The state vector of the target is given by,

XTar =

[

RTar VTar

]T

=

[

xTar yTar zTar ẋTar ẏTar żTar

]T

(2.10)

and the state vector for each observation node is,

XObs1 =

[

RObs1 VObs1

]T

=

[

xObs1 yObs1 zObs1 ẋObs1 ẏObs1 żObs1

]T

XObs2 =

[

RObs2 VObs2

]T

=

[

xObs2 yObs2 zObs2 ẋObs2 ẏObs2 żObs2

]T

...

XObsN =

[

RObsN VObsN

]T

=

[

xObsN yObsN zObsN ẋObsN ẏObsN żObsN

]T

(2.11)

Using the position of the observation nodes, unit vectors from the observation nodes to the origin

of the ECI frame are created,

R̂Obs1→O =
−RObs1

‖RObs1‖
=

[

x̂Obs1→O ŷObs1→O ẑObs1→O

]T

R̂Obs2→O =
−RObs2

‖RObs2‖
=

[

x̂Obs2→O ŷObs2→O ẑObs2→O

]T

...

R̂ObsN→O =
−RObsN

‖RObsN‖
=

[

x̂ObsN→O ŷObsN→O ẑObsN→O

]T

(2.12)

For each observation node, two planes are created that intersect both the observation node and the

target as shown in Figure 2.5. For both planes, the position of the Kth observation node is used as

11



y

z

x

Observer1

Observer2

ObserverN

Target

O

R
O
bs1

RObs2

R
O
bs
N

RTar

n̂Obs1,P lane2

n̂Obs1,P lane1

R̂Obs1→O

ˆLOSObs1→Tar

n̂Obs2,P lane2

n̂Obs2,P lane1R̂Obs2→O

ˆLOSObs2→Tar

n̂ObsN,P lane1

n̂ObsN,P lane2

R̂ObsN→O

ˆLOSObsN→Tar

Figure 2.5: Geometric planes that intersect both the Kth observation node and the target.

the known point. The normal vector for the first plane is defined as the cross product of the ˆLOS

in Equation 2.9, and the position unit vector in Equation 2.12

n̂ObsK,Plane1 = ˆLOSObsK→Tar x R̂ObsK→O =

[

x̂ObsK,Plane1 ŷObsK,Plane1 ẑObsK,Plane1

]T

(2.13)

From Equation 2.11 and Equation 2.13, the equation for the first plane, as function of the first

normal vector and the Kth observer, is

x̂ObsK,Plane1(x− xObsK)+ ŷObsK,Plane1(y− yObsK)+ ẑObsK,Plane1(z− zObsK) = 0 (2.14)
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For the second plane, the normal vector is the cross product of the normal vector of the first plane,

Equation 2.13 and the ˆLOS, Equation 2.9,

n̂ObsK,Plane2 = n̂ObsK,Plane1 x ˆLOSObsK→Tar =

[

x̂ObsK,Plane2 ŷObsK,Plane2 ẑObsK,Plane2

]T

(2.15)

From Equation 2.11 and Equation 2.15, the equation for the second plane, as function of the second

normal vector and the Kth observer, is

x̂ObsK,Plane2(x− xObsK)+ ŷObsK,Plane2(y− yObsK)+ ẑObsK,Plane2(z− zObsK) = 0 (2.16)

In order to use the equations of each plane as a measurement model, the terms that contain the

measurements, elevation (El) and azimuth (Az), have to be isolated to one side of the equation.

The terms containing the measurements are the components of the normal vectors of each plane.

To accomplish this, Equation 2.14 and Equation 2.16 are rearranged into the vector-matrix form,







x̂ObsK,Plane1 ŷObsK,Plane1

x̂ObsK,Plane2 ŷObsK,Plane2













(x− xObsK)

(y− yObsK)






+







ẑObsK,Plane1

ẑObsK,Plane2






(z− zObsK) = 0 (2.17)

Finally, Equation 2.17 can be rewritten as,







x̂ObsK,Plane1 ŷObsK,Plane1

x̂ObsK,Plane2 ŷObsK,Plane2







−1





ẑObsK,Plane1

ẑObsK,Plane2






=

1
(zObsK − z)







(x− xObsK)

(y− yObsK)






(2.18)
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Which provides two measurements for the Kth observer as







y2K−1

y2K






=

1
(zObsK − z)







(x− xObsK)

(y− yObsK)






(2.19)

where







y2K−1

y2K






=







x̂ObsK,Plane1 ŷObsK,Plane1

x̂ObsK,Plane2 ŷObsK,Plane2







−1





ẑObsK,Plane1

ẑObsK,Plane2






(2.20)

Expanding Equation 2.19 for N observers and replacing [x y z]T with the target position, RTar =

[xTar yTar zTar]
T , the measurement model becomes

























y1

y2

...

y2N−1

y2N

























=

























(xTar−xObs1)
(zObs1−zTar)

(yTar−yObs1)
(zObs1−zTar)

...

