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ABSTRACT 

Ductile fracture is a topic of great importance in automotive and aerospace industries. 

Prediction of ductile fracture in engineering structures relies on developing robust material models 

under complex loading conditions. This dissertation addresses the anisotropic and strain rate 

effects in constitutive and ductile fracture models of lightweight metals. In the present modeling 

framework, the anisotropic plasticity behavior is modeled by combination of an initial anisotropic 

yield function and an isotropic hardening correction by Lode dependence. A new all-strain based 

anisotropic fracture model is proposed based on the approach of linear transformation on plastic 

strain rate tensor. The strain rate effects in ductile fracture is considered as an extension of the 

modified Mohr-Coulomb (MMC) fracture model by coupling strain rate with stress state in terms 

of Lode angle parameter. The rate-dependent MMC model provides a well-bound solution up to 

the intermediate strain rate range (<1000/s) for metal forming and crashworthiness applications. 

The present modeling framework is calibrated from coupon tests of aluminum alloy and advanced 

high strength steel (AHSS) sheets using digital image correlation (DIC) technique and validated 

through correlations by finite element (FE) simulations. This study also demonstrates the 

applications of ductile fracture modeling in manufacturing processes. The thermo-mechanical FE 

simulations of orthogonal cutting processes using the Johnson-Cook constitutive and damage 

models show that the highly damaged regions in zones of material separation form a thin boundary 

layer at the tool tip. The numerical simulation results explain the success of analytical model with 

uncoupled component works of plasticity, friction and separation. The FE modeling results of 
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formability and component-level testing suggest that part behavior and material failure is well 

predicted using calibrated ductile fracture models under different loading conditions. 

KEYWORDS: Plasticity, Ductile Fracture, Anisotropy, Strain Rate, Finite Element 

Analysis, AHSS, Aluminum Alloys, Metal Forming, Machining 
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CHAPTER 1 INTRODUCTION 

1.1 Background 

In automotive industry, significant efforts are being put forth to design lightweight vehicles 

to meet fuel economy requirements. The applications of lightweight alloy materials in automotive 

structures offer great potentials for mass reduction while maintaining strength and other 

performance properties. Advanced high strength steels (AHSS) are widely used in automotive 

industry attributed to their better performance in crash energy management and significant 

achievement in mass reduction. AHSS are less ductile than conventional steels, which imposes 

challenges on accurate prediction of material fracture under different loading conditions. This, in 

turn, requires accurate material models throughout the part loading history at elevated strain rates, 

ranging from a typical strain rate of 10/s in stamping practices, to approximately 1000/s in full 

vehicle crash events (Keeler & Kimchi, 2015). For aluminum alloy sheets, material anisotropy has 

an important effect on sheet formability in the process chain. The key in improving the modeling 

accuracy of aluminum sheet forming processes and structural performance in design relies on 

accurate anisotropic plasticity and fracture models under multi-axial loading conditions.  

1.2 Motivation and Objectives 

In the last decade, various state-of-the-art ductile fracture models were developed with 

considerable effort on investigating the relation between fracture strain and multi-axial stress state 

under isotropic and quasi-static condition. The current work extends the isotropic modified Mohr-

Coulomb (MMC) stress-state dependent ductile fracture model with anisotropic and strain rate 

effects. The discussion in this work is limited to the scope of macroscopic phenomenological 
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modeling of a crack free body. The micromechanics modeling frameworks based on the micro-

void theory and continuum damage mechanics are beyond the scope of this thesis and hence not 

discussed.  

The present thesis work includes analytical models, experimental studies, and finite 

element (FE) simulations. In experiments, different types of coupon samples were designed and 

tested over a wide range of loading conditions. The digital image correlation (DIC) technique was 

used for full field measurement of displacement and strain analysis. The analytical models are 

proposed from the experimental findings. FE simulations are used to predict the deformation fields 

of parts and validate material models by comparing the global load-displacement responses and 

local fracture modes with experimental results. The overview of this thesis is summarized as 

follows:  

• Develop an integrated anisotropic modeling approach under multi-axial stress states, 

including anisotropic yield, anisotropic hardening and anisotropic fracture. 

• Develop a new strain rate dependent fracture model for dynamic loading event up to the 

intermediate strain rate range, including the coupling effect of strain rate and stress state. 

• Demonstrate the application of ductile fracture in manufacturing processes by predicting 

the deformation field and ductile fracture under complex part loading conditions. 

1.3 Outline of the thesis 

The present thesis consists of seven chapters. Chapter 1 gives a brief introduction of the 

background, motivations and objectives of the thesis. Chapter 2 reviews the phenomenological 

models of anisotropic plasticity and fracture, and strain rate dependent ductile fracture models.  



3 

 

Chapter 3 develops an anisotropic modeling framework for aluminum alloys. The 

anisotropic plasticity and fracture behaviors of 7075 aluminum alloy sheets are investigated by 

both experiments and finite element (FE) simulations. Different sheet samples were designed and 

tested under various loading conditions along three material directions. The full field displacement 

and strain was measured and analyzed by the digital image correlation (DIC) technique. The 

anisotropic plasticity is modeled by the Yld2000-2d yield function with flow stress correction by 

Lode dependence. For anisotropic fracture, the strain rate potential functions are revisited, and the 

methodology of linear transformation is used for developing the all-strain based anisotropic 

fracture model. The FE simulation results using shell elements demonstrate that the current 

modeling method offers a simple and efficient solution for solving anisotropic problems of 

aluminum alloys under proportional loading conditions. 

Chapter 4 proposes a new strain rate dependent ductile fracture model. The model was 

developed based on comprehensive experimental data analysis on several grades of AHSS sheets 

under quasi-static and high speed test conditions. The original modified Mohr-Coulomb (MMC) 

fracture model is extended with a strain rate dependent term either fully uncoupled or coupled with 

stress-state characterized by Lode angle. The new rate-dependent MMC model provides a bounded 

solution for modeling rate-dependent fracture problems up to the intermediate strain rate range for 

stamping and crash simulations. Finite element simulations are performed to correlate the test 

results under dynamic loading conditions. 

Chapter 5 discusses the finite element analysis of the high speed orthogonal cutting process 

of 2024-T351 aluminum alloys using the Johnson-Cook constitutive and damage models. The 2D 

explicit dynamic simulations demonstrate that the damaged regions, in which separation of 
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material occurs at the tool tip, form thin boundary layers on the top of the machined surface and 

on the underside of the chip. The simulation results explain the success of variable-separable 

algebraic models of cutting with continuous chips in which the component works of chip plasticity, 

friction and separation are uncoupled. The FE simulations predict the same quasi-linear relation 

between the cutting force and the uncut chip thickness as in the analytical model of continuous 

chip cutting under the assumption of sharp tool tip. The fracture toughness and the size of the 

boundary layers of damage are shown to be quantitatively related.  

Chapter 6 demonstrates the applications of ductile fracture modeling for predicting material 

failure in simulations of forming and component tests: (1) square punch tests (2) Nakazima tests 

and (3) three point bending tests of hat-sections. The square punch tests introduce a practical 

calibration approach of ductile fracture locus by transforming the stress-based fracture locus into 

the strain-based fracture forming limit diagram (FFLD) under the proportional loading assumption. 

Shear-induced fracture was correctly predicted which cannot be tackled by conventional forming 

limit diagram (FLD). The Nakazima tests and the three point bending tests validated the ductile 

fracture model calibration from the coupon tests. The applications of ductile fracture modeling 

demonstrate great potential as an engineering tool for industrial practices of formability tests and 

crashworthiness simulations.  

Chapter 7 summaries the main contributions of the present thesis and suggests some topics 

for future research. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Anisotropic Plasticity Models 

Anisotropy of sheet metals indicates the directional dependence of mechanical properties 

due to their crystallographic structures from the rolling process. Three sources of anisotropy must 

be distinguished: (1) anisotropic yield, (2) anisotropic hardening, and (3) anisotropic fracture. The 

anisotropic yield of sheet metals has been extensively investigated in the past decades. Hill (1948) 

first proposed a quadratic anisotropic yield function for orthotropic materials. With the advent of 

more advanced steel alloys and non-ferrous metals, the Hill yield criterion was generalized with a 

non-quadratic form in principal stresses (Hill, 1979) and further developed for solving plane stress 

problems with planar anisotropy (Hill, 1990, 1993). Besides the Hill yield criteria family, the 

anisotropic yield functions are mainly developed based on the general approach of linear 

transformation. The Barlat anisotropic yield functions (Barlat et al., 2005; Barlat, Becker, et al., 

1997; Barlat et al., 2003; Barlat, Lege, & Brem, 1991; Barlat & Lian, 1989; Barlat, Maeda, et al., 

1997) were developed from the non-quadratic isotropic yield function proposed by Hosford (1972) 

and some were particularly intended for aluminum alloy sheets. Barlat and Lian (1989) proposed 

the Yld89 anisotropic yield function on a generalized tricomponent plane stress yield surface by 

introduction of shear stress component. Later, Barlat et al. (1991) proposed a six-component 

anisotropic yield criterion Yld91 for general stress states. In the meanwhile, Karafillis and Boyce 

(1993) proposed an original method of linear transformation to extend the proposed generalized 

isotropic yield function to an anisotropic yield function. The convexity was assured by the isotropic 

yield function and preserved by the linear transformation on Cauchy stress tensor. The 
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methodology of linear transformation by Karafillis and Boyce (1993) was further adopted to 

establish the anisotropic yield functions Yld94 and Yld96 (Barlat, Becker, et al., 1997; Barlat, 

Maeda, et al., 1997) tailored particularly for aluminum alloys. The convexity limitation of Yld96 

leads to the development of Yld2000-2d (Barlat et al., 2003). The Yld2000-2d anisotropic yield 

function provides a simple formulation with two linear transformations on the Cauchy stress tensor 

for plane stress state. Using the same method, Yld2004-18p (Barlat et al., 2005) was proposed to 

describe the anisotropic behavior for general 3D stress states. The linear transformation-based 

anisotropic yield functions for FCC and BCC materials were reviewed and discussed in Barlat, 

Yoon, and Cazacu (2007). The approach of linear transformation was further extended to HCP 

metals by Cazacu, Plunkett, and Barlat (2006) to account for the strength differential effect and 

plastic deformation governed by both slip and twinning. 

