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ABSTRACT 

Metabolic power and cost of transport (COT) are common quantifiers for effort when performing 

tasks including walking and running. Most studies focus on using a range of normal walking 

speeds over level ground or varied slopes. However, these studies use fixed-speed conditions. 

Fatigue, stability, metabolic expenditure, heart rate, and many other factors contribute to normal 

walking speed varying over time. This study aimed to show that allowing a subject to walk with a 

self-paced speed should correlate to a minimum COT at a given slope. This study also aimed to 

determine if a preferred slope exists based on minimizing metabolic expenditure or maximizing 

stability. In this study, subjects walked at four different speed conditions including three fixed 

speeds (0.75 m/s, 1.0 m/s, 1.25 m/s) and their self-paced speed at five different slopes (-6°, -3°, 

0°, 3°, 6°) while metabolic energy expenditure and motion were recorded. The minimum COT 

occurred at a 3° decline. At this slope, some subjects preferred to walk at a faster speed compared 

to level ground, whereas other subjects walked with a slower speed compared to level ground. 

Thus, there was a greater range of self-paced speeds, from 0.745 m/s-2.045 m/s. In comparison, at 

a 6° incline, the range of self-paced speeds was much smaller, from 0.767 m/s-1.434 m/s. The 

variance among self-paced speeds and slope conditions between subjects suggests that COT, alone, 

does not explain walking decisions; stability might play a greater role than initially believed. These 

results provide greater insight into why humans choose to walk at a certain speed over a range of 

slopes and terrains.  
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CHAPTER 1: INTRODUCTION 

Background 

From walking to running, human locomotion is unique and changes as we age. We are 

constantly moving, and very little thought goes into the process of putting one foot in front of the 

other. We only think about walking when our muscles start to get sore, we lose our balance, or we 

need to catch our breath. The best way to quantify the factors involved in locomotion and the 

decisions that people make when walking is to measure it in a controlled, yet natural setting.  

Metabolic systems and respirometers are commonly used in the medical and research fields 

to quantify exertion in the form of metabolic cost of transport (COT). Portable systems allow for 

researchers to study subjects during normal locomotion or when completing a variety of tasks. 

Metabolic cost is frequently used to study fixed walking speeds on a treadmill on a variety of 

slopes. However, most studies focus on either level ground with varied speeds, faster speeds, or 

more extreme slopes [1, 3, 6, 8, 12, 17, 19, 21, 32, 34]. For this research, we are interested in a 

slower range of speeds closer to the preferred walking speed of older adults and slopes near what 

people would traverse on a regular basis [17]. Currently, there is no collective set of metabolic 

data for self-paced walking on different slopes. Most papers will report “self-selected” speed 

which is an average over-ground speed measured prior to recording data on the treadmill [16, 29, 

31, 33]. However, the “self-selected” speed is still a fixed speed. Most people vary their speed 

depending on their environment and bio-feedback and will not walk at one set speed for a long 

period of time. As technology advances, researchers can collect more data and test more conditions 

in a controlled setting than before. Now, we can record the locomotion data we need in the lab that 
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cannot be recorded outdoors including motion capture over long periods of time and varying slopes 

and speeds, including self-paced. 

 Systemic coordination of the brain’s motor control area, motor neurons, muscles, and more 

help people walk over varying landscapes and with different speeds. Walking involves many 

factors including speed, step frequency, step width, step length, stability, and energy cost. These 

factors are accounted for with every step a person takes. People can adjust how they walk 

instantaneously to account for the energy being used [3]. A metabolic landscape can be created to 

depict the factors that people use to decide how they are going to walk and shows the energy 

expenditure for each decision. The landscape can be adapted to include terrain or environmental 

factors and predict the speed and preferred slope a person will choose when walking to minimize 

metabolic cost. 

 

Self-Paced Walking 

People do not naturally walk at a constant speed; instead, they fluctuate speed depending 

on environmental factors, energy expenditure, and mechanical factors. Since metabolic rate 

provides slow feedback, people are constantly decelerating or accelerating, side-stepping, 

fluctuating step frequency, varying step length, and changing step width depending on visual cues 

of their environment and predicted speed to choose a preferred speed [26]. Constraining a person 

to walk at a fixed speed, even if it is their preferred over ground speed, limits our understanding 

and ability to study natural human locomotion. When people walk outside, many visual cues 

provide insight into their environment and speed, but a treadmill does not provide the same visual 

feedback and changing environment. However, self-paced speeds are comparable between over 

ground walking and treadmill walking after the first 50 meters without visual feedback [29].  
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 Having the ability to test people using a self-paced treadmill allows people to walk with 

more natural speed fluctuations, even if the visual flow is different compared to outdoors. With 

the treadmill being self-paced, researchers can test inclines and declines and measure motion 

capture and reaction forces which cannot easily be done over ground [36]. Many groups can test 

slopes or self-paced but not both [1, 3, 6, 8, 12, 17, 19, 21, 32, 34]. Some researchers in the past 

were able to investigate spontaneous, self-paced walking speeds on different slopes using a range 

finder and treadmill connected to a computer. They showed that self-paced walking speed and step 

frequency decrease as slope increases [22]. However, the delay was nearly 0.5 seconds. With 

modern technology, new instrumented treadmills are now able to match a subject’s speed by using 

motion capture synchronization. Overall, gait patterns measured with instrumented treadmills 

which allow for self-paced walking and the gait patterns measured with fixed-speed treadmills 

were not significantly different [36]. This shows that instrumented treadmills are a good alternative 

to fixed-speed treadmills and will allow measurements of the natural gait fluctuations normally 

seen in over ground walking. 

 

Metabolic Power and Cost of Transport 

 Respiration involves the exchange of O2 with the waste product CO2 by inspiration and 

expiration. The respiratory exchange ratio (RER) is the ratio of CO2 produced to O2 consumed as 

shown in Equation 1 [30] and is equivalent to the respiratory quotient (RQ). 

𝑹𝑬𝑹 =  
𝑪𝑶𝟐 𝒑𝒓𝒐𝒅𝒖𝒄𝒆𝒅

𝑶𝟐 𝒄𝒐𝒏𝒔𝒖𝒎𝒆𝒅
         ( 1) 

RER, or RQ, typically falls between 0.7 and 1.0. O2 is consumed by the body using the metabolism 

to create sources of energy and heat from carbohydrates, fats, and proteins. At rest, most energy 

comes from fats and carbohydrates. Protein is only consumed after prolonged exercise. As exercise 
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duration increases, the body shifts from burning fat to oxidizing carbohydrates. When the body 

burns fat, RER is near 0.7; as the body starts to use more carbohydrates, RER approaches 1.0. RER 

can become greater than 1.0 when sodium bicarbonate can no longer buffer lactate acid and the 

exercise surpasses the lactate threshold. With all things considered, RER is a good indicator of the 

metabolic process in the body and provides insight into energy consumption. To calculate RER, 

CO2 and O2 must be measured using a respirometry system, like the one shown in Figure 1. The 

metabolic system contains a CO2 sensor which uses infrared spectroscopy and an O2 sensor which 

uses micro fuel cell technology.  

