
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2019 

Modeling and Transient Simulation of a Fully Integrated Multi-Modeling and Transient Simulation of a Fully Integrated Multi-

Pressure Heat Recovery Steam Generator Using Siemens T3000 Pressure Heat Recovery Steam Generator Using Siemens T3000 

Jonathan McConnell 
University of Central Florida 

 Part of the Mechanical Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 

McConnell, Jonathan, "Modeling and Transient Simulation of a Fully Integrated Multi-Pressure Heat 

Recovery Steam Generator Using Siemens T3000" (2019). Electronic Theses and Dissertations, 

2004-2019. 6535. 

https://stars.library.ucf.edu/etd/6535 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/293?utm_source=stars.library.ucf.edu%2Fetd%2F6535&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/6535?utm_source=stars.library.ucf.edu%2Fetd%2F6535&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


MODELING AND TRANSIENT SIMULATION OF A FULLY INTEGRATED

MULTI-PRESSURE HEAT RECOVERY STEAM GENERATOR USING SIEMENS T3000

by

JONATHAN MCCONNELL

B.S. University of Central Florida, 2018

A thesis submitted in partial fulfilment of the requirements

for the degree of Master of Science

in the Department of Mechanical and Aerospace Engineering

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Summer Term

2019



c© 2019 Jonathan McConnell

ii



ABSTRACT

The focus of this research is on the transient thermodynamic properties and dynamic behavior of a

Heat Recovery Steam Generator (HRSG). An HRSG is a crossflow heat exchanger designed for the

extraction of energy from the hot exhaust gas of a traditional power plant through boiling induced

phase change. Superheated steam is sent through a turbine to generate additional power, raising the

overall efficiency of a power plant. The addition of renewable energies and the evolution of smart

grids have brought forth a necessity to gain a comprehensive understanding of transient behavior

within an HRSG in order to efficiently manage the power output of traditional plants. Model-based

techniques that can simulate a wide range of operating conditions can be valuable and insightful.

For this reason, a multi-physics model of an HRSG has been developed in Siemens T3000 plant

monitoring software. The layout and conditions of a reference HRSG have been provided by

Siemens Energy Inc. along with validation data for behavioral comparison. The HRSG selected

is a three pressure stage HRSG. Simultaneous simulation of these three pressure systems and their

interactions has been achieved. A potential for real time execution was demonstrated. An HRSG

is built of three major subsystems, namely economizers, boilers, and superheaters. A lumped

control volume approach has been implemented to efficiently model the energy and mass balances

of medium within each subsystem. In this effort, considering the goal of real time simulation,

special attention was paid to balance computational burden with numerical accuracy.

A major focus of this research has been accurately modeling the complexities of phase change

within a boiler subsystem. A switching mechanism has been developed to numerically model the

dynamic heating and evaporation of boiler liquid. To increase robustness of the model to numeri-

cal fluctuations and perturbations, bidirectional flow comprising of boiling and condensation was

modeled with the switching mechanism. This numerically robust model shows good agreement

with the validation data provided by Siemens.
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CHAPTER 1: INTRODUCTION

1.1 Research Motivation

As the world takes strides toward more complex and diverse methods of producing electrical power,

it is necessary to gain a detailed understanding of current technologies in order to ease the transition

to greener energy. Many renewable energy sources, like wind and solar power, do not output

a consistent amount of power, and will fluctuate drastically throughout a given day-night cycle.

This contrasts to current traditional power plants, as most have been designed only for full power

output. In regions with a high density of renewable energy sources, it falls on the shoulders of

traditional power plants to even out the power supplied to the grid. As it is damaging to send too

much power to the grid at any given time, traditional power plants must be dynamically powered

up and down to fulfill the demand of the given area. This dynamic power regulation calls for a

detailed understanding of the transient behavior observed within a traditional power plant. Thus,

accurately modeling this behavior is key to understanding the nuances of a fluctuating traditional

power plant. Study of such a model can help to develop efficient methods for power regulation

that not only benefit traditional power plants, but reduce the environmental impact of these older

technologies.

1.2 Research Objectives

This research focuses on Heat Recovery Steam Generators (HRSG). A thorough description of an

HRSG will be given in Chapter 2. The goal of this research is to create a dynamic, transient simu-

lation of an entire multi-pressure HRSG. This model will accurately capture the transient behavior

and steady state thermodynamic properties of an HRSG given input conditions characteristic of
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an actual HRSG system. A major challenge of this research will be the development of a robust

boiler model. The two phases of water present in a boiling system require careful attention to the

mass flow and heat transfer interactions between phases. By directly modeling individual physical

phenomena, this research aims to create a simple yet robust transient simulation that can be easily

implemented into a plant control system.

The simulation results of this HRSG model will be validated against the real trends of a reference

HRSG provided by Siemens Energy Inc. The main goal of this research is to model realistic,

physics-based behavior in all subsystems of an HRSG. This behavior should be insightful and

predictive for a variety of HRSG configurations and input conditions. It follows that the resulting

trends of the HRSG model should display similar behavior to those shown in the reference data.

1.3 Research Approach

A model will be simulated using Siemens T3000 plant monitoring software. An overview of

T3000 modeling will be presented in Chapter 2. The model presented in this research will be

an adaptation and improvement of the foundational model presented in [1]. This previous work

will be discussed in Chapter 3. An overview of the structure and numerical calculations of the

aforementioned T3000 model will be presented in detail in Chapters 5 and 6. This research will

focus on developing a model of each individual subsystem using first principle calculations on

lumped control volumes (CV). Discretization of calculations will allow for individual analysis of

subsystems while capturing the connections and thermodynamic interplay observed in an entire

HRSG in a manner consistent with the underlying physics.

2



CHAPTER 2: BACKGROUND INFORMATION

2.1 Heat Recovery Steam Generators

A Heat Recovery Steam Generator (HRSG), seen in Figure 2.1, [2], is a counter flow heat ex-

changer added in series to traditional power plants to increase efficiency. The exhaust from gas

or coal burning power plants (also known as "Flue Gas") contains a significant amount of energy

in the form of heat. An HRSG uses this extra heat to boil water into steam, and pass said steam

through secondary turbines. This process works to create a more efficient power plant, and reduces

the temperature of the exhaust gas before it is released to the atmosphere. The flue-gas-to-water

heat exchange is broken down into three major sections for each pressure stage. The economizer

raises liquid feed water to just below saturation. The boiler evaporates the preheated water into

steam. The superheater heats the steam past saturation to add more energy and ensure no water

droplets are sent through the steam turbine.

Figure 2.1: OUTSIDE VIEW OF HEAT RECOVERY STEAM GENERATOR

3



Figure 2.2: SCHEMATIC OF HRSG SYSTEM

The Siemens HRSG used for reference in this research has three separate pressure systems: Low

Pressure (LP), Intermediate Pressure (IP), and High Pressure (HP). Each of these pressure systems

is built of different combinations of economizers, boilers, and superheaters. The water and steam

pipes of the reference HRSG are organized in clusters. The subsystems included in each cluster are

known to have similar steady state temperatures. Thus, the subsystems must interact with similar

flue gas temperatures. Figure 2.2 shows a flow chart representation of the reference HRSG. The

clusters are displayed as columns of the flow chart and are numbered 1 through 6. In this notation,

Cluster 1 interacts with the hottest flue gas. Each subsequent cluster interacts with flue gas of lower

temperature as heat is exchanged with previous subsystems. This nomenclature will be used for

the duration of the document.

2.2 Modeling in T3000

T3000 is a two dimensional user interface (UI) that uses flowchart diagrams to perform logic and

calculations in real time. This program was originally developed by Siemens Energy Inc. to serve

as a plant monitoring software.

4



Figure 2.3: EXAMPLE CALCULATION BLOCK

Previous research has been conducted to validate T3000’s ability to handle large scale transient

simulation [1]. This chapter will provide a brief overview of designing a calculation in T3000.

This will provide insight into the simulation process used to solve the equations in later chapters.

2.2.1 Basic Calculations

Base level calculations in T3000 are performed by individual blocks, taking in inputs and sending

out outputs as shown in Figure 2.3. These calculations can be numerical or logic based for use in

conditional statements. Along with conditional operators, there are also many more complex fea-

tures such as integral blocks and look up tables. Simple calculations can be assembled in series and

parallel chains to model governing equations including algebraic as well as differential equations.