Instead of using stress potential functions, an alternative approach to describe material 

anisotropy is by strain rate potential functions. The strain rate potential can be approximated with 

analytic expressions by crystallographic analysis of polycrystals with cubic crystal structure (e.g. 

Arminjon, Bacroix, Imbault, and Raphanel (1994); (Rabahallah et al., 2009)). It is worth noting 

that analytic expressions of the strain rate potentials conjugated to stress potentials are available 

for simple yield functions such as von Mises, Tresca, Drucker-Prager, and the Hill anisotropic 

yield function (Cazacu, Ionescu, & Yoon, 2010). Despite that the conjugate strain rate potential 

can be derived from the corresponding yield stress potential by utilizing the principal of plastic 

work equivalence, it is very challenging to obtain a closed-form solution for non-quadratic yield 

functions. However, as formally identical to develop phenomenological yield functions, strain rate 

potential functions were developed in parallel to describe the anisotropic plastic flow as an 
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independent definition of the material behavior. Barlat and co-workers (Barlat & Chung, 1993); 

Barlat, Chung, and Richmond (1993); (Cazacu et al., 2010; Chung, Lee, Barlat, Keum, & Park, 

1996; Kim et al., 2007; Kim, Lee, Barlat, Wagoner, & Chung, 2008) have proposed a series of 

non-quadratic anisotropic strain rate potentials (Srp) for orthotropic materials, which are named as 

Srp93, Srp98, Srp2003-2d, Srp2004-18p and Srp2006-18p. The non-quadratic strain rate potentials 

are pseudo-conjugate to the corresponding anisotropic yield stress potentials, Yld91, Yld96, 

Yld2000-2d and Yld2004-18p, respectively (Kim et al., 2008). The strain rate potentials have been 

also implemented in finite element analysis of forming simulations (e.g. (Yoon, Barlat, Dick, 

Chung, & Kang, 2004; Yoon, Song, Yang, Chung, & Barlat, 1995)), and results suggest 

comparable accuracy to those obtained by the stress potentials.  

In sheet forming simulations, it appears a reasonable choice to define the constitutive 

model based on an anisotropic yield function and isotropic hardening. This is mainly because for 

industrial practices, the complexity of material model and computational time are two important 

factors to consider; while the deformation-induced anisotropy is small and negligible compared to 

the initial anisotropy induced by rolling and heat treatment (Yoon et al., 2004). However, the 

experimental results in tube hydroforming (Korkolis & Kyriakides, 2008a, 2008b) indicate that 

even under proportional loading condition, the deformation-induced anisotropy should be taken 

into account for more accurate description of yield surface evolution. Modeling of deformation-

induced anisotropy in finite element code can be very complex if the crystallographic texture 

evolution is considered as a rigorous solution. The polycrystalline models (e.g. (Rousselier, Barlat, 

& Yoon, 2009, 2010)) are more appealing from a theoretical point of view, but the computational 

cost is high for practical forming analysis. The anisotropic hardening problem can be solved in a 
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variety of methods, such as the efforts in developing continuum models by changing the initial 

anisotropic parameters with plastic work (Ha, Baral, & Korkolis, 2018; Korkolis & Kyriakides, 

2008a), or by defining a non-associated flow rule (Stoughton, 2002; Stoughton & Yoon, 2009). 

After the connection between loading conditions and Lode angle was discovered by Bai and 

Wierzbicki (2008), the anisotropic hardening problem can be potentially solved by correction of 

flow stresses with pressure and Lode dependence. Such a new modeling scheme is proposed in 

this work, with aim to provide a simple and flexible solution for monotonic loading conditions. 

More sophisticated constitutive models considering cross-hardening and Bauschinger effect under 

stress reversal conditions can be found in homogeneous anisotropic hardening (HAH) models 

(Barlat, Gracio, Lee, Rauch, & Vincze, 2011; Barlat et al., 2013). 

2.2 Anisotropic Fracture Models 

Unlike the advancement of anisotropic plasticity models in the last few decades, the 

research interest on developing anisotropic fracture models arises very recently. Here, the scope 

of discussion on fracture models is limited to the macroscopic phenomenological models. These 

models are calibrated based on an extensive test program on metal sheets or bulks and have become 

well-accepted in metal forming industry. One of the most comprehensive fracture tests was 

reported by Bao and Wierzbicki (2004) on aluminum alloy bulk material. Bai and Wierzbicki 

(2010) proposed the modified Mohr-Coulomb (MMC) fracture model by combined effects of 

normal stress and shear stress. The MMC fracture model reveals that other than the hydrostatic 

pressure effect, the Lode angle is another key factor controlling the ductile fracture. Since the 

MMC model, the early anisotropic fracture models were introduced to make use of the work-
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conjugate anisotropic plastic strain rate in the fracture model. Such an anisotropic fracture model 

was proposed in (Beese, Luo, Li, Bai, & Wierzbicki, 2010) based on the closed-form solution of 

the Hill’48 anisotropic equivalent plastic strain rate within the MMC framework. The model 

partially-coupled the plasticity and fracture models by using the work-conjugate anisotropic plastic 

strain increment to calibrate the isotropic fracture locus in 2D space. Similarly, Luo, Dunand, and 

Mohr (2012) presented an anisotropic fracture model based on a work-conjugate Yld2000-3D 

equivalent plastic strain. The anisotropic MMC fracture envelop was associated with anisotropic 

plasticity model in the 3D space characterized by stress triaxiality and Lode angle calibrated along 

the extrusion direction. Both the partially-coupled (Beese et al., 2010) and the associated (Luo et 

al., 2012) anisotropic fracture models aim to provide a bridge between plasticity and fracture. 

The development of anisotropic fracture models then diverges into two paths: (1) by linear 

transformation of strain or stress tensors and (2) by interpolation functions between multiple 

fracture loci. The methodology of linear transformation was first proposed by Luo et al. (2012) in 

the same paper introduced above. In close analogy to the anisotropic yield function, a non-

associated anisotropic fracture model was proposed by linear transformation on plastic strain rate 

tensor. The linear transformation on strain tensors provides an effective solution for solving 

anisotropic fracture problems uncoupled from plasticity, particularly when the plasticity model is 

very complex. For example, in a comprehensive study of Magnesium alloy sheets by Jia and Bai 

(2016a, 2016b), the plasticity model is very complex including strong anisotropy and strength 

differential effect with sophisticated hardening behavior. Obviously, it is not efficient in practical 

for developing a coupled anisotropic fracture model to associate the plasticity features. Therefore, 

an all-strain-based anisotropic fracture locus eMMC was proposed in (Jia & Bai, 2016a, 2016b) 
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using a non-conjugated anisotropic equivalent plastic strain in the similar form of Hill’48 yield 

potential function. Inspired from the eMMC model, Lou and Yoon (2017) proposed an anisotropic 

ductile fracture criterion based on an isotropic damage equivalent strain increment from linear 

transformation of plastic strain increment. The isotropic damage equivalent strain defined by Lou 

and Yoon (2017) is in fact identical to the effective plastic strain rate in the strain rate potential 

defined for anisotropic materials proposed by Barlat et al. (1993). Similar idea of linear 

transformation has been pursued by other researchers based on the argument of stress tensor. Gu 

and Mohr (2015) proposed an anisotropic extension of the isotropic Hosford-Coulomb fracture 

model (developed by Mohr and Marcadet (2015)) by applying the linear transformation matrix on 

the normalized Cauchy stress tensor. The anisotropic effect on the fracture envelope was shown 

from the polar plots in (𝜎11 − 𝜎22) plane with radius of anisotropic equivalent plastic strain to 

fracture. The same approach of linear transformation on stress tensor was further explored in recent 

studies (Gu, He, Li, & Lin, 2020; Li et al., 2018) by extending the stress invariants based isotropic 

ductile fracture models to its anisotropic form.  

The second group of anisotropic fracture models are developed based on interpolation (or 

weight) functions. The key idea is to apply an interpolation function among multiple fracture loci 

calibrated from different loading directions. The first part of work in this category is the anisotropic 

fracture models proposed in Park et al. (2017); Park, Huh, and Yoon (2018); Park, Stoughton, and 

Yoon (2020). Since the existing isotropic fracture models are stress invariant-based (e.g. (Bai & 

Wierzbicki, 2010; Luo et al., 2012; Mohr & Marcadet, 2015)), it is impossible to generate 

directional dependent fracture loci using the original definition of stress invariant. Therefore, Park 

et al. (2017) proposed an “anisotropic stress triaxiality” based on the anisotropic Hill’48 criterion 
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and incorporated it into the Lou-Huh isotropic fracture criterion (Lou, Yoon, & Huh, 2014). 

