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ABSTRACT 

Hydrocarbon fuel plays an essential role in modern day society and significant research 

effort is put forth for fuel characterization, performance optimization, and new procedures for 

synthesis. Despite the eventual and inevitable shift away from hydrocarbon fossil fuels to more 

renewable energies, investigations into liquid hydrocarbons remain useful while governments 

slowly adopt and integrate alternative energies.  

Many hydrocarbon fuel alternatives can potentially bridge the gap between today’s heavy 

reliance on fossil fuels and future complete adaptation of clean energy. One such alternative is 

biofuel, which is still hydrocarbon based but is made from bio-materials, most notably plants. 

Widespread use of biofuels for everyday transportation would increase demand, requiring 

increased planting of biomass sources which would act to remove CO2 from the atmosphere. A 

small, but not insignificant improvement to our current practices. A second alternative is the 

synthesis of fuel from low value chemical feedstock, and even waste products. This option 

provides the added benefit of potential removal of harmful chemicals from waste streams and 

producing valuable chemicals from them.  

This thesis will focus on aspects of these two fossil fuel alternatives: properties of biofuels 

and hydrocarbon synthesis from syngas. In the first, biofuel-elastomer interactions are investigated 

to evaluate the compatibility of new biofuels in existing engine systems. It is commonly known 

that elastomer seals, used for leak prevention in fuel lines, undergo structural changes when 

exposed to hydrocarbon fuel. We have shown here that these same effects are present for biofuel 

compounds to differing degrees. Studies were performed in the short- and long-term using ASTM 
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procedure to determine the extent of structural change and degradation as well as the time scale on 

which it occurs. 

The focus of the second study is the synthesis of higher order alcohols from chemical 

feedstocks such as syngas (a mixture of hydrogen and carbon monoxide). It has been observed that 

methanol is produced by flowing syngas over copper catalysts. However, the carbonylation of 

methanol to form longer carbon chains has therefore not been well characterized. Thus, the 

products of methanol and carbon monoxide flow over silica-supported Au-MoS2 were studied 

experimentally to find production of acetaldehyde. A likely chemical pathway to acetaldehyde 

formation was determined using density functional theory (DFT) modelling. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1 Biofuels 

Currently, the world’s primary source of energy is derived from fossil fuels. Approximately 

63% of today’s usable electrical energy comes from fossil fuels, 20% from nuclear energy, and 

18% from renewable energy sources[1]. Fossil fuels, which provide natural gas, coal, and 

petroleum, are the primary source of greenhouse gas emissions and are destructive to our climate. 

At the current rate of carbon dioxide emissions from fossil fuels, roughly 12-15 years remain of 

the carbon budget[2]. The carbon budget is the quantity of human-emitted carbon dioxide that can 

be released without exceeding a global temperature rise between 1.5°C and 2.0°C. 

Renewed focus on biofuels arises also from the knowledge that fossil fuel reserves are 

declining, and continued reliance will not be sustainable in the future. Biofuels have a major 

advantage in today's current market. They provide employment opportunities in rural areas where 

biomass can be grown in large quantities, and also throughout the production process. The steady 

increase in crude oil prices has caused many companies to prefer biofuels for the decreased cost, 

since most biofuels can be derived from wheat, corn, soybean, or sugarcane. 

1.2 The Problem of Seal Swell 

The function of elastomer seals within engine systems is to prevent leakage of fuel. This is 

accomplished by implementing o-rings or other seals to create positive pressure against joined 

surfaces, thereby preventing any form of leakage. These seals are implemented within cars, jets, 

and other engines for this purpose. Seal failure can be catastrophic, can potentially lead to injury 

or death, and is very expensive to repair in the event of a failure. An infamous instance of such a 

failure occurred on January 28th, 1986 when the Space Shuttle Challenger exploded midair. It was 
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later determined that the critical factor of this incident was the result of cold weather cooling 

essential elastomers below their glass transition temperature prior to the launch.[3] O-rings do not 

perform well under reduced temperature, which cause them to lose flexibility and become brittle. 

The compositional makeup of most elastomer seals involve random arrangements of long-

chain molecules coupled via crosslinks[4]. The spaces between chains are occupied by chemical 

fillers and plasticizers to produce the overall structure and elasticity, and to decrease cost. The 

incompatibilities of the fuel and these sealing materials can lead to swelling or shrinking, and 

significant changes in mass, hardness, and elasticity. O-ring degradation such as tears, nicks and 

gashes were seen in the long term gasoline and diesel experiments. This strongly suggests that 

failure of the seal can quickly lead to failure of other components in an engine. Although chemical-

elastomer compatibility are generally available on the manufacturer’s website, that information is 

not specific enough to be useful to gain knowledge on in situ longevity of the o-ring. Also to note 

that the information giving by the manufacture will only include classes of molecules and not the 

specific fuel you want to use.  

 

1.3 Higher Order Alcohol Formation 

 The study of the mechanism of catalytic conversion of methanol into mixed alcohol blends 

over molybdenum disulfide catalysts was investigated. MoS2 is known to be an efficient catalysis 

for the conversion of syngas to methanol, however the mechanism of obtaining higher order 

alcohols is not as well known. Syngas or synthesis gas is a mixture composed of hydrogen and 

carbon monoxide. The start of this product goes back as early as the 20th century and has been used 

to produce mixtures of methanol and higher alcohols. In this report, a focus on carbonylation of 



3 
 

methanol as the most fundamental C-C coupling step was looked into. It was found that 

acetaldehyde is an intermediate product formed prior to methanol realization.  
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CHAPTER 2: TOWARDS HIGHER ALCOHOL FORMATION USING A 

SINGLE-LAYER MoS2 ACTIVATED Au ON SILICA: METHANOL 

CARBONYLATION TO ACETALDEHYDE 

2.1 Introduction  

The formation of higher alcohols from syngas is an important goal in the quest for 

economic and sustainable transformation of biomass into transportation fuels[5]. A necessary step 

for its realization is efficient C-C coupling involving oxygenate small molecules such as carbon 

monoxide and methanol[6, 7]. Important work by Haruta et al showed that CO oxidation is 

catalysed by supported nanoscale gold particles[8]. This revealed that the catalytic activity of 

metals that are relatively inert in the bulk can be enhanced through nanostructuring[9]. In recent 

work,[10, 11] it has been shown that single-layer molybdenum disulphide (MoS2) coating can 

transform an otherwise inert substrate, silica, into a catalytic active surface for CO oxidation by 

gold nanoclusters.  This is similar to results obtained on reducible oxides, such as titania and 

ceria[12-18]. Concomitant computational efforts have predicted a number of feasible, low-barrier 

reaction pathways on thus supported gold nanoparticles,[10, 19] in contrast to the catalytically 

largely-inactive surface of bulk gold, of gold on pristine silica, or on other 2D materials like 

graphene[20-22]. Here, we address the carbonylation of methanol as the most fundamental C-C 

coupling step that can ultimately lead to higher alcohol formation from a lower alcohol.  The 

mixture of methanol and carbon monoxide was investigated as an approximation of the reaction 

stream from syngas over the catalysts surface; hydrogen, water and other species were excluded 

to maintain a system simple enough to model computationally. Syngas may be obtained from 

biomass gasification, and conversion to higher alcohols is a potential rapid pathway toward 

sustainable and renewable fuels.  
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Molybdenum disulphide has been investigated for a wide range of catalytic applications. 

MoS2 with cobalt and alkali modifiers is the key catalyst material in industrial 

hydrodesulphurization; notably, the industrial catalyst material resembles a few-layer film of 

supported MoS2[23]. Alkali modification of this material has also been proposed for alcohol 

formation[24-32]. The mechanistic aspects of these studies have been focused on the 

hydrogenation step, in particular the initial CO hydrogenation to produce methanol. To further the 

understanding of catalysis over this material, our study focuses on the extension of the carbon 

chain toward higher alcohols through the carbonylation of methanol.  