(xTar−xObsN)
(zObsN−zTar)

(yTar−yObsN)
(zObsN−zTar)

























(2.21)

Equation 2.21 has the general form of the nonlinear measurement model,

y(t) = h(x(t)) (2.22)

where x(t) represents target’s unknown state vector. The measurement model in Equation 2.21 can

be readily utilized in an extended Kalman filter (EKF) scheme to estimate the inertial position and

velocity of the target object as shown in the next section.
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Extended Kalman Filter

For the orbit estimation of the target, an extended Kalman filter (EKF) is adopted [37] as shown

in Figure 2.6. The target dynamics are assumed to follow the Keplerian two-body motion given in

the Cartesian ECI frame by,

˙̂x = f(x̂(t)) =







V̂Tar

− µ

‖R̂Tar‖3 R̂Tar






(2.23)

The Jacobian evaluated at the estimate, F(x̂), is written as,

F(x̂(t)) =
∂ f

∂x

∣

∣

∣

∣

x̂(t)

=







03x3 I3x3

F21(x̂) 03x3







(2.24)

where,

F21(x̂) =
µ

‖R̂Tar‖5













3x̂2
Tar −‖R̂Tar‖

2 3x̂TarŷTar 3x̂Tar ẑTar

3x̂TarŷTar 3ŷ2
Tar −‖R̂Tar‖

2 3ŷTar ẑTar

3x̂Tar ẑTar 3ŷTar ẑTar 3ẑ2
Tar −‖R̂Tar‖

2













(2.25)

15



From Equation 2.21, the discretized measurement model at time tk is,

yk = h(x̂k) =



























(x̂Tark
−xObs1k

)

(zObs1k
−ẑTark

)

(ŷTark
−yObs1k

)

(zObs1k
−ẑTark

)

...
(x̂Tark

−xObsNk
)

(zObsNk
−ẑTark

)

(ŷTark
−yObsNk

)

(zObsNk
−ẑTark

)



























(2.26)

and the matrix H(x̂k) is given by,

H(x̂k) =
∂h

∂x

∣

∣

∣

∣

x̂k

=





























1
(zObs1k

−ẑTark
) 0

(x̂Tark
−xObs1k

)

(zObs1k
−ẑTark

)2 0 0 0

0 1
(zObs1k

−ẑTark
)

(ŷTark
−yObs1k

)

(zObs1k
−ẑTark

)2 0 0 0

...

1
(zObsNk

−ẑTark
) 0

(x̂Tark
−xObsNk

)

(zObsNk
−ẑTark

)2 0 0 0

0 1
(zObsNk

−ẑTark
)

(ŷTark
−yObsNk

)

(zObsNk
−ẑTark

)2 0 0 0





























(2.27)

The initial state covariance matrix is P−
0 = diag(108). The measurement covariance, R, starts with

the standard deviation of the measurement angles, σEl =σAz = 0.03◦. It then undergoes a nonlinear

transformation, Equation 2.6, two linear transformations, Equation 2.7 and Equation 2.8, and a final

nonlinear transformation shown in Equation 2.20. The details of the measurements covariance

transformation are presented in Appendix A. The process noise covariance is Q = σ2
wI3x3 with the

input matrix G = [03x3 I3x3]
T . For the discrete measurements, the time step is ∆t = 0.5 s.

To obtain the initial state estimate, the Herrick-Gibbs method [13] is implemented. The Herrick-

Gibbs method uses three sequential position measurements and their time of measurement to ap-
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Initialize
x̂−

0 , P−

0

Gain
Kk = P−

k
HT

k
(x̂−

k
)[Hk(x̂

−

k
)P−

k
HT

k
(x̂−

k
)+Rk]

−1

Hk(x̂
−

k
) = ∂h

∂x

∣

∣

x̂
−

k

Update

x̂+
k

= x̂−

k
+ Kk[yk − h(x̂−

k
)]

P+
k

= [I − KkHk(x̂
−

k
)]P−

k

Propagation
˙̂x(t) = f(x̂(t))

Ṗ (t) = F (x̂(t))P (t) + P (t)FT (x̂(t)) +GQGT

F (x̂(t)) = ∂f

∂x

∣

∣

x̂(t)

x̂
−

k+1
, P

−

k+1

Figure 2.6: Continuous-Discrete Extended Kalman Filter

proximate the velocity at the second measurement. The approximation is done using a Taylor

series expansion and works best when each measurement is close together. The first three mea-

surements are used to provide the initial state estimate. This is accomplished by first solving the

static position from Equation 2.5.