Subsequently, the “anisotropic stress triaxiality” was further extended to a more complex form in 

(Park et al., 2018) using the Yld2004-18p model. In both studies, the interpolation function 

proposed by Stoughton and Yoon (2011) was applied to the anisotropic fracture models, similarly 

as in the original study on forming limit diagram (FLD). The interpolation function was introduced 

as a function of the rotation angle 𝜃𝑠 which represents the direction from the maximum principal 

stress to the rolling direction. Park et al. (2020) proposed an anisotropic fracture modeling 

approach based on the decoupled formulation with the use of the magnitude of principal stress 

vector and the Lagrangian interpolation function. The second part of application of interpolation 

functions is the eGISSMO framework in LS-DYNA. Conceptually similar but essentially different 

to Park’s work, the modeling framework for anisotropic fracture in eGISSMO framework is treated 

as an anisotropic damage process. In eGISSMO, the isotropic fracture loci are calibrated from 

different directions along maximum principal stress, but damage accumulation is under material 

coordinate system. The method is based on decomposition of strain tensors with principal strains 

on three directions and interpolation functions, so that the fracture loci were limited to only three 

for plane stress application. Even though there are some potential open questions about the 

limitations, the eGISSMO model provides more possibilities open up with the simplicity of 

anisotropic fracture modeling. 

2.3 Strain Rate Dependent Fracture Models 

Over the years, there have been a large number of investigations carried out in 

understanding the integrated constitutive equations incorporating strain hardening with strain rate 
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and temperature effects. Reviews of existing visco-plasticity models in literature can be found in 

(Liang & Khan, 1999; Sung, Kim, & Wagoner, 2010). Strain rate effects on ductile fracture of 

metal sheets, on the other hand, is of equal importance as rate-dependent constitutive relations, but 

such effects have not been widely investigated. The main limiting factor is the inadequate amount 

of test data. Under quasi-static condition, the fracture strain requires not only a large number of 

tests under various stress states, but also accurate measurement of local fracture strain. Such 

experimental difficulties further arise in dynamic testing using servo-hydraulic testing machines 

or split Hopkinson pressure bar system. 

The most well-known strain rate dependent fracture model is the Johnson-Cook (JC) model 

(Johnson & Cook, 1983). It was developed based on axisymmetric tension and torsion tests on 

bulk metals. The JC fracture model has found many applications, for example in modeling high 

velocity perforation problems (Teng & Wierzbicki, 2006). Khan and Liu (2012) proposed a stress-

based magnitude of stress vector (MSV) fracture model by incorporating strain rate and 

temperature dependences for Al and Ti alloys. Both JC and MSV models only consider hydrostatic 

pressure effect on ductile fracture and neglect the influence of Lode angle. Recently, Roth and 

Mohr (2014) proposed a rate-dependent Hosford-Coulomb (H-C) fracture model for multi-axial 

stress states characterized by stress triaxiality and Lode angle. The term of strain rate dependency 

is incorporated into the fracture model in close analogy to the JC model. The proposed model was 

subsequently applied for modeling dynamic fracture of tensile samples of AHSS using split 

Hopkinson pressure bar system (Dunand & Mohr, 2017; Erice, Roth, & Mohr, 2018). The rate 

dependent H-C model is however, limited to a uniform scaling of quasi-static fracture locus 

without consideration of coupling effect with stress state. The strain rate coupling effect with 
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multi-axial stress state is firstly investigated by Walters (2009). A dynamic modified Mohr-

Coulomb (MMC) fracture locus was extended with strain rate dependency in the form of the 

Cowper-Symonds law. The proposed model is developed based on dynamic Hasek test results 

using a drop tower. The important finding is that as strain rate increases, the fracture locus twists 

in a non-monotonic manner with respect to Lode angle. The conclusion about Lode angle coupling 

with strain rate on phenomenological ductile models in (Walters, 2009) is also supported by the 

findings in this study. 

  



14 

 

CHAPTER 3 ANISOTROPIC PLASTICITY AND FRACTURE 

MODELING OF ALUMINUM ALLOYS 

In this chapter, the plasticity and fracture behavior of 7075 aluminum alloy sheets is 

investigated by both experiments and FE simulations. The anisotropic plasticity and fracture model 

framework are first introduced in Section 3.1, The anisotropic plasticity is modeled by the 

Yld2000-2d yield function with flow stress correction by Lode dependence. For anisotropic 

fracture, the strain rate potential functions are revisited, and the methodology of linear 

transformation is used for developing the all-strain based anisotropic fracture model. Section 3.2 

describes the details of mechanical tests under various loading conditions: (1) uniaxial tension (2) 

notch tension (3) shear and (4) uniaxial compression, along 0°, 45° and 90° with respect to rolling 

direction of metal sheets. From the test results and digital image correlation (DIC) analysis, the 

anisotropic models are calibrated in Section 3.3. The present material model is implemented in a 

user-defined material subroutine using shell element for FE simulations. The FE simulation results 

in Section 3.4 demonstrate that the current modeling method offers a simple and efficient solution 

for solving anisotropic problems of aluminum alloys under proportional loading conditions. 

3.1 Anisotropic Plasticity and Fracture Models 

In this section, an anisotropic modeling framework is proposed for the anisotropic 

aluminum alloy sheets. In the current framework, anisotropic plasticity is modeled by the 

anisotropic yield function Yld2000-2d (Barlat et al., 2003) in combination of isotropic hardening 

with hydrostatic pressure and Lode angle corrections (Bai & Wierzbicki, 2008). For anisotropic 

fracture, inspired by the strain rate potential functions for describing anisotropic yield, a new 
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generalized all-strain based anisotropic fracture model is proposed based on the modified Mohr-

Coulomb fracture locus (Bai & Wierzbicki, 2010) and linear transformations of plastic strain rates. 

In addition, the generalized anisotropic plastic flow parameter 𝜙 from previous studies (Jia & Bai, 

2016b) is also introduced here as an integral part of the all-strain based anisotropic fracture model. 

3.1.1 Definition of Stress triaxiality 𝜂 and Lode angle 𝜃 

The definition of stress triaxiality and Lode angle will be used throughout this paper. Given 

the stress tensor 𝝈, the three stress invariants are defined by  

𝜎𝑚 = 13 𝐼1 = 13 (𝜎1 + 𝜎2 + 𝜎3) (3-1) 

𝑞 = 𝜎 = √3𝐽2 = √12 [(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2] (3-2) 

𝑟 = (272 𝐽3)1 3⁄ = [272 (𝜎1 − 𝜎𝑚)(𝜎2 − 𝜎𝑚)(𝜎3 − 𝜎𝑚)]1 3⁄
 (3-3) 

where 𝜎1 , 𝜎2 , and 𝜎3  denote the principal stresses, 𝐼1  is the first invariant of the stress 

tensor 𝝈, and 𝐽2 and 𝐽3 are the second and third invariants of the deviatoric stress tensor 𝒔. The 

stress triaxiality 𝜂 is defined as the normalized first stress invariant 𝜂 = 𝜎𝑚 𝜎⁄ . The Lode angle 𝜃 

is related to the normalized third deviatoric stress invariant through 

𝜉 = (𝑟𝑞)3 = cos(3𝜃) (3-4) 

The Lode angle 𝜃 is normalized in Bai and Wierzbicki (2008),  

 𝜃̅ = 1 − 6𝜃𝜋  (3-5) 
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The parameter 𝜃̅ is called the Lode angle parameter. The range of the Lode angle 𝜃 is 0 ≤𝜃 ≤ 𝜋 3⁄ , and the range of the 𝜃̅ is −1 ≤ 𝜃 ≤ 1. 

3.1.2 Anisotropic Plasticity Modeling Framework 

The anisotropic yield function with generalized hardening rule with pressure and Lode 

angle dependence is in the form of 𝑓 = 𝜎𝑌𝑙𝑑2000 − 𝜎𝐵𝑊 (3-6) 

The Yld2000-2d anisotropic equivalent stress is 

𝜎𝑌𝑙𝑑2000 = {12 (|𝑆̃1′ − 𝑆̃2′ |𝑎 + |2𝑆̃2′′ + 𝑆̃1′′|𝑎 + |2𝑆̃1′′ + 𝑆̃2′′|𝑎)}1 𝑎⁄
 (3-7) 

In Eq.(3-7), 𝑆̃1′ , 𝑆̃2′  and 𝑆̃1′′, 𝑆̃2′′ are principal values of stress tensor 𝒔̃′ and 𝒔̃′′, respectively. 

The stress tensor 𝒔̃ is from a linear transformation of the Cauchy stress tensor 𝝈, by 𝒔̃′ = 𝑳′𝝈 and 𝒔̃′′ = 𝑳′′𝝈. The linear transformation matrix 𝑳′ and 𝑳′′ contain the 8 anisotropic coefficients 𝛼1~8. 