MoS2 has gained prominence as a catalyst for hydrogen evolution;[33, 34] its activity has 

been attributed to edge sites based on low-temperature measurements,[35] and related materials 

that feature large number of exposed edge sites have been prepared and validated in some catalytic 

applications[36-42]. We sought to investigate the interaction between the support and catalytically 

active nano-clusters.  By producing polycrystalline continuous single-layer MoS2 coatings over 

several centimetre in diameter,[43] we avoid the activity of edge sites and can focus solely on grain 

boundaries and metal-MoS2 sites.  This simplified structure allows us to probe the fundamental 

chemistry of chain lengthening. Dr. Ludwig Bartels was in charge of producing the polycrystalline 

single-layer of MoS2 coated over a fused silica window with gold nanoparticles depositioned on 

the surface of the MoS2.  

Surprisingly, the carbonylation of methanol was catalysed over the Au-MoS2 structures to 

yield acetaldehyde.  Using a laminar flow reactor, acetaldehyde formation occurred at fairly low 

temperatures (as low as 393 K), on single layer MoS2 films, decorated by nanoscale gold islands. 

Density functional theory (DFT) modelling was used to find a plausible pathway for this important 

carbon-carbon coupling step. DFT was done by Dr. Talat S. Rahman and her research group.  
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2.2 Results and Discussion 

2.2.1 Theory 

Accompanying density functional theory (DFT) calculations validate the feasibility of the 

formation of carbon-carbon bonds at the surface of MoS2-supported Au nanoparticles from carbon 

monoxide and methanol alone. Continuing the success of previous computational work[44] in 

which the alcohol synthesis from syngas (CO and H2) was shown to be favourable on Au13 

nanoparticles stabilized by interactions with a single layer of MoS2, we use the same supercell 

setup to study the formation of a bond between adsorbed methyl and carbonyl species to form 

acetyl.  

 

Figure 1. Reaction pathways of CH3* + CO*  → CH3CO* (a) and CH3CO* + H* → CH3CHO* (b). Left, center, 
and right images show both top and side views of initial, transition, and final states, respectively. Blue, yellow, gold, 
cyan, red, and magenta balls represent Mo, S, Au, C, O, and H atoms, respectively. Eb and ΔE are activation barrier 
and reaction energy, respectively. 
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Collaborators from Dr. Rahman’s group at the University of Central Florida reported that 

the DFT calculations are based on the plane-wave basis set and the pseudopotential method 

employing the generalized-gradient approximation (GGA) in the form of the Perdew-Burke-

Ernzerhof (PBE) [45] functional to take into account the electron-exchange interaction together 

with DFT-D3 correction [46] for inclusion of van der Waals interactions. Transition states and 

reaction activation energy barriers are calculated using the climbing-image nudged elastic band 

(CI-NEB) method.[47, 48] Further details of the calculations can be found in previous work.[44] 

We consider the formation of acetaldehyde by studying the most likely process steps: CH3* + CO*  

→ CH3CO* and CH3CO* + H* → CH3CHO*, where CH3* and H* species are produced through 

the adsorption and dissociation of methanol on the stabilized gold surface (* designates adsorbed 

species).  Additionally, CO is required to reduce residual O* species via O* + CO*→  CO2*, a 

highly exothermic reaction (ΔE = -2.23 eV) with a barrier of 0.06 eV, as also described 

elsewhere.[10, 11] Figure 1a,b shows the initial state, transition state, and final states of the CH3* 

+ CO*  → CH3CO* and CH3CO* + H* → CH3CHO*  reactions. Our calculations indicate that 

the formation of a bond between the adsorbed CH3* species and a CO* molecule on Au13 is 

energetically favorable as the reactions are exothermic and the activation barriers comparatively 

low: 0.69 eV for the acetyl formation (I) (Figure 1a) and 0.47 eV for the hydrogenation of acetyl 

to acetaldehyde (II) (Figure 1b). The resultant CH3CHO* desorbs with a desorption energy of 0.45 

eV. 

Close inspection reveals that the site with the lowest pathway barriers corresponds to the 

least coordinated gold atom on the cluster, at which the binding of the reactants is strongest. Such 

sites are more prevalent on nanoscale gold clusters. This finding highlights the importance of 
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nanoclusters for this reaction to proceed. Single-layer of MoS2 serves to provide a surface on which 

dispersal of gold into nanometer-scale clusters is favorable.[19] 

2.2.2 Experiment 

The samples shown below (Figure 2a) exhibit the typical Raman peak positions for single-

layer MoS2 films for E2g and A1g at 385.5 cm-1 and 404.9 cm-1 (separation 19 cm-1).[49] Before 

gold deposition, the photoluminescence of the substrate material was intense and centered at 1.91 

eV with a full-width at half-maximum of ~0.1 eV, the optical bandgap of single-layer MoS2 (Figure 

24).[50, 51] After gold deposition, the photoluminescence is quenched. This indicates that despite 

the incomplete surface coverage, there is a quenching centre within the size of practically any 

exciton created on the surface. This suggests efficient dispersion of gold on MoS2/SiO2, in contrast 

to gold on bare silica or graphene. Direct scanning electron microscopy (SEM) imaging of a test 

sample with a 30 nm silica film on silicon shows tiny, point-like gold particles near the limit of 

the instrument’s resolving power (Figure 3). Image analysis using ImageJ [52] showed that the 

majority of these range from diameters of 1-5 nanometers in size, i.e. in a useful size range for 

catalytic activity.[53-55] The spatial homogeneity of the sample was verified by determining the 

Raman peak separation and photoluminescence position along a line across the substrate (Figure 

2b). The Raman spectra was completed by Dr. Peter A. Dowben.  
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Figure 2. The Raman spectra of a single-layer MoS2 sample before (black) and after (color) sub-monolayer gold 
deposition (a) and homogeneity of the single-layer MoS2 film across the fused silica substrate (b). 

 

 

Figure 3. Initial deposition of Au, on a single layer MoS2 film coating a 30nm silica test film, produced well-dispersed 
particles ranging from 1-5 nm (SEM image, left). After two cycles on stream at 150 ˚C, a similarly coated sample 
shows particle agglomeration producing a distribution centred around 40 nm (AFM right). 
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The reactant stream consisted of CO gas at 308 kPa bubbled through a methanol reservoir 

at 20 ̊ C.  At this temperature methanol has a vapour pressure of 13 kPa or 4.2% of the feed stream. 

Prior to the reaction, the reactor was purged with argon gas and heated to the reaction temperature 

of 150°C. After 120 minutes on stream a sample was taken for GC-MS analysis by a sampling 

port. Comparison of the product peak with GC-MS chromatogram of a standard 

acetaldehyde/methanol mixture (Figure 23) indicated the observed peak in the TCD chromatogram 

is acetaldehyde. Carbon monoxide (RT= 2.295 min), acetaldehyde (RT=3.305 min), methanol 

(RT=4.245 min) and water (RT=5.149 min) were detected in TCD chromatograms.  Water was 

detected in all reactions (with and without gold) at very low concentrations. 

 

Figure 4. The integrated acetaldehyde peak intensity, as a function of the on-stream time at 150 ˚C, shows the onset 
of activity after a 20-30 minute induction period. Time zero is when the reactor, at temperature, was switched from an 
argon to reactant feed. 

 

We investigated the stability of the catalyst by running the reactor for 140 minutes and 

reusing a catalyst after on stream.  The 1Å catalyst was utilized for 140 minutes, stored in an Ar-

filled glovebox for 20 days and reused. Catalytic acetaldehyde formation was still observed.  

Figure 4 shows the production of acetaldehyde as time on stream for all samples. While we observe 
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a slight drop initially, we find that subsequently the reaction proceeds at a consistent rate.  The 

delay in the onset of catalysis is related to the flow rate of the reactant stream.  This is the time to 

purge the 13.4 cm3 transfer line volume when switching from argon purge to reactant stream.  The 

2Å sample had a higher reactant flow rate.  A blank consisting of the MoS2 coated substrate without 

gold did not produce measurable amounts of acetaldehyde. 

