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ABSTRACT 

The contact mechanics of structures with exoskeletal components deviate significantly from 

classical Hertzian and non-linear models. In the case of fish scale inspired samples under blunt 

indentation loading these factors are inherently tied to both the size of the indenter and the scales’ 

distribution and orientation. Control of these geometric parameters provides a pathway to tailor 

the properties of surfaces for better grip, damage mitigation and controlled deformation. This study 

explores the response of a substrate with stiff scales protruding from its surface, which is 

comprised of a soft elastomeric material with properties typical of those in soft robotics 

applications. It is found that the exoskeletal components amplify the nonlinearly of the system by 

artificially increasing the effective Hertzian contact area, which alters the contact stiffness and 

breaks the symmetry of the load across the surface. These effects are quantified using a 

combination of numerical modeling, finite element (FE) computation and experimental 3D Digital 

Image Correlation (DIC). While previous works have focused on biological fish scales, fully 

embedded scale composites and perforation studies, this study investigates and develops a 

numerical model to quantify the contact behavior of nonlinear elastic substates with exoskeletal 

scale structures. 
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CHAPTER 1: INTRODUCTION 

1.1 Scales as a Biomimetic Material 

Early fish began developing dermal armor at the beginning of the Paleozoic period as protection 

from predators (Bruet, Song, Boyce, & Ortiz, 2008). Over the course of 500 million years, these 

ancient fish armors evolved into a new form of protection consisting of small overlapping armored 

plates with decreased weight and improved flexibility, balancing protection and maneuverability 

(Bruet, Song, Boyce, & Ortiz, 2008; Ehrlich, 2015). These scale systems combined surface 

hardness with tuned anisotropic flexibility (Browning, Ortiz, & Boyce, 2013), allowing 

maneuverability while stiffening at high curvatures (Martini & Barthelat, 2016) and providing 

puncture resistance (Vernerey, Musiket, & Barthelat, 2013; Funk, et al., 2015; Zhu, Barthelat, & 

Vernerey, 2013; Porter, Ravikumar, Barthelat, & Martini, 2017; Chintapalli, Mirkhalaf, Dastjerdi, 

& Barthelat, 2014), as shown in Figure 1.  

 

 

Figure 1. The role of fish scales under deformation, (Zhu, Barthelat, & Vernerey, 2013) 

 

Various species of fish also have scale shapes and articulation patterns that result in functions 

beyond defense, including drag reduction and anti-biofouling effects (Porter, Ravikumar, 

Barthelat, & Martini, 2017). However, one trait that remains constant is that the scales are several 
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orders of magnitude stiffer than their substrates (Funk, et al., 2015; Martini & Barthelat, 2016; 

Chintapalli, Mirkhalaf, Dastjerdi, & Barthelat, 2014) in order to provide adequate protection.  

 

Due to their clear advantages, these scale structures are ideal biomimetic materials. Biomimetics, 

or the synthetic imitation of biological systems, is a field which utilizes the unique features of 

highly optimized structures that have survived the test of time through evolution to develop 

efficient engineering materials (Zhu, Barthelat, & Vernerey, 2013). Some notable examples in 

modern biomimicry include the adhesive power of gecko foot microstructures (Autumn & Gravish, 

2008) and the dynamic camouflage of cephalopods (Hanlon, 2007). However, the protective 

capabilities of scale structures have been utilized throughout history. Scales are lightweight 

(Vernerey & Barthelat, 2014), while combining strength, hardness, toughness and flexibility 

(Funk, et al., 2015), and overlapping scales provide redundancy so that the entire system is not 

compromised if certain sections are damaged (Funk, et al., 2015; Chintapalli, Mirkhalaf, Dastjerdi, 

& Barthelat, 2014). They can also reduce weight, transfer load, redistribute stress (Reichert, 2010; 

Martini, Balit, & Barthelat, 2017) and increase energy dissipation (Reichert, 2010) in armored 

structures. These properties made the biomimetic development of scale structures integral to the 

production of improved armors (Murcia, 2017; White, 2018), which were considered a huge 

milestone in military development (Tsurtsumia, 2011). Some notable examples include armors 

used by the ancient Persians (Murcia, 2017; Ehrlich, 2015), and the Roman Empire’s Lorica 

Squamata and Lorica Plumata armors (Murcia, 2017; Vernerey & Barthelat, 2014; Ehrlich, 2015; 

Miranda, Pajares, & Meyers, 2018), shown in Figure 2.  
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Figure 2. Soldiers in lorica squamata, and fragments of lorica plumata, (Murcia, 2017) 

 