 [𝑳′] = [𝐿11′ 𝐿12′ 0𝐿21′ 𝐿22′ 00 0 𝐿66′ ] = 13 [2𝛼1 −𝛼1 0−𝛼2 2𝛼2 00 0 3𝛼7]  (3-8) 

 [𝑳′′] = [𝐿11′′ 𝐿12′′ 0𝐿21′′ 𝐿22′′ 00 0 𝐿66′′ ] 
  = 19 [8𝛼5 − 2𝛼3 − 2𝛼6 + 2𝛼4 4𝛼6 − 4𝛼4 − 4𝛼5 + 𝛼3 04𝛼3 − 4𝛼5 − 4𝛼4 + 𝛼6 8𝛼4 − 2𝛼6 − 2𝛼3 + 2𝛼5 00 0 9𝛼8] 

(3-9) 

The Yld2000-2d anisotropic equivalent stress describes only the initial yield anisotropy. In 

order to accommodate the effects of loading conditions on evolution of yield surface, the pressure 

and Lode angle dependent correction terms are suggested to incorporate into the isotropic 
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hardening function (Bai & Wierzbicki, 2008). The Bai-Wierzbicki equivalent yield stress 𝜎𝐵𝑊 is 

in the form of 𝜎𝐵𝑊 = 𝜎0(𝜀𝑝̅)ℎ(𝜂, 𝜃) 
= 𝜎0(𝜀𝑝̅)[1 − 𝑐𝜂(𝜂 − 𝜂0)2] [𝑐𝜃𝑠 −𝑚 + 1𝑚 (𝑐𝜃𝑎𝑥 − 𝑐𝜃𝑠) (𝛾 − 𝛾𝑚+1𝑚 + 1)] (3-10) 

The first term 𝜎0(𝜀𝑝̅) in Eq.(3-10) defines the isotropic hardening function calibrated from 

a reference test. In practice, it is common to use the hardening curve from a uniaxial tension test 

extrapolated by a linear combination of Swift-Voce law using a weighting factor, as shown in 

Eq.(3-11) 𝜎0(𝜀𝑝̅) = 𝛼[𝐴(𝜀0 + 𝜀𝑝̅)𝑛] + (1 − 𝛼)[𝑘0 + 𝑄(1 − 𝑒−𝛽𝜀̅𝑝)] (3-11) 

The second term ℎ(𝜂, 𝜃) in Eq.(3-10) defines the flow stress correction term dependent on 

the stress triaxiality 𝜂  and the Lode angle 𝜃 . Note that ℎ(𝜂, 𝜃)  is slightly modified from the 

original model of Bai and Wierzbicki (2008), by adding a constant of (𝑚 + 1) 𝑚⁄  to ensure ℎ(𝜂, 𝜃) = 1 when using uniaxial tension as the reference. The parameter 𝛾 is a function of the 

Lode angle 𝜃 defined by  

𝛾(𝜃) = cos(𝜋 6⁄ )1 − cos(𝜋 6⁄ ) [ 1cos(𝜃 − 𝜋 6⁄ ) − 1] (3-12) 

The Lode angle 𝜃 is defined through the normalized third deviatoric stress invariant in 

Eq.(3-4). The term cos(𝜃 − 𝜋 6⁄ )  in the definition of parameter 𝛾  represents the difference 

between von Mises and Tresca in the deviatoric stress plane. Since the range of Lode angle 𝜃 is 0 ≤ 𝜃 ≤ 𝜋 3⁄ , 𝛾 is bounded between zero and unity. 𝛾 = 0 is corresponding to plane strain or 

shear condition, and 𝛾 = 1 corresponds to the axial symmetry loading condition.  
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In Eq.(3-10), 𝑐𝜂, 𝜂0, 𝑐𝜃𝑠 , 𝑐𝜃𝑎𝑥 and 𝑚 are material constants. As will be shown in the next 

sections, if only using the initial anisotropic yield, the results overestimated the force predictions 

for shear and notch tension tests. This can be solved by defining the Lode angle dependent term 𝑐𝜃𝑠  as an evolutionary function of equivalent plastic strain. The present anisotropic framework 

provides a flexible and elegant solution for solving anisotropic hardening problems of metal sheets 

under proportional loading. Particularly in finite element simulations, the benefit of this method 

becomes apparent compared to other methods such as changing the anisotropic coefficients (e.g. 

(Korkolis & Kyriakides, 2008a)) or the exponential term in the non-quadratic yield function (e.g. 

(Ha et al., 2018)) with the evolution of plastic work. 

3.1.3 Generalized Anisotropic Plastic Flow Parameter 

In our recent work (Jia & Bai, 2016b), a new plastic strain based parameter 𝜙 was defined 

to represent the effect of in-plane anisotropic flow under all loading conditions. 

 𝜙 = 180°𝜋 atan2(−𝜀2̇𝑝, 𝜀1̇𝑝) + 90°         (3-13) 

The parameter 𝜙 denotes the angle of strain path to the positive minor strain direction in 

the forming fracture limit diagram (FFLD). Figure 3-1 illustrates the definition of 𝜙 for describing 

plastic flow under the assumption of isotropic J2 plasticity. For an anisotropic material deformed 

under a specific loading condition, the anisotropic plastic flow is measured by an angle offset from 

the isotropic condition. For example, for the uniaxial tension test results, 𝜙 = 110°, 112°, 116° for 

the rolling, diagonal and transverse direction, respectively. The corresponding Lankford ratio is 𝑟0 

= 0.575, 𝑟45 = 0.755, and 𝑟90 = 0.990. For the rolling direction, the angle offset is -6°, indicating 
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strong anisotropic effect similar as the Lankford ratio. Unlike the Lankford ratio only defined for 

uniaxial tension, the parameter 𝜙 describes the generalized anisotropic in-plane plastic flow under 

all possible loading conditions. The parameter 𝜙 represents an attractive option in developing an 

all-strain-based anisotropic fracture model: (1) it overcomes the limitations of assuming an 

anisotropic yield function in coupling with the stress invariant-based anisotropic fracture models, 

such as in Park et al. (2017); Park et al. (2018). (2) the all strain-based anisotropic fracture model 

can be directly calibrated from strain analysis in the DIC software, which is important for practical 

applications.  

 

Figure 3-1. Definition of anisotropic parameter 𝜙 and its relationship with stress triaxiality 𝜂 based on J2 plasticity 
(courtesy of (Jia & Bai, 2016b))  

3.1.4 Anisotropic Fracture Model eMMC-Srp 

The original modified Mohr-Coulomb (MMC) fracture locus based on work of (Bai & 

Wierzbicki, 2010) reads 

 𝜀𝑓(𝜂, 𝜃) = {𝐴𝐶2 [𝐶𝜃𝑠 + √32 − √3 (𝐶𝜃𝑎𝑥 − 𝐶𝜃𝑠) (sec 𝜃𝜋6 − 1)] [√1 + 𝐶123 cos 𝜃𝜋6 + 𝐶1 (𝜂 + 13 sin 𝜃𝜋6 )]}−
1𝑛
 (3-14) 
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For plane stress condition, Lode angle parameter 𝜃 and stress triaxiality 𝜂 are uniquely 

linked by 

 cos [𝜋2 (1 − 𝜃)] = −272 𝜂 (𝜂2 − 13) (3-15) 

The strain and stress ratio are defined as  

 𝛼 = 𝑑𝜀2𝑑𝜀1       𝛽 = 𝜎2𝜎1         (3-16) 

Assuming Mises-Levy flow rule, the stress and strain ratio are related as 

 𝛽 = 2𝛼 + 12 + 𝛼          (3-17) 

The stress triaxiality is obtained from 

 𝜂 = 𝛽 + 13√𝛽2 − 𝛽 + 1         (3-18) 

From the definition of 𝜙, it can be expressed as a function of strain ratio 𝛼 by  

 𝜙 = 360°𝜋 𝑡𝑎𝑛−1 −𝛼√1 + 𝛼2 + 1 + 90°         (3-19) 

By combining Eq.(3-17)-(3-19), the all-strain-based eMMC fracture locus (Jia & Bai, 

2016a, 2016b) based on the generalized plastic flow parameter 𝜙 is transformed from the original 

MMC in stress space, i.e.  

 𝜀𝑓(𝜂, 𝜃) = 𝜀𝑓̃(𝜙) (3-20) 

 In order to calibrate the all-strain based eMMC anisotropic fracture model, it is proposed 

here to use a strain rate potential function to rotate the plastic strain rate tensor to the sheet rolling 

direction by linear transformation. The all strain based MMC anisotropic fracture model based on 

linear transformation from strain rate potential function is named as eMMC-Srp hereafter. In this 
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study, three strain rate potentials are attempted: (1) Srp48 (Hill, 1987), (2) Srp93 (Barlat et al., 

1993), and (3) Srp2004-18p (Barlat & Chung, 2005; Kim et al., 2007; Kim et al., 2008).  

For the quadratic Hill’48 anisotropic yield function, there exists an analytical strain rate 

potential conjugated to the anisotropic stress potential function. Eq.(3-21) defines the anisotropic 

strain rate potential function Srp48. The linear transformation matrix 𝜷 is shown in Eq.(3-22). 

𝜀̅𝑝̇ = √23 (𝜷𝜺̇𝒑) ∙ (𝜷𝜺̇𝒑) (3-21) 

 𝜷 = [  
 𝛽1 0 0 00 𝛽2 0 00 0 𝛽3 00 0 0 √2𝛽4]  

 
 ,  𝜺̇𝒑 = [𝜀𝑥̇𝑥𝑝 𝜀𝑦̇𝑦𝑝 𝜀𝑧̇𝑧𝑝 𝜀𝑥̇𝑦𝑝 ]𝑇 (3-22) 

The linear transformation matrix 𝜷 is positive semi-definite. The anisotropic coefficients 𝛽𝑖𝑗 can be linked with the parameters F, G, H, N in the Hill’48 anisotropic yield function. For the 

non-quadratic yield functions Yld91 and Yld2004-18p, it is difficult to find the analytical dual 

conjugate of the stress potentials. However, it is possible to define the strain rate potentials 

independently in a similar mathematical form.  