 

Figure 1: Respirometry system set up [30] 
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 Using the measured O2%, CO2% and flow rates, the volumetric flow rate of CO2 (V̇CO2) 

and O2 (V̇O2) can be determined. From this, metabolic power can be calculated using Brockway’s 

equation, shown in Equation 2 [5]. 

𝑷𝒎𝒆𝒕,𝒈𝒓𝒐𝒔𝒔 = 𝟏𝟔. 𝟓𝟖
𝑾∗𝒔

𝒎𝒍 𝑶𝟐
∗ �̅̇�𝑶𝟐

+ 𝟒. 𝟓𝟏
𝑾∗𝒔

𝒎𝒍 𝑪𝑶𝟐
∗ �̅̇�𝑪𝑶𝟐

        ( 2) 

The resting metabolic power is subtracted from Equation 2 to find the net metabolic power, or the 

power needed to perform a task. COT is found using Equation 3, where Pmet, net is net metabolic 

power and v is velocity (m/s).  

𝑪𝑶𝑻 =
𝑷𝒎𝒆𝒕,𝒏𝒆𝒕

𝒗
           ( 3) 

Both metabolic power and COT are useful for comparing effort for different walking conditions 

and have been well established as standard metabolic measurements [1, 3, 6, 8, 12, 17, 19, 21, 32, 

34]. 

 Researchers have constantly explored the idea of locomotion optimization and discussed 

whether evolutionary effects like body shape and neural control or life experience of learning every 

aspect of walking firsthand play a greater role in people finding their optimal gait. Now, 

biomedical engineers are designing assistive robotic devices including exoskeletons and powered 

prosthetics that can learn and adapt to find a person’s optimal gait using algorithms based on 

metabolic expenditure over various terrains and conditions [10, 32]. Metabolic power and COT 

are used to determine the effectiveness and quality of assistive devices and help finetune and 

improve them. It is also used to compare different walking and running speeds, slopes, reaching 

activities, and many other conditions [1, 3, 6, 8, 12, 17, 19, 21, 32, 34]. When walking on different 

slopes, COT increases on inclined and declined conditions for animals, including ants [20]. Plots 

of COT versus speed show a consistent U-shape which can shift up, down, left, or right depending 

on the conditions. Figure 2 shows COT plotted against preferred walking speed for a predictive 
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model compared to experimental values in a level walking experiment (DS is double support, SS 

is single support) [31]. These plots help show that there is a minimum COT associated with 

walking at preferred speed and make it easier to compare experimental conditions. 

 

 

Figure 2: COT as a function of preferred walking speed. Minimum COT is associated with walking at a preferred 

speed for a given condition. [31] 

While metabolic cost is commonly used and easy to measure, it has a slow response rate to 

changes when compared to other measures of effort like muscle activity, and it is restricted to 

steady-state measurements. Generally, it takes a person three minutes for their metabolic cost to 

plateau and reach steady state before measurements are meaningful [10]. From this, steady-state 

cost mapping can be accurately created using a single parameter. Since the response of metabolic 

cost is slow, people are inclined to use visual feedback of their surroundings to alter their speed to 

match and select a preferred speed [26]. Researchers are currently investigating strategies to 
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estimate the metabolic cost without the need to reach steady state. Instantaneous energetic cost 

mapping is a new method based on multiple parameters to allow for instant estimates of cost 

without having to wait for steady state [10]. Other studies have shown that there is a measurable 

relationship between a person’s height, weight and walking speed to the energy cost of locomotion 

[39]. Figure 3 shows the positive correlation between metabolic energy expenditure (MEE) and 

mass, height, maximum V̇O2, and maximum knee torque [31]. 

 

Figure 3: A positive correlation between metabolic energy expenditure (MEE) exists between mass, height, 

maximum V̇O2, and maximum knee torque [31]. 

A model to predict metabolic rate was created using resting metabolic rate, minimum walking 

metabolic rate, and the speed-dependent rate. The model accurately predicted the metabolic rates 
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within 10% of the actual value. When walking up inclines, a linear regression model for metabolic 

cost can accurately be predicted from electromyography (EMG) measurements from the different 

leg muscle groups, excluding gluteus maximus [35]. The soleus and vastus medialis, alone, 

accounted for the majority of metabolic cost variance during incline walking. Similarly, another 

subject-specific model exists to estimate COT using specific heat and work [31]. 

 Interestingly, when discussing the inverted pendulum model of walking, the swing phase 

of walking contributes little to the overall metabolic cost. The primary source of energy use is from 

the stance phase of walking [13]. This is due to the muscles in the legs performing work to support 

the weight of the body. Even when loads increase, the energy used during the swing phase does 

not change. Many studies underestimate the metabolic expenditure of the leg muscles because they 

neglect the double support phase of walking, and they cannot take the isometric muscle 

contractions needed for stability into account. Another study compared metabolic cost of fixed-

speed walking to oscillating-speed walking [33]. Oscillating-speed walking was performed by 

walking slower and faster than the fixed speed on a treadmill. This study showed that walking at 

a fixed speed used less energy compared to oscillating speeds. This means that the metabolic cost 

of starting and stopping, or changing accelerations, accounts for a greater percent of metabolic 

expenditure of walking. This increased metabolic cost is likely due to the changing kinetic energy 

needs and greater demand on the muscles to alter the speeds. However, people can continuously 

optimize their walking patterns to minimize energy expense, even when the savings are small. 

When looking at step frequency, the net metabolic power is minimized at the preferred step 

frequency. When subjected to resistance that affects the ability to walk at the preferred frequency, 

subjects continue using their preferred step frequency until they adapt to either a slower or faster 

frequency corresponding to the new metabolic minimum [34]. Similarly, in downhill walking, if 
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subjects relaxed their muscles and let gravity do more work, metabolic cost decreased to a new 

minimum at the expense of stability or increased stride variability [18]. 

 Metabolic COT, alone, does not fully explain why people walk at certain self-selected 

speeds [24, 25, 33]. Time to complete a trial or total distance traveled might play a larger role in 

the decision. Overall, subjects tended to minimize time or distance rather than energy when given 

the ability to select speed [37]. Downhill walking would allow people to minimize metabolic cost 

compared to level ground by using gravity advantageously, but it would also cause a decrease in 

stability. This suggests that people would rather choose a walking gait that does not minimize 

metabolic cost, but, instead, allows them to be more stable [18]. 

 

Stability 

 There are many ways to quantify stability. Stability is the ability to recover from 

perturbations during each step and actively adapt gait. Variability measures the changes in 

different parameters and provides insight into the level of stability by relating the data to the 

walking cycle and averaging the discrete measurements over the entire trial [7]. Some common 

measures of stability are step width, step length variability, step width variability, margin of 

stability, and stride frequency variability. Step length is the distance between each foot in the 

anterior-posterior direction, while step width is the distance between each foot in the medio-lateral 

direction. A stride consists of 2 steps, and stride frequency is the rate at which a stride is taken. 