T3000 performs all calculations in a created chain every cycle of simulation.

2.2.2 Example Module

The previously mentioned complex chains of calculations can be condensed into higher level mod-

ules. An example module is shown in Figure 2.4. These higher level modules are used for organi-

zation and separation of the calculations associated with each CV.

5



Figure 2.4: EXAMPLE MODULE BLOCK
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CHAPTER 3: PREVIOUS WORKS

A significant amount of previous research has been devoted to exploring boiler dynamics. High

fidelity finite element simulations can produce finely detailed descriptions of boiler behavior, [3].

However, such a complex model is too computationally demanding for the purposes of plant con-

trol. For this reason, many researchers have explored the concept of a simplified boiler model for

use in control of boiler system parameters in real time. Notable work in this field has demonstrated

the practicality of a first principle, non-linear boiler model for use in drum-boiler control, [4],

[5], [6]. It has been shown that a lumped parameter model can produce reasonable results while

maintaining low complexity and minimizing computational burden, but early models of such clas-

sification have worked around the issue of directly modeling phase change, [7]. In [8], saturation

conditions are assumed, and saturated steam and water parameters are assumed to be a function

of boiler pressure. These boiler models, while successful in their own regard, leave further room

for simplification. With the goal of modeling an entire HRSG system, the complexity of a given

model is compounded with the multiplicity of subsystems. Therefore, it is imperative that a boiler

model be optimized to reduce the collective computational burden of an HRSG model.

Other research has been conducted on modeling an entire HRSG, [9], [10], [11]. The early model

presented in [9] relies directly on the incorporation of parameter profiles for many significant

subsystems. Though accurate for modeling a specific system in a specified regime, this model

lacks versatility when considering new input profiles or perturbation.

In direct relation to this research, a preliminary foundation has been developed. An initial model of

each pressure system has been separately developed for incorporation in a fully integrated model.

These initial models will be discussed below.
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3.1 Low Pressure System

The LP system consists of an economizer, a boiler, and a superheater. The lack of duplication

in subsystems made the LP system an obvious starting point for building the HRSG model. A

complete T3000 model of the LP system was developed by Caesar in 2018, [1]. This model

is displayed in Figure 3.1. The model was constructed using lumped CVs for flue gas, metal,

liquid (water), and vapor (steam). Heat transfer calculations are performed to balance the energy

transferred across interfaces. The LP system is the least volatile of the three pressure systems,

and as the name suggests, the pressures and energies associated with the LP system are quite low

compared to the other pressure systems.

Flue Gas CV

Flue Gas CV

Flue Gas CV

Metal CV

Metal CV

Metal CV

Vapor CV
Vapor CV

Liquid CV
Liquid CV

Superheater Boiler Economizer

Figure 3.1: LOW PRESSURE T3000 MODEL
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It was reasonable to approximate the boiler pressure as saturation pressure at the given vapor

temperature. After tuning heat transfer parameters, it was found that this lumped CV model shows

good agreement with start-up transient trends as well as steady state values from actual plant data.

3.2 High Pressure System

The HP System is a larger system containing two economizers, a larger boiler, and two super-

heaters. Also, as the name implies, the steady state pressure of the HP system is significantly

greater than that of the LP. The method implemented for the LP system was scaled to include the

extra subsystems included within the HP system. A complete T3000 model of the HP system is

displayed in Figure 3.2. This initial model was partially successful, but was prone to significant

numerical oscillations and non-realistic behavior. For this reason it was necessary to refine the

boiler model (which will be presented in detail in Chapter 6) to create a more robust and more

accurate HRSG model.

Flue Gas CV

Metal CV

Superheater

Cluster 1 Cluster 2

Flue Gas CV

Metal CV

Boiler

Cluster 3

Flue Gas CV

Metal CV

Superheater

Flue Gas CV

Metal CV

Economizer

Cluster 4

Flue Gas CV

Metal CV

Economizer

Cluster 5

Figure 3.2: HIGH PRESSURE T3000 MODEL

9



CHAPTER 4: FULLY INTEGRATED MODEL

4.1 Combined High and Intermediate Pressure Model

The Intermediate Pressure (IP) System consists of an economizer, a boiler, and three superheaters.

The implementation of the T3000 model to the IP System is not as straight forward as that of the

LP and the HP systems. This is largely due to the significant coupling of the HP Exhaust and the IP

steam flow, seen in Figure 4.1 as "Cold Reheat Mixing". For accurate simulation of the coupling

effect, it is necessary to simultaneously simulate the HP and IP systems in the same model. As

opposed to a direct doubling of simulation complexity, the flue gas and metal CVs can be further

lumped.

Flue Gas CV

Metal CV

HP 

Superheater

Cluster 1

Reheater

Flue Gas CV

Metal CV

HP 

Superheater

Cluster 2

Reheater

Flue Gas CV
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HP 
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High 
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System
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Pressure 

System

Figure 4.1: COMBINED HIGH AND INTERMEDIATE PRESSURE T3000 MODEL

10



The HRSG used for reference in constructing this T3000 model has pipes bundled into clusters.

Each cluster has been designed so that the contents of the contained pipes are at similar steady

state temperature. This phenomenon is emphasized by the overlapping of cycles seen in the T-S

Diagram of a similar HRSG shown in Figure 4.2, [12]. It is therefore reasonable to use one lumped

flue gas and one lumped metal CV for each cluster. With the lumped metal CV model, it is assumed

that the entire mass of metal making up the pipes in each cluster is at one uniform temperature.

This assumption is sufficient in the majority of clusters, but causes significant inaccuracies for

clusters containing two or more subsystems from the same pressure system, i.e. Cluster 4, seen

in Figure 4.1. For this special case, it is necessary to split the flue gas and metal CVs further to

achieve higher fidelity of temperature distribution.

Figure 4.2: TS DIAGRAM OF MULTI-STAGE HRSG
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4.2 Combined High, Intermediate, and Low Pressure Model

The logical next step to the HP and IP combined model is to add the LP system, creating a Fully

Integrated Model. Similarly to the IP system, the LP system has two subsystems within one cluster,

and thus Cluster 6 must be split in two, as was done for Cluster 4. It should be noted that, in the

reference HRSG, the LP economizer is used to preheat the liquid medium of the entire HRSG

before it is distributed proportionally to each pressure system. This coupling is incorporated into

the Fully Integrated Model and can be observed in the T3000 model presented in Figure 4.3.
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CHAPTER 5: HRSG MODEL

5.1 Flue Gas Control Volume

The flue gas within an HRSG is near to atmospheric pressure and experiences negligible pressure

drops throughout the HRSG. For this reason, the mass within each flue gas CV is taken to be

constant, leading to the mass balance equation seen in Eq. (5.1).

ṁ f g,in = ṁ f g,out (5.1)

This assumption allows for the total flue gas mass to be calculated directly from geometric condi-

tions, shown in Eq. (5.2).

m f g =Vf gρ f g (5.2)

The purpose of the presented HRSG model is to track transient conditions. This goal cannot simply

be achieved through the use of static energy balance equations. It is instead necessary to consider

the Unsteady Flow Energy Equation (UFEE) when evaluating the parameters of a CV within the

model. The UFEE is presented qualitatively in Eq. (5.3).

d(mu)
dt

= (enthalpy o f mass in)− (enthalpy o f mass out)+(heat in) (5.3)

5.1.1 Temperature Averaging

For the flue gas CV, Eq. (5.3) can be arranged as shown in Eq. (5.4).

m f gCv f g Ṫf g,out = ṁ f g,in(h f g,in−h f g,out)− Q̇F2M − Q̇amb (5.4)
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The rate of change of the flue gas temperature can be calculated by rearranging Eq. (5.4) to solve

for the appropriate term, as seen in Eq. (5.5),

Ṫf g,out =
ṁ f g,in(h f g,in −h f g,out)− Q̇F2M − Q̇amb

m f gCv f g

, (5.5)

where Q̇F2M is the heat transferred from the flue gas to the metal pipes at a given section of the

HRSG. This heat transfer is convective and thus, can be represented by Eq. (5.6).

