
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2019 

Design and Structural Analysis of Morphing Wings Design and Structural Analysis of Morphing Wings 

Nicholas Fernandez 
University of Central Florida 

 Part of the Mechanical Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Fernandez, Nicholas, "Design and Structural Analysis of Morphing Wings" (2019). Electronic Theses and 
Dissertations, 2004-2019. 6786. 
https://stars.library.ucf.edu/etd/6786 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/293?utm_source=stars.library.ucf.edu%2Fetd%2F6786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/6786?utm_source=stars.library.ucf.edu%2Fetd%2F6786&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


DESIGN AND STRUCTURAL ANALYSIS OF MORPHING WINGS 

 

 

 

 

 

 

 

by 

 

 

NICHOLAS ALEXANDER FERNANDEZ 

B.S. University of Central Florida, 2017 

 

 

A thesis submitted in partial fulfillment of the requirements 

for the degree of Master of Science 

in the Department of Mechanical and Aerospace Engineering 

in the College of Engineering and Computer Sciences 

at the University of Central Florida 

Orlando, Florida 

 

 

 

 

 

 

 

 

Fall Term 

2019 

 

 

 

 

Major Professor: Samik Bhattacharya 

 

  



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2019 Nicholas Fernandez



iii 
 

ABSTRACT 

 

 

 Many natural flyers and marine swimmers can morph their wings during a number of 

unsteady maneuverings. With such wing morphing they are able to control the unsteady 

aerodynamic forces. A number of man-made flyers, such as unmanned aerial vehicles and micro 

air vehicles, fly in comparable Reynolds number range, but they are yet to acquire similar 

morphing capabilities as natural flyers or swimmers. Moreover, the knowledge of fluid structural 

interaction (FSI) of such morphing wings is not well developed.  Hence there is a need to 

investigate the FSI of morphing wings. In this thesis, a morphing wing was designed and its FSI 

was investigated.  The wing was designed with the help of advanced 3D printing and the morphing 

capabilities utilized servo driven actuators.  The design enabled the wing to execute spanwise 

bending, twisting and combined bending and twisting during a number of unsteady maneuverings. 

In the present work, the effect of gradual acceleration on the resultant unsteady forcing was 

investigated. FEA simulations were performed in order to gauge the response of the wing in 

different scenarios. A flat plate wing was towed in a 6-m-long towing tank and force data was 

collected using a 6-dof force sensor. With this method of morphing, future experiments can be 

performed for different unsteady cases. The analysis performed in this thesis will also be helpful 

in understanding more complex FSI problems applicable to morphing wings. 
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INTRODUCTION 

 

Natural flyers, such as birds, insects and marine swimmers such as fish, can bend or twist 

their wings or fins at ease. This is how they control the aerodynamic or hydrodynamic forces on 

their body. Engineering flight vehicles are yet to achieve the same level of dexterity. However, 

due to the rapid development of smart structures, we now have materials that can be morphed with 

the help of electrical signals or by some other means. This capability provides us with a new 

opportunity in wing design. In fact, few projects taken up by NASA and other leading 

organizations in aerospace research have looked into the feasibility of using programmable 

materials in wing design. However, the concept of morphing is not new. Wright Brothers used 

wing warping for controlling the roll of their aircraft. 

Modular morphing is a concept where part of a structural member changes its shape or 

geometry under excitation of external control signals (Sofla et al. 2010). For example, in an 

aircraft, part of the trailing edge of the wing can be deformed to avoid flow separation (Lyu and 

Martins 2015). Such selective shape-changes or morphing is feasible now, thanks to the rapid 

development of smart materials (Barbarino et al. 2014).  A two-decade joint project between 

DARPA, NASA, AFRL and industry partner FlexSYS has advanced the field towards morphing 

flight tests (Scherer et al. 1999). This program has now demonstrated multiple flight tests through 

the Adaptive Compliant Trailing Edge project (most recently this past month out of NASA 

Armstrong!). Despite this technological breakthrough, the effect of dynamic morphing on the 

unsteady flow, and the related fluid-structure-interaction (FSI) are yet to be explored 
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systematically, and consequently there are many unresolved issues (Valasek 2012). For example, 

when a gust hits an aircraft, which mode of morphing is beneficial, or how fast to morph. 

