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ABSTRACT 

The high-pressure gas atomization is well known as one of the best powder 

manufacturing processes due to its controllability over powder size distribution. 

However, with the continuous improvement of new alloys, optimizing the operating 

parameters to maximize the yield is costly and time-consuming. Therefore, it is essential 

to understand the high-pressure gas atomization process and the effects of different 

operational parameters on the powder size distribution.  

 Two-phase numerical simulations are performed to capture the interfacial 

dynamic during the atomization process and to obtain the effects of gas pressure, melt 

flow rate, and thermophysical properties of atomizing gas and the molten metal. The 

Volume of Fluid (VOF) model is used to capture the melt-gas interface, and in-house 

post-processing code is developed to obtain the droplet size distributions. Three-

dimensional geometry of an annular-slit close-coupled gas atomizer is utilized to 

investigate the primary atomization process. The current grid resolution is sufficient for 

capturing primary atomization and some characteristics of the secondary atomization, but 

it is not adequate to capture all the length scales in secondary atomization. Qualitative 

comparisons of the cumulative volume graphs indicate that this numerical approach is 

capable of capturing the trends in the atomization process as in the experiments. It is 

found that a combination of several interfacial instabilities governs the atomization 

process. Simulations corresponding to different gas pressures show that the atomization 

characteristics remain unchanged irrespective of the gas pressure. However, it is found 

that the rate of the evolution and the effectiveness of the atomization process increases 
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with the gas pressure. Three melts (aluminum, steel, and an artificial material with 

intermediate thermophysical properties) are used to investigate the effects of the molten 

metal properties and found that the rate of the atomization process decreases with 

increasing melt density, and the yield of the atomized powder is seen to increase. The 

flow characteristics remain unchanged for all three melts. The melt flow is strongly 

correlated with flow characteristics and interfacial instability.  
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CHAPTER 1 - INTRODUCTION 

Demand for metal powder manufacturing has increased immensely within the last 

decade due to the continuously growing applications in rapid prototyping, injection 

molding, cold or hot isostatic pressing, powder forging, and additive manufacturing. 

Metal powder used in additive manufacturing is required to have precisely tailored metal 

powder with a specific size, shape, and morphology (Motaman, Mullis, Cochrane, & 

Borman, 2015). Annual worldwide metal powder production exceeds 700,000 tons, and 

the powder sizes ranging from 0.1-1000 micrometers. In addition to the common metals 

and alloys such as steel and aluminum, nickel and cobalt-based superalloys are also 

available in powder form. Many powder production methods have been developed over 

the years and tailored for different metals/alloys and applications. However, tailoring 

powder manufacturing processes to obtain a particular quality powder is not always 

economically feasible.  

Among many powder manufacturing methods, high-pressure gas atomization 

(Alan Lawley, 1978; Motaman et al., 2015) is considered as the most effective and 

energy-efficient method. It is a commercial metal powder manufacturing method, and it 

is known for its superior controllability over the powder size distribution (Anderson, 

White, & Dehoff, 2018; Motaman et al., 2015). In high-pressure gas atomization, 

pressurized gas is utilized to atomize the molten metal or the alloy. The kinetic energy 

transferring from the high-pressure gas to the molten metal stream deforms (Firmansyah 

et al., 2014) the melt stream into ligaments which then break up into droplets of size 

ranging from micron to millimeter. The surface tension forces tend to make these droplets 
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spherical, and the large temperature gradients across the melt-gas interface result in rapid 

solidification (Alan Lawley, 1978; Mates & Settles, 2005a). The timescales in which 

these forces take place vary, which determines the shape of the solidified powder. Since 

gases usually have relatively low thermal conductivity, the solidification process is 

relatively long. Therefore, the gas atomization process often produces spherical metal 

powder (Alan Lawley, 1978).  

The atomization process can be divided into two categories as primary and 

secondary atomization. Bulk liquid stream deforming into ligaments and large droplets 

are categorized as primary atomization in atomization literature. Secondary atomization 

occurs when these ligaments and droplets further breaking up into smaller droplets. 

Several studies have been performed to study these two breakup mechanisms (Kaiser, Li, 

Yang, & Lee, 2018; Mates & Settles, 2005b, 2005a; Motaman et al., 2015; Shinjo & 

Umemura, 2010, 2011a, 2011b; Umemura & Wakashima, 2002). Even though gas 

atomization is one of the widely used methods in industrial scale, higher operating cost is 

one of its most significant issues (Kaiser et al., 2018). Nitrogen is often used as the 

atomizing gas due to cost limitations. To obtain a higher solidification rate, some 

applications required to have more expensive atomization gases with higher heat transfer 

coefficient (Rai, Lavernia, & Grant, 1985) (i.e., argon). Therefore, it is necessary to 

optimize melt-gas interaction and understand how expanding gas affects the atomization 

process. Many studies have been performed considering different operating parameters 

and atomizer geometries to optimize the powder atomization process. Physics governing 

the secondary atomization process (Reitz & Diwakar, 1986, 1987; Sadhal, 2011; Zeoli & 
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Gu, 2008a) is extensively studied in using experimental, numerical, analytical 

approaches. However, the primary atomization process in high-pressure gas atomization 

has not been satisfactorily examined. Since primary atomization characteristics 

significantly vary with the operational and geometrical parameters, understanding the 

effects of these parameters on the primary atomization is crucial for optimization 

purposes (Shinjo & Umemura, 2010, 2011b). The primary purpose of current 

investigation is to fill this void by accurately capturing the two-phase flow phenomenon 

and obtaining trends in powder yield for different operational. 
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CHAPTER 2 – LITERATURE REVIEW 

This chapter provides an overview of previous research work on metal powder 

production methods followed by the experimental and numerical investigations 

performed on different gas atomization processes.  

Metal Powder Production Methods 

To date, many metal powder production methods have been developed, and the 

suitable method has been selected based on the metal/alloy, cost, and powder 

specifications required for the intended application. Lawley (Alan Lawley, 1978) divided 

the powder production process into four main categories, such as chemical, mechanical 

(Zhang, 2004), electrolytic (Basak, Krishnan, Kumar, Abdullah, & Anantharaman, 2014), 

and atomization (Metz, Machado, Houabes, Elkhatib, & Hassanzadeh, 2008). Figure 1 

shows the classification of metal powder production methods.  Chemical methods often 

use a metal compound and a reducing agent. Tungsten powder (Alan Lawley, 1978) is 

typically prepared by using ammonia or hydrogen as the reducing agent and managed to 

obtain powders in the range of 1-7   . Electrolytic methods use electrodeposition 

phenomenon to gather high-quality fine particles near electrodes. Particle sizes can be 

controlled by adjusting the physical properties of electrolytes, electrodes, and voltages. 

This method is extensively used for copper, beryllium, nickel, and tin powder production. 

High energy processes like ball, hammer, or roll mills are categorized under mechanical 

means. These methods are extensively used in flake powder production for the paint and 
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ink industry (iron, copper, etc…). In the atomization methods, molten metals or alloys go 

through a forced atomization process.  

This process can be further categorized as gas atomization, water atomization 

(Saeedipour, Schneiderbauer, Plohl, Brenn, & Pirker, 2017), gas-solid (two-phase 

atomization) (Si, Tang, Zhang, Wang, & Wu, 2017), and centrifugal atomization 

(Lagutkin, Achelis, Sheikhaliev, Uhlenwinkel, & Srivastava, 2004). Water atomization 

uses pressurized water jets to atomize the melt. Apart from the low energy efficiency, the 

process provides irregularly shaped powder often with rough oxidized surfaces. It is due 

to the higher thermal conductivity (i.e., the heat conductivity of the water is much higher 

than that of gases) and the active chemical interaction with the atomizing medium. In the 

gas-solid atomizer, high-pressure gas is mixed with solid particles to increase momentum 

of the continuous phase. The pressure-swirl gas atomization (Xing gang Li & Fritsching, 

2017) is a hybrid atomization method, which introduces a swirl at the melt inlet in 

addition to the high-pressure gases. The centrifugal forces acting on the melt stream 

facilitates creating liquid sheets, which then easily atomized using high-pressure gases.  

Chen et al. (Chen et al., 2018) investigated the production of Ti-6Al-4V powders 

obtained from gas atomization, plasma rotating electrode process, and plasma 

atomization. Micro-structure, porosity, and pore features are examined and found that the 

porosity and pore size of the powders highly depends on the powder size. The powder 

obtained from the gas atomization showed the highest porosity. 
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Figure 1 – Classification of metal powder production methods 
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High-Pressure Gas Atomization 

Figure 2 shows a schematic of the high-pressure gas atomization process. 

Initially, the metal or alloy must be heated above its melting temperature (i.e., alloys 

need to be heated above its liquidus temperature corresponding to the composition). 

Usually, melt superheats of 200 to 300 K is maintained to avoid solidification at the 

melt-tip, obstructing the melt flow. The molten melt is then poured into the crucible 

and let it flow into the atomizer under gravity. With a time delay, the high-pressure 

atomizing gas is introduced to the atomizer. It is a common practice in powder 

manufacturing industries to introduce the gas flow with a delay to reduce the melt 

backflow so that it will not clog the melt-tip.  

 

 

Figure 2 – Schematic of the high-pressure gas atomization process 

 

Once the pressurized atomizing gas introduced into the atomization chamber, 

it goes through a sudden expansion, gaining higher momentum. Also, the temperature 
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of the gas drops significantly, creating a steep temperature gradient across the melt-

gas interface. The melt-gas interaction initiates near the melt-tip. Initially, the melt 

stream is forced to deform, forming sheets and ligaments. These ligaments will 

eventually break up into smaller droplets, as shown in Figure 2. The length scales 

reduce from millimeter (length scale of the melt-tip) to micrometer scale. Heat and 

momentum transfer through the gas-melt interface facilitates the atomization process. 

The rate of interfacial transfer depends on the driving potential and the interfacial 

area. The cumulative interfacial area increases with the atomization process, 

facilitating more interfacial transport. These increments in the interfacial transport 

will increase the break-up process by several order of magnitudes (Fritshing & 

Uhlenwinkel, 2012). 

Different types of nozzle geometries are developed for high-pressure gas 

atomization. These geometries can be divided into two categories as confined (close-

coupled) atomizers and free fall atomizers, based on how the melt tube and gas 

nozzles are located (Fritshing & Uhlenwinkel, 2012; Motaman et al., 2015; Zeoli, 

Tabbara, & Gu, 2011). 

Figure 3 shows a schematic of these two types. Gas flow in the close-coupled 

atomizer directly interacts with the melt exiting from the melt tube, and in free fall 

atomizer, the melt flows freely under gravity for some distance before the gas jet 

impinges. Close-coupled atomizer usually provides much finer powder compared to 

free fall atomizers (Zeoli et al., 2011). However, close-coupled atomizers often suffer 

from “lick back problem.” (J.T, 2013). Having reverse melt flow near the melt tube 

due to positive aspiration pressure and solidifying near the melt tube tip is called the 

“lick back problem” (Motaman, Mullis, Cochrane, McCarthy, & Borman, 2013). 
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However, this lick back problem is critical only at the beginning of the operation, 

where the nozzle tip is not appropriately heated. Free-fall atomizers are less 

problematic than close-coupled atomizers as the melt tube exit, and the gas nozzles 

are well separated. 

 

 

Figure 3 – Basic atomizer geometries, a. Close-coupled atomizer b. Free-fall atomizer 

 

As shown in Figure 3b, the secondary nozzle is contributed to the main 

disintegration process due to the shear force acting on the melt stream.  Primary 

nozzles are used to create a co-flow to counteract the backflow resulting from the 

secondary nozzle flow (Fritshing & Uhlenwinkel, 2012). Primary and secondary gas 

pressures must be adjusted to obtain proper atomization. This complexity limits the 
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applicability of the free fall atomizer (Fritsching, 2004; Heck, Fritsching, & 

Bauckhage, 2000). 

 

 

Figure 4 – Gas inlet types, a. Annular-slit gas nozzle, b. Discrete gas nozzles 

 

The next subcategory of the gas atomizers is based on the geometry of the gas 

nozzle. They are annular-slit atomizers and discrete nozzle atomizers (Heck et al., 

2000). As the name implies, annular-slit atomizers have a continuous gas slot around 

the melt tube, as shown in Figure 4a. Discrete gas nozzle atomizers (Figure 4b) 

consist of a set of individual nozzles around the melt tube. These nozzles could be a 

constant diameter, purely convergent or convergent-divergent nozzles (for supersonic 

flow) (Motaman et al., 2015). The constant diameter and purely convergent nozzles 

will create a chocked flow, while convergent-divergent nozzles will permit controlled 

expansion with supersonic exit velocity. In a comparison of axisymmetric and non-

axisymmetric nozzle geometries (Miller, Miller, Mourer, & Christensen, 1997), non-

axisymmetric nozzle geometries are provided finer yield compared to axisymmetric 
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geometries. However, most of the numerical work is based on annular slit atomizers 

due to the simplicity of the geometry (Zeoli et al., 2011).  

Experimental Studies 

The first investigation on gas atomization for metal powder production 

conducted by S. Thompson in 1948 (Thompson, 1948). He used a close-coupled gas 

atomizer to study the effect of gas pressure, melt temperature, and melt flow rate on 

powder size distribution. Ayers and Anderson (Ayers, J.D., Anderson, 1985) studied 

the impact on stagnation pressure on powder sizes. They obtained the best yield when 

the static pressure at the melt inlet is minimized. Unal (Unal, 1987) studied the 

atomization process of an aluminum alloy for different atomizing gases. He used 

helium, nitrogen, and argon as the atomizing gas and studied various combinations of 

stagnation pressures, gas to melt flow rate ratios, and melt superheat temperatures. He 

observed a slight variation in powder size distribution when the melt temperature is 

increased above 1100 K (for Al alloy). This is due to the temperature dependence of 

melt viscosity and surface tension. Helium provided the finest powder distribution, 

and the powder sizes increased with increasing gas density (argon provided the 

coarsest powder distribution). He correlated the mean diameter of the powder 

distribution to be directly proportional to the square root of the melt flow rate. In a 

subsequent study, Unal (Ünal, 1989) utilized Schlieren images to study the supersonic 

flow characteristics in gas-only flow in a close-coupled gas atomizer. Miller et al. 

(Miller et al., 1997) studied the influence of axisymmetric and non-axisymmetric gas 

nozzle geometries and found that non-axisymmetric nozzles provide a better yield of 

finer powder. Strauss (J. T. Strauss, 1999) used preheated gas to increase the gas 
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momentum without raising the gas pressure and managed to reduce the mean diameter 

of the powder distribution. However, the lower limit of the diameter range remained 

unchanged irrespective of the gas temperature. Preheating the atomizing gas also 

reduces the operation cost as it lowers the gas consumption. In a subsequent study (J. 

Strauss, 2000), he introduced a new parameter,  the normalized gas energy rate, which 

correlates well with the mean diameter at a wide range of operating conditions. The 

normalized gas energy rate is defined as the ratio between gas kinetic energy and melt 

mass flow rate. 

Open and closed wake condition is another operating condition that has been 

studied extensively. Closed wake occurs, when a flow circulation region below the 

melt-tip is independent of the surrounding flow structures. It is due to a normal shock 

that appears around this flow region. This normal shock, also called Mach disk, is 

acting as a shield isolating it from the surrounding. Ting et al. (Ting, Peretti, & Eisen, 

2002) studied this phenomenon to investigate its effect on powder yield. The wake-

closure pressure was obtained for that specific atomizer geometry. Closed wake 

condition is found to be a favorable condition to get finer yield as the interaction 

between the Mach disk, and the melt stream creates pulsating characteristics in the 

melt stream.  

Mates et al. (Mates, S.P., Ridder, S.D., Biancaniello, 2000) studied four 

different gas nozzle geometries (three with discrete gas nozzles and one with annular-

slit gas nozzle – all gas nozzles had a converging area) to obtain the relationship 

between geometry, supersonic jet length, and dynamic pressure. Long supersonic jets 

and large dynamic pressures are found to be favorable to improve the melt-gas 

interaction. A comprehensive overview of the close-coupled gas atomizer with 
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converging and converging and diverging gas nozzles was presented by Mates and 

Settles (Mates & Settles, 2005a, 2005b). Using microsecond exposure Schlieren 

images, it is found that the primary breakup occurs within three to four melt nozzle 

diameters (Motaman et al., 2015) and secondary breakup up to ten melt nozzle 

diameters (Mates & Settles, 2005a, 2005b) in the axial direction. The supersonic 

shock structures were immensely affected by the presence of melt interfaces.  