In order to quantify the protective capabilities of these systems, previous works involving fish 

scales in a quasi-static environment have focused primarily on the failure mechanisms of 

individual scales (Martini & Barthelat, 2016; Browning, Ortiz, & Boyce, 2013; Martini, Balit, & 

Barthelat, 2017), and the resistance of fully embedded scale composites to deformation (Browning, 

Ortiz, & Boyce, 2013; Rudykh & Boyce, 2014; Rudykh, Ortiz, & Boyce, 2015). However, the 

potential applications of scaled structures are not only limited to protective equipment, and can 

extend to other areas including actuation (Rudykh & Boyce, 2014) and soft robotic systems (Ali, 

Ebrahimi, Stephen, Warren, & Ghosh, 2020). 

 

1.2 Applications in Soft Robotics 

Soft robotics is a growing field which has vast potential in applications ranging from surgical 

robots (Majidi, 2018; Trivedi, Rahn, Kier, & Walker, 2008; Laschi, Mazzolai, & Cianchetti, 2016; 

Kim, Laschi, & Trimmer, 2013) to agroforestry (Chowdhary, Mattia, Krishnan, Soman, & Lovell, 

2019). Hard robots are typically very stiff, with joints that allow simple, precise movements in 

limited degrees of freedom (Trivedi, Rahn, Kier, & Walker, 2008; Majidi, 2018). Conversely, soft 
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robots are made of compliant materials and are capable of far more complex actions than their 

hard-robotic counterparts, with theoretically infinite degrees of freedom, increasing their 

adaptability (Trivedi, Rahn, Kier, & Walker, 2008). While these soft robots utilize a wide variety 

of actuation mechanisms, ranging from pneumatics to shape memory alloys, their complex actions 

are often derived from the geometric properties of biological systems (Kim, Laschi, & Trimmer, 

2013; Laschi, Mazzolai, & Cianchetti, 2016; Pfeifer, Lungarella, & IIda, 2012; Marchese, Onal, 

& Rus, 2014; Hao, et al., 2017), as shown in Figure 3. 

 

 

Figure 3. Soft robot inspired by earth worm musculature, (Kim, Laschi, & Trimmer, 2013) 

 

To this end, scale systems are an ideal soft robotic material as they provide flexible anisotropic 

properties, according to the tunable distribution of the scales, which could be used to direct the 

system without significantly restricting its range of motion. Several recent studies have explored 

the interactions between scales in the cases of cantilever and three-point beam bending (Ebrahimi, 
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et al., 2019; Ali, Ebrahimi, & Ghosh, 2019; Ali, Ebrahimi, & Ghosh, 2019; Ali, Ebrahimi, & 

Ghosh, 2019; Ebrahimi, Ali, & Ghosh, 2020). However, with the application of scales as external 

structures it becomes necessary to explore the contact mechanics of the scale system under 

indentation loading.  

 

The objective of this study is to develop a model which captures the nonlinear contact behavior of 

a nonlinear elastic substrate with an exoskeletal system comprised of stiff scales, noting the effects 

of the exoskeletal scale components in distributing load across the substrate. The reference 

configuration for the contact experiments is shown in Figure 4. 

 

 

Figure 4. Reference configuration for scaled sample with η=1.6 
 

The model performance is assessed experimentally for the primary configurations, and 3D DIC is 

used in tandem with finite element simulations in ABAQUS to track the distribution of stress and 

strain across the samples. Finite element simulations are also utilized to explore additional cases. 
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1.3 Nomenclature 

The following terms shown in Table 1 are applied throughout the paper to define the variables and 

parameters used in the Hertzian and Kao models. Additional terms shown in Table 2 are applied 

to characterize the contact behavior of the scaled system. 

 

Table 1. Terms used in Hertzian and Kao models 

Terms Descriptions 

F Force 

d Displacement 

a Contact area 

R Cylinder radius 

h Cylinder length 

E Young’s modulus 

ν Poisson’s ratio 𝐶𝐶𝑑𝑑 Material constant 

n Stress exponent for nonlinear elastic materials 

k Contact stiffness 

 

 

Table 2. Additional terms 

Terms Descriptions 𝐿𝐿𝑠𝑠 Total Scale length 𝑙𝑙𝑠𝑠 Exposed scale length 𝑙𝑙𝑒𝑒 Embedded scale length 

t Scale thickness 

δ Distance between scales 

θ Scale angle 

η Ratio of exposed scale length to the distance between scales 
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Sample Configuration and Materials 

The scaled system studied in this paper is comprised of a soft substrate covered in rigid scales. A 

nonlinear elastomeric material was used for the substrate, to mimic soft robotics applications, 

while the scales were made from galvanized steel. The substrate made of Dragon Skin 20 was 

measured to have an elastic modulus of 0.34 MPa, while the scales have an elastic modulus of 

200000 MPa, therefore the scales are assumed to undergo negligible deformation and are taken as 

rigid bodies in the finite element analysis. The substrate material is assumed to be nearly 

incompressible. The dimensions of the substrate are 210 x 25 x 80 mm, and the dimensions of the 

scales are 35 x 25 x 1 mm with an exposed scale length of 24 mm. The distribution and orientation 

of the scales are shown in Figure 5. 