In sea-based aviation such unsteady environments are more of a rule than exception 

(Reddy, Toffoletto, and Jones 2000). For example, when approaching a ship for landing, an aircraft 

faces the strong disturbances from the turbulent ship-air-wake. In such cases, it can use morphing 

to gain stability. However, the mode of morphing is still an unresolved question. Moreover, we 

are yet to fully understand how the optimum morphing parameters scale with the strength of the 

disturbance. Finally, what are the effects on the structural integrity of the aircraft when it is 

subjected to unsteady loads? The answers to these questions hold the key for designing morphing 

structures with better aeroelastic responses. These questions, however, cannot be answered by 

studies employing steady-state analysis and fixed-configuration testing (Gül\kiat 2010). To resolve 

these issues, this project will study the transient fluid-structure interactions of modular high-

stiffness structures to find out the optimal morphing configurations. The goal of the proposed work 

is to study such coupled interactions during a dynamic morphing stage. Structural testing and flow 

field measurements will be performed to understand the transient dynamics of such coupled fluid-

structure interactions. Our goal is to develop optimized modular morphing strategies. Reduced 

order models will be developed for the unsteady flow-field, which will be used for developing a 

closed-loop feedback control system. The impact of modular morphing in such unsteady 

environment will also be analyzed with the help of Finite Element Analysis (FEA). The outcome 

of this research will help in designing morphing wings with improved aero-structural tailoring 

which will be beneficial in the gusty environment of ship-air-wake. 
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Background 

 

The aerodynamic properties of an aircraft are largely decided by the shape of its wings, 

fuselage and various appendages attached to its body. Fixed-wing aircrafts, in particular, 

commercial airliners are mostly designed for a fixed operational envelope. However, advanced 

fighter jets are expected to be multi-role aircraft, capable of performing sharp maneuvers even 

under the most hostile conditions. For sea-based aviation, additional constraints are placed on 

fighter aircrafts as they are required to take-off and land within very short distances and need to 

have foldable wings and lower physical footprints. Moreover, during take-off and landing, the 

aircraft may also be subjected to severe gusty winds coming from the ship structure (Wadcock et 

al. 2004). Such disturbances are mostly generated by the vortices that are created in the ship air 

wake. 

With such an increased operational envelope, it’s practically impossible to design an 

aircraft with conventional control surfaces which can perform under varying unsteady 

environments. Shape morphing, on the other hand, can be beneficial in this regard [(Sanders, 

Eastep, and Forster 2003); (Johnston et al. 2007); (Gern, Inman, and Kapania 2005); Gern, Inman, 

and Kapania 2005)]. With rapid development in smart-material technology, especially, micro-fiber 

composites and programmable materials, it is now possible to design wing-shapes that can change 

its geometric shapes to adapt to its environment or to the given mission profile (Barbarino et al. 

2014). Shape memory alloys (SMAs) and adaptive materials have been employed to design 

morphing wings for UAVs and MAVs. Application of SMAs greatly reduces the weight of the 

vehicle due to exclusion of conventional flaps, slats and related actuators (Barbarino et al., 2011). 

In addition to this, the capability of shape change can be used to selectively alter the flow over the 
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wing to gain performance benefits during a particular unsteady flow situation (Ghommem et al. 

2012). For example, the wing can morph to change the wing twist (Pecora, Amoroso, and Lecce 

2012), the planform, alter the wing sweep (Grant, Abdulrahim, and Lind 2006), or change the 

camber by modifying the trailing edge (Shili, Wenjie, and Shujun 2008), etc. 

Much of the analysis of morphing wings has focused on developing a structure that can 

transform between two (or more) nominally static shapes. For example, researchers have proposed 

bistable composite shells that can snap between two positions (Schultz 2007). Others examined 

variable levels of in-plane precompression on membranes to enhance actuation capability (Vos et 

al. 2007). Some researchers have considered morphing that depends on other factors and so could 

vary regularly in time, but operation is still typically in steady state. For example, a morphing rotor 

can exhibit chord extension based on the rotor speed, but the rotor speed does not typically vary 

quickly except in discrete transitions (Johnson et al. 2008). However, none of these analyses have 

focused in any detail on either the fluid-structure interaction or the transient structural dynamics 

associated with the morphing process. 