Anderson et al. (Anderson et al., 2018) provided a summary of the research 

needs in processing feedstock metal powder for the development of additive 

manufacturing. The importance of the gas atomizer nozzles and spray chamber 

designs to improve the yield, while minimizing the satellite formation and powder 

porosity. As the optimum powder sizes for the most additive manufacturing process 

are limited to a very narrow diameter range, less than 20% of the total powder yield 

can be utilized as feedstock material. 

Numerical Investigations 

Espina et al. (Espina, P.E., Ridder, S.D., Biancaniello, F.S., Mattingly, 1989) 

used the method of characteristics (MOC) to solve for the two-dimensional shock 

wave structures. MOC is a powerful compressible flow analysis approach, and it is 

capable of estimating the shock wave characteristics with the inviscid flow 

assumption.  

With the development of the computational facilities and advancement of the 

computational fluid dynamics (CFD) techniques, computational fluid dynamic tools 

have been extensively utilized to study the high-pressure gas atomization process. 

CFD studies on high-pressure gas atomization can be divided into three categories 
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considering the numerical approach. The first category is the gas-only, single-phase 

simulations (Allimant, Planche, Bailly, Dembinski, & Coddet, 2009; Aydin & Unal, 

2011; Mi, Figliola, & Anderson, 1997; Motaman et al., 2015; Tong & Browne, 2009). 

These CFD simulations were mainly utilized to study the effect of gas nozzle 

geometry, melt tube geometry, and atomizing gas properties on the shock wave 

characteristics. Piomelli (Piomelli, 1992) performed a gas-only CFD simulation to 

study the effect of stagnation pressure, turbulence, and taper angle on shock wave 

structures using different close-coupled atomizer designs. Figliola and Anderson 

(Figliola, R.S., Anderson, 1993) obtained velocity and pressure values from the gas-

only simulations and introduced discrete Lagrangian particles to find the path of the 

individual particle in two-dimension axisymmetric computational geometry.  

Mi et al. (Mi, J., Figliola, R.S., Anderson, 1996; Mi et al., 1997) conducted 

several gas-only simulations to study the effect of stagnation pressure, protrusion 

length, and the melt-tip geometrical conditions on the gas flow field using an annular, 

convergent-slit gas nozzle with a taper angle of 45 . Simulations were conducted in 

two-dimensional computational geometry and     method used to model the 

turbulence. They found that the Mach disk moves axially downward with increasing 

stagnation pressure. They also found that the long protrusion lengths limit the filming 

mechanism, while the short protrusion lengths destabilize the process. Ting et al. 

(Ting, J, Anderson, 2004) conducted a CFD investigation to study the effect of gas 

pressure on the recirculation zone and the presence of secondary circulation zone 

below the Mach disk. Six gas pressures varying from 0.69 to 7.58 MPa were used for 

this particular study. Authors hypothesized that in the presence of melt in the 

atomizer, the Mach disk would disappear, creating pulsating behavior confirming the 
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previously reported observations (Lubanska H, 1970). They found that the aspiration 

pressure decreases with increasing operating pressure at open wake condition, and 

aspiration pressure increases with operating pressure at closed wake condition. Tong 

and Browne (Tong & Browne, 2009) compared annular-slit and discrete gas nozzles 

using compressible, gas-only CFD simulations and observed distinct characteristics of 

the gas flow structures near the melt-tip.  

The second CFD simulation type is two-phase flow based on the Eulerian-

Lagrangian approach. In the Eulerian-Lagrangian approach (E-L), gas (the continuous 

phase) flow is simulated using the Eulerian method and the discrete, melt flow is 

simulated using Lagrangian formulation. The coupling between the two phases are 

obtained by force and energy balance (if heat transfer is considered). The secondary 

breakup of the droplets is modeled using empirical and semi-empirical breakup 

models. The first simulation in the E-L approach was conducted by Kuntz and Payne  

(Kuntz, D.W., Payne, 1995). A two-dimensional computational mesh of a close-

coupled gas atomizer was considered for the simulation. It should be noted that the 

melt and gas flow dynamics were decoupled (momentum and energy transfer is only 

limited to one direction from gas flow to melt droplets), and the obtained gas 

velocities were used to break up the melt droplets. Grant et al. (Grant, Cantor, & 

Katgerman, 1993b, 1993a) studied the inflight dynamics and thermal history of the 

melt droplets. It is found that droplet diameter, droplet distribution (other droplets), 

and the gas momentum transfer significantly affect the path of the individual droplet.  

Hattel et al. (Hattel, Pryds, Thorborg, & Ottosen, 1999; Pryds, Hattel, & 

Thorborg, 1999) developed a mathematical model to study the inflight cooling and 

solidification of melt droplets by using the energy balance between continuous and 
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discrete phases. The inflight heat transfer models were divided into four categories as 

liquid cooling, undercooling, solidification, and solid cooling. Multiple droplets with 

different sizes were introduced at prespecified locations to initiate the Lagrangian 

particles. Breakup models were not included in this study. Three different atomizing 

gases were used and found that argon provides the best solidification rate. It was 

found that the bigger droplets move a much longer distance in the axial direction 

before it solidifies entirely. Also, the higher melt-gas ratios found to be pushing the 

solidification location further downstream.  

Zeoli et al. (Zeoli & Gu, 2008b) proposed an isentropic plug nozzle to 

improve the melt-gas interaction. They reported that conventional annular-slit nozzles 

consume a significant amount of energy for the sudden expansion of the atomizing 

gas. In the proposed method, the gas expansion occurs isentropically; hence, the 

energy transferring to the melt phase can be improved. Significant improvement in 

gas dynamics and the powder yield was observed in the proposed isentropic plug 

design on the contrary to the conventional annular-slit design. In a subsequent study, 

Zeoli et al. (Zeoli & Gu, 2008a) combined the secondary breakup models and droplet 

cooling and solidification models to study different aspects of the atomization 

process. Undercooling, recalescence, peritectic, and segregated solidification models 

were included. The thermal history of the individual droplets was deeply correlated 

with the initial droplet diameter. Firmansyah et al. (Firmansyah et al., 2014) studied 

the two-way coupling between gas and droplet using E-L formulation. 1-5  m 

diameter droplets were used to initiate the simulation, and their interaction with the 

supersonic flow structures was investigated. It is found that the presence of the melt in 

the gas flow changed the flow patterns significantly, resulting bimodal distribution in 
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mass size distribution. Thompson et al. (Thompson, Hassan, Rolland, Sienz, & LSN 

Diffusion Ltd, 2016) compared three breakup models (Kelvin Helmholtz model, 

Kelvin Helmholtz Rayleigh transport model, and Taylor analogy break-up (TAB) 

model) and found that Kelvin Helmholtz Rayleigh transport model is more suitable 

for the high-pressure gas atomization simulations. The simulations used an 

axisymmetric computational geometry, and discrete particle model with two-way 

coupling was utilized to study the breakup dynamics. Xinggang et al. (X Li, Sander, 

& Ellendt, 2013) implemented a complicated three-phase atomization approach, 

where the gas flow was modeled using Eulerian approach, and the metal and ceramic 

powder were modeled using Lagrangian method. A mixture of high-pressure gases 

and ceramic powder was used to atomize the molten metal. Interaction between gas-

melt and melt-ceramic powder were investigated in detail.  

The third CFD type is two-phase, Eulerian-Eulerian (E-E) type simulations, 

where both phases are simulated using the Eulerian approach. More information on 

these types of methods will be discussed in the subsequent sections. Conducting E-E 

type simulations are computationally expensive and numerically complicated. 

However, it is essential to understand the physics behind the primary atomization as 

both thermal and hydrodynamic aspects of the droplet breakup are severely correlated 

with the initial droplet size, droplet distribution, and the initial droplet location. 

Unlike the Eulerian-Lagrangian method, Eulerian-Eulerian methods solve for the 

interface; hence, they are capable of capturing the physics-based breakup process 

without using any empirical or semi-empirical models. In E-L methods, the common 

practice is to initiate the simulation with a given droplet distribution. However, it is 

impossible to obtain a realistic initial droplet distribution without accurately modeling 
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the primary atomization process. Therefore, it is often initiated with a random 

distribution or constant diameter droplets near the melt-tip. Thus, the E-E techniques 

are superior to the E-L formulations.  

Tong and Browne (Tong & Browne, 2008) conducted the first E-E simulation 

in high-pressure gas atomization for metal powder production; the Front-tracking 

method was utilized to differentiate two-phases. Both phases were assumed to be 

incompressible, and to simplify the computational complications; only a two-

dimensional computational geometry was used. The importance of the melt-gas 

interaction towards the gas flow and the atomization process were discussed. In a 

subsequent study, Tong and Browne (Tong & Browne, 2009) studied the influence of 

aspiration pressure in the presence of molten metal. They added the physics of gas 

compressibility and studied its interaction with the weakly compressible melt phase. 

They reported the significance of using compressible gas flow by comparing the 

incompressible and compressible simulations.  

Zeoli et al. (Zeoli et al., 2011) conducted a three-dimensional, Volume of 

Fluid (VOF) based CFD investigation to study the primary atomization process. 

Reynolds Stress Model was utilized to capture the turbulence effects. Three nozzles 

types (a conventional annular-slit nozzle, swirling gas atomizer, and an inner jet gas 

atomizer) were considered for this investigation. It was found that the inner jet gas 

atomizer provides the best powder yield among the other nozzles and swirling gas 

nozzle does not provide an additional improvement over the conventional annular-slit 

nozzle. In a subsequent study, Zeoli et al. (Zeoli, Tabbara, & Gu, 2012) conducted 

several simulations to obtain the melt dynamics. Three modes of melt characteristics 
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for different gas to melt flow rate ratios were identified. They referred these modes as 

nozzle filming, mixed filming, and pinch off and no-filming conditions.  

Hernandez et al. (Hernandez, F; Riedemann, T; Tiarks, J; Kong, B; Regele, 

J.D; Ward, T; Anderson, 2019) used a 5-equation compressible flow model coupled 

with the VOF model to study the close-coupled gas atomizer. In their preliminary 

results, they compared their gas-only results with the existing literature and validated 

the compressible flow approach. Then, they conducted the E-E, two-phase flow 

simulations to study the jetting and filming of the melt stream. However, as they 

pointed out, the computational grid resolution used in their numerical investigation is 

not fine enough to capture the droplet size distribution.  

Eulerian – Eulerian Numerical Methods for Interfacial Flows 

This section describes the main Eulerian-Eulerian numerical simulations that 

are being utilized to simulate interfacial flows. 

 

 

Figure 5 – Volume of Fluid (VOF) and Level Set (LS) approaches 
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Figure 5 shows a schematic of the VOF approach (Hirt & Nichols, 1981), and 

LS (Osher & Sethian, 1988; Sussman, 1994) approaches. In the VOF method, the 

volume fraction is utilized to obtain the amount of liquid (discrete phase) in each 

computational node. The volume fraction is defined as the ratio between the liquid 

volume and the cell volume. Therefore, the volume fraction has values within 0 and 1; 

one represents the liquid phase, and the zero represents the gas phase. The 

intermediate values represent the interfacial cells. The thermophysical properties are 

defined based on the volume fraction and have jump conditions at the interface. The 

main drawback of this method is the representation of the interface. More information 

on this method will be provided in the next chapter. 

 In the Level-set method, the interface is captured using the signed distance 

function. As the name implies, the distance function represents the shortest, normal 

distance to the interface (Figure 5). The value becomes either positive or negative 

based on the phase it locates. The convention is to have positive values in the liquid 

phase and negative values in the gas phase. The value zero represents the interface 

location. Therefore, it provides a smooth interface, unlike in the VOF method. Thus, 

the surface tension implementation (applying jump conditions at the interface) in the 

LS method is more accurate. However, the VOF method has better mass conservation 

than the LS method.  

To mitigate these drawbacks and enhance the advantages of each method, 

Bourlioux (Bourlioux, 1995) proposed a hybrid method with a coupling between VOF 

and LS methods. Different implementations are being proposed to improve these 

hybrid methods in terms of accuracy and computational requirement (Albadawi, 
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Donoghue, Robinson, Murray, & Delauré, 2013; Haghshenas, Wilson, & Kumar, 

2017; Sussman & Puckett, 2000).  

Numerical Challenges in Atomization Simulations 

The main challenge in the atomization simulations is the high grid resolution 

required to capture both primary and secondary atomization process. Many studies 

have reported the presence of artificial or fake droplets when the grid resolution is not 

enough to capture the interfacial dynamics (Gorokhovski & Herrmann, 2008; Shinjo 

& Umemura, 2010). They reported that the error of having artificial droplets could 

only be minimized by increasing the grid resolution. However, it is not possible to 

eliminate it.  

Several empirical criteria are reported in the literature to estimate the required 

grid density (Desjardins, Moureau, & Pitsch, 2008; Hasslberger, Ketterl, Klein, & 

Chakraborty, 2019). The often-utilized empirical criterion is to have at least ten grid 

points along the smallest length scale of the droplet or the ligament.  

Shinjo and Umemura (Shinjo & Umemura, 2010) used a criterion that ensures 

the order of the local aerodynamic Weber number is in the order of  ( ). This 

condition is adopted from the previously reported critical Weber number condition. 

This was first reported in 1931 by Weber (Weber, 1931). If a droplet or a ligament has 

a Weber number that is greater than the critical Weber number, this droplet or the 

ligament has the possibility of disintegrating into much smaller droplets. The value of 

the critical Weber number is about ten (Choudhury, 2015; Davanlou, Lee, Basu, & 

Kumar, 2015; Hanson, Domich, & Adams, 1963; Saha, Lee, Basu, & Kumar, 2012) 

however, the value is smaller for highly turbulent flows (Hinze, 1955). However, a 
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trial and error approach has to be followed as the local velocities cannot be accurately 

estimated beforehand. They investigated the effect of these artificial droplets and 

found that the breakup process is not altered due to the presence of artificial droplets; 

however, the speed of the instability growth is found to be slightly affected.  

 Hasslberger et al. (Hasslberger et al., 2019) utilized the Kolmogorov length 

scale (Davies & Batchelor, 1954) to calculate the grid spacing to investigate flow 

topologies in primary atomization. The Kolmogorov scale is the smallest dissipative 

length scale that has to be resolved for Direct Numerical Simulation. However, they 

have reported that this criterion is not sufficient for two-phase flow simulations due to 

the cascade nature of the atomization process. However, a universal approach to 

calculate the required grid resolution has not been found so far. Herrmann (Herrmann, 

2011) and Ling et al. (Ling, Fuster, Zaleski, & Tryggvason, 2017) argued that it is not 

possible to obtain the grid independent solution for aspects like droplet size 

distribution. 
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CHAPTER 3 – NUMERICAL MODEL AND CASE SETUP 

This chapter provides the governing equations for the immiscible two-phase 

(Eulerian-Eulerian) system to simulate the high-pressure gas atomization process. 

Assumptions used in these simulations will be explained, and finally, the numerical 

case setup will be described in detail. OpenFOAM software (H. G. Weller, Tabor, 

Jasak, & Fureby, 1998) is used to simulate the atomization process. OpenFOAM is a 

robust, finite volume method based opensource software that provides a user-

modifiable platform to implement new solvers.  

Assumptions and Simplifications in the Simulations 

Ideally, the numerical simulations of the gas atomization process should be 

able to capture all the length scales in the atomization process. Additionally, they 

need to capture the shock wave structures, their interaction with the breakup process, 

and heat transfer and solidification of the droplets. Due to the rapid cooling process, 

thermophysical properties of melt and gas phases vary as a function of temperature. 

However, several assumptions had to be made to simplify the computational 

complexity in terms of numerical and computational power limitations.  

The first factor is the computational geometry and grid resolution. Since the 

atomization process deals with many length scales (size of the atomizer is in meter 

scale, melt diameter is in millimeter scale, and the secondary atomized droplets are in 

micron or submicron length scale), it is computationally impossible to capture all 

these length scales. Therefore, the computational geometry is reduced to a cylindrical 

geometry with 100 mm in the axial direction and 25 mm in radial direction. (more 

information on the atomization geometry will be provided in the subsequent section). 
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Only a 90  wedge in the cylindrical geometry is utilized for the computational 

simulations to further reduce the computational power requirement while preserving 

the three-dimensional nature of the atomization process. As discussed in the previous 

Chapter, a universal criterion to estimate the required grid resolution for atomization 

simulations is not developed so far. According to the empirical relationship often 

utilized in literature, to numerically capture the breakup of a 100  m droplet, it is 

required to have a grid with at least 10  m. Similar grid resolution for the current 

computational geometry will result 50 – 100 billion computational nodes, which is not 

possible to handle using the current state of the art computational facilities. As the 

scope of the present investigation is to guide the powder manufacturing industries to 

optimize their atomization process, it is required to develop a practically feasible, but 

adequate grid resolution to capture key characteristics of the primary and secondary 

atomization process. Therefore, strategically placed additional grid refinements are 

imposed in the areas where melt-gas interactions occur.  