The strain rate potential function of Srp93 (Barlat et al., 1993) is defined as: |𝜉1|𝜇 + |𝜉2|𝜇 + |𝜉3|𝜇 = 2𝜀𝑒̇𝜇 (3-23) 

In Eq.(3-23), 𝜀𝑒̇ denotes the effective strain rate, and 𝜉𝑖=1,2,3 are the principal values of 

anisotropic plastic strain rates calculated from the linear transformation matrix in Srp93. The 

exponent μ = 3/2 and 4/3 are suggested for BCC and FCC material (Barlat et al., 1993). The Srp93 

model was developed for a full stress state with 6 parameters. In Srp93, the following matrix 

transforms the strain rate tensor 𝜀𝑖̇𝑗𝑝  with anisotropic coefficients 𝑐1~6. 
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 𝑳 =
[  
   
𝑐3(𝜀1̇1 − 𝜀2̇2) − 𝑐2(𝜀3̇3 − 𝜀1̇1)3 𝑐6𝜀1̇2 𝑐5𝜀3̇1𝑐6𝜀1̇2 𝑐1(𝜀2̇2 − 𝜀3̇3) − 𝑐3(𝜀1̇1 − 𝜀2̇2)3 𝑐4𝜀2̇3𝑐5𝜀3̇1 𝑐4𝜀2̇3 𝑐2(𝜀3̇3 − 𝜀1̇1) − 𝑐1(𝜀2̇2 − 𝜀3̇3)3 ]  

    (3-24) 

The strain rate potential function of Srp2004-18p (Barlat & Chung, 2005; Kim et al., 2008) 

is defined as:  

|𝐸̃1′|𝑏 + |𝐸̃2′ |𝑏 + |𝐸̃3′ |𝑏 + |𝐸̃2′′ + 𝐸̃3′′|𝑏 + |𝐸̃3′′ + 𝐸̃1′′|𝑏 + |𝐸̃1′′ + 𝐸̃2′′|𝑏 = (22−𝑏 + 2)𝜀 ̅̇𝑏 (3-25) 

In Eq.(3-25), 𝜀̅̇ denotes the effective strain rate, and 𝐸̃𝑖=1,2,3′  and 𝐸̃𝑖=1,2,3′′  are the principal 

values of the anisotropic plastic strain rates calculated from the linear transformation matrix in 

Srp2004-18p. Similar to the Srp93, the exponent b = 3/2 and 4/3 are suggested for BCC and FCC 

materials (Barlat et al., 1993). The Srp2004-18p model was developed for a full stress state with 

18 anisotropic coefficients in general 3D formulation. Under the plane stress conditions for 

orthogonal incompressible plasticity, the transformed strain rate tensors are defined as 

 𝜺̃̇′ = 𝑩′𝑻𝜺̇𝒑, 𝜺̃̇′′ = 𝑩′′𝑻𝜺̇𝒑 (3-26) 

In Eq.(3-26), the linear transformation matrices 𝑩′  and 𝑩′′  contain 14 anisotropic 

coefficients in total under plane stress conditions, as represented by 

 𝑩′ = [  
 0 −𝑏21′ −𝑏13′ 0−𝑏21′ 0 −𝑏23′ 0−𝑏31′ −𝑏32′ 0 00 0 0 𝑏66′ ]  

           𝑩′′ = [  
 0 −𝑏21′′ −𝑏13′′ 0−𝑏21′′ 0 −𝑏23′′ 0−𝑏31′′ −𝑏32′′ 0 00 0 0 𝑏66′′ ]  

 
 (3-27) 

The matrix T transforms the four-component strain rate tensor 𝜺̇𝒑 shown as follows 

𝑻 = [ 1 0 00 1 0−1 −1 00 0 1] , 𝜺̇𝒑 = [𝜀𝑥̇𝑥𝑝 𝜀𝑦̇𝑦𝑝 𝜀𝑧̇𝑧𝑝 𝜀𝑥̇𝑦𝑝 ]𝑇 (3-28) 
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3.2 Experimental Results and Analysis 

The tested material is an aluminum alloy 7075-T6 sheet with 2.0 mm thickness provided 

by Alcoa. The material samples were tested under four loading conditions: (1) uniaxial tension 

(UT), (2) notch tension (NT), (3) Shear (SH), and (4) uniaxial compression (UC). The tensile tests 

(1)-(3) were designed for calibration and validating both plasticity and fracture models, and the 

compression tests were used only for material plasticity calibration. Figure 3-2 shows that all 

specimens were machined parallel to three material orientations with respect to the rolling 

direction: 0° (RD), 45° (DD), and 90° (TD). Three specimens were prepared along each orientation 

for test repeats. 

 

Figure 3-2. Test specimens cut from the 7075 aluminum alloy sheet 

All tests were conducted under quasi-static condition on an MTS servo-hydraulic universal 

testing machine with a 100 kN load cell at room temperature. The displacement and strain fields 

are in-situ monitored using a digital image correlation (DIC) system throughout the tests. The 

system is consisting of a Tokina lens with a resolution of 2448×2048 and VIC-2D software by 

Correlated Solutions, Inc. The test program and the DIC system were triggered simultaneously at 

the beginning of each test, and the load signals from the testing machine were synchronized with 

the DIC images at the same sampling rate of 1 Hz.  
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3.2.1 Uniaxial Tension 

The uniaxial tension samples were cut into dogbone shape. The tests were conducted at a 

nominal strain rate of 10−3/𝑠. The test results in Figure 3-3(a) suggest that the strength anisotropy 

in uniaxial tension is not significant. The flow stress curve along 90° is slightly higher than the 

rolling direction and the flow stress curve along 45° is slightly lower than the rolling direction. 

The anisotropic plastic flow in uniaxial tension is measured by Lankford ratio (or r-value), defined 

as the ratio of incremental plastic strains along the width and thickness directions: 𝑟 = 𝑑𝜀𝑤𝑝 𝑑𝜀𝑡𝑝⁄ . 

It is well-known that the r-value does not maintain a constant during plastic deformation. In the 

present study, the r-value is determined by the slope of the plastic strains along the width and 

thickness directions before necking, hence it is regarded as an average value over plastic strain. As 

shown in Figure 3-3(b), in contrast to the negligible strength anisotropy in uniaxial tension, the 

present aluminum alloy sheet exhibits strong anisotropic plastic flow in uniaxial tension. The lower 

r-value along the rolling direction indicates that the material is less resistance to thinning during 

plastic deformation.  

 
Figure 3-3. Uniaxial tension test results (a) engineering stress-strain (b) Lankford ratio (r-value) 
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3.2.2 Notch Tension 

Notch tension tests were performed on tensile specimens with circular cut-outs along the 

width direction. The notch tension samples were loaded under displacement control at a constant 

crosshead speed of 0.02 mm/s. The force-displacement curves of notch tension tests are shown in 

Figure 3-4. The difference of global force responses can be clearly seen: (1) the force curve along 

90° is remarkably higher than the other two directions; (2) the force curve along 45° is also slightly 

higher than the curve along rolling direction. This indicates that material anisotropy in strength 

increases when the stress state transits from uniaxial tension to biaxial tension. For notch tension 

samples, the stress state is biaxial tension in the center and uniaxial tension at the edge. Under 

plane stress condition, the stress triaxiality at the center point inside the neck is given by the 

following analytical equation derived in Bai (2007): 

 𝜂 = 1 + 2𝛬3√𝛬2 + 𝛬 + 1 (3-29) 

where 𝛬 = 𝑙𝑛[1 + 𝑎/(2𝑅)], where a is the half width at the center in the notch, and R is 

the radius of the notch. The biaxial stress state in the center of the notch sample is related to the 

width to radius ratio 𝑎 𝑅⁄ . Readers are refered to Bai (2007) for more detailed derivations of stress 

distribution inside the neck of a plane strain specimen. In an extreme case for infinitely large radius 

R, the stress triaxiality 𝜂 = 1/3 according to Eq.(3-29), which is exactly the case for uniaxial 

tension. Eq.(3-29) gives an estimation of stress triaxiality using the initial geometry of the notched 

samples. During notch tension tests, due to sample geometry change and strain concentration, the 

deformation is non-uniform and sample thickness distribution is uneven along the width direction. 

Therefore, it is impossible to obtain an equivalent strain-stress curve which is converted based on 
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the assumption of uniform deformation. Figure 3-4(b) shows the local strain paths extracted from 

the center of the specimen in the DIC analysis. The anisotropy in plastic flow of notch tension test 

can be quantitively determined by the parameter 𝜙 . The angle 𝜙  for notch tension sample is 

commonly between 90° (uniaxial tension) and 116° (plane strain tension). For the present notch 

tension sample design, the angle 𝜙 is 97° along rolling direction (RD), and slightly shifts ± 2° for 

diagonal direction (DD) and transverse direction (TD).  

 
Figure 3-4. Notch tension test results (a) force-displacement curves (b) local strain paths at the notch center 

3.2.3 Shear 
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shear test results in Figure 3-5 suggest that both strength and plastic flow in shear are nearly 

isotropic. Also, no necking was observed from the abrupt drop in the force-displacement curves, 

indicating the shear dominated deformation.  

 
Figure 3-5 Shear test results (a) force-displacement curves (b) local strain paths from the shear zone center 

Since the mini-shear sample design allows a relatively uniform shear strain distribution, 

the engineering shear stress-strain curve can be estimated by converting the force-displacement 

data. The shear stress τ is calculated as  

 𝜏 = 𝐹𝑡ℎ (3-30) 
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shear strain 𝛾 was evaluated from DIC analysis in the shear zone. Even though the conversion is 
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 𝜎 = √3𝜏 (3-31) 

 𝜀̅ = 2√3 𝜀12 = 1√3𝛾12 (3-32) 

3.2.4 Compression Tests 

A set of small cuboid specimens were designed for uniaxial compression tests. The cuboid 

specimens were cut into 4 mm in length and 3 mm in width, with original sheet thickness of 2 mm. 