 

  

Figure 5. Schematic diagram of scale orientation and distribution 
 

The samples are studied under loading conditions with four different cylindrical indenters with 

widths of 25 mm and radii of 2.5, 25, 37.5 and 50 mm. These indenters are 3D printed from a resin 

material with an elastic modulus of 2600 MPa (Formlabs, 2019), and are also taken to be rigid as 

compared to the substrate. 
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For each sample the variable 𝜂𝜂, defined in eq. (1), is varied to show the effects of the scale 

distribution on the system. 𝜂𝜂 =
𝑙𝑙𝑠𝑠𝛿𝛿                                                                     (1) 

For the primary configurations θ is held constant at 10° and η is varied by holding the exposed 

scale length constant and changing the distance between scales, as shown in Table 3.  

 

Table 3. Primary sample configurations 

Configuration Material η 𝑙𝑙𝑠𝑠 δ θ 

1 Dragon Skin 20 Unscaled - - - 

2 Dragon Skin 20 1.2 24 20 10° 

3 Dragon Skin 20 1.6 24 15 10° 

4 Dragon Skin 20 2.4 24 10 10° 

 

 

Three additional cases are explored using finite element simulation for a total of five additional 

configurations using the second primary configuration as a standard, as shown in Table 4. The first 

additional case varies θ in order to investigate the role of the scale angle in the system response. 

The second additional case explores the validity of the model for different materials by running 

simulations for samples made of Dragon Skin 10 and Dragon Skin 30. The third additional case 

studies the effects of the exposed scale length by varying 𝑙𝑙𝑠𝑠 while holding δ constant. 

 

Table 4. Additional sample configurations 

Configuration Material η 𝑙𝑙𝑠𝑠 δ θ 

5 Dragon Skin 20 1.6 24 15 5° 

6 Dragon Skin 10 1.6 24 15 10° 

7 Dragon Skin 30 1.6 24 15 10° 

8 Dragon Skin 20 1.2 18 15 10° 

9 Dragon Skin 20 2.4 36 15 10° 
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Additionally, material properties in Kao’s elastic model are derived for each material considered, 

as shown in Table 5. For the Dragon Skin 20 material, the elastic modulus, material constant and 

material exponent are derived experimentally. For additional materials the elastic moduli are given 

(Smooth-On, Inc.), and the material constants and material exponents are derived from the finite 

element simulation results. 

 

Table 5. Material properties 

Material E 𝐶𝐶𝑑𝑑 n 

Dragon Skin 10 0.15 2.58 0.625 

Dragon Skin 20 0.34 5.813 0.625 

Dragon Skin 30 0.6 10.33 0.625 

 

 

2.2 Hertzian Contact of Elastic Cylinders 

Hertzian contact is originally defined for the contact of two elastic spheres, but can be extended 

for simple geometries (Popov, 2017). This study looks at the contact of two elastic cylinders with 

parallel axes. The half width of Hertzian contact area of the two elastic cylinders, which will be 

referred to simply as the contact area, is given by eq. (2). 

𝑎𝑎 = � 4𝐹𝐹𝐹𝐹𝜋𝜋ℎ𝐸𝐸∗                                                                 (2) 

A physical representation of the contact area is given in Figure 6. 
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Figure 6. Physical representation of contact area 
 

The parameters 𝐸𝐸∗ and 𝑅𝑅 are functions of the material properties and radii, respectively, of both 

cylinders, as shown in eq. (3) and (4). 

1𝐸𝐸∗ =
1−𝜈𝜈12𝐸𝐸1 +

1−𝜈𝜈22𝐸𝐸2                                                            (3) 

1𝐹𝐹 =
1𝐹𝐹1 +

1𝐹𝐹2                                                                (4) 

The contact of an elastic cylinder with an elastic half-space can be taken as a special case where 

the radius of the second cylinder is infinity. The contact area is related to the displacement by eq. 