Q̇F2M = HF2MAF2M(Tf g,avg −Tm) (5.6)

In Eq. (5.6), HF2M and AF2M are the convective heat transfer coefficient and the surface area,

respectively, of the flue gas to metal interface.

A significant temperature drop is observed across each flue gas CV. For this reason, it is necessary

to consider an average temperature, Tf g,avg, for more accurate simulation of the heat exchange at

the interface of the flue gas and the metal pipes. For ease of modeling, a simple average has been

performed, as shown in Eq. (5.7).

Tf g,avg =
Tf g,in +Tf g,out

2
(5.7)

The value of Tf g,out can be found by integrating Eq. (5.5).

It is important to note that this temperature averaging is an approximation of the true flue gas/metal

interaction. One significant side effect of this approximation is an over estimation of flue gas tem-

perature in response to a step down in input temperature. Looking at the presented flue gas equa-

tions from a strictly mathematical perspective, an the input temperature lower than the temperature

of the metal CV pushes the output temperature, Tf g,out , to a temperature higher than the metal

temperature. The model will attempt to reach an equilibrium between Tf g,avg and Tm, as these
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temperatures are present in the heat transfer equation. In reality, it is impossible for the output

temperature of the flue gas CV to be greater than the metal temperature. Thus, it is important to

put a hard ceiling on the output temperature at the value of the metal temperature, i.e. Tf g,out ≤ Tm.

5.1.2 Ambient Heat Loss

It was observed in initial simulations that steady state values comparable to those provided in the

reference data were achieved while removing less heat from the flue gas than was suggested by

the data. For this reason, it is necessary to consider a heat loss to the environment surrounding the

HRSG. This heat loss is represented by Eq. (5.8).

Q̇amb = HambAamb(Tf g,avg −Tamb) (5.8)

In this equation, ambient heat loss is combined to a single convective heat loss through the surface

area of the inside of the HRSG associated with each flue gas CV. Hamb is assumed to be consistent

throughout the HRSG. The ambient temperature, Tamb is assumed to be at room temperature, 298

K. It was found that the addition of this term allowed for more comparable temperature to be

achieved within the flue gas CVs while maintaining accurate steady state approximations within

the water and steam CVs of each subsystem.

5.2 Metal Control Volume

The metal pipes are assumed to be uniform temperature throughout the mass. With this assumption,

the rate of change in temperature for the metal is a function of the conduction at the two interfaces:

flue gas to metal and metal to medium. For the metal CV, no flow is present. Thus, an energy
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conservation calculation can be performed, as presented in Eq. (5.9).

mmCmṪm = Q̇F2M − Q̇M2L (5.9)

Eq. (5.9) can be rearranged to find the rate of change of the metal temperature, as displayed in Eq.

(5.10).

Ṫm =
Q̇F2M − Q̇M2L

mmCm
(5.10)

The uniform temperature of the metal can be found by integrating Eq. (5.10).

It should be noted that Eq. (5.10) refers to an interaction between metal and liquid. In the case of a

vapor medium, Q̇M2L should be replaced by a corresponding Q̇M2V . This rate of heat transfer from

metal to liquid can be solved for using the convective heat transfer equation shown in Eq. (5.11),

Q̇M2L = HM2LAM2L(Tm−TL), (5.11)

where HM2L and AM2L represent the convective heat transfer coefficient and the surface area, re-

spectively, of the metal to liquid interface.

Once again, Eq. (5.11) represents a metal to liquid interaction. In the case of a metal to vapor

interaction, Q̇M2V , the terms HM2L, AM2L, and TL should be replaced by HM2V , AM2V , and TV ,

respectively.

5.3 Economizer Model

The Economizer is designed to heat feed water to near saturation conditions before entering the

boiler, and thus, it is comprised of a single liquid CV. The liquid CV is considered to be incom-

pressible, enforcing that the mass flow in to the CV be equal to the mass flow out, as presented in
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Eq. (5.12).

ṁL,in = ṁL,out (5.12)

In turn, the total mass of the liquid CV can be calculated from the volume of the economizer

subsystem using Eq. (5.13).

mL =VLρL (5.13)

With the assumption of incompressibility, the UFEE can be arranged as shown in Eq. (5.14)

mLCLṪL = ṁL,in(hL,in−hL,out)+ Q̇M2L (5.14)

Eq. (5.14) can be rearranged to calculate the rate of change in temperature, as seen in Eq. (5.15).

ṪL =
ṁL,in(hL,in−hL,out)+ Q̇M2L

mLCL
(5.15)

The temperature of the liquid CV can be found by integrating Eq. (5.15). For liquid water, the

pressure contribution to the enthalpy is considered negligible, thus the pressure need not be cal-

culated for the economizer. This assumptions also in turn assumes the enthalpy to be equal to the

internal energy of the liquid, i.e. hL = uL.

It should be noted that the pressures within an HRSG are much greater than the pressure change

due to hydrostatic pressure within the pipes. For this reason, the model assumes the effect of

hydrostatic pressure to be negligible.

5.4 Boiler Model

As the Boiler model is quite complex and has been a major focus of the author’s novel development

upon previous HRSG models, the Boiler model will be discussed in length in Chapter 6.
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5.5 Superheater Model

The Superheater serves to heat saturated steam to superheated steam before it is discharged to

the steam turbine. A single vapor CV is considered in the model of the superheater. Given the

compressible nature of a vapor CV, it is necessary to perform both energy and mass balance, as

well as a pressure calculation. The mass balance can be solved to find the change in mass of the

vapor CV, as shown in Eq. (5.16).

ṁV = ṁV,in − ṁV,out (5.16)

ṁV,out = k f
√

ρV

√

PV −Pnext (5.17)

Eq. (5.16) can be integrated to find the total mass of the vapor CV.

For a superheater subsystem, the UFEE can be arranged, as presented in Eq. (5.18).

mVCvṪV = ṁV,in(hV,in −uV )− ṁV,out(hV,out −uV )+ Q̇M2V (5.18)

The rate of change of the vapor temperature in the superheater can be calculated by rearranging

Eq. (5.18) as shown in Eq. (5.19).

ṪV =
ṁV,in(hV,in−uV )− ṁV,out(hV,out −uV )+ Q̇M2V

mVCv
(5.19)

Eq. (5.19) can be integrated to find the temperature of the vapor CV. As previously mentioned, it

is necessary to also calculate the pressure of the vapor CV. The high temperature and high pressure

regime of the steam observed in the HRSG is accurately modeled by the Redlich-Kwong equation

of state (RK), [13]. The pressure can be calculated directly using Eq. (5.20).

PV =
RTV

v−b
− a√

TV v(v+b)
(5.20)
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It should be noted that v is the molar specific volume of the vapor, and a and b are constants of the

RK equation.

5.5.1 Throttle Valve

Eq. (5.17) represents the vapor flow allowed through a given set of pipes from one subsection to

the next. k f is a flow constant representing the ease/restriction of mass flow. Special attention

must be paid to this value, as it is important to accommodate the geometric and system properties

of each transitional section. For instance, in pipes with a larger amount of flow, it is necessary to

have a large k f value to avoid an unrealistically high resistance to flow. On the contrary, a region

of lesser flow requires a lower k f value in order to effectively build up pressure. A step-by-step

derivation of k f can be seen in Appendix A.

One special case is seen at the outlet of the final superheater in each pressure system. Upon start-

up, limited vapor supply and low energy medium conditions require that no material be initially

sent to the steam turbine. A valve is kept closed for the purposes of building pressure. When

pressure reaches a selected threshold, the valve is opened slowly to regulate flow until the system

reaches full capacity. This phenomenon is captured in the model through a dynamic adjustment

of the k f value associated with the flow out of the final superheater. k f is held at a small value

(it was found that setting the flow constant to zero would cause numerical issues) until the system

reaches the pressure specified by Siemens valve control data. When the pressure is sufficient, a

first order filter is used to slowly raise the k f value to a maximum value as the system approaches

full capacity. This maximum value can be found through a reverse calculation of Eq. (5.17) using

the desired steady state values of the pressure system, as presented in Eq. (5.21).

k f ,max =
ṁV,des√ρV

√

PV,des−Pnext
(5.21)
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In Eq. (5.21), ρV is the density of the vapor taken at the desired steady state conditions.

