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ABSTRACT

Supercritical CO2 (sCO2) power cycle is an up-and-coming technology to produce

electricity from various heat sources. Apart from power cycles, sCO2 can also be used

as coolant in centralized cooling system and stand-alone cooling device. However, lack

of accurate predication tools such as heat transfer coefficient correlations and insufficient

knowledge behind fundamental heat transfer processes can hinder its practical realiza-

tion in key energy and cooling systems. The overall objective of the study is to extend

fundamental knowledge about heat transfer and fluid flow processes in conduits perti-

nent to sCO2 power cycle. The emphasis here is investigation of heat transfer effects of

three testing parameters: heat flux, inlet mass flux and inlet temperature. Experimental

setup for this heat transfer study is designed considering limitations due to high pressure

rating requirements and thus follows unconventional approach to calculate heat trans-

fer coefficient. Test section chosen is a horizontal stainless steel tubing of inner diameter

of 9.4 mm and heated length of 1.23 m with uniform volumetric heat generation within

tubing walls. The designed test apparatus and data reduction process are validated with

high pressure air experiments. Nusselt numbers are calculated at top, bottom and side-

wall locations to demonstrate effects of buoyancy. Enhancement of heat transfer at bot-

tom wall surfaces and deterioration at top wall surfaces is observed as the main effect of

buoyancy. It was observed that effects of buoyancy increase with heat flux and decrease

with mass flux. Buoyancy effects are also decreased for fluid temperatures higher than

pseudocritical temperature. Nusselt numbers calculated from experimental results are

compared with Nusselt number from available correlations in literature. It is hinted that

near critical region where property variations are significant, one correlation alone may

not accurately predict heat transfer for different regimes of geometry, mass flux and heat

flux.
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CHAPTER 1: INTRODUCTION

Supercritical CO2 Power Cycles

As observed for several past decades, electricity will remain the main form of

worldwide energy through 2040 [2]. For future electricity needs, links among thermo-

dynamic, economic, and environmental analysis of energy conversion system become

very important. With the current increasing demand of electricity, and the knowledge

that natural gas is one of the leading providers, it is essential to develop means to effi-

ciently convert heat into electricity. One of the way researchers are attempting to meet

the world’s energy needs is by exploring alternative working fluids in power generation

cycles, such as supercritical carbon dioxide (sCO2), that show potential to enhance cycle

efficiency while lowering the capital cost and output pollution. The ability of sCO2 Bray-

ton cycles to operate in a range of temperatures makes this cycle applicable in multiple

power generation environments as the power conversion option. Some potential appli-

cations include concentrated solar power systems (CSP), nuclear reactors, and waste heat

recovery. Use of supercritical CO2 (sCO2) as a working fluid allows efficient conversion

of waste heat from industrial processes to electricity, or economic and automatic carbon

capture in use of natural gas for power generation. In fact, sCO2 power cycle technology

has been touted as the “Green Fossil Fuel” [3] technology for this reason. In addition,

because of unique properties of sCO2, the turbomachinery needed for such power cycles

can be very compact, thus leading to cost savings for such systems. Turchi et al. has stud-

ied sCO2 Brayton cycles for application of CSP extensively and explains the advantages

of sCO2 power cycles when compared to steam cycles. The study included more simple

plant design compared to Rankine cycles along with higher efficiencies, and smaller size

and volume due to the high density of carbon dioxide at the specified operating condi-
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tions. sCO2 power cycles present promising potential for next generation power cycles.

sCO2 cycles require relatively low power for compression with inlet operating conditions

close to the fluid’s critical point, T=304.13 K and P=7.69 MPa [4]. For sCO2 Brayton cy-

cles, 25-30% of the gross power produced from the turbine is usually spent to operate the

compressor versus the usual 45% or so of other current working fluids such as helium,

its competitor in nuclear reactor systems [4]. As a result, it has been observed that the

amount of research being performed on the possible cycle configuration and optimiza-

tion is expanding. Turchi et al. [5] and Mohagheghi and Kapat [6] studied different cycle

configurations and optimization tools to assess the most practical power cycle designs

for solar tower applications. Dostal et al. [7] presents a significant decrease in the turbine

size and system complexity for sCO2 power cycles when compared to helium and steam

power cycles.

Figure 1.1: Recuperated configuration of Brayton cycle

Two of the most studied configurations of sCO2 Brayton cycles are: 1) Recuperated

cycle (RC) shown in Figure 1.1 and 2) Recuperated recompression cycle (RRC) shown in

Figure 1.2.
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Figure 1.2: Recuperated recompression configuration of Brayton cycle

Table 1.1: Net capital cost for the optimized RRC cycle [1]

Component Cost (2017 k$)

HT recuperator 9994
LT recuperator 8293
Precooler 6870
Main heat exchanger 18,323
Turbomachinery 19,576
Total direct cost 63,056
Total indirect cost 31,528
Total capital cost for RRC 94,584

Capital cost per kWe, RRC 860

Capital cost per kWe, Steam 1,200

In a thermodynamic optimization study [1], both RC and RRC configurations were

studied to find out which suits better for heat recovery from exhaust of SGT6-8000H gas

turbine [8]. It was reported that for the chosen heat source, RRC configuration yields

more power output (110 MW) compared to RC configuration (90 MW). Further capital

cost analysis of the RRC cycle ($860/kWe) showed 28% reduction compared to steam

alternative($1200/kWe, [9]). The capital cost breakdown of the RRC cycle is listed in

3



Table 1.1. This proves that sCO2 cycles can be a viable option for waste heat recovery

replacing steam. Table 1.2 lists existing and ongoing sCO2 demo powerplants.

Table 1.2: List of existing and ongoing sCO2 demo powerplants

Name Capacity Heat source Location Status

Echogen EPS 100 [10] 8 MWe Indirect heating Portable generator Successful demo

NET Power [11] 25 MWe
Natural gas direct
combustion heating

La Porte, TX, USA Successful demo

Sunshot [12] 10 MWe
Concentrated Solar
Power

San Antanio, TX, USA Successful demo

NET Power [11] 300 MW
Natural gas direct
combustion heating

La Porte, TX, USA In progress

STEP [13] 10 Mwe
Natural gas/Coal
indirect heating

San Antanio, TX, USA In progress

Heat Transfer in Supercritical CO2 Flows

sCO2 cycles are highly recuperative in nature. Good amount of heat addition to

sCO2 comes from recuperative heat exchangers. Performance of recuperators as well

as the main heat exchanger in case of indirect cycle, obviously affect net cycle output.

For better performance out of these heat exchangers, high surface area-to-volume ratio is

preferred. However, because of high surface area-to-volume ratio, cost of these heat ex-

changers is also very high. For example, in previous study on cycle optimization [1], the

cost of heat exchangers amounted 69% (Figure 1.3) of overall direct capital cost. Hence,

optimized design of heat exchangers is very important from not only performance but

also financial point of view. Sound and reliable design of such heat exchangers require

accurate heat transfer correlations. However, there are still gaps in the knowledge of heat

transfer of sCO2 flows. Heat transfer in sCO2 flows is highly related to length scale ef-

fects. Different mechanisms dominate the heat transfer process at different length scales

4



and operating conditions, such as viscous effects especially at the small length scale spec-

trum, which inhibit flow mixing, and buoyancy effects at the bigger length scales.

Figure 1.3: Cost distribution in RRC cycle plotted from cycle optimization study [1] show-
ing cost of heat exchangers as majority

The proximity to the critical point that provides key advantages to sCO2 power cy-

cles and cooling systems creates challenges because of considerable fluctuations in ther-

mal and fluid properties close to the critical point. Spikes and drastic variations in ther-

mophysical properties near critical point for CO2 can be seen in Figure 1.4. Under these

conditions, the nature of the flow and heat transfer processes, and hence heat transfer

coefficient and friction factor, can vary considerably. However, the fluid mechanics and

thermal transport are not well understood when the fluid property distributions, such

as specific heat, thermal conductivity, viscosity, and density are highly non-linear as the

fluid temperature changes inside the boundary layers. These processes vary apprecia-

bly depending on the flow conditions (e.g., Reynolds number, Grashof number, Prandtl

number, etc.) and thermal conditions (e.g., heat flux, inlet fluid temperature). No conven-
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tional, established correlations are meant for such severe variations in fluid properties.

However, available correlations for sCO2 are inconsistent and are unable to reveal the na-

ture of fluid flow and heat transfer close to the wall. The performance of heat exchanger

for regeneration at the low temperature end is quite critical for overall performance of

sCO2 power cycle, as this end contains the pinch point and hence the limitations to heat

transfer.

Figure 1.4: CO2 property isobars near critical pressure

Accurately predicting the heat transfer of CO2 at supercritical pressure within

pipes of varying diameters is important to ensure the reliability under different condi-
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tions. It has been reported that for channel flows, density and thermal conductivity varia-

tion can create buoyancy effects [14–25]. Source of this buoyancy effect is the high density

gradient between wall and bulk fluid due to high temperature difference between wall

and bulk fluid. Since buoyancy-driven heat transfer processes have strong dependence

on relevant linear dimension, there can be size effect regarding how strongly buoyancy

can play a role in sCO2 heat transfer. This requires study with a range of channel cross-

sectional dimensions. In addition, orientation of flow channels will play a role as well.