The length-to-width ratio is designed in such a way to guarantee the uniaxial compression stress 

state with no buckling (Jia & Bai, 2016b). The samples were loaded along the length direction. 

The top and bottom surfaces of the samples were lubricated by Teflon tapes to reduce friction in 

contact with compression platens. During the tests, the 0° and 90° cuboid samples were loaded 

until fracture with a noticeable load drop, but the 45° samples can sustain more load without 

fracture until the machine limit. However, due to the surface friction effect, the deformation under 

uniaxial compression is not uniform at large strain, therefore only the uniform deformation part 

data is presented in this paper. The engineering stress-strain curves for uniaxial compression is 

shown in Figure 3-6. The strength anisotropy is in the same trend as uniaxial tension, but the 

hardening curve along 45° in uniaxial compression is much lower than the curves along the other 

two material directions.  

The through-thickness compression (or disk compression) tests were also conducted as 

supplementation for plasticity model calibration. The balanced-biaxial (or equi-biaxial) tension 

stress state can be obtained from the disk compression test, as an alternative to the hydraulic bulge 

test or the cruciform specimen test. The 10 mm diameter disk samples were loaded under 
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compression along the thickness direction. The sample surfaces were lubricated by Teflon tapes 

in contact with the compression platens. Since the sample is so small and placed in between the 

large compression platens, it is difficult to monitor sample deformation by DIC camera. Therefore, 

the local displacement on the sample was extracted from the spray painted papers attached to the 

rigid compression platens. Also, the disk sample was only loaded up to a small amount of 

displacement in each test, so that the force-displacement data can be converted to into stress-strain 

data under uniform deformation condition as follows according to Steglich, Tian, Bohlen, and 

Kuwabara (2014): 

 𝜎𝑏 = 4𝐹𝜋𝑑02 (1 − 𝑢𝑡0) , 𝜀𝑡 = 𝑙𝑛 (1 − 𝑢𝑡0) (3-33) 

Where 𝜎𝑏 denotes the uniaxial compressive stress, 𝜀𝑡 denotes the uniaxial strain along the 

thickness direction, 𝑢 is the vertical displacement from the rigid compression platens, 𝐹 is the 

force measured from the load cell, 𝑡0 is the thickness of the disk sample, and 𝑑0 is the original 

diameter of the disk sample. The uniaxial stress-strain for through-thickness compression coincide 

with the von Mises equivalent stress-strain, i.e. 

  𝜎 = 𝜎𝑏 , 𝜀 ̅ = 𝜀𝑡 (3-34) 

Note that Eq.(3-33) and (3-34) only apply to the uniform deformation condition. From the 

present tests, it is difficult to justify if the deformation still remains uniform at large strain due to 

the friction effect, so for this reason, only the stress-strain data at initial yield and small plastic 

strain (up to 2%) is presented here as shown in Figure 3-6. The initial yield can be clearly identified 

from the slope transition on the curve.  
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Figure 3-6. Experimental results of (a) uniaxial compression test (b) through-thickness compression test 

3.2.5 Strain Analysis in DIC 

Figure 3-7 summarizes the strain histories from DIC analysis for all tensile type tests. The 

strain histories were extracted from the location of the greatest equivalent plastic strain: (1) UT: at 

the localized neck (2) NT: at the center of the notch (3) SH: in the localized shear zone. The test 

results demonstrate remarkable repeatability so only one curve is plotted for each test. The values 

of angle 𝜙 is nearly constant except for the initial part, indicating that the deformation was under 

proportional loading condition. As mentioned above, the anisotropic plastic flow is only noticeable 

for uniaxial tension. The strain paths for notch tension and shear tests suggest negligible 

dependence on material directions. For compression tests, since the images can be only captured 

from the side view and no interrupted tests were repeated, the strain information is not available 

for DIC analysis. 
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Figure 3-7. Strain paths to fracture in the space of 𝜀𝑝̅ − 𝜙 from uniaxial tension, notch tension and shear tests 

The DIC technique is widely used in fracture strain analysis for industrial applications 

nowadays. In most existing ductile fracture models, the equivalent strain to fracture is defined as 

a function of stress parameters such as stress triaxiality, which cannot be obtained directly from 

experiments. The advantage of the all-strain based model is that the fracture locus can be directly 

calibrated from the DIC software without the complication from inverse analysis in FE simulations. 

This is especially efficient for fracture model calibration when the anisotropic effect is 

incorporated. In VIC-2D, the software supports an interface for implementing a user-defined 

variable by post-processing in the VicPy module. Figure 3-8 shows the contour plots of the user-

defined variables: (1) the plastic flow parameter 𝜙 and (2) the anisotropic equivalent plastic strain 𝜀𝑓̃  before fracture in uniaxial tension tests. One can see that the anisotropic effect is well 

distinguished by the angle offset from 𝜙 = 116° as the isotropic base for uniaxial tension.  
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Figure 3-8. Contour plots of the plastic flow parameter 𝜙 in the DIC software VIC-2D 

3.3 Calibration of Anisotropic Material Models 

3.3.1 Equivalent Stress-strain Curve based on J2 Plasticity 

The test data from the previous section were converted into equivalent plastic stress-strain 

curves based on J2 plasticity. Note that the conversion only applies to the test data from uniform 

deformation in UT, SH and UC. Figure 3-9 (a) and (b) compare the hardening curves of SH and 

UC with the hardening curves of UT, respectively. Figure 3-10 summarizes the hardening curves 

of different loading conditions the along rolling direction. First, it can be seen that the hardening 

curves along UT and SH show similar trends from initial yield to the necking strain in uniaxial 
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tension, but the equivalent stress of SH is lower than UT under the assumption of J2 plasticity. 

This indicates that the yield locus along shear should be adjusted from the von Mises ellipse. 

Further FE simulation results suggest that shear hardening becomes more compliant beyond 

necking strain in uniaxial tension. Second, from the comparison of hardening curves for UT and 

UC, the tension-compression asymmetric effect can be observed but not significant for 0° and 90°. 

The hardening curve along 45° in UC is much lower, implying that the shear stress component 

plays an important role in material anisotropy. Finally, the flow stress curves along rolling 

direction under different loading conditions are shown in Figure 3-10. 𝜎𝑏 is slightly larger than 

unity from the only available data for initial yield and not shown here. Similar result is also 

reported from a recent study on Al7075 in Abedini, Butcher, Rahmaan, and Worswick (2018).  

 

Figure 3-9. von Mises equivalent stress-equivalent plastic strain curves (a) uniaxial tension and shear (c) uniaxial 
tension and uniaxial compression 
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Figure 3-10. von Mises equivalent stress-plastic strain curves for all loading conditions along rolling direction 

3.3.2 Calibration of Anisotropic Plasticity Model with Lode Angle Correction  

The Yld2000-2d is calibrated from uniaxial tension and disk compression test results. Table 

3-1 lists the normalized yield stresses and Lankford ratios from the uniaxial tension tests, and the 

balanced biaxial stress 𝜎𝑏 from the disk compression test. The optimization program was set up 

for solving a non-linear least square problem by minimizing the error function (Barlat et al., 2005) 

as follows 

 𝐸 =∑𝑤𝑝𝑝 ( 𝜎𝑝𝑝𝑟𝜎𝑝𝑒𝑥𝑝 − 1)2 +∑𝑤𝑞𝑞 ( 𝑟𝑞𝑝𝑟𝑟𝑞𝑒𝑥𝑝 − 1)2 (3-35) 

In Eq.(3-35), p and q represent the number of flow stresses or r-values available from 

experiments, and 𝑤𝑝 and 𝑤𝑞  are the weighting factors. The error function sums the difference 

squares of the model prediction over the experimental data. In this work, since the solution is 

unique based on uniaxial tension and equi-biaxial tension results, the flow stresses and r-values 

are equally weighted. The Yld2000-2d parameters are listed in Table 3-1 and the initial anisotropic 

yield locus is plotted in Figure 3-11. 
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Figure 3-11. Yld2000-2d initial yield locus of Al7075 aluminum alloy sheet 

Table 3-1. Yld2000-2d anisotropic yield function parameters for Al7075-T6 

Exp. data 
𝜎0 𝜎45 𝜎90 𝜎𝑏 𝑟0 𝑟45 𝑟90 𝑟𝑏  

1.00 0.99 1.01 1.05 0.575 0.795 0.990 1.0  

Yld2000-2d 
𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 m 

0.9071 1.1027 0.8179 0.9956 1.0425 0.8496 1.0274 1.2548 8 

The isotropic hardening curve is calibrated from uniaxial tension along the rolling direction 

using a linear combination of Swift-Voce hardening law in Eq.(3-11). As shown in Figure 3-12, 

both Swift and Voce hardening laws fit the uniaxial tension test data well before necking. After 

necking, the hardening curve was extrapolated by the combined Swift-Voce hardening function 

with a weighing factor α in Eq.(3-11). The weighting factor α was determined by iterations of FE 

simulations for uniaxial tension. This methodology ensures a smooth piecewise increasing post-

hardening curve, which is efficient for model calibration and numerical simulations. 
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Figure 3-12. Swift-Voce hardening curve law for extrapolation after necking 

The assumption of isotropic hardening may not be adequate for accurate description of 

plastic deformation even under proportional loading condition. The present test data and FE 

simulation results both suggest that it is necessary to correct the isotropic hardening curve with 

Lode dependence for 0 ≤ 𝜃̅ ≤ 1 , where 𝜃̅  denotes the Lode angle parameter as defined by 

Eq.(3-5). 𝜃̅ = 0 refers to the loading conditions of shear and plane strain tension (or generalized 

shear), while 𝜃̅ = 1 refers to the positive axial symmetry loading condition (i.e. uniaxial tension) 