(5), giving eq. (6) as a linear relation between the force and displacement. The indenter radius 

drops out of the force-displacement relation for the cylindrical case. 𝑑𝑑 =
𝑎𝑎2𝐹𝐹                                                                    (5) 𝐹𝐹 ≈ 𝜋𝜋4 𝐸𝐸∗ℎ𝑑𝑑                                                               (6) 
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Traditional Hertzian contact assumes frictionless, non-adhesive, linear deformation in the elastic 

region, with an area of contact much smaller than the relative size of the bodies in contact. 

Therefore, this theory is insufficient for the case of nonlinear elastic materials undergoing 

significant deformation. 

 

2.3 Kao’s Elastic Model 

The elastomeric materials used in soft robotics tend to display nonlinear properties which differ 

significantly from classical Hertzian contact model. Xydas and Kao developed a nonlinear elastic 

contact model for soft robotic fingers, which subsumes the Hertzian model, to better define the 

contact behavior of these materials (Xydas & Kao, 1999; Siciliano & Khatib, 2016). Kao’s elastic 

model is used to define the contact mechanics of soft robotic fingers and originally defines the 

contact of an elastic sphere with an elastic half plane but, as with the classical Hertzian model, can 

also be extended for simple geometries. The generalized model can be taken in the form, 

𝐹𝐹𝐴𝐴 = 𝑐𝑐1𝑎𝑎1𝑛𝑛                                                                 (7) 

The parameter A is the total area over which the force is distributed, 𝑐𝑐1 is a constant which is 

related to the indenter radius and nondimensionalized stress components, and n is the stress 

exponent for nonlinear elastic materials. It should be noted that, contrary to the linear Hertz 

equation, the force-displacement relation for the nonlinear cylindrical case does depend on the 

indenter radius, as shown in Figure 7. The total areas for the spherical and cylindrical cases are 

given as the projection of the indenter shape, shown in eq. (8) and (9) respectively. 𝐴𝐴𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜋𝜋𝑎𝑎2                                                            (8) 𝐴𝐴𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑑𝑑𝑒𝑒𝑒𝑒 = 2𝑎𝑎ℎ                                                           (9) 
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Taking eq. (7) for the cylindrical case gives 𝐹𝐹 = 𝐶𝐶𝑎𝑎1𝑛𝑛+1                                                            (10) 

Substituting eq. (5), this takes the form 𝐹𝐹 = 𝐶𝐶𝑑𝑑𝑑𝑑𝑛𝑛+12𝑛𝑛                                                             (11) 

 

 

Figure 7. R dependence for an unscaled nonlinear elastic material with E = 0.19 MPa 

 

This relation can be simplified by substituting eq. (12) 𝜁𝜁 =
𝑐𝑐+12𝑐𝑐                                                                 (12) 

This equation gives the nonlinear force-displacement relationship for nonlinear elastic materials.  𝐹𝐹 = 𝐶𝐶𝑑𝑑𝑑𝑑𝜁𝜁                                                              (13) 

Generally, it can be assumed that 0 ≤ n ≤ 1, so the exponent in eq. (13) is 
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1 ≤ 𝜁𝜁 ≤ ∞                                                             (14) 

Kao et. al. (Kao & Yang, 2004; Siciliano & Khatib, 2016) also define a contact stiffness k, shown 

in eq. (15). 𝑘𝑘 =
𝜕𝜕𝜕𝜕𝜕𝜕𝑑𝑑                                                                  (15) 

The stiffness is expanded into three forms as functions of the displacement and force, as shown in 

eq. (16)-(18). 𝑘𝑘(𝑑𝑑) = 𝐶𝐶𝑑𝑑𝜁𝜁𝑑𝑑𝜁𝜁−1                                                         (16) 

𝑘𝑘(𝐹𝐹) = 𝐶𝐶𝑑𝑑1𝜁𝜁𝜁𝜁𝐹𝐹𝜁𝜁−1𝜁𝜁                                                          (17) 𝑘𝑘(𝐹𝐹,𝑑𝑑) = 𝜁𝜁 𝐹𝐹𝑑𝑑                                                            (18) 

The contact stiffness is plotted as a function of the displacement in Figure 8, below. 

 

 

Figure 8. Contact stiffness k(d) for Dragon Skin 10, 20 and 30  
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1 Scale Contact Characteristics 

The experimental data shows an unexpected behavior in the force-displacement relation for the 

unscaled and scaled samples in configurations 1-4, as shown in Figure 9. While the scaled samples 

show a stiffening behavior, there is an unintuitive offset in the response which displays a 

significantly lower stiffness than that of the unscaled sample. This is found to be due to the 

interaction between the first scale and the indenter where the embedded portion of the scale resists 

its rotation, but before the substrate is sufficiently loaded for the system to be dominated by an 

indentation response. Therefore, the force-displacement relation for the scaled system is divided 

into two separate regimes: an initial regime dominated by the rotation of the first exposed scale 

and a second regime dominated by deformation of the substrate material. 

