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ABSTRACT

Ordinary differential equations can describe many dynamic systems. When physics is well un-

derstood, the time-dependent responses are easily obtained numerically. The particular numerical

method used for integration depends on the application. Unfortunately, when physics is not fully

understood, the discrepancies between predictions and observed responses can be large and un-

acceptable. In this thesis, we show how to directly implement integration of ordinary differential

equations through recurrent neural networks using Python. We leveraged modern machine learn-

ing frameworks, such as TensorFlow and Keras. Besides offering basic models capabilities (such

as multilayer perceptrons and recurrent neural networks) and optimization methods, these frame-

works offer powerful automatic differentiation. With that, our approach’s main advantage is that

one can implement hybrid models combining physics-informed and data-driven kernels, where

data-driven kernels are used to reduce the gap between predictions and observations. In order to il-

lustrate our approach, we used two case studies. The first one consisted of performing fatigue crack

growth integration through Euler’s forward method using a hybrid model combining a data-driven

stress intensity range model with a physics-based crack length increment model. The second case

study consisted of performing model parameter identification of a dynamic two-degree-of-freedom

system through Runge-Kutta integration. Additionally, we performed a numerical experiment for

fleet prognosis with hybrid models. The problem consists of predicting fatigue crack length for a

fleet of aircraft. The hybrid models are trained using full input observations (far-field loads) and

very limited output observations (crack length data for only a portion of the fleet). The results

demonstrate that our proposed physics-informed recurrent neural network can model fatigue crack

growth even when the observed distribution of crack length does not match the fleet distribution.
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CHAPTER 1: INTRODUCTION

Motivation

Predictive models [1, 2, 3, 4] are often used to model cumulative distress in critical components (di-

agnosis and prognosis) of engineering assets (e.g., aircraft, jet engines, and wind turbines). These

models usually leverage data coming from design, manufacturing, configuration, online sensors,

historical records, inspection, maintenance, location, and satellite data). In terms of modeling, we

believe most practitioners would agree that (a) machine learning models offer flexibility but tend

to require large amounts of data, and (b) physics-based models are grounded on first-principles

and require good understanding of physics of failure and degradation mechanisms. In practice, the

decision between machine learning and physics-based models depends on factors such as existing

knowledge (maybe even legacy models), amount and nature of data, accuracy and computational

requirements, timelines for implementation, etc. The interested reader can find a discussion on

how these concepts apply to defense systems in [5, 6] and examples of industrial and commercial

applications in [7, 8, 9, 10].

Deep learning and physics-informed neural networks [11, 12, 13, 14] have received growing at-

tention in science and engineering over the past few years. The fundamental idea, particularly

with physics-informed neural networks, is to leverage laws of physics in the form of differential

equations in the training of neural networks. This is fundamentally different than using neural

networks as surrogate models trained with data collected at a combination of inputs and output

values. Physics-informed neural networks can be used to solve the forward problem (estimation of

response) and/or the inverse problem (model parameter identification).

Although there is no consensus on nomenclature or formulation, we see two different and very

1



broad approaches to physics-informed neural network. There are those using neural network as ap-

proximate solutions for the differential equations [13, 15, 16, 17]. Essentially, through collocation

points, the neural network hyperparameters are optimized to satisfy initial/boundary conditions as

well as the constitutive differential equation itself. For example, Raissi et al. [15] present an ap-

proach for solving and discovering the form of differential equations using neural networks, which

has a companion GitHub repository (https://github.com/maziarraissi/PINNs) with

detailed and documented Python implementation. Authors proposed using deep neural networks

to handle the direct problem of solving differential equations through the loss function (functional

used in the optimization of hyperparameters). The formulation is such that neural networks are

parametric trial solutions of the differential equation and the loss function accounts for errors with

respect to initial/boundary conditions and collocation points. Authors also present a formulation

for learning the coefficients of differential equations given observed data (i.e., calibration). The

proposed method is applied to both, the Schroedinger equation, a partial differential equation uti-

lized in quantum mechanics systems, and the Allen-Cahn equation, an established equation for

describing reaction-diffusion systems. Pan and Duraisamy [17] introduced a physics informed

machine learning approach to learn the continuous-time Koopman operator. Authors apply the

derived method to nonlinear dynamical systems, in particular within the field of fluid dynamics,

such as modeling the unstable wake flow behind a cylinder. In order to derive the method, authors

used a measure-theoretic approach to create a deep neural network. Both differential and recurrent

model types are derived, where the latter is used when discrete trajectory data can be obtained

whereas the differential form is suitable when governing equations are disposable. This physics-

informed neural network approach shows its strength regarding uncertainty quantification and is

robust against noisy input signal.

Alternatively, there are those building hybrid models that directly code reduced order physics-

informed models within deep neural networks [18, 19, 20, 21, 22]. This implies that the computa-
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tional cost of these physics-informed kernels have to be comparable to the linear algebra found in

neural network architectures. It also means that tuning of the physics-informed kernel hyperparam-

eters through backpropagation requires that adjoints to be readily available (through automatic dif-

ferentiation [23], for example). For example, Yucesan and Viana [19] proposed a hybrid modeling

approach which combines reduced-order models and machine learning for improving the accuracy

of cumulative damage models used to predict wind turbine main bearing fatigue. The reduce-order

models capture the behavior of bearing loads and bearing fatigue; while machine learning models

account for uncertainty in grease degradation. The model was successfully used to predict grease

degradation and bearing fatigue across a wind park; and with that, optimize the regreasing inter-

vals. Karpatne et al. [21] presented an interesting taxonomy for what authors called theory-guided

data science. In the paper, they discuss how one could augment machine learning models with

physics-based domain knowledge and walk from simple correlation-based models, to hybrid mod-

els, to fully physics-informed machine learning (such as in solving differential equations directly).

Authors discuss examples in hydrological modeling, computational chemistry, mapping surface

water dynamics, and turbulence modeling.

In this thesis, we focus on discussing a Python implementation for hybrid physics-informed neural

networks. We believe these hybrid implementations can have an impact in real-life applications,

where reduced order models capturing the physics are available and well adopted. Most of the

time, the computational efficiency of reduced order models comes at the cost of loss of physical

fidelity. Hybrid implementations of physics-informed neural networks can help reducing the gap

between predictions and observed data.

Our approach starts with the analytical formulation and passes through the numerical integration

method before landing in the neural network implementation. Depending on the application, dif-

ferent numerical integration methods can be used. While this is an interesting topic, it is not the

focus of this work. Instead, we focus on how to move from analytical formulation to numerical
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implementation of the physics-informed neural network model.

We address the implementation of ordinary differential equation solvers using two case studies in

engineering. Fatigue crack propagation is used as an example of first order ordinary differential

equations. In this example, we show how physics-informed neural networks can be used to mitigate

epistemic (model-form) uncertainty in reduced order models. Forced vibration of a 2 degree-of-

freedom system is used as an example of a system of second order ordinary differential equations.

In this example, we show how physics-informed neural networks can be used to estimate model

parameters of a physical system.

Literature Review

The literature on the use of traditional and modern machine learning methods for diagnosis and

prognosis is rich. For example, Si et al. [24] reviewed statistical data driven approaches for prog-

nosis that rely only on available past observed data and statistical models (regression, Brownian

motion with drift, gamma processes, Markovian-based models, stochastic filtering-based models,

hazard models, and hidden Markov models). Tamilselvan and Wang [25] discussed a multi-sensor

health diagnosis and prognosis method using deep belief networks. They demonstrate how deep

belief networks can model the probabilistic transition between health state and damaged state in

aircraft engines and power transformers. Interestingly, Son et al. [26] reported how they solved

the same aircraft engine problem using Wiener process combined with principal component anal-

ysis. Susto et al. [27] discussed how to approach remaining useful life estimation using ensem-

bles of classifiers. They based their work on traditional support vector machines and k-nearest

neighbors and tested it on estimating remaining useful life of tungsten filaments used in ion im-

plantation (important in semiconductor fabrication). Khan and Yairi [28] reviewed the application

of deep learning in structural health management (simple autoencoders, denoising autoencoder,
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variational autoencoders, deep belief networks, restricted and deep Boltzmann machines, convo-

lutional neural networks, and purely data-driven versions of recurrent neural networks, including

the long short-term memory and gated recurrent units). They found that most approaches are still

application specific (unfortunately, they did not find a clear way to select, design, or implement

a deep learning architecture for structural health management). They also advise that a trade-off

study should be performed when considering complexity and computational cost. Stadelmann et

al. [29] brought an interesting discussion on deep learning applied to industry. Among the case

studies, they discussed predictive maintenance with machine learning approaches such as support

vector machines, Gaussian mixtures, principal component analysis and how they compare with

deep learning approaches such fully connected and variational as autoencoders.