Atomic force microscopy was used to analyse the effect of on-stream time on the gold 

dispersion (Figure 4b).  It was found that the gold particles coalesced, and the particle size 

distribution was centered around 40 nm (Figures 25-28).  Aggregation of gold particles is not 

unexpected as capped gold has been shown to behave similarly in solution experiments with 

temperatures over 120 ˚C[56] and platinum is predicted to have a high mobility on a MoS2 

surface.[57]  

2.3 Conclusion  

The deposition of gold nanoparticles on a single layer of MoS2 on an inert fused silica 

substrate provides a surface suitable for the carbonylation of methanol to acetaldehyde. Results 

presented here showcase the catalytic promise of gold nanoparticles supported on single layers of 

MoS2, discussed elsewhere, even as the mean particle size increases during usage.5 Our DFT based 

calculations have proposed MoS2 supported Au nanoparticles as suitable catalysts for the of 

conversion of syngas to methanol.[58] More recently we have shown the possibility of extending 

this reactivity to produce higher alcohols.[59] Findings here highlight an important first step 

towards the formation of higher alcohols from methanol or even syngas using thin layers of MoS2 

and less than a monolayer of gold. We show that a non-active support such as silica can be 

converted into an active support though the application of single layers of active support.  
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Although, MoS2 is a commodity mineral, it is limited in occurrence.  We show that a very small 

amount of MoS2 is required to produce an effective catalyst.  A monolayer on 2 mm beads would 

be an equivalent MoS2 loading of 1.88 ppm and an Au loading of 1.15 ppm. A cubic meter of 

supported catalyst prepared in such a way would require 146 mg of MoS2 and 90 mg of gold. The 

low reaction temperatures and pressures (308 kPa and 393 K) further support the appeal of this 

approach. Additionally, acetaldehyde can be oxidized to acetic acid yielding a route without the 

need for iodides. Although the basal plane of MoS2 is inert edge sulfur vacancies are thought to be 

the key to hydrodesulfurization and hydrodenitrogenation activity over MoS2.[60] Our results 

illustrate a mechanism by which the basal plane and grain boundaries can influence the chemical 

activity of a metal catalyst. Furthermore, our results also speak to sustained reactivity of Au 

nanoparticles in a scenario in which inert substrates can be first shaped into desired structures that 

optimize reactant and heat flow and serve as an inexpensive scaffold for a composite that bestows 

catalytic activity on them. 

2.4 Experimental Section 

A Ø1.5 cm x 1 mm thick fused silica window (Esco Optics) was homogeneously coated 

with a single polycrystalline layer of MoS2 decorated by nanoscale gold islands corresponding to 

an average gold coverage of 0.5 Å, 1Å, and 2Å or approximately 1/6, 1/3, and 2/3 of a monolayer 

respectively. Figure 5b shows the preparative effort schematically and Figure 5c depicts the fused 

silica window after single-layer MoS2 and gold deposition.  

To make the supported catalysts, we have utilized a technique for coating inert oxides by 

an MoS2 films of controlled integer layer number, as reported elsewhere.[43] The original work 

focused on MoS2 films on a dry oxide SiO2 layer on a silicon wafer substrate. The single- and few-
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layer MoS2 growth technique is based on heating molybdenum filaments to white heat (>1500 K) 

under high vacuum followed by exposure to carbon disulphide. Decomposition of the disulphide 

on the Mo filament surface results in volatile MoSx precursors, which are precipitated onto the 

substrate.  The substrate is held at a temperature where MoS2 island growth and desorption is at 

equilibrium. Reference sample for scanning electron microscopy were prepared on a thin (30 nm) 

silicon dioxide film on a doped silicon substrate. Gold was deposited with an e-beam evaporator 

monitored by a quartz crystal microbalance.  Deposition rates were calculated from the measured 

mass increase and converted to Ångstroms of gold per minute.  Values below the atomic diameter 

of gold (3.2 Å) indicate incomplete (sub-monolayer) coverage.  

 

Figure 5. A schematic representation of the catalyst preparation and catalytic evaluation in a laminar flow reactor(a,b); 
The Ø1.5 cm fused silica window coated with a single-layer of MoS2 and deposition of gold exhibits a yellowish 
color (c). 

Reactor studies were performed in a laminar flow reactor.  The goal of this study was to 

determine the chain lengthening products from carbon monoxide addition to methanol.  To this 

end reactions were run for 140 minutes at 150 ˚C.  This allowed the product composition to 
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stabilize and be analyzed in steady state. Product analyses were performed on two gas 

chromatographs: an Agilent 6890 with a wax column (Restek Stabilwax, 30 m, 0.32 mm ID, 1.0 

µm film thickness) and a mass sensitive detector (Agilent 5973) was utilized for samples taken 

with a 25 mL gas tight syringe from a sampling port in the product stream.  An Agilent 6850 gas 

chromatograph with a wax column (Restek Stabilwax, 30 m, 0.32 mm ID, 1.0 µm film thickness) 

and thermal conductivity detector (TCD) was connected directly to the product stream via a 

transfer line and a gas-sampling valve.  The chromatographic methods and the laminar flow reactor 

are further described in the supplementary material. Blanks were run with an empty reactor, with 

a blank silica substrate, and a MoS2 coated substrate with no gold. 
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CHAPTER 3: CHARACTERIZATION OF SEAL SWELL UNDER BIO-

DERIVED GASOLINE AND DIESEL ANALOG COMPOUNDS  

3.1 Introduction 

Biofuels have recently emerged as a greener alternative to fossil fuels. Although biofuels 

are also composed of hydrocarbons, they can be derived from wild vegetation, agricultural crops, 

or animal waste. Thus, the growth of any plant matter for biofuel production will remove CO2 

from the atmosphere through natural photosynthesis, and will act to reduce net CO2 emissions. 

Moving towards biofuels as a potential alternative energy source for automobiles or other 

transportation, we must assess their compatibility with existing systems. The transition from 

petroleum-based fuels to biofuels requires testing to guarantee the replacement fuels are 

sustainable, characterized, and well-suited for the application. It is important to understand the 

chemical interactions occurring between a new biofuel and any materials in contact in order to 

decrease negative effects or outcomes. The diversity of biofuels allows their physical properties 

and composition to be taken into account and then modified, if necessary, to avoid such negative 

outcomes.  

O-ring seals within engines act to prevent fuel leakage but do not maintain optimal function 

indefinitely. In storage, the shelf life of o-rings range from 3 to 15 years, and for many elastomer 

types is unlimited. Below, shown in Table 3, is a list of commonly used elastomers for gasket and 

sealing application. When selecting an effective elastomer material, scientists must take multiple 

factors into consideration. Service conditions such as operating temperature range, chemical 

contact, and physical requirements all need to be met.  
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Table 1. Common elastomers and their properties 

Elastomer Type Application Density (g/cm3) 

Viton A401C seal 2.09 
Viton B601 seal 2.1 

Fluorosilicone seal 1.77 
NBR 1 gasoline dispenser hose 1.46 
NBR 2 gasoline dispenser hose 1.52 
NBR 3 marine fuel line hose 1.45 
NBR 4 small-engine fuel line hose 1.66 
NBR 5 gasoline dispenser hose 1.72 
NBR 6 tanker-trunk transfer hose 1.74 

Neoprene seal 1.33 
Polyurethane coating 0.97 

SBR cover 1.83 
Silicone seal 1.41 

 

 However, this length of time is significantly impacted by environmental conditions such 

as temperature, humidity, light, radiation, deformation, and contact with liquid, metals, semi-solid 

materials, and dusting powder. Aromatic hydrocarbons (toluene, benzene, and xylenes) and 

oxygenated additives (alcohols and ethers) greatly affect the behavior and structure of elastomer 

seals. Prolonged exposure of elastomers to hydrocarbon fuel results in o-ring volume change, and 

other dimensional changes. The degree of such changes is a measure of the resistance of the 

particular elastomer to the fuel. Large volume changes in an o-ring will compromise component 

functionality. With excessive swelling, an overfilled groove will cause seal failure and leakage. 

Physical property changes are typically accompanied by an increase in volume, meaning the 

greater the volume change the greater the change in o-ring thickness, diameter, and mass. It is 

important to note that some swelling is required to achieve and maintain a seal and to avoid any 

possibility of leaks. For this reason, high purity biofuel is not used as it may cause the elastomer 

to shrink. High purity biofuel such as ethanol that is not in a completely sealed environment should 

not be used due to the propensity for ethanol to absorb moisture from the air, causing water to 
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build up in the engine. This in turn will lead to poor spark ignition or even corrosion in the fuel 

tank.  The o-rings chosen for these experiments were Viton MIL-PRF-81705D, Type II, Class 1. 

The size is a standard 2 x 3. Viton was chosen due to its capability of handling a diverse array of 

applications particularly its great resistance to fuels, oils, and other fluids.  