RTari
= (AT

i Ai)
−1AT

i bi; For i = 1,2,3 (2.28)
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Where,

Ai =

























x̂Obs1,Plane1i
ŷObs1,Plane1i

ẑObs1,Plane1i

x̂Obs1,Plane2i
ŷObs1,Plane2i

ẑObs1,Plane2i

...

x̂ObsN,Plane1i
ŷObsN,Plane1i

ẑObsN,Plane1i

x̂ObsN,Plane2i
ŷObsN,Plane2i

ẑObsN,Plane2i

























(2.29)

and

bi =

























x̂Obs1,Plane1i
xObs1i

+ ŷObs1,Plane1i
xObs1i

+ ẑObs1,Plane1i
xObs1i

x̂Obs1,Plane2i
xObs1i

+ ŷObs1,Plane2i
xObs1i

+ ẑObs1,Plane2i
xObs1i

...

x̂ObsN,Plane1i
xObsNi

+ ŷObsN,Plane1i
xObsNi

+ ẑObsN,Plane1i
xObsNi

x̂ObsN,Plane2i
xObsNi

+ ŷObsN,Plane2i
xObsNi

+ ẑObsN,Plane2i
xObsNi

























(2.30)

Once the three positions are determined, the velocity at the second time instant is determined as,

VTar2 =−∆t23

(

1
∆t12∆t13

+
µ

12‖RTar1‖
3

)

RTar1

+(∆t23 −∆t12)

(

∆t23 +∆t12

∆t23∆t12∆t13
+

µ

12‖RTar2‖
3

)

RTar2

+∆t12

(

1
∆t23∆t13

+
µ

12‖RTar3‖
3

)

RTar3

(2.31)
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where

∆ti j = t j − ti (2.32)

The initial state estimate becomes x̂−0 = [RTar3 VTar2 ]
T .

Observability Analysis

As discussed in several previous studies [23]–[25], [30], observability plays an important role in

measurement models that rely on angles-only. In this section the total system observability and the

instantaneous observability of each observer are discussed in order to improve the orbit estimation

performance of the present measurement model.

Total Observability

The observability of the system is computed to quantify the performance of the state estimate of

the target. For a nonlinear system, the observability gramian [38], [39] is used to measure the

sensitivity of the output with respect to the initial conditions. With discrete measurements, the

observability gramian is

Wd =
M

∑
k=0

ΦT (tk, t0)H
T
k HkΦ(tk, t0) (2.33)
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where M is the total number of discrete measurements and Φ(tk, t0) is the state transition matrix

from t0 to tk such that,

Φ̇(tk, t0) =
∂ f

∂x

∣

∣

∣

∣

x(t)

Φ(tk, t0) where Φ(t0, t0) = I (2.34)

To evaluate the observability gramian, the condition number (CN) [40] is utilized. The CN is

defined as the ratio of the largest singular value of the observibilty gramian to the smallest, or

CN=
maxσ(Wd)

minσ(Wd)
(2.35)

where, σ denotes the singular value. The larger the CN, the greater effect small deviations in initial

conditions will have on the final result of the system.

Instantaneous Observability

Because the measurement model, Equation 2.18, requires inverting a matrix, it is important to

consider its invertibility at each measurement for each observation node. This can be accomplished

by determining the contribution of the observability of each node to the matrix that requires the

inversion. Similar to before, the CN is evaluated for the Kth observer as,

CNK =
maxSK

minSK

(2.36)
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where,

SK = σ













x̂ObsK,Plane1 ŷObsK,Plane1

x̂ObsK,Plane2 ŷObsK,Plane2












(2.37)

Also, from Equation 2.18 it can be seen that a singularity forms when the relative z distance goes

to zero. As a consequence, the CN is inversely related to the z component of the ˆLOS. Through

experimentation, it is determined that if CNK > 102 for any observation node, then that particular

observer should be excluded for that particular measurement as it has a negative impact on the

system as shown in the next section.
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CHAPTER 3: NUMERICAL SIMULATIONS

To demonstrate the new measurement model, a series of scenarios are simulated. The first scenario

experimentally determines the minimum necessary observation nodes required to accurately track a

target. For the second scenario, a formation of four observers are used to track a target. The target

dynamics are assumed to be fully known (no process noise) and the formation is designed such

that measurements from one of the observers violates the instantaneous observability condition,

Equation 2.37. The same experiment is then repeated with the introduction of process noise and

the J2 perturbation in the target true dynamics. Finally, a constellation of observers tracking a single

target over an entire orbit period is introduced. Instantaneous observability, range and occlusions

caused by Earth are taken into account.

For all simulations, the estimation error, xe, is calculated as the difference between the true states

and the estimated states, xe = xk − x̂k. The root mean square (RMS) error is computed in order to

measure the total accuracy of the filter as shown in Equation 3.1.

