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ABSTRACT 

Boron carbide (B4C) is one of the most important opaque boride ceramics that has high hardness 

and Young’s modulus that along with low density lead to a significant resistance to ballistic impact 

and, thus, B4C is broadly used as a protective material. B4C has also high neutron capturing cross 

section; therefore, it is used as control rods and neutron absorption shielding in nuclear reactors. 

In this work thermal, electrical and mechanical properties of dense B4C ceramics (99%) sintered 

using Spark Plasma Sintering (SPS) were investigated. The Young’s modulus of B4C measured 

by three different techniques – IE, RUS, and nanoindentation showed a very good overlap in 

values, which ranges from 419.2  47.3 GPa for nanoindentation to 458.7 GPa for RUS 

measurements at room temperature. The mean contact pressure-contact depth plots obtained from 

load-displacement nanoindentation data indicated pop-in events during loading and an “elbow” 

event during unloading, both of which are indicative of possible structural changes in B4C structure 

during nanoindentation. The appearance of “elbow” deviations in load-displacement 

nanoindentation curves of B4C was detected for the first time. The 4-point bending strength of the 

B4C ceramics was equal to 585±70 MPa with Weibull parameter of 9.9 and scale parameter equal 

to 611 MPa. The biaxial strength of B4C was measured to be much lower and equal to 238.6±122 

MPa with Weibull parameters of 2.2 and scale parameter equal to 271 MPa. To the best of our 

knowledge the biaxial strength of B4C was also measured for the first time. In this work it was 

determined that failure of B4C occurred by fully transgranular fracture, with no intergranular 

failure present on fracture surface. B4C’s fracture toughness Klc = 3±0.19 MPa×m1/2 was measured 

using SEVNB technique, which is similar to previously reported values.  
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CHAPTER 1: INTRODUCTION   

 Borides – A Unique Class of Ceramic Materials 

Borides are very important large group of compounds that provides a wide range of useful thermal, 

electrical, physical and mechanical properties for a variety of engineering applications [1], [2], [3], 

[4]. Borides are ceramic materials which form bonds, mostly covalent bonding between boron and 

many other chemical elements. As boron, the chemical element #5 in periodic table, has 3 valence 

electrons, it tends to form strong covalent bonding in form of clustering, in which B12 icosahedra 

or cuboctahedra are common structural units [5], [6], [7], [8]. Within B - clusters, the valence 

electron density is high, so the covalent bonding is responsible for high melting point, high 

hardness, low compressibility, and low coefficient of thermal expansion. The binary compounds 

with boron include monoborides (TiB, MnB, CrB), diborides (MgB2, TiB2, HfB2, ZrB2), 

tetraborides (FeB4, WB4, CrB4) and higher borides having one, two, four as well as more boron 

atoms in the crystal lattice of compounds, respectively.  

Borides such as magnesium diboride (MgB2), titanium diboride (TiB2), hafnium diboride (HfB2), 

zirconium diboride (ZrB2), boron carbide (B4C) and many others are attracting significant interest 

due to the demand for high-performance materials nowadays. As an example of the unique 

properties of borides, MgB2 was reported to be a high temperature superconductor with a transition 

temperature of 39 K [9], which allowed this boride to be used in numerous exciting applications, 

such as Magnetic Resonance Imaging systems, fault current limiters, transformers, motors and 

generators, refrigerators, superconducting magnetic energy storage and magnetic levitated trains 

[10], [11], [12]. Another important binary boride is TiB2, which has high hardness and wear 
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properties, and, thus, broadly used for example, in cutting tools inserts or electrodes in metal 

smelting [13], [14], among many other applications [15], [16], [17]  

 Some other borides, HfB2 and ZrB2, stand out and have a great asset for aerospace industry, mainly 

because of their superior thermal conductivity, oxidation resistance and high melting temperatures 

of over 3000˚C, which allow them to be used in critical applications of hypersonic vehicles, such 

as leading edges and nose cones. The photograph of the ZrB2-SiC ceramic sample is shown in 

Figure 1, before and during the high temperature oxidation testing [18]. 

 

Figure 1 ZrB2-SiC ceramic composite sample before testing (a), inside the arc-jet camera during 

high temperature testing (b) [18]  

B4C in another important boride ceramics. Due to its high hardness and Young’s modulus, as well 

as very low density B4C found an immense application as protective materials. It is used as 

personal body armor as well as ballistic plates for helicopters or automotive vehicles [19], [20]. 
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Boron carbide is also broadly used as abrasives, such as sand nozzles blasters and other wear 

applications [21], [20], [19].  

Boron carbide is being studied as a prospective material for nuclear applications as a shielding 

material and neutron absorbent for control rods (Figure 2) [22], [23]. 

 

Figure 2 Scematic of B4C control rod oxidation behaviour testing at BECARRE-III facility [24] 

Excellent thermal conductivity as well as thermal shock resistance of boron carbide integrated with 

other compounds to form composites is suitable for nuclear fusion  reactors applications [23], [25]. 

A schematic presentation of a bundle assembly with 21 rods is shown in Figure 3, when the central 

rod is a control rod with B4C pellets surrounded by 20 rods with ZrO2 pellets and the assembly is 

used in pressurized water nuclear reactors and boiling water nuclear reactors. 
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Figure 3 Schematic presentation of B4C rods in a bundle of a QUENCH facility for control rod 

behavior testing [26] 

 Special QUENCH tests are performed to determine the degradation of B4C control rod [26]. 

Neutron absorption of B4C is also used as a therapy for cancer treatment [27]. In addition, boron 

carbide is a great material for electronics which operate a high temperature due to its excellent 

thermal properties.  

Processing of Boride Ceramics 

There are numerous processing techniques used to process different binary boride ceramics [9], 

[28], [29]. For the processing of bulk polycrystalline borides, the most used sintering techniques 

are pressureless sintering in the control protective atmosphere, hot pressing, hot isostatic pressing 

and Spark Plasma Sintering (SPS). The most recent and very promising sintering technique is a 
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Flash Spark Plasma Sintering (FSPS), where densification of hard to sinter borides can occure 

within seconds at high sintering temperatures. Below is a brief overview of sintering techniques 

used to process dense boride ceramics, such as B4C, HfB2 and ZrB2.  

Pressureless sintering  

Pressureless sintering process is one of the technologically simplest ways of ceramic material 

production [30], [31]. In well-developed pressureless sintering technique, the powder of specific 

boride composition is compacted to a specific shape either using uniaxial compaction, slip casting, 

3D printing to prepare the raw shape of the parts for sintering. The choice for powder compacting 

is mostly based on the shape complexity of the fabricated ceramics. The uniaxial die pressing is 

the most widely used technique of the ceramic’s compaction process, which consists of two 

punches to which the pressure is being applied. The powder with an addition of binder to reduce 

friction is being places in the die between the two punches. Once the powder is placed in the die 

weather static or dynamic compaction is being used for the process, by applying constant pressure 

for typically a few seconds or a pulse pressure wave for a few milliseconds, respectively [32]. 

After the powder is compacted, it is placed in the furnace, typically under protective Ar 

environment or vacuum, for pressureless sintering. The sintering profile is chosen in the manner 

that it would allow to achieve a full densification of the material upon sintering at high temperature. 

While the sintering time could be very long, such long as 10-24 hours or more, however this 

technique allows to obtain parts with complex shapes that often do not need any further treatment, 

such as machining or sand blasting, and are ready to be used in specific applications [33], [30]. 

