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ABSTRACT

This thesis presents analytical, experimental and modeling studies of the shape recovery behavior

of electrically activated Carbon Nanopaper (CNP) Shape Memory Polymer (SMP) composite. The

composite structure studied consists of a CNP layer sandwiched by two SMP layers where the

CNP layer acts as a flexible electrical heater when a voltage difference is applied. The behavior of

CNP/SMP composite presents a coupled electrical - thermal - structural problem. The governing

equations for the multiphysics behavior are derived. Derived parameters as a result of multiphysics

analysis and effects of these parameters on the shape recovery behavior are investigated. The

mechanical properties of the carbon nanopaper and viscoelastic properties of the shape memory

polymer are characterized. A nonlinear, fully coupled electrical -thermal-structural finite element

model is developed, and shape recovery experiments are carried out to validate multiphysics anal-

ysis and finite element model of the shape recovery of the CNP/SMP composite. Finite element

model captures the general behavior of shape recovery, but overpredicts shape fixity and shape

recovery rate.
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CHAPTER 1: INTRODUCTION

Brief Background on Shape Memory Polymer and Shape Memory Polymer Composites

Shape memory polymers (SMPs) are a type of smart material, which can change their shape from

a deformed configuration to their original configuration under the application of stimuli such as

heat, pH [1, 2], moisture [3, 4], chemical [5], light [6, 7, 8], and magnetism [9, 10], etc. After their

discovery in 1980s, literature on SMPs mostly focuses on thermally activated polymers. SMPs

have distinct advantages over the use of shape memory alloys (SMAs) such as low density, a range

of activation temperatures, being easy to process [11], and recoverable strains up to 400% [12].

Due to their mentioned advantages, they possess high potential for applicatons ranging from space

deployable structures to biomedical devices [13, 14].

Thermal responsive SMPs are the most commonly used type and the typical thermo-mechanical

cycle for SMP is given in Figure 1.1 [15]. The ability to retain their programmed shapes in the

absence of external stimuli makes SMP attractive in applications where there is an ever increasing

need for smaller stowed volume and precise deployment behavior.

Figure 1.1: Shape memory cycle of thermal responsive SMP
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Deployment of heavy space structures may suffer from large shocks during deployment [15]. Also,

advances in solar sails and solar panels pose a challenge to design lighter deployable structures with

lower stowed volume [16]. The need for efficient usage of volume makes it difficult to employ

traditional deployable structures [15]. Precise and full deployment of the stowed structure are

other vital characteristics of favored deployable structures.

Over the years, shape memory polymers have drawn great attention due to their ability to meet

these requirements. SMPs can preserve their shape in programmed configuration and can recover

from high deformations, which makes them a suitable candidate to be used in ultralight deployable

space structures. Although they are too compliant to be used as a structural member alone, many

researchers and companies have focused on SMP composites with a reinforcing phase in the last

decades. SMPs and their reinforced composites (SMPCs) are commonly used in aerospace appli-

cations as hinges [17] in solar arrays [18, 19], reflector antennas [15, 20], and morphing structures

[21]. Figure 1.2 and Figure 1.3 show examples of SMPCs in deployable space applications. In the

case of deployable hinges (Figure 1.2), a folded composite hinge can be deployed by activating

SMP in the hinge region. Elastic Memory Composite (EMC) from Composite Technology Devel-

opment (CTD), Inc. has merged high stiffness of fiber reinforced composites with shape recovery

properties of SMPs and several improvements have been suggested to improve performance of

the developed composite design over the years [22, 23]. Additionally, employment of SMPCs in

deployable booms bypasses complex structural designs needed for deployment mechanisms. Dif-

ferent SMPC boom designs have been studied in literature ranging from coilable booms to foldable

booms [19].

2



(a) Partially deployed EMC boom

(b) Deployable hinge

Figure 1.2: Applications for fiber reinforced SMPs
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Figure 1.3: Deployment of EMC Flexible Precision Reflector

Different means of application of heat have been studied by various research groups: the con-

vective heating, Joule heating [24, 25] and radiation on black-inked surface [26]. Among these

methods of thermal actuation, Joule heating is the most versatile in terms of control and effective-

ness which results in higher shape recovery rate. Joule heating is achieved by passing a current

in electrically conductive layer, which in return heats up the SMP. Different metals can be used

as conductive layer, however they display plasticity at low strain levels. Recent developments in

carbon nanofiber technology made them suitable to be used as electrical heater. Carbon nanopa-

pers (CNPs) are electrically conductive papers made of carbon nanofibers or carbon nanotubes and

carbon nanopapers display higher strain limits compared to metals. CNPs have low density and

high flexibility which make them advantageous in deployable space structures applications.
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Also, carbon nanopapers posses piezoresistive properties and can be used as a strain sensor. With

the strain sensing capabilities of carbon nanopapers [27], they can be employed in CNP/SMP

composite as both sensor and actuator component to activate different regions of the structure

in timely manner to create complex geometries. In addition, they can be utilized in closed loop

control for actively controlling shape recovery behavior of CNP/SMP composite in the future.

Objectives of the Research

In this work, the focus lies on the shape recovery behavior of thermally activated CNP/SMP com-

posite via Joule heating. Although different material models regarding shape memory behavior

have been developed and different heating methods have been investigated, previous research in-

volves numerical simulations and experimental results but there is a lack of detailed multiphysics

discussion in the composite behavior. In this thesis, a solution approach to the multiphysics

problem is presented which aims to elucidate the physics of the problem and important param-

eters affecting the composite behavior. A fully coupled electrical-thermal-structural finite element

model is proposed and experimental investigation are carried out to evaluate the performance of

the model.
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CHAPTER 2: LITERATURE REVIEW

Shape Memory Polymers

Shape memory polymers can be classified in different ways, i.e. the method of activation, chemical

and physical compositions etc. Liu et al.[28] proposes to divide SMPs into four classes (class I-

IV). Class I is covalently crosslinked glassy thermoset networks. Class I SMPs show rubbery

elasticity for temperatures above Tg, and they show high shape recovery due to their covalent

crosslinking. Class II SMPs are covalently crosslinked semi-crystalline networks, they can be

tailored to display improved shape recovery compared to class I type. Class III and class IV SMPs

are physically crosslinked and they are glassy and semi-crystalline, respectively. Latter classes

show improved reshapebility. Semi-crystalline SMPs (classes II and IV) show the effect of the

melting temperature of the semi-crystalline regions Tm in shape recovery. Table 2.1 summarizes

the properties of different classes of shape memory polymer.

Table 2.1: Shape memory polymer classification

. Class I Class II Class III Class IV
Crosslinking Covalent Covalent Physical Physical
Reshapebility Low Low High High

Crystalline regions - + - +
Shape recovery ratio 95-100% 30-100% 75-100% 56-100%

SMPs can also be categorized as one-way or two-way SMPs. Although literature in SMAs have

reported two-way shape memory alloys, the literature in two-way SMPs has been scarce.

In the literature, the performance of SMPs is commonly evaluated and compared using shape fixity

and shape recovery ratios. Shape fixity is a measure of ability to retain programmed shape, and is

6



given by Eq. (2.1)

R f =
εr

ε0
, (2.1)

where εr is the strain after removing the deformation constraint, and ε0 is the programming strain.

Ideally, shape fixity should be close to 1, suggesting the programmed shape can be maintained

after removal of the constraint. The shape recovery ratio is used to evaluate the performance of the

SMP during the activation cycle. It can be defined as,

Rr(t) = 1− ε(t)

ε0
, (2.2)

where ε(t) is the strain at a given time, and final value of ε(t) can be used to evaluate the shape

recovery performance at the end of the thermo-mechanical cycle. For fully recovered shape, shape

recovery ratio should be 1 (ie. ε(t) should be 0). These parameters are used to compare the

performance of SMPs after undergoing repeated thermo-mechanical cycles. Schmidt et al. [29] has

shown experimentally that, as the number of cycles increases, the shape recovery ratio (comparing

with the initial shape) decreases due to residual strains from previous cycles, but the marginal

effect of residual strain over a cycle becomes less for higher cycles.

Constitutive Models for Shape Memory Polymers

Constitutive modeling for shape memory polymers have been investigated widely. In literature,

two main approaches have been used to explain the shape memory effect of SMPs[12, 30, 31].

The first approach utilizes the phase transition modeling approach while the second approach uses

thermoviscoelastic material models. Nguyen [30] suggests phase transition modeling can be used

7



in different classes of SMPs, such as crystallizable and amorphous polymers. Leng et al. [12] states

that the capability to attain large deformations proves difficult to obtain a mechanical constitutive

behavior.

Shape memory polymer models can also be divided into small strain models and finite deforma-

tion models. Finite deformation models are commonly an extension of the validated small strain

models.

Figure 2.1: Micromechanics model for bi-phasic SMP model

The phase transition approach treats SMPs as a material consisting of different phases, mainly

rubbery and glassy phases. The material response is determined by the volume fraction of these

phases, and above Tg, the material response is determined by the rubbery phase [30]. Liu et al. [32]

treated SMP as bi-phasic system (frozen and active phases in Figure 2.1) [32] and their volume

8



fractions are given by,

φ f =
Vf

V
φa =

Va

V
, (2.3)

where V is total volume, V f and Va are frozen and active volumes, respectively. With the assump-

tion of slow strain rate and slow heating/cooling rate, the volume fractions will be a function of

temperature only. With the assumption of stresses being equal in the phases, they defined total

strain to be the summation of strains in two phases with rule of mixture, i.e.