The time selected to reach steady state must be properly tuned to fit the rate at which each pres-

sure system reaches full capacity. A slow valve opening will falsely elongate the behavior of the

pressure system, where as a fast valve opening time has been observed to cause oscillations in the

pressure.

5.6 Miscellaneous HRSG Features

5.6.1 Preheater

The LP economizer of the reference HRSG is used to not only preheat the the LP liquid flow, but

the entire feed water flow of the HRSG system. This preheated water is later split to be sent to

the LP boiler, the HP economizer, and the IP economizer. This produces a strong thermodynamic

coupling for all initial liquid CVs. This coupling is appropriately modeled in the T3000 diagram.

The mass flow seen by the LP economizer is that of the entire HRSG, and the input temperature of

the initial IP and HP economizers is the output temperature of the LP economizer.

5.6.2 Cold Reheat Mixing

After the superheated HP steam has passed through the HP steam turbine, the flow is diverted

to join with the IP steam flow between the IP superheater and the first reheater (shown in the

flowchart diagram in Figure 2.2). This has several significant implications. First, the HP system is

not discharged to atmospheric pressure, but is instead discharged to the current pressure of the IP

system. At the same time, the flow entering the reheater is significantly greater than that leaving

the IP superheater. This mixing must be dynamically modeled to properly display the behavioral
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coupling of the HP and IP system.

The current research has not included a steam turbine model, and thus the properties of the HP

exhaust must be approximated. The pressure is assumed to be the pressure of the IP system at the

point of mixing. Through out the entirety of the model simulation, the mass flow output of the

mixing juncture can be calculated with a simple mass balance, as presented in Eq. (5.22).

ṁout = ṁIP + ṁCR (5.22)

Here, "CR" stands for "Cold Reheat" which represents the HP exhaust after passing through the HP

steam turbine. The gaseous interaction in question is that of real gases, given their high temperature

and high pressure at steady state. For this reason, temperature cannot be calculated from a simple

mass weighted average. Instead, an enthalpy balance must be performed, as shown in Eq. (5.23).

ṁouthout = ṁIPhIP + ṁCRhCR (5.23)

Eq. (5.23) can be solved to find the enthalpy of the out-flowing steam, as shown in Eq. (5.24).

hout =
ṁIPhIP + ṁCRhCR

ṁout
(5.24)

The input enthalpies are the respective enthalpies associated with each input flow temperature. Due

to a lack of transient data, the mixing of the IP flow and the HP exhaust must be modeled in three

piecewise stages. At start-up of the HRSG there is initially no mass flow from the system, as the

contents of the boilers have not yet reached saturation condition. In this region of the simulation,

Eq. (5.24) cannot be relied on as the denominator of the equation will be zero. For this reason,

the temperature calculation is bypassed, and the output temperature is assumed to be that of the IP

system. This assumption is reasonable as there is currently no contribution from the HP exhaust.
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When the HP boiler begins to send steam through the HP pressure system (which for the most

part happens before the IP boiler reaches saturation), the denominator of Eq. (5.24) is no longer

zero. The temperature of the output steam is the temperature associated with the pressure and the

enthalpy calculated in Eq. (5.24). The remaining unknown is the input temperature of the HP

exhaust. Two separate methods can be used to approximate this temperature. The data provided by

Siemens denotes the steady state temperature of the incoming exhaust. With this information, the

temperature of the exhaust can be assumed to have a direct relationship to the temperature of the

IP system proportionally equal to the relation of the two temperatures at steady state, as presented

in Eqs. (5.25) and (5.26).

TCR = ktempTIP (5.25)

ktemp =
TCRSS

TIPSS

(5.26)

This approximation is accurate at steady state, but produces a temperature that is too high at start-

up. For this reason, the temperature of the exhaust at start-up can be assumed to be the current

temperature of the final HP superheater. A logical block can be used to select the smaller of these

two values to produce a reasonable temperature curve during simulation.

Figure 5.1 shows the profile produced by the logical procedure presented in this section. There is

an initial spike in temperature due to small, erroneous fluctuations in system values upon start-up.

The effect of this error is negligible as no mass flow is present. After initial fluctuations have

settled, the mixing model follows the temperature of the IP input until approximately 12 minutes

of simulated time. At this time, HP mass flow begins and the enthalpy calculation takes over. The

HP exhaust temperature is assumed to be consistent with the steam temperature at the exit of the

final HP superheater until approximately 30 minutes of simulated time. From this point onward,

the HP exhaust temperature is approximated by Eq. (5.25).
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Figure 5.1: COLD REHEAT TEMPERATURE PROFILE PARTIAL CAPACITY

It should be noted that this mixing model could be improved with the addition of a CV to represent

the junction point. In the case of this research, there is a lack of geometric information pertaining

to the Cold Reheat junction, and thus it is necessary to make an enthalpy balance approximation.

It should also be noted that the introduction of an additional CV would require the inclusion of

several new integral calculations. This added complexity is an unnecessary computational load for

the additional accuracy it would provide.

5.6.3 Thermodynamic Interplay

Modeling the entire HRSG system sheds light on the thermodynamic coupling of all three pressure

systems. This is easily seen through the tuning of heat transfer coefficients. The medium within

the pipes and the flue gas outside the pipes ultimately flow in opposite directions. This means that
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a change in one location of the HRSG will effect the behavior of the entire HRSG model. For

example, if one were to adjust the heat transfer coefficient of a superheater, one may assume that

this will not effect the behavior of the boiler as it is downstream. This is false, as the superheater

adjustment will change the amount of energy left in the flue gas before it reaches the boiler. In

extreme cases, the down stream subsystems can draw so much energy from the flue gas that the

upstream subsystems will be choked off and not perform efficiently. On the contrary, if one were to

make a heat transfer coefficient adjustment upstream in the system, for instance in an economizer,

this will effect the energy in the medium as it propagates further through the system. This complex

phenomenon calls for careful analysis of perturbation response when tuning the system parameters

to better fit the behavior of reference data.

24



CHAPTER 6: BOILER MODEL

6.1 General Layout

The boiler is the most complex and numerically intensive subsystem within each pressure system.

In the presented model, a separate liquid and vapor CV are considered, each with their own energy

and mass balance. These CVs are coupled through phase-change mass transfer and heat transfer at

the shared boundary.

6.1.1 Switching Mechanism

The key physical phenomenon which sets the boiler subsystem apart from other majors subsystems

within the HRSG model is phase change. This phenomenon adds an extra mass flow which must

be calculated in order to perform proper energy and mass balancing within each CV.

Flue gas flow

Evaporator

tubes

Drum

boiler

Steam

out

Feedwater

in
Heat

exchange

Heat

exchange

Figure 6.1: VISUAL REPRESENTATION OF BOILER MODEL
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Fortunately for the sake of calculation, temperature of the respective CV can be assumed constant

during a phase change. This assumption effectively allows the same number of equations to be

solved as was utilized in the calculations for simpler systems like the Superheater. The difference

in the Boiler subsystem is the necessity to track and switch between multiple modes of calculation.

6.1.1.1 Boiling

The change in mass of the liquid CV can be calculated using Eq. (6.1).

ṁL = ṁV,in+ ṁV 2L − ṁL2V (6.1)

Eq. (6.1) can be integrated to find the total mass of the liquid CV, mL. For the liquid CV, the two

modes of calculation are the heating mode and the boiling mode. While in the heating mode, the

liquid CV absorbs heat from the metal and changes temperature accordingly. The UFEE can be

arranged as presented in Eq. (6.2).

mLCLṪL = ṁL,in(hL,in−h f ,L)− ṁL2V (hg,L −h f ,L)+ ṁV 2L(h f ,V −h f ,L)+ Q̇M2L − Q̇L2V (6.2)

The heating mode is in effect when the temperature of the liquid is below the saturation temperature

at the current pressure. In this state, the mass flow due to evaporation, ṁL2V , is assumed to be zero.

The calculation can be performed using Eq. (6.3).