 Since the gas atomization process usually required higher gas pressures to 

atomize the high-density melt stream, it is inevitable to have supersonic flow 

structures inside the atomization chamber. Capturing these shock structures in single-

phase CFD simulations required additional care on the stability conditions as well as 

careful consideration of differencing schemes. Shock waves create infinite gradients, 

and it is necessary to use „upwinding‟ type interpolation and gradient schemes to 

capture it accurately.  

Two-phase simulations create additional complications due to melt-gas 

interactions. In the gas atomization simulations, the melt-gas interface acts as a solid 

wall due to the high-density ratio (i.e., for aluminum and nitrogen, the density ratio is 
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around 2400). In the presence of multiple ligaments and droplets, capturing such 

reflection waves further complicates the numerical approach, even with „upwinding‟ 

type differencing schemes. In literature, there are few two-phase flow CFD 

investigations (Tong & Browne, 2009; Zeoli et al., 2012) that discuss the shock wave 

structures. However, they utilized a relatively coarser grid resolution, hence the error 

of calculating gradients can be minimized. Further, due to the coarse grid resolution, 

only the central liquid core and few other droplets are captured. Therefore, the 

complications due to multiple reflection waves were also minimized. The present 

study assumes the gas flow to be incompressible, even though it is a crucial factor in 

the high-pressure gas atomization process. This simplification is made primarily as it 

is essential to have a higher grid resolution to capture the atomization process and to 

obtain the droplet size distributions. The numerical complications would be 

unavoidable due to the large melt-gas density ratio and the interaction of the 

supersonic structures with multiple melt-gas interfaces.  

 Since the effect of thermophysical properties of melt on the atomization 

process is investigated, constant thermophysical properties were considered for the 

simulations.  

Governing Equations 

Since VOF based numerical simulations provide a diffuse interface compared 

to the LS method, it is required to capture the interface location to impart accurate 

interfacial forces. OpenFOAM software provides two advection schemes to advect the 

volume fraction in VOF. These two methods are algebraic advection and the 

geometrical advection methods. In the algebraic approach, compression velocities are 
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used to reduce the smearing of the liquid-gas interface. The algebraic advection 

scheme implemented in OpenFOAM is using a special numerical scheme named 

MULES (Multidimensional Universal Limiter with Explicit Solution) developed by 

Weller (Henry G Weller, 2008). OpenFOAM allows using sub-iterations (Deshpande, 

Anumolu, & Trujillo, 2012; Jasak & Weller, 1995) in time to ensure the boundedness 

of the volume fraction while maintaining a relatively larger time step. In the 

geometrical method, interface is reconstructed based on the volume fraction at 

neighboring cells. The geometrical method implemented in OpenFOAM uses a newly 

proposed geometrical scheme, „isoAdvector‟ (Roenby, Bredmose, & Jasak, 2016; 

Roenby, Larsen, Bredmose, & Jasak, 2017).  The isoAdvector geometrical advection 

scheme is found to be providing a much sharper interface compared to the algebraic 

method while ensuring phase mass conservation. Since the gas atomization process 

results in higher momentum, using the algebraic method could result in extremely 

high interface smearing. Therefore, the geometrical approach is utilized in all the 

simulations presented in this study. The continuity equation implemented in the 

single-fluid approach is provided in Equation 1.  

 

       (  ⃗⃗ )    ( 1 ) 

   denotes the single-fluid density and  ⃗⃗  is the velocity vector. Equation 2 

provides the momentum equation.  

 

 (  ⃗⃗ )     (  ⃗⃗   ⃗⃗ )                 ⃗⃗  ⃗ ( 2 ) 
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   denotes the static pressure.   is the stress tensor for a Newtonian fluid, and   ⃗⃗  ⃗ is the surface tension force, which are provided in Equation 3 and 4, respectively. 

    .  ⃗⃗  (  ⃗⃗  )/     (   ⃗⃗ )   ( 3 ) 

   ⃗⃗  ⃗     ⃗    ( 4 ) 

  ,  ,  ,  ⃗ , and   being the one-fluid dynamic viscosity, interfacial surface 

tension coefficient, interfacial curvature, interfacial unit normal vector, and the Dirac 

delta function that provides the value of one at the interfacial nodes. As shown in 

Equation 4, the surface tension force is modeled as a volumetric force, which only 

provides non-zero values at the interfacial cells. This method is called the Continuum 

Surface Force method (CSF) and was introduced by Brackbill et al. (Brackbill, Kothe, 

& Zemach, 1992). Interfacial curvature and Dirac delta function are calculated as      and |  |, respectively and the interfacial unit normal vector is calculated as 

  |  |.  
The single-fluid thermophysical properties (density and viscosity) are 

calculated using volume averaging, as shown in Equation 5 and 6.   

  ( )        (   )  ( 5 ) 

  ( )        (   )  ( 6 ) 
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Where subscripts l and g denote the liquid and gas phase properties, and   is 

the volume fraction. In addition to these equations, the VOF method required to solve 

for the volume fraction ( ) to capture the interface. Equation 7 shows the volume 

fraction advection equation.  

 

       (  ⃗⃗ )    ( 7 ) 

 

The pressure-velocity coupling is solved using the Pressure-Implicit Method 

for Pressure Linked Equations (PIMPLE) method. This method is a combination of 

PISO – Pressure Implicit with Splitting Operators (Issa, 1986) and SIMPLE – Semi-

Implicit Methods for Pressure Linked Equations (Patankar, 1980) algorithms. 

Turbulence Modeling  

The breakup process is mainly governed by the shear stresses at the interface. 

Therefore, accurate evaluation of these shear stresses is crucial in atomization 

simulations. Due to the higher inertia in the melt stream, it poses higher resistance 

towards the atomizing gas. Therefore, the relative velocity between the melt and gas 

phases at the interface acting as a boundary layer at the melt-gas interface. Thus, it is 

required to have a fine computational grid to resolve the turbulent boundary layer. In 

general turbulence modeling, the boundary layer occurs near the wall, and it is 

advised to create additional mesh refinements near the wall to accurately capture the 

boundary layer effects. Since the melt interface continuously changes and goes 
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through many topological changes, it is not possible to have additional refinements 

without using an adaptive mesh.  

In terms of the numerical simulations, there are three different approaches to 

include the turbulence into the flow solutions. They are Direct Numerical Simulation 

(DNS), Large Eddy Simulations (LES), and Reynolds Averaged Navier-Stokes 

equations (RANS). These methods are categorized based on the way they resolve 

different size eddies. The large eddies contain large amounts of energy, and they are 

highly dependent on the geometrical and flow parameters. These large eddies break 

into smaller eddies once its energy decay due to dissipation. Therefore, these smaller 

eddies contain less amount of energy compared to the larger eddies and often 

considered to be isotropic.  

In the DNS method, it is required to solve for all the length and time scales 

without using any modeling. Therefore, it requires an extremely fine computational 

mesh and mainly utilized in low Reynolds number applications. However, in two-

phase atomization simulations, the length scale reduces to the micrometer scale. 

Therefore, obtaining the length scales required for DNS is computationally 

impossible. In the RANS method, all the turbulence eddies are modeled without 

resolving their length scales. Additional equations are utilized to obtain the Reynolds 

stress terms, and they were included in the momentum equation as source terms. 

Since RANS methods use modeling instead of solving the eddies, it needs a relatively 

coarser grid resolution than other methods. However, RANS models are not capable 

of accurately capturing the geometrical and flow effects. LES can be identified as a 

compromise between the computational requirements and accuracy limitations in 

DNS and RANS methods, respectively. In LES, large eddies are resolved without 
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using any modeling, and the smaller eddies are modeled as they are independent of 

the flow and geometrical characteristics. Therefore, the LES models have higher 

accuracy than RANS models and less computational requirements than DNS.  

Considering these factors, LES is utilized to capture turbulence effects in the 

atomization process. In this study, these small eddies are modeled using the one-

equation eddy viscosity model (Farvardin & Dolatabadi, 2013; A. Yoshizawa, 1986; 

Akira Yoshizawa & Horiuti, 1985) and sub-grid scale stress tensor      is 

approximated as 

                  0  ⃗⃗  (  ⃗⃗ ) 1  ( 8 ) 

 

Where      subgrid-scale kinetic energy, and it is calculated using Equation 9.  

        (  ̅̅ ̅̅   ̅ ̅)  ( 9 ) 

 

The transport equation of the subgrid-scale kinetic energy is given in Equation 

10.  

 

          (     ̅)    [(      )     ]         ̅   ( 10 ) 

 

Equation 11-13 complete the model. The smooth filtering coefficient   is 

taken as one.  
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     (    )     ( 11 ) 

         (    )    ( 12 ) 

  ̅    ,  ̅  (  ̅) - ( 13 ) 

 

The coefficients    and    are taken as 1.05 and 0.07, respectively.  

Post-Processing of the Droplet Size Data 

As mentioned earlier, the VOF method uses the volume fraction to 

discriminate the two phases in the computational grid. The values of 1 and 0 represent 

the two phases, and intermediate values provide the interface between two phases 

(Figure 5). Therefore, it is not straightforward to identify each droplet and to obtain 

the size, location, and velocities of those droplets. A post-processing utility is 

developed to identify these droplets. 

Droplet Size Distribution Algorithm   

Volume fraction ( ) is utilized to determine the cells which consist of liquid. 

Due to the numerical diffusion, there can be second phase cells with small   values, 

usually in the order of        or smaller. Therefore, a threshold value (   ) is utilized 

to remove these cells from the calculation (William, 2016), and the value used in this 

study is 0.1.  Mesh cells having an indicator function at or above the threshold value 

are considered as the dispersed or liquid phase. OpenFOAM allocates a number to 

each cell in the computational geometry, and it can be used to obtain the attributes of 
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the computational mesh such as mesh volume, and other state variables. The rest of 

the algorithm is explained using a sample mesh, as shown in Figure 6.  

 

 

Figure 6 – Sample mesh with cell numbers. Blue color represents the cells that satisfy 
the condition (     )  

 

In the example, there are 48 cells, and only 15 cells (colored in blue) are 

identified as the cells that satisfy the threshold condition (     ). Then, by going 

through each liquid cell and identifying the neighboring cells (North, East, West, 

South, Front, and Back cells) that meet the threshold condition, a list can be 

generated, as shown in Figure 6. As an example, grid number 4, 6, and 13 are the 

neighboring cells of the cell number 5. However, only 6 and 13 cells satisfy the 

threshold condition; hence, the list entry of {5,6,13} is generated.  

These sets are then compared and append if they have common elements. This 

mechanism is implemented in Matlab. Let the generated list is defined as   *             + where,    *             +. 
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Figure 7 – Cell appending algorithm 

 

This algorithm shown in Figure 7 will simplify the list, and each non-zero 

element will give all the cell IDs of a particular droplet. According to the example in 

Figure 6, the two non-zero elements of the list L are *                     + and *                    +. Then the centroid, volume, and velocities can be calculated 

using the summation over the cell numbers of each droplet, as shown in Equation 14-

16.  

                    ∑         ( 14 ) 

 

                 (        )  ∑ (        )      ∑         ( 15 ) 

 

                 (        )   ∑ (        )      ∑         ( 16 ) 
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Where  ,  , and   are the cell centroid values in three coordinates,   is the 

cell volume and U, V, and W being the cell velocities in the three coordinates. Once 

the droplet volume is obtained, equivalent droplet diameter can be estimated by 

assuming a perfect sphere.  

Even though the algorithm provided in Figure 7 is capable of distinguishing 

the cells corresponding to each droplet, handling several millions of sets can be time-

consuming. To reduce the computational time, the total number of sets (n) are divided 

into a user-specified number of groups, and then the compared and appended within 

the group. Then the simplified sets in each group can be processed together to obtain 

the final distribution.  

Symmetry Boundaries and Identifying Droplets that Leave the Computational 
Domain 

As mentioned earlier in the assumptions, only a smaller portion of the 

atomizer geometry is considered to reduce the computational requirements. A 90  
wedge of the cylindrical geometry is employed to further reduce the computations. 

Several complications in the droplet size distributions arise due to these assumptions. 

Identifying the droplets that share boundaries with the symmetry boundaries (to 

calculate the droplet volumes) and capturing the droplets that leave the computational 

domain are the main issues. Few modifications are included in the post-processing 

code to mitigate these errors.  

The velocities and the volumes of the droplets that share boundaries with 

either one or both symmetry boundaries have to be adjusted. In the modified post-

processing code, the droplets that share nodes with symmetry boundaries are 

identified and adjusted their volumes and velocities accordingly. As an example, the 
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volume of the droplets that are located in the axis of the wedge (which share nodes 

with both symmetry boundaries) should be multiplied by 4, and the volume of the 

droplets that are only on one symmetry boundary has to be multiplied by 2. The 

droplets that do not satisfy the above conditions are also identified, and their mirror 

images also considered when calculating the total number of droplets and total 

volume.  

Identifying the droplets that leave the computational domain is problematic. It 

is possible to find the amount of liquid that passes through the outlet boundaries using 

surface integral of the liquid flux at the outlet boundaries. However, it only provides 

the volume. Identifying the size and number of droplets is not possible. Real-time 

calculation of droplet distribution will solve this issue. However, it will increase the 

computational time immensely. Therefore, a new post-processing method is proposed 

to approximate the droplets that leave the computational domain within a given 

period. As an example; let‟s take the droplet distribution at time   and approximate 

the droplets that leave the computational domain from time   to     . Assuming the 

size and velocity of the droplets do not change within this time interval, the new 

location of all the droplets at      can be approximated as 

    (    )     ⃗⃗  ⃗( )    ⃗⃗  ⃗( )     ( 17 ) 

   ⃗⃗  ⃗( ) and   ⃗⃗  ⃗( ) denote the location and the velocity of the ith droplet at time  . 
If   ⃗⃗  ⃗(    ) is not within the computational domain, the ith droplet can be added to 

the droplet distribution at      as a droplet that left the computational domain. In 

this study, the time interval is taken as 0.2 ms.  
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Droplet Sphericity and Aspect Ratio 

The atomization process evolves in the axial direction, and due to the surface 

tension force, ligaments and large droplets tend to deform and/or break up (secondary 

breakup) into spherical droplets. Therefore, sphericity of a droplet or a ligament can 

be used to understand the level of atomization of that droplet or ligament. In other 

words, the aspect ratio of the droplet can be used to understand the droplets that went 

through the secondary breakup process. Aspect ratio is defined as the ratio between 

the longest dimension of the droplet or ligament to the diameter of volume equivalent. 

A schematic of a ligament in two-dimensional mesh and the aspect ratio calculation 

procedure is shown in Figure 8. The span of the ligament (dx and dy) can be obtained 

by the centroid of the particular cell. Then, the longest dimension in 2-D can be 

calculated as √       . It can be expanded for 3-D calculations by obtaining the 

z-directional span, dz. However, the aspect ratio calculation is an estimation as the 

exact location of the interface and centroid of the cell do not coincide with each other.  

Therefore, discriminating droplets solely based on the aspect ratio of unity is not 

accurate; hence, the secondary atomized droplets are identified by using an upper 

limit to the aspect ratio. In this study, the aspect ratio less than 2 droplets are 

identified as secondary atomized droplets. 
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Figure 8 – Schematic of a 2-D ligament and aspect ratio calculations  

Simulation Case Setup 

The computational domain is designed based on a double induction, discrete 

nozzle, close-coupled gas atomizer, which consists of 18 circular gas nozzles evenly 

spaced around the melt tube. Figure 9 shows the atomization chamber and the gravity-

driven molten metal. This atomizer is designed specifically for a batch process, and 

roughly around 2 kg of metal can be atomized in one batch. Initially, the metal blocks 

were placed in the double induction heater and heated it to the desired temperature. 

Then, the molten metal is poured into the atomization chamber, as shown in Figure 

9b. It flows through the melt tube under gravity and interacts with the atomizing gas.  
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Figure 9 – a. Atomization chamber, b. Gravity-driven melt pouring into the 
atomization chamber. 