RMS =

√

1
N

N

∑
1

x2
e (3.1)

Minimum Number of Observation Nodes

Based on the development of nonparallel intersecting planes for the position determination of a

static object [36], only two observers are required to generate the needed three planes. To verify the

applicability of this approach to a dynamical system via EKF, the number of required observation

nodes is validated by considering two, three, and four spacecraft with full observability. The orbit

elements for the target and four observation nodes, shown in Table 3.1, were selected so that the

22



CN is less than the predetermined threshold. Based on the prescribed orbit elements, the average

distance between the observation nodes and the target is 62 km. The final time for the scenario is

t f = 500 s.

Table 3.1: Orbit elements for the target and observation nodes.

a (km) e i (deg) Ω (deg) ω (deg) M0 (deg)
Target 8000.0 0 25.0 0 0 80.0
Observer 1 8000.0 0 25.2 0 0 79.6
Observer 2 8000.0 0 25.2 0 0 80.4
Observer 3 8000.0 0 25.4 0 0 79.8
Observer 4 8000.0 0 25.4 0 0 80.2

With all four observation nodes, it can be seen in Figure 3.1 that the position and velocity error

is converging toward zero. When only three observers are used, the position and velocity error

is similar to that of four observation node, as seen in Figure 3.2. It can be seen that for both

four and three observers, the components of the position error converge to within ±10 m and the

components of the position error converge to within ±0.1 m/s within a very short period of time

after the start of the simulation. For only two observation nodes, it can be seen in Figure 3.3 that

the position and velocity error converges to zero just as in the case of four and three observers,

although this convergence is not quite as fast.

Form Table 3.2, it can be seen that there is a minor improvement in the position error with each

additional observation node. It can also be seen that the velocity error only undergoes a minor fluc-

tuation as the number of observation nodes is increased. The condition number remains relatively

static regardless of the number of observation nodes. The minor changes in the error between the

number of observers show that it is possible to use as few as two nodes if they have full observ-

ability.
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(A) (B)

Figure 3.1: Position (A) and Velocity (B) error (black) and 3σ bounds (red) using four observation
nodes.

Table 3.2: RMS position and velocity error and condition number

Number of Observers
2 3 4

Position Error (m) 11.232 7.916 6.654
Velocity Error (m/s) 2.960 3.252 2.464
Condition Number 2.768x106 2.521x106 2.309x106

Small Formation Unperturbed Target Dynamics

As discussed in Chapter 2, for continuous tracking, there would be instances where the resulting

measurements may have a negative effect on the estimates. This is a result of the matrix inverse

operation in the measurement model, Equation 2.18. To remedy this, the condition number is used

to evaluate the instantaneous observability as introduced in Equation 2.37. Propagating the orbit

elements shown in Table 3.1 with only Keplerian two-body motion for the target and the observers

with σw = 0 and t f = 1500 s, the EKF is implemented to estimate the target states using all four
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(A) (B)

Figure 3.2: Position (A) and Velocity (B) error (black) and 3σ bounds (red) using three observation
nodes.

observers.

With all four observation nodes in use, a problem arises when there is an observer with poor

observability, in this case Observer 2. This results in poor/divergent performance for the filter

as shown in Figure 3.4. The RMS in position and velocity error is 28.292 m and 1.422 m/s,

respectively. The resulting condition number for the system is 2.535x1019, meaning that it is

highly sensitive to measurement noise.

From Figure 3.5A, it can be seen that Observer 2 exceeds the threshold of CN = 102 at approxi-

mately t = 1100 s, which is the same time point at which the estimation begins to diverge. When

Observer 2 is prevented from providing measurements whenever the threshold is exceeded, as

shown in Figure 3.5B, the distorted measurements will not be included in the Kalman filter. When

implemented, the estimation that was originally shown to diverge in Figure 3.4 is now shown to

converge in Figure 3.6. The resulting RMS error is found to be 3.926 m for position and 1.422 m/s

for velocity. The condition number for the system is found to be 1.901x1011, that is 8 orders of
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(A) (B)

Figure 3.3: Position (A) and Velocity (B) error (black) and 3σ bounds (red) using two observation
nodes.

(A) (B)

Figure 3.4: Position (A) and Velocity (B) error (black) and 3σ bounds (red) using all available
observation nodes.

magnitude improvement over the previous case.
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(A) (B)

Figure 3.5: (A) Condition Number for each observation node. (Threshold of CN = 102 shown).
(B) Number of observation nodes

(A) (B)

Figure 3.6: Position (A) and Velocity (B) error (black) and 3σ bounds (red) using only select
observation nodes.
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Small Formation J2 Perturbed Target Dynamics

The same formation in Table 3.1 is used for the orbit estimation of the target with true dynamics that

includes gravity perturbations. The gravity perturbations are modeled by the J2 (Earth oblateness)

effect given by [41]

aJ2 =
3
2

J2
µ

‖RTar‖3

(

RE

‖RTar‖

)2

















xTar

(

5
(

zTar

‖RTar‖

)2
−1

)

yTar

(

5
(

zTar

‖RTar‖

)2
−1

)

zTar

(

5
(

zTar

‖RTar‖

)2
−3

)

















(3.2)

where RE is the equatorial radius of Earth and J2 = 1082.63×10−6. The EKF is implemented with

process noise, σw = 3x10−2, and t f = 1500 s.