Although the development of smart structures has made morphing a realizable goal, the 

fluid-structure-interaction (FSI) aspect of morphing has not received adequate attention. Few 

questions are yet to be understood in their entirety:  

1. When to morph? 

2. How to morph? 

3. What are the optimum morphing parameters? 

These three questions are coupled and their answers are largely dependent on the unsteady 

environment under which morphing is warranted. The selection of optimum morphing parameters, 
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however, also need to take into account the structural aspect. The majority of research on morphing 

wing aerodynamics is modeled on the assumptions of steady inviscid flow. This is mainly due to 

the lack of experimental facilities, such as specialized wind or water tunnels to recreate gusty 

atmosphere. Because of using steady aerodynamics, the loads coming on to the structure are often 

miscalculated.  Hence to properly calculate the net change in structural load caused by morphing 

in an unsteady environment, one must take into account the transient dynamics associated with 

morphing. This is exactly the motivation of the proposed research. Here, we would like to 

investigate the fluid structure interactions of different morphing configurations for gust alleviation 

and improved stability. 
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MATERIALS AND METHODS 

 

Design of a Morphing Wing 

 

The model, for this experiment, was decided on after going through many different designs 

and iterations. This section of the paper will discuss the process of designing a morphing wing 

able to meet the many criteria for the experiment. 

The criteria associated with ensuring a properly functioning experiment are: 

1. The design must be non-damaging so that the experiment can be run multiple times. 

2. The wing must have the capacity to create a tip deflection of at least 20 degrees. 

3. The wing must have the ability to withstand being towed through water at a speed 

of .3 m/s. 

4. The wing must have the ability to bend without compromising the smoothness of 

the wing’s outer surface. 

5. The wing must be constructed in a way that allows the necessary PIV experiments 

to be conducted. 

6. The wing must be capable of being interchanged easily. 

  

The main challenge in coming up with designs was finding a way to create the required 

deflection without compromising the surface of the wing. When looking into methods of bending, 

many of the methods were either too costly, such as manufacturing the set up using soft robotics, 

or sacrificed aspects of the criteria above, such as bending the wing using strings on the outside. 

The conclusion was made that the method of bending needed to be from inside the wing itself, 
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while maintaining a thin profile. As a result, two designs were created that could meet these 

criteria. 

 The first design utilized a series of strings and 3d printed components that would be used 

to resemble a bone and joint structure. Between the joints, a rubber material would be used in order 

to make the components stay in line when no tension was applied to the string. Figure 1 is an image 

demonstrating this type of bending. 

 

 

Figure 1: Preliminary string bending method 

 

As the string was threaded through the channels in the components, the tip would deflect 

due to the applied torque. This design allowed for the wing to have many configurations depending 

on the number of arm segments put into the wing. This variability made each wing very adaptable 

so that many possible cases could be tested with each wing manufactured. A major disadvantage 

of this design is that the components have to be quite large for a motor to be able to create enough 
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torque to pull the string effectively. Another downside is the rigidity of the axis that is not rotating. 

When implemented, it caused irregular deformation of the wing. 

For the second design method I determined that there was no need for a lot of variability 

in terms of bending angle. With this determination, I decided to attempt to use a fixed curved 

structure that would create the desired bending shape while also allowing the wing to transition 

smoothly between a flat and bent plate. After several iterations, a pre-bent rod was decided on 

allowing it to be rotated in order to make that transition. In terms of the outer part of the wing, a 

material that was flexible enough to meet the desired bending angle, while having enough 

structural integrity in order to not flop around unnecessarily, needed to be found. Many materials 

were considered such as nylon, different strengths of silicone rubber, and different 3d printable 

materials.  Figure 2 is a preliminary model of this idea. 

 

 

Figure 2: Preliminary model with internal channels 
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For this design, motors will attach to the rods and rotate them up to 90 degrees to get the 

desired bending profile. This design’s main benefits are the reliability of the bend, as well the ease 

of rotation. Since the rods needs to rotate in the gaps provided in the skin, only a low amount of 

torque is required to make the design work effectively. The main downside of this design is that 

for every different angle you want to test, a new wing and set of rods needs to be manufactured. If 

many different angles need to be measured, the cost of materials and manufacturing escalates 

dramatically. 

In order to meet most criteria, a design using bent rods inside of a skin was decided on. In 

order to reduce the cost of experimentation, the rest of the setup was designed to be able to function 

with different wings and rods. The design of the rest of the setup is described later in this paper. 