 Photo credit – Laboratory of Materials and Coatings for Extreme Environments, 
Advanced Materials Processing and Analysis Center at University of Central Florida 

 

The simulation follows the experimental setup but uses an annular-slit gas 

nozzle instead of discrete circular gas nozzles. A schematic of the atomizer assembly, 

including the dimensions used in the simulation, is shown in Figure 10. The atomizer 

has a protrusion length of 3.6 mm, and the axial direction is 100 mm from the melt-

tip.  

Three structured meshes are considered in this study. Even though it is 

impossible to obtain grid independence in Eulerian-Eulerian atomization simulations 

(Gorokhovski & Herrmann, 2008; Ling et al., 2017; Shinjo & Umemura, 2010), a 

comparison is made to get an idea on the required grid resolution to achieve a feasible 

and sufficient accuracy. OpenFOAM inbuilt meshing utility, blockMesh, is utilized to 
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create these structured meshes. Strategically placed grid refinements are being used in 

the places where the atomization occurs. Grid statistics are provided in Table 1. 

 

 

Figure 10 – Schematic of the atomization assembly. All the dimensions are in mm 
scale 

 

Figure 11 shows the grid size distribution corresponding to the three meshes. 

It should be noted that only the mesh 2 and 3 are prepared with grid refinements. That 

is the reason for the sudden increment in the non-orthogonality from mesh 1 to 2 and 

3.  
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Figure 11 – Grid size distribution of three computational grids 
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In the localized grid refinements, the structured cells are divided into 8 

(divided into 2 in each direction) and cell adjacent to the refined cell consists of high 

non-orthogonality and skewness. As shown in Figure 11, the percentage of the grid 

sizes smaller than 100  m has increased significantly by using additional refinements. 

In the first computational grid, less than 30% of the computational grids are lower 

than 100  m and the value for second and third meshes are around 50% and 75%, 

respectively.  

 

Table 1 – Grid Statistics 

 Mesh 1 Mesh 2 Mesh 3 

Number of grid points (in millions) 10.7 16.0 20.2 

Max.Non-orthogonality 31.2 54.5 57 

Max. grid aspect ratio 6.5 5.2 4.2 

Max. Skewness 0.96 1.43 1.19 

 

Figure 12a shows the computational geometry and the initial distribution of 

the volume fraction. The volume fraction is initiated as a cylindrical shape with a 

diameter equal to the melt inlet diameter. The length of the cylinder is taken as 20 

mm, and the value is carefully selected to ensure that the gas impingement occurs 

within the initial melt distribution. If the length of the initial melt stream is shorter 

than the gas impingement point, a strong circulation occurs towards the melt-tip, and 

the melt stream will be pushed in the upward direction. Figure 12b shows the 

localized grid refinements in mesh number 3. In the first level of grid refinement, all 

the grid points are divided are into eight cells, and in the second level of refinement, 
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each cell is divided into two in the axial direction. In the second mesh, only the first 

level of refinement is utilized.  

 

Figure 12 – a. Computational geometry and initial volume fraction distribution (red 
color – melt stream, blue color – gas stream) b. Localized grid refinements 

corresponding to mesh 3 
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Table 2 – Boundary Conditions 

Boundary Volume fraction Pressure Velocity Turbulent kinetic 

energy 

Melt inlet Fixed value Zero-gradient Volume flow rate Fixed turbulent 
intensity 

Gas inlet Fixed value Total pressure Pressure inlet Fixed turbulent 
intensity 

Outlet Zero-gradient Total pressure Pressure outlet Zero-gradient 

Walls Constant contact 
angle 

Fixed-flux pressure No-slip condition Turbulent wall 
function 

Symmetry Symmetry Symmetry Symmetry Symmetry 
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The boundary conditions used in the atomization simulations are shown in 

Table 2. The volumetric flow rate is specified at the melt inlet. As shown in Figure 9, 

the molten metal/alloy is poured into the atomization chamber, and it flows into the 

atomization chamber under gravity. Once the atomizing gas is introduced into the 

atomization chamber, the melt flow rate is governed by the gravitational forces and 

the pressure variation across the melt tube. Therefore, the melt flow rate changes with 

time. However, a fixed value is imposed at the melt inlet and the magnitude is 

obtained from the mean value from experiments. The total pressure is imposed at the 

gas inlet, and special care is given to the pressure and velocity conditions at the outlet 

to permit reverse flow. This boundary condition imposes zero Newmann condition if 

the boundary flux is pointed away from the computational domain. If the flux is 

pointed into the computational domain, a Dirichlet condition is imposed, and the 

value is obtained by the patch face normal component of the internal cell. Turbulent 

intensity of 2% and 5% is specified at the melt and gas inlets, respectively. This 

boundary condition calculates the turbulence kinetic energy based on the turbulence 

intensity and the induced velocity.  

One of the main concerns in every transient CFD simulation is the stability 

conditions. Courant number is a non-dimensional number, which is often utilized as a 

stability condition in CFD simulations, and it is defined as follows.  

 

   | ⃗⃗ |     ( 18 ) 

 

Where    and    are denoted by the time step and the local grid spacing, 

respectively. For explicit transient simulations, it is recommended to maintain the 
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Courant number below unity. However, the stability of the two-phase, Eulerian-

Eulerian CFD simulations are more complicated than the usual transient CFD 

simulations, and it is required to limit the Courant number below 0.5. Further, it is 

essential to limit the progression of the interface to obtain a stable solution. Therefore, 

another non-dimensional number is defined as interfacial Courant number, which 

restricts the progress of the interface. The values used to limit the Courant, and the 

interfacial Courant numbers are 0.4 and 0.1, respectively. In other words, the 

progression of the interface within a given time step is limited to 10% of that local 

grid size. OpenFOAM allows providing the limiting values, and the time step is 

calculated based on the local velocity and the grid size. Since the high-pressure gas 

atomization process induces extremely high gas velocities, the time step of the 

numerical simulation is around one to ten nanoseconds. Therefore, the simulations are 

only conducted up to 2 ms (approximately around 0.2 to 2 million-time steps). The 

computational power required for the 1 MPa gas pressure simulation (mesh with 20.2 

million cells) to reach 2 ms is around 84,000 processor-hours, which is equivalent to 

using 350 processors for ten days.  

Computational Grid Comparison 

As mentioned earlier, obtaining grid independence in two-phase, Eulerian-

Eulerian numerical simulations, is not possible. However, a comparison of the three 

computational grids is provided here to find the influence of the grid resolution on 

droplet size distribution. 
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Figure 13 – Droplet size distribution at 2 ms – effect of grid resolution 
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Figure 13 shows the droplet size distribution histograms corresponding to the 

three grid resolutions at 2 ms. It should be noted that the droplets that are leaving the 

computational domain within the 2 ms time interval are accounted using the post-

processing utility and added to make a proper comparison. More information will be 

provided in the next two chapters. It can be seen that the number of droplets increased 

drastically, with increasing grid resolution. As shown in Figure 11, the percentage of 

grid points that are smaller than 100  m is 30%, 50%, and 75% for the three meshes. 

This improvement in the grid density results in a significant increment in 100-200  m 

diameter droplets. The mean diameter is reduced from 210.7 to 165.0  m. 

 

 

Figure 14 – Normalized cumulative volume – the effect of the grid resolution 
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Figure 14 shows the comparison of normalized cumulative volumes. It 

represents the droplets that satisfy the AR < 2 and Z > 75 mm conditions. Z > 75 mm 

condition consists of the droplets in the fourth quadrant (75 mm to 100 mm) and the 

droplets that have left the computational domain. These droplets are identified as the 

secondary atomized droplets. More information and the reasoning behind this droplet 

discrimination are provided in the next chapter. However, for the sake of completion, 

a comparison of cumulative volumes for the three meshes is presented here. 

Normalized cumulative volume is defined as a ratio between the cumulative volume 

and the total volume (including the droplets, which AR > 2). As an example, 20% of 

the total volume represents the droplets that are smaller than 200  m (in mesh 3). In 

other words, it provides the yield of the atomization process. As expected, the 3rd 

mesh provides better yield compared to the 1st and 2nd computational grids. All three 

meshes show similar values until 100  m and then deviate significantly.  

Experimental Comparison 

The results from aluminum atomization simulations at 1 MPa and 2 MPa gas 

pressures can be compared with the existing available experiments at different gas 

pressures in a close-coupled, discrete gas atomizer. Exact comparison is not possible 

since the experiments were done with 18 discrete circular nozzles. The current 

computations are done in an annular-slit to avoid excessively fine grid, which would 

be prohibitively expensive. The comparison plots are provided in Figure 15 as 

normalized cumulative volume in side by side plots. 
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Figure 15 – Normalized cumulative volume, a. Experimental results (discrete gas 
atomizer), b. Simulation results (annular-slit gas atomizer) 

 

The increasing gas pressure facilitates better atomization in terms of yield. The 

cumulative volume curve displays a steep slope with respect to droplet diameter. The 

numerical simulations in Figure 15b follow a similar trend with increasing gas 

pressure. However, a disparity in the droplet diameters can be observed. This is due to 

the current mesh resolution and the size of the computational geometry. As mentioned 

earlier, the computational geometry is 100 mm in length and 25 mm in radial 

direction. Therefore, droplets leaving the computational domain is inevitable. Even 

though these droplets are approximated and accounted in the calculations, the size of 

the droplet diameter remains the same once it leaves the computational domain. This 

is a crucial factor as the number of droplets leaving the computational domain is 

significant compared to the total number of droplets. As an example, in aluminum-

nitrogen simulation (mesh 3, 1 MPa gas pressure), more than 17,000 droplets leave 

the computational domain within the 2.4 ms, and less than 7,000 droplets were inside 

the computational domain at 2.4 ms. More information will be provided in the next 

chapter. Further, the mesh resolution is not fine enough to capture the complete 
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atomization process. As mentioned earlier, the often-utilized condition to identify the 

required grid resolution is to have at least ten grid points along the diameter of a 

particular droplet. Therefore, to facilitate the breakup of a 100  m droplet, the mesh 

resolution should be within 50-100 billion cells. It is impossible to run a practical 

engineering simulation with that capacity, even in the current state of the art 

computational facilities.  

As the current grid resolution is capable of capturing the qualitative trends 

correctly (Figure 15), this grid is utilized for the rest of the simulations (i.e., the 

objective of the current research is to identify the trends in the powder size 

distribution and guide the powder manufacturing industries to make engineering 

decisions). 
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CHAPTER 4 – DYNAMICS OF ATOMIZING MOLTEN 

ALUMINUM 

This chapter discusses the dynamics of the high-pressure gas atomization 

using aluminum as the molten metal and nitrogen as the atomizing gas. Table 3 shows 

the thermophysical properties of molten aluminum and nitrogen used in this 

investigation.  

 

Table 3 – Thermophysical properties of aluminum melt and nitrogen 

Material Density  

(    ) 
Kinematic 

viscosity .   / 
Surface tension .  / 

Aluminum                    

Nitrogen                    

 

The melt flow rate is maintained at            and 1 MPa gas pressure at 

the gas inlet is used to atomize the molten aluminum.  

Interfacial Instabilities in Atomization  

In general, the atomization process is primarily governed by three interfacial 

instabilities. They are Rayleigh-Taylor instability, Rayleigh-Plateau instability, and 

Kelvin-Helmholtz instability. Kelvin-Helmholtz instability (Thomson, 1871) occurs 

when there is a relative velocity in the two phases. Due to the tangential component of 

the relative velocity, wave-like structures will appear on both sides. In other words, 

the discontinuity in the velocity at the interface induces a vortex sheet along the 

interface, which later rolls up the interface creating liquid layers. Rayleigh-Taylor 
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instability (Kull, 1991; Rayleigh, 1882; Taylor, 1950) occurs when there is a relative 

velocity perpendicular to the interface. As an example, when a high-density phase 

placed on a low-density phase, both phases try to penetrate the other to reach a stable 

state. These movements create the mushroom-like structures at the interface, which is 

considered as the main flow characteristic of the Rayleigh-Taylor instability. The size 

of these characteristic mushroom structures varies with the density ratio, and the 

shape is dominant when the lighter fluid penetrates the denser fluid. These two 

interfacial instabilities largely govern the primary atomization process. Rayleigh-

Plateau instability occurs when the surface tension force adversely affects the surface 

curvature of a liquid interface (Eggers & Villermaux, 2008; Rayleigh, 1882, 1879). 

This instability can be observed in a liquid column flowing under gravity. When the 

liquid jet accelerates, the liquid column starts to stretch. It starts to deform to reduce 

the surface area while preserving the volume as the favorable condition is to minimize 

the surface energy.  

Interfacial Dynamics 

In this section, the time evolution of the melt stream is explained using the 

interfacial instabilities explained in the previous section. Figure 16 shows the time 

evolution of the melt interface (an isometric view). Yellow color contours denote the 

melt-gas interface (          ), and the background color plots show the gas 

velocities at the two symmetry boundaries.  

Following the standard practice, molten aluminum is allowed to flow for a few 

seconds prior to releasing nitrogen to prevent backflow.  Initially, the melt stream 

starts to deform due to the high momentum expanding gas, resulting in interfacial 
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instabilities which break up the melt into ligaments and large droplets. This process is 

called the primary atomization. The large droplets and ligaments further break up into 

smaller droplets via Rayleigh-Plateau instability. 

The white color circles are zoomed in and shown right below the 

corresponding time instant to emphasize additional details. Once atomizing gas is 

introduced to the atomizing chamber, the higher gas pressure induces extremely high 

gas velocities. The high momentum of the atomizing gas penetrates the melt stream 

near the point of impact. Low-density gas penetrating high-density melt is often 

identified as Rayleigh-Taylor instability. Additionally, further downstream (where the 

gases flow parallel to the melt stream), the relative velocities at the melt-gas interface 

result in wave-like structures as shown in Figure 16a. These wave-like structures 

further amplify with time (Figure 16b) creating melt sheets and ligaments (Figure 

16c). This interfacial instability is often referred in literature as Kelvin-Helmholtz 

instability. Careful consideration of the zoomed-in views in Figures 16d and 16e 

shows how the ligaments form and break up. This breakup process is the main 

segment of secondary atomization and it was further discussed in the previous studies 

(Choudhury, 2015; Davanlou et al., 2015; Saha et al., 2012). The instabilities 

governing this process are Rayleigh-Plateau and capillary instabilities. A combination 

of these instabilities governs the dynamics of the secondary atomization. 

The abovementioned gas penetration causes the melt stream to divide into two 

segments at the point of impact (Figure 16e). From this point onwards, the bottom 

disintegrated portion advects along the axial direction with the gas flow, while 

breaking up further into smaller droplets (Figures 16f and 16g) and staying as a 

cluster. 
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Figure 16 – Atomization physics – time evolution of the melt and atomizing gas interaction (Al-N, 1 MPa – mesh 3). Note – until 0.5 ms; 
images show only up to 30 mm from the melt-tip. 0.75 and 1 ms images show up to 50 mm from the melt-tip. The area enclosed in a 

white circle is zoomed in to emphasize the dynamics of the melt stream  
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Due to the variation of inertia of the individual droplet, the velocities of the 

cluster of droplets can be different. As time progresses, this cluster expands and 

spreads to a larger volume. This aspect is also observed in Figure 19, where the time 

evolution of the number of droplets along the axial direction is provided in the next 

subsection. The top portion of the melt moves upward towards the melt-tip due to the 

gas recirculation zone near the melt-tip. As a result of the gas recirculation, the melt 

accumulated near the melt-tip is experiencing a shear force in the radial direction 

along the melt-tip wall. Once the melt reaches the end of the horizontal wall, it 

interacts with the expanding gas and starts to breakup. 

Figure 17 shows the breakup process of a small three-dimensional liquid 

structure. It shows the capability of the present grid resolution to capture secondary 

atomization to some extent. For clarity, this 3-D ligament circled at the top is divided 

into three ligaments as marked in red, blue, and black colors. The ligament marked in 

red, which was previously attached to the other two ligaments is separated around 

510    (marked in yellow circle). At 550   , this ligament is advected with the gas 

flow, displaying a neck that will be eventually pinched off into two segments. The 

ligaments marked in blue and black are extended along their axial direction due to 

Rayleigh-Plateau instability (Chandrasekhar & Gillis, 2009; Choudhury, 2015; 

Rayleigh, 1879) when the surface tension minimizes the ligaments into smaller 

packets with the smaller surface area for the same liquid volume. It can be seen that 

the liquid melt undergoes this instability first when the cylindrical volume thins, and 

the gas creates more perturbations on the surface. The liquid then collapses under the 

action of capillary forces due to surface tension and can be seen to break into smaller 

droplets.  
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Figure 17 – Breakup mechanism of a 3-D melt structure at 1 MPa 
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These droplets and ligaments are circled in their respective colors to show the 

breakdown process in the subsequent time intervals. As previously mentioned in the 

literature, these ligaments are subjected to break into smaller droplets to reduce 

surface energy density. This instability plays a significant role in the secondary 

atomization process.   