Prolonged exposure of elastomers to biofuels can result in unfavorable polymer/biofuel 

reactions. The consequences of polymer/biofuel interactions, in this case polymer swelling, can be 

studied by the Flory-Rehner equation (Equation 1). 

−[ln(1 − 𝜑2) + 𝜑2 + 𝜒𝜑22] = ρ2 𝑉1𝑀𝑐 (1 − 2𝑀𝑐𝑀2)(𝜑20.333 − 𝜑22 ) ( 1 ) 

 

Where φ2 is the volume fraction of polymer in the swollen state (Vswollen/Voriginal=1/ φ2), V1 the 

molar volume of solvent, ρ2 the polymer density, M2 is the molecular weight, and lastly Mc is the 

molecular weight of chains between crosslinks [https://www.stevenabbott.co.uk/practical-

solubility/polymer-swelling.php]. The Flory-Rehner equation relates polymer swelling to the 

molecular weight of chains between crosslinks. Two major factors that relate to the degree of 

swelling are the solubility of the polymer in the solvent and the length of chains between 

crosslinks. Polymer-fuel favored interactions will lead to large swelling whereas polymer-polymer 

interactions will lead to shrinking of the elastomer.   

This study will investigate the degradation and swelling characteristics of Viton o-ring 

seals after continuous contact with singular (unblended) biofuel compounds. Many of the 

compounds tested differ from conventional gasoline and diesel fuels and have not been previously 

investigated with the intention of compatibility with modern engines. 



18 
 

3.2 Experimental 

3.2.1 Gasoline and Diesel Analog Compounds 

The fuel compounds chosen were not combined into mixtures but tested individually. The 

bio-gasoline compounds were ethanol, cyclopentanone, methyl acetate, ethyl acetate, 2-

methylfuran, and diisobutylene. The bio-diesel compounds tested were 1-nonanol, 

butylcyclohexane, dibutoxymethane, n-dodecane, and dodecanes. Their chemical structures are 

shown in Tables 1 and 2 below. 
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Table 2. Functional groups and chemical structures of bio-gasolines investigated. 

 

Table 3. Functional groups and chemical structures of bio-diesels investigated. 

 

3.2.2 ASTM Procedure 

 For each of the liquid hydrocarbon compounds chosen, standard 2 x 3 viton o-rings were 

submerged in a separate test tube. O-rings were threaded onto a thin wire, spaced apart by glass 
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beads to prevent elastomer contact, and then submerged as a unit in a single biofuel compound as 

shown in Figure 6. The glass beads were made of agate material, as known as silicon dioxide, 

which was used because it is inert in the system. To obtain good standard deviation, short-term 

submersion studies utilized 5 o-rings per test tube, whereas 10 were submerged for long-term 

studies.  

 

 

Figure 6. The placement of o-rings in each test tube prior to filling with liquid fuel. 

 

Mass, density, thickness, and diameter measurements of each o-ring were taken prior to 

submersion, and again after different lengths of time of submersion. Short-term studies included 

o-ring measurements after each hour submerged in liquid, for up to 6 hours. Long-term studies had 

measurements conducted every few days, and time between measurements increased after months 
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of submersion. Care is taken to ensure o-rings remained outside the fuel bath for as little time as 

possible. While one o-ring is undergoing measurement, the rest are held submerged in fuel. 

3.2.2.1 Quantification of Mass 

  One o-ring was removed from the fuel and wire at a time, rinsed briefly in acetone and 

gently wiped to remove fuel and any liquid droplets. It was then placed in a tared weigh bottle and 

massed on a Mettler AT20 micro-balance with a range from 2 µg to 22 g (Figure 7). If the o-ring 

experiences gradual evaporation of fuel, despite being washed, the first stable mass is recorded.  

 

Figure 7. Mass determination of each o-ring based on ASTM procedure. 
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3.2.2.2 Quantification of Density 

 After the mass measurement, the o-ring is moved to a standard mass balance, fitted with a 

rig designed to measure water-submerged mass (Figure 8). A platform is placed around the 

weighing tray to hold a jacketed water bath without contributing to the mass measurement. Inside 

the jacket, coolant flows through an inlet and outlet from a chiller held at 25 °C, maintaining the 

water bath at roughly room temperature.  

 

Figure 8. A mass measurement of each o-ring is taken while submerged in distilled water. 

 

 A scaffold resting on a Sartorius MC4108 balance tray reaches above the bath, holding a 

hook upon which each o-ring is placed. The balance has a range of 2 µg to 21g, and ±1 ppm/°C 

sensitivity. This scaffold and hook is tared, while some of the hook is submerged at the current 
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water level. Then, the o-ring is placed on the hook, enabling the recorded mass to reflect only the 

elastomer itself. After removing from the water bath, the o-ring is dipped briefly in acetone and 

wiped to remove all traces of liquid.  

3.2.2.3 Quantification of Dimensional Change 

 Thickness and diameter of the o-rings were determined by a Starrett No. 796XFL-1 digital 

micrometer with a range of 0 – 25 mm, resolution of 0.001 mm, and an accuracy of ±0.002 mm. 

At this stage, damage to the o-ring is assessed before quickly replacing the o-ring in a new test 

tube containing the same fuel. Once all of the parameters were recorded such as mass of the o-ring 

in air, mass of the o-ring submerged, temperature of the bath in °C, thickness, and diameter, the 

volume change was then calculated using Equations 2 and 3.  

𝑉𝑜𝑙𝑢𝑚𝑒𝑜−𝑟𝑖𝑛𝑔 = (𝑀𝑎𝑠𝑠𝑎𝑖𝑟,𝑔𝑟𝑎𝑚𝑠−𝑀𝑎𝑠𝑠𝑠𝑢𝑏𝑚𝑒𝑟𝑔𝑒𝑑,𝑔𝑟𝑎𝑚𝑠)𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑤𝑎𝑡𝑒𝑟  ( 2 ) 

 

𝑉𝑜𝑙𝑢𝑚𝑒𝑎𝑣𝑔 = 𝑉𝑜𝑙𝑢𝑚𝑒𝑜−𝑟𝑖𝑛𝑔,1+𝑉𝑜𝑙𝑢𝑚𝑒𝑜−𝑟𝑖𝑛𝑔,2+⋯𝑉𝑜𝑙𝑢𝑚𝑒𝑜−𝑟𝑖𝑛𝑔,𝑛𝑡ℎ𝑛  ( 3 ) 

 

 To better understand the results presented in the following section, a table showing the 

boiling point and molecular weight of each gasoline and diesel compounds are listed below in 

Tables 4 and 5. This will help relate the mass and how the evaporation of certain fuels affects the 

measured mass, thickness, and diameter of the o-rings.  
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3.3 Results 

3.3.1 Long-Duration ASTM Procedure 

The o-rings were submerged in each bio-gasoline compound for approximately 365 days, 

and 250 days for bio-diesel. As shown in Figures 9-16, the bulk of the swelling occurred during 

the first few days. The most damaging fuel to the elastomer was cyclopentanone in terms of mass 

gain, and overall size increase. However, similar results were found with methyl and ethyl acetate, 

which are observed to have comparable negative structural changes. The least significant swelling 

occurred for ethanol and diisobutylene, with the latter having slightly less of an impact overall. 

These two gasoline compounds showed results close to that of the diesel fuels in terms of their 

resistivity. 2-Methylfuran produced a somewhat intermediate result, though is not as severe of a 

swell as cyclopentanone or the acetate compounds. 

 

Figure 9. Changes in mass for long-term measurements of gasoline compounds. 
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Figure 10. Changes in mass for long-term measurements of diesel compounds. 

Upon initial submersion the o-rings experienced the most severe swelling, which 

proceeded on the order of hours. Then, more gradual swelling continues for approximately 100 

days before the fuel has likely permeated the o-ring completely and the dimensional changes 

plateau.  

Rapid measurement of the mass, volume, thickness, and diameter was required due to the 

volatility of the fuels. As the o-rings were transferred from the fuel into air, in many cases absorbed 

fuel from within the o-rings slowly began to evaporate, resulting in mass fluxuations. The degree 

of these fluctuations are illustrated with error bars in Figures 9-19. The last measurements taken 

(thickness and diameter) will differ most from the conditions of submersion since the o-rings were 

exposed to air for a longer duration than the measurements taken prior. Implementation of in-situ 

seal swell measurements to the ASTM procedure should significantly increase the overall accuracy 

of these measurements. 
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Figure 11. Changes in volume for long-term measurements of gasoline compounds. 