However, the sintering time for the material production is relatively high which increases the cost 

of energy and in addition, it is also difficult to achieve full density of the borides.  
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Hot pressing  

Hot pressing technique of ceramics is similar to the pressureless sintering; however, the pressure 

is applied during high temperature sintering that significantly facilitate densification [34], [35]. 

Hot pressing technique allows to reduce the sintering time by applying pressure externally which 

allows to densify the ceramics faster [36]. The uniaxial hot pressing is usually performed in a 

graphite die, however, other materials, such as silicon carbide (SiC) can also be used for the 

packing purposes in hot pressing. After boride ceramics packing the die is placed inside of the 

vacuum chamber, where both high temperature and high uniaxial pressure are applied. Both 

induction and resistance heating can be used depending on the design of the hot press machine 

[36]. A schematic presentation of a graphite die packed with a powder inside ready for hot pressing 

is shown in the Figure 4. 

 

Figure 4 Hot pressing technique [36] 

Hot Isostatic Pressing  

Hot isostatic pressing (HIP) is very similar sintering technique to hot pressing, however, instead 

of uniaxial pressure used in hot pressing, the hydrostatic pressure using gas or liquid media are 
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applied during sintering of boride ceramics [37], [38]. It has many advantages, as the pressure 

values are not limited by a strength of graphite die used in hot pressing, and pressure could reach 

much higher values, thus, allowing to produce ceramics with better properties. Also, the shapes of 

the ceramics could be much more complex by using HIP, unlike the shapes of the material 

processed by hot pressing, when only simple shapes can be produced. The schematic setup of hot 

isostatic pressing is presented in Figure 5. 

 

Figure 5 A schematic of hot isostatic pressing setup [39] 

Spark Plasma Sintering (SPS)  

Spark Plasma Sintering (SPS) technique, sometimes also called Field Assisted Sintering 

Technique (FAST) is used as a fast and at the same time energy efficient way of ceramics 

processing [40]. SPS, like hot pressing, is based on the simultaneous application of high 

temperature and high axial pressure, however, unlike hot pressing, the electric current also passes 
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through a powder specimen. Many research was performed to understand as to why the 

densification of the ceramics by SPS is much faster in comparison with hot pressing [41], [42]. It 

was specified the sintering mechanisms during SPS includes the diffusion, electromigration, 

surface tension, as well as effect of external load that all contribute to the fast sintering, which 

typically occurs both at lower temperatures and shorten time as compared to the hot pressing. The 

high heating rates also increase the sinterability of the powder by suppressing surface diffusion at 

the early stages of sintering, in addition to promoting limited grain growth of ceramics [41], [43]. 

In [41] the following thermal and athermal phenomena contribute to the efficient sintering of hard 

to sinter borides along with other ceramics when SPS technique is used: 

“Thermal: 

(1) high heating rates, which enable powder systems’ higher sinterability; 

(2) high local temperature gradients, which provide conditions for thermal diffusion; 

(3) highly nonuniform local temperature distributions, which cause local melting within 

interparticle contact areas; and 

(4) highly nonuniform macroscopic temperature distributions, which create thermal stresses 

intensifying dislocation creep. 

Athermal: 

(1) electromigration and intensified diffusion in ionic conductors; 

(2) electroplasticity mechanisms; 

(3) ponderomotive forces; 

(4) electromagnetic ‘‘pinch’’ effect; and 
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(5) dielectric breakdown of oxide films (cleansing effect) and defect generation at grain 

boundaries.” 

A schematic presentation of the SPS assembly is presented in Figure 6, where boride powder is 

located between two punches in a graphite die. The procedure is usually performed inside of a 

vacuum chamber, but argon or nitrogen environment can also be used, depending on the powder 

composition. The SPS process starts with an application of pulsed current. The heating process in 

SPS occurs by passing a current, such as pulsed DC goes through the die and the sample, if the 

sample is a conductor. The pressure is applied externally according to the predefined sintering 

route. The application of the current for the heating allows to achieve high heating rates, that have 

significant effect on sinterability. The schematic presentation of the SPS set up is shown in Figure 

6. At this time, SPS is the most promising and well-developed technique to sinter boride ceramics, 

which was used in the presented research. 

 

Figure 6 A schematic presentation of Spark Plasma Sintering (SPS) process [44] 
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Flash Spark Plasma Sintering (FSPS) 

The Flash Spark Plasma Sintering Technique (FSPS) was introduced by the researchers at Queen 

Mary University of London and it allows to densify the material ultra-rapidly in a matter of seconds 

[45], [46], [47], [48], [49]. This densification of the material during FSPS happens due to high 

electric current that goes through sufficiently conductive sample developing ultra-fast heating rate 

up to 10 000 ˚C/min which dramatically reduces the time spent for the powder consolidation to 5-

15 seconds. The voltage, which is being applied for the FSPS process, is ranging around 50-150 

volts or even higher, as compare to the conventional Spark Plasma Sintering process where the 

voltage is less than 10V, which allows increase the heating rates during the FSPS dramatically 

[48]. A schematic of FSPS assembly is presented in the Figure 7, which closely resemble the 

assembly used in conventional SPS.  

 

Figure 7 A schematic of Flash Spark Plasma Sintering (FSPS) [49] 
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As an example, in [45] it was reported that the densification of SiC/B4C happened in just 2-3 

seconds of discharge time from a powder mixture. Depending on a size of a graphite die as well 

as the desired sample size the FSPS time may take up to 60 seconds [48], [49]. 

Crystal Structure and Mechanical Properties of B4C 

Density  

As B4C ceramics consist of the very light B and C elements of the periodic table, and it has a very 

low density. Its density varies in the range of 2.46 g/cm3 for B10.4C to 2.52g/cm3 for B4C and is 

determined by the stoichiometry of the compound increasing linearly with increasing carbon 

content where slightly different stoichiometry is defined by either excess B or C [50], [51]. The 

following linear equation which relates B4C density and its carbon content was presented in [19]: 

ρ(g/cm3) = 2.422 + 0·0048[C] at. %. 

Crystal Structure 

The crystal structure of B4C consists of 12- atom icosahedra units located at the vertices of a 

rhombohedral lattice 𝑅3̄𝑚 space group, with 3–atom linear chains that link the icosahedra along 

the rhombohedral axis [4], [52], [53]. A schematic presentation of B4C lattice is shown in Figure 

8.  
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Figure 8 B4C lattice describing the correlation between the rhombohedral (red) and the 

hexagonal (blue) unit cells [4] 

 The reported rhombohedral lattice parameters of carbon-rich B4C are a = 5.16 A˚ and α = 65.7 

A˚, or, if represented as a hexagonal lattice, its lattice parameters become a0 = 5.60 A˚, c0 = 12.07 

A˚ with an axial ratio of c0/a0 = 2.155 [19], [54], [55]. The correlation between lattice parameters 

and stoichiometry of B4C was established in [56]. The hexagonal lattice parameters and resulting 

unit cell volume versus B4C composition is shown in Figure 9 [19].  



13 

 

 

Figure 9 Hexagonal and lattice parameters and cell volume of boron-rich solids (A) and carbon-

rich phases (B) [19] 

The 𝑅3̄𝑚 B4C structure implies the existence of four types of the atomic bonding – the interchain 

bonds, the chain icosahedral bonds, the intericosahedral bonds and the highly delocalized 

intraicosahedral sp2 bonds [4]; and their localization and delocalization, ionicity and covalent 

character along with the electron density determine the properties of B4C [55], [57], [58], [59]. As 

the atomic bonding in B4C is very strong, the thermal expansion was measured as not very high 

and equal to α = 5.73 × 10-6 K-1 for 300-1970 K in [60], 9.5 × 10-6 K-1 in [61] or 4-8 × 10-6 K-1 in 

[62]. The following equation was used to determine CTE:  α = 3.016 × 10-6 + 4.30 × 10-9t – 9.18 

× 10-13 t2 (t˚C) in [19].  
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 It was established that B4C is a p-type semiconductor with a rather small band gap of 1.64 eV 

[63]. Different band gap values of B4C were also reported ranging from 0.48eV to 2.41eV [64], 

[65], which is a function of B4C stoichiometry. B4C was found to be a semiconductor over the 

entire homogeneity range, where its electric properties dominated by the hopping transport [66], 

[67], [68].  