 Figure 3 shows the way the rods are bent as well as a section cut view of the wing. The 

channel in the middle of the wing allows the rods to rotate which then makes the wing bend in the 

desired fashion. The interior channels of the wing were changed from the initial model for two 

reasons. The first was because there was instability on the lower tips of the wing while it was flat. 

And second, the change in orientation allows for the rods to bend in opposite directions and create 

a unique profile.   
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         Many iterations were done in order to maximize the bending while keeping a 3:1 aspect 

ratio and a .7 flexion ration. These criteria were set as the goal due to many examples in nature, 

such as a bird or a fish having these important aspects. The final design chosen is able to meet all 

of the criteria. The design uses a flexible 3D printed wing and a set of bent hardened steel rods. 

The properties of the material and details of the bend are stated in table 1 and figure 4. 

 

 

Table 1: Chart of material properties 

 

Figure 3: Bent rods and channel orientation 
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Figure 4: Measurements of bent rod in inches 

 

         To move the rods, 2 servo motors with custom 3d printed attachments were used. These 

attachments gripped the rods using a series of bolts to hold the rod in the desired position. The 

servo motors allowed us to control the exact speed and degree of rotation.  The full system for 

motion is depicted in figure 5. 

 

 

Figure 5: Image of wing with servo attachments 
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Design of the carriage 

 The carriage is what connects the wing to the traverse. To be able to optimally 

perform the experiment, the Carriage needs to be lightweight, adjustable, and be able to attach a 

high spec camera to it.  It is designed using 80-20 aluminum due to its ease of use and light weight. 

With channels built into the 80-20 material, the carriage is highly adjustable. By simply loosening 

a few bolts, and sliding individual beams into place, a variety of test cases, and camera orientations 

can be achieved simply and quickly.  The camera attached to the carriage, needs to be able to view 

the wing as it the wing goes through the water. In order to achieve a clear camera view, a 

transparent acrylic sheet was used as a skim plate. The acrylic sheet was made of 2 components, a 

square sheet acting as a skim plate and a round dial used as a second check for guaranteeing the 

angle of attack. Both parts have lines etched into them in giving a close measure of the angle of 

attack.  Figure 6 is the cad model depicting the carriage. 
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Figure 6: Model of carriage with wing attached 

 

Design of the Traverse in the Towing Tank 

  

In order to create the scenario of the wing passing through a fluid, we attached the set up 

described in the previous sections to a traverse. The traverse allowed for the control of speed, 

acceleration, and distance of the carriage. The traverse has two tracks that are kept in sync by a 

torsion bar attached to both tracks.  
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Figure 7: Image of traverse 

 

Details of the Towing Tank 

 

The traverse is held above a large tank that holds the water for the experiment. The tank is 

six meters long, one meter wide, as well as one meter tall. The first and last meter of the tank has 

metal side panels, inner four meters contains glass side panels. The glass allows the use of lasers 

to go through the water for our PIV experiments. The traverse is held above the Towing tank by a 

structure made of 80-20 Aluminum. 
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Figure 8: Rendered image of tank 

 

Details of Force Sensor 

 

 

 In order to get accurate data. A force sensor was used between the wing and where it 

attaches to the carriage. It was oriented to where the y axis goes along the length of the tank, the x 

axis is perpendicular top that, and the z axis is up and down. This setup allows us to read the forces 

applied to the wing during motion. The resolutions of the different axis of the force sensor are 

depicted in table 2. 

 

Table 2: Specifications of force sensor 
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 To collect data, the force sensor is connected to a DAQ which reads the output in the force 

sensor and translates it into usable data on the computer. The data can be erratic so some filtering 

was done to smooth out the data. Figure 9 is a depiction of the force sensor with dimensions. 

 

 

Figure 9: Image describing force sensor dimensions and orientation 

 

 

 To ensure quality data, the force sensor was calibrated by attaching known loads and 

checking the read out on the computer. As can be seen below, a force of 1000g is applied in the 

negative z direction of the force sensor. The computer then shows a readout of 980g. 
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Assembly and Calibration 

 

 Once all the components were designed and manufactured, extensive time and effort was 

put into the assembly and calibration of the experiment. To start, the frame holding the traverse 

was leveled to within a cm using laser leveling equipment. With the base leveled, the traverse was 

then put on top of it and mounted in place. The traverse needed to be almost exactly parallel for it 

to function correctly. In order to get reliable data, both tracks were leveled to be horizontal plus or 

minus .05 degrees as well as making both tracks parallel to each other plus or minus .005 degrees. 