Margin of stability (MOS) is a derived measurement from center of mass (COM) and center of 

pressure (COP). One study reported that COP variability is minimized on level ground and 

increases with changing slope [9]. MOS is useful when conducting trials intended to measure 

stability and instability when subjected to perturbations, but this requires the use of a force plate. 
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Medio-lateral MOS has a positive correlation to stride frequency, whereas backwards MOS is 

related to increased speed or decreased step length [14]. Since this experiment is not using 

perturbations, step length variability, step width variability, and stride frequency variability will 

be used to quantify stability. 

 Walking is historically modeled as an inverted pendulum which uses passive mechanics 

like gravity and converts it to kinetic energy to swing the legs forward. Walking can be broken 

into different stages: single support, where one foot is on the ground and the other swings, and 

double support, when both feet are on the ground. To initiate a step, center of mass moves in front 

of the center of pressure which creates a pivot point and allows the leg to swing forward [27]. This, 

combined with altering sagittal ankle moment during single support phase, allows people to change 

their speed on demand. The differences in kinematics of the lower body for self-paced speed 

compared to fixed speed are negligible. As people take steps and alternate between stance and 

swing for each leg, they rely on passive and active controls to maintain balance and stability. Step 

width and step length are common calculations performed to compare trial-based variability of 

stability. When people walk, they are more stable in the anterior-posterior directions and unstable 

in the medio-lateral directions [25]. This instability requires active control of the muscles to 

maintain balance. Another active control measurement used for stability is step variability or center 

of pressure (COP) variance. This measurement can show how often someone shifts their weight 

or lands differently when walking.  

When people walk at their preferred step width and length over level ground it generally 

corresponds to their metabolic COT minimum [37]. However, changing slopes and speeds makes 

walking at preferred step width and length more difficult. People tend to choose a step length 

greater than that which minimizes energy expenditure [2]. Similarly, when walking downhill, 
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people choose to maximize stability rather than minimize metabolic cost [18]. This suggests that 

stability, joint biomechanics, and overall comfort might play a greater role in choosing step width 

and length over energy expenditure. When subjected to visual perturbations and distractions, step 

variability and metabolic cost both increase to maintain stability [24, 25]. This implies that there 

is a coupled relationship between stability, step variability, and metabolic cost. Perturbations in 

the medio-lateral direction produced the greatest increase in metabolic cost and step width, while 

step length did not significantly change. Older adults and those with gait abnormalities walk with 

increased step variability, particularly step width, and have a higher metabolic expenditure rate. 

However, this higher rate is due to factors other than step variability for older adults [28]. For step 

length, people prioritize taking symmetric steps over step frequency and time between steps [11]. 

Over time, people walking on a split-belt treadmill traveling at different speeds will adapt and 

regain step symmetry. Metabolic cost of symmetric steps is lower compared to asymmetric steps. 

When it comes to stride rate or step frequency, preferred step frequency consistently 

corresponds to the metabolic minimum and maximum stability when people are subjected to 

different fixed-speed conditions [15, 16, 38, 40]. The preferred step frequency is chosen due to 

systemic self-optimization and the resonance properties of the oscillating limbs. As step frequency 

increases above the preferred rate, metabolic cost increases due to the increased mechanical work 

the limbs must perform. Whereas, when step frequency decreases below the preferred rate, 

metabolic cost increases due to a decreased mechanical efficiency of the limbs. People can learn 

to adapt to different step frequencies than what they prefer, but only if there is a metabolic benefit 

to creating the change [23, 34]. However, people will still walk at their preferred step frequency 

even when it does not equate to a metabolic minimum, and they must learn to optimize their gait 

through experimental methods and exploring different options. Even increased loading does not 
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cause a significant change in preferred step frequency [13]. A person’s preferred step frequency is 

chosen based on the fixed speed they are subjected to [4]. When a person can choose their speed 

or the speed varies, there is more variability with step frequency due to the fluctuations in speed. 

 

Hypothesis 

 The purpose of this study was to quantify the metabolic expenditure needed to walk at a 

range of slower fixed speeds and self-selected speed over a range of slopes. We aimed to determine 

which speeds people preferred on a given slope and how it compared to fixed speeds. We 

hypothesized that the self-selected speed would correspond to the metabolic minimum in most 

cases. For those who did not choose a speed that minimized metabolic cost, we aimed to show that 

stability contributed to that decision. Also, we aimed to find which slope minimized metabolic 

cost, regardless of speed, and predict which factors contributed more to this slope.   
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CHAPTER 2: METHODOLOGY 

Experimental Procedure 

Six healthy, young adult males and four healthy, young adult females (23.40±1.56 years; 

68.81±13.94 kg) successfully completed the experiment. Individual subject characteristics are 

shown in Table 1 below. To take part in the study, subjects had to be between 18-35 years old; had 

to have no neurological, musculoskeletal, or other problems that affected movement control; had 

to have no cardiopulmonary or other problems that affected breathing; had to have no recent 

history of falls; and had to be able to walk for at least 1 hour. Subjects were instructed to fast for 

at least three hours before the collections. 

Table 1: Individual subject characteristics 

Subject # Age (years) Mass (kg) Sex 

1 26 95.254 M 

2 25 70.306 F 

3 25 58.513 F 

4 23 83.914 M 

5 21 78.017 M 

6 23 50.802 F 

7 24 61.235 M 

8 23 52.163 M 

9 21 59.874 F 

10 23 78.017 M 

 

The experimental protocol was approved by the Institutional Review Board (IRB) of the 

University of Central Florida. Subjects completed a total of 20 trials using a combination of four 

speeds (0.75 m/s, 1.0 m/s, 1.25 m/s, self-paced) and five slopes (-6°, -3°, 0°, 3°, 6°) on a force 

plate treadmill (Motek M-Gait, Amsterdam, Netherlands) on two separate days around the same 

time of day. The trial order for each subject was randomized to reduce the effects of fatigue on the 
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data. Subjects wore a face mask attached to the metabolic system (Qubit Systems Inc., Kingston, 

ON, Canada) which recorded V̇CO2, V̇O2, RER, and breath start and stop times. A 22-camera 

Optitrack motion capture system and Motive software (NaturalPoint, Inc. Corvallis, OR, USA) 

was used to collect kinematic data from 16 lower body markers using the Optitrack conventional 

marker set. The experiment set up is shown in Figure 4. For each collection, the resting metabolic 

rate was recorded from quietly standing on the treadmill for five minutes followed by 10 six-

minute conditions with breaks in between. During each condition, RER was monitored. Only 

subjects in steady state with RER<1 and V̇O2 leveling were included. Before each collection 

began, the treadmill, motion capture system, and metabolic system were calibrated according to 

the manufacturers specifications.  

 

Figure 4: Experiment set up with subject walking on treadmill while metabolic and motion capture data is collected 
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Data Analysis 

The metabolic data was processed with a custom Logger Pro program (Vernier, Beaverton, 

OR, USA) to determine the volumetric flow rate of CO2 (V̇CO2) and O2 (V̇O2). More analysis and 

calculations were performed using the Logger Pro results in MATLAB (MathWorks, Inc., Natick, 

MA, USA). The motion capture and treadmill data were processed using a custom MATLAB code. 