Lattice Dynamics and Vibration Properties  

For lattice dynamics and vibrational properties group theory predicts 5A1g + 2A1u + 2A2g + 6A2u 

+ 7Eg + 8Eu representation for the normal modes of lattice dynamics of 𝑅3̄𝑚 rhombohedral B4C, 

where the 12 modes of A1g and Eg symmetry are Raman active, the 14 modes of A2u and Eu 

symmetry are IR active, and the A1u and the A2g modes are optically inactive. When the zero-

frequency modes are removed, the number of IR active modes become 12 [69]. If carbon atoms 

are introduced into the icosahedron, a higher number of vibrational modes can be expected in the 

collected spectra [4]. Raman active mode at 480cm-1 arises from chain rotation perpendicular to 

the (111) plane, and the Raman active Eg mode at 535 cm-1 is due to the libration of the (B11C) 

icosahedron. In another work [69] the Raman active A1g mode of B4C at 1080 cm-1 originated from 

the breathing vibration of the (B12) icosahedron; an IR active Eu mode at 1040 cm-1 resulted from 

complex atomic displacement due to chain bending and antisymmetric stretching of B12 

icosahedron; an IR active Eu mode at 487 cm-1 appeared from chain bending; a Raman active Eg 

mode at 335 cm-1 appeared from displacement of atoms due to chain rotation and wagging of an 

icosahedron; Eg Raman active mode at 172 cm-1 originated from rotation of an B12 icosahedron. 

The detailed description and analysis of Infrared and Raman active lattice vibrations is presented 

in [4]. Very recently, it was convincingly shown that the most reported spectra of B4C stem from 
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surface phonon scattering directly related to the surface penetration depth of the laser as such the 

surface measurements brought a lot of controversy into the peak assignment of the bulk materials, 

because the energies of the laser used for these multiple measurements exceeded the reported 

2.41eV band gap of B4C and thus are non-suitable for their intended application [65].  

The reported amorphization of B4C under shock loading was reported in [70]. Different results 

suggesting an appearance of phase transition upon dynamic loading were also reported in a number 

of publications [71], [72], [73], [74], [75], [76].  Structural transformation of B4C was also studied 

by indentation techniques [77], [78], [79], [80], [81], [82] where large amorphization zones with 

appearance nano size grains of crystalline material were found with retained orientation indicative 

of highly anisotropic deformation of B4C upon loading [79]. The recent work [83], [84], [85] 

indicated that the redistribution of polar C atoms is a mechanism responsible for the high pressure 

second order phase transition occurring in B4C, which was assigned to occur at a stress of ~33GPa. 

It was determined that at this pressure, the B4C changes radically its optical properties. While at 

ambient condition B4C is opaque indicative of presence of significant number of defects in the 

structure, however, it become extensively transparent at high pressure, which was correlated to the 

high pressure phase transition [86], [85]. Appearance of optical transparency upon phase transition 

implies disappearance of structural defects that determine electronic properties of semiconducting 

B4C at ambient conditions. However, the lattice parameters of B4C did not change significantly 

upon transition indicating that the phase transition is a second order. It was also determined that 

while X-ray or neutron diffraction cannot be used to study the minor structural change of B4C 

phase, however, it was found that phonon spectroscopy is one of the best techniques to study such 

changes in the lattice [87].  
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Elastic Properties  

As it was determined by numerous groups in the past mechanical properties of B4C are derivatives 

of atomic bonding characteristics such as covalent vs ionic nature of the bonds, electron density in 

interatomic regions, as well as localization and delocalization of electrons in the structure. It was 

determined, that, indeed, B4C bonding is responsible for its low compressibility, high stiffness and 

very high hardness. Due to the presents of anisotropy in atomic lattice, it was shown both by 

theoretical calculations [88] and experimental measurements [89] that the C11 elastic constant of 

B4C is higher than the C33 constant. The resonant ultrasound spectroscopy was used to study the 

anisotropy boron carbide elastic properties on B5.6C single crystal [89]. It was found that Young’s 

modulus is indeed orientation dependent and has a Emax value of 522 GPa and Emin = 64 GPa, thus 

showing an anisotropy ratio of Emax/Emin = 8.1. The Emax was found to be aligned with the (111) 

direction thus implying higher stiffness of the crystal to tension or compression loading. Shear 

modulus measured on the (111) plane of B5.6C single crystal was found to be 165 GPa, however, 

when measured parallel to the (111) direction on pyramidal and prismatic planes it varied from 

165 GPa to 233 GP, with 233 GPa maximum values measured along the (201) direction. The shear 

modulus anisotropy Gmax/Gmin = 1.4. The orientation dependence of the Young’s and shear moduli 

of B5.6C single crystal is shown in Figure 10 and Figure 11. When polycrystalline B4C ceramics is 

processed, it has isotropic mechanical properties due to overlapping of crystallographic orientation 

in multiple single crystal grains. Therefore, unless texture is intentionally introduced during 

processing, elastic properties of B4C are independent of the directions. The longitudinal (VL) and 

shear (VS) ultrasonic waves velocities propagated in B4C ceramics at RT are shown Table 1. 
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Table 1 Paramethers related to elastic properties of pollycrystalline B4C [90] 

Description This work Ref.a Ref.b Ref.c 

Density ρ (kgm-3)  2514 ± 15 2500 2550 2510 

Longitudinal velocity VL (ms-1) 14086 ± 12 13780 14166-14205   

Shear velocity VS (ms-1) 8766 ± 7 8540 8851   

Longitudinal stiffness CL (GPa) 498 ± 4 475     

Shear stiffness µ (GPa) 193 ± 1 182 200   

Bulk modulus BS (GPa) 240 ± 3 232 247  
Young's modulus E (GPa)   456 ± 4  434 472 461 

Poisson's ration  0.18 ± 0.004 0.188 0.18 0.178 

Acoustic Debye temperature ΘD (K) 1480 ± 3       

 (δCL/δP)P=0 5.70 ± 0.3       

 (δµ/δP)P=0 0.78 ± 0.04       

 (δBS/δP)P=0 4.67 ± 0.3 4.2 ± 50%     

 γL 1.21 ± 0.07       

  γS 0.33 ± 0.02       

  γel 0.62 ± 0.03       

  γth 1.76       

Where a – [91]; b – [92], [93]; c - [94].  