There is also considerable research on the use of physics-based methods for diagnosis and prog-

nosis. Although literature tends to be very application specific, most authors use a physics-based

model for damage accumulation and a statistical/machine learning technique for parameter estima-

tion and uncertainty quantification. For example, Daigle and Goebel [30] formulated physics-based

prognostics as joint state-parameter estimation problem, in which the state of a system along with

parameters describing the damage progression are estimated. This is followed by a prediction

problem, in which the joint state-parameter estimate is propagated forward in time to predict end

of life and remaining useful life. They demonstrate their methodology in the estimation of remain-

ing useful life of centrifugal pump used for liquid oxygen loading located at the Kennedy Space

Center. Li et al. [31] modeled fatigue crack growth on the leading edge of an aircraft wing. The

model was updated through dynamic Bayesian networks with observed data (including both dam-

age and loads). The updated model was used in diagnosis and prognosis of an aircraft digital twin

(virtual representation of the physical aircraft). Ling et al. [32] also modeled fatigue crack growth

on the leading edge of an aircraft wing. However, instead of only estimating remaining useful

life, they used information gain theory to evaluate the usefulness of aircraft component inspection.
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This helps deciding whether or not inspection is worthwhile (e.g., model improvement justifying

the cost). A dynamic Bayesian network tracks and forecasts fatigue crack growth and the detection

of a crack is modeled through probability of detection. Information gain per cost of inspection is

used to identify the optimal timing of next inspection. Yucesan and Viana [33] modeled main bear-

ing fatigue in onshore wind turbines, coupling damange models for bearing raceway and grease

(lubricant). Their results demonstrated that, although bearing fatigue is a secondary life limiting

factor, it can still contribute significantly to bearing failures. They also showed how to use their

physics-based cumulative damage model to promote component life extension. Berri et al. [34]

proposed a framework for prognosis including signal acquisition, fault detection and isolation, and

remaining useful life estimation. In order to keep computational cost manageable, they proposed

using strategies for signal processing combined with physical models of different fidelity and ma-

chine learning techniques. They successfully tested their approach on aircraft electromechanical

actuator for secondary flight controls. Byington et al. [35] presented a study on the use of neural

networks for prognosis of aircraft actuator components. The framework covered tasks such as fea-

ture extraction, data cleaning, classification, information fusion, and prognosis. They successfully

demonstrated their approach on F-18 stabilator electro-hydraulic servo valves. Jacazio and Sorli

[36] presented an enhanced particle filter framework for prognosis of electro-mechanical flight

controls actuators. They achieved promising results and showed the benefits of their approach as

compared to other published methods.

Using artificial neural networks for solving differential equations with applications in engineer-

ing is a relatively old concept [37, 38, 39, 40]. Nevertheless, the unparalleled computational

power available these days contributed to the popularization of machine learning in engineering

applications [41, 42, 43]. The scientific community has been studying and proposing deep learn-

ing architectures that leverage mathematical models based in physics and engineering principles

[44, 16, 13, 45, 46]. Differential equations are used to train multi-layer perceptrons and recurrent
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neural networks. The idea is to use the physics laws (in the form of differential equations) to help

handling the reduced number of data points, and constrain the hyper-parameter space. With incom-

pressible fluids, for example, this is done by discarding non-realistic solutions violating the conser-

vation of mass principle. Raissi [47] approximated the unknown of solution of partial differential

equations by two deep neural networks. The first network acts as a prior on the unknown solution

(enabling to avoid ill-conditioned and unstable numerical differentiations). The second network

works as a fine approximation to the spatiotemporal solution. The methodology was tested on a

variety of equations used in fluid mechanics, nonlinear acoustics, gas dynamics, and other fields.

Wu et al. [48] discussed, in depth, how to augment turbulence models with physics-informed ma-

chine learning. They demonstrated a procedure for computing mean flow features based on the

integrity basis for mean flow tensors and propose using machine learning to predict the linear and

nonlinear parts of the Reynolds stress tensor separately. They used the flow in a square duct and

the flow over periodic hills to evaluate the performance of the proposed method. Hesthaven and

Ubbiali [49] proposed a non-intrusive reduced-basis method (using proper orthogonal decomposi-

tion and neural networks) for parametrized steady-state partial differential equations. The method

extracts a reduced basis from a collection of snapshots through proper orthogonal decomposition

and employs multi-layer perceptrons to approximate the coefficients of the reduced model. They

successfully tested the proposed method on the nonlinear Poisson equation in one and two spatial

dimensions, and on two-dimensional cavity viscous flows, modeled through the steady incompress-

ible Navier–Stokes equations. Swischuk et al. [50] demonstrated through case studies (predictions

of the flow around an airfoil and structural response of a composite panel) that proper orthogonal

decomposition is an effective way to parametrize a high-dimensional output quantity of interest in

order to define a low-dimensional map suitable for data-driven learning. They tested a variety of

machine learning methods such as artificial neural networks, multivariate polynomial regression,

k-nearest neighbor, and decision trees. The interested reader can also find literature on Gaussian

processes [51, 45].
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As we just discussed, there are several ways to build physics-informed machine learning models. In

this work, we focus on neural network models suitable for solving ordinary differential equations

(describing time-dependent quantities of interest). Chen et al. [13] demonstrated that deep neural

networks can approximate dynamical systems which response comes out of integrating ordinary

differential equations. In their approach deep neural networks represent very fine discretization

along the lines of a very fine Euler integration. This is particularly applicable to recurrent neural

networks and residual networks. Interestingly, the loss function operates on top of the ordinary

differential equation solver. Therefore, training data is generated through adjoint methods (auto-

matic differentiation). Kani and Elsheikh [52, 46] introduced the deep residual recurrent neural

networks where a fixed number of layers are stacked together to minimize the residual (or reduced

residual) of the physical model under consideration. To reduce the computational complexity as-

sociated with high-fidelity numerical simulations of physical systems (which generate the training

data), they also used proper orthogonal decomposition. They demonstrated their approach with

the simulation of a two-phase (oil and water) flow through porous media over a two-dimensional

domain.

Scope and Organization of this Research

The research, conducted in the context of a Master thesis, has the following main objectives:

• Develop a framework for hybrid modeling of systems described by ordinary differential

equations. In these hybrid models, the physics is given by the equations that govern the

system dynamics and data-driven kernels are used to compensate for model simplifications.

• Implement and demonstrate the proposed framework in relevant engineering examples, in-

cluding systems described by first and second order ordinary differential equations.
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• Illustrate a comparison between the proposed framework against state-of-the art deep learn-

ing approaches.

The organization of this work is as follows. Chapter 2 gives an overview of neural networks, more

specifically, how its nodes implement complex operations in a graph. It includes a brief description

of how neural networks are trained and introduces recurrent neural networks concepts and known

designs.

Chapter 3 discusses the implementation of the hybrid physics-informed neural network for ordinary

differential equations. It consolidates the implementation with Python code fragments and case

studies for both first and second order differential equations.

Chapter 4 offers an in-depth analysis of a numerical experiment for fleet prognosis with the hybrid

model and compares it with state-of-the-art pure data-driven methods.

Finally, Chapter 5 highlights the present research work’s major conclusions and portrays the future

work scope on this topic.
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CHAPTER 2: BACKGROUND ON MACHINE LEARNING

Neural networks as directed graph models

Figure 2.1a introduces the notation and elements we used in this work. Tensors are used to repre-

sent inputs and outputs. The basic tensor operators include tensor transfer (which takes the tensor

from one node of the graph to another), concatenation, copy, as well as algebraic operators, such as

sum and multiplication. Nodes implement complex operations taking tensors as inputs and return-

ing tensors as outputs. As we will describe later, nodes can implement physics-informed models.

Traditionally, in neural networks, nodes implement data-driven models. As shown in Fig. 2.1b,

a directed graph consists of finitely many nodes and edges, with edges directed from one node to

another [53, 54]. We can use the idea to represent popular neural network architectures such as the

perceptron or multilayer perceptron.

(a) Notation.

(b) Perceptron and multilayer perceptron, f(.) is an activa-

tion function.

Figure 2.1: Graph representation of neural networks.

As we will detail in Chapter 3, we propose directly implementing ordinary differential equations
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(a) Prediction (forward pass). (b) Training (backward pass).

Figure 2.2: Backpropagation overview. In prediction, inputs are fed forward, generating the ac-

tivations of hidden layers ui and output layer y. In training, partial derivatives are fed backward,

generating the gradient of the loss function with respect to the weights, ∇Λ =
[

∂Λ
∂w1

. . . ∂Λ
∂w6

]T

.

that describe the physics of a problem as deep neural networks using directed graph models. There-

fore, optimization of hyperparameters is done through backpropagation. As illustrated in Fig. 2.2,

there are essentially two steps in every iteration of the optimization algorithm. First, training data

is fed forward, generating the corresponding outputs (Fig. 2.2a), prediction error, and finally the

loss function. Then, the loss function adjoint is propagated backward (through the chain rule)

giving the gradient with respect to the parameters to be optimized. Figure 2.2b is a graphical rep-

resentation of backward pass for the multilayer perceptron. Even though the figure only shows the

weight hyper-parameters (w), the formulation can be extended for the case where each perceptron

also has a bias term (b). Formally, from Fig. 2.2b, the gradient of the loss function with respect to

the weights can be written as

∂Λ

∂w1

=
∂Λ

∂y

∂y

∂u1

∂u1

∂w1

,
∂Λ

∂w2

=
∂Λ

∂y

∂y

∂u1

∂u1

∂w2

,
∂Λ

∂w3

=
∂Λ

∂y

∂y

∂u2

∂u2

∂w3

,

∂Λ

∂w4

=
∂Λ

∂y

∂y

∂u2

∂u2

∂w4

,
∂Λ

∂w5

=
∂Λ

∂y

∂y

∂w5

, and
∂Λ

∂w6

=
∂Λ

∂y

∂y

∂w6

. (2.1)

Figure 2.2 also gives insight into two important aspects of our framework. First, the forward pass
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has to be implemented with the available tensor operations. Second, in the backward pass, it is

important to have the adjoints readily available. With that in place, one can start implementing the

ordinary differential equations as deep neural networks.

Recurrent neural networks

Recurrent neural networks are specially suitable for dynamical systems [55, 56, 57]. They extend

traditional feed forward networks to handle time-dependent responses, as shown in Fig. 2.3a.