(A) (B)

Figure 3.7: Position (A) and Velocity (B) error (black) and 3σ bounds (red) using all available
observation nodes with gravity perturbations.

In the case of including measurements from all observers, a problem arises when Observer 2 (with

poor observability) is allowed to contribute measurements to the filter. As can be seen in Figure 3.7,
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there is an instant when the position and velocity error undergo an extreme increase. With a

condition number for the system of 2.135x1016, the poor observer made the filter sensitive to

measurement noise. As a result, the RMS position error is 150.145 m and the RMS velocity error

is 5.419 m/s.

(A) (B)

Figure 3.8: Position (A) and Velocity (B) error (black) and 3σ bounds (red) using only select
observation nodes with gravity perturbations.

Applying the condition number threshold, Figure 3.8 shows the improved estimates of the target

states. Compared to Figure 3.6, the inclusion of process noise resulted in an increase in the noise

of the error signal; however, the resulting RMS errors are still in the order of meters. The RMS

position error is 6.323 m and an RMS velocity error is 1.433 m/s. The system had a condition

number of 1.902x1011.

A Large Constellation of Observers

To simulate a more realistic scenario, a constellation of observation satellites is simulated to track

a single target throughout a single orbit, Figure 3.9A. Chosen for its simplicity, the Walker Con-
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stellation [42] is utilized. The elements of the Walker Constellation are 50◦ : 1296/36/0, or 1296

satellites evenly distributed over 36 orbits, all with an inclination angle of 50◦. All orbits are cir-

cular with a semi-major axis of 6800 km. The target object is in a circular orbit with a semi-major

axis of 6750 km, inclination of 28.5◦, true anomaly −10◦. The argument of perigee and longitude

of the ascending node are both 0◦. The final time is t f = 5500 s and perturbations are not included

with σw = 0.

(A) (B)

Figure 3.9: (A) Orbits of the observation satellite constellation (black) and target satellite (red) (B)
Number of observation nodes

Each observer is assumed to have a maximum sensor range of 600 km. It is important to verify

that the observers view of the target is not obstructed by the Earth. This obstruction occurs if and

only if there exists α ∈ [0,1] such that D(α)< RE [16]. Where

α =−
xObsK(xTar − xObsK)+ yObsK(yTar − yObsK)+ zObsK(zTar − zObsK)

(xTar − xObsK)2 +(yTar − yObsK)2 +(zTar − zObsK)2 (3.3)
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and

D(α) =
√

(αxTar +(1−α)xObsK)2 +(αyTar +(1−α)yObsK)2 +(αzTar +(1−α)zObsK)2 (3.4)

Once the target is in range of the observer and is not obstructed be the Earth, the instantaneous

observability check from Chapter 2 is perform to determine if the measurements are suitable for the

estimation filter. After checking the instantaneous observability, there were 133 instances where a

single observer had to be removed and 18 instances where two observers had to be removed. In the

event that only one observer was available, the measurements from that observer were excluded

and previous estimate was just propagated to the next time step. Throughout this scenario, the

average number of observers used was 2.33 and are shown for each time step in Figure 3.9B.

(A) (B)

Figure 3.10: Position (A) and Velocity (B) error (black) and 3σ bounds (red) using only select
observation nodes from the constellation.

As shown in Figure 3.10, there is minimal position and velocity error as the estimation moves

forward in time toward t f . The resulting RMS position and velocity errors are 24.240 m and
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9.343 m/s, respectively. The condition number for the system is 4.106x1010.

The overall numerical results are summarized in Table 3.3. In the case of using all observers

in a small formation, the estimation error and system condition number are both large when the

observability of the observation nodes are not taken into account. For a small formation using

only select observers, the results are much more accurate based on the estimation error and system

condition number. With the introduction of the gravity perturbations, using all observers in a

small formation results in a poor estimation error and condition number due to each observers

observability not taken into account. When only select observers in the small formation are utilized

and gravity perturbations is included, the estimation error and condition number show that the

results are very accurate. The final case shows the a large constellation can accurately track an

object throughout its entire orbit.

Table 3.3: Summary of numerical results.