Normalized net metabolic power was calculated for each subject by subtracting the resting 

metabolic rate from Brockway’s equation, Equation 2, and dividing by their mass. Minutes three 

to five of the data were used for each subject as they were considered to be in steady state. This 

data was then fit with a quadratic equation as a function of slope. Equation 4 shows the general 

form of the quadratic fit equation used for net metabolic power as a function of slope. 

𝑷𝒗(𝜽) = 𝒂 ∗ 𝜽𝟐 + 𝒃 ∗ 𝜽 + 𝒄               ( 4) 

This process was repeated to create a fit for net metabolic power as a function of speed. 

The net metabolic power was also plotted as a function of speed for each subject and fit with a 

quadratic equation like Equation 5. 

𝑷𝜽(𝒗) = 𝒂 ∗ 𝒗𝟐 + 𝒃 ∗ 𝒗 + 𝒄      ( 5) 

From this, COT for each individual subject was determined by dividing the net metabolic 

power fit equations by the mean velocity during minutes three to five.  

 The fit coefficients for the individual subjects were averaged to get overall group fit 

equations for both net metabolic power as a function of speed and slope. This process was repeated 

to find a group fit for COT as a function of both speed and slope. These group fit equations were 

compared to the fit equations obtained by first finding the average net metabolic power for each 

speed and slope condition. Plots for net metabolic power and COT versus slope and speed were 

created for each individual and the group. 
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 A landscape was created using the fit equations for COT as a function of both speed and 

slope to compare the fixed and self-paced speed conditions. The landscape gives insight into 

potential locomotion decisions made due to speed, slope, and COT. 

 The average step width, step length, and stride time were determined for each subject and 

condition as related to the walking cycle using the motion capture system. Each step cycle began 

at right heel strike followed by left toe off, left heel strike, and right toe off. The slope of the 

treadmill was used to accurately find the total step length. The variability, or standard deviation, 

for each condition was used to quantify stability. The values were averaged for each condition and 

related to COT for fixed and self-paced conditions. 

 

Statistics 

A repeated measures ANOVA (P<0.05) was used to determine if a significant effect on 

metabolic power and stability due to the speed and slope conditions existed.  
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CHAPTER 3: RESULTS 

Metabolic Power 

 With respect to slopes, the group averaged net metabolic power increased with increasing 

slopes and had a quadratic relationship, as shown in Figure 5. Table 2 in Appendix B shows the 

coefficients of the quadratic fit equations and R2 values for every subject and the group. The R2 

values were above 0.99 for the group, indicating good fits.  

 

Figure 5: Net Metabolic Power as a function of slope for the group 

With respect to speeds, net metabolic power increased with increasing speed regardless of 

slope, as shown in Figure 6. Table 3 in Appendix B shows the coefficients of the quadratic fit 

equations and R2 values for every subject and the group. The self-paced speeds caused the fit using 

speeds to have a lower R2 value, 0.82-0.99, for some slope conditions compared to the fit using 

slope that had an R2 value over 0.99 for each speed condition. Both decline conditions had nearly 

the same metabolic power regardless of speed. Metabolic power increased as speed increased, 
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independent of slope; however, the 6° incline condition had the greatest average net metabolic 

power regardless of speed. 

 

Figure 6: Net Metabolic power as a function of speed for the group 

 

Cost of Transport 

With respect to slopes, a minimum cost of transport occurred at approximately a 4° decline 

regardless of the speed condition, as shown in Figure 7. The cost of transport fits had a “J” shape 

and R2 values over 0.99, as shown in Table 4 in Appendix B. 
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Figure 7: Cost of transport versus slope for the group 

With respect to speed, most subjects walked at a speed faster than that which would 

minimize cost of transport, as shown in Figure 8. Subjects’ self-paced speeds also tended to 

decrease as slope increased. For decline conditions, the walking speed needed to minimize cost of 

transport was faster than the incline conditions but slower than level. The cost of transport fits had 

a “U” shape and R2 values over 0.98 for -6° and level, 0.82 for 3°, and below 0.25 for -3° and 6°, 

as shown in Table 5 in Appendix B. 
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Figure 8: Cost of transport versus speed for the group 

 

Landscape 

The contour plot of speed, slope, and cost of transport showed that negative slopes have a 

much lower cost of transport compared to inclined slopes, as shown in Figure 9. At a given slope, 

the speed had little effect on cost of transport until the slopes were steeply inclined or declined. 

Most subjects remained near the same cost of transport level for each speed and slope condition, 

while a few chose speeds that resulted in higher or lower cost of transport compared to the group 

average. 
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Figure 9: COT landscape as a function of speed and slope 

 

Self-Paced Speeds 

 As slope increased, the range of self-paced speeds decreased for all subjects, as shown in 

Figure 10. For example, at -3°, the speeds ranged from 0.77-2.10 m/s. At 6°, the range was 0.84-

1.46 m/s. Overall, the average self-paced speed at 6° was 15.35% slower than level ground. 
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Figure 10: Average self-paced speed for each subject 

 

Stability 

 Self-paced walking had the greatest step length variability, followed by 0.75 m/s, as shown 

in Figure 11. Overall, the variability in step length increased as slope increased. Figure 12 shows 

that speed had little effect on step width variability. The slowest fixed speed, 0.75 m/s, had a 

significantly greater stride time variability than the other speed conditions, while self-paced was 

similar to 1.00 m/s, as shown in Figure 13. Overall, the level of stability increased with increasing 

speeds. 
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Figure 11: Average step length variability for the group 

   

 

Figure 12: Average step width variability for the group 
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Figure 13: Average stride time variability for the group 
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CHAPTER 4: DISCUSSION 

Metabolic power increases with increasing slope, independent of speed. The maximum 

power recorded was just over 5 J/kg for 1.25 m/s at a 6° incline. This is consistent with other 

studies which showed that greater power is needed for inclined slopes [19]. Metabolic power 

shows the same positive correlation with increasing speeds. Overall, as speed increases, metabolic 

power increases. When comparing the different slopes, the decline conditions had little difference 

in metabolic power, but they were both less than level. The incline conditions showed a greater 

jump in power compared to level. This is consistent with another study which showed that all 

slopes, except -6° and -3°, were statistically significant [19]. Including the self-paced speeds in the 

data for the fit allowed for a more accurate representation by increasing the amount of data points 

used. The self-paced data points showed that as slope increased, people preferred to walk at a 

slower speed to reduce the metabolic power at a given slope, which is supported by other literature 

[19]. However, the self-paced speeds did make the R2 value lower for metabolic power fit with 

speed data. Ideally, the self-paced speeds would have been within the range of fixed speeds, but 

this was only true for the incline conditions. 