It was found that shear wave velocities measured parallel and perpendicular to one principal axis 

were identical, which was an indicative of absence of preferred orientation in the isotropic 

polycrystalline B4C. Two independent elastic stiffness moduli values CL = ρVL
2 and µ = ρVS

2 are 

also presented in Table 1. Besides, the adiabatic bulk modulus BS, Young’s modulus E, Poisson’s 

ratio ν, and the acoustic Debye temperature were all calculated from ultrasound velocity and B4C 

sample density in [90]. In addition, the comparison of parameters between different measurements 

is also given in Table 1. 
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Figure 10 Young’s modulus orientation dependence of B5.6C single crystal [4] 

 

Figure 11 Shear modulus orientation dependence of B5.6C single crystal [4] 

Typically, Young’s modulus values of dense B4C ceramics, measured by acoustic techniques are 

reported to be in the range of 460 - 470 GPa [3], [95], however, a higher value of 570 GPa was 

also reported for 100% dense B4C [96]. The elastic properties of B4C was also reported in [90], 
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where Young’s modulus value was found to be equal to 456 ± 4 GPa, bulk modulus was equal to 

240 ± 3 GPa and Poisson’s ratio was determined to be equal to 0.18 at room temperature. The 

elastic properties of B4C in [90] was studied over 150 - 300K temperature range and the results 

are shown in Figure 12. The range of Poisson’s ratio values of B4C was also reported to be in range 

between 0.17 – 0.21 in [19], [97], [4].  

 

Figure 12 Young’s modulus of B4C as a function of temperature with an insert of the values of 

bulk modulus (Bs) [90] 

The stoichiometry of B4C will affect its elastic properties [19] and selected data for elastic moduli 

and Poisson’s ratio of polycrystalline samples of B4C with different amount of carbon are shown 

in Table 2. 
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Table 2 Elastic moduli and Poisson’s ratio dependence of boron carbide composition [4] 

    
Bulk modulus  

GPa 

Young's 

modulus 

GPa 

Shear 

modulus  

GPa 

Poisson's 

ratio 

Stoichiometry 
at. % 

C 
Exp. Calc. Exp.  Exp. Exp. 

B4C  20 247c 246e 472c 200c 0.18c 

    235e 234g 462e 197e 0.17e 

    199d 248h 448b 188a 0.21b 

      239j 441a     

      220a       

B4.5C  18.2 237c   463c 197c 0.17c 

B5.6C  15.2 236c   462c 197c 0.17c 

    237f   460f 195f 0.18f 

B6.5C  13.3 231c 217g 446c 189c 0.18c 

      227i       

B7.7C    178c   352c 150c 0.17c 

B9C    183c   319c 150c 0.21c 

    130c   348c 132c 0.16c 

 

Where, a - [98], b - [99], c - [100], d - [101], e - [97], f - [89], g - [88], h - [51], i - [57], j - [102]. 

Hardness  

Elastic properties of B4C, such as Young’s modulus, shear and bulk moduli along with the 

Poisson’s ratio determined mostly by internal properties of the crystal lattice determined by the 

bonding withing structure. Presence of porosity will significantly affect the elastic properties of 

B4C significantly decreasing them even with an insignificant increase in the porosity. Hardness of 

B4C, similar to Young’s modulus, is also very high because of the presence of strong covalent 

bonding. Knoop hardness was reported to be in the range of 28 – 31 GPa [19], while Vickers 

hardness was reported to vary in a much broader rang e of 32 – 42 GPa, depending on the 
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stoichiometry of B4C as well as the applied load used in measurements [103], [104], [105]. Vickers 

hardness as a function of the grain size was measured in [106], where the hardness value decrease 

significantly when the average grain size increased from 2.2 µm to over 3 µm (Figure 13). 

 

Figure 13 Vickers Hardness of pressureless sintered B4C as a function of grain size. Labels depict 

the sintering techniques, RCS is rate-controlled sintering and TCS is temperature control sintering 

It is recognized that the hardness strongly depends on grain size, porosity, purity, stoichiometry, 

presence of defects, loading conditions, etc. For example, the hardness of B4C measured using 

nanoindentation were consistently reported as being 41 - 42 GPa [77], [78], but it could reach 

much higher values of 50 GPa and above, due to indentation size defects that become negligibly 

small or vanish at testing by Vickers indenters where loads are much higher [107]. Different groups 

also reported that hardness of B4C increases when carbon content increased till the end of the 

homogeneity range [108], [78], [109], [110]. Nanoindentation hardness of B4C single crystals or 

polycrystalline ceramics was reported to be around 39-55 GPa as measured using a Berkovich 
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indenter [77], [111], [104]. While no discontinuities were observed during nanoindentation of 

(111) surface of B4.3C single crystal (Figure 14) [4], discontinuities in the loading and unloading 

deformation plots of polycrystalline B4C during nanoindentation were found (Figure 15), which 

were either explained by cracking or by the transition from elastic to elastoplastic deformation 

caused by homogeneous nucleation of dislocations due to the high shear stresses below the 

indenter [111]. 

 

 

Figure 14 Load vs displacement and mean contact pressure vs contact depth curves of B4.3C on 

(111) surface [4] 
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Figure 15 Load – displacement curve (1) and mean contact pressure (2) of B4C [111] 

A very strong covalent bonding of B4C is responsible for high hardness and high Young’s 

modulus, thus making it a perfect candidate for protective materials. 

Strength and Fracture Toughness  

Unlike elastic moduli and hardness, the 4-point bending flexural strength is relatively low and 

reported to be around 250 – 450 MPa [19], [112], [21]. However, the compressive strength is rather 

high and measured to be around 6.1 ± 0.3 GPa [113]. Both strength and Young’s modulus strongly 

depend on density o B4C and the related dependence is shown in Figure 16. 
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Figure 16 Flexural strength and Young’s modulus as a function of relative density of B4C [114] 

Similar to hardness, the strength of B4C strongly depends on processing condition leading to the 

presence of porosity and other defects, as well as grain size As such, the B4C strength could be 

significantly increased if the processing conditions are improved leading to formation of dense 

material with reduced number of the defects that also have small size. Improved techniques, such 

as SPS or even FSPS could lead to processing of ceramics with significantly enhanced stress-strain 

deformation behavior of B4C. The major problem of B4C ceramics is that, as the majority of all 

ceramic materials, it is very brittle [115]. Thus, K1c, measured from the length of the cracks 

originated from the corners of Vickers impression and called indention crack resistance in some 

publications [105], [103] was reported to be in the range of 2 – 3.5 MPa · m1/2, which varied 

slightly with the grain size of the B4C (Figure 17). K1c of B4C was also measured using a variety 
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of different techniques, such as Single Edge V Notched Beam [116], Surface Crack in Flexure 

[117], and Chevron Notch Beam [118], where similar low values of K1c were also reported.  

 

Figure 17 Fracture toughness as a function of grain size of pressureless sintered B4C, RCS – rate-

control sintering, TCS – temperature-controlled sintering [106] 
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CHAPTER 2: MATERIALS AND EXPERIMENTAL TECHNIQUES 

R. Kuliiev, N. Orlovskaya, H. Hyer, Y. Sohn, M. Lugovy, D. Ha, M. Radovic, E. Castle, M. Reece, 

P. Warriam Sasikumar, L. Conti, G. Blugan, T. Graule and J. Kuebler, "Spark Plasma Sintered 

B4C: Structural, Thermal, Electrical and Mechanical Properties," Materials, vol. 13, no. 7, 1612, 

2020 

Experimental  

Processing  

A commercially available B4C Grade HD07 powder from H.C. Starck (Germany) with a particle 

size of 0.8 µm, specific surface area of 15 - 20 m²/g and the B:C ration of 3.7 – 3.8 was used to 

sinter dense B4C samples for flexural and biaxial testing. The 3x4x45mm and 2x2.5x25mm bars 

for bending experiments were cut and machined from a large 100mm diameter and 10 mm 

thickness disk sintered in a graphite die at 2150oC, 40 MPa with a 10 minutes dwell time performed 

at Dr. Fritsch company, Germany. For the biaxial strength tests a 20 mm diameter graphite die was 

lined with graphite foil and charged with 2g of B4C. The die was then placed into the Spark Plasma 