In order to do this more laser leveling equipment was used. As a double check and for fine 

adjustments, a series of measurements with a digital level was used. When leveled, a custom-made 

clamp was used in order to fasten the traverse to the base. After the traverse was securely in place, 

the carriage needed to be attached to the load attachment plate. Using custom built adapter plates, 

and using the digital level to ensure the carriage is held correctly, the carriage is connected and 

ready for the wing. After connecting the servo motors and mounting rod to the carriage, the wing 

and internal rods are attached from under the acrylic plate. After attachment to the carriage, the 

wing is then oriented to the correct angle of attack by using the correct attachments for the servo 

holder as well as the dial on the acrylic plate being fastened. With all this done, the camera is 

mounted onto the crossbar and aimed at the desired segment of the wing. The focus and aperture 

are then optimized for the PIV experiments required settings. These adjustments are done using a 

calibration plate. Once all this is wired to the DAQ along with the force sensor, the experiment is 

ready to start. Figure 10 is an image showing the complete set up ready for experimentation. 
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Figure 10: Image finalized setup 

 

Details of Analysis Procedure 

 

 Finite element analysis was performed on multiple scenarios that the wing could go 

through. In order to mock the scenarios, the CAD model was imported to Ansys workbench, and 

using a combination of forces and boundary conditions, the mock scenarios could be created. A 

total of three scenarios with 3 different velocities or applied forces in each scenario were 

performed. 

 In order to calculate the pressures for each scenario, the equation 1 was used. 

    

 Where 

  

(1) 
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 For all scenarios, a CFD simulation was run in order to determine the coefficient of drag. 

This was done by performing a steady state flow analysis of each scenario. For the mesh, I went 

with an oak tree type with 4.9 million cells. The mesh was more refined near the surface of the 

wing. For boundary conditions, there was an initial condition of pressure being at atmospheric 

pressure and initial velocity of zero. The inlet had a velocity boundary condition of the cases 

respective velocity. The outlet has a pressure outlet boundary condition. The plate has a no slip 

boundary condition as well. After each simulation is run, the coefficient of drag was output similar 

to figure 11. This data was then used for the equations above to determine the equivalent pressure 

to mimic these velocities. 

 

 

Figure 11: Output of CFD simulation 2b 
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 For the first scenario, a configuration of forces which mimicked a 90-degree angle of attack 

was used. This was done by fixing the top of the wing and applying a uniform pressure 

perpendicular to the flat side of the wing. 

 

 

Figure 12: Orientation of scenario 1 

 

 For each case in this scenario, the pressure on the wing was changed to mimic different 

velocities. These velocities are .3 m/s, .2 m/s, and .1m/s. Table 3 shows all of the forces applied in 

figure 12. 

 

Table 3: Chart of pertinent information of scenario 1 
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For the second scenario, a configuration of forces which mimicked a 30-degree angle of 

attack was used. This was done by fixing the top of the wing and applying a uniform pressure at 

an angle of 30 degrees from the flat side of the wing. 

 

 

Figure 13: Orientation of scenario 2 

 

 

 For each case in this scenario, the force on the wing was changed to mimic different 

velocities. These velocities are .3 m/s, .2 m/s, and .1m/s. Table 4 shows all of the forces applied in 

figure 13. These pressures are different then the first scenario due to the difference in orientation 

which alters the drag coefficient of each case. 
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Table 4: Chart of pertinent information of scenario 2 

 

 

For the third scenario, a configuration of forces which mimicked a Rankine vortex on the 

surface of a wing was used. This was done by fixing the top of the wing and applying pressure 

gradient along the chord of the wing. This gradient was applied to the flat side of the wing. 

 

 

Figure 14: Orientation of scenario 3 
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For each case in this scenario, the pressure gradient on the wing was changed to mimic the 

effects of a vortex along the chord of the wing during scenario 2. The pressures mimicking these 

velocities were derived using equation 2 which describes the profile of a Rankine vortex. Figure 

15 gives a visual representation of the equation. 