Figure 1.5: Temperature-Entropy diagram for CO2 (1, 2, 3, 4 are four states, not necessarily
corresponding to a thermodynamic cycle)

In this dissertation, effects of buoyancy on sCO2 heat transfer are explained with

the help of experimental data near critical region. Deshmukh et. al. [26] reported that

for air cooler in sCO2 Brayton cycle, pinch point can move from one position to another.

Hence better understanding of heat transfer of CO2 is very important since transients in

air cooler affects compressor in the power cycle directly. This region is around conditions

7



1 and 2 in Figure 1.5 on T-s diagram of CO2. It is important to note that at conditions 3

and 4, the compressibility factor is very close to 1 while at conditions 1 and 2 it is 0.51

and 0.4 respectively. This hints at stronger effect of property variation on heat transfer

near states 1 and 2. For this dissertation, experiments were conducted with uniform heat

flux at tubing wall. The experimental setup built for this purpose has capability to test

very high temperatures (538oC) and high pressure (20 MPa). Because of such capabili-

ties, experiments can be conducted away from the critical point to investigate at which

conditions the sCO2 heat transfer starts to become more predictable and similar to con-

ventional forced convection heat transfer. However, this dissertation discusses sCO2 heat

transfer results near critical point. Results with horizontal test section with a single inter-

nal pipe diameter are reported here. Testing away from critical point, with different size

test section at different inclinations will be the focus of future studies.
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CHAPTER 2: LITERATURE REVIEW

CO2 is not the only supercritical working fluid studied for power cycles. Water

and helium were also part of the research focus during 1950-70 [27]. The main objective

was development of design of supercritical steam generators and water-cooled nuclear

reactors. sCO2 was primarily studied during that time to model supercritical water since

CO2 has lower critical temperature and pressure. This same advantage of lower critical

parameters lead researchers to choose CO2 as working fluid for supercritical power cycles

during early 2000s.

There is abundant literature available for heat transfer to sCO2 beginning from

1960s with different inlet parameters, inclination and pipe sizes. For this dissertation,

studies focused on effects of buoyancy in horizontal circular pipes are selected. Effect

of buoyancy is best understood by observing circumferential density variation at a cross

section. When density at the wall surfaces is significantly lower than the bulk flow den-

sity, effects of buoyancy are observed. In horizontal flow configuration, this low density

CO2 rises from the bottom wall to the top wall. This convective movement increases heat

transfer rate at the bottom surface. This results in higher temperature at the top wall and

lower temperature at the bottom wall.

Adebiyi and Hall [17] and Jackson [23] are early studies which observed this effect

of buoyancy. Prior to them, many researchers studied heat transfer in horizontal circular

pipes [28–32]. Even though Schnurr [31] reported difference between top and bottom wall

temperatures, the word ’buoyancy’ was not used to explain what exactly was causing this

circumferential variation. As discussed earlier, size of the pipe plays important role in de-

ciding whether buoyant flows will occur or not. Grashof number which is considered the

ratio of the buoyancy to viscous forces acting on a fluid is proportional to third power of

characteristic length. Liao and Zhao reported significant buoyancy effects for tubes with
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diameter larger than 2 mm compared to smaller size tubes. Jackson [23] reported a new

form of Grashof number based on bulk fluid properties and properties at the wall (Equa-

tion 2.1). Based on this Grashof number, Jackson proposed a new buoyancy parameter as

shown in Equation 2.2. For Buj < 10, buoyancy effects are negligible.

Grashof number, Gr =
(ρw − ρb) ρb g d

3

µ2
b

(2.1)

Buj =
Gr

Re2b

x2

D2

ρb
ρw

(2.2)

Adebiyi and Hall [17] conducted heat transfer experiments for horizontal flows in

22.1 mm tube 7.6 Mpa. They reported non-uniform circumferential profile. The bottom

surface experienced enhanced heat transfer while the heat transfer on top surface was

lower than buoyancy free forced convection. For all of their experimental cases, the value

of Buj was greater than 400, satisfying the criterion for onset of buoyancy. They also men-

tion that even though the results are consistent with the buoyancy criterion, it ”cannot be

regarded as a stringent test of it”.

Pidaparti et. al. [18] performed systematic experiments to investigate buoyancy

effects on heat transfer. They included different test variables such as heat flux, test-

ing pressure, mass flux and flow inclination. They reported enhanced heat transfer for

downward flow and reduced heat transfer for upward flow. This is mainly because of

enhancement and deterioration of turbulent shear stress due to buoyancy in downward

and upward flow, respectively. For horizontal flows, top surfaces experienced higher

temperature than the bottom surface of the tube. This is the characteristic of buoyancy

driven heat transfer. For horizontal flows, Buj performed well as onset criterion for buoy-

ancy. They also suggested that when bulk flow temperature is lower than pseudocritical

temperature, buoyancy effects are observed for all three flow inclinations. Pseudocritical
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temperature at a pressure is the value of temperature where thermophysical properties

show peaks for that value of pressure. It is defined as follows:

Tpsc = −122.6 + 6.124P − 0.1657P 2 + 0.01773P 2.5
− 0.0005608P 3 (2.3)

Tanimizu and Sadr [33] conducted heat transfer experiments for circular horizon-

tal pipe of size 8.7 mm. They also reported heat transfer enhancement for bottom wall

surface and deterioration for top wall surface. They utilized modified Richardson num-

ber, Buj and buoyancy parameter suggested by Petukhov et. al. [34] to correlate to the

enhancement and deterioration due to buoyancy. However, they concluded that, even

though all these parameters perform well as a threshold criterion, they do not agree with

the variations and magnitude of heat transfer enhancement and deterioration. This hinted

towards need of new buoyancy parameter which can not only predict onset of buoyancy

but also predict trend and magnitude of enhancement and deterioration of heat transfer

due to buoyancy.

Table 2.1: List of previous studies on buoyancy effects on supercritical CO2 heat transfer

Reference P T Heat flux Mass flux Pipe diameter

[MPa] [oC] [kW/m2] [kg/m2s] [mm]

Adebiyi and Hall 7.6 10-31 5-40 m = 0.035-0.15 kg/s 22.1
Pidaparti et. al. 7.5, 8.1 and 10.2 20-55 10-65 150-350 10.9
Tanimizu and Sadr 7.5-9.0 24-28 16-64 m= 0.011-0.017 kg/s 8.7
Kim et. al. 7.6-7.7 30 3.1-25.9 64.1-250.5 7.75
This study 7.4-7.5 30-60 2.7-11.8 50-80 9.4

For further investigation of validity of these buoyancy parameter, Kim et. al. [22],

performed heat transfer experiments for 7.75 mm horizontal tube with different heat flux

and mass flux. Even though the buoyancy effects are observed, they came to the same

conclusion as Tanimizu and Sadr [33] that the available buoyancy parameters should only
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be used as threshold or onset of buoyancy and should not be used to predict trend and

amount of enhancement and deterioration.

Summary

Study of heat transfer to supercritical fluids started from 1950s to develop and de-

sign supercritical steam generators and supercritical water-cooled nuclear reactors [27].

Even though in early days, carbon dioxide was only used to model supercritical water,

in early 2000s, researchers started looking into sCO2 power cycles as viable alternative to

produce electricity. Variation of heat transfer within a cross-section in case of horizontal

flow due to effects of buoyancy is studied by a few researchers. The key observation in

horizontal flow is enhancement of heat transfer at bottom surface of pipe and deteriora-

tion of heat transfer at top wall of the pipe. Parameters to predict this buoyancy effect

perform very well to estimate onset of buoyancy but fail to estimate trends and magni-

tude of heat transfer enhancement and deterioration.

The study presented in this dissertation aims to further investigate validity of the

buoyancy parameters as well as discuss trends in supercritical heat transfer for circular

horizontal pipe.
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CHAPTER 3: OBJECTIVE AND MOTIVIATION

Objective of the Present Study

Heat transfer and heat recuperation are very critical for any sCO2 cycle. For indi-

rect closed loop cycles, work output of cycle is directly proportional to the heat exchanged

from primary heat source to the sCO2 loop. This means that the performance main heat

exchanger will explicitly decide cycle work output. As shown by Mohagheghi and Ka-

pat [6] in their work on sCO2 Brayton power cycles, the amount of recuperative heat

exchange which occurs close to the critical point is about 2.5 times larger than the heat

input and about 4.5 times larger than the net power output of the cycle. Figure 1.3 also

suggest importance of heat exchanger from financial point of view. These numbers show

the importance of recuperators and heat exchangers in sCO2 cycles, and hence the im-

portance of having accurate understanding of the heat transfer process inside the heat

exchangers. This leads to the motivation of this study.