ε = φ f ε f +(1−φ f )εa, (2.4)

and ε f consists of three parts (frozen entropic strain, internal energetic strain and thermal strain)

while εa is divided into entropic strains and thermal strains. Finally writing generalized Hooke’s

law for active and frozen phases and combining them to yield the mechanical strain after some

manipulations, the constitutive relation is presented by

σ = (φ f Si +(1−φ f )Se)
−1 : (ε − εs − εT ), (2.5)

where Se and Si are fourth order tensor for entropic deformation and internal energetic deformation,

respectively. As a result, only two state variable remains: εs (stored strain) and φ f . The work of Liu

et al. has been improved over the years by other researchers and the shape recovery mechanism has

become more clear by the work of Chen et al. [33] who extended the model to large deformations

using Neo-Hookean material model as a special case.

The thermoviscoelastic approach takes into account the time-dependent properties. This approach

9



uses the free volume concept and chain mobility to explain shape fixity and recovery of SMPs.

At low temperatures, the free volume for chains to move easily is low and the viscosity of the

medium is high, however at higher temperatures, chains can move more freely in less viscous

medium. This approach is commonly used in conjcution with relaxation or retardation times and

time-temperature superposition principle to account for the effect of the temperature. Attempts

to explain the shape recovery effect via viscoelastic approach resulted in numerous models. Lin

et al.[34, 35], modeled SMP with two Maxwell models in parallel for polyurethanes with the

Williams-Landel-Ferry equation for accelerated response of material (via shift factors). An analyt-

ical solution is presented from two Maxwell elements. The model presented in that paper together

with the paper by Qi et al. [36] are adopted for this thesis. Other viscoelastic models in the liter-

ature include the works of Tobushi et al. [37], where linear and nonlinear constitutive models are

presented. The linear constitutive model [38] is given by,

ε̇ =
σ̇

E
+

σ

µ
− ε − εs

λ
+αṪ , (2.6)

where λ , µ , α are retardation time, viscosity and the coefficient of thermal expansion, respectively.

Here, εs is defined as irrecoverable strain. The nonlinear constitutive model is constructed by

adding nonlinear terms expressed by power of stress,i.e.

ε̇ =
σ̇

E
+m(

σ −σy

k
)m−1 σ̇

k
+

σ

µ
+

1
b
(

σ

σc

−1)n − ε − εs

λ
+αT, (2.7)

where σy is the yield stress, whereas σc is the creep limit.

Lai and Baker [39] developed a 3-D Schapery representation for nonlinear viscoelasticity, noting

that the use of simple classical constituitive models may not be adequate in practical applications.
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The developed constituitive model is converted to incremental form to study material response.

Their main assumption is that the deviatoric and dilational behavior of the material are uncoupled.

Time-temperature superposition principle is implemented while considering the effect of physical

ageing of polymers and deformation dependence of shift factors. They have also stated that the

choice of the time step in numerical integration has no effect on accuracy, however it can cause

convergence issues when significant changes are involved during this time step.

By tailoring Tg via polymer chemistry (monomer and/or comonomer type and ratio, crosslink

density) and processing, desired effects can be observed for given operational temperature range

[40]. Over the years, high dependence of performance of SMPs in different applications forced

researchers to develop SMPs with specified Tg (varying from 35◦C to 113◦C) [12].

Baghani et al. [31] developed a finite deformation constituitive model based on logarithmic strain.

In that paper, the material is modeled with rubbery and glassy phases with varying volume fraction

depending on the temperature. For each phase, the deformation gradient is decomposed into glassy

and rubbery parts. Naghdabadi et al. [41] criticizes the use of spring and dashpot elements in SMP

modeling and states that the response of these models only agree qualitatively with experiments.

Castro et al. [42] discusses the effect of programming and activation conditions on the shape

recovery rate, by considering isothermal tests and shape memory cycle tests. Faster shape recovery

is achieved under isothermal conditions compared to shape memory cycle conditions with the same

recovery temperature. Faster recovery can be achieved at lower programming temperature and

higher activation temperature. These results can be explained by the high elastic response of the

material under isothermal conditions and the effect of activation temperature. Castro et al. [42]

have also noted that, if the activation temperature is lower than the programming temperature,

shape recovery occurs at a much slower rate.
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Shape Memory Polymer Composites

SMPs are highly compliant materials and show lower mechanical strength compared to other ma-

terials, therefore, over the last two decades, many researchers and companies focused on the use

of shape memory polymers in fiber reinforced composites [12, 43]. Studies have been conducted

where shape memory polymers are employed as matrix material. In the literature, the fiber rein-

forced shape memory polymer matrix composites are commonly referred as Elastic Memory Com-

posites (EMCs) or SMPCs. Use of EMCs results in higher packaging and lower stowed volumes

compared to traditional composite structures. Comparing with the traditional polymer matrix com-

posites, employing SMP as matrix material was found to improve nominal bending strains without

causing failure of the fibers. During packaging of the structure, high temperature causes SMP to

lose its stiffness drastically (on the order of several hundreds), which allows fibers to form con-

tinuous microbuckles on the compression side [44]. Instead of using a low modulus material as

matrix [45, 46, 47], using SMP to facilitate its variable stiffness property can help to achieve high

curvatures during packaging and higher stiffness in the programmed configuration.

Bergman et al. [48] developed a finite element model for SMPC beams to study the effect of

dynamic deployment for unidirectional fiber composite with different orientation angles. Bergman

et al. have shown that the shape fixity of SMPCs are greatly affected by volume fraction of fibers

and orientation angle. This result is intuitive due to the high modulus of fibers compared to SMP,

with 10% fiber volume fraction, after unloading, more than 90% of the initial shape is recovered.

For 90◦orientation of fibers, shape fixity can be approximated with only SMP response. When

designing deployable space structure, fiber orientation angles and stowed shape requirements must

be taken into account. If high shape fixity is required under the load-free state, the composite

should be programmed accordingly to avoid high stored energy in the fibers. Meng et al. [49] state

that the reason for the lack of updated research in SMPCs is due to the fact that shape memory
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effect becomes negligible in reinforcement direction.

Apart from the reinforcing aspect, the use of carbon nanofibers (CNFs) and carbon nanotubes

(CNTs) can be used with SMP matrix due to their high conductivity. Several researchers have

focused on manufacturing aspect of implementing CNF and CNTs into SMP matrix uniformly and

several manufacturing methods have been developed.

Electrically actuated SMP composites have been under investigation extensively [50, 51, 52, 53,

54]. The conductive materials in SMP composites acts as an internal heating mechanisms under

the application of current to the conductive layer. Different conductive layers have been used such

as carbon black, short carbon fibers [55, 56], carbon nanotubes, metals [57], or combination of

them to improve shape recovery performance [58].

Carbon Nanopaper

The literature regarding the piezoresistivity of carbon nanopapers is vast. CNTs possess high

thermal and electrical conductivities [59], as well as high stiffness and strength.

Carbon nanotubes (CNTs) filled polymer composites have been investigated widely for their multi-

functional behavior such as piezoresistive sensing, flexibility and high conductivity. Typical sens-

ing applications can include wearable electronics and medical health monitoring [60]. In the litera-

ture, the main focus is on developing a model to capture piezoresistive properties of these materials.

Several numerical studies have been published to quantify the effect of different parameters such

as the aspect ratio of fillers [60, 61], volume fraction of fillers, alignment of CNTs [59], etc. Wang

et al. [60] state that the average junction gap variation can be used as a quantitative parameter to

describe the resistive behavior of a CNT network upon strain.
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The work by Zare et al. [62] focused on the modeling of the tunneling conductivity of poly-

mer/CNT nanocomposites considering the effects of tunneling distance and CNT waviness. They

have considered an extended CNT approach where tunneling space (interphase) is included in the

modeled CNT network. Different configurations for tunneling distance definitions have been used

from Takeda’s work. Clearly, the interphase thickness will change the conductivity, critical volume

fraction, percolation threshold etc. Later, experimental data was used with the suggested model to

conclude the effects of each parameters. Similar to Zare et al., Wang and Zhao [63] focused on

developing a simple analytical expression for conductivity and piezoresistive behavior.

One of the most important aspects related to conductive network of CNTs is the percolation thresh-

old, which is the critical volume fraction of CNTs where the first conductive path forms. Con-

ductivity can be thought as negligible for the volume fractions below the percolation threshold.

Mertiny et al. [64] developed a 3-D Monte Carlo model for nano-disks to study the onset of per-

colation. Figure 2.2 [64] shows change in resisitivity with the volume fraction of the fillers. Main

contribution to conductance arises from conductive path formation in the composite. The proba-

bility of forming a conductive path highly depends on the volume fraction of CNT fillers. In order

to conduct a current, CNTs does not need to form a hard contact with each other. If CNTs are close

enough, electrons can transport between CNTs, a phenomenon called the tunneling effect. In this

case, the overall resistance of the composite will consist of intrinsic resistance of CNTs as well

as the resistance due to tunneling. In the literature, for electrical resistivity via tunneling effect is

widely accepted as Eq. 2.8 [64];

Rtunneling =
h2d

Ae2
√

2mλ
exp(

4dπ
√

2mλ

h
), (2.8)

where m is the mass of an electron, h is the Planck’s constant, λ is the barrier height of the polymer,

e is the quantum of electricity, d is the tunneling distance and A is the cross-sectional area of tunnel.
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The tunneling distance is an important parameters and the value of d greatly affects the tunneling

condition. If d is large enough, electrons cannot jump between CNTs and conductivity decreases

drastically. The critical value of d is called cut-off distance Figure 2.3 [61]. Following work from

Mertiny et al. [61] improved model for volume fractions larger than percolation threshold.

Figure 2.2: Change of resistivity with filler volume fraction

Carbon nanotube based composites are also investigated for their electromagnetic shielding effects

in spacecraft applications together with their high thermal and electrical conductivity [65]. This

application can overcome charge accumulation in spacecraft surfaces via an electrical discharge

mechanism.