ṪL =
ṁL,in(hL,in−h f ,L)+ ṁV 2L(h f ,V −h f ,L)+ Q̇M2L − Q̇L2V

mLCL
(6.3)

In theory, the boiling mode is achieved when the temperature of the liquid CV is equal to the

saturation temperature at the current pressure. Due to numerical error, it is necessary to consider

an acceptable range where saturation can be assumed, i.e. | TL − Tsat(Pv) |≤ ε . As previously
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mentioned, the temperature of the liquid CV can be assumed constant while in the boiling mode,

i.e. ṪL = 0. Therefore, Eq. (6.2) can be rearranged to calculated the boiling mass flow as seen in

Eq. (6.4).

ṁL2V =
ṁL,in(hL,in−h f ,L)+ ṁV 2L(h f ,V −h f ,L)+ Q̇M2L − Q̇L2V

hg,L −h f ,L
(6.4)

It should be noted that the liquid-vapor interface is quite large within the drum of the boiler. For

this reason, it is necessary to consider a convective heat transfer, Q̇L2V , between the boiler liquid

and vapor CVs. This heat transfer can be represented by Eq. (6.5).

Q̇L2V = HL2V AL2V (TL −TV ) (6.5)

In this model, the mass flow into the liquid CV, ṁL,in, is calculated by a PID control block regu-

lating water level. At steady state, this mass flow settles to be approximately equal to the boiling

mass flow, ṁL2V .

6.1.1.2 Condensation

In reality, phase change within a boiler is not simply a one way process. Abrupt pressure changes

from valve openings and various other effects can cause the subsystem to temporarily enter a

state where vapor would condense back to liquid. In order to create a more robust model, it is

imperative to include this phenomenon. As was necessary for the evaporation scenario, a switching

mechanism can be employed to track and calculate values for two different states of the vapor CV:

pressurization and condensation.

The change in mass of the vapor CV can be calculated using Eq. (6.6).

ṁV = ṁL2V − ṁV 2L − ṁV,out (6.6)
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Eq. (6.6) can be integrated to find the total mass of the vapor CV, mV . For the vapor CV, the UFEE

can be arranged as presented in Eq. (6.7).

mVCV ṪV = ṁL2V (hg,L −ug,V )− ṁV 2L(h f ,V −ug,V )+ ṁV,out(hV,out −ug,V )+ Q̇L2V (6.7)

The pressurization mode is in effect when the pressure of the vapor is less than or equal to the

saturation pressure of vapor at the current vapor temperature. In this state, the condensation mass

flow, ṁV 2L, is considered to be zero. The temperature of the vapor CV can be calculated by

rearranging Eq. (6.7) into the form shown in Eq. (6.8)

ṪV =
ṁL2V (hg,L −ug,V )+ ṁV,out(hV,out −ug,V )+ Q̇L2V

mVCV
(6.8)

The condensation mode is in effect when the pressure of the vapor exceeds the saturation pressure

at the current vapor temperature. In the condensation mode, the vapor temperature is considered to

be constant, and thus the condensation mass flow can be calculated by rearranging Eq. (6.7) into

the form displayed in Eq. (6.9).

ṁV 2L =
ṁL2V (hg,L −ug,V )+ ṁV,out(hV,out −ug,V )+ Q̇L2V

h f ,V −ug,V
(6.9)

6.2 Redlich-Kwong Equation of State

Due to the presence of a vapor CV, it is necessary to calculate the pressure of the boiler subsystem,

as was done for the superheater in Chapter 5. The high pressure and high temperatures observed

in the boiler point once again to the RK equation, shown here in Eq. (6.10), [13].

PV =
RTV

v−b
− a√

TV v(v+b)
(6.10)
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It should be noted that for regions of low volatility for the HRSG, the a boiler model should

predict pressure to be at the current saturation pressure for the given vapor temperature. It was

for this reason that previous boiler models assumed the pressure within the boiler to follow the

saturation pressure exactly, [1]. Although this produces a lower computational burden, such a

model is not robust to significant perturbations and fails to capture the true behavior of higher

energy systems such as the HP system. On the contrary, the use of the RK equation allows the

boiler subsystem to settle naturally to saturation conditions while remaining robust in more volatile

transient simulation.

6.2.1 Volume Calculation

A key difference in the boiler calculations is the presence of two separate CVs which share the

total volume of the subsystem. This requires an indirect calculation of the vapor specific volume

for use in Eq. (6.10). First, the volume of the liquid must be calculated using Eq. (6.11).

VL =
mL

ρL
(6.11)

The vapor volume can then be calculated by a subtraction from the total volume of the boiler

subsystem, as shown in Eq. (6.12).

VV =Vtotal −VL (6.12)

The molar specific volume can be calculated by dividing the vapor volume by the total moles of

steam within the boiler, demonstrated by Eq. (6.13)

v =
VV

NV
(6.13)

NV =
mV

Mw
(6.14)
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In Eq. (6.14), Mw represents the molar mass of water.

6.3 Volumetric Energy Contribution

In the early stages of developing a robust boiler model, a notable issue observed among the sim-

ulation results was a significant temperature separation between the liquid and vapor CV’s of the

boiler. This phenomenon, although theoretically possible for short periods of time, is not realistic

as the contents of a boiler will sustain near saturation conditions during the majority of operation.

In an effort to remedy this inaccuracy, attention was given to the consideration of a real gas within

the boiler. In non-ideal pressure and temperature conditions, the
d(mu)

dt term of the UFEE (Eq.

(5.3)) can no longer be approximated as mVCV ṪV , but instead must include a secondary term asso-

ciated with a change in energy due to a change in volume. The Redlich-Kwong pressure equation

allows this term to be solved for through direct differentiation. A detailed derivation of this term

is presented in Appendix B. The additional change in volume term is presented in Eqs. (6.15) and

(6.16).

d(mu)
dt

= ṁV ug,V +mVCV ṪV +mV Z (6.15)

Z =
1.5a

(v+b)
√

TV
(
ṁL2V − ṁV 2L − ṁout

Mw
) (6.16)

Z represents the volume change contribution to the change in internal energy. This adjustment was

made to the solving of Eq. (6.7) when calculating the instantaneous change in temperature.

Upon implementation it was noted that this realistic addition to the temperature calculation had

a negligible effect on the results of the simulation during regular operation. Furthermore, the

adjustment did not solve the issue of temperature separation. In hindsight, this is a somewhat

expected result, as the addition of the volumetric term is inherently transient. Adjusting the rate

of change of temperature should not have a significant effect on the steady state equilibrium of

30



the system, but it should merely adjust the path by which the system approaches equilibrium.

Ultimately, the volumetric term does theoretically make the temperature change calculation more

robust to abrupt changes in the system, and the added computational load is quite small, so, for the

purposes of this research, the volumetric adjustment was left in the model.

6.4 Evaporative Cooling

In previous sections regarding the liquid CV of the boiler, two conditions have been considered:

liquid water below saturation temperature and liquid water at (or near) saturation temperature.

These conditions have been properly accounted for through the use of the switching mechanism.

Naturally, a third condition must be considered, namely liquid water above saturation temperature.

This condition in reality is unstable, as water above saturation temperature would evaporate to

approach a new equilibrium. This natural evaporation has a cooling effect on the liquid CV as

the phase change takes energy from the liquid. It should be noted that, unlike the previous two

conditions, this evaporative cooling mode suggests that both a temperature change and a mass

transfer will occur simultaneously. A switching mechanism cannot properly approximate the mass

flow as the temperature can no longer be assumed to be constant. To remedy this imbalance of

variables to equations, it is necessary to take a step back from the lumped CV assumption and

analyze the macro and micro-scale conditions of a boiler, specifically at the interface of the liquid

and the vapor. Macro-scale conditions of a liquid and vapor may present non-saturation conditions.

However, it is reasonable to assume that the micro-scale conditions of the liquid/vapor interface

will be held at saturation. Without a detailed finite element model of the liquid/vapor interface,

assumptions must be made about the conditions of this mass exchange. For the purpose of this

model, it is both reasonable and convenient to assume the mass transfer of this evaporative cooling

mode to be that of the liquid CV boiling with the previous temperature of the CV taken to be the
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current saturation condition. This assumption takes advantage of the fact that on a microscale, the

temperature of the liquid currently evaporating will be held constant. This mass flow, although not

entirely accurate, adequately captures the behavior of the evaporative cooling phenomenon, and

thus, pushes the system to the proper equilibrium.