  

.  

Figure 12. Changes in volume for long-term measurements of diesel compounds. 

Diesel possesses a higher viscosity than gasoline, causing diesel evaporation at slower rates 

than that of the gasoline when in contact with the elastomer. Unlike the differences in degree of 

swelling seen among bio-gasoline compounds, bio-diesel exhibited similar results to one another 

(Figures 10, 12, 14, 16). Each of the diesel fuels, butylcyclohexane, dibutoxymethane, n-dodecane, 

and 1-nonanol all had a minor impact on the swelling of the o-rings, with dibutoxymethane being 
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the highest of the four fuels tested. One can also see that after approximately 120 to 130 days the 

swelling of the o-rings begins to plateau.  

 

Figure 13. Changes in thickness for long-term measurements of gasoline compounds. 

 

Figure 14. Changes in thickness for long-term measurements of diesel compounds. 
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Figure 15. Changes in diameter for long-term measurements of gasoline compounds. 

 

Figure 16. Changes in diameter for long-term measurements of diesel compounds. 

3.3.2 Short-Duration ASTM Procedure 

 As discussed, the bulk of swelling occurs in the first few hours of submersion. Thus, to 

have a better understanding of what occurred during the first few hours of contact with the fuel, 

short-duration experiments were conducted (Figures 17-19). Since the majority of the changes 

occurred in this time frame, it is desired to get as detailed a representation of the elastomer swelling 

as possible. In this set of experiments, dodecanes was added to the diesel fuels tested. 
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Measurements of mass, volume, thickness, and diameter were taken every hour up to six hours. 

Five o-rings were used for this part of the analysis rather than 10, which was needed to adjust for 

the shorter time intervals between fuels.  

 

Figure 17. Changes in mass over a 24 hour period for gasoline and diesel compounds. 

 It was observed that for gasoline compounds, the largest swelling and mass gain occurred 

in as early as the first hour. Diesel compounds showed more gradual swelling over the 24 hour 

period. Even so, all diesel compounds have proven more resistant to swelling than gasoline even 

after a day submerged. 

 

Figure 18. Changes in volume over a 24 hour period for gasoline and diesel compounds. 
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Figure 19. Changes in thickness and diameter over a 24 hour period for gasoline and diesel compounds. 

3.4 Discussion 

 Analysis showed that the swelling behavior can be attributed to the polarity of the fuels. 

Typically, the performance of the elastomer will correspond more with polarity than with hydrogen 

bonding[61]. The swelling and mass increase of the o-rings will depend on the elastomer material 

type used. Viton is known to be resistant to a wide range of chemicals, particularly ketones, esters 

and chemicals of high polarity. Diisobuytlene and ethanol showed the lowest swelling due to 

having the lowest polarity of the gasoline fuels chosen (Tables 4 and 5). The lower resistance of 

cyclopentanone to swelling is likely due to its being a largely polar molecule. The greater swelling 
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over the other gasoline fuels indicates that its polarity is more predominant than the hydrogen 

bonding in the other fuels. Hydrogen bonding occurs primarily near oxygen atoms; as a result, the 

forces coupled with hydrogen bonding are more local. The potential for polar attraction on the 

polymer molecule chains orients the fuel molecules in such a way that an interference is caused 

with the hydrogen bonding potential of the oxygen atoms, leading to low swelling.  

Table 4. Properties of gasoline compounds 

Gasoline 

Compounds 

Chemical 

formula 

BP 

°C 

MW 

(g/mol) 

ρ25C 

(g/mL) 
ε25C 

Functional 

Group  

Cyclopentanone C5H8O 130 - 131  84.12 0.951 13.52 Ketone 
Diisobutylene C8H16  101 - 103  112.21 0.716 - Olefin 
Methyl acetate C3H6O2 57 - 58  74.08 0.932 6.68 Ester 
2-Methylfuran C5H6O 63 - 66  82.1 0.91 - Ether 

Ethanol C2H6O 78  46.068 0.789 24.3 Alcohol 
Ethyl acetate C4H8O2 76.5 - 77.5  88.11 0.902 6.02 Ester 

 

Table 5. Properties of diesel compounds 

Diesel 

Compounds 

Chemical 

formula 

BP 

°C 

MW 

(g/mol) 

ρ25C 

(g/mL) 
ε20C 

Functional 

Group  

1-Nonanol C9H20O 215  144.25 0.827 9.09 Alcohol 
Butylcyclohexane C10H20 178 - 180  140.27 0.818 - Cyclic Alkane 
Dibutoxymethane C9H20O2 180  160.25 0.84 - Acetal 

N-dodecane C12H26 216.3  170.33 0.75  2.012 Linear Alkane  
Dodecanes C12H26 215 - 217  170.33 0.75 2.01 Linear Alkane  

 

Diesel is typically a heavier fluid than gasoline since it is composed of larger molecules. 

We might expect that the o-rings submerged in higher molecular weight compounds would result 

in a larger gain in mass. However, we have found that the results seem largely independent of the 

molecular weights of the compounds (reported in Tables 4 and 5). The dielectric constant (“ε”), or 

permittivity, is a measure of the polarity of the solvent or fluid. The higher the dielectric constant 

the higher the polarity of the molecule. Polar solvents have typically ε > 20 whereas nonpolar 

solvents have ε < 20. Tables 4 and 5 show the values of each fuel’s dielectric constant.  
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3.5 Conclusion 

The goal of this study was to analyze the compatibility of renewable fuels for elastomers 

in specific o-rings. It is important to move toward biofuels as a potential alternative energy source 

for automobiles or other methods of transportation as it serves as a more green energy source. Two 

fossil fuel alternatives were studied and their results reported, such as properties of biofuels and 

hydrocarbon synthesis from syngas. An important factor when investigating these fuel alternatives 

is the longevity of elastomers when submerged with a fuel. As reported in the findings above, 

within the first few hours o-rings begin to swell and deform, making a leak in the system possible. 

It is important to test the compatibility of the bio-derived fuels with elastomers before completely 

switching to this as a form of transportation of vehicles. 

Finding alternative fuel options has proven to be a massive undertaking to successfully 

make the swap, so there is an abundance of future work that may be performed to expand on the 

research and results already found. Future work includes removing the current ASTM procedure 

and replacing it with an improved ASTM procedure that will allow for real time measurements as 

the elastomer remains submerged. This will allow for significantly more accurate results, leading 

to a much smaller standard deviation as well as a decrease in percent error reported above. A 

possible method to improve the measurement of seal swell in real time would be to use a 

piezoelectric material in concurrence with a speed of sound instrument. Using this, one could 

measure the o-rings while submerged, and never need to remove the o-ring from the fuel bath. 

This new method will allow us to numerically see the o-ring swell within the first few hours 

without the o-ring shrinking back to its original shape and size when exposed to air. This detail is 

instrumental to overall success and accuracy as this will show if an o-ring will soon fail. Since 

damages can be observed without removing the o-ring from the entire system, leaks and overall 
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failures can be prevented. Lastly, with this new method information on how long an o-ring will 

last in a certain system will give more accurate data on the longevity and performance of the o-

ring.  
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CHAPTER 4: CONCLUSION 

Two methodologies of testing the mass, volume, thickness, and diameter was done for both 

short duration submersion as well as long duration submersion. Each of these methods of testing 

showed similar results in that the swelling occurred during the first few hours. It is safe to say that 

only using the short duration method works for establishing compatibility for biofuels with the 

chosen elastomer. Although each of the methodologies resulted in similar results, more 

information on the elastomer can be gathered by studying the long duration method. After a certain 

amount of time, in this case days, swelling of the o-ring begins to stop. During this time cracks 

and ragged edges are visible, as well as very small pieces of the o-ring floating within the fuel. To 

see the physical damage done to the o-ring the long duration experiments represent that effectively.  
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APPENDIX 

SUPPLEMENTAL INFORMATION FOR CHAPTER 2 
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Experimental 

Gas chromatography  

Mass Sensitive Detection (GC-MS) was performed on an Agilent 6890 GC with Agilent 