Sim. Time
(s)

Pos. RMS
Error (m)

Vel. RMS
Error (m/s)

Condition
Number

Small Formation; No Process
Noise; All Observers

1500 28.292 1.422 2.535x1019

Small Formation; No Process
Noise; Select Observers

1500 3.926 1.422 1.901x1011

Small Formation; w/ J2; All
Observers

1500 150.145 5.419 2.135x1016

Small Formnation; w/ J2; Se-
lect Observers

1500 6.323 1.433 1.902x1011

Large Constellation (50◦ :
1296/36/0)

5500 24.240 9.343 4.106x1010

It is shown that the new measurement model, Equation 2.21, can produce accurate estimates even

in the event of poor observability that results in “bad" measurements. In the case of an observation

node with poor observability that produces undesirable measurements, the measurement model

allows for the measurements of that observation node to be temporarily excluded from the Kalman
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filter and for the estimate to maintain its overall accuracy.
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CHAPTER 4: CONCLUSION

In this paper, a new measurement model for angles-only line of sight orbit estimation based on

multiple observation nodes is presented. It is shown that when the observation nodes have full

observability, only a minimum of two are required in order to have an accurate estimation of the

position and velocity of a target over a short period of time. It is also shown that there are instances

when a particular observation node will have poor instantaneous observability which adversely

affects the filter performance. If the observation node were allowed to provide measurement to

the Kalman filter, the estimation diverges. However, it is also shown that the measurement model

allows for that observation node to be easily excluded from the Kalman filter and have the esti-

mated results remain accurate. This was taken a step further and applied to a large constellation of

observation satellites, where the number of observation nodes varied based on range, instantaneous

observability and occlusions by Earth. For this study, field of view is not taken into account and is

assumed that each observer has a means to orient its sensor toward the target. The orbit estimation

results maintained a very high accuracy (an RMS error on the order of meters in position and m/s

in velocity).

Future Work

The present measurement model can be readily used to optimize a network of observers for con-

tinuous coverage that takes into account the observer orientation. Additionally, the structure of the

measurement model lends itself to a decentralized estimation framework. By taking advantage of

the ability of the measurement model to be subdivided, decentralizing the computation can replace

the need for a centralized computing node and streamline the estimation. The measurement model

can also be implemented in a nonlinear least squares method for initial orbit determination (IOD).
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The results of the IOD can be compared against the classical methods, e.g. Gauss and Laplace, as

well as newer methods, e.g. Gooding and Double-r. All are areas that will be explored in future

works.
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APPENDIX A: CONVERTED MEASUREMENT COVARIANCE
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In this section, the transformation of the covariance of the measurement error is presented. The

measurements undergo four transformations. First, a nonlinear transformation from spherical coor-

dinates to Cartesian coordinates. Then, two linear transformations involving coordinate rotations.

Finally, a nonlinear transformation, Equation 2.20, to complete the measurement transformation.

Nonlinear Transformation: Spherical to Cartesian Coordinates

The random variable transformation from spherical to Cartesian coordinates has been shown before

in several works [43]–[45]. It is presented here for completeness taking into account that the

transformation in Equation 2.6 does not involve range information. The spherical coordinates are

represented by the two angles, azimuth (Az) and elevation (El), and range. Because the angles are

used to create a unit vector, the range is deterministic and is equal to one. Therefore it does not

need to be included in the transformation. The conversion of spherical to Cartesian coordinates in

the body frame is then

xBody = cosEl sinAz

yBody = cosEl cosAz

zBody = sinEl

(A.1)

The measured angles Azm, and Elm are

Azm = Az+ Ãz

Elm = El + Ẽl

(A.2)
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Where Ãz and Ẽl are the measurement errors. The measurement errors are assumed to be indepen-

dent zero mean Gaussian random variables with a standard deviation of σAz and σEl for azimuth

and elevation, respectively. The error in Cartesian coordinates is expressed as

x̃Body = xBody
m − xBody

ỹBody = yBody
m − yBody

z̃Body = zBody
m − zBody

(A.3)

where, when including Equation A.1, and Equation A.2, can then be expressed as

x̃Body = cos(El + Ẽl)sin(Az+ Ãz)− cosEl sinAz

ỹBody = cos(El + Ẽl)cos(Az+ Ãz)− cosEl cosAz

z̃Body = sin(El + Ẽl)− sinEl

(A.4)

The mean error is computed using the expected value operator, E(·), as

µBody = [µx,µy,µz]T = E([x̃Body, ỹBody, z̃Body]T |Az,El) (A.5)

Using the following relations for the expected value of a trigonometric function of a random vari-

able, θ̃ , [44]
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E[sin θ̃ ] = 0

E[cos θ̃ ] = e−
σ2
2

E[sin2 θ̃ ] =
1
2

(

1− e−2σ2
)

E[cos2 θ̃ ] =
1
2

(

1+ e−2σ2
)

(A.6)

where σ is the standard deviation of the random variable, the mean error is then

µx = e−σ2
El/2−σ2

Az/2 cosEl sinAz− cosEl sinAz

µy = e−σ2
El/2−σ2

Az/2 cosEl cosAz− cosEl cosAz

µz = e−σ2
El/2 sinEl − sinEl

(A.7)