 

 

Figure 18 – Vorticity and turbulence intensity variation with the breakup. 2-D color 
plots represent the vorticity and turbulence intensity at the mid-plane (45  plane in 90  

wedge)  

 

 In Figure 18, four images at incremental times, images of atomization, 

vorticity and turbulence intensity are displayed. The black contours indicate the melt-
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gas interface. Note that the plane normal vorticity is shown. The positive vorticity 

values are pointed into the figure, and negative vorticity values are pointed in the 

opposite direction. The opposite directions in vorticity around the ligaments suggest 

that the flow structures induce torque, which leads to rupture. Thus, different types of 

instabilities contribute to secondary atomization. In the turbulence intensity plots (i.e., 

the log scale is used to properly visualize the variations), the turbulence intensity 

increases near the melt-gas interface. This is due to the chaotic interaction near the 

melt-gas interface, which creates perturbations and facilities interfacial instabilities. 

The boundary layer developed near the melt-gas interface plays a major role in the 

breakup process since the shear forces exert on either side determine the deformation 

of the melt stream and the eventual breakup. The turbulence intensity plots indicate 

that the turbulence model and the current grid resolution can resolve these shear 

stresses even around the smaller droplets.  

In Figure 18, the plane normal vorticity is displayed. It was primarily used as 

the positive and negative values of plane normal vorticity provides the direction of the 

rotational velocities in that two-dimensional plane. However, vorticity cannot be used 

to visualize the movements in the melt-gas interface in a three-dimensional 

representation. In literature, a parameter called Helicity . ⃗⃗  (   ⃗⃗ )/ is utilized to 

represent the vorticity in the direction parallel to the flow velocity. By adopting a 

similar approach, a new scalar (interfacial normal vorticity,   ) is introduced to 

visualize the vorticity effects in a three-dimensional representation. The definition 

(Equation 19) is analogous to the Helicity equation; however, it takes the directional 

derivative in the direction of the interfacial normal instead of the flow velocity. The 

interfacial normal is calculated using the volume fraction, and the gradient of the 
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volume fraction provides the inward-pointing interfacial normal. The value is 

normalized by the product of the magnitude of the two vectors to obtain values 

between -1 to 1.  

 

      (   ⃗⃗ )|  ||   ⃗⃗ | ( 19 ) 

 

Therefore, the positive values show the vorticity pointed into the interface, and 

the negative values show the opposite direction. They represent the clockwise and 

anticlockwise movements, respectively, in the plane tangential to the melt-gas 

interface.  

 

 

Figure 19 – Secondary atomization process – ligament breakup (color scheme – 
interface normal vorticity, red and yellow – positive values and blue – negative 

values) 

  

Figure 19 shows the breakup process of a randomly selected ligament. The 

melt-gas interface is represented by the volume fraction contours at the value of 0.5. 

The interface is colored using the interface normal vorticity, which is defined in 

Equation 19. The red and yellow colors indicate the positive values (vorticity pointed 
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into the melt phase) have a rotation in a clockwise direction, and the blue color 

indicates the negative values, which has a rotation in the anticlockwise direction. As 

shown in Figure 19, the identified ligament is stretching with time, creating the 

characteristics of Rayleigh-Plateau instability. The curved arrows indicate the 

direction of the local rotational velocities based on the interface normal vorticity. 

Figure 19a and 19b show that the direction of these rotational velocities stretches the 

ligament, creating a neck. This ligament further stretches with time and results in 

multiple neck formations as shown in Figure 19c. This breakup mechanism is 

primarily due to the Rayleigh-Plateau instability, and the flow characteristics are 

matched with the previously published atomization studies (Choudhury, 2015; Eggers 

& Villermaux, 2008; Guildenbecher, López-Rivera, & Sojka, 2009; Marmottant & 

Villermaux, 2004). In other words, this shows the universal nature of the secondary 

atomization process and the feasibility of using empirical or semi-empirical methods 

(Eulerian-Lagrangian type approaches) to capture the secondary atomization process 

in high-pressure gas atomization process.  

Figure 20 shows a closer view of the primary atomization process, mainly the 

ligament formation mechanisms in the high-pressure gas atomization process. The 

images show the interfacial dynamics in the molten steel atomization process. Even 

though this chapter discusses the atomization process of the molten aluminum, results 

corresponding to the molten steel are utilized as its atomization process evolves at a 

much slower rate than aluminum (refer Chapter 5). As explained in Figure 16, surface 

waves due to the Kelvin-Helmholtz instability appear downstream, where the gas 

flows parallel to the melt-gas interface. As shown in Figure 20a and 20b (blue color 

dashed line), axisymmetric surface waves can be seen at the early stages of the 
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atomization process. However, with time, these surface waves show non-

axisymmetric characteristics as a result of two main phenomena. The main factor 

affecting these azimuthal variations is the interaction of the gas stream with the melt 

stream and melt tube geometry. These interactions induce perturbations in the melt-

gas interface, which later amplify into these azimuthal variations. Perturbations due to 

the inlet turbulence conditions at the melt and gas streams also contribute to these 

movements; however, their effects are negligible compared to the fluctuations in the 

gas flow due to the interaction with the melt tube. The other factor affecting these 

azimuthal variations is due to the symmetry conditions imposed at the computational 

geometry. When the above-mentioned perturbations reach a symmetry boundary, it 

imposes a zero Newmann condition, and it results in an artificial perturbation in the 

melt-gas interface. This error can be minimized by using a hybrid boundary condition, 

which identifies the perturbation waves in the melt-gas interface and permits the 

advection through the symmetry boundary while imposing standard symmetry 

conditions for other aspects.  

The green color circle in Figure 20a shows another mechanism in the high-

pressure gas atomization process. As the higher gas pressures induce extremely high 

gas momentum, these previously mentioned surface waves (extended surfaces) could 

be stretched and perforated. This mechanism is previously reported by Jarrahbashi 

and Srignano (Jarrahbashi & Sirignano, 2014). The arrows in Figure 20a and 20b 

show the direction of these azimuthal movements. When these azimuthal movements 

intercept with each other, it generates ligaments as shown in Figure 20c in blue color. 

These ligaments look like fingers. This mechanism primarily creates the ligaments at 
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the early stages. Similar characteristics can be observed in the area circled in red in 

Figure 20c and 20d.  

 

 

Figure 20 – Ligament formation (primary atomization process) – zoomed views show 
the interfacial dynamics (molten steel atomization) in the domain of 15 to 30 mm 

from the melt-tip in the axial direction. The used time frames are from 0.35 ms to 0.5 
ms with 0.05 ms time intervals.  

 

Processing of Droplet Size Distributions 

This section provides the details on how the droplet size data are processed to 

obtain a deeper understanding of the atomization process. Figure 21 shows the time 

evolution of the number of droplets along the axial direction. The yellow patch in the 

histograms indicates the droplets with aspect ratio larger than 2 and blue color 

indicates the rest of the droplets. At 1 ms, most droplets are accumulated in the top 

quadrant between 20 – 30 mm from the melt-tip (the cluster of droplets in Figure 16g 

at 1 ms). With time, its peak moves downwards along the axial direction and several 
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droplets leave the computational domain as they undergo fragmentation. From 1 ms to 

2 ms, the peak in the histogram moves from the first to the fourth quadrant of the 

computational domain. The total number of droplets with AR > 2 reduces from 17.2% 

to 13.3% due to secondary atomization when the ligaments break into smaller droplets 

with AR < 2. This phenomenon suggests that most of the secondary atomization has 

already taken place in 2 ms within 100 mm of the domain. 

 

 

Figure 21 – Time evolution of the number of droplets along the axial direction (blue – 
droplet AR   2, yellow – droplet AR > 2) 

  

Both Figures 16 and 21 show the presence of droplets leaving the 

computational domain, and it is required to capture these droplets to make a proper 

comparison. As mentioned earlier, a post-processing utility is developed to capture 

these droplets. Figure 22 shows how the original distribution and how it changed after 

adding the droplets, which left the computational domain. In the original distribution, 

the number of droplets increases with time till 1.2 ms and then starts to decrease. As 
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shown in Figure 21, from 1.2 ms onwards, more droplets leave the computational 

domain, progressively. In the post-processing utility, the droplets (say at time t) which 

have the potential to leave the computational domain within 0.2 ms time interval 

(based on their velocities and location) are identified and appended to the next time 

step (t + dt, i.e., dt = 0.2 ms). The number of droplets leaving the domain increases 

from about 1500 to 17500 from 1 ms to 2.4 ms.  

 

 

Figure 22 – Time evolution of the number of droplets – post-processing droplet size 
data 

 

Figure 23a shows the time evolution in the number of droplets with spatial and 

aspect ratio based constrains. As mentioned earlier, the aspect ratio of the droplet is 



65 
 

utilized to understand the nature or the extent of the breakup process that droplet is 

being subjected to. As experimental results show the metal powder, which went 

through both primary and secondary atomization process as well as the solidification 

process, it is required to identify the droplets, which have gone through the secondary 

atomization process to make a fair comparison. However, characterization only based 

on aspect ratio is not adequate since there is a possibility of having large spherical 

droplets, which have not gone through the secondary atomization process. Therefore, 

another factor is identified to characterize the numerical results. Using a 

discrimination process with droplet AR < 2 and Z > 75 mm, only about 11% of the 

droplets at 2.4 ms are above AR > 2 (Figure 23a). Between 1.6 ms and 2.4 ms, the 

atomization process generates about 8100 new droplets in the Z > 75 mm, with the 

majority undergoing secondary atomization yielding a mean droplet size of ~ 165  m. 

 

 

Figure 23 – Time evolution in the number of droplets, a) all the droplets compared to 
those at Z > 75 mm domain b) mean diameter variation (Z > 75 mm and AR < 2) 

 

The mean diameter variation of the secondary atomized droplets is given for 

AR < 2 and Z > 75 mm in Figure 23b. The mean diameter increases monotonically up 
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to 1.6 ms before reaching a constant value. The Z > 75 mm domain consists of the 

droplets in the fourth quadrant and the droplets that have left the computational 

domain. As time progress, additional droplets reach the fourth quadrant as seen in 

Figure 21. As smaller diameter droplets have higher velocity, they reach the fourth 

quadrant earlier than the other droplets (as shown in Figure 16f). This allows the 

mean diameter to increase at the early stage. Figures 16 and 21 displayed melt 

disintegration with the droplets moving along the axial direction as a cluster, possibly 

atomizing further into smaller droplets. This cluster of droplets leaves the 

computational domain in the 1.6 ms – 1.8 ms time interval. The mean diameter of the 

droplets that leave the computational domain and remain in the fourth quadrant also 

show the peak mean diameter in this time interval. Henceforth, the mean diameters 

start to decrease slowly.  

A characteristic time scale is introduced to understand the rate of the 

progression of the atomization process. Since the operational parameters (i.e., melt 

properties, gas properties, inlet gas properties, melt flow rate, etc..) considered in the 

current study vary the rate of progression, it is incredibly challenging to identify a 

characteristic time scale. Since the high-pressure gas atomization process primarily 

governed by the kinetic energy transferring from the expanding gas to the melt 

stream, the velocity scale is derived by equating the kinetic energy of the two phases. 

Then, the melt velocity becomes,  

 

   .    /      ( 20 ) 
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Where,   is the density and subscripts   and   denote the melt and gas 

phases. as velocity is inversely proportional to the velocity, the characteristic time 

scale can be written as  

 

       (    )    ( 21 ) 

 

However, Equation 21 does not provide the effect of melt and gas flow rates. 

Therefore, an updated relationship is introduced in Equation 22. The validity of this 

equation will be discussed in detail in the Chapter 5.  

 

       (    )   ( ̇  ̇ )   ( 22 ) 

  ̇ is the volumetric flow rate. As this characteristic time represents the rate of 

progression of the atomization process, the validity of the equation is checked for two 

different characteristics. The first one is the time taken to reach the peak in the 

original number of droplets distributions (  ), as shown in Figure 22. As explained 

earlier, it shows the balance between the number of droplets leaving the 

computational domain and the number of droplets generated. The second time scale is 

the time required to reach the peak in the mean diameter evolution (  ), as shown in 

Figure 23. 
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Figure 24 – Cumulative volume graphs, a. Experimental Results (Close-coupled, 
discrete gas atomizer), b. Simulation results – the effect of droplet discrimination 

(close-coupled, annular-slit gas atomizer)  

Figure 24 shows the cumulative volume graphs with different constraints.  The 

cumulative volume graph provides an estimation of the weight percentage 

corresponding to the desired diameter range. This is an essential factor deciding the 

effectiveness of the atomization process. It should be noted that the experimental 

results (Hanthanan Arachchilage et al., 2019) (Figure 24a) are obtained in a close-

coupled, discrete-gas atomizer; hence, a direct comparison between experiments and 

numerical results cannot be made. Experimental results are presented merely to verify 

the capability of our numerical approach to capture the experimental trend. In the 

numerical results (Figure 24b), a comparison of cumulative volumes corresponding to 

two discrimination strategies are provided. It clearly shows that the best effectiveness 

is obtained when only the secondary atomized droplets are considered. The main 

difference between experimental results and numerical results is the diameter 

disparity. This is mainly due to grid resolution and the size of the computational 

geometry. As mentioned earlier, it is required to have an extremely fine computational 

mesh, and running such simulation is prohibitively expensive with the current 
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computational facilities. And the axial length used in the computational geometry is 

less than 5% of the actual atomizer geometry. Therefore, the present numerical 

simulation cannot capture all the length scales in the atomization process.  

 

 

Figure 25 – Droplet size distributions, a. all droplets (2.4 ms), b. discriminated 
droplets (2.4 ms, Z > 75 mm), c. time evolution of the discriminated droplet size 

distributions 

 

Figure 25 shows the droplet size distributions at different times and 

discriminations. Figure 25a represents all the droplets at 2.4 ms, and Figure 25b 

represents the discriminated droplets (Z > 75 mm) at 2.4 ms. Blue and yellow color 

bars indicate A.R   2 and A.R > 2 conditions, respectively. The peak remains the 

same at 125 – 150    diameter range; however, the number of droplets is reduced 

considerably. Figure 25c shows the time evolution of the discriminated droplet size 
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distributions. The number of droplets keeps increasing, while the peak remains 

unchanged. However, the mean diameters are continuously getting smaller with time 

as expected. 

 

  



71 
 

CHAPTER 5 – EFFECT OF OPERATIONAL PARAMETERS ON 

THE ATOMIZATION PROCESS AND THE DROPLET SIZE 

DISTRIBUTION 

This chapter discusses the effects of different operational parameters on the 

high-pressure gas atomization process, and the droplet size distributions. The 

operational parameters studied in this chapter are gas pressure, melt and atomizing 

gas thermophysical properties, and melt flow rate.  

 

Table 4 – Simulation Matrix 

Case  Mesh Molten 

metal 

Atomizing gas Gas pressure  Melt flow rate  

     

1 1 Aluminum Nitrogen 1.0 MPa 7250 

2 1 Aluminum Nitrogen 1.5 MPa 7250 

3 1 Aluminum  Nitrogen 2.0 MPa 7250 

4 1 Aluminum Nitrogen 2.5 MPa 7250 

5 2 Aluminum Nitrogen 1.0 MPa 7250 

6 2 Aluminum Argon 1.0 MPa 7250 

7 3 Aluminum Nitrogen 1.0 MPa 7250 

8 3 Material X Nitrogen 1.0 MPa 7250 

9 3 Steel Nitrogen 1.0 MPa 7250 

10 3 Aluminum Nitrogen 2.0 MPa 7250 

11 3 Aluminum Nitrogen  1.0 MPa 3625 

12 3 Aluminum  Nitrogen 1.0 MPa 36250 
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Table 4 shows the simulations included in this chapter. Since higher gas 

pressures induce incredibly high velocities, time step decreases with increasing gas 

pressure. The time step would be further reduced if a finer mesh is utilized in the 

simulations. Therefore, the effect of gas pressure is obtained using mesh 1 (Cases 1 

through 4 – gas pressures varied from 1-2.5 MPa). However, to understand the impact 

of the mesh, two gas pressures (1 and 2 MPa) are simulated using mesh 3 (Case 7 and 

10). 