Novelty

Novelty of the study lies in the experimental setup to study heat transfer. Unique-

ness and peculiarities of sCO2 flow and heat transfer, especially those for components of

DOE-funded STEP facility, have led to establishing a unique testing facility at UCF, under

the sponsorship of NETL, which will be utilized for the validation of internal or sCO2-side

heat transfer in this project. This rig is designed for studying heat transfer characteristics

of sCO2 at high pressure (27MPa) and high temperature (700oC). The rig has capabilities

of heat transfer testing of sCO2 through stainless steel and Inconel tubing of different

diameters. Because of high pressure rating at high temperature, some heat transfer mea-

surement techniques cannot be applied. For example, segmented heated copper-blocks
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with embedded thermocouples to give module-averaged heat transfer co- efficient can-

not be used since any type of segmentation will void the pressure rating. Local mea-

surements with paints, over a thick insulating substrate, where paint indicate change of

temp through some type of optical access cannot be done either. Since the heating is done

by providing electricity to the metal tubing, the tubing cannot have any machining done

for optical window access. It is not possible to create pressure taps for local pressure

measurements as this machining will cause non-uniformity in heat flux. Hence for the

current testing, seamless stainless-steel tubing with outside wall temperature measure-

ments is utilized. Pressure de-rating of stainless steel at temperatures higher than 500oC

is also taken into consideration while designing the setup. For temperatures higher than

538oC (1000oF), Inconel tubing will be used in the test section instead of stainless-steel

tubing. Since the heating is provide by passing electricity through the test section tubing,

it is important to insulate the test section from rest of the loop to create additional current

circuit. Hence the test section is insulated from rest of the loop using custom-design high

temperature dielectric flanges.

Intellectual Contribution and Research Impact

The intellectual merit of this dissertation would be providing insight into heat

transfer for supercritical and near critical state of sCO2 which will help in design of heat

exchangers for sCO2 power cycles. Difference in temperature of bulk flow and tempera-

ture at wall can cause significant density variation across circumference which can lead

to buoyancy effects on heat transfer. Recent results from an ongoing DOE/NETL funded

project at UCF show that near critical point region, sCO2 flows can exhibit as much as

factor-of-4 deviation in heat transfer coefficient from the established correlations for heat

transfer coefficients. Moreover, because of significant variations in fluid density of sCO2
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in the same pipe cross-section, buoyancy-induced circulations can cause significant (as

much as × 2.5) variation in heat transfer coefficients circumferentially around the tube.

In summary, this study provides detailed insight into sCO2 heat transfer for fol-

lowing conditions:

• Validated experimental setup to study sCO2 heat transfer

• Near critical point heat transfer in horizontal circular tube

• Effects of heat flux and mass flux on sCO2 heat transfer

• Effect of bulk temperature due to vicinity to pseudocritical temperature on heat

transfer
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CHAPTER 4: EXPERIMENTAL SETUP

The heat transfer measurement is sensitive to ambient conditions, measuring pro-

cedures and measuring instruments. The design of the experimental loop as well as the

test section depends highly on required pressure and temperature rating. Concurrently,

validation of heat transfer, uncertainty analysis and heat loss are important to establish

reliability in the setup. This chapter discusses description of the experimental loop, in-

strumentation of the test section, uncertainty analysis, heat loss tests, data reduction and

validation with high pressure air experiments.

Rationale behind experimental approach

Experimental loop for this study is designed considering high pressure (200 bar)

and high temperature (540oC) operating conditions for future testing. For safe operation

at such extreme conditions, ASME B31.3 Pipe Code [35] is followed. Because of code

restrictions, certain conventional approaches could not be implemented to calculate heat

transfer coefficient.

Approach of obtaining local measurements by utilizing electrically heated foils

over insulating substrate/wall, where paint-based or infrared measurements are used

to indicate temperature distribution through optical access [36–38], cannot be used for

current study. The setup must be rated for extreme pressure (200 bar). This can only be

achieved using high grade materials such as stainless steel or Inconel.

Transient measurements with paints, over a thick insulating transparent substrate,

where paint indicate change of temperature through some type of optical access [39–41]

is also not feasible. Since the heating is done by providing electricity to the metal tubing,
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the tubing cannot have any machining done. Otherwise this will cause non-uniformity in

heat flux.

Approach of segmented heated copper-blocks with embedded thermocouples to

give module-averaged heat transfer is usually used in internal duct cooling [42, 43]. Be-

cause of high pressure rating requirement, for this study the test section cannot be seg-

mented. Segmentation causes flow to trip when passing a joint between two segments

which can add unnecessary turbulence to the flow.

Considering all of the above restrictions, stainless steel is chosen as material for

the loop and test section. Pressure de-rating of stainless steel is considered according to

ASME B36.19M code [44]. This resulted in choice of 1/2” stainless steel pipe with 0.065”

wall thickness which is rated at 350 bar at standard conditions. Outside surface temper-

ature, inlet pressure, inlet and outlet bulk temperatures are utilized for data reduction

process. Appropriate heat loss to ambient and axial conduction are also taken into ac-

count for heat balance while calculating heat transfer coefficient.

Description of experimental rig

For this paper, the experimental setup is in open loop configuration as shown in

top of Figure 4.1. Inlet of the loop can be connected to a 100 psi air supply (for air valida-

tion cases) or sCO2 supply from manifold of five CO2 cylinders with maximum pressure

of 10 MPa. The cylinders are used in a manifold assembly to increase the testing duration

and providing a constant mass flow rate and pressure at the inlet. The inlet pressure is

regulated by a pressure regulator before the inlet. The entire experimental loop is made

of 1/2” stainless steel pipe with 0.065” wall thickness. All fittings for the loop are com-

pression type fittings which makes the setup rated for 350 bar pressure at standard con-

ditions. The stainless steel tube is surrounded by mineral wool insulation and encased
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within PVC pipes to reduce heat loss to ambient. The experimental loop consists of an

ON/OFF ball valve, instrumented test section, mass flow meter, a needle valve to control

mass flow and two cord heaters.

Figure 4.1: Schematic of experimental setup in open loop (top) and details of instru-

mented test section(bottom)
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The first heater, named ’pre-heater’ is used to control inlet bulk temperature of

sCO2. The heater downstream of the test section between needle valve and mass flow

rate sensor is used to heat CO2 coming out of needle valve. CO2 experiences sudden

drop in temperature due to sudden drop in pressure after passing through the needle

valve. This phenomenon is called Joule-Thomson effect [45]. This Joule-Thomson effect

causes a sudden drop in temperature of CO2 which may lead to liquefaction or even

formation of dry ice going into coils of Coriolis mass flow sensor. To prevent the damage

to coils and erroneous mass flow rate reading due to liquefaction or formation of dry ice,

temperature of CO2 is raised using the rope heaters. Both heaters are 1000W fiberglass

high temperature heating cords and are wrapped around stainless steel tube.

The experimental rig is located in the room which is equipped various safety mea-

sures. Continuously running positive ventilation system creates negative pressure in the

room which can scoop out any leaked CO2 and throw it into atmosphere. Very sensitive

CO2 sensors are scattered across the room at different heights and are able to alarm when-

ever CO2 concentration increases above 1000 ppm. The exhaust of the loop is connected

to a wind tunnel going outside into the atmosphere. This makes sure that all of CO2 used

for testing is released into atmosphere.

Description of test section

The detail of the test section with instrumentation is shown in bottom part of Fig-

ure 4.1. The test section is heated by passing electricity through stainless steel tubing. DC

power supply is connected to the stainless steel test section using copper busbars, shown

as Busbar 1 and Busbar 2 in Figure 4.1. The length between these two busbars is consid-

ered for heat transfer analysis. The DC power supply provides a uniform volumetric heat

generation in heated length of the tube. The same DC power supply is used for moni-
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toring and measuring of current. Concurrently, the voltage across the test section length

is measured using a Keithley multimeter. A static pressure transmitter (measuring range

of 0-250 bar) is used for monitoring and measuring inlet pressure. The test section con-

sists of 8 thermocouple (TC) stations named from TS1 to TS8 located at 8 axial positions

at distances 30d, 40d, ...., 90d, 100d starting from Busbar 1. At each TC station, outside

wall temperatures is measured at 4 circumferential locations at 90◦; top, right, bottom and

left. Inlet & outlet bulk flow temperatures are measured by inserting TC probes into the

flow. TCs used in 8 stations in the test section and for inlet and outlet bulk temperature

are J-type TCs. Outside surface temperatures at upstream and downstream of the test

section is measured by T-type TCs. The temperature distribution upstream and down-

stream is necessary for heat loss analysis, data reduction as well as heat balance. All the

surface TCs used are un-grounded meaning the TC junctions do not touch the electrically

heated metal surface directly. Using grounded TCs or exposed junction TCs can result in

erroneous voltage output leading to erroneous temperature measurement.

Sources of systematic errors

Since the experimental setup is based on non-conventional approach for instru-

mentation, errors/losses occurring due to the same approach are also considered and

accounted for while calculating heat transfer coefficient. Heat loss to ambient in radial

direction is calculated by performing no-flow heated-tube tests. This radial heat loss also

accounts for heat conducted through surface thermocouple probes. Copper busbars con-

necting stainless steel tube to wires of power supply can also conduct heat. That is why,

busbars used here are in form of thin clamps instead of chunky plates to minimize heat

loss. The stainless steel tube used here has considerable thickness of 0.065”. This can

result in axial conduction heat loss from heated section to unheated section. This axial
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conduction and heat loss is considered in energy balance to calculate bulk temperature in

the test section.