6.4.1 Mass Flow Correction Factor

Given the mass flow assumption, an attempt was made to increase the accuracy of the evapora-

tive cooling mass flow. The process is pressure driven; therefore, a simple pressure difference

correction factor was added to the mass flow, presented in Eq. (6.17).

ṁL2V = ṁL2Vsat + kec(Psat −PV ) (6.17)

In Eq. (6.17), kec represents a tunable constant that can be adjusted to allow more or less evap-

oration mass flow in the evaporative cooling mode. It was observed upon implementation that

changing this constant had a somewhat negligible effect on the system, as the system would always

approach the same total mass flow by adjusting ṁL2Vsat accordingly. This resistance to change in

the system was observed in many aspects regarding tunable parameters.
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CHAPTER 7: VALIDATION AND SIMULATION

7.1 Full Load Start-Up

A major milestone of this research focused on producing a transient model that would show phys-

ically realistic behavior and reach steady state values comparable to those provided by Siemens

Energy Inc. for the reference HRSG running at full power output. It is the philosophy of this

research that one should not produce a model with the intentions of matching the provided data

exactly. Instead, developing an accurate model of the physical phenomena present in an HRSG

should in turn produce results accurate to reality. At the same time, this mindset produces a versa-

tile model that will respond accurately to perturbation and alternative input conditions. The results

displayed below show a transient simulation of the presented HRSG model from start-up to full

capacity.

Two coupled factors play into the transient behavior of the pressure within an HRSG: physical

location and energy magnitude. The HP system is the closest system to the inlet of the flue gas,

followed by the IP, and later the LP system. This suggest that the HP system will respond to a

change in the flue gas temperature first, and it will continue to receive the most energy throughout

the start-up of the HRSG. Figure 7.1 shows the start-up simulation results for the pressure in each

pressure system. As expected, the HP system pressurizes first and reaches the highest pressure of

the three systems. The IP system pressurizes second and reaches a lower steady state pressure than

the HP system. Finally, the LP system pressurizes last and reaches the lowest steady state value of

the three systems.
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Figure 7.1: SIMULATED PRESSURES OF THREE STAGE HSRG

The jagged transient trends seen in Figure 7.1 and the following graphs are not a result of simu-

lation fidelity, but are instead an after effect of T3000’s data archiving. This phenomenon will be

discussed in detail in Chapter 8.

Table 7.1 shows a comparison of the steady state pressure values reached in this transient simu-

lation with those provided by Siemens for the reference HRSG. All three systems reached values

within 2 bar of the reference data.

Table 7.1: COMPARISON OF PRESSURE DATA WITH SIMULATION.

T3000 Simulation Siemens Data

HP 117.77 bar 118.12 bar

IP 32.11 bar 30.24 bar

LP 5.35 bar 6.82 bar
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Although a small amount of pressurization can be attributed directly to an increase in temperature,

the most significant contribution to pressure increase is boiling. It follows that the onset of this

mass flow should correspond to a significant increase in the pressure within each pressure system.

In Figure 7.2, the exact timing of mass flow initiation is slightly skewed by the erroneous constant

value phenomenon. That being said, the beginning of boiling within each pressure system lines up

quite accurately with the initial pressure increases shown in Figure 7.1.

The mass flow trends shown in Figure 7.2 present an insightful visual representation of the switch-

ing mechanism discussed in Chapter 6. The mass flow begins at zero, as the system is not currently

at saturation conditions. This trend continues until saturation is reached, at which point the switch

is flipped and mass flow is produced at constant temperature.
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Figure 7.2: BOILER FLOW RATES AT THREE STAGES
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Table 7.2: COMPARISON OF MASS FLOW DATA WITH SIMULATION.

T3000 Simulation Siemens Data

HP 67.19 kg/s 66.16 kg/s

IP 12.45 kg/s 11.83 kg/s

LP 7.88 kg/s 8.21 kg/s

This mass flow is initially unstable. Introducing more mass to the vapor CV raises the pressure of

the system, and with it, the saturation temperature needed for boiling. The system switches back

to the heating mode and repeats this process for some time. As the system approaches steady state,

the boiling mode becomes more stable until a state of continuous boiling is reached with slight

adjustments from the evaporative cooling mode to settle at the steady state value. This chain of

events is observed in all three pressure systems.

The steady state values for the boiler mass flow of each pressure system is presented in Table 7.2.

Once again, the values for the full capacity simulation accurately approximate the data for the

reference HRSG.
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Figure 7.3: TEMPERATURES OF SUPERHEATED STEAM

Figure 7.3 shows the transient temperature trends of the final superheater within each pressure

system. For the IP system, this refers to the second reheater. The final HP superheater and the

second reheater are both located in Cluster 1, the cluster closest to the inlet of the flue gas. It

follows that these two subsystems will have similar temperature trends and closely follow the input

flue gas ramp-up profile. The contents of Cluster 1 should react immediately to the introduction of

the hot flue gas. The LP superheater, located in Cluster 4 will reach a much lower temperature as

the flue gas interacting with later clusters will have lost a significant amount of heat to the previous

clusters. The response time of the LP system will also be delayed as more heat will be initially

taken by the previous clusters. These expected responses are observed in Figure 7.3.
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Table 7.3: COMPARISON OF SUPERHEAT DATA WITH SIMULATION.

T3000 Simulation Siemens Data

HP 801.49 K 840.43 K

IP 822.26 K 839.15 K

LP 553.82 K 520.93 K

A comparison of the steady state values for the final superheater temperature of each pressure

system is presented in Table 7.3. A noticeable error is apparent for the superheater temperatures

predicted by the model. It is believed that these discrepancies can be reduced through further

tuning of heat transfer coefficients and other system parameters, but as previously mentioned,

the goal of this research focuses on producing accurate behavior over steady state results. As an

added difficulty, significant tuning of system parameters can lead to numerical oscillation unless

the sample time of the simulation is appropriately decreased. For the purposes of this research, the

steady state values given in Table 7.3 have been deemed acceptable.
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7.2 Partial Load Start-Up

It has been demonstrated that the model shows good agreement and realistic behavior for the full

capacity case. However, in reality, most power plant start-ups will not immediately ramp up to

full capacity. This practice would strain the system and fatigue the material exposed to the flue

gas. It is important to allow all parts of the HRSG system to reach an increased temperature before

proceeding to higher load capacities. For this reason, the model will be compared with transient

data provided by Siemens for a partial load ramp-up. To simulate this on the HRSG model, the GT

exhaust temperature and mass flow profiles provided by Siemens for the partial capacity ramp-up

have replaced the respective profiles associated with full capacity case. The initial values of the the

simulation have also been adjusted to match those shown in the reference data. When an HRSG is

powered down, it takes a significant amount of time for all parts of the system to reach equilibrium

with atmospheric conditions. For this particular set of start-up trends, many initial temperatures

are much higher than 298 K.
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Figure 7.4: ANALYSIS OF HP PRESSURE

Figure 7.4 compares the simulated HP pressure trend with that of the reference HRSG. The ini-

tiation of pressurization predicted by the simulation is in good agreement with reference trend.

Although the model appears to pressurize at a faster rate than the reference HRSG, the general

behavior of the simulated trend adequately mimics the reference data. A significant feature is the

relatively constant pressure region seen at approximately 25 to 30 minutes for the simulated trend

and 35 to 40 minutes for the reference data trend. This region is indicative of the valve opening

described in Chapter 5. Considering the tunable parameters associated with this valve opening, it

is possible to optimize the timing and maximum k f value to better match this reference trend.
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Figure 7.5: ANALYSIS OF HP MASS FLOW

Figure 7.5 shows three trends. The blue trend represents the exhaust flow of the HP system as

described by the reference data. The orange trend represents the simulated mass flow from liquid

to vapor in the HP boiler. As was observed in the full capacity start-up case, this boiler mass flow

is driven by the switching mechanism described in Chapter 6. Boiler mass flow is not present until

saturation conditions are reached. Mass flow then switches on and off until leveling out at steady

state. The black trend represents the mass flow exiting the final superheater of the simulated HP

system. This mass flow is the best comparison to the exhaust mass flow provided by the data.