 

 

Figure 9. Force-displacement relation for unscaled and η=1.6 configurations 
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For the primary configurations, the length of the first regime is approximated as the point where 

the first scale contacts the second scale. In Figure 10 it is shown that, at the point of scale contact, 

the deformation of the substrate material is not significant. The axis of scale rotation is 

approximated to occur at the midpoint of the embedded scale length, 𝑙𝑙𝑒𝑒. 

 

 

Figure 10. Scale rotation and indentation point 

 

The first regime behavior is dependent on the initial orientation of the scales. Therefore 

configuration 5 is tested in ABAQUS, to observe the response of a system with a very small θ, 

where the scales are nearly touching. It is shown that for very small θ the first regime disappears, 

as expected. However, it also shows a significant stiffening response compared with the reference 
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configuration, as shown in Figure 11. It is observed that this response is due to the decreased θ 

allowing a greater number of scales to come into contact sooner. Due to the computational cost of 

simulating configurations with variable θ, further experiments are required to fully explore its role 

in the system response. 

 

 

Figure 11. First regime disappears for low θ 

 

It is also notable that the effects of the indenter radius are found to be negligible for the range of 

indenters tested, as shown in Figure 12. In the unscaled case, the indenter radius affects the system 

response by altering the contact area. Therefore, it is determined that the contact area is no longer 

dependent on the indenter radius for the scaled system. 
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Figure 12. Effects of indenter radius for scaled sample with η=1.6 

 

This study is primarily focused on the quasi-static case; however, a range of test rates are also 

explored to examine the effects of the scale system together with the rate change properties of the 

substrate. While this area requires further study, in the initial data it is observed that the 

nonlinearity of the unscaled response decreases with increasing test rate, where the response 

becomes more linear as 𝑛𝑛 → 1. Interestingly, the scaled system appears to demonstrate the 

opposite result, with an increasingly nonlinear response. This suggests that there may be an 

additional rate dependent mechanism in the scaled system which opposes and overtakes the 

decrease in nonlinearity of the unscaled material response. The unscaled and scaled responses are 

plotted below in Figures 13 and 14, respectively. Looking at the logarithmic plots for these 

respective cases, in Figures 15 and 16, this deviation appears to occur specifically in the early 

stages of contact. The apparent rate change in the material properties of the unscaled system is 

shown in Figure 17 and Table 6. 
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Figure 13. Variable test rate for unscaled configuration 

 

 

Figure 14. Variable test rate for configuration 3 
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Figure 15. Variable test rate for unscaled configuration, in logarithmic domain 

 

 

Figure 16. Variable test rate for configuration 3, in logarithmic domain 
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Figure 17. Rate change in material properties for the unscaled configuration 

 

Table 6. Rate change in material properties of unscaled Dragon Skin 20 

Rate (mm/s) 𝐶𝐶𝑑𝑑 n 

0.1 5.813 0.625 

0.5 6.104 0.633 

2 6.511 0.649 

5 6.918 0.667 

10 7.15 0.676 

 

3.2 First Regime of Scale Contact 

The first regime of scale contact is estimated to extend to the point where the first scale contacts 

the second scale for the primary configurations. This displacement 𝑑𝑑𝑒𝑒1 is demonstrated to be 

dependent on δ, 𝑙𝑙𝑠𝑠 and 𝐿𝐿𝑠𝑠, and independent of the material stiffness. Increasing δ lengthens 𝑑𝑑𝑒𝑒1 by 

requiring the scales to rotate further before coming into contact, as shown in Figure 18. Conversely, 
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increasing the ratio of exposed scale length to total scale length is shown to decrease 𝑑𝑑𝑒𝑒1, as there 

is less distance for the scales to rotate before the substrate begins to significantly deform.  

 

 

Figure 18. Scale cross section and distance between scales 

 

Analyzing the data from the primary and additional configurations, 𝑑𝑑𝑒𝑒1 can be roughly 

approximated by eq. (19). 