The measurement covariance is then computed as

RBody =













Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz













= cov([x̃Body, ỹBody, z̃Body]T |Az,El) (A.8)

where the covariance of two random variables, X̃ and Ỹ is

RXY = cov(X̃ ,Ỹ ) = E[X̃Ỹ ]−E[X̃ ]E[Ỹ ] (A.9)

The elements of the measurement covariance are then given by,
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Rxx =cos2 Azsin2 El

(

e−2σ2
El

2
−

1
2

)(

e−2σ2
Az

2
−

1
2

)

− cos2 Azcos2 El

(

e−2σ2
El

2
+

1
2

)(

e−2σ2
Az

2
−

1
2

)

+ sin2 Azcos2 El

(

e−2σ2
El

2
+

1
2

)(

e−2σ2
Az

2
+

1
2

)

− sin2 Azsin2 El

(

e−2σ2
El

2
−

1
2

)(

e−2σ2
Az

2
+

1
2

)

− sin2 Azcos2 Ele−σ2
Az−σ2

El

Ryy =cos2 Azcos2 El

(

e−2σ2
El

2
+

1
2

)(

e−2σ2
Az

2
+

1
2

)

− cos2 Azsin2 El

(

e−2σ2
El

2
−

1
2

)(

e−2σ2
Az

2
+

1
2

)

− sin2 Azcos2 El

(

e−2σ2
El

2
+

1
2

)(

e−2σ2
Az

2
−

1
2

)

+ sin2 Azsin2 El

(

e−2σ2
El

2
−

1
2

)(

e−2σ2
Az

2
−

1
2

)

− cos2 Azcos2 Ele−σ2
Az−σ2

El

Rzz =
1
2

e−2σ2
El(eσ2

El −1)(cos2El + eσ2
El)

Rxy = Ryx =
1
4
(sin2Az e−2σ2

El−4σ2
Az e2σ2

El+2σ2
Az − eσ2

El+3σ2
Az

− cos2El eσ2
El+3σ2

Az + cos2El e2σ2
Az)

Rxz = Rzx =− e−2σ2
El−σ2

Az/2 cosEl sinAzsinEl(eσ2
El −1)

Ryz = Rzy =− e−2σ2
El−σ2

Az/2 cosEl cosAzsinEl(eσ2
El −1)

(A.10)

Equation A.7 and Equation A.10 are in terms of the true measurements and are therefore imprac-

tical to use as the true measurements are not known. Using Equation A.2, the approximated mean
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error can be expressed in terms of the measurements as

µBody
a = [µx

a ,µ
y
a,µ

z
a]

T = E(µBody |Azm,Elm) (A.11)

where

µx
a =−cosElm sinAzm e−σ2

El−σ2
Az(e−σ2

El/2+σ2
Az/2 −1)

µy
a =−cosElm cosAzm e−σ2

El−σ2
Az(e−σ2

El/2+σ2
Az/2 −1)

µz
a =−sinElm e−σ2

El(e−σ2
El/2 −1)

(A.12)

The approximate measurement covariance matrix is

RBody
a =













Rxx
a R

xy
a Rxz

a

R
yx
a R

yy
a R

yz
a

Rzx
a R

zy
a Rzz

a













= E(RBody |Azm,Elm) (A.13)

where
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Rxx
a =

1
4

cos2Elm e−4σ2
El −

1
4

cos2Azm e−4σ2
Az −

1
4

e−σ2
El e−σ2

Az

+
1
4

cos2Azm e−σ2
El e−3σ2

Az −
1
4

cos2Elm e−3σ2
El e−σ2

Az

+
1
4

cos2Azm cos2Elm e−3σ2
El e−3σ2

Az

−
1
4

cos2Azm cos2Elm e−4σ2
El e−4σ2

Az +
1
4

Ryy
a =

1
4

cos2Azm e−4σ2
Az +

1
4

cos2Elm e−4σ2
El −

1
4

e−σ2
El e−σ2

Az

−
1
4

cos2Azm e−σ2
El e−3σ2

Az −
1
4

cos2Elm e−3σ2
El e−σ2

Az

−
1
4

cos2Azm cos2Elm e−3σ2
El e−3σ2

Az

+
1
4

cos2Azm cos2Elm e−4σ2
El e−4σ2

Az +
1
4

Rzz
a =

1
2

e−4σ2
El(eσ2

El −1)(cos2Elm + e3σ2
El)

Rxy
a = Ryx

a =
1
4

sin2Azm e−4σ2
Az −

1
4

sin2Azm e−σ2
El−3σ2

Az

−
1
4

sin2Azm cos2Elm e−3σ2
El e−3σ2

Az

+
1
4

sin2Azm cos2Elm e−4σ2
El e−4σ2

Az

Rxz
a = Rzx

a =cosElm sinAzm sinElm( e−4σ2
El e−σ2

Az − e−3σ2
El e−σ2

Az)