Cases 7, 8, and 9 are used to obtain the effect of the melt properties. The three 

melts investigated in this study are aluminum, Material X (artificial material with 

intermediate thermophysical properties), and steel. 1 MPa gas pressure is used for all 

the simulations to reduce the computational time. Cases 5 and 6 are used to obtain the 

effect of atomizing gas properties. Molten aluminum is atomized using nitrogen and 

argon. Three melt flow rates (cases 7,11, and 12) are used to study the impact of melt 

flow rate. Table 5 shows the thermophysical properties used in the simulations.  

 

Table 5 – Thermophysical Properties 

Material Density  

(    ) 

Kinematic 

viscosity .   / 
Surface tension .  / 

Aluminum                    

Material X                       

steel                     

Nitrogen                    

argon                   
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Effect of the Gas Pressure on the Atomization Process 

Figure 26 shows the time evolution of 1 and 2.5 MPa gas pressure simulations. 

The main difference between these two gas pressures is the rate of progression of the 

atomization process. For the case of 2.5 MPa, the gas pressure induces a much higher 

gas velocity and contributes to enhanced atomization due to higher gas momentum 

flux. Consider the time evolution of 2.5 MPa gas pressure (second row). First, the gas 

stream impinges and penetrates the melt stream. At 0.4 ms, the gas penetrates the melt 

stream and divides it into two portions at the point of impact. The top melt portion 

moves upwards due to the strong gas recirculation for 2.5 MPa to accumulate near the 

melt-tip. For 1 MPa gas pressure, similar characteristics can be observed, however at 

a slower rate.  

 

 

Figure 26 – Time evolution comparison of 1 and 2.5 MPa gas pressures 
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Figure 27 shows the droplet statistics for cases 7 and 10 (aluminum 

atomization with 1 MPa and 2 MPa gas pressures in mesh number 3). Figure 27a 

shows the time evolution of the number of droplets. The original distribution (red 

circle) of 1.0 MPa gas pressure shows a peak in the number of droplets at 1.2 ms and 

that for 2.0 MPa gas pressure is at 0.8 ms. It is due to the higher rate of evolution in 

the 2.0 MPa gas pressure. Also, in case 10, the number of droplets inside the 

computational domain comes to a steady-state around 1.2 ms.  

 

 

Figure 27 – Effect of gas pressure (Mesh 3), a. time evolution of the number of 
droplets, b. time evolution of mean diameter (Z > 75 mm, AR < 2) 

 

Figure 27b shows the time evolution of the mean diameter of discriminated or 

secondary atomized droplets (refer Figure 23b for more information). Both gas 

pressures show an increasing mean diameter at the early stages of the atomization 

process, however, they reach the peak mean diameter at different times. Since 2 MPa 

gas pressure induces higher gas velocity, droplets have the potential to leave the 

computational domain at a much faster rate. Therefore, the mean diameter 

corresponding to 2 MPa gas pressure reaches the peak at an earlier time, around 1.2 
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ms, while 1 MPa gas pressure simulation reaches a peak around 1.6 ms. Once they 

reach the peak, a slight decrement in mean diameter can be observed with time. As 

expected, 2 MPa gas pressure simulations show a higher decrement in droplet 

diameter than 1.0 MPa gas pressure due to the higher momentum transfer.  

 

Table 6 – Characteristic time scales – effect of inlet gas pressure 

Gas 

Pressure 

   .  /     (  )    (  ) 
Simulation Estimated Simulation Estimated 

1 MPa 1130  1.2 - 1.6 - 

2 MPa 1630 0.8 0.73 1.2 0.98 

 

Table 6 shows the characteristic time scales corresponding to the two gas 

pressures. Both    and    are estimated and compared with the simulation results 

shown in Figure 27. Since both simulations consider the atomization process of 

aluminum using high-pressure gas atomization with the same melt flow rate, the 

Equation 22 can be simplified as  

 

   (  )    ( 23 ) 

 

As shown in Table 6, the characteristic time scales are matched with the 

simulations for different gas pressures, confirming the validity of Equation 22.  

Figure 28 shows a comparison of cumulative volume plots for different gas 

pressures with the experimental results obtained in a discrete gas atomizer. Figure 28 

is a continuation of Figure 15. Four gas pressures (1, 1.5, 2 and 2.5 MPa) are 
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compared with the experimental results for five gas pressures (1,1.5, 2, 2.5, and 3 

MPa). The simulation results are obtained using the mesh one (Cases 1 through 4) as 

conducting higher gas pressure simulations in a fine mesh such as mesh three would 

be prohibitively expensive. It should be noted that the experimental cumulative 

volumes are normalized using the collected powder volume, and in the numerical 

results, all the droplets are considered without any discrimination based on the 

location or aspect ratio.  

 

 

Figure 28 – Normalized cumulative volume, a. Experimental results (close-coupled, 
discrete gas atomizer), b. Numerical results – mesh 1 (close-coupled, annular-slit gas 

atomizer) 

 

The numerical simulations show that up to ~300    diameter, there is no 

significant difference in normalized volume for all gas pressures. The discrepancy 

becomes significant beyond 300  m.  The numerical results show an improvement in 

the atomization with increasing gas pressure. For an example, the cumulative 

normalized volume for 1 MPa and 2.5 MPa at 0.6 mm droplet diameter is 0.48 and 

0.73 respectively. The experimental results also show a similar trend. However, the 
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experimental results show no improvement in the atomization process beyond 2.5 

MPa gas pressure. This may be due to the compressibility effect of the gas phase. At 

higher gas pressures, the structure of the shock waves does not change significantly 

with the increasing gas pressure. Therefore, the momentum transfer from the gas 

phase remains the same, irrespective of the gas pressure. However, the numerical 

simulations neglect the compressibility effects, hence could not show such variation. 

Effect of the Melt Properties on the Atomization Process 

Atomization of three molten metals (aluminum, Material X, and steel) with 

different thermophysical properties (Table 5) is investigated in this section. An 

artificial material (Material X) with intermediate thermophysical properties is 

introduced to obtain an accurate trend. More information on simulation parameters is 

included in Table 4. 

Figure 29 shows the time evolution of melt-gas interaction for the three melts. 

The rate of evolution of the atomization process decreases with increasing melt 

density as in steel. Low-density aluminum atomizes at a much faster rate compared to 

material X and steel. The inlet gas pressure is maintained in the same for all three 

simulations. However, due to the density difference, the inertia of the melt and their 

resistance to deformation and breakup can vary. For example, in Figure 29, at t = 0.75 

ms steel has still not undergone the melt disintegration at the point of impact. Thus, 

the density difference alone is the reason for the variation in rate of atomization with 

time. Irrespective of their rate of evolution, all three melts follow similar atomization 

physics as explained in Figure 16. All three melts display surface waves due to 

Kelvin-Helmholtz interfacial instability, and with time, these surface waves become 
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increasingly unstable creating liquid sheets and ligaments. Meanwhile, at the point of 

impact, the atomizing gas penetrates the metal and divide the melt into two segments. 

All three melts show these characteristics.  

  

 

Figure 29 - Time evolution of the melt and gas interaction (effect of melt properties) 

 

For a better understanding of the atomization process, the cross-sectional view 

at     is shown in Figure 30. The black color contours represent the melt-gas 

interface. The background colors represent the vorticities perpendicular to this plane. 

Yellow represents vorticity pointed into the page, and blue shows vorticity out of the 
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page. These images clearly show the variation of surface waves and the amplification 

of the instability with time. However, it should be noted that these are three-

dimensional surface waves and deformations that include azimuthal transport. This 

can be seen in aluminum simulations at 0.35 ms (circled in red) when a sudden 

appearance of a ligament due to its azimuthal movement can be seen.  

Since steel atomizes at a much slower rate, it can be used to investigate the 

generation of surface waves. At 0.2 ms, there is hardly any surface wave, however, 

slight surface modulations can be observed starting from 0.25 ms. Two parameters 

affect these surface waves. The first is the relative velocity between melt and gas 

phases. Once these surface waves are generated, the instability further grows until the 

ligament stretches and breaks up, as shown by the blue circle at 0.3 ms. The 

instabilities behind the generation of these surface waves and their subsequent 

breakup process are discussed in the previous section. The second factor that affects 

the surface wave is from Rayleigh-Taylor instability due to air penetration at the point 

of impact. This air penetration forces the melt to move either upward or downward 

direction. The downward moving melt counteracts with the surface waves partly due 

to relative velocities in the neighborhood of the ligament. This can be seen in material 

X at 0.3 ms and 0.35 ms time intervals (circled in black). At 0.3 ms, there are two 

distinct extended structures. However, these two structures are combined without 

breaking up as it does in aluminum (circled in blue). With the extra melt pushing 

towards these structures, the instability occurs due to relative velocity, which forces 

them to combine. Initially the upward moving melt facilitates surface waves as seen in 

steel simulations (circled in yellow). 
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Figure 30 – Early stages of the atomization process – vorticity (2-D images show the 
cross-sectional view at    . The black color contours show the melt-gas interface 

(melt is present at the left side of the contour). The color plots indicate the vorticity 
perpendicular to the cross-section. Yellow color represents the vorticity vector 
pointing towards the page, and the blue color represents the opposite direction.  
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There is a strong circulation area in the gas side between the melt-tip and the 

point of impact. This also forces the melt in the upward direction, creating surface 

waves. Small portions of these melts are then accumulated near the melt-tip, as also 

observed in the experiments.  

 

 

Figure 31 - Time evolution of the number of droplets – effect of melt properties, a. 
Original distribution, b. Updated distribution 

 

Figure 31 shows the time evolution of the number of droplets for three 

different molten metals. The original distributions (Figure 31a) show that all three 

melts follow a similar trend. However, the peak time changes with the melt. The low-

density aluminum reaches a peak around 1.2 ms and material X and steel at 1.6 ms 

and 2.2 ms, respectively. Since this peak occurs primarily due to the balance between 

the number of droplets generated and the number of droplets leaving the 

computational domain, it can be assumed that all three melts are at the same stage of 

the atomization process when the peak in number of droplets occurs. However, due to 

the variation in the rate of evolution (due to the inertia or the density of the melt), 
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each melt achieves the peak at different rates. Figure 31b shows the updated number 

of droplets. The total number of droplets decreases with increasing density as the 

higher density liquids atomize at a slower rate.  

 

 

Figure 32 - Mean droplet velocities as a function of droplet diameter at 2 ms – effect 
of melt 

 

Figure 32 shows the mean droplet velocities as a function of diameter for the 

three melts at 2 ms. The smaller droplets induce higher velocities and the droplet 

velocity decreases with the droplet diameter. This is due to the higher inertia of the 

larger droplets. This trend can be seen in all three melts. When comparing the three 

melts at a given droplet diameter, aluminum droplets have a higher mean velocity, 
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and the mean velocity decreases with the increasing melt density. As an example, for 

100  m droplet, the mean velocities of the aluminum, material X, and steel droplets 

are around 160, 110, and 60 m/s, respectively. Similarly, this variation is due to the 

differences in melt inertia.  

In Figure 33, a comparison of normalized cumulative volume for the three 

melts is shown at 2 ms. Only the droplets which satisfy the conditions AR < 2 in Z > 

75 mm (secondary atomized droplets) are considered. These cumulative plots provide 

the yield of the atomization process and display the effectiveness of the atomization 

process. Steel provides a better yield compared to other two melts and the yield 

increases with melt density. In the secondary breakup process, higher aerodynamic 

Weber number droplets tend to breakup further until they reach a critical Weber 

number (Choudhury, 2015; Saha et al., 2012). The aerodynamic Weber number is 

defined as 
         , where      is the relative velocity between gas and the droplet (i.e.,           ). Since high-density liquids provide more resistance towards the gas 

flow (Figure 32), the induced velocities of the steel droplets are much smaller than 

that of material X and aluminum. Since the gas pressure is maintained at 1 MPa for all 

three simulations, the gas velocity is the same or in the same order of magnitude for 

all three simulations.  Therefore, the aerodynamic Weber number of the high-density 

melts is much higher than low-density melts; hence high-density liquids have higher 

potential to breakup further. 
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Figure 33 - Normalized cumulative volume graphs – effect of molten metal properties 

 

Figure 34 shows the droplet size distributions corresponding to the droplets 

that are discriminated based on axial location (Z > 75 mm) at 2 ms. It should be noted 

that the number of droplets is decreasing with increasing density. As the droplets are 

discriminated based on the axial location, aluminum simulation provides the most 

droplets (i.e., – aluminum is evolving at a much higher rate than the other two melts). 

Irrespective of the melt properties, all three melts show the peak in the number of 

droplets in 120 – 140    diameter range.  
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Figure 34 - Droplet size distributions (2 ms) – Z > 75 mm (blue color – droplets with 
A.R   2, yellow color – droplets with A.R < 2) 

 

 

Figure 35 - Time evolution of mean diameter – effect of melt properties (Cases 7, 8 
and 9, 2.0 ms, Z > 75 mm, AR < 2.0) 
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Figure 35 shows the time evolution of the mean diameter for the cases 7,8, and 

9. The comparisons are made at 2 ms, and only the secondary atomized droplets are 

used for the mean diameter calculations. All three melts show similar variation in the 

mean diameter at the early stages of the atomization process. The mean diameter for 

the aluminum droplets reaches its peak around 1.6 ms, and the other two melts do not 

reach the peak within the time shown in Figure 35. The material X simulation shows 

that it is close to the peak location as the slope is getting smaller around 2 ms. 

However, the mean diameter of steel droplets continuously increases with time. 

 

Table 7 – Characteristic time scales – effect of melt properties 

Molten 

material 

   (  )    (  ) 
Simulation Estimated Simulation Estimated 

Aluminum 1.2 - 1.6 - 

Material X 1.6 1.56 - - 

Steel 2.2 2.05 2.8 2.73 

 

Table 7 shows the characteristic times scales for the three melts. For these 

simulations, Equation 22 can be simplified as  

    √   ( 24 ) 

 

Table 7 also verify Equation 22 for both time scales. As Equation 22 can 

predict both time scales successfully, it can be used to predict the simulation times for 

future simulations (with different operational parameters) to achieve similar 
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atomization characteristics (i.e., time to reach the peak in number of droplets, time to 

reach the peak in mean diameter.). 

Effect of the Gas Properties on the Atomization Process 

This section discusses the effect of gas properties on the atomization process 

using cases 5 and 6. Molten aluminum is atomized using nitrogen and argon at 1 MPa 

gas pressure using the mesh number two. As shown in Table 5, the main difference 

between argon and nitrogen is the slight variation in density. It will slightly increase 

the gas momentum in argon, however, as the total pressure is specified at the gas inlet. 

Therefore, the inlet gas velocity of argon is somewhat lower than that of nitrogen.  

Figure 36 shows a comparison of the interfacial dynamics for the two cases. It 

does not show any significant variation in the atomization process. Both simulations 

show the same characteristics and interfacial instabilities discussed in Chapter 4. 

However, a small delay in the atomization process can be observed in aluminum-

nitrogen combination (i.e., time delay in flow disintegration at the point of impact at 

0.5 ms).  

Figure 37 shows the statistics of secondary atomized droplets. Figure 37a 

shows the droplet size histograms. A slight increment in the number of secondary 

atomized droplets can be observed. The mean diameters for argon and nitrogen 

simulations are 187.9  m and 200.3  m, respectively.  
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Figure 36 – Effect of atomizing gas on the aluminum atomization process, nitrogen 
(top row), argon (bottom row) 

 

Figure 37b shows the normalized cumulative volume graphs for cases 5 and 6. 

Both simulations show an identical distribution beyond 200  m diameters. A slight 

improvement can be observed in Al-Ar simulation between 100- 200  m diameters. 