𝑑𝑑𝑒𝑒1 =
1120 �𝐿𝐿𝑠𝑠𝑙𝑙𝑠𝑠�0.7

(𝛿𝛿 − 𝑡𝑡)sin(θ)                                             (19) 

Where the aforementioned relations are expressed by equations (20) and (21). 𝑑𝑑𝑒𝑒1 ∝ (𝛿𝛿 − 𝑡𝑡)sin(θ)                                                     (20) 

𝑑𝑑𝑒𝑒1 ∝ �𝐿𝐿𝑠𝑠𝑙𝑙𝑠𝑠�0.7
                                                          (21) 

The force-displacement relation for the first regime can be roughly approximated by the equation 

for a torsional spring, shown in eq. (22), where T is the torque, κ is the rotational spring constant 

and 𝜃𝜃𝑇𝑇 is the angle the scale rotates through. 𝑇𝑇 = 𝜅𝜅𝜃𝜃𝑇𝑇                                                               (22) 

The torque T is given by eq. (23), where 𝑙𝑙𝑒𝑒 is the rotational length, shown in eq. (24). 



22 

 

𝑇𝑇 = 𝐹𝐹𝑙𝑙𝑒𝑒                                                                (23) 𝑙𝑙𝑒𝑒 = 𝑙𝑙𝑠𝑠 +
𝑙𝑙𝑒𝑒2                                                               (24) 

The angle 𝜃𝜃𝑇𝑇, shown in eq. (25) is dependent on the displacement and rotational length.  𝜃𝜃𝑇𝑇 = 𝑙𝑙𝑠𝑠𝑛𝑛−1 �𝑑𝑑𝑙𝑙𝑟𝑟�                                                         (25) 

The spring constant is dependent on δ, the embedded scale length, and the nonlinear stiffness, 

which is proportional to 𝑑𝑑𝜁𝜁−1. Decreasing δ increases the composite density in the embedded 

portion of the sample resulting in greater subsurface interference which is shown to increase the 

stiffness in the first regime. Decreasing the ratio of exposed scale length to total scale length is 

shown to increase the stiffness in the first regime, because there is a greater percentage of the scale 

that is embedded and resisting the rotation, as shown in Figure 19.  

 

 

Figure 19. Embedded Scale Interactions 

 

Analyzing the data from the primary and additional configurations, the force-displacement relation 

is given by eq. (26) 

𝐹𝐹𝑒𝑒1 =
32 1𝑙𝑙𝑟𝑟 𝐸𝐸𝑙𝑙𝑒𝑒2ℎ𝑑𝑑𝜁𝜁−1 �𝑙𝑙𝑒𝑒𝛿𝛿�1.5 𝑙𝑙𝑠𝑠𝑛𝑛−1 �𝑑𝑑𝑙𝑙𝑟𝑟�                                        (26) 

Where the aforementioned κ dependencies are given by eq. (27) and (28). 
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𝜅𝜅 ∝ �𝐸𝐸𝑑𝑑𝜁𝜁−1�(𝑙𝑙𝑒𝑒ℎ) �𝑙𝑙𝑒𝑒2�                                                     (27) 

𝜅𝜅 ∝ �𝑙𝑙𝑒𝑒𝛿𝛿�1.5
                                                             (28) 

The model for the first regime is plotted against the experimental data in Figures 20 and 21. It is 

noted that the configuration with very long exposed scale length, shown in Figure 22, remains in 

the first regime following contact with the second scale due to the point of contact being far 

removed from the scale base. This results in a stiffening within the first regime at the point of 

contact. 

 

 

Figure 20. First regime force-displacement relation for varied δ 
 



24 

 

  

Figure 21. First regime force-displacement relation for varied 𝑙𝑙𝑠𝑠 
 

 

Figure 22. Indentation point for 𝑙𝑙𝑠𝑠=36 configuration 
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3.3 Strain Distribution and Contact Area 

Finite element simulation is utilized to analyze the strain distribution across the unscaled and 

scaled configurations, as shown in Figure 23, in order to determine the underlying mechanisms 

responsible for the system response in the second regime. For a given indentation depth, it is shown 

that the inclusion of scales causes the strain to be distributed across a greater portion of the sample. 

 

 

Figure 23. Strain and Strain Energy for plain and scaled samples, shown in ABAQUS 

 

This strain is distributed cleanly from the contact surface for the unscaled configuration. For the 

scaled configuration, it is shown that the strain stems from the embedded ends of the scales, 

forming a much rougher surface distribution. Relating this to the unscaled configuration, this is 
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demonstrated to extend the contact surface beyond the radius of the indenter, as shown in Figure 

24. This is observed, in both experimental data and finite element results, to increase both the 

stiffness and nonlinear response of the system.  