Regarding manufacturing, different methods have been studied to improve the properties of CNT/polymer

composites, main focus being the alignment of CNTs in polymer substrate [66]. The model devel-

oped by Takeda et al. [59] suggests that straightening of sufficiently long CNTs during manufac-

turing can increase composite conductivity.
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Figure 2.3: Resistivity change across cut-off distance
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CHAPTER 3: MULTIPHYSICS MODEL

The particular CNP/SMP composite under study is shown in Figure 3.1. The composite is a sand-

wich structure which consists of three layers, one layer of CNP and two layers of SMP. The power

source is connected to the ends of the CNP layer, giving a voltage difference of V(t). Due to cur-

rent passing through this layer, heat will be dissipated in the CNP via Joule heating. Some fraction

of this heat will be transferred to the SMP layers, causing SMP to change its shape from the pro-

grammed configuration to the original configuration. As SMP the layers change their shape, the

flexible CNP will deform with the SMP.

Figure 3.1: Concept model of CNP/SMP composite.

The shape recovery response of the composite under the application of a voltage difference re-

quires a solution to a multiphysics problem involving electrical, thermal and structural behaviors.

The design and optimization of deployable space structures employing SMP components can be

attained by understanding the relations between the governing equations and material parameters.

In this section, the equations governing the shape recovery of the CNP/SMP composite are pre-
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sented. The behavior of the composite poses highly coupled partial differential equations. In this

study, the approach is to investigate the governing equations in individual layers, while preserving

the interaction properties between these layers.

Electro-thermal Analysis

Electro-thermal analysis is presented in this section in order to establish relations between electrical

input and temperature field. Polymer is assumed to be insulative since the electrical conductivity

of most polymers fall in range of 10−16 and 10−12 S/m [67], compared to value of several hundred

S/m for CNP.

Considering the CNP layer, the energy balance is the governing equation. Under the application

of voltage V(t), the CNP layer heats up and heat transfer occurs between the CNP layer and SMP

layers. The energy balance for the CNP layer is given by Eq. (3.1) ,

Ėgen = Q̇loss + Ėstored , (3.1)

where Ėgen is the rate of energy dissipated in the CNP, Q̇loss is the rate of heat transferred to SMP

and surroundings, Ėstored is the rate of energy stored in the CNP layer.

Assuming the heat generation to be uniform in the CNP layer, the heat generation rate is given by

Joule’s first law,

Ėgen =
V 2

RCNP

= I2RCNP, (3.2)

where I is the electrical current passing through the CNP layer and RCNP is the electrical resistance

18



of the CNP layer, which can be stated as,

RCNP =
Lϑ

Ac

, (3.3)

where ϑ is the electrical resistivity of the CNP layer, L is the length of the CNP layer, Ac is the

cross sectional area which the current flows through. Now, the current density J is introduced as

J =
I

Ac

. (3.4)

Replacing the electrical current I in Eq. (3.2) with the aid of Eq. (3.4) gives the heat generation

rate in terms of the current density

Ėgen = J2ϑAcL. (3.5)

It is important to note that, generally, the temperature field in a material is dependent both on

time and location, which adds complexity to the solution. The chosen approach to overcome this

difficulty is the method of lumped mass heat transfer which assumes the temperature field to be

uniform in CNP at any time. Thus, the temperature will be a function of time in the CNP layer.

Consequently, the partial differential equation of heat transfer is reduced to ordinary differential

equation. To be able to verify the lumped mass assumption, the thermal resistance at the CNP/SMP

interface must be much higher than the thermal resistance inside the CNP layer.

Considering Figure 3.2, the ratio of thermal resistance at the interface and inside the CNP layer is

defined as follows,

ψ =
RT

CNP

RT
int

, (3.6)
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where RT

CNP
represents the internal thermal resistance in the CNP layer, and RT

int represents the

interfacial thermal resistance. Interfacial thermal resistance is mainly explained by phonon scat-

tering at the CNP-SMP interface [66]. If the value of ψ is small, the lumped mass heat transfer

solution is considered to be valid. This condition may be satisfied with high interfacial thermal

resistance or low internal thermal resistance of CNP. Internal thermal resistance is inversely pro-

portional to thermal conductivity. So, a thin CNP layer should be used and thermal conductivity

of the CNP layer must be high. In that case, the temperature in the CNP layer can be asssumed

uniform.

Heat loss term in Eq. (3.1) will generally contain heat loss due to conduction through the SMP

boundaries, convective and radiative heat loss from the free boundaries. Neglecting the heat loss

due to radiation, the rate of heat loss can be written as

Q̇loss = 2Aint

TCNP −TSMP,i

RT
int

+As,convh(TCNP −T∞), (3.7)

where Aint is the contact area between SMP and CNP layers, As,conv is the convective surface area

of CNP, h is the convection heat transfer coefficient, T∞ is the ambient temperature. TCNP is the

temperature of CNP, and TSMP,i is the temperature of SMP layer at the interface.
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Figure 3.2: Schematics of heat transfer between layers.

Remaining fraction of dissipated heat will be stored in the CNP layer and causes the temperature

of CNP to rise. Rate of energy stored in the CNP layer is written as

Ėstored = ρCpAcL
dT

dt
. (3.8)

Substituting equations Eq. (3.2),Eq. (3.7) and Eq. (3.8) into Eq. (3.1), the governing differential

equation can be obtained as

J2ϑAcL = 2Aint

TCNP −TSMP,i

RT
int

+As,convh(TCNP −T∞)+ρCpAcL
dTCNP

dt
. (3.9)

As it can be seen from Eq. (3.7), the amount of transferred heat into SMP will depend on the

interfacial thermal resistance between these two surfaces. In literature, interfacial thermal resis-
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tance between carbon nanotubes and polymer has been cited as a challenge [68] and attempts have

been made by several research groups to account for this interfacial thermal resistance [69]. This

thermal resistance is caused by phonon mismatch at the interface and depends on the amount of

pressure between the layers. High thermal resistance between layers hinders the heat transfer into

SMP, therefore affects the shape recovery behavior of the composite.

The purpose of analyzing the CNP layer is to model the amount of heat transferred into SMP. In

order to do this, the temperature profile of the CNP needs to be obtained from Eq. (3.9). However,

the solution also depends on the temperature of SMP at the interface. So, an iterative method is

necessary to solve for the temperature of the CNP layer.

After solving for the temperature of the CNP layer, the heat transferred to SMP from the interface

can be found from substituting TCNP into the first term of Q̇loss . Having determined the heat

flux into SMP from the CNP layer solution, the temperature field in SMP needs to be solved.

Temperature field solution in SMP is considered as Fourier conduction problem and stated by

αT xx = T t, (3.10)

where α is the thermal diffusivity of SMP and T is the temperature field in SMP as a function of

both time and location (T (χ ,t)). α is given by the expression

α =
k

Cpρ
, (3.11)

where k is the thermal conductivity of SMP, Cp is the specific heat of SMP. The boundary condi-

tions for this layer can be seen in Figure 3.3.
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Figure 3.3: Heat transfer through shape memory polymer.

Q̇in is the rate of heat transferred from CNP, and Q̇out is the rate of heat transferred to the environ-

ment. Here, the boundary conditions are in derivative form, however, in general mixed boundary

conditions can be present.

Thermo-mechanical Analysis

Shape memory polymers can undergo drastic shape changes under the application of stimuli such

as light, heat and pH. In this study, the investigated SMP is thermally activated. The means to ap-

ply heat is the CNP layer which is attached to SMP layers. The thermo-mechanical shape memory

cycle consists of several distinct steps, namely programming, cooling, stowage and recovery. Pro-

gramming step involves deformation of SMP at a temperature greater than activation temperature

of SMP and holding at that deformation for a period of time. After programming, the next step is

to cool SMP to a temperature below activation temperature while holding the deformation constant
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and then the deformation is released. Programmed and cooled SMPs can retain their shape during

the stowage period and when external stimulus is applied, in this case it is heat due to Joule heat-

ing, they can recover their original configuration. A generic programming and activation of SMP

can be seen in Figure 3.4.

Figure 3.4: Programming and recovery of SMP.

Several constitutive models have been proposed in literature to capture the shape memory behavior

of polymers but two approaches have been employed widely [26]. In the first model, the material

consists of glassy and rubbery phases to capture shape memory behavior [70] while in the second

modeling approach, viscoelastic properties of SMP have been used in conjunction with the time

temperature superposition principle [36]. In this work, the latter modelling approach is used with

Maxwell-Wiechert viscoelastic model. In this model, the material consists of different branches in

parallel and in each branch, there is a spring and dashpot in series (Figure 3.5).
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Figure 3.5: Generalized Maxwell model

To account for the long term response of material a free spring is added as another branch. Relax-

ation modulus of the material is represented as Prony series and given by

E(t) = E∞ +
n

∑
i=1

Eie
−t/τi , (3.12)

where Ei are Prony series coefficients and τi(T ) are relaxation times for each branch.

In linear viscoelasticity, stress in viscoelastic material is given by Boltzmann superposition integral

σ(t) =
∫ t

0
E(t −ρ)

dε

dρ
dρ . (3.13)

In the viscoelastic model for SMP, the viscosity of dashpots will decrease with increasing temper-

ature, and material will show much lower resistance to deformation. When deformation is held at

high temperature, the amount of force to maintain this deformation will decrease (i.e. stress relax-

ation). As shape memory polymer cools down, the viscosity of the dashpots will increase again
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and when the external load is removed, dashpots will show resistance to the springs internally.

Therefore, the tendency of motion towards initial configuration will be obstructed.