(Bai & Wierzbicki, 2008). The Lode dependence on flow stress can be adjusted by defining the 

Lode angle dependent term 𝑐𝜃𝑠  as an evolutionary function of equivalent plastic strain 𝜀𝑝̅ in the 

following 𝑐𝜃𝑠(𝜀𝑝̅) = 𝑐𝐿 + 𝑐𝐿 − 𝑐𝑈1 + 𝑒𝑠𝑐(𝜀̅𝑝−𝜀𝑐) (3-36) 
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Figure 3-13. Lode dependence parameter 𝑐𝜃𝑠 as evolution of equivalent plastic strain 𝜀𝑝̅ 

In Eq. (3-36), 𝑐𝐿 and 𝑐𝑈 defines the lower and upper bounds of 𝑐𝜃𝑠; 𝑠𝑐 and 𝜀𝑐 are chosen to 

control the transition rate and position through the exponential term. Eq. (3-36) is depicted as 

shown in Figure 3-13. It demonstrates an S-shape curve from initial yield to fracture with a rapid 

transition in the middle. In addition to the hardening correction by Lode dependence for 0 ≤ 𝜃̅ ≤1 , the tension-compression asymmetry is also modified through the Lode angle asymmetric 

parameter 𝑐𝜃𝑎𝑥 

𝑐𝜃𝑎𝑥 = {𝑐𝜃𝑡 𝜃̅ ≥ 0𝑐𝜃𝑐 𝜃̅ < 0 (3-37) 

In Eq. (3-37), 𝑐𝜃𝑡  is set to unity and 𝑐𝜃𝑐 = 1.02 was determined from experimental results 

of uniaxial compression (𝜃̅ = −1). The Yld2000-2d is assumed that, in the deviatoric stress plane, 

the yield surface is symmetric for uniaxial tension and uniaxial compression. This restriction can 

be removed in the present model by setting 𝑐𝜃𝑐 ≠ 𝑐𝜃𝑡 . Figure 3-14 presents the hardening curves 

dependent on loading condition effect by Eq.(3-10). The yield locus evolution is correspondingly 

illustrated by 2D plot in Figure 3-15. With the Lode dependent parameters 𝑐𝜃𝑠  and 𝑐𝜃𝑎𝑥, the new 
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yield locus changes based on the Yld2000-2d yield locus according to Eq.(3-36) with evolution of 

plastic strain. The yield locus asymmetric behavior by Eq.(3-37) can be also observed in the plot. 

 
Figure 3-14. Evolution of hardening curve Yld2000-2d model with and without BW plasticity model correction 

 
Figure 3-15. Evolution of Yld2000-2d yield locus with BW plasticity model correction 
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In a recent study on anisotropic plasticity of AA6013 sheet (Ha et al., 2018), the evolution 

of yield surface is corrected by a viable exponent of the Yld2004-18p anisotropic yield function. 

This method is conceptually similar to the present method but fundamentally different. The viable 

exponent in Ha et al. (2018) was calculated from an “equivalent stress-strain” curve obtained from 

notch tension tests on wide specimens. This is plausible because the stress-state is non-uniform on 

a flat notch sample unless thickness reduction is introduced, such as the flat groove specimen (Bai 

& Wierzbicki, 2008). The investigation of anisotropic plasticity in Ha et al. (2018) is still focused 

on initial anisotropy, with little consideration for hardening correction under plane strain tension 

condition (𝜃̅ = 0). The present model framework not only considers initial anisotropy, but also 

accounts for generalized hardening for all loading conditions (−1 ≤ 𝜃̅ ≤ 1). It is also worth 

remarking here that, readers should not be confused about the Swift-Voce hardening law with the 

hardening correction by stress triaxiality and Lode angle. The Swift-Voce hardening law aims to 

extrapolate the isotropic hardening curve beyond material necking calibrated from uniaxial tension; 

while the latter corrects material hardening for other loading conditions using the base curve 

described by the Swift-Voce hardening law.  

3.3.3 Calibration of Anisotropic Fracture Model  

The all-strain based anisotropic fracture model eMMC-Srp was calibrated using different 

strain rate potential functions introduced in Section 3.1.4. The fracture locus 𝜀𝑓̃(𝜙)  was first 

calibrated from the averaged fracture data points of each loading condition. Then the anisotropic 

fracture parameters were calibrated by minimizing the error function of Eq.(3-38) 
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 𝐸 =∑(𝜀𝑓̂𝑝𝑟𝜀𝑓̃𝜙 − 1)
2

𝜙  (3-38) 

Where 𝜀𝑓̃𝜙 refers to the fracture strain at each given 𝜙 value on the fracture locus 𝜀𝑓̃(𝜙), 
and 𝜀𝑓̂𝑝𝑟 denotes the predicted fracture strain transformed by the strain rate potential function at the 

corresponding 𝜙 value. Since the coupon tests were under proportional loading conditions, the 𝜙 

value can be taken as the average through the linear strain path for each test. Note that 𝜀𝑓̂𝑝𝑟 is 

summed over the history of plastic deformation  

 𝜀𝑓̂𝑝𝑟 = ∫𝜀̂𝑝̇𝑝𝑟𝑑𝑡 (3-39) 

In Eq.(3-39), 𝜀̂𝑝̇𝑝𝑟  is the effective plastic strain rate defined by the strain rate potential 

function (i.e. 𝜀̅̇ in Eq.(3-23) and (3-25)). The error function takes into account the strain history 

effect for calculating anisotropic equivalent plastic strain. For simplicity, the strain history effect 

can be removed under linear strain path. The material parameters of anisotropic fracture models 

are listed in Table 3-2. 

Table 3-2. Anisotropic fracture model parameters for Al7075-T6 

Isotropic MMC model 
𝑐1 𝑐2 𝑐𝜃𝑠 𝑐𝜃𝑐  A n  

0.1105 409.6 0.9708 1.0008 846.4 0.152  

eMMC-Srp48 

anisotropic parameters 

𝛽1 𝛽2 𝛽3 𝛽4    

1.070 0.549 1.283 0.967    

eMMC-Srp93 

anisotropic parameters 

𝑐12 𝑐13 𝑐21 𝑐23 𝑐31 𝑐32 𝑐66 

0.3123 1.6931 1.4258 0.7270 0.4455 0.3659 1.1301 

eMMC-Srp2004 

anisotropic parameters 

𝑏12′  𝑏13′  𝑏21′  𝑏23′  𝑏31′  𝑏32′  𝑏66′  

0.3590 1.8722 0.8696 0.4902 0.5552 0.4553 1.4368 𝑏12′′  𝑏13′′  𝑏21′′  𝑏23′′  𝑏31′′  𝑏32′′  𝑏66′′  

0.9707 1.1066 0.9678 -0.1213 0.2474 0.9736 0.5814 
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Figure 3-16 demonstrates the calibration results of anisotropic fracture model eMMC-Srp. 

Figure 3-16 shows the anisotropic fracture locus and the fracture strain data calculated from the 

strain rate potentials of Srp48, Srp93 and Srp2004, respectively. In each plot, the solid line 

represents the same fracture locus 𝜀𝑓̃(𝜙). The circular markers represent the equivalent plastic 

strain at fracture by assuming all anisotropic fracture parameters equal to one (i.e. isotropic), while 

the cross markers represent the anisotropic equivalent plastic strain calculated from the linear 

transformation matrix. The calibration results suggest that for the present data, the Srp48 model 

with 4 parameters predicts the same level of accuracy as the most complex Srp2004 model using 

14 parameters. All models predict the noticeable anisotropic fracture behavior very well in uniaxial 

tension. If anisotropy plastic flow is strong for all loading conditions, the Srp2004 is expected to 

predict better correlation results.  

In finite element simulations, a linear damage accumulation rule was applied 

 𝐷 = ∫ 𝑑𝜀𝑝̃𝜀𝑓̃(𝜙) (3-40) 

Where 𝜀𝑓̃(𝜙) is the all-strain based anisotropic fracture locus and 𝜀𝑝̃  is the anisotropic 

equivalent plastic strain.  
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Figure 3-16. Anisotropic fracture model eMMC-Srp: Srp48, Srp93 and Srp2004. The solid line represents the eMMC 
fracture locus. The red makers denote the fitting results using isotropic coefficients in a strain rate potential function. 
The blue markers denote the fitting results using optimized anisotropic coefficients in a strain rate potential function. 
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3.4 Finite Element Analysis 

The anisotropic plasticity and fracture models have been implemented by a user-defined 

material subroutine VUMAT in Abaqus/explicit (v2017). The finite element (FE) simulations were 

carried out using shell elements S4R (four-node shell elements with reduced integration points), 

with five Simpson integration points assigned through the shell thickness. The fracture initiation 

and crack propagation were simulated by deleting elements when the damage accumulation 

variable D reached a given critical value 𝐷𝑐 = 1. The Srp48 anisotropic fracture model was used 

for simple demonstration of anisotropic fracture effect.  