This is due to increased number of droplets in the Al-Ar simulation within that 

diameter range. 
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Figure 37 – Effect of the atomizing gas on aluminum atomization, a. The size 
distribution of the secondary atomized droplets, Aluminum – Nitrogen (left), 

Aluminum – Argon (right), b. Comparison of normalized cumulative volume of the 
secondary atomized droplets (2 ms) 

Effect of the Melt Flow Rate on the Atomization Process 

The effect of the melt flow rate on the droplet size distributions is considered 

next by changing the volume flow rate. Case 7 .           / is taken as the base 

case and two other simulations (Cases 11 and 12) with       and     are used to 

make a comparison. As done for all cases, the simulations are initiated with the same 

amount of melt inside the computational geometry.  
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Figure 38 – Time evolution of melt-gas interaction – effect of melt flow rate (cases 7, 
11, and 12) 

 

The numerical flow visualization of atomization for       and    (cases 11 

and 7 respectively) in Figure 38 does not show significant differences in the flow 

patterns and atomization characteristics. Both simulations show the critical 

characteristics of surface waves, gas penetration at the point of impact, and flow 

disintegration.  
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Figure 39 – Effect of melt flow rate (cases 7, 11, and 12), a. time evolution of the number of droplets, b. normalized cumulative volume, 
c. droplet size distribution
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Only slight changes can be observed in the rate of progression of the 

atomizing melt stream. Due to the slower replenishment of the melt for low flow rate 

(Case 11), a faster upward movement can be observed near the melt tip. This enables 

the melt to disintegrate (at the point of impact) at a slightly faster rate.  

However, significant differences in the atomization process can be observed 

between Cases 7 and 12. The higher melt flow rate (Case 12) replenishes the melt 

quickly and provides a higher resistance to the recirculating gas near the point of 

impact. A significant amount of melt accumulating within the point of impact, and the 

melt-tip can be observed at 0.3 ms. The downward melt velocity and the upward gas 

movement create a bag-like structure at 0.4 ms for Case 12, which breakup up in the 

subsequent time steps as a result of melt gas interaction. This bag-like structure 

creates a thin sheet of melt, and due to the gas interaction, it further stretches and tears 

into ligaments and droplets. This flow mechanism has some similar characteristics to 

the bag breakup in secondary atomization, even though it is categorized as primary 

breakup. A flow disintegration at the point of impact can be observed at 0.6 ms. 

 The flow characteristics of Case 12 are entirely different from Cases 7 and 11 

and are seen to be less efficient, as seen in the cumulative volume plot in Figure 39. 

The total number of droplets in the fourth quadrant significantly increases for the 

higher flow rate but does not change for Cases 7 and 11. It is assessed that Case 12 is 

at a very early stage of the atomization process compared to the other two cases since 

the number of droplets that appear in the fourth quadrant is relatively small compared 

to those for low flow rates.  

All three flow rates show the peak in droplet size distribution histograms in 

the 125-137  m diameter range. However, the percentage of the number of droplets in 
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this diameter range varies as 7.2, 7.2, 9 in the order of increasing flow rate. The 

percentage of number of droplets larger than 300  m diameter varies as 7.8, 7.2, and 

30%. Cases 11 and 7 show similar values, and it shows that most of the atomization 

has already taken place within this time period and computational domain. However, 

for Case 12, around 30% of the droplets have diameters above 300  m. It shows that 

the higher melt flow rates may need a longer computational domain and have to run 

for extended period to reach similar level of atomization.  

 

Table 8 – Characteristic time scales – effect of melt flow rate 

Flow rate    (  ) 
Simulation Estimated      ̇  1.2 0.96      ̇  1.2 -      ̇  2 2.05 

 

Table 8 shows the validity of Equation 22 for different melt flow rates. The 

simulation shows that both Cases 11 and 7 have the same characteristic time scale. 

Since the peak in the simulations are obtained by comparing the values at 0.2 ms time 

intervals, it only provides a rough estimation.  
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CONCLUSIONS 

The effects of several operational parameters have been studied in the high-

pressure gas atomization process. A VOF-based, three dimensional, Eulerian-Eulerian 

simulations, which do not involve any semi-empirical correlations, have been 

conducted to understand the simultaneous primary and secondary atomization 

processes and capture detailed information on the droplet sizes and cumulative 

volume. Thus, the simulation does not involve any facilitation of a breakup process as 

it occurs naturally without any modeling. The cumulative volume trends obtained for 

four gas pressures, three melts of different thermophysical properties, two atomizing 

gases and three different flow rates have been analyzed. Direct comparison with the 

experiments is not possible since an annular-slit nozzle is used for computations, 

whereas the experiments used multiple circular nozzles around the melt inlet; 

however the computations predict the correct trend. Filtering the droplets in the fourth 

quadrant including the droplets that left the computational domain and discriminating 

them based on an aspect ratio less than two, it is possible to simulate near-complete 

primary and secondary atomization in 2 ms for all melts within 100 mm in the axial 

direction of a larger chamber.  

Interfacial dynamics in aluminum-nitrogen, melt gas combination shows the 

presence of several interfacial instabilities at different stages of the atomization 

process. The identified interfacial instabilities governing the primary atomization 

process are the Kelvin-Helmholtz instability and Rayleigh-Taylor instability. Due to 

the higher gas momentum, the melt-gas interface seems to be peeled off forming 

ligaments, instead of deforming and inducing bag like structures (bag breakup). Later 

these ligaments breakup into smaller droplets due to the Rayleigh-Taylor instability. 
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A combination of these two instabilities governs the generation of surface waves and 

their subsequent breakup process. Rayleigh-Plateau and capillary instabilities drive 

the secondary atomization process. A novel approach is introduced to visualize the 

vorticity variations at the melt-gas interface in three-dimension and described its 

capability to explain the breakup process. A ligament formation mechanism based on 

the azimuthal movements is identified at the early stages of the atomization process. 

The perturbations in the gas flow due to its interaction with the melt tube is found to 

be the origin of these azimuthal variations.  

Increasing gas pressure is found to be favorable for the atomization process in 

terms of the yield due to the higher momentum transfer at the melt-gas interface. The 

rate of the atomization process is increased significantly with increasing gas pressure. 

However, the key characteristics of the atomization process did not change. 

Three molten metals/alloys (aluminum, an artificial material, and steel) have 

been considered for capturing the effect of melt thermophysical properties. The rate of 

evolution of the atomization process decreases with increasing melt inertia. However, 

similar flow characteristics are observed irrespective of the differences in the melt 

properties. The dynamics of the surface waves are further investigated using two-

dimensional cut planes. The presence of the abovementioned interfacial instabilities is 

observed. It is found that the melt inertia has a strong influence on how the interfacial 

instabilities interact with one another. The yield of the atomization process is found to 

be increasing with increasing melt density.  

The effect of the atomizing gas on the high-pressure gas atomization process is 

studied by comparing the atomization of molten aluminum with nitrogen and argon as 

the atomizing gas. Significant changes in the atomization process have not been 
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observed in terms of the interfacial dynamics, and the cumulative volume plots as 

argon and nitrogen have relatively similar thermophysical properties. However, a 

slight improvement in the droplet size distribution can be observed in aluminum-

argon, melt gas combination.  

Three melt flow rates are compared to obtain the effect of melt flow rate on 

the atomization process and the powder size distribution. Increasing melt flow rate 

can significantly vary the characteristics of the primary atomization. Small flow rates 

are prone to experience a strong reverse flow near the melt-tip and obstruct the melt 

inlet. Higher melt flow rates replenish the melt inside the computational domain at a 

higher rate, increasing melt-gas interactions. However, due to added resistance 

towards the gas flow, the gas momentum decreases, resulting in a decrement in the 

effective momentum transfer to the melt stream. Therefore, the rate of evolution of 

the atomization process decreases, resulting in longer computational times.  

A characteristic time scale has been introduced to describe the rate of 

progression of the atomization process for different operational parameters. The 

validity of the relationship is verified by comparing it with the simulations using two 

physical characteristic time scales. This characteristic time scale can be utilized to 

estimate how long does it needs to conduct a numerical simulation with different 

operational parameters to reach a similar level of the atomization process.  

Despite the computational difficulties and the assumptions made in this 

investigation, the trends can be predicted reasonably well for the future design of 

experiments. A complete simulation of various melts at different flow rates and 

pressures may not be necessary for the entire duration of the atomization process in 

the entire chamber. Most of atomization is completed within 2 ms and 100 mm of the 
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atomization geometry. For high flow rates of the melt, longer computational times 

may be needed.  

 

 



98 
 

LIST OF REFERENCES 

Alan Lawley. (1978). PREPARATION OF METAL POWDERS. Annual Review of 

Materials Research, 8, 49–71. 

Albadawi, A., Donoghue, D. B., Robinson, A. J., Murray, D. B., & Delauré, Y. M. C. 
(2013). Influence of surface tension implementation in Volume of Fluid and 
coupled Volume of Fluid with Level Set methods for bubble growth and 
detachment. International Journal of Multiphase Flow. 
https://doi.org/10.1016/j.ijmultiphaseflow.2013.01.005 

Allimant, A., Planche, M. P., Bailly, Y., Dembinski, L., & Coddet, C. (2009). 
Progress in gas atomization of liquid metals by means of a De Laval nozzle. 
Powder Technology. https://doi.org/10.1016/j.powtec.2008.04.071 

Anderson, I. E., White, E. M. H., & Dehoff, R. (2018). Feedstock powder processing 
research needs for additive manufacturing development. Current Opinion in 

Solid State and Materials Science. https://doi.org/10.1016/j.cossms.2018.01.002 

Aydin, O., & Unal, R. (2011). Experimental and numerical modeling of the gas 
atomization nozzle for gas flow behavior. COMPUT FLUIDS. 
https://doi.org/10.1016/j.compfluid.2010.10.013 

Ayers, J.D., Anderson, I. . (1985). Very Fine Metal Powders. Journal of Metals, 37, 
16–21. 

Basak, C. B., Krishnan, M., Kumar, R., Abdullah, K. K., & Anantharaman, S. (2014). 
Characterization and process evaluation of Ni-Ti-Fe shape memory alloy macro-
spheres directly fabricated via rotating electrode process. Journal of Alloys and 

Compounds, 597, 15–20. https://doi.org/10.1016/j.jallcom.2014.01.227 

Bourlioux, A. (1995). A coupled level-set volume-of-fluid algorithm for tracking 
material interfaces. 6th International Symposium on Computational Fluid 

Dynamics, Lake Tahoe,Ca, Vol 15. 

Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for 
modeling surface tension. Journal of Computational Physics, 100(2), 335–354. 
https://doi.org/10.1016/0021-9991(92)90240-Y 

Chandrasekhar, S., & Gillis, J. (2009). Hydrodynamic and Hydromagnetic Stability. 
Physics Today. https://doi.org/10.1063/1.3058072 

Chen, G., Zhao, S. Y., Tan, P., Wang, J., Xiang, C. S., & Tang, H. P. (2018). A 
comparative study of Ti-6Al-4V powders for additive manufacturing by gas 
atomization, plasma rotating electrode process and plasma atomization. Powder 

Technology. https://doi.org/10.1016/j.powtec.2018.04.013 

Choudhury, P. (2015). Theoretical And Experimental Investigaton Of The Cascading 



99 
 

Nature Of Pressure Swirl Atomization. 

Davanlou, A., Lee, J. D., Basu, S., & Kumar, R. (2015). Effect of viscosity and 
surface tension on breakup and coalescence of bicomponent sprays. Chemical 

Engineering Science. https://doi.org/10.1016/j.ces.2015.03.057 

Davies, T. V., & Batchelor, G. K. (1954). The Theory of Homogeneous Turbulence. 
The Mathematical Gazette. https://doi.org/10.2307/3609796 

Deshpande, S. S., Anumolu, L., & Trujillo, M. F. (2012). Evaluating the performance 
of the two-phase flow solver interFoam. Computational Science & Discovery, 
5(1), 014016. https://doi.org/10.1088/1749-4699/5/1/014016 

Desjardins, O., Moureau, V., & Pitsch, H. (2008). An accurate conservative level 
set/ghost fluid method for simulating turbulent atomization. Journal of 

Computational Physics. https://doi.org/10.1016/j.jcp.2008.05.027 

Eggers, J., & Villermaux, E. (2008). Physics of liquid jets. Reports on Progress in 

Physics. https://doi.org/10.1088/0034-4885/71/3/036601 

Espina, P.E., Ridder, S.D., Biancaniello, F.S., Mattingly, G. E. (1989). Analysis of the 
Aspiration Phenomena in a Close-Cloupled Inert Gas Atomizer, Characterization 
and Diagnostics of Ceramics and Metal Particulate. TMS, 49–62. 

Farvardin, E., & Dolatabadi, A. (2013). Numerical Simulation of the Breakup of 
Elliptical Liquid Jet in Still Air. Journal of Fluids Engineering. 
https://doi.org/10.1115/1.4024081 

Figliola, R.S., Anderson, I. E. (1993). Characterization of High Pressure Gas 
Atomization Flow Fields, Computational and Numerical Techniques in Powder 
Metallurgy. TMS, 29–39. 

Firmansyah, D. A., Kaiser, R., Zahaf, R., Coker, Z., Choi, T. Y., & Lee, D. (2014). 
Numerical simulations of supersonic gas atomization of liquid metal droplets. 
Japanese Journal of Applied Physics, 53(5 SPEC. ISSUE 3). 
https://doi.org/10.7567/JJAP.53.05HA09 

Fritsching, U. (2004). Spray Simulation, Modeling and Numerical Simulation of 

Sprayforming Metals. 

Fritshing, U., & Uhlenwinkel, V. (2012). Hybrid Gas Atomization for Powder 
Production. Powder Metallurgy, 99–124. https://doi.org/10.5772/711 

Gorokhovski, M., & Herrmann, M. (2008). Modeling Primary Atomization. Annual 

Review of Fluid Mechanics. 
https://doi.org/10.1146/annurev.fluid.40.111406.102200 

Grant, P. S., Cantor, B., & Katgerman, L. (1993a). Modelling of droplet dynamic and 
thermal histories during spray forming-I. individual droplet behaviour. Acta 



100 
 

Metallurgica Et Materialia. https://doi.org/10.1016/0956-7151(93)90039-U 

Grant, P. S., Cantor, B., & Katgerman, L. (1993b). Modelling of droplet dynamic and 
thermal histories during spray forming-II. Effect of process parameters. Acta 

Metallurgica Et Materialia. https://doi.org/10.1016/0956-7151(93)90040-Y 

Guildenbecher, D. R., López-Rivera, C., & Sojka, P. E. (2009). Secondary 
atomization. Experiments in Fluids. https://doi.org/10.1007/s00348-008-0593-2 

Haghshenas, M., Wilson, J. A., & Kumar, R. (2017). Algebraic coupled level set-
volume of fluid method for surface tension dominant two-phase flows. 
International Journal of Multiphase Flow. 
https://doi.org/10.1016/j.ijmultiphaseflow.2016.12.002 

Hanson, A. R., Domich, E. G., & Adams, H. S. (1963). Shock tube investigation of 
the breakup of drops by air blasts. Physics of Fluids. 
https://doi.org/10.1063/1.1706864 

Hanthanan Arachchilage, K., Haghshenas, M., Park, S., Zhou, L., Sohn, Y., 
McWilliams, B., … Kumar, R. (2019). Numerical simulation of high-pressure 
gas atomization of two-phase flow: Effect of gas pressure on droplet size 
distribution. Advanced Powder Technology. 
https://doi.org/10.1016/J.APT.2019.08.019 

Hasslberger, J., Ketterl, S., Klein, M., & Chakraborty, N. (2019). Flow topologies in 
primary atomization of liquid jets: A direct numerical simulation analysis. 
Journal of Fluid Mechanics. https://doi.org/10.1017/jfm.2018.845 

Hattel, J. H., Pryds, N. H., Thorborg, J., & Ottosen, P. (1999). Quasi-stationary 
numerical model of atomized metal droplets. I: model formulation. Modelling 

and Simulation in Materials Science and Engineering. 
https://doi.org/10.1088/0965-0393/7/3/309 

Heck, U., Fritsching, U., & Bauckhage, K. (2000). Gas flow effects on twin-fluid 
atomization of liquid metals. Atomization and Sprays: Journal of the 

International Institutions for Liquid Atomization and Spray Systems, 10(1), 25. 

Hernandez, F; Riedemann, T; Tiarks, J; Kong, B; Regele, J.D; Ward, T; Anderson, I. . 
(2019). Numerical Simulation and Validation of Gas and Molten Metal Flows in 
Close-Coupled Gas Atomization. He Minerals, Metals & Materials Series (Eds) 

TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings. 