 

 

 

 

Figure 15: chart depicting Rankine velocity distribution 

 

After creating a data set describing the Rankine vortex, the magnitude of each vortex was 

determined by using equation 3. This equation determines the pressure in the center of the wing 

with respect to the variables in scenario 2. 

 

(2) 
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where 

 

 

Using these sets of pressures, I found the difference between them and used it as the 

maximum magnitude of the Rankine vortex. Table 5 shows the maximum magnitude of applied 

pressure. 

 

Table 5: Table of maximum applied pressures 

 

 

 These magnitudes are applied to the distribution we plotted earlier and the output is a 

pressure distribution of the correct magnitude. Figure 16 is an example of a pressure distribution. 

 

(3) 
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Figure 16: Example of pressure distribution for scenario 3 

 

In order to ensure that the simulated data is indeed accurate, an experiment will be run 

following scenario 1. The force sensor data will be collected and analyzed to find the drag force 

applied to the wing. This data will then be compared to the drag force applied to the wing to see 

whether the force data is similar. To calculate the drag force for the simulations, equation 4 will 

be used. 

 

 

where 

 

 

  

(4) 
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RESULTS  

 

Force Sensor Comparison 

 After running the experiment, figures 17,18, and 19 were produced from the force data. 

With all the data points documented, the large outliers, in terms of force, were removed and the 

remaining data were averaged in order to find the drag force on the wing for each case. 

 

 

Figure 17: Graph of force data for case 1a 
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Figure 18: Graph of force data for case 1b 

 

 

Figure 19: Graph of force data for case 1c 
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 After calculating the average of the graphs above as well as calculating the drag force of 

the simulated results, table 6 was created. It has all the previous information as well as the percent 

error between the two results. 

 

Table 6: Chart of Drag Force Comparison 

 

 

FEM Analysis 

 For Finite element analysis, the main goal was to simulate the wing being towed through 

the water. 3 different scenarios of applied force were used on the wing in order to view the varying 

effects on the wing. Recorded was the displacement, stress, and strain. 

For the first scenario, a uniform distributed load was applied to the surface of the wing. 

This orientation of force mimics a 90-degree angle of attack. 
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For scenario 1a, table 7 contains the output for the simulation. 

 

Table 7: Chart of pertinent information of scenario 1a 

  

 

Figure 20 is a visual representation of the output property distributions on the wing.  

 

 

Figure 20: Visual representation of case 1a 
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For scenario 1b, table 8 contains the output for the simulation. 

 

Table 8: Chart of pertinent information of scenario 1b 

 

 

Figure 21 is a visual representation of the output property distributions on the wing.  

 

 

Figure 21: Visual representation of case 1b 
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For scenario 1c, table 9 contains the output for the simulation. 

 

Table 9: Chart of pertinent information of scenario 1c 

 

 

Figure 22 is a visual representation of the output property distributions on the wing.  

 

 

Figure 22: Visual representation of case 1c 

 

 For the second scenario, the load was applied to the wing similarly to the first scenario. 

The difference is that the force is set up to be an angle of attack of 30 degrees.  
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For scenario 2a, table 10 contains the outputs for the simulation. 

 

Table 10: Chart of pertinent information of scenario 2a 

 

 

Figure 23 is a visual representation of the output property distributions on the wing.  

 

 

Figure 23: Visual representation of case 2a 
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For scenario 2b, table 11 contains the outputs for the simulation. 

 

Table 11: Chart of pertinent information of scenario 2b 

 

 

Figure 24 is a visual representation of the output property distributions on the wing.  

 

 

Figure 24: Visual representation of case 2b 
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For scenario 2c, table 12 contains the outputs for the simulation. 

 

Table 12: Chart of pertinent information of scenario 2c 

 

 

Figure 25 is a visual representation of the output property distributions on the wing.  

 

 

Figure 25: Visual representation of case 2c 

 

 For the third scenario, A varying load was applied along the chord of the wing mimics the 

pressure distribution of a Rankine vortex as it is along the wing. For the 3 scenarios, the vortices 

simulated will mimic the size of a vortex in situation 2. 
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For scenario 3a, table 13 contains the outputs for the simulation. 

 

Table 13: Chart of pertinent information of scenario 3a 

 

 

Figure 26 is a visual representation of the output property distributions on the wing. Due 

to the small nature of the force, the scale of the visual will be increased. 