Sintering (SPS) furnace (FCTHPD25; FCT SystemeGmbH, Rauenstein,Germany) and heated at a 

rate of 100°C/min under a minimum pressure of 16 MPa to 1800°C, held for 10 min while the 

pressure was increased to 40 MPa, and then heated at 25 °C/min to 2150°C for a 10 min hold 

before cooling to room temperature over 20-25mins. The sintering regime for the B4C disks is 

shown in Figure 18. The final density of the B4C bars and disks after sintering was measured using 

Archimedes technique [119]. The sintering of B4C disks was performed at Queen Mary University 

of London, the UK.  
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Structure  

The crystal structure of B4C ceramics was studied using an X-ray diffractometer (XRD, Bruker-

AXS D8 Advanced Bragg-Brentano X-ray Powder Diffractometer, Bruker, WI). Raman spectra 

of B4C ceramics were collected using a Renishaw InVia Raman microscope (Renishaw Inc., 

Gloucestershire, UK). The Raman microscope system comprises a laser (532nm line of solid Si) 

to excite the sample, and a single spectrograph fitted with holographic notch filters. Before 

collecting spectra, the spectrometer was calibrated with a standard silicon wafer using the Si band 

position at 520.3cm−1. 

The average collection time for a single spectrum was 30s, and the spectrum was collected from 

the polished surface of sintered B4C sample. Thermal expansion measurements were carried using 

a thermal mechanical analyzer (NETZSCH TMA 402F3, Germany) in the temperature range of 30 

to 1000 °C with a heating rate of 5 °C/min. The load was set to 0.1 N and the average linear 

coefficient of thermal expansion was determined from the obtained thermal expansion data. Room 

temperature DC electrical resistivity of the 4x3x45mm bars was measured using a 4-probe 

experimental set up connected to a Keithley 2450 source meter (Textronix UK, Ltd, Berkshire, 

UK). A potential difference of 1V was applied through the outer probes and the corresponding 

current between the inner probes was measured for calculation of the resistance values.  

Elastic Properties  

The Impulse Excitation Technique (IE, Grindo-SonicMk5“Industrial” J.W. Lemmens, Belgium), 

was used to determine the elastic modulus of the B4C bars at room temperature, and the 

measurements were carried out in accordance with the EN843-2 standard [120]. Samples, in the 

form of 3x4x45mm bars of known density, were lined up with a supporting cylinder and placed 
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over a microphone. To determine the elastic modulus at room temperature using the natural 

frequency of vibration of the bars, they were struck lightly using a small hammer and the acoustic 

vibrations were recorded using the microphone. Then, using the dimensions of the sample, its 

density and natural frequency of vibration, the Young’s modulus was calculated. 

In addition to the IE measurement, the Young's and shear moduli of B4C were also measured using 

a Resonant Ultrasound Spectroscopy technique using a custom made high-temperature resonant 

ultrasound spectroscope (HT-RUS) that utilizes a commercially available room temperature (RT) 

RUS (Magnaflux Quasar, Albuquerque, NM) system. RUS is a high-precision dynamic technique, 

which is used to determine the elastic moduli and energy dissipation (mechanical damping) of 

materials by measuring the vibrational spectrum of samples with well-defined geometry, usually 

in the shape of parallelepipeds or cylinders [121], [122], [123], [124]. A B4C sample in the form 

of disc with 20mm diameter and 1.5mm thickness was supported by three piezoelectric 

transducers. One transducer, which is a transmitting transducer, generates an elastic wave of 

constant amplitude, but of varying frequency covering a large number of vibrational eigenmodes 

of the sample. The resonance response of the excited sample is detected by the other two 

transducers, which are receiving transducers. To study the elastic moduli as a function of 

temperature, SiC extension rods were added to transmit the ultrasound waves to the RT RUS 

equipment. This arrangement allowed the B4C disk to be held on the tip of the extension rods, at 

the desired temperature in the furnace, while the transducers were unaffected by high temperature. 

The measurements were performed under vacuum. The B4C sample was heated at a rate of 

10°C/min and resonance spectra were collected at an interval of 25 °C up to 1000°C after an 

isothermal hold of 20 min. Depending on the density and stiffness of the material, measurements 
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were done in the 20–500 kHz frequency range to cover the first 40 frequencies. The RUS spectra 

cannot be de-convoluted directly to deduce the elastic constants. Starting from the known sample 

dimensions, density, and a set of “guessed” elastic constants—namely C11 and C44 for an isotropic 

solid, where C11=542,8 GPa and C44=164.8Gpa as reported in [125], the elastic moduli were 

determined from collected RUS spectra using a multidimensional algorithm (MagnafluxQuasar, 

Albuquerque, NM) that minimizes the root-mean-square (RMS) error between the measured and 

calculated resonant peaks.  

Nanoindentation 

Nanoindentation of B4C was performed using a Hysitron TI Premier machine equipped with a 

Berkovich tip. A total of 25 indents were produced on the polished surface of B4C samples using 

a maximum load of 9500 μN, which was held for 3 seconds at the maximum load between loading 

and unloading. Load vs. displacement curves were analyzed to calculate the hardness, 𝐻, and 

reduced modulus, 𝐸𝑟, using a method described by Oliver and Pharr [126], [127].  

The mean contact pressure was calculated as 

Equation 1: Mean contact pressure 

𝑝𝑖 = 𝑃𝑖𝐴𝑖,                                                                                                                     (1) 

where 𝑃𝑖 is the instantaneous indentation load taken from the corresponding load – displacement 

diagram (𝑃𝑖 may be taken directly from indentation data points); 𝐴𝑖 is the contact area, which is 

determined using the area function: 
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Equation 2: Contact area  

𝐴𝑖 = 𝐶0(ℎ𝑐)𝑖2 + 𝐶1(ℎ𝑐)𝑖 + 𝐶2(ℎ𝑐)𝑖1/2 + 𝐶3(ℎ𝑐)𝑖1/4 + 𝐶4(ℎ𝑐)𝑖1/8 + 𝐶5(ℎ𝑐)𝑖1/16
,                     (2) 

where 𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐶4, and𝐶5 are the coefficients determined for a given indenter from a series 

of indents at various contact depths in a sample of known elastic modulus (typically fused quartz). 

Note that 𝐶0=24.5 for an ideal Berkovich probe; (ℎ𝑐)𝑖 is the contact depth corresponding to 𝑃𝑖 , 
which can be calculated as 

Equation 3: Contact depth  

(ℎ𝑐)𝑖 = ℎ𝑖 − (ℎ𝑒)𝑖,                                                                                              (3) 

where ℎ𝑖 is the total measured indenter displacement corresponding to 𝑃𝑖 (ℎ𝑖 may be taken directly 

from indentation data points); (ℎ𝑒)𝑖 is the corresponding elastic deflection [128], [129], [130]: 

Equation 4: Elastic deflection  

(ℎ𝑒)𝑖 = (ℎ𝑒) √ 𝑃𝑖𝑃𝑚𝑎𝑥
𝑃𝑚𝑎𝑥𝑆√ 𝑃𝑖𝑃𝑚𝑎𝑥 𝑚𝑎𝑥,                                                                                  (4) 

where (ℎ𝑒)𝑚𝑎𝑥  is the elastic deflection at maximum load 𝑃𝑚𝑎𝑥  of the indentation diagram; the 

unloading stiffness 𝑆 is the slope at the beginning of the unloading portion of the indentation 

diagram; 𝜀 is a constant that depends on the indenter’s geometry (𝜀 =0.75 for Berkovich indenter). 