Recurrent neural networks have been used to model time-series [58], speech recognition [59],

diagnosis and prognosis [60, 61, 62, 63], and many other applications.

(a) Basic idea.

(b) Recurrent neural network (RNN). The function f(ht−1,xt),
a.k.a. the RNN cell, implements the transition from step to step

throughout the time series.

Figure 2.3: Recurrent neural network. Cells repeatedly apply transformation to outputs, yt, and

inputs, xt.

As illustrated in Fig. 2.3b, in every time step t, recurrent neural networks apply a transformation

to a state h in the following fashion:

ht = f(ht−1,xt), (2.2)

where t ∈ [0, . . . , T ] represent the time discretization, h ∈ R
nh are the states representing the
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(a) Simple cell and perceptron
(b) LSTM and GRU cells.

Figure 2.4: Detailed recurrent neural networks cells. In the Long short-term memory (LSTM) and

gated recurrent unit (GRU) cells, green “sgmd” and “tanh” circles are perceptrons with sigmoid

and tanh activations. White “tanh” oval simply applies the tanh activation.

quantities of interest, x ∈ R
nx are input variables, and f(.) is the transformation to the state.

Depending on the application, h can be available (i.e., actually observed) in every time step t or

only at specific observation times.

The repeating cells for a recurrent neural networks implement the function, f(ht−1,xt) in Eq. 2.2,

which defines the transformation applied to the states and inputs in every time step. Cells such as

the ones illustrated in Fig. 2.4 are commonly found in data-driven applications. Figure 2.4a shows

the simplest recurrent neural network cell, where a fully-connected dense layer (e.g., the percep-

tron) with a sigmoid activation function maps the inputs at time t and states at time t − 1 into the

states at time t. Figure 2.4b show two other popular architectures, the long short-term memory

(LSTM) [64] and the gated recurrent unit (GRU) [65]. These architectures have extra elements

(gates) to control the flow and update of the states through time and aims at improving the recur-

rent neural network generalization capability and training by mitigating the vanishing/exploding

gradient problem [55]. Recurrent neural networks are trained in a very similar way of traditional

neural networks. The inputs are fed forward for every time step through the cell. Then the loss

value, calculated with the cell output and ground truth values, and its gradient is used to adjust the

network weights, through the process called back-propagation through time [55].
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CHAPTER 3: PHYSICS-INFORMED NEURAL NETWORK FOR

ORDINARY DIFFERENTIAL EQUATIONS

In this chapter, we will focus on our hybrid physics-informed neural network implementation for

ordinary differential equations. This is specially useful for problems where physics-informed mod-

els are available, but known to have predictive limitations due to model-form uncertainty or model-

parameter uncertainty. We start by providing the background on recurrent neural networks and then

discuss how we implement them for numerical integration.

First Order Ordinary Differential Equations

Consider the first order ordinary differential equation expressed in the form

dy

dt
= f (x(t), y, t) (3.1)

where x(t) are controllable inputs to the system, y is the output of interest, and t is time. The

solution to Eq. (3.1) depends on initial conditions (y at t = 0), input data (x(t) known at different

time steps), and the computational cost associated with the evaluation of f(.).

Case Study: Fatigue Crack Propagation

In this case study, we consider the tracking of low cycle fatigue damage. We are particularly

interested in a control point that is monitored for a fleet of assets (e.g., compressors, aircraft, etc.).

This control point sits on the center of large plate in which loads are applied perpendicularly to the

crack plane. As depicted in Fig. 3.1a, under such circumstances, fatigue crack growth progresses
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following Paris law [66]

da

dN
= C (∆K(t))m and ∆K(t) = F∆S(t)

√

πa(t), (3.2)

where a is the fatigue crack length, C and m are material properties, ∆K is the stress intensity

range, ∆S is the far-field cyclic stress time history, and F is a dimensionless function of geome-

try [67].

(a) Large plate with loads perpendicular to

crack plane

(b) Snapshot of fleet-wide data (300 machines)

Figure 3.1: Fatigue crack propagation details. Crack growth is governed by Paris law, Eq. (3.2), a

first order ordinary differential equation. The input is time history of far-field stress cyclic loads,

∆S, and the output is the fatigue crack length, a. In this case study, 300 aircraft are submitted

to a wide range of loads (due to different missions and mission mixes). This explains the large

variability in observed crack length after 5 years of operation.

We assume that the control point inspection occurs in regular intervals. Scheduled inspection of

part of the fleet is adopted to reduce cost associated with it (mainly downtime, parts, and labor).

As inspection data is gathered, the predictive models for fatigue damage are updated. In turn, the

updated models can be used to guide the decision of which machines should be inspected next.

Figure 3.1b illustrates all the data used in this case study. There are 300 machines, each one accu-

mulating 7,300 loading cycles. Not all machines are subjected to the same mission mix. In fact,

the duty cycles can greatly vary, driving different fatigue damage accumulation rates throughout
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the fleet. In this case study, we consider that while the history of cyclic loads is known throughout

the operation of the fleet, crack length history is not available. We divided the entire data set con-

sisting of 300 machines into 60 assets used for training and 240 assets providing the test data sets.

In real life, these numbers depend on the cost associated with inspection (grounding the aircraft

implies in loss of revenue besides cost of the actual inspection). For the sake of this example, we

observed 60 time histories of 7,300 data points each (total of 438,000 input points) and only 60

output observations. The test data consists of 240 time histories of 7,300 data points each (total of

1,752,000 input points) and no crack length observations. In order to highlight the benefits of the

hybrid implementation, we use only 60 crack length observations after the entire load cycle regime.

The fact that we directly implemented the governing equation in a recurrent neural network cell

compensates for the number of points of available output data. Hence, for training procedures

we only use the aforementioned 60 assets, while the data for the remaining 240 machines can be

utilized as validation data set.

Computational Implementation

For the sake of this example, assume that the material is characterized by C = 1.5 × 10−11 and

m = 3.8, F = 1, and that the initial crack length is a0 = 0.005 meters. ∆S(t) is estimated

either through structural health monitoring systems or high-fidelity finite element analysis together

with cycle count methods (e.g., the rain flow method [68]). This way, the numerical method

used to solve Eq. (3.2) hinges on the availability and computational cost associated with ∆S(t).

In this example, let us assume that the far-field stresses are available in every cycle at very low

computational cost (for example, the load cases are known and stress analysis is performed before

hand).

Within folder first_order_ode of the repository available at [69], the interested reader will find
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all data files used in this case study. File a0.csv has the value for the initial crack length (a0 =

0.005 meters) used throughout this case study. Files Stest.csv and Strain.csv contain the

load histories for the fleet of 300 machines as well as the 60 machines used in the training of

the physics-informed neural network. Files atest.csv and atrain.csv contain the fatigue crack

length histories for the fleet as well as the 60 observed crack lengths used in the training of the

physics-informed neural network.

We will then show how ∆Kt can be estimated through a multilayer perceptron (MLP), which

works as a corrector on any poor estimation of either ∆S(t) or ∆Kt (should it have been implement

through a physics-informed model). Therefore, we can simply use the Euler’s forward method [70]

(with unit time step) to obtain

an = a0 +
n
∑

t=1

∆a(∆St, at−1), , (3.3)

∆at = C∆Km
t , and ∆Kt = MLP (∆St, at−1;w,b) , (3.4)

where w and b are the trainable hyperparameters.

Similarly to regular neural networks, we use observed data to tune w and b by minimizing a loss

function. Here we use the mean squared error:

Λ =
1

n
(a− â)T (a− â) , (3.5)

where n is the number of observations, a are fatigue crack length observations, and â are the

predicted fatigue crack length using the hybrid physics-informed neural network.

Listing 3.1 lists all the necessary packages. Besides pandas and numpy for data importation and

manipulation, we import a series of packages out of TensorFlow. We import Dense and RNN to
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1# basic packages

2import pandas as pd

3import numpy as np

4

5# keras essentials

6from tensorflow.keras.layers import RNN, Dense, Layer

7from tensorflow.keras import Sequential

8from tensorflow.keras.optimizers import RMSprop

9

10# tensorflow operators

11from tensorflow.python.framework import tensor_shape

12from tensorflow import float32, concat, convert_to_tensor

Listing 3.1: Import section for the Euler integration example.

leverage native multilayer perceptron and recurrent neural networks. We import Sequential and

Layer so that we can specialize our model. We import RMSprop for hyperparameter optimization.

Finally, the other operators are needed to move data to TensorFlow-friendly structures.

1class EulerIntegratorCell(Layer):

2 def __init__(self, C, m, dKlayer, a0, units=1, **kwargs):

3 super(EulerIntegratorCell, self).__init__(**kwargs)

4 self.units = units

5 self.C = C

6 self.m = m

7 self.a0 = a0

8 self.dKlayer = dKlayer

9

10 ...

11

12 def call(self, inputs, states):

13

14 ...

15

16 x_d_tm1 = concat((inputs,a_tm1[0,:]),axis=1)

17 dk_t = self.dKlayer(x_d_tm1)

18 da_t = self.C * (dk_t ** self.m)

19 a = da_t + a_tm1[0, :]

20 return a, [a]

Listing 3.2: Euler integrator cell.

Listing 3.2 shows the important snippets of implementation of the Euler integrator cell (to avoid

clutter, we leave out the lines that are needed for data-type reinforcement). This is a class in-
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herited from Layers, which is what TensorFlow recommends for implementing custom layers.