5973 mass sensitive detector.  The m/z range was set to 6-550 amu.  A Restek Stabilwax column 

(30, 0.32 mm ID, 1.0 µm film thickness) was used for separation.  25 µL samples were taken from 

a sampling port on the reactor transfer line. The analysis parameters were: 

Oven 

Mode:  constant flow 
Initial flow:  1.5 mL/min 
Initial temp:  40 ˚C  
Initial time:  1.00 min  
Ramps: 
   #  Rate  Final temp  Final 
time 
   1 30.00      225        5.00 
Post temp:  235 ˚C 
Post time:  2.00 min 
Run time:  12.17 min 

Front Inlet (Split/Splitless)  

Mode:  Splitless 
Initial temp:  150 ˚C  
Pressure:  1.71 psi 
Purge flow:  15.0 mL/min 
Purge time:  2.00 min 
Gas type:  Helium 

Post Run 

Post Time: 2.00 min 
Oven Temperature: 235 ˚C 
Column 1 Flow: 1.5 mL/min 
 
 

 

Thermal Conductivity Detection (GC-TCD) was performed on an Agilent 6850 GC with 

TCD detector and gas sampling valve. The product stream was fed to the gas sampling valve by a 

366 cm unheated 0.3175 cm OD, 0.2159 cm ID stainless steel transfer line with a total volume of 

13.4 cm3. A Restek Stabilwax column (30, 0.25 mm ID, 1.00 µm film thickness) was used for 

separation.  Samples were automatically taken at 30 minute intervals vial gas-sampling valve. 

Oven 

Mode:  constant flow 
Initial flow:  1.5 mL/min 
Initial temp:  40 ˚C 
Initial time:  1.00 min  
Ramps: 
   #  Rate  Final temp  Final time 
   1 30.00      225        5.00 
   2   0.0(Off) 
Post temp:  235 ˚C 
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Post time:  2.00 min 
Run time:  12.17 min 

 

Plug Flow Reactor 

Figure 20 shows an exploded view of the reactor with a sapphire window. Maximum 

operational temperature is 250 ˚C and maximum operational pressure is 2.5 MPa.  The plug flow 

reactor is constructed of 316L stainless steel with high-pressure inlet and outlet fittings.  

Temperature control is achieved with a cartridge heater (S1 front left), RTD sensor (S1 rear left), 

and a process controller (Omega CN7800 series) with SCR control.  Reactants enter the reaction 

chamber from the bottom of the center of the circular pocket and exit the side.  A porous sintered 

stainless steel disk supports the catalyst sample during operation to distribute the reactant stream. 

 

 

Figure 20. An exploded view of the plug flow reactor.  It can be easily loaded under oxygen and water free conditions 
in a glove box. 
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Figure 21. The reactor system consists of two mass flow controllers (Tylan, 0-50 SCCM for CO and 0-10 sccm for 
other gases). A liquid reservoir (right) fitted with a sparge serves as a bubbler to produce a feed stream saturated with 
reactant vapor. A backpressure regulator (left, 0 to 792 kPa) allows higher pressure to be realized in the reaction 
chamber (center).  Valves before and after the reaction chamber allow it to be loaded under inert conditions and put 
on test without compromising the integrity of the catalyst. 

 

  

Figure 22. Reactant flow around the sample occurs with a uniform velocity after passing though a porous region and 
impinging on the bottom of the sample. 
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Figure 23. The thermal conductivity data from CO+methanol over 1 Å gold on single layer MoS2, after 97 minutes 
on stream shows acetaldehyde at 3.305 min, methanol at 4.245 min, and water at 5.149 min. For comparison, a GC-
MS chromatogram of a standard in selected ion mode (mass=44) is overlaid. The standard was sampled from the 
vapor-saturated headspace of a methanol/acetaldehyde mixture.  
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Figure 24. The photoluminescence of the deposited MoS2 film before (black) and after gold deposition (blue) shows 
quenching by the gold particles and is used is a verification of deposition as well as homogeneity.  

 

 

Figure 25. Before use, the gold particles on the substrate are mostly circular with the majority of the circularity 
(4(area/perimeter2)) near unity. 
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Figure 26. Before use, the gold particles range from 1-5 nm in diameter with a near exponential distribution suggestion 
random nucleation events. 
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Figure 27. After use, the gold particles on the substrate coalesced.  While the majority of the circularity 
(4(area/perimeter2)) is still near unity, a significant fraction shows deviation toward elliptical shapes. 
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Figure 28. After use, the gold particles coalesced with a diameter distribution centered near 40 nm. The change in 
distribution to an exponentiall modified Normal distribution suggests the coalescing proceeds through though Ostwald 
ripening mechanism. 

 

  



44 
 

LIST OF REFERENCES 

[1] 2020, "What is U.S. electricity generation by energy source?," 
https://www.eia.gov/tools/faqs/faq.php?id=427&t=3. 

[2] Levin, K., 2018, "According to New IPCC Report, the World is on Track to Exceed its "Carbon 
Budget" in 12 Years," https://www.wri.org/blog/2018/10/according-new-ipcc-report-
world-track-exceed-its-carbon-budget-12-years. 

[3] Robert C. Ketcham, e. a., 1986, "Investigation of the Challenger Accident," Committee on 
Science and Technology House of Representatives. 

[4] Heitzig, S., Weinebeck, A., and Murrenhoff, H., 2015, "Testing and Prediction of Material 
Compatibility of Biofuel Candidates with Elastomeric Materials," SAE International 
Journal of Fuels and Lubricants, 8(3), pp. 549-559. 

[5] Grim, R. G., To, A. T., Farberow, C. A., Hensley, J. E., Ruddy, D. A., and Schaidle, J. A., 
2019, "Growing the Bioeconomy through Catalysis: A Review of Recent Advancements 
in the Production of Fuels and Chemicals from Syngas-Derived Oxygenates," ACS 
Catalysis, 9(5), pp. 4145-4172. 

[6] Bai, H., Ma, M., Bai, B., Cao, H., Zhang, L., Gao, Z., Vinokurov, V. A., and Huang, W., 2019, 
"Carbon chain growth by formyl coupling over the Cu/γ-AlOOH(001) surface in syngas 
conversion," Physical Chemistry Chemical Physics, 21(1), pp. 148-159. 

[7] Choi, Y., and Liu, P., 2009, "Mechanism of Ethanol Synthesis from Syngas on Rh(111)," 
Journal of the American Chemical Society, 131(36), pp. 13054-13061. 

[8] Haruta, M., Kobayashi, T., Sano, H., and Yamada, N., 1987, "Novel Gold Catalysts for the 
Oxidation of Carbon-Monoxide at a Temperature Far Below 0-Degrees-C," Chemistry 
Letters(2), pp. 405-408. 

[9] Hammer, B., and Norskov, J. K., 1995, "Why gold Is the noblest of all the metals," Nature, 
376(6537), pp. 238-240. 

[10] Rawal, T. B., Le, D., and Rahman, T. S., 2017, "Effect of single-layer MoS2 on the geometry, 
electronic structure, and reactivity of transition metal nanoparticles," Journal of Physical 
Chemistry C, 121(13), pp. 7282-7293. 

[11] Almeida, K., Pena, P., Rawal, T. B., Coley, W. C., Akhavi, A.-A., Wurch, M., Yamaguchi, 
K., Le, D., Dowben, P. A., Rahman, T. S., and Bartels, L., 2019, "A Single-Layer of MoS2 
activates Gold for Room Temperature CO Oxidation on an Inert Silica Substrate," Journal 
of Physical Chemistry C, 123 (11), pp. 6592–6598. 

[12] Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., and Delmon, B., 1993, 
"Low-temperature oxidation of CO over gold supported on TiO2, alpha-Fe2O3, and Co3O4," 
Journal of Catalysis, 144(1), pp. 175-192. 

[13] Schubert, M. M., Plzak, V., Garche, J., and Behm, R. J., 2001, "Activity, selectivity, and long-
term stability of different metal oxide supported gold catalysts for the preferential CO 
oxidation in H-2-rich gas," Catalysis Letters, 76(3-4), pp. 143-150. 

[14] Deng, W. L., De Jesus, J., Saltsburg, H., and Flytzani-Stephanopoulos, M., 2005, "Low-
content gold-ceria catalysts for the water-gas shift and preferential CO oxidation 
reactions," Applied Catalysis, A291(1-2), pp. 126-135. 