To account for the effects of temperature, the time-temperature superposition principle (TTSP) is

used. This principle employs a shift factor concept, which is the ratio of relaxation times at two

different temperatures

aT =
τi(T )

τi(T0)
. (3.14)

For temperatures above the glass transition temperature, the shift factors are commonly determined

from Williams-Landel-Ferry equation,

log(aT ) =
−c1(T −T0)

c2 +(T −T0)
, (3.15)

where aT is shift factor, c1 and c2 are material parameters, T is the temperature of SMP and T0 is

the reference temperature. For temperatures below the glass transition temperature, shift factors

follow Arrhenius type equation

ln(aT ) =−Ea

R
(

1
T
− 1

T0
), (3.16)

where Ea is the activation energy, R is the gas constant, T is the absolute temperature of SMP and

T0 is the absolute reference temperature.

In this work, the thermoviscoelastic model for small strains is used. The shape recovery for-

mulation using spring dashpot elements have been adopted. The exact formulation of the shape

recovery is a highly complex process. Qi et al. [36] included the derivation for shape recovery

to prove their unified approach regarding programming and activation conditions using TTSP in
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their paper. That methodology is adopted and used as a basis for future discussions and the shape

memory mechanism.

Considering the generalized Maxwell model for viscoelastic materials (Figure. (3.5)), for an indi-

vidual branch, the stress is same for the spring and the dashpot elements for all times, i.e.

σspring = σdashpot = Eiεi = µi
d(ε − εi)

dt
, (3.17)

where εi is the strain carried by the spring element, ε is the total strain also it is equal to strain

carried by the free spring element. The difference between these two values will be carried by the

dashpot element. For each branch, the ratio µi

Ei
is defined as the relaxation time τi of that branch.

From Eq. (3.18) and Eq. (3.14), the following relation can be written,

εi = (ε̇ − ε̇i)α(T )τi. (3.18)

The external stress carried by the generalized Maxwell element is given by,

σ = E∞ε +
n

∑
i=1

Eiεi, (3.19)

and the free recovery condition is stated as,

σ̇ = E∞ε̇ +
n

∑
i=1

Eiε̇i = 0. (3.20)
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From Eq. (3.18) and Eq. (3.20), following equation can be written,

E∞ε̇i +
E∞εi

τi

+
n

∑
i=1

Eiε̇i = 0. (3.21)

Expanding Eq. (3.21) for n non-equilibrium branches (shown for three non-equilibrium branches

only) and rearranging them in matrix form,

E∞ε̇1 +E1ε̇1 +E2ε̇2 + ...+
E∞ε1

α(T )τ1
= 0, (3.22)

E∞ε̇2 +E1ε̇1 +E2ε̇2 + ...+
E∞ε2

α(T )τ2
= 0, (3.23)

E∞ε̇3 +E1ε̇1 +E2ε̇2 + ...+
E∞ε3

α(T )τ3
= 0, (3.24)













E∞ +E1 E2 E3

E1 E2 +E∞ E3

E1 E2 E3 +E∞

























ε̇1

ε̇2

ε̇3













=
−1

α(t)













1
τ1

0 0

0 1
τ2

0

0 0 1
τ3

























ε1

ε2

ε3













. (3.25)

The problem is in the form of,

[E]{̇ε}= −1
α(t)

[τ]{ε}, (3.26)
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and multiplying by the inverse of the modulus matrix, i.e. [E]−1

{̇ε}= −1
α(t)

[E]−1[τ]{ε}. (3.27)

Eq. (3.27) can be normalized and transformed to decouple equations with transformed initial con-

ditions for each branch. The final solution can be achieved as a function of the shift factors by

transforming solution back to the time domain.

Considering the integral form, for viscoelastic materials, the governing relation between stress and

strain is given by the Boltzmann integral,

ε(t) =
∫ t

0
J(t −ρ)

dσ

dρ
dρ. (3.28)

Considering ideal stress relaxation conditions during the programming period of tp(i.e. deforma-

tion occurs at t=0 instantly), for 0 <t <tp stress is given by,

σ(t) = E(t)ε0. (3.29)

When the external force is removed at t =tp, the stress change is modeled as a step function, i.e.

σ =−σ0H(t − tp). (3.30)

This can be considered as applying a negative stress at the end of the programming cycle. The

magnitude is the same as the stress level at the end of the programming cycle. Now, separating
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Eq. (3.28) into two parts,

ε(t) =
∫ tp

0
J(t −ρ)

dσ

dρ
dρ +

∫ t

t p
J(t −ρ)

dσ

dρ
dρ , (3.31)

can be written. Noting that, first integral is representing the programming period, and Eq. (3.29)

can be used to substitute σ , to yield

ε(t) = ε0

∫ tp

0
J(t −ρ)

dE(ρ)

dρ
dρ +

∫ t

t p
J(t −ρ)

dσ

dρ
dρ . (3.32)

It can be seen that first integral involves the compliance and time derivative of the relaxation

modulus in multiplication as integrand. Taking the Laplace transform of Eq. (3.28) and Eq. (3.13)

yields,

ε(s) = sJ(s)σ(s), (3.33)

σ(s) = sE(s)ε(s). (3.34)

Eq. (3.33) and Eq. (3.34) can be combined to provide the relation between the compliance and the

relaxation modulus for viscoelastic materials in Laplace domain,

E(s)J(s) =
1
s2 . (3.35)

Using the convolution theorem on Eq. (3.35), time domain relation between E and J can be found
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as [71],

∫ t

0
J(t −ρ)E(t)dρ = t. (3.36)

It can be seen that for viscoelastic materials, compliance and relaxation modulus are interrelated

with convolution integral rather than reciprocality. Eq. (3.32) can be further simplified with the use

of Eq. (3.36) and Eq. (3.30) to yield,

ε(t) = ε0 −σ0

∫ t

t p
J(t −ρ)δ (t − tp)dρ. (3.37)

where σ0 is the stress level at the end of programming period. Finally Eq. (3.37) reduces to,

ε(t) = ε0 −σ0J(t − tp). (3.38)
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Figure 3.6: Solution approach and relations between governing equations.

Figure 3.6 visualizes the solution approach of this paper to solve this multiphysics problem. For-

mulations were made for Joule heating, heat transfer in the CNP and SMP. Heat transfer problem

requires an iterative solution since the temperature field in SMP will also affect the heat transfer

solution in the CNP. Temperature field in SMP is used with shift factor concept of TTSP to explain

shape recovery behavior of SMP. The geometry change during recovery may alter the solution

of the heat transfer. In general, material parameters such as density, thermal and electrical con-

ductivities, specific heat are highly dependent on the temperature. Complex nature of boundary

conditions results in nonhomogeneous PDEs and in most cases difficult to obtain an analytical so-

lution. Therefore, a fully coupled electrical-thermal-structural FE model is developed and utilized

to obtain the shape recovery behavior of CNP/SMP composite.
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CHAPTER 4: MANUFACTURING

For the viscoelastic characterization of SMP, specimens were manufacturing for testing. Dimen-

sions of the test specimens were chosen to be 13 mm by 130 mm and a nominal thickness of 2.5

mm. To create a mold for SMP, plexiglass of known dimensions (130 mm x 130 mm x 2.5 mm)

was cut and placed inside a horizontal mold. Then silicone from SmoothOn was poured into the

pot and left for curing for 24 hours. The produced silicone mold was used for potting SMP. The

larger dimension of the silicone mold allowed to manufacture multiple specimens in one manufac-

turing cycle. The silicone mold can be seen in Figure 4.1. Before using the silicone mold for SMP

potting, silicone mold release spray was applied to the mold to increase the lifetime of the mold

and to make the removal of SMP from the mold easier.

Figure 4.1: Mold for SMP potting

After obtaining the silicone mold, SMP components were weighted using an electronic scale with

the mass ratio of 2:3 (16:24 grams) considering the volume of the mold. The components A and

B of SMP were placed inside a degassing chamber (with Cps two stage vacuum pump) which was

located inside an oven (Shel Lab SMO forced air oven) at 70◦C (Figure 4.2). High temperature

reduces the viscosity of the components, and makes degassing easier in vacuum environment.
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Materials were left for degassing for one hour.

Figure 4.2: Degassing at 70◦C

Once degassed at 70◦C, the pressure inside was elevated to atmospheric pressure again and the

materials were poured into same the container and mixed for 30 seconds at 60 rpm. After mixing

the components, the SMP mixture was immediately poured into the silicone mold, to avoid gela-

tion which was observed to occur within a minute. Polymerization reaction was considered to be

completed 2 hours after onset of the gelation phenomenon.

The square block of SMP (130 mm x 130 mm) was removed from the mold and cut into speci-

mens using bandsaw. Specimen dimensions were measured for each specimen and unsatisfactory

specimens (i.e. large variations in width and/or thickness) are removed from testing.

Manufacturing the composite posed a greater challenge since carbon nanopaper should be located

inside the polymer, preferrably having two SMP layers of same thickness on each side. The pre-

vious silicone mold cannot be used in the manufacturing of the composite since it does not give

control over the location of carbon nanopaper. One of the early concepts about the mold is pre-
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sented in Figure 4.3. Figure 4.4 shows gap in the mold for SMP to flow below the CNP.

Figure 4.3: Horizontal mold exploded view

Figure 4.4: Horizontal mold cut view

The mold in Figure 4.3 requires the carbon nanopaper to be clamped between two parts of the

mold such that it will be in tension to remove the waviness of the sheet. The carbon nanopaper

does not cover the entire area of the mold, so two gaps on each side will allow polymer to flow

on both sides of the carbon nanopaper. Although it was found promising, the specimens obtained

using this mold were found to be unsatisfactory due to the deflection of carbon nanopaper layer

during potting of the SMP. The CNP layer gets deflected once SMP fills the bottom layer, as a

result, waviness and dry regions in the bottom of the CNP were observed.