Ryz
a = Rzy

a =cosElm cosAzm sinElm( e−4σ2
El e−σ2

Az − e−3σ2
El e−σ2

Az)

(A.14)
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Linear Coordinates Transformations

The first linear transformation is a rotation from the body to the LVLH frame. Using the rotation

matrix

TBody→LV LH =













1 0 0

0 cosφ −sinφ

0 sinφ cosφ

























cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

























cosψ −sinψ 0

sinψ cosψ 0

0 0 1













(A.15)

the approximated mean can be transformed by [37]

µLV LH
a = TBody→LV LH µBody

a (A.16)

and the approximated measurement covariance can be transformed by

RLV LH
a = TBody→LV LHRBody

a T T
Body→LV LH (A.17)

Similarly, the second linear transformation results from the rotation from the LVLH frame to the

ECI frame. The rotation matrix is given by the 3-1-3 Euler angle sequence through the longitude

of the ascending node, the inclination angle, and the true longitude.

TLV LH→ECI =













cosΘ −sinΘ 0

sinΘ cosΘ 0

0 0 1

























1 0 0

0 cos i −sin i

0 sin i cos i

























cosΩ −sinΩ 0

sinΩ cosΩ 0

0 0 1













(A.18)
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The approximated mean is transformed by

µECI
a = TLV LH→ECIµ

LV LH
a (A.19)

and the approximated measurement covariance is transformed by

RECI
a = TLV LH→ECIR

LV LH
a T T

LV LH→ECI (A.20)

Nonlinear Transformation: Line of Sight Vector

The final transformation is the nonlinear transformation from Equation 2.20 which simplifies to

y1 =−
xECI

zECI

y2 =−
yECI

zECI

(A.21)

where xECI, yECI, and zECI are components of the line of sight vector in the ECI frame. The

measured line of sight vector is then expressed as

xECI
m = xECI + x̃ECI

yECI
m = yECI + ỹECI

zECI
m = zECI + z̃ECI

(A.22)

and the measurement error is given by
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ỹ1 = y1m
− y1

ỹ2 = y2m
− y2

(A.23)

Using Equation A.21 and Equation A.22, the measurement error can be expressed as

ỹ1 =−
x̃ECI

zECI + z̃ECI
−

xECI

zECI + z̃ECI
+

xECI

zECI

ỹ2 =−
ỹECI

zECI + z̃ECI
−

yECI

zECI + z̃ECI
+

yECI

zECI

(A.24)

The mean error of the measurements is given by,

µ = [µy1 ,µy2 ]T = E([ỹ1, ỹ2]
T |xECI,yECI,zECI) (A.25)

Because the measurements involve fractions of random variables, a Taylor series approach [46],

[47] is adopted in order to solve for the measurement mean and covariance. The expected value of

a fraction of two random variables, X and Y , can be approximated as

E

(

X

Y

)

=
E(X)

E(Y )
−

cov(X ,Y )

E(Y )2 +
E(X)var(Y )

E(Y )3 (A.26)

and in the case of just a random variable to the negative power

E

(

1
Y

)

=
1

E(Y )
+

var(Y )

E(Y )3 (A.27)

From Equation A.26 and Equation A.27, the mean error is expressed as
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µy1 =−

(

xECI +µx

zECI +µz
−

Rxz

(zECI +µz)2 +
(xECI +µx)Rzz

(zECI +µz)3

)

+
xECI

zECI

µy2 =−

(

yECI +µy

zECI +µz
−

Ryz

(zECI +µz)2 +
(yECI +µy)Rzz

(zECI +µz)3

)

+
yECI

zECI

(A.28)

The measurement covariance is

R =







Ry1y1 Ry1y2

Ry2y1 Ry2y2






= cov([ỹ1, ỹ2]

T |xECI,yECI,zECI) (A.29)

Just like in Appendix A.1, the mean error and measurement covariance in Equation A.28 and Equa-

tion A.29, respectively, are expressed in terms of the true measurements. Using Equation A.22, the

mean error and measurement covariance can be approximated as

µa = [µy1
a ,µy2

a ]T = E([µy1 ,µy2 ]T |xECI
m ,yECI

m ,zECI
m ) (A.30)

and

Ra =







R
y1y1
a R

y1y2
a

R
y2y1
a R

y2y2
a






= E(R |xECI

m ,yECI
m ,zECI

m ) (A.31)

, respectively.

To obtain the final analytical expressions for the measurement covariance, Equation A.29, the ap-

proximate mean error, Equation A.30, and approximate measurement covariance, Equation A.31,

a symbolic manipulator was used. Due to the size of the resulting equations, they are not presented

here and can be provided by contacting the author.
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