Heat loss tests

Since the setup requires accurate heat balance to calculate heat transfer coefficient,

calculation of heat loss to the ambient through the insulation is vital. Hence heat loss tests

are conducted with heated test section and no flow conditions. In addition to heat loss to

ambient, axial conduction from heated section to unheated section is also important for

heat balance. Figure 4.2 shows the thermal resistance model used for heat loss tests. Area

specific overall heat transfer coefficient Uext for heat loss in radial direction, based on pipe

outer surface area is calculated for different heat flux cases. This overall heat transfer co-

efficient is the sum of individual resistances between outer surface of stainless steel tube

and ambient as shown in Figure 4.2. The individual resistances such as conduction re-

sistance due to mineral wool insulation, resistance due to PVC pipe and resistance due

to natural convection in the room, are not calculated. The procedure directly calculates

area specific overall heat transfer coefficient Uext. These are presented in Table 4.1 for

different power and ambient conditions. Mean of equivalent conductance is Uext,mean =

5.98 W/m2K and the standard deviation is ± 0.23 W/m2K which are used in data reduc-

tion and uncertainty analysis. Axial conduction from heated length to unheated length,

especially upstream of Busbar 1 is also carried out for heat balance.

Data reduction

Area of cross section for the tubing is calculated using Equation 4.1.

Acs = π × [r2ext − r2int] (4.1)
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Figure 4.2: Pathway for radial heat loss to ambient

Table 4.1: Heat loss test summary: Equivalent heat loss coefficient calculated at the test
section

Test Power [W] Tamb [oC] Uext [W/m2K]

1 7.42 25.5 5.84
2 21.42 28.6 6.25
3 10.21 25.7 5.68
4 13.21 26.3 5.98
5 13.37 29.3 6.13

Power provided to the test section is calculated using current provided by the DC

power supply and voltage measured across the length (Ltotal)of heated tubing excluding

busbars’ width.

Total measured power, POWER = V × I (4.2)

Heat transfer coefficient is calculated at four circumferential locations: top, bottom,

left and right. Following data reduction is described for one 90o quadrant with length

Llocal. This quadrant can be seen in Figure 4.3.
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Local power is electric power generated in a local quadrant. Local length is the

length of one quadrant where the heat transfer coefficient is calculated.

POWERlocal =
POWER× Llocal

4Ltotal

(4.3)

To calculate internal wall temperature, thermal conductivity of stainless steel and

volumetric heat generation is required. Thermal conductivity of stainless steel being a

function of temperature is calculated using Equation 4.5 [46]. Internal wall temperature

is calculated using Equation 4.6.

qvl =
POWER

LtotalAcs

(4.4)

kSS = 14.6 + 1.27× 10−2Text (4.5)

Tw,int = Tw,ext + qvl/(4kSS)[r
2
ext − r2int]

−qvl/(2kSS)(rext)
2ln(rext/rint)

(4.6)

Heat loss to the ambient in radial direction is calculated using equivalent loss co-

efficient Uext and temperature difference between external wall and ambient as shown in

Equation 4.7. Area considered for this heat loss is outside surface area of a local quadrant.

Qloss,radial = Uext(Tw − Tamb)Llocal
πDext

4
(4.7)

A large variation in temperature is observed within a cross-section. It is necessary

to account for conduction heat transfer in circumferential direction due to the thick walled
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stainless steel tubing. It is calculated using Equation 4.8. ∆T here is the temperature

difference calculated between required circumferential locations including top, bottom,

left and right.

Qcir,cond =
4× kw ×∆T × (rext − rint)× Llocal

(π × (rext + rint))
(4.8)

90o

Qgen,electricQaxial,cond

Qaxial,cond

Qcir,cond

Qcir,cond

Qloss,radial

Qconv
Llocal

Figure 4.3: Heat balance in a quadrant

The energy balance to calculate heat transfer coefficient includes electric power,

heat loss in radial direction and circumferential conduction as shown in Equation 4.9.

∆hlocal = POWERlocal −Qloss,radial ±Qcir,cond (4.9)
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Enthalpy at each station is calculated from enthalpy at previous station and the

heat transferred as shown in Equation 4.10.

hx = hx−∆x +
4

∑

quadrant=1

∆hlocal (4.10)

Local bulk temperature is calculated using REFPROP with local enthalpy and pres-

sure as inputs.

Tbulk,x = function(hx, P ) (4.11)

Here, local pressure is assumed to be equal to inlet pressure. As explained ear-

lier, it is difficult to measure local pressure since the stainless steel tube cannot have any

machining done. However, estimated pressure drop is calculated by using friction factor

correlations given by Filonenko [47] as well as Mikheev [48]. These friction factors are

calculated according to Equations 4.12 and 4.13 as reported in [27]. Estimated pressure

drop values are found to be within 10 Pa to 50 Pa. Such small difference in pressure do not

affect values of thermodynamic properties to cause inaccuracies in heat transfer calcula-

tions. Hence for calculation of heat transfer coefficient, local pressure is assumed same as

inlet pressure.

fFilonenko = (1.82 log10Reb − 1.64)−2 (4.12)

fMikheev = (1.82 log10Reb − 1.64)−2
×

(

Prw
Prb

)1/3

(4.13)
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Pressure drop is calculated using Equation 4.14 based on mass flux, G and local

density ρ for local segments and added up to get outlet pressure.

∆P =

(

f
G2

2ρ

)

(4.14)

Temperature difference between the bulk flow and the wall is used to calculate heat

transfer coefficient as shown in Equation 4.15. One may argue validity of this equation in

the presence of significant and potentially non-linear variation of fluid properties in the

boundary layer. However, we have used the conventional definition.

HTClocal =
∆hlocal

(Twall − Tbulk,x)Alocal

(4.15)

Local CO2 thermal conductivity for bulk flow is calculated using REFPROP [49]

with local enthalpy and pressure as inputs. This value of CO2 thermal conductivity is

used in calculation of local Nusselt number as shown in Equation 4.17.

kCO2,bulk,x = function(hx, P ) (4.16)

Nulocal =
HTClocalDint

kCO2,bulk,local

(4.17)

Nusselt number is calculated from Gnielinski correlation [50] and Dittus-Boelter

correlation using bulk property values as follows.

NuGn =
(f/8)(Reb − 1000)Prb

1 + 12.7(f/8)0.5(Pr
2/3
b − 1)

(4.18)
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NuDB = 0.023Re0.8b Pr0.4b (4.19)

Uncertainty analysis

The uncertainty analysis is based on methods described by Kline and McClin-

tock, [51], Moffat [52] and the Test Uncertainy Standard PTC 19.1 - 2005 by the American

Society of Mechanical Engineers (ASME) [53]. Measurement uncertainties for all instru-

ments used are listed in Table 4.2. Uncertainties in thermodynamic properties derived

from REFPROP are neglected as suggested by a report by National Institute of Standards

and Technology (NIST) [54]. Error propagation in heat transfer coefficient is calculated

using Equations 4.21, 4.22, 4.23 and 4.24.

(

δPOWERlocal

POWERlocal

)

= ±1.63% (4.20)

δTw,int

2 =

δ2Tw,ext
+

(

δPOWERlocal

[

r2ext − r2int − 2(rext)
2ln(rext/rint)

4kSS

])2 (4.21)

δQloss,radial

Qloss,radial

=

√

(

δUext

Uext

)2

+

(

δTw

Tw

)2

+

(

δTamb

Tamb

)2

(4.22)

δQcir,cond

Qcir,cond

=
δTw

Tw

(4.23)

δHTC

HTC

2

=

(

δPOWERlocal

POWERlocal

)2

+

(

δQloss

Qloss

)2

+

(

δQcir,cond

Qcir,cond

)2

+

(

δTwall

Twall

)2
(4.24)
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Table 4.2: Uncertainties of measured parameters

Parameter Uncertainty

Test section power ± 1.63%

Inlet pressure ±1.9%

Temperatures 2.2o C

Mass flow rate ±0.98 %

Table 4.3: Nusselt number uncertainty summary

Maximum uncertainty 9.70%

Minimum uncertainty 4%

Average uncertainty 6.80%

Uncertainty in heat transfer coefficient is same as uncertainty in Nusselt number

given negligible uncertainty in thermal conductivity of the tube. Table 4.3 shows sum-

mary of uncertainty calculated for Nusselt numbers. The source of highest error was

found to be the temperature measurements.

Validation with high pressure air heat transfer experiments

Validation experiments with high pressure air were conducted as a means to es-

tablish the baseline confidence interval for the sCO2 tests. Experiments with same testing

conditions are carried out on different days to check repeatability. For air experiments,

inlet was connected to high pressure air supply from a compressor.
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Figure 4.4: Measured temperatures for air validation case 7 (as mentioned in Table 4.4)

Maximum testing pressure at inlet was ≈ 6.9 bar (100 psi) with maximum surface

temperature observed around ≈ 370K. The compressor could provide a steady mass flow

rate for more than two hours which was sufficient time to reach the steady state data.