The __init__ method, constructor of the EulerIntegratorCell, assigns the constants C and

m as well as the initial state a0. This method also creates an attribute dKlayer to the object of

EulerIntegratorCell. As we will detail later, this is an interesting feature that will essentially

allow us to specify any model to dKlayer. Although dKlayer can be implemented using physics,

as we discussed before, we will illustrate the case in which dKlayer is a multilayer perceptron.

The call method effectively implements Eq. (3.4).

With regards to numerically integrating fatigue crack growth, we still have to implement Eq. (3.3).

Here, we will use the TensorFlow native recurrent neural network class, RNN, to effectively march

in time; and therefore, implement Eq. (3.3). Listing 3.3 details how we can use an object from the

EulerIntegratorCell and couple it with RNN to create a model ready to be trained. The function

create_model takes C, m, a0, and dKLayer so that an EulerIntegratorCell object can be in-

stantiated. Additionally, it also takes batch_input_shape and return_sequences. The variable

batch_input_shape is used within EulerIntegratorCell to reinforce the shape of the inputs.

Although batch_input_shape is not directly specified in EulerIntegratorCell, it belongs to

**kwargs and it will be consumed in the constructor of Layer.

1def create_model(C,m,dKlayer,a0,batch_input_shape,return_sequences):

2 euler = EulerIntegratorCell(C=C,m=m,dKlayer=dKlayer,a0=a0,

3 batch_input_shape=batch_input_shape,return_state=False)

4 PINN = RNN(cell=euler,batch_input_shape=batch_input_shape,

5 return_sequences=return_sequences,return_state=return_state)

6 model = Sequential()

7 model.add(PINN)

8 model.compile(loss=’mse’,optimizer=RMSprop(1e-2))

9 return model

Listing 3.3: Create model function for the Euler integration example.

Equation 3.3 starts to be implemented when PINN, the object of class RNN, is instantiated. As a

recurrent neural network, PINN has the ability to march through time and execute the call method
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of the euler object. Lines 10 to 14 of List. 3.3 are needed so that an optimizer and loss function

are linked to the model that will be created. In this example, we use the mean square error (’mse’)

as loss function and RMSprop as an optimizer.

1if __name__ == "__main__":

2 # Paris law coefficients

3 [C, m] = [1.5E-11, 3.8]

4

5 # data

6 Stest = np.asarray(pd.read_csv(’./data/Stest.csv’))[:,:,np.newaxis]

7 Strain = np.asarray(pd.read_csv(’./data/Strain.csv’))[:,:,np.newaxis]

8 atrain = np.asarray(pd.read_csv(’./data/atrain.csv’))

9 a0 = np.asarray(pd.read_csv(’./data/a0.csv’))[0,0]*np.ones((Strain.

shape[0],1))

10

11 # stress-intensity layer

12 dKlayer = Sequential()

13 dKlayer.add(Dense(5, input_shape=(2,), activation=’tanh’))

14 dKlayer.add(Dense(1))

15

16 ...

17

18 # fitting physics-informed neural network

19 model = create_model(C=C, m=m, dKlayer=dKlayer,

20 a0=ops.convert_to_tensor(a0,dtype=float32),

21 batch_input_shape=Strain.shape)

22 aPred_before = model.predict_on_batch(Stest)[:,:]

23 model.fit(Strain, atrain, epochs=20, steps_per_epoch=1, verbose=1)

24 aPred = model.predict_on_batch(Stest)[:,:]

Listing 3.4: Training and predicting in the Euler integration example

With EulerIntegratorCell and create_model defined, we can proceed to training and predict-

ing with the hybrid physics-informed neural network model. Listing 3.4 details how to build the

main portion of the Python script. From line 2 to line 9, we are simply defining the material prop-

erties and loading the data. After that, we can create the dKlayer model. Within TensorFlow,

Sequential is used to create models that will be stacks of several layers. Dense is used to define

a layer of a neural network. Line 12 initializes dKlayer preparing it to receive the different layers

in sequence. Line 13 adds the first layer with 5 neurons (and tanh as activation function). Line 14

adds the second layer with 1 neuron. Creating the hybrid physics-informed neural network model
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is as simple as calling create_model, as shown in line 19. As is, model is ready to be trained,

which is done in line 23. For the sake of the example though, we can check the predictions at the

training set before and after the training (lines 22 and 24, respectively). The fact that we have to

slice the third dimension of the array with [:,:] is simply an artifact of TensorFlow.

The way the code is implemented, predictions are done by marching through time while integrating

fatigue crack growth starting from a0. However, since we have set return_sequences=False

(default in create_model), the predictions are returned only for the very last cycle. Setting that

flag to True would change the behavior of the predict_on_batch, which would return the entire

time series.

(a) Loss function convergence (b) Predicted vs. actual crack

length at the test set

(c) Mean square error histogram of

on train and validation data (train-

ing repeated 100 times).

Figure 3.2: Euler integration results. After training is complete, the model-form uncertainty is

greatly reduced. Trained model can be used directly for predictions outside the training set. We

observe repeatability of results after repeating the training of the physics-informed neural network

varying initialization of weights.

Figure 3.2 illustrates the results obtained when running the codes within folder first_order_ode

available at [69]. Figure 3.2a shows the history of the loss function (mean square error) through-

out the training. The loss converges rapidly within the first ten epochs and shows minor further

convergence in the following ten epochs. We would like to point out that experienced Tensor-
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Flow users could further customize the implementation to stop the hyperparameter optimization

as loss function converges. Figure 3.2b shows the prediction against actual fatigue crack length

at the last loading cycle for a test set (data points not used to train the physics-informed neural

network). While results may vary from run-to-run, given that RMSprop implements a stochastic

gradient descend algorithm, it is clear that the hybrid physics-informed neural network was able to

learn the latent (hidden) stress intensity range model. Finally, we repeated the training of the pro-

posed physics-informed neural network 100 times so that we can study the repeatability of results.

Figure 3.2c shows the histograms of the mean squared error at both training and test sets. Most of

the time, the mean squared error is bellow 20×10−6(m)2, while it was never above 100×10−6(m)2.

Considering that the observed crack lengths are within 5×10−3 (m) to 35×10−3 (m), these values

of mean square error are sufficiently small.

System of Second Order Ordinary Differential Equations

In this section, we will focus on our hybrid physics-informed neural network implementation of

a system of second order ordinary differential equations. In the case study, we will highlight the

useful aspect of system identification. This is when observed data is used to estimate parameters

of the governing equations.

Consider the system of second order ordinary differential equation expressed in the form

P(t)
d2y

dt2
+Q(t)

dy

dt
+R(t)y = u(t) (3.6)

where u(t) are controllable inputs to the system, y are the outputs of interest, and t is time. The

solution to Eq. (3.6) depends on initial conditions (y as well as dy

dt
at t = 0), input data (u(t) known

at different time steps).
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Case Study: Forced Vibration of 2-Degree-of-Freedom System

In this case study, we consider the motion for two masses linked together springs and dashpots, as

depicted in Fig. 3.3a. The number of degrees of freedom of a system is the number of independent

coordinates necessary to define motion (equal to the number of masses in this case). Under such

circumstances, the equations are obtained using Newton’s second law

Mÿ +Cẏ +Ky = u, or alternatively

ÿ = f(u, ẏ,y) = M−1 (u−Cẏ −Ky) ,

(3.7)

where:

M =







m1 0

0 m2






, C =







c1 + c2 −c2

−c2 c2 + c3






, K =







k1 + k2 −k2

−k2 k2 + k3






, y =







y1

y2






, and u =







u1

u2






.

(3.8)

We assume that while the masses and spring coefficients are known, the damping coefficients are

not. Once these coefficients are estimated based on available data, the equations of motion can

be used for predicting the mass displacements given any input conditions (useful for design of

vibration control strategies, for example).

Figure 3.3b and 3.3c illustrate the data used in this case study. Here, we used m1 = 20 (kg),

m2 = 10 (kg), c1 = 30 (N.s/m), c2 = 5 (N.s/m), c3 = 10 (N.s/m), k1 = 2×103 (N/m), k2 = 1×103

(N/m), and k3 = 5×103 (N/m) to generate the data. On the training data, a constant force u1(t) = 1

(N) is applied to mass m1, while m2 is let free. On the test data, time-varying forces are applied to

both masses. The displacements of both masses are observed every 0.002 (s) for two seconds. The

observed displacements of the training data are contaminated with Gaussian noise with zero mean

and 1.5× 10−5 standard deviation.
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(a) Two degree of freedom system (b) Input forces and displacements of training data

(c) Input forces and displacements of test data

Figure 3.3: Forced vibration details. Response of a two degree of freedom system is a function

of input forces applied at the two masses. Training data is contaminated with Gaussian noise

(emulating noise in sensor reading). Test data is significantly different from training data.

Computational Implementation

Within folder second_order_ode of the repository available at [69], the interested reader will find

the training and test data in the data.csv and data02.csv files, respectively. The time stamp is

given by column t. The input forces are given by columns u1 and u2. The measured displacements

are given by columns yT1 and yT2. Finally, the actual (but unknown) displacements are given by

columns y1 and y2.

With defined initial conditions y(t = 0) = y0 and ẏ(t = 0) = ẏ0, we can use the classic Runge-
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Kutta method [70, 71] to numerically integrate Eq. (3.7) over time set with time step h:




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(3.9)

In this section, we will show how we can use observed data to tune specific coefficients in Eq. (3.7).