 Cost of transport increases with increasing slope, independent of speed. The maximum 

COT recorded was over 4 J/kg/m for self-paced at a 6° incline. There is a minimum COT at 

approximately -4°, regardless of which speed condition. This is likely due to gravity pulling 

subjects down the slope. Gravity allows for less energy expenditure at this slope resulting in 

subjects relying on passive mechanics. This observation is supported by other literature which 

showed that declined slopes would minimize COT due to gravity; however, people would lose 

stability if they fully minimized COT. Instead, people choose a more stable gait pattern that is 
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metabolically more costly [18]. For cost of transport as a function of speed, there is not a specific 

speed which minimizes COT for all slope conditions. However, the speed that minimizes COT 

decreases as the slope increases. This shows that people must walk slower at steep inclines to lower 

energy expenditure. The greatest range of speeds occurs at -3°, from 0.77-2.10 m/s, whereas the 

smallest range of speeds occurs at 6°, from 0.84-1.46 m/s. The average self-paced speed at 6° was 

15.35% lower than the average at level ground. This supports the assertion that, at -3°, subjects do 

not select speed based solely on metabolic cost and can choose to walk faster with little metabolic 

punishment. Overall, there was no significant difference between -3° and -6°, but the average self-

paced speed on -6° was greater than any slope condition. Some subjects walked at self-paced 

speeds which minimized their COT, but the group average showed that self-paced speeds did not 

correlate to a minimum COT. This is likely due to factors other than metabolic expenditure, like 

stability. The results found are similar to other studies [2, 15].  

 Level of stability was quantified using variability of step length, step width, and stride time. 

Step length variability was greatest at a 6° incline and lowest at a 3° decline, regardless of speed. 

For example, in the self-paced speed condition, step length variability at a 6° incline was 30.8% 

greater than level, but it was 10.2% less than level for a 3° decline. Overall, step length variability 

increased as slope increased. Self-paced walking had the greatest variability of the speed 

conditions, followed by 0.75 m/s. Step width variability also increased as slope increased. 

However, there was no significant effect of speed on step width variability. Since people actively 

control step width to increase stability in the medio-lateral direction, this means that the subjects 

felt similar levels of stability for each speed, including self-paced [14]. Stride time variability 

decreased with increased speed as seen in other literature [23]. Overall, stride time variability 
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tended to be lowest at a 3° decline. For example, in the self-paced speed condition, stride time 

variability at a 6° incline was 22.2% greater than level, but it was 21.3% less than level for a 3° 

decline. This means that while subjects could choose from a greater range of speeds at a 3° decline, 

there was less variation from their preferred speed compared to a 6° incline. This is likely due to 

increased fatigue and effort required at the steeper inclines compared to declines.  

 Cost of transport and stability are highly related. When people choose to actively control 

step mechanics like stride time, step length, and step width, it results in increased cost of transport. 

However, when someone prioritizes minimization of cost of transport, it can result in a lack of 

stability. These results show that the self-paced speeds that subjects chose were based on a 

combination of lowering cost of transport and maintaining stability. As slope increased, cost of 

transport increased, and subjects tended to actively control stability. Whereas, at a 3° decline, cost 

of transport was lower, and there was less variation in step length and step width. This means that 

at this slope, subjects did not need to actively control stability which resulted in a lower cost of 

transport.  

 The main limitation faced with this experiment was the limited range of fixed speeds tested. 

The fixed speeds were chosen because of an interest in studying older adults. Thus, slower speeds 

closer to the speeds that older adults would walk at were used. For this study however, most 

subjects chose a self-paced speed faster than the fastest fixed speed. Having included another fixed 

speed in addition to the ones tested or testing a greater range of fixed speeds up to 1.5 m/s, would 

have enhanced the findings of this study and more accurately portrayed the results of young adults.  
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CHAPTER 5: CONCLUSION 

There is no specific speed that minimizes cost of transport for all slopes. However, a slope 

(-4°) exists which minimizes cost of transport for most subjects. Slope had a greater effect on cost 

of transport than speed. Overall, cost of transport is a good indicator of effort, but it, alone, does 

not explain self-paced walking speeds.  

Generally, subjects tended to prefer walking at speeds faster than that which would 

minimize the cost of transport. From the stride time variability, it was clear that people felt more 

stable when walking at faster speeds. This is supported by the step length variability results which 

showed that stability decreased at steeper inclines and subjects needed to walk at slower speeds to 

reduce cost of transport. At decline conditions, subjects could choose from a range of speeds with 

little effect on metabolic cost. Subjects tended to show less variability with step length, step width 

and stride time at decline conditions which explains why these slopes were preferred over inclines. 

Overall, subjects selected their self-paced speeds at different slope conditions based on both cost 

of transport and level of stability. 

 It would be interesting to compare the results of older adults to that of younger adults in 

the future. Using the self-paced walking results and the preferred slope information, we plan to 

create a treadmill function in which self-paced speed determines which slope a person walks at. 

This would allow us to compare preferences for speed, stability, and slope. 
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APPENDIX A: IRB APPROVAL LETTER 
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APPENDIX B: FIT COEFFICIENT TABLES 
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Table 2: Metabolic power as a function of slope fit coefficients 
 

speed a b c R2 

1 0.75 m/s 0.02063 0.1525 1.395 0.9984  
1.00 m/s 0.01041 0.2502 1.519 0.9695  
1.25 m/s 0.0442 0.2809 1.409 0.9958  
selfpaced 0.03722 0.3238 1.797 0.9932 

2 0.75 m/s 0.007484 0.1654 1.348 0.8827  
1.00 m/s 0.0215 0.2025 1.368 0.9905  
1.25 m/s 0.03448 0.2587 1.882 0.9871  
selfpaced 0.02221 0.1479 1.395 0.9344 

3 0.75 m/s 0.01052 0.1307 1.03 0.9849  
1.00 m/s 0.01743 0.185 1.281 0.982  
1.25 m/s 0.02689 0.2943 1.724 0.9887  
selfpaced 0.01471 0.1069 1.384 0.6902 

4 0.75 m/s 0.01901 0.222 1.032 0.9969  
1.00 m/s 0.0554 0.316 1.165 0.9713  
1.25 m/s 0.05097 0.396 1.725 0.9993  
selfpaced 0.03358 0.2874 1.541 0.9023 

5 0.75 m/s 0.01269 0.134 0.692 0.9984  
1.00 m/s 0.01592 0.1919 0.863 0.9733  
1.25 m/s 0.03314 0.2948 1.25 0.9859  
selfpaced 0.03348 0.1549 3.116 0.8094 

6 0.75 m/s 0.02716 0.1843 0.7058 0.9735  
1.00 m/s 0.02404 0.2166 1.278 0.8961  
1.25 m/s 0.008704 0.2116 1.708 0.9354  
selfpaced 0.02212 0.2644 2.115 0.9293 

7 0.75 m/s 0.003713 0.2293 1.48 0.9507  
1.00 m/s 0.02467 0.2544 1.709 0.9104  
1.25 m/s 0.03062 0.362 1.998 0.9874  
selfpaced -0.00782 0.2257 2.377 0.8635 