Raw wall temperatures, bulk flow inlet and outlet temperatures, upstream and down-

stream wall temperatures can be seen in Figure 4.4. x=0 is defined at the busbar 1. For

air heat transfer cases, circumferential variation in temperature is negligible. Tempera-

ture gradient between the heated and unheated potion of tubing can create considerable

axial conduction. As mentioned before, this conduction is taken into account for heat bal-

ance in data reduction. There is uniform thermal gradient within the test section (solid
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black circles in Figure 4.4), indicating negligible axial conduction in the heated test sec-

tion. Because the incoming axial conduction from downstream is equal to outgoing axial

conduction to upstream. Within the test section, measured wall temperatures and cal-

culated bulk temperatures (Figure 4.5) are used to calculate heat transfer coefficient and

Nusselt number.

Figure 4.5: Wall temperature vs Bulk flow temparture comparison for air validation case

7 (as mentioned in Table 4.4)

Summary of air heat transfer experiments is shown in Table 4.4. Nusselt number

calculated using experiments are within ± 9% of Nusselt number obtained using conven-

tional correlations.
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Table 4.4: Air validation experiments summary. Dittus-Boelter (DB), Gnielinski (Gn)

Case Re
Heat

flux
Pin Nu Nu Nu

[-] [kW/m2] [bar] expt DB Gn

1 21210 3.69 6.69 57.2 56.3 52.7

2 21694 3.76 6.76 56.2 57.3 53.7

3 21739 3.73 6.76 54.5 57.5 53.8

4 21814 3.77 6.77 54.5 57.6 53.9

5 21872 3.81 6.7 58.7 57.7 54.0

6 17491 2.88 7.2 48.7 48.4 45.5

7 12,700 2.45 3.4 38.1 37.6 35.5

Dittus-Boelter Gnielinski

Maximum deviation 2% 9%

Minimum deviation -5% 1%

Average deviation -1% 6%
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CHAPTER 5: RESULTS AND DISCUSSION

Newton’s law of cooling for internal flows

Convection heat transfer within a fluid can be described as energy transfer due to

diffusion (also known as ’conduction’) and bulk fluid motion (also known as ’advection’).

Newton’s law of cooling is considered as basis of convection heat transfer. In his original

paper [55] which is in Latin language, Newton suggested that the rate at which a hot body

cools down should be proportional to temperature difference between the hot body and

its surrounding. Although his study was meant for establishing new temperature scale

and measuring high temperatures, it received more attention to define convective heat

transfer equation.
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Figure 5.1: Boundary layer development on heated wall surface
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Contemporary form of Newton’s law of cooling found in most of the textbooks is

as follows:

Q = hA(Ts − T∞), (5.1)

where Q is heat flow rate, h the heat transfer coefficient, A the surface area, Ts the

temperature of the solid surface and T∞ the temperature of the coolant fluid. Figure 5.1

shows hydrodynamic boundary layer where the velocity varies from zero at the wall to

free stream velocity, u∞. At the same time, wall and surrounding fluid are at different

temperature causing formation of thermal boundary layer in which temperature varies

from Ts at wall to T∞. This is the most popular form of defining convective heat transfer

coefficient.
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Figure 5.2: Boundary layer development on heated wall surface for internal flow

For internal flows, boundary layer from walls at all directions merge at the cen-

terline after certain length in flow direction: this length is called entrance length or the
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region of flow development. Region after the entrance length is called as fully developed

flow region. Since concept of ’free-stream’ cannot be defined for internal flows, bulk tem-

perature is used to calculate heat transfer coefficient. This bulk, or sometimes also called

mean temperature is defined as follows:

mcpTbulk =

∫

Ac

ρucpTdAc (5.2)

Tbulk =

∫

Ac
ρucpTdAc

mcp
(5.3)

Based on bulk temperature, for heated wall case, Newton’s law of cooling can be

expressed as,

q = h(Ts − Tbulk) (5.4)

Equation 5.4 has been heavily used in literature to calculate heat transfer for inter-

nal flows in pipes and to develop empirical correlations for heat transfer coefficient and

Nusselt number. It has also been used to develop Nusselt number correlations for sCO2

flows in vertical direction. However, a question can be raised whether it can be used to

calculate heat transfer coefficient in supercritical CO2 horizontal flows where flow prop-

erties undergo drastic variations between wall and centerline.

For flow inside a tube, temperature profile as a function of distance from wall can

be calculated using thermal law of the wall Equation 5.5 which is a relation between T+

and y+ as given in [56]. It is important to note that equation 5.5 is valid neither inside

viscous sublayer nor at the tube centerline.

T+ = 2.2 lny+ + 13.39 Pr − 5.66 (5.5)
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Profiles of temperature and other thermophysical properties such as density, spe-

cific heat capacity, thermal conductivity and Prandtl number can be seen in Figure 5.3.

Here y represents height from the internal wall and y/r = 0 represents internal wall of the

tube. All the properties shown in Figure 5.3 are plotted as their ratio to corresponding

property value at the wall as listed in Table 5.1. This means at y/r = 0, ratio for all of these

property is equal to 1. Case shown for air is from air validation case 7 as shown in Table

4.4 and case shown for CO2 is from case HF4 as shown in Table 5.3.

As seen from Figure 5.3, variations for air case are smaller than variations for CO2

case. Specifically for specific heat and Prandtl number, for case of CO2, the variation from

wall property is ≈ 1.25-1.3 whereas for air it is ≈ 1. For CO2 case, density also varies

a lot compared to air case. Specific heat capacity is used to calculate bulk temperature

(Equation 5.3) which itself is used to calculate heat transfer coefficient. For case of CO2,

specific heat can vary a lot within a cross section as shown in Figure 5.3. This raises a

question whether conventional approach to calculate heat transfer coefficient using bulk

temperature definition applies for sCO2 heat transfer cases.

One may argue validity of Equation 5.1 in the presence of significant and poten-

tially non-linear variation of fluid properties in the boundary layer. However, here the

conventional definition of heat transfer coefficient is used.

Table 5.1: Values of properties at wall for plots shown in Figure 5.3

Property value at wall

T Density Cp Pr k

[K] [kg/m3] [J/kg.K] [-] [W/m.K]

Air case 357 3.5 1012 0.70 0.031

CO2 case 400 113.7 1200 0.87 0.029
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Figure 5.3: Profile of properties as ratio to properties at wall according to thermal law of

the wall: Top- air validation case 7 as shown in Table 4.4, Bottom- case HF4 as shown in

Table 5.3
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Open loop supercritical CO2 heat transfer

Open loop sCO2 experiments are performed near critical region with three varying

conditions: heat flux, inlet temperature and mass flux. For each set of experiment, for one

variable condition, other two conditions are kept constant. Details of inlet conditions of

these experiments are shown in Table 5.3, Table 5.2 and Table 5.4 respectively. To estimate

and quantify buoyancy effects on heat transfer, parameters based on Reynolds number,

Grashof number and Prandlt number are used here [23]. Grashof number and Richard-

son number is calculated as shown in Equation 5.6 and 5.7, respectively. Jackson [23]

presented a modified form of Grashof number based on wall and bulk density, Buj as

shown in Equation 5.8. It has been reported [24, 57–60] that buoyancy is negligible when

Ri is less than 1/1000 or when Buj is less than 10.

Grashof number, Gr =
(ρw − ρb) ρb g d

3

µ2
b

(5.6)

Ri =
Gr

Re2b
(5.7)

Buj =
Gr

Re2b

x2

D2

ρb
ρw

(5.8)

It has been reported that pseudocritical temperature plays important role in sCO2

heat transfer. Pseudocritical temperature at a specified pressure is defined in Equation

5.9 [61].

Tpsc = −122.6 + 6.124P − 0.1657P 2 + 0.01773P 2.5

−0.0005608P 3

(5.9)
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where Tpsc is in oC and P is in bars. Ratio of bulk flow temperature to pseudocrit-

ical temperature, Tbulk/Tpsc is plotted for all cases to discuss its effect on heat transfer.

Circumferential variation in heat transfer

For case HF4 as shown in Table 5.3, circumferential variation in temperature, den-

sity and Nusselt number is plotted in Figures 5.4, 5.5 and 5.6, respectively. Figure 5.4

shows difference between temperature at inside wall locations and temperature calcu-

lated for bulk fluid. It is important to note that bulk fluid temperature does not necessar-

ily mean centerline temperature.
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Figure 5.4: Circumferential variation in temperature plotted for case HF4 as listed in Table

5.3
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Figure 5.5: Circumferential variation in density plotted for case HF4 as listed in Table 5.3

Temperature at centerline may even be less than the bulk fluid temperature. This

difference in temperature between wall and bulk causes difference in density also. Den-

sity at walls is lower density than calculated density at bulk as shown in Figure 5.5. This

causes natural convection from bottom wall to top wall as illustrated in Figure 5.7.

As a result of this buoyancy due to density gradient in a cross-section, heat trans-

fer at the bottom wall is increased and is higher than the top wall. This can be seen in

Figure 5.6, with highest Nusselt number for bottom wall and lowest for top wall. Nusselt

number plotted using Dittus-Boelter and Gnielinski correlations use bulk properties such

as Prandtl number, density and viscosity. It can be seen that experimentally calculated

Nusselt number in the cross section does not follow Nusselt number based on conven-
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tional correlations. For the two cases plotted in Figure 5.6, it can be seen that it is not

always necessary that Nusselt numbers calculated from Dittus-Boelter and Gnielinski

correlations will equal to Nusselt number a specific wall locations.