Specifically, we will tune the damping coefficients c1, c2, and c3 by minimizing the mean squared

error:

Λ =
1

n
(y − ŷ)T (y − ŷ) , (3.10)

where n is the number of observations, y are observed displacements, and ŷ are the displacements

predicted using the physics-informed neural network.

We will use all the packages shown Listing 3.1, in addition to linalg imported from tensorflow

(we did not show a separate listing to avoid clutter). Listing 3.5 shows the important snip-

pets of implementation of the Runge-Kutta integrator cell (to avoid clutter, we leave out the

lines that are needed for data-type reinforcement). The __init__ method, constructor of the

RungeKuttaIntegratorCell, assigns the mass, stiffness, and damping coefficient initial guesses,

as well as the initial state and Runge-Kutta coefficients. The call method effectively implements

Eq. (3.9) while the _fun method implements Eq. (3.7).
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1class RungeKuttaIntegratorCell(Layer):

2 def __init__(self, m, c, k, dt, initial_state, **kwargs):

3 super(RungeKuttaIntegratorCell, self).__init__(**kwargs)

4 self.Minv = linalg.inv(np.diag(m))

5 self._c = c

6 self.K = self._getCKmatrix(k)

7 self.A = np.array([0., 0.5, 0.5, 1.0], dtype=’float32’)

8 self.B = np.array([[1/6, 2/6, 2/6, 1/6]], dtype=’float32’)

9 self.dt = dt

10 ...

11

12 def build(self, input_shape, **kwargs):

13 self.kernel = self.add_weight("C",shape=self._c.shape,

14 trainable=True, initializer=lambda shape,dtype: self._c,

15 **kwargs)

16 self.built = True

17

18 def call(self, inputs, states):

19 C = self._getCKmatrix(self.kernel)

20 y = states[0][:,:2]

21 ydot = states[0][:,2:]

22

23 yddoti = self._fun(self.Minv, self.K, C, inputs, y, ydot)

24 yi = y + self.A[0] * ydot * self.dt

25 ydoti = ydot + self.A[0] * yddoti * self.dt

26 fn = self._fun(self.Minv, self.K, C, inputs, yi, ydoti)

27 for j in range(1,4):

28 yn = y + self.A[j] * ydot * self.dt

29 ydotn = ydot + self.A[j] * yddoti * self.dt

30 ydoti = concat([ydoti, ydotn], axis=0)

31 fn = concat([fn,self._fun(self.Minv,self.K,C,inputs,yn,ydotn)

],axis=0)

32

33 y = y + linalg.matmul(self.B, ydoti) * self.dt

34 ydot = ydot + linalg.matmul(self.B, fn) * self.dt

35 return y, [concat(([y, ydot]), axis=-1)]

36

37 def _fun(self, Minv, K, C, u, y, ydot):

38 return linalg.matmul(u - linalg.matmul(ydot, C, transpose_b=True) -

linalg.matmul(y, K, transpose_b=True), Minv, transpose_b=True)

39 ...

Listing 3.5: Runge-Kutta integrator cell.

Listing 3.6 details how we use objects from RungeKuttaIntegratorCell and RNN to create a

model ready to be trained. The function create_model takes m, c, and k arrays, dt, initial_state

, batch_input_shape and return_sequences so that a RungeKuttaIntegratorCell object is
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instantiated. Parameter batch_input_shape is used within RungeKuttaIntegratorCell to rein-

force the shape of the inputs ( although it is not directly specified in RungeKuttaIntegratorCell,

it belongs to **kwargs and it will be consumed in the constructor of Layer).

Similarly to the Euler example, we will use the TensorFlow native recurrent neural network class,

RNN, to effectively march in time. The march through time portion of Eq. (3.7) starts to be imple-

mented when PINN, the object of class RNN, is instantiated. As a recurrent neural network, PINN

has the ability to march through time and execute the call method of the rkCell object. Lines 9

to 11 of List. 3.6 are needed so that an optimizer and loss function are linked to the model that will

be created. In this example, we use the mean square error (’mse’) as loss function and RMSprop

as an optimizer.

1def create_model(m,c,k,dt,initial_state,batch_input_shape,

2 return_sequences=True, unroll=False):

3 rkCell = RungeKuttaIntegratorCell(m=m,c=c,k=k,dt=dt,

4 initial_state=initial_state)

5 PINN = RNN(cell=rkCell,batch_input_shape=batch_input_shape,

6 return_sequences=return_sequences,

7 return_state=False,unroll=unroll)

8 model = Sequential()

9 model.add(PINN)

10 model.compile(loss=’mse’,optimizer=RMSprop(1e4),metrics=[’mae’])

11 return model

Listing 3.6: Create model function for the Runge-Kutta integration example.

Listing 3.7 details how to build the main portion of the Python script. From line 2 to line 5,

we are simply defining the masses, spring coefficients (which are assumed to be known), as well

as damping coefficients, which are unknown and will be fitted using observed data (here, values

only represent an initial guess for the hyperparameter optimization). Creating the hybrid physics-

informed neural network model is as simple as calling create_model, as shown in line 16. As is,

model is ready to be trained, which is done in line 19. or the sake of the example though, we can

check the predictions at the training set before and after the training (lines 18 and 20, respectively).
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1if __name__ == "__main__":

2 # masses, spring coefficients, and damping coefficients

3 m = np.array([20.0, 10.0],dtype=’float32’)

4 c = np.array([10.0, 10.0, 10.0],dtype=’float32’) # initial guess

5 k = np.array([2e3, 1e3, 5e3],dtype=’float32’)

6

7 # data

8 df = pd.read_csv(’./data/data.csv’)

9 t = df[[’t’]].values

10 dt = (t[1] - t[0])[0]

11 utrain = df[[’u0’,’u1’]].values[np.newaxis,:,:]

12 ytrain = df[[’yT0’,’yT1’]].values[np.newaxis,:,:]

13

14 # fitting physics-informed neural network

15 initial_state = np.zeros((1,2*len(m),),dtype=’float32’)

16 model = create_model(m,c,k,dt,initial_state=initial_state,

17 batch_input_shape=utrain.shape)

18 yPred_before = model.predict_on_batch(utrain)[0,:,:]

19 model.fit(utrain, ytrain, epochs=100, steps_per_epoch=1, verbose=1)

20 yPred = model.predict_on_batch(utrain)[0,:,:]

Listing 3.7: Training and predicting in the Runge-Kutta integration example

Figure 3.4 illustrates the results obtained when running the codes within folder second_order_ode

available at [69]. Figure 3.4a shows the history of the loss function (mean square error) throughout

the training. Figures 3.4b and 3.4c show the prediction against actual displacements. Similarly to

the Euler case study, results may vary from run-to-run, depending on the initial guess for c1, c2,

and c3 as well as performance of RMSprop. The loss converges rapidly within 20 epochs and only

marginally further improves after 40 epochs. As illustrated in Fig. 3.4b, the predictions converge

to the observations, filtering the noise in the data. Figure 3.4c shows that the model parameters

identified after training the model allowed for accurate predictions on the test set. In order to

further evaluate the performance of the model, we created contaminated training data sets where

we emulate the case that sensors used to read the output displacement exhibit a burst of high noise

levels at different points in the time series. For example, Fig. 3.4d illustrates the case in which

the burst of high noise level happens between 0.5 (s) and 0.75 (s); while in Fig. 3.4e, this data

corruption happened at two different time periods (0.1 to 0.2 (s) and 0.4 to 0.5 (s)). In both cases,
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model parameters identified after training the model allowed for accurate predictions.

(a) Loss function convergence (b) Training set results (c) Test set results

(d) Prediction at first contaminated

training set

(e) Prediction at second contami-

nated training set

(f) Damping coefficient varia-

tion. Confidence interval based on

Gaussian noise.

Figure 3.4: Runge-Kutta integration results. After training, damping coefficients are identified

(Tab. 3.1). Model can be used in test cases that are completely different from training. Due to

nature of physics that governs the problem, responses are less sensitive to coefficients c2 and c3,

when compared to c1. Nevertheless, model identification is successful even when noise level varies

throughout training data.

Noise in the data imposes a challenge for model parameter identification. Table 3.1 lists the identi-

fied parameters for the separate model training runs with and without the bursts of corrupted data.

As expected, c1 is easier to identify, since it is connected between the wall and m1, which is twice

as large as m2. On top of that, the force is applied in m1. In this particular example, the outputs

show low sensitivity to c2 and c3. Figure 3.4f show a comparison between the actual training data

(in the form of mean and 95% confidence interval) and the predicted curves when 70 ≤ c2 ≤ 110
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and 15 ≤ c3 ≤ 120. Despite the apparently large ranges for c2 and c3, their influence in the

variation of the predicted output is still smaller than the noise in the data.

Table 3.1: Identified damping coefficients. Actual values for the coefficients are c1 = 100.0,

c2 = 110.0, and c3 = 120.0. Due to nature of physics that governs the problem, responses are less

sensitive to coefficients c2 and c3, when compared to c1 (Fig. 3.4f).

Noise in observed output c1 c2 c3

Gaussian 115.1 71.6 16.7

Gaussian with single burst of high contamination 113.2 70.0 17.1

Gaussian with double burst of high contamination 109.2 70.7 15.3
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CHAPTER 4: FLEET PROGNOSIS WITH HYBRID MODELS

First we discuss the specifics of fatigue crack growth at a specific control point and the extension

to the fleet of aircraft. Then, we present two scenarios for fatigue crack growth estimation of

aircraft fuselage panels and prediction at a fleet of aircraft. In the first scenario, we consider

that the control point in the fuselage panel is instrumented and continuously monitored through

dedicated structural health monitoring sensors (e.g., comparative vacuum monitoring [72], fiber

Bragg grating sensors [73], etc.). In the second scenario, we consider the control point in the

fuselage panel is inspected in regular intervals through non-destructive evaluation approaches (e.g.,

Eddy current [74], ultrasound [75], dye penetrant inspection [76], etc.).