The superheater mass flow is held to a low value while the valve is in the closed condition. The

initiation of the valve opening can be observed as a vertical jump in the superheater mass flow

trend. Given that both the boiler and superheater trends (as well as every other simulated trend for

the partial capacity start-up case) display a vertical jump followed by a short region of constant
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value at this time, it is apparent that this swiftly changing region of the simulation has been skewed

by a graphical archiving error. For reasons explained in detail in Chapter 8, this region can be

assumed to be a smooth interpolation for both mass flow trends.

The reference data depicts a region of significant oscillation. This oscillation coincides with the

real timing of the valve opening as described by the pressure trend in Figure 7.4. The real trend is

not exactly mimicked by the model. The valve control of the real HRSG is a closed loop control

dynamically adjusting the pressure profile of the system. For the model, the valve control is an

open loop control and thus does not dynamically adjust once initiated. Keeping this in mind,

the simulated superheater mass flow appears to follow the general trend the reference mass flow

adequately.
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Figure 7.6: ANALYSIS OF HP FINAL SUPERHEATER TEMPERATURE

The HP final superheater temperature, displayed in Figure 7.6, does reach a similar steady state

temperature as is depicted by the reference data. However, it is apparent that the simulation re-

sponds much faster to the introduction hot flue gas. This discrepancy is a result of the method

of temperature monitoring used on the reference HRSG. It is observed that the real superheater

temperature does not increase until mass flow has begun in the HP system. This implies that the

thermal couple does not reside within the superheater subsystem itself, but instead beyond the sub-

system, perhaps passed a valve. This insight suggests that the provided superheater temperature

data does not properly account for the increasing temperature of stagnant steam within the super-

heater pipes at start-up. With this in mind, the behavior of the simulated superheater is expected.
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Figure 7.7: ANALYSIS OF IP PRESSURE

Figure 7.7 shows a comparison of the simulated pressure trend with the reference data for the IP

system. The general behavior of the simulation shows good agreement with the behavior of the ref-

erence HRSG. That being said, there appears to be an approximately 5 minute lag in the IP system

simulation when compared to the reference data. This timing discrepancy, though significant, can

be adjusted through further optimization of tunable parameters in the model. The valve opening

for the IP system appears to occur just after the 40th minute of the start-up ramp. The simulated

valve opening appears to have a less significant effect on the simulated IP pressure trend, but a

small inflection can be observed after the 30th minute of simulated time. This once again shows a

room for improvement in regards to the timing of valve opening, but the overall behavior of the IP

system is adequately captured by the model.
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Figure 7.8: ANALYSIS OF IP MASS FLOW

Figure 7.8 presents the mass flow trends associated with the IP system, as were presented in Figure

7.5 for the HP system. A key difference in the IP system is the inclusion of the Cold Reheat

Mixing. This mixing adds a significant amount of mass flow to the IP system before entering the

final superheaters. For this reason, and a lack of knowledge in regards to the exact placement of

the mass flow sensor within the IP system, it is difficult to draw insight from a direct comparison

to the discrete subsystems of the IP model. Furthermore, it can be observed that the timing of the

initial mass flow as suggested by the data is significantly later that the initial pressurization. This

implies that a different logic is employed for valve control when compared to the HP system.

It can be said that the behavior depicted by the simulated trends is realistic in that it behaves much

like the HP system. The IP exhaust flow predicted by the model is strongly coupled with the
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HP flow as the HP exhaust is directly contributing to the Cold Reheat Mixing. This produces a

superposition of the behaviors seen in the HP and IP systems.

Figure 7.9 presents a comparison of the LP simulated pressure trend to the data from the reference

HRSG. It is important to note the scale of the values observed in the LP system when comparing

with the trends from the HP and IP system. With that in mind, the initial and steady state errors of

the LP model are quite negligible. The timing of the simulated pressurization appears to be leading

the real data by approximately 10 minutes on average. Once again, this timing discrepancy can be

remedied through system optimization. The over all behavior of the LP pressure trend appears to

reasonably comparable to that of the real HRSG.

Figure 7.9: ANALYSIS OF LP PRESSURE

46



Figure 7.10: ANALYSIS OF LP MASS FLOW

Figure 7.10 presents the various mass flow trends associated with the LP system. Here the sim-

ulation once again appears to lead the real data by a significant margin. It is interesting to note

that the mass flow of the real LP system does not begin simultaneously with the initial increase

in pressure. This can be explained by the dual nature of pressure increase for a gaseous CV. The

pressure of a CV can increase due to the introduction of more mass or naturally from an increase

in temperature. The latter case is not very significant for the HP and IP systems, as the pressure

increase due to mass flow is orders of magnitude larger. The lower pressure levels seen in the LP

system allow for this natural pressurization to play a larger role.
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CHAPTER 8: MODELING CHALLENGES

8.1 Computation Speed vs. Numerical Accuracy

It is a major goal of this research to produce a model that is both accurate and easy to simulate.

Obviously, higher fidelity models will produce more accurate results. This research focuses on de-

veloping a low complexity model, through the use of lumped CVs, that will still provide insightful

predictions for the transient behavior of an HRSG system. Along with the amount of CV calcu-

lations, the sample rate of the simulation plays a large role in the accuracy of transient behavior.

Lack of powerful computational resources placed a limitation on the speed of simulation available

for this research. For this reason, the time used in calculations within the simulation has been

dilated to 5 times real time. By spreading out the time of simulation, the fidelity of the model can

be increased. Upon analysis of results, this time dilation can be accounted for to produce pseudo

real time trends.

Through cooperation with Siemens, the LP model developed by Caesar, [1], has been shown to

produce valid real time simulation when run on a more powerful computer. With more computa-

tional power, a smaller sample rate can be used, and the time dilation can be removed. Although

the model presented in this document is significantly larger and more complex, it is believed that

real time simulation is feasible with increased computational power.

8.2 Numerical Oscillations

Numerical oscillations provide a roadblock for removal of time dilation and significant tuning of

the HRSG model. When the rates of change of system parameters are remarkably high, discrete

48



simulations tend to overshoot the true trend of said parameter. In some cases, this overshoot can

lead to significant oscillation as the system attempts to stabilize itself. Ignoring cases of incorrect

simulation setup, these oscillations tend to settle to a steady state value as the input flue gas tem-

perature reaches a steady state of its own. This natural tendency of the system to approach steady

state is a testament to the robustness of the simulation. That being said, the regions of significant

oscillation are of no use for analyzing the behavior of transient trends, as these oscillations are a

result of computational inaccuracy, and are not indicative of real physical phenomena. For this

reason, it is necessary to properly assess the ability of the computational system the model is being

run on and dilate time appropriately. It is also important to keep oscillation in mind when tuning

the system. This is especially true for vapor CVs like the superheaters, as the thermal inertia of wa-

ter vapor is quite low compared to liquid water. It has been observed that heat transfer coefficients,

though very flexible, must not be increase too significantly in an attempt to achieve more accurate

steady state values. A threshold exists where temperature oscillation will occur during start-up.

8.3 Erroneous Constant Values

One significant challenge faced during the development of this model was a graphical error pro-

ducing significant regions of constant values on the archived T3000 trends, shown in Figure 8.1.

T3000, as previously mentioned, is a plant monitoring software designed for use on control pan-

els of power plants. By pushing the limits of this software, and creating the enormous flowchart

diagram needed to model every aspect of a multi-pressure HRSG, a significantly large selection

of values needed to be archived at any given time. This notion, coupled with the idea that this

research was performed with a single computer, meant that the graphs outputted by T3000 were

often overloaded.
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Figure 8.1: FLUE GAS TEMPERATURES ACROSS CLUSTERS

After thorough investigation into this issue, it was observed that this constant value phenomenon

was solely in the archiving process of T3000. When the graphs of archive data were constant,

the transient data being calculated by the model was unaffected and would continue to fluctuate

as expected. It was discovered that a regular clearing of the archive data would temporarily avoid

future erroneous constant values, and thus the validation graphs presented in the latter portion

of this thesis show much smoother curves. For those plots where erroneous constant values are

present, a smooth interpolation of data can be assumed.
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CHAPTER 9: CONCLUSION

9.1 Research Overview

A theoretical model of a multi-pressure HRSG has been presented using a CV based approach to

simulate individual subsystems as well as their geometric clustering. It has been shown that this

theoretical model can be practically executed on Siemens Energy Inc.’s T3000 plant monitoring

software. This transient simulation can be run at near real time with physically accurate behav-

ior showing good agreement with the transient and steady state data provided by Siemens for a

reference HRSG.