Therefore, instead of using a horizontal mold, a vertical mold concept (where normal of the CNP
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layer is not collinear with gravity) is studied as illustrated in Figure 4.5. Two pieces of the silicone

mold were produced, each having a step of one SMP layer (2 mm). This mold provides better con-

trol on the thickness of SMP layers. It is also possible to achieve non-uniform thickness between

SMP layers as well as within one SMP layer (i.e. tapered, sinusoidal layers can be produced).

Figure 4.5: Vertical mold concept

Two pieces of the vertical mold were brought together and compressed using clamps, while the

CNP layer is in between them in pre-tensioned condition. After mixing polymer components, the

mixture was potted into the gap between silicone mold as illustrated in Figure 4.6. The result

of this approach was found to be satisfactory and this mold was used to manufacture SMP/CNP

composite. Highly uniform and controlled thickness was observed on each side with minimal

waviness. Any excess polymer was removed from the sides and the final composite can be seen in

Figure 4.7.
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Figure 4.6: Final vertical mold concept

Figure 4.7: Front view of SMP/CNP composite

Materials

In order to study the validity of developed model and analyze the shape recovery behavior of the

SMP/CNP composite, materials were purchased. For shape memory polymer, polyurethane based

memory polymer MP-55 was purchased from SMP Technologies, Inc. MP-55 consists of resin and

hardener, and available for potting.

For carbon nanopaper, Pyrograf III-HHT was purchased from Applied Sciences, Inc. Pyrograf-

III is highly graphitic, and it consists of tubular carbon nanofibers (Figure 4.8 and Figure 4.9).
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HHT implies that it is high heat treated during the manufacturing process to remove iron catalysts

efficiently, as well as to graphitize the fiber, resulting in highly graphitic carbon nanofiber and

higher electrical conductivity [72]. The obtained carbon nanofibers have larger diameters (100 nm

on average) than carbon nanotubes (1-10 nm).

Figure 4.8: SEM image of carbon nanopaper, magnification 406X

Figure 4.9: SEM image of carbon nanopaper, magnification 4900X
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CHAPTER 5: CHARACTERIZATION OF CARBON NANOPAPER AND

SHAPE MEMORY POLYMER

The parameters and material properties that govern the shape recovery behavior of the SMP/CNP

is presented in the Multiphysics Model section. In order to capture the shape recovery behavior

accurately, the manufactured shape memory polymer has to be characterized. The multiphysics

analysis has shown thermo-mechanical properties of SMP and electro-thermal properties of CNP

plays an important role in the thermo-responsive behavior of the composite. In the next two sec-

tions, the characterization methodology of the shape memory polymer and carbon nanopaper is

presented. In order to fully characterize material including chemical properties, Leng et al. [12]

summarizes characterization tests, including Fourier transform infrared spectroscopy (FTIR) or

Raman spectroscopy to identify chemical bonds present, scanning electron microscopy (SEM) to

observe surface morphology.

Characterization of Shape Memory Polymer

In this study, as noted previously, the viscoelastic model approach is chosen to explain the shape

recovery effect in conjuction with time-temperature superposition principle (TTSP). Therefore,

tests for viscoelastic characterization of SMP are carried out.

In order to characterize the thermo-mechanical response of the polymers, two common approaches

are widely used in the literature. The first approach is the dynamic mechanical analyzer (DMA)

tests.

The second approach employs several stress relaxation tests conducted at different temperatures.

For viscoelastic materials, the load to maintain constant deformation decreases over time. This
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phenomenon is called stress relaxation Figure 5.1. In that figure, ideal stands for deformation

modeled as a step function and real stands for ramp loading.
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Figure 5.1: Stress relaxation

Stress relaxation tests setup can be seen in Figure 5.2. The test setup includes tensile test machine

(MTS Criterion Model 43) with an environmental chamber (Thermcraft). Environmental chamber

is used to test the specimen at higher temperatures. For strain measurement in the specimen, a

digital image correlation system from Correlated Solutions is employed.
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Figure 5.2: Stress relaxation test setup

First, the prepared specimens were attached to upper mechanical grips only and the temperature

inside the chamber was elevated to desired test temperature (Figure 5.3). At this temperature,

specimen was left for 20 minutes. This period helped to achieve uniform temperature field inside

the chamber, and also allowed free thermal expansion of the extension rods and specimen. The

effect of temperature drift of the load cell was minimized on the test data. After this period, the

load reading was adjusted to zero and the chamber door was opened to attach the specimen to lower

grips. Tightening of the grips caused the specimen to strecthn by a small amount, but with handset

control the crosshead was adjusted so that the load reading remained zero. After attaching the

specimen to the grips, gage length was measured before starting the test. The gage length was used

to determine the crosshead displacement required in order to achieve desired strain. Another wait

period of 15 minutes was given to reach steady state temperature field, and one final adjustment was

made to the crosshead to ensure the specimen was load-free before the test. Using this procedure,

thermal strain effects were nullified.

41



Figure 5.3: Test specimen attached to grips

Stress relaxation tests consist of two major stages: ramp loading until the desired deformation is

reached and maintaining the desired deformation. The duration of the first period was approxi-

mately 10 seconds for each tests, and the stress relaxation behavior was observed for 30 minutes.

Data acquisition frequency was set to 1 Hz.

3D digital image correlation (DIC) was employed for all tests. DIC was used to correctly assess

the strains in the material during testing. DIC gives information about strain field rather than a

single value. For uniaxial test conditions, it is expected to see a uniform strain field on the sample.

After the tests, DIC pictures were analyzed via Vic-3D software to obtain the strain field in the

specimen. The strain field was averaged over the area of interest and principal strains over time

were recorded for all temperatures. Load and time data were taken from the MTS software. Com-

bining with the constant strain value obtained from DIC, relaxation modulus (given by Eq. (5.1) )
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can be calculated for each temperature.

E(t) =
σ(t)

ε0
. (5.1)

where ε0 is the strain measured by DIC at the stress relaxation period, σ (t) is the stress in the

specimen as a function of time (obtained by dividing force reading with initial cross section area).

It is important to note that, the initial period of data during constant strain period is omitted to limit

the effect of the ramp loading on the data. The duration of omitted data is 10 times the duration of

ramp loading period ( 100 seconds). Result of strain relaxation tests can be seen in Figure 5.4.
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Figure 5.4: Stress relaxation test results

In order to achieve a master curve for the polymer, the time-temperature superposition principle

is used. This principle suggests that modulus of the material can be equal at different time and

temperature pairs, i.e.

E(t,T ) = E(t ′,T0) (5.2)
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where T0 is the reference temperature, t’ is the reduced time. For example, the modulus value at

30◦C after 10 minutes has the same value of the modulus at 45◦ after 10 seconds.

The reference temperature for the masters curve was selected to be 27◦C. So, keeping the relaxation

modulus at this temperature fixed, all other temperatures will be shifted horizontally in ascending

temperature to form a continuous master curve. In order to achieve the horizontal shift, the results

are first plotted in logartihmic scale, and different shift factors are specified and the shift factor that

gives most overlap is accepted as shift factor. Experiments and shifting relaxation data is given

in detail in Appendix D. It is important to note that, vertical shift which is given by Eq. (5.3) is

neglected for this study,

E(t,T )

T
=

E(t ′,T0)

T0
, (5.3)

where temperatures are in Kelvin.

In logarithmic scale, the shift factor has the effect of horizontal shift due to a change in time scale.

If reference temperature T0 is lower than shifted temperature, the shift factor will be less than

unity, therefore in logaritmic scale, it will cause shifting to the right, which gives accelerated time

response. If temperature is lower than T0, shift factor is larger than unity, and when shifted, the

curve will move left in logarithmic scale as given by Eq. (5.4)

t =
t ′

α(T )
, (5.4)

log(t) = log(t ′)− log(α(T )). (5.5)
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The resulting master curve at 27◦C can be seen in Figure 5.5. A Prony series is fitted to the mas-

ter curve using lsqcurvefit option in MATLAB which uses least squares regression scheme.

Multiple Prony series coefficients can be obtained based on the chosen relaxation times, therefore,

the relaxation times (τi) are fixed and curve fitting is done for corresponding Prony series coeffi-

cients. Relaxation times are chosen such that for every decade, there will be at least one relaxation

time. Before fitting, the final value of master curve is assumed to be E∞ and subtracted from master

curve to achieve better fit. The fitted master curve can be seen in Figure 5.5. Final relaxation times

and corresponding relaxation moduli can be seen in Table 5.1.
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Figure 5.5: Master curve at 27 ◦C

The determined shift factors for temperatures are plotted in Figure 5.6. An analytical expression for

shift factors is assumed in the form of the Williams-Landel-Ferry equation (Eq. (3.15)), and fitted

to the shift factors data in order to determine coefficients c1 and c2 for the reference temperature

of T0=27◦C. The fitting can be seen in Figure 5.6, and the fit results are presented in Table 5.2.
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Table 5.1: Prony series coefficients

Ei,MPa τi,s

604.11 1×103

301.34 5×103

252.94 5×104

111.35 1×105

56.87 5×105

27.63 1×106

16.41 1×107

1.9 1×108

2.84 E∞
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Figure 5.6: Shift factors
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Table 5.2: WLF Constants

c1 9.66

c2 79.35

T0 27 ◦C

Experimental challenges faced commonly include the strain measurement from DIC during the

stress relaxation period. During stress relaxation period, the strain is fixed, however DIC results

commonly display slowly changing strain during this period, especially at higher temperatures.