 

 

Figure 26: Visual representation of case 3a 
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For scenario 3b, table 14 contains the outputs for the simulation, 

 

Table 14: Chart of pertinent information of scenario 3b 

 

 

Figure 27 is a visual representation of the output property distributions on the wing. Due 

to the small nature of the force, the scale of the visual will be increased. 

 

 

Figure 27: Visual representation of case 3b 
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For scenario 3c, table 15 contains the outputs for the simulation 

 

Table 15: Chart of pertinent information of scenario 3c 

 

 

Figure 28 is a visual representation of the output property distributions on the wing. Due 

to the small nature of the force, the scale of the visual will be increased. 

 

 

Figure 28: Visual representation of case 3c 
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DISCUSSION 

 

These simulations show that the wing is able to withstand the different velocities during 

towing while meeting all the other criteria described in the design of a morphing wing section of 

this paper.  

From the drag force comparison, we can see that the simulated data has some variance from 

the experimental data. This can come from multiple sources of error. Case 1a had the largest 

percent error between the simulated and experimental data at 27.1 percent. While quite a large 

percent error, the scale of the force applied is actually rather small. With a small force, it is easier 

for percent readings to become quite large due to the sensitivity of the force sensor as well as other 

minor disturbances being close to scale with the applied force. I will conclude that the simulated 

data for this case is accurate due to this, as well as the diminishing percent error trend as the value 

of the forces increase in different cases.  This trend is seen in the Drag force comparison chart. 

The percent error for the smallest force is 27 percent while the largest force is only 5 percent. In 

following this trend, the larger force that is applied to the wing, the more likely the experimental 

data and simulated data will be closer together. With this trend, and the current results for both 

simulation as well as experimental data, I believe that the simulation is an accurate representation 

of experimental results. 

For Scenario 1, the expected deflection, stress, and strain was expected to be much higher 

than the other scenarios due to the orientation of the wing with respect to the angle of attack. The 

results and distributions for these properties matched the predictions made for the different 

properties. The deformation for all 3 cases is evenly distributed along the chord and increases 
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linearly along the span. The stress and strain follow a similar distribution except that both have a 

larger magnitude along the top part of the wing where it is fastened to the rest of the setup. This 

scenario created the maximum deformation as well as high stress and strain. These values are well 

within the margin of the wing functioning properly so therefore the wing should withstand its 

intended use without failure. 

For scenario 2, the expected deflection was expected to be smaller than the respective 

velocities from scenario 1 due to the change in the angle of attack. Similar to the first scenario. 

The deformation seems to be evenly distributed along the chord with a little bit of an increase 

along the centerline. Unlike the first scenario, the stress and strain distribution are skewed to be 

larger along the leading edge of the wing. Although this distribution could be an issue if the 

magnitude of the force was larger, this distribution is within acceptable tolerances for the wing to 

function well while meeting the criteria for success. Similar to scenario 1, the increase in velocity 

seems to have an exponential growth when it comes to displacement, stress, and strain. While 

deformation change will decrease as the velocity increases, stress and strain may continue to 

exponentially increase causing the wing to fail along the leading edge. 

For scenario 3, this analysis will help future researchers who are looking into the fluid 

dynamics of vortices along the wing. Although the effects on the wing are small in comparison to 

the effects from towing it through water, they can still explain discrepancies in the measured force 

and PIV data in future simulations. 
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CONCLUSIONS AND FUTURE WORK 

 

 With the simulation and design complete, I can conclude that the wing meets all criteria to 

successfully perform this experiment. The wing can now be used to conduct the desired PIV 

experimentation and allow for a better understanding of vortices while being towed through the 

water. 

 In terms of future work, there are many routes to take. First, more detailed analysis of the 

wing, while it is mounted with the rest of the setup, would further the understanding of its fluid 

structure interaction. This will involve more complex finite element analysis and require more 

advanced hardware and software than currently used on this project.  

 This work is also helpful in the study of fluid dynamics. This data shows how a wing will 

deform when introduced to different scenarios that occur normally in its experimental life. This 

data can help future researchers understand the effects from towing the wing in different 

orientations. These results can also allow them to compensate when conducting experiments such 

as PIV. 

 Lastly, this work expands on one way to create the desired deformation. This design can 

be further optimized by changing materials or changing the orientation of components in the set 

up. This design might also spark another researcher to come up with a new way of morphing. 
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