After calculation, the mean contact pressure can be plotted against the contact depth. 
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The B4C sample surface was first ground and further polished down to a 1 mm diamond grit size 

to determine the Vickers hardness of the ceramics. A Vickers hardness tester Durimet (Ernst-Leitz, 

Germany) was used for hardness tests in accordance with EN843-4 standard. The hardness of the 

samples was measured using a 9.8 N load applied for a period of 15 s. Twenty impressions were 

produced for the measurements of the sizes of the impression diagonals. The hardness H (GPa) 

was calculated according to the equation [131]. 

Equation 5: Hardness  

H = 1854 𝑃𝑑2                                                                                                                      (5) 

where P is the indentation load in N, and d is the impression diagonal length in µm. 

Strength of B4C 

Four-point bending tests were performed to measure flexure strength using B4C samples with 

dimensions of 2x2.5x25 mm. To obtain load-displacement bending diagrams, the B4C samples 

were loaded using a four-point bending jig with 3 mm diameter rollers with a 10 mm loading span 

and 20 mm supporting span using a 2 kN load cell on an universal testing machine (Zwick, 

Germany) in accordance with the EN 843-1 standard [132].  

The biaxial strength of B4C samples were tested using a ring-on-ring testing jig [133]. Disks with 

20mm diameter and 1.5mm thickness were placed on the support ring and loaded with a loading 

ring in load control mode with a loading rate of 80N/s or 22MPa/s until failure of the disk occurred. 

The disks were polished on one side, and the polished surface was on the tensile side of the ring-

on-ring fixture. The recorded load was recalculated into stress using the ASTM Standard C1499 
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equation [134]. As the deflection of the disk was not recorded during loading, the deformation of 

the B4C samples was calculated using the measured Young's modulus in the elastic beam equation, 

as it is well known that B4C behave elastically and does not show any plasticity during static 

deformation at room temperature [135], [136]. A standard Weibull analysis of strength data was 

carried out  [137], [138], [139], [140]. 

Finite Elements Analysis (FEA) of the Stress Distribution for Biaxial Model   

Finite Elements Analysis (FEA) modeling of the biaxial strength testing of B4C was performed 

using the functions of the Simulia Abaqus® 6.11-1 software (Dassault Systems, Vélizy-

Villacoublay, France). The B4C specimen was treated as a deformable body and the 

loading/supporting rings as discrete rigid bodies. Load and support rings were defined as a 2D 

axisymmetric and homogenous model, with properties of 4140 alloy steel. The sample was defined 

using properties t obtained experimentally from the B4C biaxial strength tests. The elastic modulus 

and the Poisson’s ratio for a B4C sample were taken as 429 GPa and 0.185 and for 4140 alloy steel 

were taken as 200GPa and 0.29, respectively. The contact between the specimen and ring-on-ring 

surfaces were defined as surface-to-surface contacts with a master surface on the rings.  The 

simulation was performed with a friction of 0.1. In order to conduct a simulation, a support-ring 

was fully fixed in its position in any direction, however the loading ring was fully fixed besides 

the direction of the force in the Y-axis. The experimental data showed that the sample broken at a 

load of 1530N, therefore the force for the simulation for the loading ring was chosen to be 1530N 

in order to simulate a uniform pressure along the load-ring surface area. The mesh element type 

was defined as Discrete Rigid Element (RAX2) and for the sample as an Axisymmetric Stress 

(CAX4) with a reduced integration. The size of the mesh for a sample was chosen to be 0.2 mm 
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and 0.1mm for the loading and supporting rings. Therefore, after a successful simulation run it was 

found that the maximum tensile biaxial stress occurred along the bottom surface of the specimen, 

presented by a red area in Fig. 10, with a value of 436.1 MPa.   

Fracture toughness was measured using the Single Edge V Notch Beam (SEVNB) technique in 

accordance with the CEN/TS 14425-5 standard [141]. A single notch was made on the 3 mm side 

of the 3 × 4 × 45 mm3 bar as near to the center as possible with a depth between 20 and 40% of 

the total thickness of the bar, since it was shown that within this range the depth of the notch has 

no influence on the measured K1c values [142]. A diamond saw was used to make the initial 0.5 mm 

depth notch; after that the final 1–1.5 mm depth notch with ∼1.8-2.2 μm tip radius was produced 

by machine cutting using a razor blade with 6 μm and then 1 μm diamond paste deposited. Three 

samples were tested at room temperature with a crosshead speed of 0.5 mm/min. 
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CHAPTER 3. B4C PROPERTIES 

Shrinkage behavior, structure, thermal expansion and electrical resistivity of sintered B4C 

ceramics 

Figure 18 shows the shrinkage of B4C ceramic during Spark Plasma Sintering together with the 

pressure and temperature profiles, as a function of sintering time. The sample was heated from 

400oC to 1800oC in 20 min under a minimal pressure of 16 MPa, then dwelled for 10 min during 

which a pressure of 40 MPa was fully applied, then the temperature was increased to 2150oC and 

dwelled at this sintering temperature for 10 min before cooling down to room temperature. To 

protect the sample from fracture, the 40 MPa pressure was decreased at the beginning of the dwell 

time at 2150oC in a such way that it reduced back to 16 MPa in 10 min by the end of dwell. As can 

be seen in Figure 18, expansion of the equipment was observed upon heating all of the way up to 

1800oC (region A, Figure 18) until the moment when the applied pressure was increased, causing 

shrinkage of the sample (region B, Figure 18). Under the constant pressure but with temperature 

increasing, most of the shrinkage of the B4C sample occurred (section C, Figure 18). When the 

sample dwelled at 2150oC, but with decreasing pressure, the shrinkage remained constant (section 

D, Figure 18), possibly because the majority of the densification process had already occurred. 

During cooling from the sintering temperature, shrinkage of the sample occurred (section E, Figure 

18). After sintering, the samples were machined, surfaces polished, and the density was measured 

to be equal to 2.500.07 g/cm3 showing less than 1% of porosity. 
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Figure 18. Pressure, temperature and shrinkage of B4C densified by SPS. 

An X-ray diffraction pattern taken from polished surface of B4C is shown in Figure 20.  

 

Figure 19 An X-ray diffraction pattern of B4C 
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All of the diffraction peaks in the pattern belong to the rhombohedral Bravais lattice of 𝑅3̄𝑚 space 

group of B4C, and the peak at ~26.16o 2ϴ belonging to carbon indicates that a small quantity of 

carbon was present as a secondary phase [143], [144]. Raman spectrum obtained using a 532 nm 

laser measured from a polished surface of B4C is shown in Figure 20. The spectrum resembles the 

surface spectrum of B4C published in [65], [144].  

The grain size of B4C was equal to 3.40.05 micron as estimated from the fracture surface of 

broken samples (Figure 21). The thermal expansion of B4C was almost linear, and the average 

coefficient of thermal expansion was calculated to be equal to 6 ·  10-6 / K in the 25-1000 ˚C 

temperature range (Figure 22). The measured values of CTE corresponded very well to previously 

published results, where the CTE of hot pressed B4C was reported to be equal to 6 x 10-6 /K [145]. 

The room temperature DC electrical resistivity was measured to be equal to 0.00284 ± 0.0009 Ω 

m (Table 4), which is typical of the values reported for B4C [63].  

 

Figure 20. Raman spectrum of B4C taken from polished surface. 
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Figure 21. SEM of fracture surface of B4C after flexture strength testing. 

 

Figure 22. (A) Thermal expansion and (B) coefficient of thermal expansion of B4C as a function 

of temperature. 
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Elastic properties of B4C by Impulse Excitation (IE) technique and Resonant Ultrasound 

Spectroscopy 

The Young’s modulus of B4C measured using the IE technique at room temperature was equal to 

442±3 GPa (Table 4), which corresponds very well with the values of  440 to 560 GPa  reported 

in other papers [146], [147].  