These applications impose two major challenges for recurrent neural networks: 1) the sequences

are very large (thousands of steps), and 2) output values are known at the beginning of the se-

quence but are observed only at few time stamps throughout the sequence. The large sequences

can lead to a significant increase in the norm of the gradients during training, which can harm

the learning process. Moreover, by having only a few observations throughout the sequence, the

long-term components can grow or decrease exponentially (exploding/vanishing gradient). This

fast saturation makes it very hard for the model to learn the correlation between the observations.

The interested reader is referred to the work of Pascanu et al. [77] and Sutskever [78] for further

discussion on the difficulties of training recurrent neural networks under such circumstances.

Fleet of aircraft and fuselage panel control point

When airline companies operate a fleet of a particular aircraft model, they usually adopt a series of

operation and maintenance procedures that maximize the use of their fleet under economical and
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safety considerations. For example, these companies rotate their aircraft fleet through different

routes following specific mission mixes. This way, no single aircraft is always exposed to the most

aggressive (or mildest) routes, which helps managing useful lives of critical components. Here,

we assume an aircraft model designed to fly the four hypothetical missions shown in Fig. 4.1a)

and consider the mission mixes detailed in Tab. 4.1. We assume the airline company has 300

aircraft allocated to each mission mix. Each aircraft is assigned a fixed percentage of flights for

each mission that composes the mission mix. These percentages vary uniformly from 0% to 100%.

Therefore, within the fleet flying mission mix A, for example, there is one aircraft flying 0% of

mission #0 and 100% of mission #3, there is another aircraft flying 1% of mission #0 and 99%

of mission #3, there is yet another aircraft flying 2% of mission #0 and 98% of mission #3, and

so forth. The same logic applies to the other mission mixes.

We chose these four missions as an effort to illustrate the different conditions the fleet of aircraft

usually experience in commercial aviation. In reality though, the number of missions and the

number of mission mixes depends on how operators decide to manage their fleets. This way, we

synthetically created data for a fleet of 300 aircraft.

(a) Flight profile for different mis-

sions.

(b) Control point on the

aircraft fuselage.
(c) Cumulative damage over time.

Figure 4.1: Cumulative damage over time for control point on the aircraft fuselage as a function of

mission profile (assuming aircraft flies four missions per day).
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Table 4.1: Missions mix details. Percentage flights for each mission vary from 0% to 100%.

Mission mix
Mission (load in KPa)

#0 (92.5) #1 (100) #2 (110) #3 (130)

A X X

B X X

C X X

We consider the control point on an aircraft fuselage illustrated in Fig. 4.1b (crack in infinite

plate) and assume that fatigue damage accumulates throughout the useful life, as illustrated in Fig.

4.1c. For the sake of this example, we assumed that the initial and the maximum allowable crack

lengths are a0 = 0.005 m and amax = 0.05 m, respectively. The metal alloy is characterized by the

following Paris law constants: C = 1.5× 10−11, m = 3.8.

(a) Missions histories for two different aircraft.
(b) Fatigue crack length history for the fleet (300 air-

craft).

Figure 4.2: Snapshot of synthetic data.

Figure 4.2 illustrates part of the data used here. Figure 4.2a shows the complete mission history in

terms of far-field stresses for the aircraft flying the most aggressive and most mild mission mixes

of the fleet (for the entire fleet, the far-field stress time histories follow the mixes described in Tab.

4.1). Figure 4.2b shows how the crack length time histories can be different across the entire fleet

and highlights the two extreme cases (most aggressive and most mild mission mixes of the fleet)
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as well as the fleet-wide crack length distribution at the 5th year. For the sake of this study, we

consider that the history of cyclic loads is known throughout the operation of the fleet (i.e., the

data shown in Fig. 4.2a is observed). On the other hand, the crack length history is only partially

known (i.e., data shown in Fig. 4.2b) and the availability of the information depends on the adopted

monitoring/inspection strategy.

Scenario I: continuous monitoring of control point

As previously mentioned, in the first scenario, we assume that the control point is instrumented

and continuously monitored through dedicated structural health monitoring sensors (e.g., compar-

ative vacuum monitoring and fiber Bragg grating sensors, etc.). In practical applications, airline

companies could limit the number of monitored aircraft due to cost associated with the structural

health monitoring system (including its own maintenance). In such cases, data gathered on part of

the fleet is used to build predictive models for the entire fleet.

Table 4.2: Inspection periods with its number of time steps and total data points used for training

Periodicity Yearly Monthly Weekly Daily

Number of time steps (per aircraft) 5 60 260 1825

Number of data points (60 aircraft) 300 3600 15600 109,500

We arbitrarily assume the dedicated structural health monitoring sensor were installed on 60 air-

craft of the fleet. This is equivalent to 20% of the fleet and represents a scenario in which the

airline companies are willing to instrument a significant portion of the fleet. It should also allow

us to study continuous monitoring without having to instrument the entire fleet or having only very

few instrumented aircraft. As detailed in Tab. 4.2, we studied different rates in which sensor data is

acquired (from data collection as sparse as once a year to as refined as once a day). As mentioned
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before, we also considered the case of weekly and daily crack length observation.

First we evaluated the performance of purely data-driven recurrent neural networks. We used the

long short-term memory and and gated recurrent unit (Fig. 2.4b) architectures. Multiple configu-

rations were tested varying the number of layers (stacked cells) and units (with the same number of

neurons per layer), as detailed in Tab. 4.3. Every one of the nine configurations was used for each

inspection period (yearly, monthly, weekly, and daily) totaling 72 distinct models (36 LSTM and

36 GRU). The training of these neural networks was performed using the mean square error (MSE)

loss function and the Adam optimizer [79]. The different model architectures converged at slightly

different epochs, all returning the best results before 1000 epochs. Nevertheless, the training was

carried over to 2000 epochs to all models to ensure no further improvement would occur.

Table 4.3: Designs based for long short-term memory (LSTM) and gated recurrent unit (GRU)

networks.

Configuration

Layers 1 1 1 2 2 2 4 4 4

Neurons 16 32 64 16 32 64 16 32 64

Number of parameters

LSTM 1168 4384 16960 3280 12704 49984 7504 29344 116032

GRU 928 3392 12928 2560 9728 37888 5824 22400 87808

As illustrated in Fig. 4.3, the loss function of most of the models converged to small values

(althougth their rate of convergence can greatly differ). Since we are using the Adam optimizer,

we see high oscillation early in the optimization process is a manifestation of the learning rate

adjustment, which is followed by a rapid convergence midway, and then stagnation towards the

end the optimization. After training with the sub-fleet of 60 aircraft, all models were validated

against the entire fleet (300 aircraft).
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(a) LSTM, 4× 32, daily. (b) GRU, 4× 32, daily.

Figure 4.3: Example of loss function history throughout the training of the long short-term memory

(LSTM) and gated recurrent unit (GRU) networks.

Figure 4.4 shows the percent prediction errors of the recurrent neural network models at the end of

the 5th year for all 300 aircraft when crack length is observed yearly, monthly, weekly, and daily.

This detailed look at the prediction accuracy reveals that the number of observations strongly

contributes to overall prediction accuracy. Not surprisingly, the more observations used in training

the more accurate the model predictions are. Although the boxplots show that some architectures

Figure 4.4: Boxplot of percent error in crack length prediction for the long short-term memory

(LSTM) and gated recurrent unit (GRU) networks at the 5th year for entire fleet (300 aircraft).

%error = 100× aPRED−aactual
aactual

.
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would outperform others, there is no clear trend with regards to complexity (i.e., more complex

models outperforming simpler models up to a point). This indicates that the result is likely to

be dependent on the specific training of the neural network (through a combination of random

initialization of weights, and optimization parameters such as optimization algorithm, learning

rate, number of epochs, etc.).

Figure 4.5 shows how the predictions at the end of the 5th year for all 300 aircraft compare with ac-

tual crack lengths. Interestingly, Figs. 4.5a and 4.5b show that both the LSTM- and the GRU-based

recurrent neural networks have similarly poor performance when trained with yearly observations.

The performance improves when these models are trained with daily observations; although there

is still considerable prediction error across the crack length range (the GRU-based seems to exhibit

a bias towards the high crack length).

(a) Long-short term memory (LSTM). (b) Gated recurrent unit (GRU).

Figure 4.5: LSTM and GRU predictions versus actual crack length at the 5th year for entire fleet

(300 aircraft).

Figure 4.6 illustrates the model predictions up to the end of the 5th year for all 300 aircraft. Figure

4.6a shows the time histories for the actual crack length and the model predictions coming from

one LSTM- and one GRU-based neural network. Figures 4.5 and 4.6a clearly show that the crack

length trends might be captured but the shape of the curve is poorly approximated. Figure 4.6b
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(a) Crack length histories.
(b) Ratio between predicted and actual crack

length.

Figure 4.6: Actual and LSTM- and GRU-predicted crack length over time for the entire fleet (300

aircraft). LSTM and GRU stand for long short-term memory and gated recurrent unit, respectively.

illustrates the ratio between the predicted and actual crack lengths. The ratio being close to one is

a good indication of prediction accuracy. For both LSTM- and GRU-based neural networks, the

predictions are mostly within ±25% (except for some predictions out of the LSTM-based neural

network, which can overestimate the final crack lengths by as much as 75%).