It is interesting to note that temperature, density and Nusselt number are identical

for right wall and left wall. All the measured and calculated values for right wall and

left wall are between bottom wall and top wall values. Hence, for further analysis all the

results corresponding to right and left wall is shown only as results for side wall. There

was no fixed trend of Nusselt number in the axial direction. This is also reported by Kim

et. al. [22] for cases with low heat flux. This leads author to believe the flow may not be

fully developed. Henceforth, in this study, main emphasis is given on heat transfer trends

at top, bottom and side wall surfaces due to effects of different testing conditions.
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kg/m2s, 6.8 kW/m2, Reinlet = 16,650
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Figure 5.7: Schematic of cross section of tube showing natural convection current from

bottom wall to top wall (CO2 flow direction going into the page)
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Effects of mass flux variation

Operating conditions for varying mass flux tests are shown in Table 5.2. Figure 5.8

shows results for varying mass flux cases with constant heat flux of 4.9 kW/m2. Low-

est mass flux cases has highest Nusselt number at the bottom wall and lowest Nusselt

number at the top wall. In other words, highest heat transfer enhancement at bottom

and highest heat transfer deterioration at the top wall for lowest mass flux cases. This

enhancement of heat transfer at the bottom wall reduces with increasing mass flux. This

means that effects of buoyancy increases with reduced mass flux. This is also evident

from definition of Grashof number which is inversely proportional to square of Reynolds

number. Nusselt number at the side wall were observed to be within the values at bottom

wall and top wall for all cases.

Table 5.2: Testing conditions for varying mass flux cases with constant heat flux of 4.9
kW/m2

Case Tbulk,in Pin Mass flux Rein

[oC] [bar] [kg/m2s]

MF1 34.68 74.19 50 21703
MF2 34.7 74.07 70 30502
MF3 34.5 74.45 80 34536

This is also reflected in the values of Richardson number (Ri) and Jackson buoy-

ancy parameter, (Buj). Figure 5.10 and 5.9 show effects of mass flux on buoyancy param-

eters on bottom wall and top wall, respectively. The buoyancy parameters decrease with

increasing value of mass flux since Grashof number is included in their definition. Buj

is observed to increase along length of the tube while Ri is observed to decrease along

length of the tube. This is mainly because of the dominant (x/D)2 term in expression for

Buj . Hence Ri indicates that buoyancy effects get weaker downstream and Buj indicates

that buoyancy effects get stronger downstream.

43



0

20

40

60

80

100

120

30 40 50 60 70 80 90 100

N
u

ss
el

t 
n

u
m

b
er

x/D

Mass flux effect: Top wall

50 k/m²s 70 kg/m²s 80 kg/m²s

0

50

100

150

200

250

300

30 40 50 60 70 80 90 100

N
u

ss
el

t 
n

u
m

b
er

x/D

Mass flux effect: Bottom wall

50 k/m²s 70 kg/m²s 80 kg/m²s

Figure 5.8: Variation of Nusselt number with mass flux

44



Position x T_Int T_Bulk x/D Nu_w Nu

[m] [K] K [-] [-]

2_Top 0.38 334.33 312.63 40.84 44.15

2_Right 0.38 330.64 40.84 106.70

2_Bottom 0.38 328.35 40.84 144.32

2_Left 0.38 330.64 40.84 106.68

3_Top 0.48 338.70 314.27 50.84 33.48

3_Right 0.48 334.43 50.84 87.54

3_Bottom 0.48 330.16 50.84 170.19

3_Left 0.48 334.43 50.84 87.52

4_Top 0.57 339.98 316.08 60.84 46.73

4_Right 0.57 336.91 60.84 87.36

4_Bottom 0.57 333.84 60.84 141.83

4_Left 0.57 336.91 60.84 87.26

5_top 0.67 342.12 318.05 70.84 54.26

5_right 0.67 339.73 70.84 82.76

5_Bottom 0.67 336.71 70.84 138.09

5_Left 0.67 339.73 70.84 82.69

6_Top 0.76 345.84 320.18 80.84 34.23

6_Right 0.76 341.57 80.84 96.22

6_Bottom 0.76 338.51 80.84 144.77

6_Left 0.76 341.57 80.84 96.08

7_Top 0.85 348.41 322.47 90.84 48.49

7_Right 0.85 345.62 90.84 80.83

7_Bottom 0.85 342.17 90.84 142.59

7_Left 0.85 345.62 90.84 80.71

Inlet bulk T 34.68 [deg C]

Inlet Pressure 74.19 [bar]

Reynolds # 21703

Ambient T 22.6 [deg C]

Heat Flux 4.94 [kW/m^2]

Position x T_Int T_Bulk x/D Nu_w Nu

[m] [K] K [-] [-]

2_Top 0.38 327.08 311.11 40.84 67.46

2_Right 0.38 324.08 40.84 142.33

2_Bottom 0.38 322.38 40.84 183.18

2_Left 0.38 324.08 40.84 142.30

3_Top 0.48 330.01 312.16 50.84 56.82

3_Right 0.48 326.73 50.84 117.09

3_Bottom 0.48 323.45 50.84 211.95

3_Left 0.48 326.73 50.84 117.07
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Density_b Density_w Re_b Pr_b Re_w Pr_w Ri Bu_j

[kg/m3] [kg/m3] [-] [-] [-] [-] [-] [-]

228.30 167.95 23048.71 1.90 24157.83 1.17 0.42 928.13

174.21 24151.52 1.22 0.37 787.25

178.55 24127.64 1.25 0.34 695.58

174.21 24151.52 1.22 0.37 787.25

220.06 161.44 23302.21 1.75 24125.32 1.13 0.48 1683.29

167.79 24157.51 1.17 0.43 1444.33

175.10 24147.87 1.23 0.37 1190.27

167.79 24157.51 1.17 0.43 1444.33

212.34 159.72 23519.11 1.63 24109.47 1.11 0.41 2036.67

164.01 24143.18 1.14 0.38 1821.45

168.73 24158.97 1.18 0.34 1597.49

164.01 24143.18 1.14 0.38 1821.45

205.11 156.94 23700.75 1.53 24077.23 1.10 0.37 2399.83

160.05 24112.74 1.12 0.34 2201.52

164.30 24144.77 1.15 0.31 1942.06

160.05 24112.74 1.12 0.34 2201.52

198.33 152.46 23848.93 1.45 24006.88 1.07 0.34 2863.88

157.63 24086.00 1.10 0.30 2458.23

161.72 24127.56 1.13 0.27 2155.26

157.63 24086.00 1.10 0.30 2458.23

191.97 149.61 23965.63 1.38 23949.48 1.05 0.30 3189.26

152.71 24011.32 1.07 0.28 2895.72

156.87 24076.27 1.10 0.25 2520.31

152.71 24011.32 1.07 0.28 2895.72

Density_b Density_w Re_b Pr_b Re_w Pr_w Ri Bu_j

[kg/m3] [kg/m3] [-] [-] [-] [-] [-] [-]

236.20 180.69 31922.03 2.07 33782.21 1.27 0.21 453.02

187.39 33675.03 1.34 0.18 377.28

191.62 33585.72 1.38 0.17 332.24

187.39 33675.03 1.34 0.18 377.28

229.87 174.96 32217.58 1.94 33836.74 1.23 0.24 809.60

181.44 33772.52 1.28 0.21 688.57

188.91 33644.72 1.35 0.18 559.20
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Figure 5.10: Variation in buoyancy parameters with mass flux at bottom wall
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Effects of heat flux variation

Table 5.3 lists operating conditions for tests with varying heat flux. For these tests,

mass flux and inlet temperature are kept constant. With increasing heat flux, it is ex-

pected that effects of buoyancy due to natural convection becomes dominant whereas

forced convection remains comparable. For the cases studied here, increasing heat flux

resulted in increase of Nusselt number at all the wall locations. This can be seen in Figure

5.11. To study the effects of heat flux on buoyancy, Figure 5.12 shows difference between

Nusselt number at bottom and top locations. With increase in heat flux, this difference

also increases. This proves that increasing heat flux increases the effects of buoyancy on

sCO2 heat transfer.