[15] Gardner, S. D., Hoflund, G. B., Schryer, D. R., Schryer, J., Upchurch, B. T., and Kielin, E. J., 
1991, "Catalytic Behavior of Noble-Metal Reducible Oxide Materials for Low-

http://www.eia.gov/tools/faqs/faq.php?id=427&t=3
http://www.wri.org/blog/2018/10/according-new-ipcc-report-world-track-exceed-its-carbon-budget-12-years
http://www.wri.org/blog/2018/10/according-new-ipcc-report-world-track-exceed-its-carbon-budget-12-years


45 
 

Temperature Co Oxidation .1. Comparison of Catalyst Performance," Langmuir, 7(10), pp. 
2135-2139. 

[16] Chen, M. S., and Goodman, D. W., 2004, "The structure of catalytically active gold on 
titania," Science, 306(5694), pp. 252-255. 

[17] Zhou, Y. Y., Lawrence, N. J., Wang, L., Kong, L. M., Wu, T. S., Liu, J., Gao, Y., Brewer, J. 
R., Lawrence, V. K., Sabirianov, R. F., Soo, Y. L., Zeng, X. C., Dowben, P. A., Mei, W. 
N., and Cheung, C. L., 2013, "Resonant Photoemission Observations and DFT Study of s-
d Hybridization in Catalytically Active Gold Clusters on Ceria Nanorods," Angewandte 
Chemie-International Edition, 52(27), pp. 6936-6939. 

[18] Yang, F., Graciani, J., Evans, J., Liu, P., Hrbek, J., Sanz, J. F., and Rodriguez, J. A., 2011, 
"CO Oxidation on Inverse CeO(x)/Cu(111) Catalysts: High Catalytic Activity and Ceria-
Promoted Dissociation of O(2)," Journal of the American Chemical Society, 133(10), pp. 
3444-3451. 

[19] Merida, C. S., Le, D., Echeverria, E. M., Nguyen, A. E., Rawal, T. B., Alvillar, S. N., 
Kandyba, V., Al-Mahboob, A., Losovyj, Y., Katsiev, K., Valentin, M. D., Huang, C. Y., 
Gomez, M. J., Lu, I. H., Guan, A., Barinov, A., Rahman, T. S., Dowben, P. A., and Bartels, 
L., 2018, "Gold Dispersion and Activation on the Basal Plane of Single-Layer MoS2," 
Journal of Physical Chemistry C, 122(1), pp. 267-273. 

[20] Wang, B., and Bocquet, M. L., 2011, "Monolayer Graphene and h-BN on Metal Substrates as 
Versatile Templates for Metallic Nanoclusters," Journal of Physical Chemistry Letters, 
2(18), pp. 2341-2345. 

[21] Katsiev, K., Losovyj, Y., Lozova, N., Wang, L., Mei, W. N., Zheng, J. X., Vescovo, E., Liu, 
L., Dowben, P. A., and Goodman, D. W., 2014, "The band structure of carbonmonoxide 
on 2-D Au islands on graphene," Applied Surface Science, 304, pp. 35-39. 

[22] Zheng, J. X., Wang, L., Katsiev, K., Losovyj, Y., Vescovo, E., Goodman, D. W., Dowben, P. 
A., Lu, J., and Mei, W. N., 2013, "Adsorption configurations of carbon monoxide on gold 
monolayer supported by graphene or monolayer hexagonal boron nitride: a first-principles 
study," European Physical Journal B, 86(10). 

[23] Hansen, L. P., Ramasse, Q. M., Kisielowski, C., Brorson, M., Johnson, E., Topsoe, H., and 
Helveg, S., 2011, "Atomic-scale edge structures on industrial-style MoS2 nanocatalysts," 
Angewandte Chemie-International Edition, 50(43), pp. 10153-10156. 

[24] Surisetty, V. R., Dalai, A. K., and Kozinski, J., 2011, "Alcohols as alternative fuels: An 
overview," Applied Catalysis A-General, 404(1-2), pp. 1–11. 

[25] Morrill, M. R., Thao, N. T., Shou, H., Davis, R. J., Barton, D. G., Ferrari, D., Agrawal, P. K., 
and Jones, C. W., 2013, "Origins of Unusual Alcohol Selectivities over Mixed Mg Al 
Oxide-Supported K/MoS2 Catalysts for Higher Alcohol Synthesis from Syngas," ACS 
Catalysis, 3(7), pp. 1665-1675. 

[26] Claure, M. T., Chai, S. H., Dai, S., Unocic, K. A., Alamgir, F. M., Agrawal, P. K., and Jones, 
C. W., 2015, "Tuning of higher alcohol selectivity and productivity in CO hydrogenation 
reactions over K/MoS2 domains supported on mesoporous activated carbon and mixed 
MgAl oxide," Journal of Catalysis, 324, pp. 88-97. 

[27] Surisetty, V. R., Dalai, A. K., and Kozinski, J., 2010, "Synthesis of higher alcohols from 
synthesis gas over Co-promoted alkali-modified MoS2 catalysts supported on MWCNTs," 
Applied Catalysis A-General, 385(1-2), pp. 153-162. 



46 
 

[28] Lv, M. M., Xie, W., Sun, S., Wu, G. M., Zheng, L. R., Chu, S. Q., Gao, C., and Bao, J., 2015, 
"Activated-carbon-supported K-Co-Mo catalysts for synthesis of higher alcohols from 
syngas," Catalysis Science & Technology, 5(5), pp. 2925-2934. 

[29] Xie, W., Zhou, J. L., Ji, L. L., Sun, S., Pan, H. B., Zhu, J. F., Gao, C., and Bao, J., 2016, 
"Targeted design and synthesis of a highly selective Mo-based catalyst for the synthesis of 
higher alcohols," RSC Advances, 6(45), pp. 38741-38745. 

[30] Luk, H. T., Mondelli, C., Ferre, D. C., Stewart, J. A., and Perez-Ramirez, J., 2017, "Status 
and prospects in higher alcohols synthesis from syngas," Chemical Society Reviews, 46(5), 
pp. 1358-1426. 

[31] Luk, H. T., Forster, T., Mondelli, C., Siol, S., Curulla-Ferre, D., Stewart, J. A., and Perez-
Ramirez, J., 2018, "Carbon nanofibres-supported KCoMo catalysts for syngas conversion 
into higher alcohols," Catalysis Science & Technology, 8(1), pp. 187-200. 

[32] Ao, M., Pham, G. H., Sunarso, J., Tade, M. O., and Liu, S. M., 2018, "Active Centers of 
Catalysts for Higher Alcohol Synthesis from Syngas: A Review," ACS Catalysis, 8(8), pp. 
7025-7050. 

[33] Kim, J., Byun, S., Smith, A. J., Yu, J., and Huang, J. X., 2013, "Enhanced electrocatalytic 
properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle 
decoration," Journal of Physical Chemistry Letters, 4(8), pp. 1227-1232. 

[34] Osaki, T., Narita, N., Horiuchi, T., Sugiyama, T., Masuda, H., and Suzuki, K., 1997, "Kinetics 
of reverse water gas shift (RWGS) reaction on metal disulfide catalysts," Journal of 
Molecular Catalysis A: Chemical, 125(1), pp. 63-71. 

[35] Besenbacher, F., Brorson, M., Clausen, B. S., Helveg, S., Hinnemann, B., Kibsgaard, J., 
Lauritsen, J., Moses, P. G., Norskov, J. K., and Topsoe, H., 2008, "Recent STM, DFT and 
HAADF-STEM studies of sulfide-based hydrotreating catalysts: Insight into mechanistic, 
structural and particle size effects," Catalysis Today, 130(1), pp. 86-96. 

[36] Sun, D., Lu, W., Le, D., Ma, Q., Aminpour, M., Alcántara Ortigoza, M., Bobek, S., Mann, J., 
Wyrick, J., Rahman, T. S., and Bartels, L., 2012, "An MoSx Structure with High Affinity 
for Adsorbate Interaction," Angewandte Chemie, 124(41), pp. 10430-10434. 

[37] Kibsgaard, J., Chen, Z. B., Reinecke, B. N., and Jaramillo, T. F., 2012, "Engineering the 
surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis," 
Nature Materials, 11(11), pp. 963-969. 