We also tested the performance of the proposed hybrid physics-informed neural network when

there is continuous monitoring of the control point. We built the model using multi-layer percep-

trons as stress intensity layer in series with a physics-based Paris law layer (as illustrated in Fig.

4.7c). Table 4.4 details the multi-layer perceptron designs considered in this study. We varied the

number of layers and neurons within each layer as well as the activation functions. We used the

linear, hyperbolic tangent (tanh), and the exponential linear unit (elu) activation functions given as

follows

linear(z) = z, tanh(z) =
ez − e−z

ez + e−z
, and elu(z) =











z when z > 0

ez − 1 otherwise.

(4.1)
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(a) Cumulative damage

RNN cell. (b) Fully physics-informed cell.
(c) Hybrid physics-informed neural net-

work cell.

Figure 4.7: Cumulative damage and examples of RNN cells for crack growth. The stress intensity

range layer implements ∆Kt = F∆St
√
πat−1 and the Paris law layer implements ∆at = C∆Km

t .

Table 4.4: Multi-layer perceptron (MLP) configurations used to model the stress intensity range.

Layer #
Number of neurons / activation function

MLP #1 MLP #2 MLP #3 MLP #4 MLP #5 MLP #6 MLP #7

0 5 / tanh 10 / elu 10 / tanh 10 / tanh 20 / tanh 20 / tanh 40 / tanh

1 1 / linear 5 / elu 5 / elu 5 / tanh 10 / elu 10 / elu 20 / elu

2 1 / linear 1 / linear 1 / linear 5 / elu 5 / tanh 10 / elu

3 1 / linear 1 / linear 5 / tanh

4 1 / linear

Parameters 21 91 91 91 331 331 1,211

The training of these neural networks was performed using the mean square error loss function

and the Adamax optimizer [79]. Given that the hybrid physics-informed neural network converged

much faster (all models converged before 50 epochs), the training was carried over to 100 epochs

to ensure no further improvement would still occur.

Similarly to what happened with the data-driven architectures (see Fig. 4.3), Fig. 4.8 illustrates the

loss function oscillation early in the optimization process followed by convergence and stagnation

towards the end the optimization. Figure 4.8 also shows that the different multi-layer perceptrons
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(a) Yearly observations. (b) Monthly observations.

Figure 4.8: Example of loss function history throughout the training of the physics-informed neural

networks with continuous monitoring of the control point.

converged to roughly the same loss function values at the end of the training process. Figure 4.9a

shows the percent prediction errors of the recurrent neural network models at the end of the 5th

year for all 300 aircraft when crack length is observed yearly and monthly. The main advantage of

using physics-informed neural networks is reducing the need for training points. In this case, the

costly part is the acquisition of crack length observations. One can argue that a monitoring system

that off-loads data yearly or monthly is cheaper to operate and maintain when compared to one that

is expected to produce data on a daily basis, for example. Therefore, we will only show results for

yearly and monthly crack length observations. Visual comparison shows that all the seven physics-

informed neural networks had percent errors within the same order of magnitude. This is true

even when models are trained with yearly observations, which confirms that the physics-informed

layer compensates for the reduced number of observations. From an airline company perspective,

the motivation behind the reduction in the number of training points is the cost associated with

continuously monitoring the aircraft in the fleet. In this case study, the costly part is the acquisition

of crack length observations. Therefore, it is expected that a monitoring system that off-loads

data yearly or monthly is more economical to operate and maintain when compared to one that is
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(a) Boxplot of percent error in

crack length prediction.

(b) Yearly observations. (c) Monthly observations.

Figure 4.9: Physics-informed neural network predictions versus actual crack length at the 5th year

for entire fleet (300 aircraft). %error = 100× aPRED−aactual
aactual

expected to produce data on a daily basis, for example.

Figure 4.9 shows how the predictions at the end of the 5th year for all 300 aircraft compare with

actual crack lengths. Interestingly, Figs. 4.9b and 4.9c confirm the robustness of the physics-

informed neural networks when trained with yearly observations. We also see that the relatively

large percent errors (let us say above 10%) are likely coming from aircraft exhibiting small crack

lengths at the end of the 5th year. On the basis of the number of training points and prediction er-

rors, the physics-informed neural networks outperform the data-driven models for this application.

Finally, Fig. 4.10b illustrates the model predictions up to the end of the 5th year for all 300 aircraft

for the multi-layer perceptron #1 (detailed in Tab. 4.4). As opposed to Fig. 4.6, Fig. 4.10b shows

that the crack length trends as well as the curve over time are well approximated (that is attributed

to the physics-informed layer). The models are better suited for tracking crack length than the

data-driven counterparts (i.e., the LSTM- and one GRU-based neural networks).
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(a) Yearly observations. (b) Monthly observations.

Figure 4.10: Actual and physics-informed neural network predicted crack length over time.

Scenario II: scheduled inspection of control point

As previously mentioned, in the second scenario, we also consider the case in which the control

point in the fuselage panel is inspected in regular intervals through non-destructive evaluation

approaches (e.g., Eddy current, ultrasound, dye penetrant inspection, etc.). Due to cost associated

with inspection (mainly downtime, parts, and labor), it is customary to perform inspection in pre-

defined intervals (which might vary from control point to control point). Usually, aircraft are

inspected in batches to avoid grounding the entire fleet. In such case, data gathered on part of the

fleet is used to build predictive models for the entire fleet. These predictive models can be used to

guide the decision of which aircraft should be inspected next.

Table 4.5 details the hypothetical cases for selecting the aircraft out of fleet for inspection. Figure

4.11 highlights the 15 observed crack lengths at the end of the 5th year for cases #1 to #3 of

Tab. 4.5. In the training of the recurrent neural networks, the inputs are always observed (i.e.,

the full far-field stress range time history is observed). However, the output is only observed at

inspection. At a rate of 4 flights per day, in a period of 5 years, this means that we observed 5

to 60 time histories of 7,300 data points each (total of 36,500 to 438,000 input points) and only
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Table 4.5: Scenarios for inspection data.

Distribution of observed crack length
Inspected aircraft

5 15 30 60

Case #1 - Biased towards small crack lengths X

Case #2 - Following true distribution of crack length X

Case #3 - Uniform coverage of crack lengths X X X X

Case #4 - Biased towards large crack lengths X

(a) Case #1. (b) Case #2. (c) Case #3. (d) Case #4.

Figure 4.11: Fatigue crack length history and observations (15 aircraft) at the 5th year. Details

about each case are found in Tab. 4.5.

5 to 60 output observations. Here, the intent is to study the influence of number and distribution

of inspections (output observations) in the training of the neural network. In all cases, inspection

is assumed to take place at the 5th year of operation. Similarly to what would happen in real

life, the first inspection results are used to train the models, which will be used to make crack

length prediction across the entire fleet. Based on the performance results of data-driven and

physics-informed neural networks in scenario I, we decided to focus this study only on the physics-

informed neural networks. The poor performance of the purely data-driven neural networks as the

number of training points gets reduced indicates they are not suitable for scenario II.

We first study the impact of the multi-layer perceptron design in the training and validation of
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the physics-informed recurrent neural networks. We use data from 15 aircraft in which there is

uniform coverage of the crack lengths (case #3 from Tab. 4.5 shown in Fig. 4.11c). The mean

square error has fast convergence throughout training, as shown in Fig. 4.12a. Figure 4.12b shows

the predictions at the end of the 5th year for the training set (15 inspected aircraft) before and after

training. Figure 4.12c shows the predictions at the end of the 5th year for the entire fleet (300

aircraft) before and after training. In both cases, the model initially tends to under-predict the large

crack lengths. After the recurrent neural network is trained, the predictions are in good agreement

with the actual values. There is only marginal differences in performance of the various multi-layer

perceptron configurations (confirming that the stress intensity range is relatively simple function

of current crack length and far-field stress).

(a) Loss function history.
(b) Predictions at the 5th year for

the training data (15 aircraft).

(c) Predictions at the 5th year for

the entire fleet (300 aircraft).

Figure 4.12: Loss function history and predictions before and after training.

Figure 4.13 illustrates the crack length predictions over time for MLP#1 (see Tab. 4.4 for details)

before and after training and how they compare with the actual crack length histories. As seen in

Fig. 4.13a, there is good agreement between predicted and actual crack length histories. Figure

4.13b shows the ratio between the predicted and actual crack growth over time for the entire fleet

before and after training. Initially, the model grossly under-predicts large crack lengths and pre-

dictions are within a 35% and 85% of the actual crack length. After the recurrent neural network

44



(a) Crack length histories. (b) Ratio between predicted and actual crack length.

Figure 4.13: Actual and predicted crack length over time for the entire fleet (300 aircraft).

is trained, predictions stay within ±15% of the actual crack length, for the most part.

Figure 4.14 shows how the number of inspected aircraft affects the prediction accuracy of the

physics-informed neural network. As mentioned before, besides time series for loads (inputs), only

observations for crack at the 5th year are used for training the model. Figure 4.14a shows the mean

squared error (i.e., loss function at the end of training) as a function of number of training points.