The results of the measurements of Young’s and the shear moduli along with bulk modulus and 

Poisson’s ratio by RUS as a function of temperature are shown in the Figure 23B. The Young’s 

modulus of B4C measured by RUS was slightly higher compared to that measured using IE and 

was equal to 458.7 GPa at room temperature. The Young’s modulus decreased linearly upon 

heating in in vacuum and was 436.7 at 1000˚C. The shear modulus, also measured by RUS, was 

equal to 195.7 GPa at room temperature, but slightly decreased linearly on heating to 186.5 GPa 

at 1000˚C. The bulk modulus and Poisson’s ratio were calculated from Young’s and shear moduli 

data and were equal to 220.9 GPa and 0.172 at 1000˚C. Note that Poisson’s ratio of B4C remains 

the same for the whole RT - 1000˚C temperature interval (Figure 23B). All of the values of elastic 

properties of B4C presented in Figure 23 correspond very well with previously published data, 

where Young modulus was reported in the range of 440-560 GPa, shear modulus was reported in 

the range of  188-194 GPa, bulk modulus was reported in the range of 220-248 GPa and Poisson’s 

ratio was reported in the range 0.19-0.21 [146], [147], [148], [96]. 
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Figure 23. Elastic properties of B4C measured by RUS. (A) Young’s modulus (□) and Shear 

modulus (○) as a function of temperature: (B) Bulk modulus (◊) and Poisson’s ratio (∆) as a 

function of temperature. Young’s modulus (∎) measured by IE. 



40 

 

Young’s modulus and nanohardness by nanoindentation and Vickers hardness by 

microindentation 

The Young’s modulus along with hardness of B4C was also measured using the nanoindentation 

technique. Total 75 impressions were made into a polished B4C surface using a Berkovich 

indenter. All measured values of nanoindentation hardness and Young’s modulus are presented in 

the Table 3. The average values of Young’s modulus and hardness were measured to be equal to 

419.2  47.3 GPa and 41.1  5.7 GPa, respectively (Table 4). The Young’s modulus values 

measured by nanoindentation are very similar to the ones measured by IE and RUS, but were 

slightly lower than the 506 GPa values, also measured by nanoindentation, reported in [149]. 

However, in [149] the reported high value of 506 GPa for the Young’s modulus was measured on 

a single crystal in one specific crystallographic directions of (0001) and (10-11) respectively, thus 

the anisotropy of the bond strength in a certain crystallographic direction may explain this 

discrepancy. The average hardness value measured during nanoindentation was calculated to be 

equal to 41.1  5.7 GPa, while the Vickers hardness measured using a microhardness tester was 

equal to 28.5±1.2 GPa (Table 4). The Vickers hardness impression after indention with a 1 kg load 

is shown in Figure 24. 

 

Figure 24. SEM micrograph of Vickers hardness impression in boron carbide made at 1kg 

indentation load. 
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Table 3 Young’s modulus and hardness values by nanoindentation for 75 impressions 

Point # E, GPa H, GPa Point # E, GPa H, GPa Point # E, GPa H, GPa 

0 373.7 39.2 25 395.5 41.64 50 398.8 40.7 

1 302.6 22.6 26 385.4 41.08 51 435.7 46.2 

2 380.7 34.2 27 430 41.68 52 421.2 42.2 

3 470.2 28.1 28 389.5 39.34 53 432.2 43.9 

4 404.4 42.5 29 380.6 36.38 54 464.9 49.4 

5 675.5 44.8 30 395.8 42.51 55 431.1 44.1 

6 420.9 39.0 31 422.7 45.3 56 423.2 43.2 

7 437.6 43.8 32 302 20.79 57 426.8 41.9 

8 338.2 23.2 33 405.2 45.37 58 432.9 44.4 

9 483.9 38.4 34 381.3 37.47 59 425.2 44.6 

10 429.7 34.0 35 389.8 41.68 60 379.3 42.7 

11 444.1 42.4 36 403 41.51 61 447.6 42.7 

12 415.0 43.3 37 399.6 40.66 62 465.6 47.9 

13 428.6 42.7 38 415.6 38.73 63 443.7 45.3 

14 480.5 36.9 39 415.8 43.16 64 450.1 46.1 

15 408.2 42.4 40 392.7 37.56 65 425.9 43.8 

16 421.9 43.4 41 427.3 44.13 66 444.1 45.2 

17 358.4 28.5 42 380.8 39.09 67 436 44.9 

18 446.6 45.3 43 - - 68 446.5 45.4 

19 416.7 43.7 44 418.5 44.21 69 434.1 41.9 

20 421.9 41.7 45 427.3 44.49 70 438.1 42.5 

21 434.0 41.5 46 404.8 42.51 71 444.7 45.5 

22 453.4 47.2 47 298.8 29.72 72 428.5 41.9 

23 447.0 46.8 48 370.1 35.81 73 443.9 46.1 

24 435.0 40.9 49 398.3 38.23 74 444.7 44.3 
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The three different load-displacement plots in Figure 25 illustrate the different types of 

nanoindentation behavior observed. While many of the measured load-displacement plots were 

smooth and showed no deviation from a continuous increase in load and displacement (Figure 

25A), many of the load-displacement plots showed multiple or at least one pop-in events upon 

loading (Figure 25C). While only three load-displacement plots in the data set of 50 indentation 

plots that showed a well pronounced “elbow” effect upon unloading (Figure 25E). The absence or 

presence of “pop-ins” or “elbows” in the load-displacement plots during loading and unloading of 

B4C are indicative of the absence or presence of structural changes such as crystal phase transitions 

or amorphization. It is generally accepted that the absence of sudden volumetric changes 

associated with a structural transformation in the material produce a monotonic  loading/unloading 

response during nanoindentation (Figure 25A) [150].  

The maximum mean contact pressure under such conditions is about 43 GPa (Figure 25B), which 

corresponds very well to the average hardness values of 41.1  5.7 GPa (Table 4). Some of the 

load-displacement plots obtained during nanoindentation of B4C exhibited one to three 

discontinuities during loading (Figure 25C). The presence of such pop-in events during 

nanoindentation is explained by transition from the elastic to elastoplastic deformation upon nano 

contact in the imprint [111]. A second order phase transition in B4C was reported to occur at 32 

GPa to 35 GPa due to reordering of polar atoms [83]. It was found that this second order transition, 

which is characterized by atomic site exchange with hysteresis, is a relaxation process that is 

reversible [85]. It was also predicted that both the chain bending of the three-atom carbon chain 

and disordering of the structure were detected above 70 GPa, where non-hydrostatic stresses are 

present.  
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Figure 25. Nanoindentation load-displacement curves for B4C for loading and unloading with 

different indentation behavior as well as mean contact pressure. 
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It was explained that the non-ideal structure of B4C can activate chain bending guided by polar 

carbon atom location in the icosahedron even at lower stresses above 38 GPa as observed in shock-

wave experiments [151]. The discontinuities during nanoindentation of B4C occurred first at 43 

GPa with a mean contact pressure decreasing to below 40 GPa during this first pop-in event 

occurring at a contact depth of 20nm (Figure 25D). Upon further loading, the mean contact 

pressure recovered back to above 40 GPa, where a second pop-in event was detected at a contact 

penetration depth of about 50nm. The appearance of such pop-in events during loading of B4C can 

possibly be explained either by plastic deformation by nucleation of dislocations [111] or a high 

pressure structural phase transition, with an associated decrease in the volume of the high-pressure 

phase [83], [151]. The simulated estimate of  ̴  4% sudden volume reduction were reported in [152], 

however, the pressure where such a significant volume change would occur was estimated to be  ̴ 

22.8 GPa. Structural recovery and formation of disordered phases were reported to occur in a 

number of materials upon unloading [153]. The discontinuities and changes in the slopes upon 

unloading of B4C were reported in [104]. In our nanoindentation experiments, three load-

displacement nanoindentation plots exhibited the formation of an “elbow” (Figure 25E), which 

can be explained by the amorphization of the deformed B4C structure upon unloading and the 

formation of a phase with larger volume, causing a change in the slope of the mean contact pressure 

vs contact depth deformation plot (Figure 25F). 