 

 

Figure 24. Hertzian vs Effective Scaled contact area, shown in ABAQUS 

 

The primary configurations are also analyzed through digital image correlation, as shown in Figure 

25. For a given load, it is observed that increasing η results in a greater distribution throughout the 

sample, decreasing the magnitude of the strain. This is also observed to coincide with an increase 

in the surface distribution. 
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Figure 25. DIC results for primary configurations 

 

These results are compared with the finite element simulations, as shown in Figure 26, and confirm 

that the strain distribution stems from the embedded ends of the scales and extends beyond the 

indenter radius at the surface. This is consistent with the previous observation that the system 

response is not dependent on the indenter radius. From these results, a numerical model is 

developed to approximate the stiffening response of the second regime of the scaled system as an 

artificial increase in the effective Hertzian contact area. 
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Figure 26. ABAQUS and DIC results for displacement and strain in final stress state 

 

3.4 Second Regime of Scale Contact 

The force-displacement relation for the second regime is developed from Kao’s elastic model, 

where eq. (29) is derived from eq. (16) and (18). This separates eq. (13) into linear and nonlinear 

components which can be represented as an effective nonlinear contact stiffness and a linear 

displacement. 𝐹𝐹 = (𝐶𝐶𝑑𝑑𝑑𝑑𝜁𝜁−1)𝑑𝑑                                                          (29) 

The effective contact area and indenter radius for the scaled system are altered by the presence of 

the exposed scales at the surface of the substrate, as shown in Figure 24. Notably, for the range of 
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indenters studied, the true indenter radius did not significantly alter the response of the system. 

Relating the modified parameters to eq. (5), the ratio of the effective displacement to the true 

displacement is given by eq. (30), 

𝑑𝑑𝑠𝑠𝑑𝑑 =
𝑎𝑎𝑠𝑠2𝐹𝐹𝑎𝑎2𝐹𝐹𝑠𝑠                                                               (30) 

Where 𝑑𝑑𝑠𝑠, 𝑎𝑎𝑠𝑠 and 𝑅𝑅𝑠𝑠 are the effective displacement, effective contact area and effective indenter 

radius for the scaled system. This expression can be inserted into eq. (29) to express the effects of 

the scales as a modifier to the effective contact stiffness, as shown in eq. (31). 𝐹𝐹𝑠𝑠 = 𝐶𝐶𝑑𝑑𝜙𝜙𝜁𝜁−1𝑑𝑑𝜁𝜁                                                          (31) 

Where ϕ is the stiffening term given by eq. (32). 𝜙𝜙 = 
𝑎𝑎𝑠𝑠2𝐹𝐹𝑎𝑎2𝐹𝐹𝑠𝑠                                                                (32) 

From the experimental results, ϕ is determined to be proportional to the displacement and the 

square root of η, as shown in eq. (33), 𝜙𝜙 =
25 𝜂𝜂12𝑑𝑑                                                               (33) 

Which expands eq. (31) to the form given by eq. (34). 

𝐹𝐹𝑠𝑠 = 𝐶𝐶𝑑𝑑 �25 𝜂𝜂12�𝜁𝜁−1 𝑑𝑑2𝜁𝜁−1                                                   (34) 

The second regime model is plotted with the experimental data in Figure 27. It is shown that the 

nonlinear stiffening response is fully captured. 
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Figure 27. Second regime force-displacement relation 
 

Separating the regimes,  

𝐹𝐹𝑒𝑒2 =
32 1𝑙𝑙𝑟𝑟 𝐸𝐸𝑙𝑙𝑒𝑒2ℎ𝑑𝑑𝑒𝑒1𝜁𝜁−1 �𝑙𝑙𝑒𝑒𝛿𝛿�1.5 𝑙𝑙𝑠𝑠𝑛𝑛−1 �𝑑𝑑𝑟𝑟1𝑙𝑙𝑟𝑟 � + 𝐶𝐶𝑑𝑑 �25 𝜂𝜂12�𝜁𝜁−1 (𝑑𝑑 − 𝑑𝑑𝑒𝑒1)2𝜁𝜁−1                  (35) 

So, the full model takes the form, 

�𝐹𝐹𝑒𝑒1 =
32 1𝑙𝑙𝑟𝑟 𝐸𝐸𝑙𝑙𝑒𝑒2ℎ𝑑𝑑𝜁𝜁−1 �𝑙𝑙𝑒𝑒𝛿𝛿�1.5 𝑙𝑙𝑠𝑠𝑛𝑛−1 �𝑑𝑑𝑙𝑙𝑟𝑟�                                                                     𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 ≤ 𝑑𝑑𝑒𝑒1𝐹𝐹𝑒𝑒2 =
32 1𝑙𝑙𝑟𝑟 𝐸𝐸𝑙𝑙𝑒𝑒2ℎ𝑑𝑑𝑒𝑒1𝜁𝜁−1 �𝑙𝑙𝑒𝑒𝛿𝛿�1.5 𝑙𝑙𝑠𝑠𝑛𝑛−1 �𝑑𝑑𝑟𝑟1𝑙𝑙𝑟𝑟 � + 𝐶𝐶𝑑𝑑 �25 𝜂𝜂12�𝜁𝜁−1 (𝑑𝑑 − 𝑑𝑑𝑒𝑒1)2𝜁𝜁−1          𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 > 𝑑𝑑𝑒𝑒1      (36) 