This is mainly thought to be the effect of reflecting light on the cameras from the chamber, as

well as heat waves in the chamber. It is reported that the heat waves can affect the performance of

DIC for small strains. Also slippage occurs occasionally very fast during initial period of constant

deformation period. By disregarding data spanning 10 times the ramping period, the effect of

slippage is expected to be removed from the analyzed data.

Tests at lower temperatures (compared to Tg) has shown smaller strains compared to higher tem-

peratures tests although the crosshead displacements were adjusted so that the resulting strains

would be the same. The reason for this error can be explained via frictional forces between grips

and specimen. For temperatures lower than Tg, specimens are glassy, making it harder to grip and

deform with the crosshead. At higher temperatures, specimens are in rubbery state and it is easier

to grip them and they can deform, specimen goes to the same deformation level.

The glass transition temperature Tg is one of the most important parameters for polymer materi-

als. One way to estimate the glass transition temperature is to check the relaxation modulus at a

specified time for all temperatures. This modulus value is usually taken at 10 seconds (ten sec-

onds modulus, E10) or after 1 minute (one minute modulus, E1) [71]. When E1 is plotted against
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temperature, glass transition temperature can be constrained to the region where there is a drop in

E1. One minute modulus is plotted in Figure 5.7. A sharp drop in modulus values could not be

observed, however it can be argued that Tg lies within 40◦C and 50◦C.
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Figure 5.7: One minute modulus, E1 at different temperatures

Carbon Nanopaper Characterization

For carbon nanopaper characterization, uniaxial tests are carried out to measure the elastic modulus

of the material. Although the elastic modulus is an important mechanical property to consider,

determining the failure strain of the carbon nanopaper is also needed to ensure the integrity of the

carbon nanopaper during programming SMP/CNP composite.

Carbon nanopaper sample specimens with dimensions of 10 mm x 100 mm were cut from Pyrograf-

III. Specimens and test setup can be seen in Figure 5.8 and Figure 5.9. Fracture patterns of the

carbon nanopaper can be seen in Figure 5.10.
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Figure 5.8: Test setup for uniaxial tests of Carbon Nanopaper

Figure 5.9: Carbon Nanopaper specimen preparation
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Figure 5.10: Fracture patterns of Carbon Nanopaper

In fracture tests, information about failure strain and elastic modulus can be extracted. For CNP,

1% strain can be accepted as the failure strain (Figure 5.11). Early failure of the third specimen

can be attributed to previously existing damages due to handling. In Figure 5.12, the hysteresis

behavior can be observed in cyclic deformation. From Figure 5.12, it is clear that first loading path

gives the highest stress and following cycles are highly repeatable without a noticable loss. This

result can be interpreted as preconditioning of the CNP. The first deformation path changes the

configuration of fiber network, and it is much less pronounced in following deformation cycles.
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Figure 5.11: Carbon nanopaper tension tests
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Figure 5.12: Hysteresis in cylic deformation

For complete characterization, additional tests can be run on SMP such as differential scanning

calorimetry (DSC) to obtain glass transition temperature and melting temperature of crystalline re-

gions (if present). DSC setup can apply constant and equal temperature ramp to polymer and refer-

ence material and monitor the heat needed to achieve that temperature ramp (power-compensation

DSC). At Tg, second order transition occurs (i.e. change in heat capacity). Heat capacity of poly-

mer above Tg is higher and transition of specific heat over temperature gives information about

Tg.

For SMP, constant specific heat capacity is assumed, but it is known that specific heat capacity for

all polymeric materials is dependent on temperature [73] and heat capacity can be approximated

as two linear functions of temperature with discontinuity at Tg [74]. Discussion of density and

other thermal properties such as thermal conductivity of polymer as a function of temperature can

be found in literature [75] as well as their nanocomposites [68]. Generally, polymers display an

increase in thermal conductivity at temperatures up to Tg, and decrease with increasing temperature

above Tg [76].
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CHAPTER 6: FINITE ELEMENT MODEL

As discussed in previous sections, the shape recovery behavior of composite poses highly coupled

PDEs. To be able to solve this multiphysics problem, a nonlinear finite element model is devel-

oped and analyzed using ABAQUS software. Fully coupled electrical-thermal-structural analysis

has been employed to obtain solutions for time dependent temperature, stress and strain fields

simultaneously.

Dimensions of the composite model are 100 mm x 10 mm x 2 mm for SMP layers and 100 mm

x 10 mm x 0.38 mm for the CNP layer. Layers are created as separate parts and then assembled

together. The reason for creating separate parts is to be able to define interaction properties later.

All parts are modeled as 3D and deformable. Also a reference point is created.

The meshed finite element geometry is given in Figure 6.1. 8-node trilinear displacement, electric

potential and temperature elements (Q3D8) have been used in the model with approximate global

size of 1 mm, yielding 1000 elements in the CNP layer and 4000 elements in the SMP layers.

Figure 6.1: Meshed geometry of composite.

The material properties required in order to carry out this FEA have been determined from the the-
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oretical discussion of this multiphysics problem. Material properties of CNP and SMP have been

assigned. Parameters used for each material are tabulated in Table 6.1 and assumed parameters are

marked. The density of CNP was calculated from the areal weight value given by the manufac-

turer. The CNP layer was modeled as solid, homogeneous and elastic, while SMP was modeled as

viscoelastic with Williams-Landel-Ferry material constants to capture the temperature dependent

behavior of SMP.

Table 6.1: Material parameters for FE model

Parameters SMP CNP Unit

Thermal Conductivity 0.15 800 W
mK

Electrical Conductivity 0.001* 666 S·m

Coefficient of Thermal Expansion * 5E-5 - 1/K

Joule Heat Fraction 1 1 -

Specific Heat 2000* 710 J
kgK

Density 860* 105.263 kg

m3

Poisson’s ratio 0.45 0.33* -

E∞ 2.84 300 MPa

This FEA consists of 5 steps, in the order of, the prescribed deformation at high temperature, main-

taining deformation at high temperature, cooling down to a temperature below activation tempera-

ture, removing the load and stow, and applying voltage difference to CNP layer.Durations of these

steps are 1, 100, 3600, 1000 and 1000 seconds, respectively. These steps fully represent a typical

thermo-mechanical cycle for SMPs.

The nonlinear geometry option was activated for all these steps. For the initial deformation step,
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viscoelastic procedure was chosen. For the remaining of the steps, coupled thermal-electrical-

structural analysis was carried out. For all steps creep/ swelling/ viscoelastic behavior wass in-

cluded and CETOL was set to 0.01.

Contact interactions between surfaces were defined in order to capture the effect of non-material

parameters. CNP surfaces were assigned as master surfaces and corresponding SMP surfaces were

assigned as slave surfaces with no adjustment. As contact properties, tangential behavior, normal

behavior, thermal conductance and electrical conductance were chosen. Tangential behavior of

contact was formulated as rough which makes sure slip will not occur at the interface, therefore

securing perfect mechanical bond. Normal behavior was specified as hard contact and separation

after contact was not allowed. These contact properties made sure CNP and SMP layer deform

together at all times.

Thermal conductance and electrical conductance properties at the interface were specified with

respect to clearance only. Electrical conductance was assumed zero at the interface irrespective

of clearance since electrical conductivity of SMP is negligible compared to CNP. So there will

be no current passing through SMP layers. For thermal conductance, 1× 105 is assumed at zero

clearance. The actual value of interfacial thermal resistance/conductance is difficult to obtain. Han

et al[68] gives an average value of 1×108 Wm−1K−1 for carbon nanotube polymer interaction.

In simulations, starting from the cooling down step, a surface film condition was created. A surface

film condition coefficient was assumed on the same order of magnitude with natural air convection

coefficient. A uniform sink temperature was chosen as 30◦C.

Finally, a kinematic coupling constraint was used to couple the reference point and top surface

of the composite (Figure 6.1). Only longitudinal displacement and rotational degrees of freedom

were constrained.
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In this FE model, the composite was deformed 1 mm uniaxially at 60◦C, which corresponds to

1% strain. Displacement boundary condition was specified at the reference point. At the other end

of the composite, all degrees of freedom were restricted. The temperature of the composite will

remain constant during the hold period. With the start of the cooling step, the temperature field

was calculated for every increment. After the convective cooling of the composite to 30◦C, the

displacement boundary condition specified at the reference point was deactivated (at the beginning

of the stowage step). After this point, there was no external mechanical load applied to the FE

model. At the beginning of activation, an electrical potential boundary condition was specified at

the ends of the CNP layer.
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CHAPTER 7: SHAPE RECOVERY EXPERIMENTS OF CNP/SMP

COMPOSITE

Experiments are carried out on CNP/SMP composite to evaluate the performance of the proposed

FEA model. The MTS Criterion Model 43 EM Tensile Test machine is used to create a test

template to fully observe the thermo-mechanical cycle of the composite. The experimental setup

is shown in Figure 7.1. Two K-type thermocouples have been used, one was taped to the middle of

the composite, the other one was taped to the lower grip close to the specimen. For data acquisition

from thermocouples, NI cDAQ-9185 is used with NI 9219 module and LabView2018.

Figure 7.1: Shape recovery experiment setup.

Initially, the composite was attached to the upper grip only and environmental chamber tempera-

ture was increased to 60◦C. This allowed the composite to expand freely. After that, the composite

was attached to the lower grips. Wires of the voltage source were connected to CNP extensions

of the composite (red and black cables, for upper and lower ends, respectively). To ensure there
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was minimal load initially, the crosshead was allowed to adjust itself to maintain zero load. After

thermal equilibrium was reached, the composite was deformed 1 mm uniaxially in 10 seconds.