Herrmann, M. (2011). On simulating primary atomization using the refined level set 
grid method. Atomization and Sprays. 
https://doi.org/10.1615/AtomizSpr.2011002760 

Hinze, J. O. (1955). Fundamentals of the hydrodynamic mechanism of splitting in 
dispersion processes. AIChE Journal. https://doi.org/10.1002/aic.690010303 



101 
 

Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the 
dynamics of free boundaries. Journal of Computational Physics, 39(1), 201–225. 
https://doi.org/10.1016/0021-9991(81)90145-5 

Issa, R. I. (1986). Solution of the implicitly discretised fluid flow equations by 
operator-splitting. Journal of Computational Physics. 
https://doi.org/10.1016/0021-9991(86)90099-9 

J.T, S. (2013). Lick back in close-coupled atomization: A phenomenological study. 
5th International Conference on Spray Deposition and Melt Atomization, SDMA 

2013, 23–25. 

Jarrahbashi, D., & Sirignano, W. A. (2014). Invited Article: Vorticity dynamics for 
transient high-pressure liquid injection. Physics of Fluids. 
https://doi.org/10.1063/1.4895781 

Jasak, H., & Weller, H. (1995). Interface tracking capabilities of the inter-gamma 
differencing scheme. Unknown, (2), 1–9. 

Kaiser, R., Li, C., Yang, S., & Lee, D. (2018). A numerical simulation study of the 
path-resolved breakup behaviors of molten metal in high-pressure gas 
atomization: With emphasis on the role of shock waves in the gas/molten metal 
interaction. Advanced Powder Technology. 
https://doi.org/10.1016/j.apt.2017.12.003 

Kull, H. J. (1991). Theory of the Rayleigh-Taylor instability. Physics Reports. 
https://doi.org/10.1016/0370-1573(91)90153-D 

Kuntz, D.W., Payne, J. . (1995). Simulation of powder metal fabrication with high 
pressure gas atomization. Advances in Powder Metallurgy and Particulate 

Materials. 

Lagutkin, S., Achelis, L., Sheikhaliev, S., Uhlenwinkel, V., & Srivastava, V. (2004). 
Atomization process for metal powder. Materials Science and Engineering A, 
383(1 SPEC. ISS.), 1–6. https://doi.org/10.1016/j.msea.2004.02.059 

Li, X, Sander, S., & Ellendt, N. (2013). Coupled Simulation of Spray Process for 
Metal Matrix Composite Powder Production. … Atomization and Spray …. 

Li, Xing gang, & Fritsching, U. (2017). Process modeling pressure-swirl-gas-
atomization for metal powder production. Journal of Materials Processing 

Technology, 239, 1–17. https://doi.org/10.1016/j.jmatprotec.2016.08.009 

Ling, Y., Fuster, D., Zaleski, S., & Tryggvason, G. (2017). Spray formation in a 
quasiplanar gas-liquid mixing layer at moderate density ratios: A numerical 
closeup. Physical Review Fluids. 
https://doi.org/10.1103/PhysRevFluids.2.014005 

Lubanska H. (1970). Correlation of Spray Ring Data for Gas Atomization of Liquid 



102 
 

Metals. J Metals. 

Marmottant, P. H., & Villermaux, E. (2004). On spray formation. Journal of Fluid 

Mechanics. https://doi.org/10.1017/S0022112003006529 

Mates, S.P., Ridder, S.D., Biancaniello, F. S. (2000). Comparison of the supersonic 
length and dynamic pressure characteristics of discrete-jet and annular close-
coupled nozzles used to produce fine metal powders. TMS Annual Meeting in 

Nashville, Tennessee, 71–81. 

Mates, S. P., & Settles, G. S. (2005a). A study of liquid metal atomization using 
close-coupled nozzles, Part 2: Atomization behavior. Atomization and Sprays, 
15(1), 41–59. https://doi.org/10.1615/AtomizSpr.v15.i1.30 

Mates, S. P., & Settles, G. S. (2005b). Study of Liquid Metal Atomization Using 
Close-Coupled Nozzles, Part 1: Gas Dynamic Behavior. Atomization and Sprays, 
15(1), 19–40. https://doi.org/10.1615/AtomizSpr.v15.i1.20 

Metz, R., Machado, C., Houabes, M., Elkhatib, M., & Hassanzadeh, M. (2008). 
Nitrogen spray atomization of molten tin metal: Powder morphology 
characteristics. Journal of Materials Processing Technology, 195(1–3), 248–254. 
https://doi.org/10.1016/j.jmatprotec.2007.05.006 

Mi, J., Figliola, R.S., Anderson, I. E. (1996). A numerical simulation of gas flow field 
effects on high pressure gas atomizaition due to operating pressure variation. 
Material Science and Engineering A, 208, 20–29. 

Mi, J., Figliola, R. S., & Anderson, I. E. (1997). A numerical investigation of gas flow 
effects on high-pressure gas atomization due to melt tip geometry variation. 
Metallurgical and Materials Transactions B. https://doi.org/10.1007/s11663-
997-0021-7 

Miller, S. A., Miller, R. S., Mourer, D. P., & Christensen, R. W. (1997). High yield, 
nonaxisymmetric atomization of nickel base superalloys. International Journal 

of Powder Metallurgy (Princeton, New Jersey). https://doi.org/10.1016/S0026-
0657(99)80018-6 

Motaman, S., Mullis, A. M., Cochrane, R. F., & Borman, D. J. (2015). Numerical and 
Experimental Investigations of the Effect of Melt Delivery Nozzle Design on the 
Open- to Closed-Wake Transition in Closed-Coupled Gas Atomization. 
Metallurgical and Materials Transactions B: Process Metallurgy and Materials 

Processing Science, 46(4), 1990–2004. https://doi.org/10.1007/s11663-015-
0346-6 

Motaman, S., Mullis, A. M., Cochrane, R. F., McCarthy, I. N., & Borman, D. J. 
(2013). Numerical and experimental modelling of back stream flow during close-
coupled gas atomization. Computers and Fluids, 88, 1–10. 
https://doi.org/10.1016/j.compfluid.2013.08.006 



103 
 

Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent 
speed: Algorithms based on Hamilton-Jacobi formulations. Journal of 

Computational Physics, 79(1), 12–49. https://doi.org/10.1016/0021-
9991(88)90002-2 

Patankar, S. V. (1980). Numerical heat transfer and fluid flow. 

Piomelli, U. (1992). Numerical Solution of the Viscous Flow in an Atomization Die, 

NIST/Industrial Consortium on Intelligent Processing of Rapidly Solidified 

Metal Powders by Inert Gas Atomization. 

Pryds, N. H., Hattel, J. H., & Thorborg, J. (1999). Quasi-stationary numerical model 
of atomized metal droplets. II: prediction and assessment. Modelling and 

Simulation in Materials Science and Engineering. https://doi.org/10.1088/0965-
0393/7/3/310 

Rai, G., Lavernia, E., & Grant, N. J. (1985). Powder Size and Distribution in 
Ultrasonic Gas Atomization. JOM, 37(8), 22–26. 
https://doi.org/10.1007/BF03257674 

Rayleigh. (1882). Investigation of the character of the equilibrium of an 
incompressible heavy fluid of variable density. Proceedings of the London 

Mathematical Society. https://doi.org/10.1112/plms/s1-14.1.170 

Rayleigh, L. (1879). On the capillary phenomenon of jets. Proceedings of the Royal 

Society of London. 

Reitz, R. D., & Diwakar, R. (1986). Effect of drop breakup on fuel sprays. SAE 

Technical Papers. https://doi.org/10.4271/860469 

Reitz, R. D., & Diwakar, R. (1987). Structure of high-pressure fuel sprays. SAE 

Technical Papers. https://doi.org/10.4271/870598 

Roenby, J., Bredmose, H., & Jasak, H. (2016). A computational method for sharp 
interface advection. Royal Society Open Science, 3(11). 

Roenby, J., Larsen, B. E., Bredmose, H., & Jasak, H. (2017). A New Volume-of-Fluid 
Method in Openfoam. VII International Conference on Computational Methods 

in Marine Engineering, MARINE 2017, (February), 1–12. 

Sadhal, S. S. (2011). Transport Phenomena with Drops and Bubbles. In Springer. 
https://doi.org/10.1007/978-1-4419-9872-9 

Saeedipour, M., Schneiderbauer, S., Plohl, G., Brenn, G., & Pirker, S. (2017). 
Multiscale simulations and experiments on water jet atomization. International 

Journal of Multiphase Flow, 95. 
https://doi.org/10.1016/j.ijmultiphaseflow.2017.05.006 

Saha, A., Lee, J. D., Basu, S., & Kumar, R. (2012). Breakup and coalescence 



104 
 

characteristics of a hollow cone swirling spray. Physics of Fluids. 
https://doi.org/10.1063/1.4773065 

Shinjo, J., & Umemura, A. (2010). Simulation of liquid jet primary breakup: 
Dynamics of ligament and droplet formation. International Journal of 

Multiphase Flow. https://doi.org/10.1016/j.ijmultiphaseflow.2010.03.008 

Shinjo, J., & Umemura, A. (2011a). Detailed simulation of primary atomization 
mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects). 
Proceedings of the Combustion Institute. 
https://doi.org/10.1016/j.proci.2010.07.006 

Shinjo, J., & Umemura, A. (2011b). Surface instability and primary atomization 
characteristics of straight liquid jet sprays. International Journal of Multiphase 

Flow. https://doi.org/10.1016/j.ijmultiphaseflow.2011.08.002 

Si, C., Tang, X., Zhang, X., Wang, J., & Wu, W. (2017). Characteristics of 7055Al 
alloy powders manufactured by gas-solid two-phase atomization: A comparison 
with gas atomization process. Materials and Design. 
https://doi.org/10.1016/j.matdes.2017.01.028 

Strauss, J. (2000). Improvements in Close-Coupled Atomization: An Empirical 
Approach. TMS Annual Meeting in Nashville, Tennessee, 83–94. 

Strauss, J. T. (1999). Hotter gas increases atomization efficiency. Metal Powder 

Report. https://doi.org/10.1016/S0026-0657(00)86269-4 

Sussman, M. (1994). A level set approach for computing solutions to incompressible 
two-phase flow. Journal of Computational Physics. 
https://doi.org/10.1006/jcph.1994.1155 

Sussman, M., & Puckett, E. G. (2000). A Coupled Level Set and Volume-of-Fluid 
Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows. 
Journal of Computational Physics. https://doi.org/10.1006/jcph.2000.6537 

Taylor, G. . (1950). The instability of liquid surfaces when accelerated in a direction 
perpendicular to their planes. II. Proceedings of the Royal Society of London. 

Series A. Mathematical and Physical Sciences. 
https://doi.org/10.1098/rspa.1950.0086 

Thompson, J. S. (1948). A Study of Process Variables in the Production of Aluminum 
Powder by Atomization. Journal of the Institute of Metal, 74, 101–132. 

Thompson, J. S., Hassan, O., Rolland, S. A., Sienz, J., & LSN Diffusion Ltd. (2016). 
The identification of an accurate simulation approach to predict the effect of 
operational parameters on the particle size distribution (PSD) of powders 
produced by an industrial close-coupled gas atomiser. Powder Technology, 291, 
75–85. https://doi.org/10.1016/j.powtec.2015.12.001 



105 
 

Thomson, W. (1871).  XLVI. Hydrokinetic solutions and observations . The London, 

Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 
https://doi.org/10.1080/14786447108640585 

Ting, J,. Anderson, I. E. (2004). A computational fluid dynamics (CFD) investigation 
of the wake closure phenomenon. Materials Science & Engineering, A, 379, 
264–276. 

Ting, J., Peretti, M. W., & Eisen, W. B. (2002). The effect of wake-closure 
phenomenon on gas atomization performance. Materials Science and 

Engineering A, 326(1), 110–121. https://doi.org/10.1016/S0921-5093(01)01437-
X 

Tong, M., & Browne, D. J. (2008). Direct numerical simulation of melt-gas 
hydrodynamic interactions during the early stage of atomisation of liquid 
intermetallic. Journal of Materials Processing Technology, 202(1–3), 419–427. 
https://doi.org/10.1016/j.jmatprotec.2007.10.012 

Tong, M., & Browne, D. J. (2009). Modelling compressible gas flow near the nozzle 
of a gas atomiser using a new unified model. Computers and Fluids. 
https://doi.org/10.1016/j.compfluid.2008.11.014 

Umemura, A., & Wakashima, Y. (2002). Atomization regimes of a round liquid jet 
with near-critical mixing surface at high pressure. Proceedings of the 

Combustion Institute. 

Unal, A. (1987). EFFECT OF PROCESSING VARIABLES ON PARTICLE SIZE IN 
GAS ATOMIZATION OF RAPIDLY SOLIDIFIED ALUMINIUM POWDERS. 
Materials Science and Technology. 

Ünal, A. (1989). Liquid break-up in gas atomization of fine aluminum powders. 
Metallurgical Transactions B, 20(1), 61–69. 
https://doi.org/10.1007/BF02670350 

Weber, C. (1931). Disintegration of liquid jet. Math. Mech. 

Weller, H. G., Tabor, G., Jasak, H., & Fureby, C. (1998). A tensorial approach to 
computational continuum mechanics using object-oriented techniques. 
Computers in Physics. https://doi.org/10.1063/1.168744 

Weller, Henry G. (2008). A New Approach to VOF-based Interface Capturing 
Methods for Incompressible and Compressible Flow. Technical Report. 

William, R. C. (2016). The experimental analysis and simulation of the breakup of a 

liquid filament jetting from a rotary laminar spray nozzle. 

Yoshizawa, A. (1986). Statistical theory for compressible turbulent shear flows, with 
the application to subgrid modeling. PHYS. FLUIDS, 29(7, Jul. 1986), 2152–
2164. https://doi.org/10.1063/1.865552 



106 
 

Yoshizawa, Akira, & Horiuti, K. (1985). A Statistically-Derived Subgrid-Scale 
Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows. 
Journal of the Physical Society of Japan. https://doi.org/10.1143/JPSJ.54.2834 

Zeoli, N., & Gu, S. (2008a). Computational simulation of metal droplet break-up, 
cooling and solidification during gas atomisation. Computational Materials 

Science. https://doi.org/10.1016/j.commatsci.2007.10.005 

Zeoli, N., & Gu, S. (2008b). Computational validation of an isentropic plug nozzle 
design for gas atomisation. Computational Materials Science, 42(2), 245–258. 
https://doi.org/10.1016/j.commatsci.2007.07.013 

Zeoli, N., Tabbara, H., & Gu, S. (2011). CFD modeling of primary breakup during 
metal powder atomization. Chemical Engineering Science, 66(24), 6498–6504. 
https://doi.org/10.1016/j.ces.2011.09.014 

Zeoli, N., Tabbara, H., & Gu, S. (2012). Three-dimensional simulation of primary 
break-up in a close-coupled atomizer. Applied Physics A: Materials Science and 

Processing, 108(4), 783–792. https://doi.org/10.1007/s00339-012-6966-7 

Zhang, D. L. (2004). Processing of advanced materials using high-energy mechanical 
milling. Progress in Materials Science, 49(3–4), 537–560. 
https://doi.org/10.1016/S0079-6425(03)00034-3 

 


	Multiphase Flow Modeling of Molten Metal Atomization at High Gas Pressure
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 - INTRODUCTION
	CHAPTER 2 – LITERATURE REVIEW
	Metal Powder Production Methods
	High-Pressure Gas Atomization
	Experimental Studies
	Numerical Investigations

	Eulerian – Eulerian Numerical Methods for Interfacial Flows
	Numerical Challenges in Atomization Simulations

	CHAPTER 3 – NUMERICAL MODEL AND CASE SETUP
	Assumptions and Simplifications in the Simulations
	Governing Equations
	Turbulence Modeling
	Post-Processing of the Droplet Size Data
	Droplet Size Distribution Algorithm
	Symmetry Boundaries and Identifying Droplets that Leave the Computational Domain
	Droplet Sphericity and Aspect Ratio

	Simulation Case Setup
	Computational Grid Comparison
	Experimental Comparison

	CHAPTER 4 – DYNAMICS OF ATOMIZING MOLTEN ALUMINUM
	Interfacial Instabilities in Atomization
	Interfacial Dynamics
	Processing of Droplet Size Distributions

	CHAPTER 5 – EFFECT OF OPERATIONAL PARAMETERS ON THE ATOMIZATION PROCESS AND THE DROPLET SIZE DISTRIBUTION
	Effect of the Gas Pressure on the Atomization Process
	Effect of the Melt Properties on the Atomization Process
	Effect of the Gas Properties on the Atomization Process
	Effect of the Melt Flow Rate on the Atomization Process

	CONCLUSIONS
	LIST OF REFERENCES