8 0.75 m/s 0.02532 0.2095 1.267 0.9987  
1.00 m/s 0.009499 0.1762 1.803 0.9736  
1.25 m/s 0.0189 0.3387 2.437 0.9976  
selfpaced 0.02896 0.3009 3.051 0.9905 

9 0.75 m/s 0.01839 0.1791 1.361 0.8857  
1.00 m/s 0.02122 0.2401 1.787 0.9434  
1.25 m/s 0.03851 0.341 2.368 0.9797  
selfpaced 0.04398 0.292 1.918 0.9443 

10 0.75 m/s 0.02585 0.1183 1.257 0.9786  
1.00 m/s 0.01975 0.2254 1.707 0.9895  
1.25 m/s 0.02815 0.2753 2.167 0.944 
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selfpaced 0.05041 0.2736 2.588 0.8963 

Overall 0.75 m/s 0.017077 0.17251 1.15678 0.9963  
1.00 m/s 0.021984 0.22583 1.448 0.9998  
1.25 m/s 0.031456 0.30533 1.8668 0.9982  
selfpaced 0.027885 0.23775 2.1282 0.999 

 

Table 3: Metabolic power as a function of speed fit coefficients 
 

slope a b c R2 

1 -6 10.11 -20.32 10.9 0.5585  
-3 -0.3754 0.4456 0.9575 0.1146  
0 -3.607 7.371 -2.052 0.8086  
3 -3.26 8.16 -2.365 0.3942  
6 -4.38 12.31 -3.755 0.6482 

2 -6 2.814 -4.244 2.418 0.9564  
-3 1.058 -0.5805 0.3335 0.98  
0 8.099 -15.02 8.189 0.9641  
3 4.099 -6.934 5.081 0.9585  
6 4.14 -3.797 2.985 0.9987 

3 -6 3.437 -6.068 3.294 0.791  
-3 0.8119 -0.3414 0.465 0.9591  
0 2.467 -3.448 2.127 0.8746  
3 4.211 -5.927 3.72 0.947  
6 6.06 -7.441 4.305 0.9986 

4 -6 -2.913 6.042 -2.904 0.8913  
-3 -8.925 18.79 -8.599 0.9562  
0 10.21 -18.9 9.545 0.9435  
3 2.807 -2.246 1.866 0.9448  
6 -11.03 27.71 -11.49 0.9974 

5 -6 1.631 -2.508 1.296 0.9995  
-3 2.225 -4.133 2.229 0.9994  
0 2.519 -4.055 2.303 0.9981  
3 2.464 -2.074 1.419 1  
6 3.204 -2.372 1.849 0.9849 

6 -6 0.9584 -1.322 0.9705 0.9985  
-3 0.32 0.758 -0.155 0.6826  
0 -0.5569 3.478 -1.486 0.9865  
3 1.306 -0.8018 1.114 0.9998  
6 2.295 -2.504 3.576 0.594 

7 -6 -10.22 21.71 -10.19 0.9771  
-3 1.989 -3.052 1.654 0.8414 
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0 2.827 -4.566 3.685 0.8398  
3 -2.123 6.999 -1.976 0.9942  
6 1.822 0.7856 1.372 0.9999 

8 -6 1.839 -3.041 2.202 0.9505  
-3 2.551 -3.916 2.45 0.9951  
0 -0.1581 2.81 -0.7583 0.9952  
3 3.286 -3.688 2.972 0.9664  
6 20.26 -36.05 19.07 0.8649 

9 -6 3.703 -5.843 3.054 0.9983  
-3 -0.4095 1.988 0.09966 0.9835  
0 -0.5529 2.565 -0.2247 0.7459  
3 2.338 -1.171 1.189 0.9947  
6 7.052 -8.604 5.782 0.9924 

10 -6 3.488 -6.701 4.529 0.9696  
-3 2.057 -3.679 2.617 0.9293  
0 2.176 -2.686 2.177 0.9997  
3 0.2842 3.055 -0.6215 0.9999  
6 2.803 -2.004 2.832 0.9975 

Overall -6 2.981 -4.945 2.793 0.9863  
-3 2.293 -3.427 2.046 0.8166  
0 2.379 -3.312 2.38 0.999  
3 2.019 -1.315 1.62 0.9913  
6 0.9685 2.293 0.5264 0.9602 

 

Table 4: COT as a function of slope fit coefficients 
 

speed a b c R2 

1 0.75 m/s 0.02751 0.2034 1.859 0.9984  
1.00 m/s 0.01041 0.2502 1.519 0.9695  
1.25 m/s 0.03536 0.2247 1.127 0.9958  
selfpaced 0.04166 0.2917 1.587 0.9966 

2 0.75 m/s 0.01001 0.2207 1.797 0.883  
1.00 m/s 0.02152 0.2026 1.368 0.9905  
1.25 m/s 0.02759 0.207 1.506 0.9871  
selfpaced 0.0261 0.1887 1.274 0.99 

3 0.75 m/s 0.01403 0.1743 1.373 0.9849  
1.00 m/s 0.01743 0.185 1.281 0.982  
1.25 m/s 0.02151 0.2355 1.379 0.9887  
selfpaced 0.01706 0.1444 1.284 0.9632 

4 0.75 m/s 0.02535 0.296 1.376 0.9969  
1.00 m/s 0.0554 0.316 1.165 0.9713 
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1.25 m/s 0.04078 0.3168 1.38 0.9993  
selfpaced 0.04412 0.3207 1.372 0.9405 

5 0.75 m/s 0.01692 0.1787 0.9226 0.9984  
1.00 m/s 0.01592 0.1919 0.863 0.9733  
1.25 m/s 0.02651 0.2358 0.9996 0.9895  
selfpaced 0.02234 0.1683 1.779 0.9514 

6 0.75 m/s 0.03621 0.2457 0.9411 0.9735  
1.00 m/s 0.02404 0.2166 1.278 0.8961  
1.25 m/s 0.006963 0.1692 1.366 0.9354  
selfpaced 0.01897 0.2066 1.456 0.9339 

7 0.75 m/s 0.00495 0.3057 1.973 0.9507  
1.00 m/s 0.02467 0.2544 1.709 0.9104  
1.25 m/s 0.0245 0.2896 1.599 0.9874  
selfpaced 0.01291 0.2783 1.884 0.972 

8 0.75 m/s 0.03376 0.2794 1.689 0.9987  
1.00 m/s 0.009499 0.1762 1.803 0.9736  
1.25 m/s 0.01512 0.271 1.95 0.9976  
selfpaced 0.02992 0.2784 2.028 0.9876 

9 0.75 m/s 0.02452 0.2388 1.815 0.8857  
1.00 m/s 0.02122 0.2401 1.787 0.9434  
1.25 m/s 0.03081 0.2728 1.895 0.9797  
selfpaced 0.03864 0.2626 1.582 0.9631 

10 0.75 m/s 0.03447 0.1577 1.677 0.9786  
1.00 m/s 0.01975 0.2254 1.707 0.9895  
1.25 m/s 0.02252 0.2202 1.733 0.944  
selfpaced 0.02989 0.2089 1.837 0.9478 