Deformation was maintained at 60◦C for 100 seconds and then environmental chamber door was

opened to cool the composite via natural convective cooling at deformed configuration. The du-

ration of the cooling step was one hour. After one hour of natural cooling, load was reduced

to zero in approximately 3 seconds. The crosshead was allowed to move to maintain zero load

afterwards. Stowage characteristics were recorded for 1000 seconds. In the free recovery step, a

voltage controlled DC power source was turned on at 20 V to observe free shape recovery response

of the composite for 500 seconds. The crosshead displacement value was taken from MTS for the

duration of the experiment. The strain evaluation was based on crosshead displacement and gage

length. Due to complexity of test setup, DIC was not used for these experiments. During shape

recovery tests, data acquisition rate was set to 1 Hz.

Shape recovery experiments have several steps in order to fully encompass thermo-mechanical

cycle for SMP composite (ie. programming, stowage, activation). Designing this experiment

allowed to measure forces and deformations over time quantitatively. The main challenge for

these experiments were due to high number of the steps involved, some of them requiring user

intervention (e.g. opening chamber door for natural cooling, turning on DC power source for

activation). While creating the test template, switching from crosshead control to load control test

introduced some problems as well. Load control (i.e. fixing the load while crosshead is to move

accordingly) was achieved by assuming PID parameters of soft material and by allowing a load

decrease rate of 5 N/s.
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CHAPTER 8: RESULTS AND DISCUSSION

It is essential to compare experimental results with finite element analysis results to see the perfor-

mance of the model in capturing the composite behavior. For that purpose, in FE model, boundary

conditions are modified such that, they will represent actual programming conditions as close as

possible. For this purpose, convective heat transfer coefficient is set to 1 Wm−2K−1 for the duration

of cooling and stowage, and modified to 30 Wm−2K−1 in activation step to match the thermocou-

ple readings in experiment. Comparisons of the FE model with experimental results can be seen in

Figure 8.1 and Figure 8.2.

Figure 8.1: Comparison of external force of FE model and experiment.

The finite element model highly overpredicts the force during constant deformation and cooling

steps. Although the force drastically reduces within a very short timeframe with the start of the

constant deformation step, overprediction remains. Experimental results show negligible stress

relaxation at 60◦C. During cooling, forces in both experimental and FE results display increasing
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trends. This increase in force can be explained as an effect of the coefficient of thermal expansion.

The compsosite specimen tries to contract as it cools down but, is hindered by fixed crosshead

displacement. The forces are reduced to zero by the end of the cooling step, and remained zero for

the rest of the test.
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Figure 8.2: Comparison of shape recovery of FE model and experiment.

Considering the deformation of the composite in Figure 8.2, there is a sudden shape recovery when

the external force is removed. The magnitude of the springback effect is closely related to effective

modulus of the composite at that instant and the amount of force. The finite element model predicts

91% of the initial deformation will be preserved when the external load is removed. In experiment,

the value is about 87%. Ideally, during the stowage period there should be no shape recovery.

However, the specimen has shown a considerable shape recovery during stowage, the deformation

is reduced to 73% of the programmed deformation after 1000 seconds. The finite element model

also shows a shape recovery during stowage around 30◦C. The discrepancy between these results

can be explained with inadequately modeled experimental conditions.

In the experiment, the grips are always in contact with the specimen for the duration of the test. Fig-
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ure 8.3 shows thermocouple readings with simulation result for the temperature value at midpoint

node located on the surface of the model. Thermocouple readings show large variation during the

cooling step. The first thermocouple which was located in the middle of composite, cooled down

much faster than the thermocouple located on the grip. The reason is that thermal capacitance of

the extension rods and grips are much higher than thermal capacitance of the composite, therefore,

they are harder to cool. Referring to Figure 8.3, this also means that as the composite cools down,

there will considerable heat transfer from grips to composite, which will affect the shape fixity of

the composite.
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Figure 8.3: Temperature data from thermocouple readings and simulation.

In Figure 8.3, when the DC power source is turned on the end of the experiment, surface tempera-

ture of the composite increases drastically as expected and converges to a constant value. The same

temperature profile is captured in the finite element simulation. However, the finite element sim-

ulation predicts a faster temperature rise and higher converged temperature than the experiment.

This deviation can be used to explain the difference in the shape recovery step.

During the activation step, experimental results and the finite element model exhibit agrees qual-
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itatively. When the voltage source is activated, the composite starts to heat up. At first, instead

of going back to original configuration directly, the composite expands solely due to thermal ex-

pansion. While this expansion takes place, also shape recovery starts. The deformation profile

observed is the combined result of these two effects. Although temperature keeps rising, the ex-

pansion of composite first slows down since shape recovery effect starts to become more dominant.

There is a point of unstable equilibrium where expansion of the composite reaches a maximum. At

this point, the effect of the coefficient of thermal expansion is nullified by shape recovery. After

this point, shape recovery takes over and the composite starts to return to its original shape. In the

finite element model, different voltage values are used in activation step, and shape recovery be-

havior in each case is plotted in Figure 8.4 during activation. As it can be seen from Figure 8.4, the

magnitude of expansion depends on the heating rate during activation. Higher actuation voltages

result in faster heating and shape recovery but also higher expansion peaks.
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Figure 8.4: Shape recovery with different actuation voltages.

Figure 8.5 shows temperature field in a cut view of the composite during heating. A non-uniform
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temperature field in the composite is present. The highest temperature is at the CNP layer and the

corners of the specimen have the lowest temperature due to larger convection surface. Figure 8.6

displays the stress field in the composite during stowage. Although there are no external loads

present at this step, the composite is internally stressed. The CNP layer is under tensile stresses

and SMP layers exhibit compressive stresses.

Figure 8.5: Temperature field during heating (t=240s).

Figure 8.6: Stress field at stowage (t=403s).
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In Figure 8.7 and Figure 8.8, results of the finite element simulation are plotted. Figure 8.7 shows

load and deformation history of the composite. In Figure 8.8, the thermo-mechical cycle is pre-

sented for the same simulation. In these figures, full recovery line marks the line of zero force and

zero deformation (original shape with no external loads) in 3D.
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Figure 8.7: Load and deformation history.
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CHAPTER 9: CONCLUSIONS

In this work, the shape recovery behavior of uniaxially programmed, electrically activated CNP/SMP

composite is studied. A solution approach regarding the multiphysics of the problem is presented.

Following this approach, governing equations and their relations are derived and important parame-

ters are noted. A fully coupled electrical-thermal-structural finite element model is developed. The

parameters defining shape recovery response of the composite are not limited to material proper-

ties, they also include the parameters coming from the interface of the layers. Therefore, contact

properties between CNP and SMP are preserved in the deveoped finite element model.

In order the validate the developed finite element model, a composite consisting of a CNP layer

sandwiched between two SMP layers was fabricated. The composite was tested to obtain pro-

gramming and shape recovery behavior of CNP/SMP composite under uniaxially programmed

conditions. It is found that, the developed FE model shows promising results and can capture

the characteristics of strain, stress and temperature fields in the composite during programming,

stowage and activation periods.

The shape recovery behavior of the CNP/SMP composite is observed for different actuation volt-

ages. From design perspective, the proposed model can be used to study effects of material

properties, as well as different composite configurations such as unequal SMP layer dimensions,

CNP/SMP contact area, the locations of the CNP layers in composite, etc.

The main contributions of this study are the mathematical formulation of the underlying mecha-

nism of electrically actuated shape memory composite, the fully coupled electrical-thermal-structural

finite element model which can capture general characteristics of shape memory cycle of the com-

posite. In the future, material parameters used in finite element simulations will be refined with

thorough characterization of individual materials.
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CHAPTER 10: FUTURE WORK

The work presented in this thesis will be used as the framework to determine the shape recovery of

SMP/CNP composites. To be able to use the developed model to actuate the composite as desired,

sources of discrepancy reported in previous section between experiments and model need to be

eliminated. In the near future, rigorous shape recovery experiments need to be carried out together

with the viscoelastic characterization of the composite, rather than characterization of the SMP.

After achieving good agreement quantitatively of the shape recovery experiments with finite ele-

ment model via more detailed material characterization, uniaxial tests will be extended to bending

tests to study more compact stowed configurations. The model will be modified and improved to

account for the effects of irreversible strains and large strains. Final step for the model will be us-

ing the carbon fiber network in the composite as piezoresistive sensing mechanism. Strain sensing

together with the developed actuation model can be implemented as a closed loop control for the

shape recovery.
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APPENDIX A: FINITE ELEMENT SIMULATIONS
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Case: Sample thermal-electrical-structural simulation

Before developing the actual finite element model, the coupled thermal-electrical-structural solver

of ABAQUS has been tried via some simple cases for its performance and accuracy of the model-

ing. It is also used for checking the extent of parameters derived in multiphysics analysis chapter.

As a simple case, a rectangular block of conductive material has been chosen with dimensions

100mm x 20 mm x 2mm. The sample is constrained at the two opposing edges and potential

difference is applied. For simplicity, the material is assumed to heat up uniformly. Stresses are

measured in the material and compared with analytical solutions.

The model is meshed with 3 elements along thickness direction. Since this sample model is just to

validate the analysis and modeling capabilities, values have been assigned as material parameters,

therefore, no units will be presented here (Table A.1). Voltage difference of 15 V has been applied

to the opposing edges of the sample. Simulation duration is set to 1 seconds.

Table A.1: Sample model parameters

Density 780×10−12

Modulus 200×103

ν 0.3
Specific heat 9×108

Thermal conductivity 1
Coefficient of thermal expansion 1×10−3

Electrical conductivity 750

Obtaining an analytical solution for this problem is very straightforward. First, the total amount of

heat generated in beam must be found due to Joule heating. Following equations from multiphysics

67



analysis chapter,

Qgen =
V 2 × k

L
×w×h× t, (A.1)

Qgen =
152 ×750

100
×20×2×1 = 67500[units of energy], (A.2)

where k is the electrical conductivity of the material. Assuming there is no heat transfer to the

surrounding medium, all of the generated heat will cause the sample to heat up. Generated heat

will be equal to the product of temperature rise and heat capacity, i.e.