Furthermore, it has been shown that a switching mechanism can be implemented to accurately

approximate the phase change phenomena within a boiler, specifically boiling and back-flow con-

densation. This back-flow condensation has been observed to effectively remove numerical inac-

curacy associated with unnatural temperature separation between boiler liquid and vapor CVs. The

RK equation has been effectively implemented as a means of calculating pressure. This pressure

calculation is robust to abrupt perturbations as it accounts for steam pressures deviating from the

saturation regime. Calculation of real gas volumetric energy contribution to rate of temperature

change has been demonstrated, and it has been observed to have a negligible effect on the results

of model simulation within the regime of the provided reference data. An approximated evapora-

tive cooling mass flow has been presented to combat pressures lower than saturation conditions.

The combination of these mechanisms has been shown to behave in a physically accurate manor

and yield reasonably accurate transient trends in comparison with reference data.
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9.2 Future Research

While the research presented in this thesis meets the objective of thoroughly modeling an HRSG

system, there is still room for improvement of the model. Further developments can also be made

to gain insight on other aspects of a traditional powerplant. Some potential improvements are

discussed below:

9.2.1 Model Optimization

Due to the focus of this research on realistic transient behavior, there are many instances where

the system is not optimally tuned for the provided steady state results. The large collection of

tunable parameters poses a daunting task to any person or group wishing to thoroughly optimize

a system such as the presented HRSG model. For this reason, it may be possible to implement an

optimization algorithm, such as a neural network, to tune the system for stronger correlation with

the data. This optimization not only lies out of the scope of current research, but also implies a

need for much greater computational power.

9.2.2 Closed Loop Valve Control

As mentioned in Chapter 7, the current valve control system within the model is an open loop

control. The valve is closed until a pressure threshold is reached, at which point the valve is slowly

opened following a first order response to a desired maximum value. Implementation of a closed

loop control monitoring pressure would be more analogous to the system used in the reference

HRSG. This adjustment would also improve the model predictions for perturbation scenarios, as

the current valve model cannot dynamically close.
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9.2.3 Steam Turbine and Condenser Models

The model presented in this research focus specifically on the HRSG section of a traditional power

plant. In the case of the Cold Reheat Mixing, the effects of the HP steam turbine are approximated

to allow for simple simulation. The accuracy of this model could be increased with the addition of

a steam turbine model, as the system would react to the dynamic response of turbine in regards to

temperature and pressure drop from one pressure system to the next.

One promising area of research will be the addition of a condenser model, which is currently

under development. Such a model, coupled with a steam turbine model, will essentially complete

the cycle of the HRSG system, as the exhaust steam will be condensed and sent back to the LP

economizer for preheating. This condenser model will use similar lumped CV methods to simulate

the energy transfer from exhaust steam to a cooling medium at low pressures.

9.2.4 Boiler Swell/Shrink

Boiler swell/shrink is a significant interest of future development to the current boiler model. The

presence of vapor bubbles within the riser tubes of the boiler subsystem pose a rather complex

controls problem when attempting to predict the water level inside the boiler drum. Thermody-

namic predictions of boiler water level are only accurate after the water reaches a new equilibrium

and are actually contrary to the behavior of the water level during transients. For this reason, a

predictive model of boiler water level would prove to be quite insightful into this phenomenon. It

would also be possible to use such a model in plant monitoring software to effectively counter the

swell/shrink effect and keep the HRSG running efficiently.
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APPENDIX A: PIPE FLOW CONSTANT DERIVATION
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For a simple pipe model, the head loss through a pipe can be described by Eq. (A.1),

h f =
f LẊ2

2dg
, (A.1)

where f is a friction factor, L is the length, d is the diameter, Ẋ is the fluid flow velocity, and g

is the acceleration due to gravity, [14]. The head loss can also be expressed as a function of the

differences in pressure as shown in Eq. (A.2).

h f =
∆P
ρg

(A.2)

Eqs. (A.1) and (A.2) can be set equal to each other as demonstrated in Eq. (A.3).

∆P
ρg

=
f LẊ2

2dg
(A.3)

Note here that the g terms on each side of Eq. (A.3) cancel out.

It is known that velocity can be represented in the form displayed in Eq. (A.4).

Ẋ =
ṁ
ρA

(A.4)

This velocity equation can be substituted into Eq. (A.3) to yield Eq. (A.5).

∆P
ρ

=
f Lṁ2

2dρ2A2
(A.5)

Isolating ṁ will produce Eq. (A.6).

ṁ2 = ρ∆P
2dA2

f L
(A.6)
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By taking the square root of each side, an equation in similar form to that of Eq. (5.17) can be

achieved, as shown in Eq. (A.7).

ṁ =

√

2dA2

f L
√

ρ
√

∆P (A.7)

Due to the complex geometric conditions observed within an HRSG, it is convenient to approxi-

mate

√

2dA2

f L as one combined parameter, and thus k f can be defined by Eq. (A.8).

k f =

√

2dA2

f L
(A.8)

For the purposes of this research, k f is considered a tunable parameter, as it must be properly

adjusted to adequately capture the complex geometric conditions of the HRSG.
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A change in internal energy can be considered a function of temperature and volume, as denoted

in Eq. (B.1).

du =CvdT +[T (
∂P
∂T

)V −P]dV (B.1)

If an ideal gas assumption is made, the pressure can be solved for using the ideal gas equation,

shown in Eqs. (B.2) and (B.3).

PV = nRT (B.2)

P =
nRT

V
(B.3)

If Eq. (B.3) is plugged in to Eq. (B.1), it is observed that the term within the brackets is equal to

zero, as presented in Eqs. (B.4) and (B.5).

(
∂P
∂T

)V =
nR
V

(B.4)

[T (
∂P
∂T

)V −P] =
nRT

V
−P = 0 (B.5)

This means for an ideal gas, this extra term does not have an effect on the transient of the system.

However, for a case where the RK equation is used to calculate pressure, this term is not zero.

The RK equation for pressure calculation is shown in Eq. (B.6).

P =
RT

v−b
− a√

T v(v+b)
(B.6)
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A similar partial differentiation with respect to temperature can be perform on Eq. (B.6), as pre-

sented in Eq. (B.7).

(
∂P
∂T

)V =
R

v−b
+

a

2T
3
2 v(v+b)

(B.7)

Eq. (B.7) can be applied to Eq. (B.1) to solve for the effect of volume change on internal energy,

seen in Eqs. (B.8) and (B.9).

[T (
∂P
∂T

)V −P] =
RT

v−b
+

a

2
√

T v(v+b)
−P =

1.5a√
T v(v+b)

(B.8)

du =CvdT +
1.5a√

T v(v+b)
dV (B.9)

Dividing through by dt, Eq. (B.9) can be written in the form shown in Eq. (B.10).

u̇ =CvṪ +
1.5a√

T v(v+b)
V̇ (B.10)

For the boiler subsystem presented in this document, the change in volume of the vapor CV, V̇V , is

a function of the change in mass of the CV and the specific volume. This relation is presented in

Eq. (B.11).

V̇V =
vṁV

Mw
(B.11)

In Eq. (B.11), ṁV can be replaced by applying Eq. (6.6), shown in Eq. (B.12).

V̇V =
v(ṁL2V − ṁV 2L − ṁV,out)

Mw
(B.12)
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Eq. (B.12) can be applied to Eq. (B.10) to achieve the form seen in Eq. (6.15). This is displayed

in Eq. (B.13)

u̇ =CvṪ +
1.5a√

T (v+b)
(
ṁL2V − ṁV 2L − ṁV,out

Mw
) (B.13)
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