Strength and Fracture Toughness of B4C 

While B4C exhibits a very high Young’s modulus and hardness compared to other ceramics, its 

average flexural strength  is not so highs, and it averages between 250-450 MPa [19], [154], [114], 
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[155], [112], [21], [2], [118]. The flexural strength of B4C measured in the current research had an 

average value of 585±70 MPa. The relatively high flexural strength in the current study suggests 

that the strength determining defects must have been relatively small. A typical stress vs time plot 

of loading of B4C in 4-point bending is shown in Figure 26, with inserts showing the fracture 

surface of B4C samples after failure. 

 

Figure 26. Stress vs time loading plot of B4C for flexure strength measurements. The insert 

shows an optical micrographs of fracture surface of B4C after failure. 

 The average biaxial strength b of B4C was measured to be 239±122MPa using a ring-on-ring 

configuration [133]. The typical stress-strain deformation behavior of B4C during ring-on-ring 

loading is shown in Figure 27. The two inserts show micrographs of B4C samples after failure. As 

expected, the samples that failed at relatively high loads were broken into multiple pieces after 
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failure, while the samples that failed at low loads were broken into two pieces, as can be seen in 

the inserts Figure 27. It is not clear why the strength of B4C measured in 4-point bending and ring-

on-ring tests were so different, but the quality of the surface after machining likely to contributed 

to such low biaxial strength values. 

  

Figure 27. Biaxial stress-strain deformation plot and two photos of B4C samples that failed at the 

maximum and the minimum biaxial stress applied.  

Weibull modulus mf is equal to 9.9 for 4-point bending strength values, but the Weibull modulus 

mb is only 2.2 for the ring-on-ring strength values (Figure 28). The Weibull distribution for biaxial 

as well as 4-point bending is presented in the Figure 28. The characteristic strength σ0f was equal 

to 611 MPa in 4-point bending experiments and the scale parameter σ0b was equal to 271 MPa in 

ring-on-ring tests (Figure 28).  
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Figure 28. The Weibull probability plots of (A) 4-point flexure strength and (B) ring-on-ring 

biaxial strength.  
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The maximum biaxial strength during the mechanical testing of B4C specimens came out to be 

440 MPa with a maximum applied load of 1530N, which was used for a numerical simulation.  

The stress distribution during biaxial ring-on-ring loading of B4C was modeled using Abaqus 

[133], which showed that the highest tensile biaxial strength occurred along the bottom surface of 

B4C specimen (Figure 29) and was equal to 436.1 MPa.  

 

Figure 29. The stress distribution in a B4C disk upon biaxial loading. σr is the  stress distribution 

in the radial direction and σt is the stress distribution in the tangential direction. 
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The region A in  Figure 29 represents the highest uniform tensile stresses at the polished bottom 

surface of B4C between the surface contact of the specimen and support-ring, as well as a high 

compressive strength which developed at the line of the contact of the B4C samples with the load-

ring. The region B in the Figure 29 depicts the stresses that are no longer uniform and by the end 

of region B, at the point when the sample has a contact with the support ring, the compressive 

stresses rise rapidly, however, it does not represent the critical condition and the values show that 

it is not a critical point of failure during testing. The stress distribution depicted by a numerical 

model are similar to those reported in a previous study of the biaxial strength of ZrB2- SiB6 ceramic 

composite [133]. The fracture toughness of B4C measured by SEVNB was equal to the 3±0.19 

MPa m1/2. The load vs time plot used for the calculation of Klc is shown in Figure 30, while the 

insert shows an optical micrograph of the V-notch with the measured tip diameter equal to 2.1 µm. 

 

Figure 30. Load vs time plot of B4C V notched bar used for the calculation of fracture toughness. 

The insert is an optical micrograph of the V notch. 
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The collection of all properties and parameters of B4C measured in this research work is presented 

in Table 4. 

Table 4. Thermal, electrical and mechanical properties of B4C at room temperature 

CTE 10-6 K-1 (Dilatometer) 6 

, Om m 2.840.9 ·  10-3 

E, GPa (IE) 4423 
E, GPa (RUS) 458.7 

G, GPa (RUS) 195.7 

K, GPa (RUS) 233.3 

 (RUS) 0.173 

E, GPa (Nanoindentation) 419.2  47.3 
H, GPa (Nanoindentation) 41.1  5.7 
HV, GPa (Vickers) 28.51.2 

f, MPa (Flexure) 58570 
mf (Flexure) 9.9 

0f, MPa (Flexure) 611 

b, MPa (Biaxial) 238.6122 
mb (Biaxial) 2.2 

0b, MPa (Biaxial) 271 

K1c, MPa m1/2(SEVNB) 30.19 

Conclusions  

The thermal, electrical and mechanical properties of dense B4C ceramics (99%) sintered using 

Spark Plasma Sintering were investigated. It was determined by XRD and Raman spectroscopy 

that the major phase was indeed B4C. A minor presence of a C phase was also detected by X-ray 

diffraction. The grain size of B4C after sintering was in the range of 2.5-3.5 micron as estimated 

by SEM. Both the measured thermal expansion and electrical resistivity of the B4C ceramics is 

similar to data published in the literature. The Young’s modulus of B4C measured by three different 

techniques – IE, RUS, and nanoindentation showed a very good overlap in values, which ranges 

from 419.2  47.3 GPa for nanoindentation to 458.7 GPa for RUS measurements at room 
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temperature. Both the Young’s, shear and bulk moduli decreased by about  ̴ 5% at 1000 ˚C  

compared to their room temperature values, however, the Poisson’s ratio remained constant at  

0.172 in the whole RT to 1000 ̊ C temperature range measured by RUS. The difference in hardness 

values measured by nanoindentation as 41.1  5.7 GPa and Vickers microhardness at 1kg as 

28.5±1.2 GPa was expected and it could be explained by indentation size effect and/or formation 

of radial cracks from the corner of impressions, which relieved the indentation stress and decreased 

the hardness value above a certain critical load during indentation. The mean contact pressure-

contact depth plots obtained from load-displacement nanoindentation data indicated pop-in events 

during loading and an “elbow” event during unloading, both of which are indicative of possible 

structural changes in B4C structure during nanoindentation. The appearance of “elbow” deviations 

in load-displacement nanoindentation curves of B4C was detected for the first time. The 4-point 

bending strength of the B4C ceramics was o 585±70 MPa with a shape parameter mf equal to 9.9 

and scale parameter σof equal to 611 MPa. The biaxial strength of B4C was measured to be much 

lower and equal to 238.6±122 MPa with a shape parameter of 2.2 and scale parameter σob equal to 

271 MPa. To the best of our knowledge the biaxial strength of B4C was also measured for the first 

time. It was determined that failure of B4C occurred by fully transgranular fracture, with no 

intergranular failure. Using the SEVNB technique, a Klc = 3±0.19 was measured for B4C, which is 

similar to previously reported values. 
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