Overall 0.75 m/s 0.0227 0.23 1.542 0.9963  
1.00 m/s 0.02199 0.2258 1.448 0.9998  
1.25 m/s 0.02516 0.2443 1.493 0.9982  
selfpaced 0.02816 0.2349 1.608 0.9987 

 

Table 5: COT as a function of speed fit coefficients 
 

slope a b c R2 

1 -6 11.33 -24.11 13.46 0.7119  
-3 1.265 -3.928 3.685 0.7535  
0 -2.237 3.052 0.8965 0.9571  
3 -1.478 2.204 1.772 0.1233  
6 -3.425 6.463 1.116 0.064 

2 -6 2.604 -4.979 3.361 0.7515  
-3 0.3111 0.07999 0.4213 0.9152 
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0 8.361 -17.32 10.25 0.9844  
3 5.355 -12.033 8.924 0.9707  
6 3.238 -5.51 5.595 0.9859 

3 -6 2.727 -5.508 3.477 0.4906  
-3 0.5831 -0.8492 1.197 0.4575  
0 2.436 -4.673 3.377 0.3816  
3 3.878 -7.512 5.642 0.5934  
6 4.87 -8.264 6.302 0.9794 

4 -6 -3.09 7.084 -3.049 0.7592  
-3 -8.741 17.71 -7.729 0.9639  
0 10.38 -20.72 11.18 0.8909  
3 2.37 -3.933 3.976 0.5198  
6 -12.76 26.73 -8.761 0.97 

5 -6 0.7026 -1.193 0.9368 0.9906  
-3 1.205 -2.612 1.777 0.9854  
0 1.566 -3.075 2.312 0.9993  
3 1.049 -1.166 1.944 0.999  
6 1.936 -2.763 3.504 0.8818 

6 -6 0.7511 -1.585 1.453 0.9994  
-3 -0.7933 2.245 -0.4944 0.2462  
0 -1.081 3.169 -0.6736 0.9455  
3 0.9861 -1.865 2.504 1  
6 2.344 -6.113 7.201 0.4192 

7 -6 -10.99 22.6 -10.31 0.9683  
-3 1.964 -3.698 2.319 0.4565  
0 3.136 -7.36 6.202 0.8033  
3 -2.01 4.001 0.9041 0.7556  
6 1.536 -2.706 1.145 0.9779 

8 -6 1.361 -3.173 2.853 0.6984  
-3 1.794 -3.654 2.978 0.9902  
0 -0.7025 2.099 0.4951 0.9014  
3 3.203 -6.387 5.746 0.5706  
6 20.9 -41.86 24.22 0.6903 

9 -6 3.256 -6.067 3.725 0.9926  
-3 0.06761 -0.6498 2.262 0.9462  
0 0.2125 -0.7746 2.329 0.2011  
3 1.125 -1.176 2.413 0.9566  
6 6.337 -11.77 9.659 0.8615 

10 -6 3.308 -8.115 6.181 0.7886  
-3 1.943 -4.604 3.691 0.8773  
0 2.232 -4.625 4.061 0.9795 
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3 -0.5136 1.99 1.237 0.9966  
6 2.325 -4.874 6.207 0.9426 

Overall -6 2.161 -4.348 3.047 0.9811  
-3 1.434 -2.794 2.297 0.275  
0 2.242 -4.669 3.883 0.9999  
3 1.814 -3.365 3.866 0.828  
6 0.9763 -1.549 4.346 0.2141 

  



39 

 

LIST OF REFERENCES 

[1] Abe, D., Fukuoka, Y., and Horiuchi, M., 2017, “Muscle Activities during Walking and 

Running at Energetically Optimal Transition Speed under Normobaric Hypoxia on 

Gradient Slopes,” PLoS One, 12(3), p. e0173816. 

[2] Antos, S., Kording, K., and Gordon, K., 2017, “Do We Minimize Energy When Choosing 

Between Gait Patterns?” Amer. Soc. of Biomech. 

[3] Bertram, J. E. A., 2015, “Locomotion: Why We Walk the Way We Walk,” Curr. Biol., 25(18), 

pp. R795–7. 

[4] Bertram, J. E. A., and Ruina, A., 2001, “Multiple Walking Speed–frequency Relations Are 

Predicted by Constrained Optimization,” J. Theor. Biol., 209(4), pp. 445–453. 

[5] Brockway, J. M., 1987, “Derivation of Formulae Used to Calculate Energy Expenditure in 

Man,” Hum. Nutr. Clin. Nutr., 41(6), pp. 463–471. 

[6] Browning, R. C., Baker, E. A., Herron, J. A., and Kram, R., 2006, “Effects of Obesity and Sex 

on the Energetic Cost and Preferred Speed of Walking,” J. Appl. Physiol., 100(2), pp. 390–

398. 

[7] Bruijn, S. M., Meijer, O. G., Beek, P. J., and van Dieën, J. H., 2013, “Assessing the Stability 

of Human Locomotion: A Review of Current Measures,” J. R. Soc. Interface, 10(83), p. 

20120999. 

[8] Dames, K. D., and Smith, J. D., 2015, “Effects of Load Carriage and Footwear on 

Spatiotemporal Parameters, Kinematics, and Metabolic Cost of Walking,” Gait Posture, 

42(2), pp. 122–126. 



40 

 

[9] Dutt-Mazumder, A., Slobounov, S. M., Challis, J. H., and Newell, K. M., 2016, “Postural 

Stability Margins as a Function of Support Surface Slopes,” PLoS One, 11(10), p. 

e0164913. 

[10] Felt, W., Selinger, J. C., Donelan, J. M., and Remy, C. D., 2015, “‘Body-In-The-Loop’: 

Optimizing Device Parameters Using Measures of Instantaneous Energetic Cost,” PLoS 

One, 10(8), p. e0135342. 

[11] Finley, J. M., Bastian, A. J., and Gottschall, J. S., 2013, “Learning to Be Economical: The 

Energy Cost of Walking Tracks Motor Adaptation,” J. Physiol., 591(4), pp. 1081–1095. 

[12] Giovanelli, N., Ortiz, A. L. R., Henninger, K., and Kram, R., 2016, “Energetics of Vertical 

Kilometer Foot Races; Is Steeper Cheaper?,” J. Appl. Physiol., 120(3), pp. 370–375. 

[13] Griffin, T. M., Roberts, T. J., and Kram, R., 2003, “Metabolic Cost of Generating Muscular 

Force in Human Walking: Insights from Load-Carrying and Speed Experiments,” J. Appl. 

Physiol., 95(1), pp. 172–183. 

[14] Hak, L., Houdijk, H., Beek, P. J., and van Dieën, J. H., 2013, “Steps to Take to Enhance Gait 

Stability: The Effect of Stride Frequency, Stride Length, and Walking Speed on Local 

Dynamic Stability and Margins of Stability,” PLoS One, 8(12), p. e82842. 

[15] Holt, K. G., Hamill, J., and Andres, R. O., 1991, “Predicting the Minimal Energy Costs of 

Human Walking,” Med. Sci. Sports Exerc., 23(4), pp. 491–498. 