Table 5.3: Testing conditions for varying heat flux cases with constant mass flux of 54
kg/m2s

Case Tbulk,in Pin Heat flux

[oC] [bar] [kW/m2]

HF1 32.6 74.8 2.7
HF2 32.2 74.3 4.9
HF3 32.6 74.2 7.9
HF4 32.5 74.4 11.8

However, this is not reflected in trends of buoyancy parameters. Both Ri and Buj

reduce with increasing heat flux at all wall locations. This is mainly because both of

these parameters do not consider the effects of varying heat flux. Similar results were

also shown by Tanimizu & Sadr [33] and Kim et. al. [22] in their work on investigating

validity of these buoyancy parameters.
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Figure 5.11: Variation of Nusselt number with heat flux
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Density_b Density_w Re_b Pr_b Re_w Pr_w Ri Bu_j q+

[kg/m3] [kg/m3] [-] [-] [-] [-]

294.04 208.92 22209.50 3.99 25443.50 1.56 0.72 1656.20 0.00

216.03 25242.51 1.66 0.66 1457.41

220.14 25116.67 1.73 0.62 1348.22

216.03 25242.51 1.66 0.66 1457.41

287.84 202.38 22477.09 3.67 25607.63 1.48 0.78 2869.28 0.00

209.13 25437.90 1.57 0.72 2557.25

216.94 25215.18 1.68 0.65 2220.51

209.13 25437.90 1.57 0.72 2557.25

281.82 202.07 22735.20 3.40 25614.87 1.48 0.71 3681.48 0.00

206.52 25506.16 1.53 0.67 3400.90

211.41 25375.55 1.60 0.63 3106.39

206.52 25506.16 1.53 0.67 3400.90

275.98 199.77 22983.38 3.16 25666.73 1.45 0.67 4626.71 0.00

203.11 25590.35 1.49 0.64 4351.53

207.27 25487.00 1.54 0.60 4021.03

203.11 25590.35 1.49 0.64 4351.53

270.33 195.53 23221.50 2.95 25754.81 1.40 0.64 5797.48 0.00

201.24 25633.96 1.47 0.59 5202.92

205.63 25528.61 1.52 0.55 4767.64

201.24 25633.96 1.47 0.59 5202.92

264.85 192.91 23449.38 2.76 25803.68 1.38 0.60 6850.46 0.00

196.20 25741.62 1.41 0.58 6427.48

200.83 25643.10 1.46 0.54 5854.94

196.20 25741.62 1.41 0.58 6427.48

Density_b Density_w Re_b Pr_b Re_w Pr_w Ri Bu_j q+

[kg/m3] [kg/m3] [-] [-] [-] [-]

272.04 175.38 23494.73 3.09 26429.15 1.23 0.70 1749.40 0.00

182.46 26371.74 1.29 0.64 1544.37
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Figure 5.13: Variation in buoyancy parameters with heat flux at top wall
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Position x T_Int T_Bulk x/D Nu_w Nu

[m] [K] K [-] Uncertainty

2_Top 0.38 317.99 306.69 40.84 36.19 3.32

2_Right 0.38 316.14 40.84 80.70 7.68

2_Bottom 0.38 315.19 40.84 99.07 9.62

2_Left 0.38 316.14 40.84 80.68 7.67

3_Top 0.48 319.94 307.01 50.84 29.50 2.61

3_Right 0.48 317.93 50.84 63.46 5.92

3_Bottom 0.48 315.92 50.84 112.45 10.76

3_Left 0.48 317.93 50.84 63.45 5.91

4_Top 0.57 320.03 307.36 60.84 39.23 3.47

4_Right 0.57 318.67 60.84 63.35 5.81

4_Bottom 0.57 317.31 60.84 93.98 8.86

4_Left 0.57 318.67 60.84 63.28 5.74

5_top 0.67 320.78 307.75 70.84 42.89 3.74

5_right 0.67 319.70 70.84 60.64 5.43

5_Bottom 0.67 318.46 70.84 88.30 8.04

5_Left 0.67 319.70 70.84 60.60 5.39

6_Top 0.76 322.27 308.18 80.84 30.06 2.56

6_Right 0.76 320.30 80.84 66.93 5.89

6_Bottom 0.76 318.93 80.84 92.47 8.34

6_Left 0.76 320.30 80.84 66.84 5.80

7_Top 0.85 323.25 308.64 90.84 38.65 3.23

7_Right 0.85 322.03 90.84 56.01 4.85

7_Bottom 0.85 320.43 90.84 90.04 7.90

7_Left 0.85 322.03 90.84 55.92 4.78

Inlet bulk T 32.59951 [deg C]

Inlet Pressure 74.83526 [bar]

Reynolds # 21081

Ambient T 23.5 [deg C]

Heat Flux 2.72 [kW/m^2]

Position x T_Int T_Bulk x/D Nu_w Nu

[m] [K] K [-] Uncertainty

2_Top 0.38 330.24 307.46 40.84 35.84 2.70

2_Right 0.38 326.69 40.84 82.83 6.56
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Figure 5.14: Variation in buoyancy parameters with heat flux at bottom wall
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Effects of inlet temperature variation

Previous cases with varying mass flux and heat flux are performed close to critical

pressure and at temperatures closer to but slightly higher than pseudocritical tempera-

ture. To investigate effects of buoyancy away from pseudocritical region, five different

tests as listed in Table 5.4 are performed with increasing inlet temperature. Effects of in-

creasing temperature is best seen in variation of difference between wall temperature and

bulk temperature (Figure 5.15) and variation of density difference between wall locations

and bulk (Figure 5.16). For both of these parameters, as temperature moves away from

pseudocritical temperature, the difference decreases. This indicates effects of buoyancy

decrease away from pseudocritical temperature.

Table 5.4: Testing conditions for varying inlet temperature cases with constant mass flux
of 50 kg/m2s and constant heat flux of 4.9 kW/m2

Case Tbulk,in Pin Tpsc @Pin Re

[oC] [bar] [oC]

Tin1 30.2 74.88 31.7 9526
Tin2 34.7 74.8 31.6 21667
Tin3 44 74.41 31.4 23857
Tin4 54.5 74.38 31.4 24570
Tin5 60.2 74.59 31.5 24139

Similar conclusion can also be drawn from variation of buoyancy parameters Buj

and Ri, both of which decrease in value drastically away from pseudocritical temperature.

This is shown in Figure 5.17. It is important to note that scale on Y axis for these plots is

logarithmic highlighting drastic decrease in parameter values away from pseudocritical

point.
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Buoyancy parameters

Richardson number, Ri and Jackson buoyancy parameters Buj are plotted along-

side variation of normalized Nusselt number for all cases. Since both parameters include

wall as well as bulk properties as shown in Equations 5.7 and 5.8, different wall loca-

tions have different values for these parameters. Thresholds of Ri and Buj appear to be

applicable to determine the presence of buoyancy effects.

For varying mass flux cases, both buoyancy parameters are also observed to de-

crease with increase in mass flux at all wall locations. This is mainly because with increase

of mass flux, forced convection overpowers natural convection. This is in agreement with

the trend observed in Figure 5.8 which shows effects of buoyancy decrease with mass

flux.

For increasing heat flux with constant mass flux, it is expected that natural con-

vection become more effective while forced convection remains same. This is observed in

heat transfer as shown in Figure 5.12 where the difference between bottom wall Nusselt

number and top wall Nusselt number increases with increasing heat flux. However, both

buoyancy parameters are observed to decrease with increase in heat flux as seen in Fig-

ure 5.14 and Figure 5.13. Similar disagreement in case of these two buoyancy parameter

variation with heat flux is also reported by Kim et. al. [22] and Tanimizu & Sadr [33].

For varying bulk inlet temperature, highest value of buoyancy parameters are ob-

served for Tin1 case where Tbulk ≈ < Tpcs as shown in Figure 5.17. For Tin1 case, the

values of buoyancy parameters are significantly higher than rest of the cases. It can be es-

timated that at temperatures further away from pseudocritical temperatures, the values

of buoyancy parameters will continue to decrease below threshold criterion for buoyancy.
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Supercritical CO2 heat transfer correlations

Table 5.5 lists previous studies with heat transfer correlations developed for either

supercritical CO2 or water in heating mode. Majority of the studies include heat transfer

in vertical flow orientation with exception of Liao & Zhao [61] and Guo et al. [62]. Corre-

lations given by Krasnoshchekov & Protopopov [63] and Krasnoshchekov [64] are in the

form of Gnielinski correlation whereas all other correlations are derived form of Dittus-

Boelter correlation. Range for ratio of heat flux to mass flux for this study is 35-240 J/kg.

However, for this study, actual values of heat flux and mass flux are considerably lower

than the studies listed in Table 5.5. For comparison, a total of 312 experimental Nusselt

numbers are compared with Nusselt numbers calculated using correlations listed in Ta-

ble 5.5. These 312 experimental Nusselt numbers include Nusselt numbers at all four wall

locations: top, left, bottom and right. Nusselt number from correlations mainly require

bulk flow properties. however, whenever required, wall properties are used according

to the corresponding circumferential location. Below are the various correlations that are

used here:

• Krasnoshchekov–Protopopov [63]

Nub =
(f/8)RebPrb

1.07 + 12.7
√

(f/8)(Pr
2/3
b − 1)

(

µw

µb

)

−0.11 (
λw

λb

)0.33 (
cp
cp,b

)0.35

(5.10)

where,

f = (1.82logReb − 1.64)−2
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• Krasnoshchekov [64]

Nub =
(f/8)RebPrb

1.07 + 12.7
√

(f/8)(Pr
2/3
b − 1)

(

ρw
ρb

)0.3 (
cp
cp,b

)n

(5.11)

where n =































0.4 for Tb < Tw < Tpc or 1.2Tpc < Tb < Tw

0.4 + 0.2(Tw/Tpc − 1) for Tb < Tpc < Tw

0.4 + 0.2(Tw/Tpc − 1)[1− 5(Tb/Tpc − 1)] for Tpc < Tb < 1.2Tpc

• Jackson–Fewster [65]

Nub = 0.0183Re0.82b Pr
0.5

b

(

ρw
ρb

)0.3

(5.12)

• Jackson [66]

Nub = 0.0183Re0.82b Pr0.5b

(

ρw
ρb

)0.3(
cp
cp,b

)n

(5.13)

where n is the same as correlation by Krasnoshchekov in Equation 5.11.