Simulations run for Dragon Skin 10 and Dragon Skin 30 materials conform to the model for both 

regimes, as shown in Figure 28.  
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Figure 28. Full model force-displacement relation for varied material 
 

3.5 Anisotropy of the Contact Surface 

While the contact radius of the indenter is shown to be insignificant in the force-displacement 

response of the scaled system, it is observed to play a key role in the stress distribution through 

the contact surface. The contact surface shows an anisotropic distribution, with the scales to the 

right of the indenter coming into contact and distributing the load, and the scales to the left being 

pulled down by the associated deformation. There is an increasingly anisotropic response for 

indenters of decreasing radius, as larger indenters can come into contact with additional scales on 

the left, further distributing the load. For clarity, this distribution is displayed at a greater 

indentation depth for a nonlinear elastic material with lower stiffness, where 𝐸𝐸 = 0.19 MPa, in 

Figure 29. This observed to be a size dependent response, where the ratio of indenter radius to total 
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scale length is significant and increasing this ratio decreases the anisotropy in the system as the 

indenter becomes capable of contacting additional scales.  

 

 

Figure 29. Contact for sample with E=0.19 MPa and η=1.6, where R=2.5, 37.5 and 50 mm 

 

This anisotropic distribution results in the strain being concentrated to the left of the indenter and 

propagating from left to right, as shown in Figure 30. This response breaks the symmetry of the 

load across the sample and provides an avenue to draw concentrated load away from sensitive 

regions. 
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Figure 30. Load distribution for configuration with η=2.4, where R=37.5mm 
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CHAPTER 4: CONCLUSIONS AND FUTURE WORK 

4.1 Conclusions 

From the primary and additional configurations tested it was shown that the inclusion of 

exoskeletal scale components greatly alters the distribution of strain across a substrate under 

indentation loading. This alteration is attributed to an artificial increase in the effective Hertzian 

contact area of the system, caused by an extension of the loading surface through the interactions 

of the scales. Notably, the scales are shown to trivialize the effects of indenter radius for the range 

of indenters tested, verifying that in the tested range the distribution of the scales is what 

determines the effective contact area of the system. A numerical model is developed, from the 

experimental and simulated data, to capture the stiffening effects resulting from the scale 

distribution. This model divides the scale contact into two regimes. The first regime is dominated 

by scale rotation, while the second regime shows the response of the full system as the substrate 

is deformed. The length of the first regime is approximated by the modified arc lengths of the 

rotating scales. The force-displacement relation of the first regime is approximated through the 

equation of a torsional spring. The second regime is developed from Kao’s elastic model. The 

tunable stiffness of the second regime gives the scale structures the potential to be utilized as a 

mechanism for complex motion in soft robotics applications. The tunable length and stiffness of 

the first regime also have potential applications in areas such as collision control, providing 

feedback before the main body is contacted, as shown in Figure 31. Additionally, the size 

dependent anisotropic load distribution of the scaled system has the potential to be utilized in 

directing concentrated load away from sensitive regions, such as the electronic components in soft 

robotics applications. 
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Figure 31. Applications in collision control 

 

4.2 Future Work 

Future considerations include a more thorough analysis of the response of the first regime, through 

the manipulation of additional parameters such as embedded scale length. Variation of the testing 

rate also requires further study, to quantify the observed rate dependent nonlinearity of the scaled 

system. The effects of the scale angle θ also require further experimental study to analyze its role 

in the stiffening response of the scaled system. Additionally, while it is shown that the indenter 

radius is not significant as it decreases in magnitude, indenters with increasing radii could 

significantly alter the system response by initially contacting multiple scales. To this end, there 

could be value in exploring the significance of the ratio of indenter radius to scale length. Further 

considerations could include the effects of oblique loading, and the addition of tunable parameters 

into the system. These could include configurations with patterns of scales with differing material 

properties, and the thermal tunability of scales made of metals with low melting points, such as 

Wood’s or Field’s metal.  
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