[16] Holt, K. J., Jeng, S. F., Rr, R. R., and Hamill, J., 1995, “Energetic Cost and Stability During 

Human Walking at the Preferred Stride Velocity,” J. Mot. Behav., 27(2), pp. 164–178. 

[17] Hortobágyi, T., Finch, A., Solnik, S., Rider, P., and De Vita, P., 2011, “Association Between 

Muscle Activation and Metabolic Cost of Walking in Young and Old Adults,” Cite journal 

as: J Gerontol A Biol Sci Med Sci, 66A(5), pp. 541–547. 



41 

 

[18] Hunter, L. C., Hendrix, E. C., and Dean, J. C., 2010, “The Cost of Walking Downhill: Is the 

Preferred Gait Energetically Optimal?,” J. Biomech., 43(10), pp. 1910–1915. 

[19] Jeffers, J. R., Auyang, A. G., and Grabowski, A. M., 2015, “The Correlation between 

Metabolic and Individual Leg Mechanical Power during Walking at Different Slopes and 

Velocities,” J. Biomech., 48(11), pp. 2919–2924. 

[20] Lipp, A., Wolf, H., and Lehmann, F.-O., 2005, “Walking on Inclines: Energetics of 

Locomotion in the Ant Camponotus,” J. Exp. Biol., 208(Pt 4), pp. 707–719. 

[21] MacPhee, R. S., McFall, K., Perry, S. D., and Tiidus, P. M., 2013, “Metabolic Cost and 

Mechanics of Walking in Women with Fibromyalgia Syndrome,” BMC Res. Notes, 6, p. 

420. 

[22] Minetti, A. E., Boldrini, L., Brusamolin, L., Zamparo, P., and McKee, T., 2003, “A Feedback-

Controlled Treadmill (treadmill-on-Demand) and the Spontaneous Speed of Walking and 

Running in Humans,” J. Appl. Physiol., 95(2), pp. 838–843. 

[23] Minetti, A. E., Capelli, C., Zamparo, P., di Prampero, P. E., and Saibene, F., 1995, “Effects 

of Stride Frequency on Mechanical Power and Energy Expenditure of Walking,” Med. Sci. 

Sports Exerc., 27(8), pp. 1194–1202. 

[24] O’Connor, S. M., Xu, H. Z., and Kuo, A. D., 2012, “Energetic Cost of Walking with Increased 

Step Variability,” Gait Posture, 36(1), pp. 102–107. 

[25] O’Connor, S. M., and Kuo, A. D., 2009, “Direction-Dependent Control of Balance During 

Walking and Standing,” Journal of Neurophysiology, 102(3), pp. 1411–1419. 

[26] O’Connor, S. M., and Donelan, J. M., 2012, “Fast Visual Prediction and Slow Optimization 

of Preferred Walking Speed,” J. Neurophysiol., 107(9), pp. 2549–2559. 



42 

 

[27] Orendurff, M. S., Bernatz, G. C., Schoen, J. A., and Klute, G. K., 2008, “Kinetic Mechanisms 

to Alter Walking Speed,” Gait Posture, 27(4), pp. 603–610. 

[28] Ortega, J. D., Fehlman, L. A., and Farley, C. T., 2008, “Effects of Aging and Arm Swing on 

the Metabolic Cost of Stability in Human Walking,” J. Biomech., 41(16), pp. 3303–3308. 

[29] Plotnik, M., Azrad, T., Bondi, M., Bahat, Y., Gimmon, Y., Zeilig, G., Inzelberg, R., and Siev-

Ner, I., 2015, “Self-Selected Gait Speed--over Ground versus Self-Paced Treadmill 

Walking, a Solution for a Paradox,” J. Neuroeng. Rehabil., 12, p. 20. 

[30] Qubit Systems Inc., 2018, Qubit Systems Q-Track Manual, Kingston, ON. 

[31] Roberts, D., Hillstrom, H., and Kim, J. H., 2016, “Instantaneous Metabolic Cost of Walking: 

Joint-Space Dynamic Model with Subject-Specific Heat Rate,” PLoS One, 11(12), p. 

e0168070. 

[32] Sawicki, G. S., and Ferris, D. P., 2009, “Mechanics and Energetics of Incline Walking with 

Robotic Ankle Exoskeletons,” J. Exp. Biol., 212(1), pp. 32–41. 

[33] Seethapathi, N., and Srinivasan, M., 2015, “The Metabolic Cost of Changing Walking Speeds 

Is Significant, Implies Lower Optimal Speeds for Shorter Distances, and Increases Daily 

Energy Estimates,” Biol. Lett., 11(9), p. 20150486. 

[34] Selinger, J. C., O’Connor, S. M., Wong, J. D., and Donelan, J. M., 2015, “Humans Can 

Continuously Optimize Energetic Cost during Walking,” Curr. Biol., 25(18), pp. 2452–

2456. 

[35] Silder, A., Besier, T., and Delp, S. L., 2012, “Predicting the Metabolic Cost of Incline Walking 

from Muscle Activity and Walking Mechanics,” J. Biomech., 45(10), pp. 1842–1849. 

[36] Sloot, L. H., Van der Krogt, M., and Harlaar, J., 2013, “Self-Paced versus Fixed Speed in 

Treadmill Walking,” Gait & Posture, 38, p. S44. 



43 

 

[37] Summerside, E., Kram, R., and Ahmed, A., 2017, “To Walk or to Run? Metabolic Cost is Not 

the Answer,” Amer. Soc. of Biomech. 

[38] Umberger, B. R., and Martin, P. E., 2007, “Mechanical Power and Efficiency of Level 

Walking with Different Stride Rates,” J. Exp. Biol., 210(Pt 18), pp. 3255–3265. 

[39] Weyand, P. G., Smith, B. R., Schultz, N. S., Ludlow, L. W., Puyau, M. R., and Butte, N. F., 

2013, “Predicting Metabolic Rate across Walking Speed: One Fit for All Body Sizes?,” J. 

Appl. Physiol., 115(9), pp. 1332–1342. 

[40] Zarrugh, M. Y., Todd, F. N., and Ralston, H. J., 1974, “Optimization of Energy Expenditure 

during Level Walking,” Eur. J. Appl. Physiol. Occup. Physiol., 33(4), pp. 293–306. 

 

 


	Energy Expenditure and Stability During Self-Paced Walking on Different Slopes
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Background
	Self-Paced Walking
	Metabolic Power and Cost of Transport
	Stability
	Hypothesis

	CHAPTER 2: METHODOLOGY
	Experimental Procedure
	Data Analysis
	Statistics

	CHAPTER 3: RESULTS
	Metabolic Power
	Cost of Transport
	Landscape
	Self-Paced Speeds
	Stability

	CHAPTER 4: DISCUSSION
	CHAPTER 5: CONCLUSION
	APPENDIX A: IRB APPROVAL LETTER
	APPENDIX B: FIT COEFFICIENT TABLES
	LIST OF REFERENCES