• Liao–Zhao [61]

Nub = 0.124Re0.8b Pr0.4b

(

Gr

Re2b

)0.203 (
ρw
ρb

)0.842 (
cp
cp,b

)0.384

(5.14)

where,

Gr =
(ρb − ρw)ρbgd

3
i

µ2
b
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• Mokry et al. [67]

Nub = 0.0121Re0.86b Pr
0.23

b

(

ρw
ρb

)0.59

(5.15)

• Gupta et al. [19]

Nub = 0.01Re0.89b Pr
0.14

b

(

ρw
ρb

)0.93 (
λw

λb

)0.22 (
µw

µb

)

−1.13

(5.16)

• Kim et al. [68]

Nub = 0.0182Re0.824b Pr
0.515

b

(

ρw
ρb

)0.299

(5.17)

• Bae–Kim [69]

Nub = 0.021Re0.82b Pr0.5b

(

ρw
ρb

)0.3 (
cp
cp,b

)n

f(Bu) (5.18)

where,

Bu =
Grb

Re2.7b Pr
0.5

b
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where f(Bu) =































































(1 + 108Bu)−0.032 when 5× 10−8 < Bu < 7× 10−7

0.0185Bu−0.43465 when 7× 10−7 < Bu < 1× 10−6

0.75 when 1× 10−6 < Bu < 1× 10−5

0.0119Bu−0.36 when 1× 10−5 < Bu < 3× 10−5

32.4Bu0.4 when 3× 10−5 < Bu < 1× 10−4

• Kim–Kim [70]

Nub = 0.226Re1.174b Pr1.057b

(

ρw
ρb

)0.571 (
cp
cp,b

)1.032

Ac0.489Bu0.0021 (5.19)

where,

Ac =
qβb

Gcp,bRe0.625b

(

ρw
ρb

)0.5 (
µw

µb

)

where,

Bu =
Gr

Re3.425b Pr0.8b

(

ρw
ρb

)0.5 (
µw

µb

)

• Liu et al. [71]
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Nub = 0.00075Re0.93b Pr
0.68

b

(

ρw
ρb

)0.42

exp(Ac0.079)exp(Bu−0.023)[1 + 2.63/(L/di)] (5.20)

where,

Ac =
4qβb

Gcp,bRe0.625b

(

ρw
ρb

)

−0.5 (
µw

µb

)

where,

Bu =
Gr

Re2.625b Pr0.4w

(

ρw
ρb

)

−0.5 (
µw

µb

)

• Guo [62]

Nub = 0.114Re0.589b Pr
0.465

b

(

Gr

Re2b

)

−0.125 (
ρw
ρb

)0.240(
cp
cp,b

)0.096

(5.21)
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Discrepancies among available heat transfer correlations

Before comparing experimental Nusselt number from this study to Nusselt num-

ber obtained from available correlations, it is important to investigate how do Nusselt

numbers calculated from these correlations compare among themselves. Correlations

given by studies listed in Table 5.5 vary based on different parameters used and expo-

nents of wall-to-bulk property ratios. In addition to that, these studies were performed

at different testing conditions. All of this results in disagreement among Nusselt number

obtained from their correlations.

For this purpose, most recent correlation given by Gou et al. [62] is compared with

four other correlations given by Jackson [66], Liao & Zhao [61], Gupta et al. [19] and Bae

& Kim [69]. Difference in Nusselt numbers is plotted against ratio of bulk temperature to

pseudocritical temperature in Figures 5.18 and 5.19 as follows:

Numodel −NuGuo

NuGuo

× 100% (5.22)

Figures 5.18 and 5.19 show large disagreement among the different correlations.

In fact, Guo et al. [62] themselves have reported similar disagreement. There can be a

few reasons behind the agreement: (1) The parameters used in these correlations may not

be enough to represent the full physics and additional parameters may be necessary. (2)

Heat transfer coefficient is a local similarity variable that is the constant of proportionality

between local heat flux and local driving temperature difference. Majority of the correla-

tions are developed based on a global individual averages of heat flux, wall temperature

and fluid bulk temperature, which is not consistent with the Newton’s law of cooling.

With this in mind, following subsection discusses comparison of experimental Nusselt

number from this study with Nusselt number calculated from available correlations.
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Figure 5.18: Discrepancies among available sCO2 correlations
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Figure 5.19: Continued- Discrepancies among available sCO2 correlations
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Comparison of experimental data to available heat transfer correlations

Error in calcualted Nusselt numbers from correlations and from experiments are

plotted against ratio of bulk temperature to pseudocritical temperature. These plots are

shown in Figure 5.20, 5.21, 5.22, 5.23, 5.24 and 5.25. From the results, it can be seen that

available correlations cannot well predict the heat transfer for low heat flux and low mass

flux conditions used in this study. Most of the over-prediction of heat transfer occurs

very close to pseudocritical temperature compared to away from pseudocritical temper-

ature. Under-prediction and over-prediction of heat transfer is closely related to the test-

ing conditions such as mass flux and heat flux; specifically ratio of heat flux to mass flux.

Correlations which are developed using studies with lower value of this ratio, tend to

over-predict heat transfer and vice versa. For current study, range for ratio of heat flux to

mass flux is 35-240 J/kg. Study by Liao & Zhao [61] is one of first to include Richardson

number (Gr/Re2) as a correction term for horizontal flows. They reported increased heat

transfer near pseudocritical temperature for horizontal flows. Correlations given by Liao

& Zhao with (q/G)max of 3.1 J/kg, over-predicts heat transfer for most of the cases. Cor-

relations given by Liu et al. [71] and Guo et al. [62] with (q/G)max of 1125 J/kg and 1013

J/kg, respectively, under-predicts heat transfer for most of the cases.

All of the correlations discussed here include some form of ratio of wall to bulk

properties with exponent based on experimental results. Values of these exponents de-

pend highly on testing conditions such as pipe diameter, mass flux and heat flux. This

means that all of the correlations are very sensitive to their respective testing conditions.

One correlation alone may not be able to predict heat transfer accurately all the time.

At least close to the critical point where property variations are significant, a possible

solution to this dilemma is to develop multiple correlations for different regimes of pipe

sizes, heat flux and mass flux.
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Figure 5.20: Error in predicting Nusselt number from available sCO2 correlations
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Figure 5.21: Continued- Error in predicting Nusselt number from available sCO2 correla-
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Figure 5.22: Continued- Error in predicting Nusselt number from available sCO2 correla-
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Figure 5.23: Continued- Error in predicting Nusselt number from available sCO2 correla-
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Figure 5.24: Continued- Error in predicting Nusselt number from available sCO2 correla-
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Figure 5.25: Continued- Error in predicting Nusselt number from available sCO2 correla-

tions
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CHAPTER 6: CONCLUSIONS

Heat transfer experiments are performed to investigate effects of different testing

conditions for supercritical CO2 (sCO2) flow in circular horizontal tube in heating mode.

Validation of the experimental setup has been carried out with high pressure air heat

transfer experiments. Nusselt number from air validation cases show good agreement

within 10% of conventional Dittus-Boelter and Gnielinski Nusselt numbers. For sCO2

experiments the region of interest was near critical point with pressure ≈ 74.5 bar with

varying testing conditions. Variable parameters studied here are inlet mass flux, heat flux

and bulk flow inlet temperature. To study the effects of each parameter, remaining two

parameters are kept constant. Below are the summarized conclusions.

• For all the cases studied, effects of buoyancy on heat transfer are apparent given

the difference in Nusselt number values between top, bottom and side wall. High-

est Nusselt numbers are observed at the bottom walls where upward convective

currents aid heat transfer.

• Nusselt numbers at the side wall were always in between Nusselt numbers at top

and bottom walls.

• Buoyancy effects increase with increase in heat flux and decrease in mass flux.

• Buoyancy effects start to disappear away from pseudocritical temperature.

• Richardson number and Jackson buoyancy parameter perform well as threshold

criterion for buoyancy but do not match with trend and magnitude of effects of

buoyancy.

• Performance of heat transfer correlations available in literature depends highly on

their original testing conditions. One correlation alone will not be able to predict
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heat transfer accurately. At least close to the critical point where property variations

are significant, different correlations for different regimes of pipe diameter, heat flux

and mass flux may provide possible solution for this problem.

Future work

Open loop experimental setup emphasized inability to test higher mass flux and

higher heat flux conditions. Future work will include include setup of closed loop ex-

perimental facility which will be able to span wide range of heat flux and mass flux.

Future work will also include performing systematic experiments with different testing

conditions such as pipe diameter, heat flux and mass flux. Based on such systematic ex-

periments, heat transfer correlations will be developed based on different regimes of pipe

diameter, heat flux and mass flux.
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APPENDIX A: ADDITIONAL TEST RESULTS
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