[38] Ho, T. A., Bae, C., Lee, S., Kim, M., Montero-Moreno, J. M., Park, J. H., and Shin, H., 2017, 
"Edge-On MoS2 Thin Films by Atomic Layer Deposition for Understanding the Interplay 
between the Active Area and Hydrogen Evolution Reaction," Chemistry of Materials, 
29(17), pp. 7604-7614. 

[39] Ma, Q., Odenthal, P. M., Mann, J., Le, D., Wang, C. S., Zhu, Y. M., Chen, T. Y., Sun, D. Z., 
Yamaguchi, K., Tran, T., Wurch, M., McKinley, J. L., Wyrick, J., Magnone, K., Heinz, T. 
F., Rahman, T. S., Kawakami, R., and Bartels, L., 2013, "Controlled argon beam-induced 
desulfurization of monolayer molybdenum disulfide," Journal of Physics-Condensed 
Matter, 25(25), p. 252201. 

[40] Ma, Q., Isarraraz, M., wang, C., Preciado, E., Klee, V., Bobek, S., Yamaguchi, K., li, E., 
Odenthal, P. M., nguyen, A., Barroso, D., Sun, D., Palacio, G. V., Gomez, M., nguyen, A., 
Le, D., Pawin, G., mann, J., Heinz, T. F., Rahman, T., and Bartels, L., 2014, "Postgrowth 
tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium 
exchange," ACS Nano, 8(5), pp. 4672-4677. 



47 
 

[41] Le, D., Rawal, T. B., and Rahman, T. S., 2014, "Single-Layer MoS2 with Sulfur Vacancies: 
Structure and Catalytic Application," Journal of Physical Chemistry C, 118(10), pp. 5346-
5351. 

[42] Le, D., and Rahman, T. S., 2013, "Joined edges in MoS2: metallic and half-metallic wires," 
Journal of Physics-Condensed Matter, 25(31). 

[43] Almeida, K., Wurch, M., Geremew, A., Yamaguchi, K., Empante, T. A., Valentin, M. D., 
Gomez, M., Berges, A. J., Stecklein, G., Rumyantsev, S., Martinez, J., Balandin, A. A., 
and Bartels, L., 2018, "High-Vacuum Particulate-Free Deposition of Wafer-Scale Mono-, 
Bi-, and Trilayer Molybdenum Disulfide with Superior Transport Properties," ACS Appl 
Mater Interfaces, 10(39), pp. 33457-33463. 

[44] Rawal, T. B., Le, D., and Rahman, T. S., 2017, "MoS2–supported gold nanoparticle for CO 
hydrogenation," Journal of Physics: Condensed Matter, 29(41), p. 415201. 

[45] Perdew, J. P., Burke, K., and Ernzerhof, M., 1996, "Generalized gradient approximation made 
simple," Physical review letters, 77(18), p. 3865. 

[46] Grimme, S., Antony, J., Ehrlich, S., and Krieg, H., 2010, "A consistent and accurate ab initio 
parametrization of density functional dispersion correction (DFT-D) for the 94 elements 
H-Pu," J. Chem. Phys., 132(15), pp. 154104-154122. 

[47] Henkelman, G., and Jonsson, H., 2000, "Improved tangent estimate in the nudged elastic band 
method for finding minimum energy paths and saddle points," J. Chem. Phys., 113(22), pp. 
9978-9985. 

[48] Henkelman, G., Uberuaga, B. P., and Jonsson, H., 2000, "A Climbing Image Nudged Elastic 
Band Method for Finding Saddle Points and Minimum Energy Paths," J. Chem. Phys., 
113(22), pp. 9901-9904. 

[49] Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., and Ryu, S., 2010, "Anomalous Lattice 
Vibrations of Single- and Few-Layer MoS2 " Acs Nano, 4(5), pp. 2695-2700. 

[50] Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F., 2010, "Atomically thin MoS2: a new 
direct-gap semiconductor," Physical Review Letters, 105(13), p. 136805. 

[51] Splendiani, A., Sun, L., Zhang, Y. B., Li, T. S., Kim, J., Chim, C. Y., Galli, G., and Wang, 
F., 2010, "Emerging photoluminescence in monolayer MoS2 " Nano Letters, 10(4), pp. 
1271-1275. 

[52] Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., and 
Eliceiri, K. W., 2017, "ImageJ2: ImageJ for the next generation of scientific image data," 
BMC Bioinformatics, 18(1), p. 529. 

[53] Valden, M., Lai, X., and Goodman, D. W., 1998, "Onset of catalytic activity of gold clusters 
on titania with the appearance of nonmetallic properties," Science, 281(5383), pp. 1647-
1650. 

[54] Lopez, N., Janssens, T. V. W., Clausen, B. S., Xu, Y., Mavrikakis, M., Bligaard, T., and 
Norskov, J. K., 2004, "On the origin of the catalytic activity of gold nanoparticles for low-
temperature CO oxidation," Journal of Catalysis, 223(1), pp. 232-235. 

[55] Bondzie, V. A., Parker, S. C., and Campbell, C. T., 1999, "The kinetics of CO oxidation by 
adsorbed oxygen on well-defined gold particles on TiO2(110)," Catalysis Letters, 63(3-4), 
pp. 143-151. 

[56] Sahu, P., and Prasad, B. L. V., 2014, "Time and Temperature Effects on the Digestive 
Ripening of Gold Nanoparticles: Is There a Crossover from Digestive Ripening to Ostwald 
Ripening?," Langmuir, 30(34), pp. 10143-10150. 



48 
 

[57] Saidi, W. A., 2015, "Density Functional Theory Study of Nucleation and Growth of Pt 
Nanoparticles on MoS2(001) Surface," Crystal Growth & Design, 15(2), pp. 642-652. 

[58] Jiang, T., Le, D., and Rahman, T. S., 2020, "MoS2-supported Au31 for CO hydrogenation: A 
first-principle study," Journal of Vacuum Science & Technology A, 38(3), p. 032201. 

[59] Rawal, T. B., Le, D., and Rahman, T. S., 2020, "Higher alcohol synthesis from CO 
hydrogenation on Cu(111)-supported MoS2," in submission. 

[60] Prins, R., Egorova, M., Röthlisberger, A., Zhao, Y., Sivasankar, N., and Kukula, P., 2006, 
"Mechanisms of hydrodesulfurization and hydrodenitrogenation," Catalysis Today, 
111(1), pp. 84-93. 

[61] Kass, M. D., Janke, C. J., Connatser, R. M., and West, B., 2019, "Elastomer Swell Behavior 
in 1-Propanol, Diisobutylene, Cyclopentanone, and a Furan Mixture Blended in E10 and a 
Blendstock for Oxygenate Blending (BOB)," SAE International Journal of Fuels and 
Lubricants (Online), pp. Medium: ED; Size: p. 1-16. 

 


	Production and Elastomer Compatibility of Renewable Fuels
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW
	1.1 Biofuels
	1.2 The Problem of Seal Swell

	CHAPTER 2: TOWARDS HIGHER ALCOHOL FORMATION USING A SINGLE-LAYER MoS2 ACTIVATED Au ON SILICA: METHANOL CARBONYLATION TO ACETALDEHYDE
	2.1 Introduction
	2.2 Results and Discussion
	2.2.1 Theory
	2.2.2 Experiment

	2.3 Conclusion
	2.4 Experimental Section

	CHAPTER 3: CHARACTERIZATION OF SEAL SWELL UNDER BIO-DERIVED GASOLINE AND DIESEL ANALOG COMPOUNDS
	3.1 Introduction
	3.2 Experimental
	3.2.1 Gasoline and Diesel Analog Compounds
	3.2.2 ASTM Procedure
	3.2.2.1 Quantification of Mass
	3.2.2.2 Quantification of Density
	3.2.2.3 Quantification of Dimensional Change


	3.3 Results
	3.3.1 Long-Duration ASTM Procedure
	3.3.2 Short-Duration ASTM Procedure

	3.4 Discussion
	3.5 Conclusion

	CHAPTER 4: CONCLUSION
	APPENDIX SUPPLEMENTAL INFORMATION FOR CHAPTER 2
	Experimental
	Gas chromatography

	Plug Flow Reactor

	LIST OF REFERENCES