Figure 4.14b shows the predictions versus actual crack lengths for the entire fleet at the end of the

5th year for MLP#1. Even with as few as 5 inspected aircraft (entire load histories and crack length

at the 5th year), the model is capable of producing accurate predictions. This might look counter-

intuitive at first, as one would expect that the more crack length observations used for training,

the more accurate the models would be. Nevertheless, we found that even for case of 5 inspected

aircraft, the number of input observations (36,500) is large enough compared to the number of

trainable parameters (as shown in Tab. 4.4, MLP#1 has only 21 trainable parameters). On top of

that, the physics-informed layer (Paris law) greatly influences the shape of the output versus time

(monotonically and exponentially increasing). Therefore, the resulting physics-informed neural

networks are relatively accurate even with few observed outputs.
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(a) Mean squared error versus

number of training points.

(b) MLP#1 predictions versus ac-

tual crack length at the 5th year for

entire fleet (300 aircraft) for differ-

ent number of training points.

(c) Predictions versus actual crack

length at the 5th year for entire

fleet (300 aircraft) when MLP#1
is trained with different data sets

(see Table 4.5 and Fig 4.11 for fur-

ther details).

Figure 4.14: Effect of training points in crack length predictions. Table 4.4 details the MLP con-

figurations.

Last but not least, we also studied the effect of the distribution of crack length observations used

for training the recursive neural network. For the sake of illustration, consider that the training set

consists of observations for crack lengths and far-field cyclic stress at 15 different aircraft. One

might be interested in looking at how well the resulting model is when the crack length observation

is biased towards the low values, or towards high values, or maybe, the distribution of crack length

observations does not reflect the fleet distribution. In real life, in the absence of estimators for

crack length, the first planes to be inspected are chosen based on rudimentary models based on

the history of flown missions. Table 4.5 and Fig 4.11 details the distribution of observed crack

lengths considered here. Figure 4.14c shows the summary of results for this part of the study.

Interestingly, except for case #1, the trained physics-informed neural network was able to predict

crack length (there is only minor differences among cases #2, #3, and #4). This indicates that as

long as the range of observed crack length covers the plausible crack length range at the fleet level,

the resulting model tends to be accurate, and the distribution of observed crack length has minor
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effects on the resulting network.

Notes about computational cost

Our implementation is done in TensorFlow (version 2.0.0-beta1) using the Python application pro-

gramming interface. In order to replicate our results, the interested reader can download codes,

data, and install the PINN package (base package for physics-informed neural networks used in

this work) available at [80]. In the light of the discussed application, the computational cost asso-

ciated with the neural networks is considered small (training done in few minutes using a laptop

computer and predictions for the 5 years of operation at a small fraction of a second per aircraft).

The intended use of the models is such that after data is collected, models will be trained and

prediction is performed across the fleet. The model predictions are used to decide which aircraft

should be inspected next and potentially monitor the fleet with predictions done after each flight.

In other words, the few minutes and fraction of second needed to run the training and prediction

is negligible compared to the time between flights and between scheduled inspections (given the

moderate crack growth rates for some aircraft, it is conceivable that the model is exercised between

large periods of time, such as weekly runs).
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CHAPTER 5: CLOSING REMARKS AND FUTURE WORK

Intended usage and limitations of the proposed framework

We believe our proposed approach can be used in several practical applications. For example, engi-

neers and scientists could leverage physics-informed kernels that have been previously developed

and proved to be able to model certain failure modes. Then, neural networks layers can be used

to compensate limitations of such physics-informed kernels by modeling parts of the system that

are not fully understood. This is a straightforward and practical way to characterize model-form

uncertainty. Although we illustrated the case in which physics-informed and data-driven layers

are connected in series, we believe the final design of the neural network architecture depends

on the problem. The implementation of “MODEL” in Fig. 4.7a can combine physics-informed

and data-driven layers forming complex architectures (mixing series, parallel, bridge and other

arrangements).

We expect the hybrid models should perform very well in cases for which inputs are observed

throughout all the time stamps but outputs are observed only at few time stamps. The physics-

informed kernels are expected to compensate for the lack of output observations. In cases where

both inputs and outputs are observed throughout the time stamps, we acknowledge that purely

data-driven approaches could perform as well as the hybrid models.

We advocate towards the hybrid implementation, combining physics-informed and data-driven

layers. As we demonstrated with the numerical experiments, we have observed that the hybrid

model requires very few output observations to be trained. Unfortunately, one might also argue

that the hybrid nature of the model is its main limitation. In fact, we believe there are at least

two cases that can complicate the implementation of our proposed algorithm. First, it could be
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that the understanding of the physics is so limited that no physics-informed approximations are

available. In this case, one might have to use a purely data-driven implementation (or maybe

other recurrent neural network architecture, such as the long-short term memory). Even though

this is a valid approach, we believe it could limit the benefits in terms of reduction in required

training data. Second, the physics-informed kernels need to be fast to compute (i.e., computational

cost comparable to matrix algebra found in multi-layer perceptrons). Complex models, such as

those involving iterative solvers, could make the computational cost of training and prediction

prohibitive, and/or make it difficult to fit the neural network.

Summary and conclusions

In this thesis, we demonstrated the ability to directly implement physics-based models into a hy-

brid neural network and leverage the graph-based modeling capabilities found in platforms such

as Tensorflow. Specifically, our implementation inherits the capabilities offered by these frame-

works such as implementation of recurrent neural network base class, automatic differentiation,

and optimization methods for hyperparameter optimization.

We discussed Python implementations of ordinary differential equation solvers using recurrent

neural networks with customized repeatable cells with hybrid implementation of physics-informed

kernels. In our examples, we found that this approach is useful for both quantification of model-

form uncertainty as well as model parameter estimation. We demonstrated our framework on two

examples:

• Euler integration of fatigue crack propagation: our hybrid model framework characterized

model form uncertainty regarding the stress intensity range used in Paris law. We imple-

mented the numerical integration of the first order differential equation through the Euler
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method given that the time history of far-field stresses is available. For this case study, we

observed good repeatability of results with regards to variations in initialization of the neural

network hyperparameters.

• Runge-Kutta integration of a 2 degree-of-freedom vibrations system: our hybrid approach is

capable of model parameter identification. We implemented the numerical integration of the

second order differential equation through the Runge-Kutta method given that the physics is

known and both inputs and outputs are observed through time. For this case study, we saw

that the identified model parameters led to accurate prediction of the system displacements.

Moreover, we investigated the case of monitoring fatigue crack growth in a fleet of aircraft. We

proposed a novel physics-informed recurrent neural network for cumulative damage modeling. As

inputs for our cumulative damage model, we considered the current damage level (crack length)

and far-field stresses (however, the recurrent neural networks can take other inputs, depending

on the problem). We tested well-known recurrent neural network cells, such as the long short-

term memory and the gated recurrent unit, and compare them with the proposed novel physics-

informed cell for cumulative damage modeling. This proposed cell is designed such that models

can be built using purely data-driven or physics-informed layers, or more interestingly, hybrids of

physics-informed and data-driven layers (as the model discussed in this paper). We designed two

numerical experiments in which a fleet of 300 aircraft is to be monitored. In the first scenario, on-

board structural and health monitoring sensors provide crack length observations for a portion of

the fleet. In the second scenario, crack length observation is obtained through scheduled inspection.

With the help of the numerical studies, we have demonstrated that recurrent neural networks can

be used to model cumulative damage (here, exemplified by fatigue crack growth). For the case in

which on-board structural and health monitoring sensors are installed, we learned that (a) archi-

tectures such as the long short-term memory and the gated recurrent unit tend to require frequent
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aircraft inspection data so that predictions of trained models can start tracking damage over time,

and (b) our proposed recurrent neural network cell (hybrid of data-driven and physics-informed

layers) can track damage over time even when trained with limited number of inspection data. As

expected, we confirmed that the performance of purely data-driven architectures is highly depen-

dent on the amount of data; and unfortunately, for the studied scenario, their predictions tend to

be poor. For the case in which crack length data is obtained through scheduled inspection, we

learned that our proposed recurrent neural network cell successfully models fatigue crack growth.

We studied the effect of the distribution and number of training data in the accuracy of the crack

length predictions at the fleet level after five years worth of operation. We learned that even with

reduced number of data points, the proposed physics-informed neural network can approximate

fatigue crack growth.

Future Work

The results motivate us to extend the study in several aspects. For example, we suggest studying

the effect of improved physics of failure models (e.g., by including both initiation and propagation

in the cumulative damage). We also see that considering uncertainty is important for this class of

problems. For example, one can study the effect of the scatter in material properties as well as

uncertainty in damage detection and quantification. Finally, one can also study how this physics-

informed neural networks could be used to help decision making in operations and maintenance of

industrial assets (e.g., by guiding decisions regarding repair and replacement of components).

In terms of future work, we believe there are many opportunities to advance the implementation as

well as the application of the demonstrated approach. For example, one can explore further aspects

of parallelization, potentially extending implementation to low-level CUDA implementation [81].

Another interesting aspect to explore would be data batching and dropout [82], which could be par-
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ticularly useful when dealing with large datasets. In terms of applications, we believe that hybrid

implementations like the ones we discussed are beneficial when reduced order models can capture

part of the physics. Then data-driven models can compensate for the remaining uncertainty and

reduce the gap between predictions and observations. In the immediate future, it would be inter-

esting to see applications in dynamical systems and controls. For example, Altan and collaborators

proposed a new model predictive controller for target tracking of a three-axis gimbal system [83] as

well as a real-time control system for UAV path tracking [84]. The UAV control system is based on

a nonlinear auto-regressive exogenous neural network where the proposed model predictive con-

troller for the gimbal system is based on a Hammerstein model. The proposed control methods are

used for real-time target tracking of a moving target under influence from external disturbances. It

would be interesting to see how our proposed approach can be incorporated in real-time controls.
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