Qgen = ρ ×w×L×h×Cp ×∆T, (A.3)

∆T =
67500

780×10−12 ×20×100×2×9×108 = 24.038[K], (A.4)

Finally compressive stress in constrained material due to thermal loading is given by

σ = ∆T ×E ×α , (A.5)

σx = 24.038×200×103 ×1×10−3 =−4807.6[units of stress], (A.6)
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and corresponding strains at transverse directions can be found from,

εx = εy =
−ν

E
(σx)+α∆T = 0.03215[]. (A.7)

Comparison of analytical and simulation results can be seen in Table A.2.

Table A.2: Comparison of analytical solution and simulation

Simulation Analytical Error %
Stress -4808 -4807.6 −8.32×10−3

Current density 112.5 112.5 0
Strain in transverse directions 0.03125 0.03215 0

∆T 24.04 24.038 −8.32×10−3

The material parameters derived in multiphysics discussion found to be adequate for this case. The

coupled thermal-electrical-structural solver is validated and chosen for subsequent finite element

models. Caution must be taken when using the actual parameters, and consistent units must be

used. This is especially difficult when dealing with multiple domains such as thermal and electrical

together with mechanical. It is suggested to use base SI units as property units in the analysis.

Case: Heat flux from one side

This thesis is based on a viscoelastic model for SMPs, with time-temperature superposition prin-

ciple. Shape recovery is treated as a function of temperature through shift factors. After program-

ming SMP uniaxially, if a heat flux is applied to one surface of the SMP, SMP is expected to bend

due to non-symmetric temperature (hence strain) field. This case is tested in finite element model.

In the simulation, the SMP layer is programmed uniaxially by high temperature deformation, stress

relaxation at constant deformation, cooling at the same deformation, and removal of the constraint.
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After the stowage period, a heat flux is applied to the top surface in the model.

In this simulation only the middle portion of the model is programmed, therefore the shape memory

response can only be seen in that region.

Figure A.1: Temperature field during heating

When heated, there will be a non-uniform temperature field through the thickness. The top surface

have higher temperature than the bottom surface, therefore the top surface will try go obtain its

original configuration much faster than bottom surface (i.e. contraction at top surface will be much

higher), and due to compatibility, material will bend in heated region (Figure A.1).

By controlling the temperature field along the thickness, it is possible to achieve hinge-like behav-

ior from uniaxially programmed SMP. By a careful control of the temperature, it is also possible

to fix the shape of the SMP (if it is cooled down at this shape, hinge-like shape will be preserved).
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Case: Bending simulation of CNP/SMP composite

Bending simulations of CNP/SMP composite are carried out, with the same dimensions and prop-

erties of the materials as manufactured composite, to assess the performance of the model in bend-

ing. For these simulations, rotation boundary condition is specified at the reference point (1 rad)

at one end while the other end is constrained in all directions. Full thermo-mechanical cycle is

observed including activation. Figure A.2 shows the shape recovery of the composite over time.

Figure A.2: Shape recovery of the composite in flexure
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APPENDIX B: SENSITIVITY ANALYSIS
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In finite element simulations, some material parameters are assumed. The effect of these parame-

ters on the overall composite behavior needs to be checked via sensitivity analysis. In this section,

the dependence of the shape recovery on assumed parameters is analyzed by varying the value of

the assumed parameters.

The interfacial thermal conductance value between CNP and SMP was varied several order of

magnitudes in simulations. This value becomes important especially during the activation step.

Figure B.1 shows the changes in surface temperature of the composite with different interfacial

thermal conductance values, while remaining of the parameters are being equal.
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Figure B.1: Effect of interfacial thermal conductance on surface temperature

Figure B.1 shows that although the interfacial thermal conductance value is changed drastically,

surface temperature variations are small until the value of interfacial thermal conductance becomes

small. High thermal conductance promotes easy diffusion of heat to SMP, causing the temperature

of the CNP and inner layer of the SMP to be almost identical. As the thermal conductance value

becomes lower, heat transfer is slowed down at the interface, causing the CNP temperature to rise
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considerably compared to the temperature of the inner layer of SMP. However, this high tempera-

ture gradient at the interface will promote heat transfer again, as the driving force for heat transfer

is temperature gradient. As the thermal conductance at the interface becomes lower, the variation

of the surface temperature and therefore shape recovery becomes larger (Figure B.2). For fully

isolated interface, surface temperature of the composite will not change as well as the shape of the

composite.
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Figure B.2: Effect of interfacial thermal conductance on shape recovery

For viscoelastic materials, the rate of deformation affects the load. For higher deformation rates,

the load required for deformation is larger than the cases with slower deformation rates. Figure B.3

show the effect of the deformation rate on the load.
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Figure B.3: Effect of deformation rate during programming

Similarly, the duration of high temperature constant deformation duration (during hold step) changes

the relaxation behavior. The material relaxes more if more time is allowed during hold step (Fig-

ure B.4).

0 1000 2000 3000 4000 5000 6000 7000

Time, s

0

20

40

60

80

100

120

140

Lo
ad

, N

Short hold duration
Medium hold duration
Long hold duration

Figure B.4: Effect of hold duration during programming
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The location of electrodes of the power source may influence the electrical potential field in the

CNP and may affect the heat generation in that layer. Figure B.5 and Figure B.6 shows simulation

results of the electrical potential field of CNP for the electrodes located at half width and quarter

width, respectively. It can be seen that, electrodes located at quarter width causes non-uniform

potential gradient at the vicinity of the electrodes but this effect becomes very small away from

electrode locations.

Figure B.5: Effect of location of electrodes on potential field, located at half width

Figure B.6: Effect of location of electrodes on potential field, located at quarter width
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APPENDIX C: SHAPE RECOVERY FORMULATION AND

OPTIMIZATION FOR SHAPE CHANGE
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The system of coupled differential equations presented in the Multiphysics Model chapter is imple-

mented in MATLAB code and solved assuming a deformed initial condition in individual branches

in the Wiechert model. The solution of the system of differential equation is used to calculate the

strain in the equilibrium branch, which is the overall strain of the SMP. Solving for the shape re-

covery requires the shift factor history. Figure C.1 shows the shape recovery profiles for different

uniform shift factors during actuation. The lower the value of the shift factor, the faster the shape

recovery will be. Note that, the effect of the coefficient of thermal expansion is not included in the

solution, therefore no expansion peaks are observed in the activation period.
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Figure C.1: Shape recovery profile for different shift factors

The solution of the problem can also be utilized to predict the shape recovery when temperature

history is given. Assuming the composite has a uniform temperature at all times, shift factors can

be found from the temperature history and later be used in the solution to determine shape recovery

(Figure C.2 and Figure C.3).
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If a particular shape recovery profile is needed, the shift factor history can be determined by solv-

ing the problem backwards via optimization. Figure C.4 shows the desired shape recovery profile.

Using optimization toolbox on MATLAB, the shift factor history can be found to achieve de-

sired shape change. Note that, shift factors can be used to obtain temperature field with respect

to time, as well as voltage input over time. Also it is important to note that, the result for this

particular optimization is not realistic due to sharp changes of the shift factors, which results in

non-smooth temperature history (high temperature variations in very small time steps). The condi-

tion for smoothness can be implemented in the optimization to narrow down temperature histories

that are physcially achievable.
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APPENDIX D: STRESS RELAXATION EXPERIMENTS
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Material linearity or nonlinearity can be determined from the creep compliance or the relaxation

modulus at different stress or strain levels. In order to determine linearity, stress relaxation tests

are used in this work. Linearity suggests that modulus of the material is independent of the strain

level, and only a function of time. After plotting an isochronus strain-stress diagram, if modulus

variation is linear, material is said to be linear. From the linearity condition, following equations

can be written,

E(t = t1) =
σa(t = t1)

ε0a

=
σb(t = t1)

ε0b

=
σc(t = t1)

ε0c

, (D.1)

E(t = t2) =
σa(t = t2)

ε0a

=
σb(t = t2)

ε0b

=
σc(t = t2)

ε0c

, (D.2)

E(t) =
σa(t)

ε0a

=
σb(t)

ε0b

=
σc(t)

ε0c

. (D.3)

Four tests are carried out with different deformation levels and stress relaxation is observed for two

minutes. Deformation and load plots are extracted and 3 time values are chosen for comparison of

moduli (t=0s, t=20s, t=120s). Linear fits are employed for these 3 isochronus data. Ideally, stress

relaxation curves should fall in between lines of t=0 and t=120s. Some variation can be seen,

especially in the first test (Test1), but the trend can be considered as linear. In Figure D.2 dashed

lines are isochronus lines.

Figure D.3 shows a sample strain field for ε1 for room temperature stress relaxation test. At the

boundaries of the area of interest, experimental errors are present, and the strain value is averaged

over the area of interest.
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Figure D.1: Relaxation for different deformation levels
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Figure D.2: Isochronus plot
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Figure D.3: Sample strain field during stress relaxation test

Figure D.4 shows stress relaxation tests for different temperatures for several samples. Repeata-

bility can be observed among SMP samples with small variations in relaxation curves.
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Figure D.4: Stress relaxation tests at different temperatures
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Figure D.5 and Figure D.6 displays the intermediate steps for the formation of master curve of

SMP. Stress relaxation tests are shifted horizontally to create a smooth master curve and they are

averaged with moving averaging scheme. The averaged master curve is used to fit the Prony series.
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Figure D.5: Shifted stress relaxation tests
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