3.4.1 Uniaxial Tension 

The FE simulation results of uniaxial tension tests are shown in Figure 3-17. The test results 

are denoted by solid lines and the simulation results are shown in dotted lines. The global 

displacement and local strain history outputs from the FE simulations were extracted at the same 

location as in the DIC analysis. The simulation results predicted almost identical results for both 

anisotropic yield stress and plastic flow as in the experiments. This can be essentially confirmed 

from the analytical calibration of the anisotropic yield function Yld2000-2d based on the 

experimental data before necking in uniaxial tension. After necking, the weighting factor in the 

combined Swift-Voce hardening law was adjusted iteratively to fit the post-necking part of the 

experimental data. Figure 3-18 shows the contour plot results of the anisotropic plastic flow 

parameter 𝜙  and the anisotropic equivalent plastic strain 𝜀𝑓̃(𝜙) from FE simulations. The FE 

simulation results are also in a good agreement with the DIC analysis results, so that the anisotropic 

facture induced by anisotropic plastic flow is clearly demonstrated. 
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Figure 3-17. FE simulations of uniaxial tension: engineering stress-strain curve 

 
Figure 3-18. FE simulation results of uniaxial tension: anisotropic plastic flow measure angle 𝜙 (SDV18) 

3.4.2 Notch Tension 

Figure 3-19 shows the FE simulation results of notch tension tests using (a) only Yld2000-

2d and (b) Yld2000-2d by flow stress correction in Eq.(3-10). In Figure 3-19(a), if only the 

anisotropic yield function Yld2000-2d is used, the force-displacement predictions from FE 

simulations agree well with the experimental results in the initial yield part. However, the 

discrepancy between FE simulations and experimental results became larger as the displacement 

increases. This indicates the limitation of Yld2000-2d and demonstrates the necessity to 
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incorporate the flow stress correction with plastic strain evolution. The present Yld2000-2d 

anisotropic yield model was calibrated from uniaxial tension and equi-biaxial tension stress states, 

as suggested in the original paper of Barlat et al. (2003). Hence, the calibrated model may lead to 

some discrepancies in predicting other stress states, such as plane strain tension and shear. More 

importantly, the Yld2000-2d is only calibrated for initial yield stress without considering 

anisotropic hardening at different loading conditions. For the present notch tension sample, the 

stress state at the notch center was initially in a general biaxial tension (𝜃̅ = 0.5), and then switched 

to plane strain tension stress state (𝜃̅ = 0) after strain localization. Meanwhile, the free edge was 

always in uniaxial tension stress state (𝜃̅ = 1). At a given displacement, the global force is an 

integration of vertical force from the cross-section over the width direction: 

  𝐹 = 2∫ 𝜎𝑦𝑦(𝜃̅)𝑎0 𝑡𝑑𝑥 (3-41) 

As seen in Eq.(3-41), the total force F is a function of Lode angle parameter 𝜃̅ , or 

equivalently a function of stress triaxiality 𝜂 under plane stress condition according to Eq.(3-15). 

It may not be straightforward to derive an analytical function of force-displacement for the notch 

tension test due to non-uniform deformation, but in order to lower the force prediction at large 

displacement, it is necessary to reduce the flow stress towards 𝜃̅ = 0 by ℎ(𝜂, 𝜃) in Eq.(3-10). For 

the present material, only the Lode angle term in ℎ(𝜂, 𝜃) was suggested for flow stress correction. 

The main reason is that the force over-prediction using Yld2000-2d does not only occur in notch 

tension test, but also in shear tests to be shown in the next section. In both cases, the Lode angle 

parameter 𝜃̅ = 0 at stress states of plane strain tension and shear. In FE simulations, by assigning 

the parameter 𝐶𝜃𝑠 as a function of plastic strain, the flow stress can be lowered for 𝜃̅ = 0. The 
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parameter 𝐶𝜃𝑠 was defined as a smooth S-curve bounded between 1.0 and 0.9. By changing the 

coefficients of the S-curve iteratively, the force-displacement curves agree well with the 

experimental results (the error become less than 0.8%), as shown in Figure 3-19(b). The plastic 

strain distributions at the fracture initiation are presented in Figure 3-20.  

  
Figure 3-19. FE simulations of notch tension (a) using Yld2000 only (b) using Yld2000 and BW plasticity correction 

 
Figure 3-20. FE simulation results from notch tension tests along rolling direction (SDV1: equivalent plastic strain) 

It is worth mentioning that an alternative method (e.g. in Abedini et al. (2018)) for 
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shear stress and plastic flow, then the calibration result is more accurate for shear but comprised 

for other loading conditions. Therefore, the calibration result of an anisotropic yield function 

strongly depends on the user’s choice if more unknowns are introduced than the number of 

coefficients (8 parameters in case of Yld2000-2d). In this work, the Yld2000-2d yield function 

was calibrated for initial anisotropy with a unique solution based on uniaxial tension and equi-

biaxial tension. The hardening model further corrects the deformation-induced anisotropy under 

proportional loading conditions. Similar methodology was used in previous work on Mg alloy 

sheets in Jia and Bai (2016a) with strong anisotropic, tension-compression asymmetry and 

complex hardening behavior. 

3.4.3 Shear 

The FE simulation results of force-displacement for shear tests are shown in Figure 3-21. 

In the FE model, a fine mesh size of 0.2 mm was used to discrete the localized shear zone of the 

shear specimen. The mesh size was determined from a mesh convergence study as shown in the 

discussion. Like the notch tension simulations, if only using Yld2000-2d, the FE simulations of 

the shear tests also over-predict the force response for about maximum 3% for all three material 

orientations. Since the Lode angle parameter is zero (𝜃̅ = 0) for shear stress state, the force can be 

corrected using the same adjusted parameter 𝐶𝜃𝑠 as in notch tension simulations. Figure 3-21 shows 

the FE simulation results after the flow stress correction by Eq.(3-10). In the present study, the 

choice of adjusting the Lode angle dependent coefficient 𝐶𝜃𝑠 is sufficient for optimum simulation 

results in correlation with the experimental data. In general, the accuracy of the hardening model 



48 

 

can be further improved by the pressure correction term dependent on stress triaxiality 𝜂 in ℎ(𝜂, 𝜃) 
if more test data are available. 

 

Figure 3-21. FE simulation results of shear test along RD using Yld2000 and BW plasticity model correction. 

Figure 3-22 shows that the FE simulation results correctly predicted strain localization and 

fracture initiation within the shear zone as seen in the experiments. In this sample design, two 

potential fracture modes are competing: (1) crack in the shear zone and (2) crack at the notch edge. 

The loading condition is simple shear in the center; while at the notch edges, the stress state is 

either uniaxial tension or compression due to the free boundary condition. The fracture initiation 

location is determined by the rate of damage accumulation under the given fracture locus. Figure 

3-22 demonstrates that by using the present anisotropic plasticity and fracture model, the damage 

accumulation at the center shear zone was faster than that at the notch edge, therefore the shear 

crack initiated first in the FE simulations. 
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Figure 3-22. FE simulation results of shear test (a) contour plot of equivalent plastic strain (SDV1) (b) contour plot of 
damage parameter D (SDV3) (c) Fracture initiation in the shear zone 

3.4.4 Strain Paths to Fracture 

The strain paths to fracture are summarized in the all-strain based space (𝜀𝑝̃ − 𝜙) as shown 

in Figure 3-23. As introduced in previous sections, 𝜀𝑝̃ denotes the anisotropic fracture strain after 

linear transformation, and 𝜙 is the anisotropic plastic flow parameter. In Figure 3-23, the solid 

lines represent the test data and the circular markers represent the strain histories from FE 

simulations. For each FE simulation, the strain path was extracted from the critical element at 

fracture initiation. The strain paths are from tensile loading tests (UT, NT and SH) only. The strain 

histories from uniaxial compression simulations were omitted due to the limitation of shell 

elements. The 3D solid element will be more suitable to consider the strain histories of 

compression simulations. The FE simulation results demonstrate that with the current proposed 
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anisotropic plasticity and fracture models, the local strain paths to fracture are well correlated with 

the experimental results under proportional loading conditions. 

 

Figure 3-23. FEA results of strain paths to fracture for uniaxial tension, plane strain tension and shear tests 

3.5 Discussions 

In this work, shell elements are used for industrial applications due to the reasonable 

computational cost. Shell model solutions of large deformation problem are often as good as the 

solutions obtained with very fine solid element meshes unless necking occurs. The mesh size effect 

using shell element is a well-known issue in finite element modeling for ductile fracture. It is worth 

mentioning about the mesh size convergence issue in FE modeling by two sources: (1) the 

convergence issue introduced by spatial discretization in general finite element analysis and (2) 

the convergence issue related to the phenomenon of localized necking introduced by shell element. 

This can be best explained by our current work of using notch tension and shear tests. In notch 

tension tests, the FE simulation results are all the same before necking using different mesh sizes 

of 0.2, 0.5 and 1.0 mm. However, the force prediction diverges using shell element after localized 
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necking because plane stress assumption does not hold due to the hydrostatic pressure developed 

inside the neck. In shear test simulations, since the shear zone is very small due to the present 

sample design, the FE simulation results of mesh size 0.5 mm overestimated the test result for 

approximately 10%. The overestimation is not related with localized necking but simply due to 

the relatively large mesh used for spatial discretization of the localized shear zone. The maximal 

difference of the force-displacement response was less than 1% for element size 0.2 and 0.1 mm, 

suggesting that the FE solution was convergent. 

  
Figure 3-24. Mesh size effect in FE simulations of (a) shear test (b) uniaxial tension test. 

The mesh size also affects the fracture strain. Mesh size may not be a sensitive issue for 

FE simulations at test coupon level because mesh sizes are very small (< 0.5 mm) compared to the 

mesh sizes used in practical applications (~ 5 to 10 mm) such as crashworthiness simulations. The 

problem of mesh size dependence on fracture strain has not been well understood, but it appears 

that mesh size regularization method provides a practical solution, which has been widely used 

and accepted in LS-DYNA. In addition, there also exists the size effect in DIC analysis of fracture 

strain. Experimental studies on different virtual strain gauge length (VSGL) suggest that the 
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fracture strain converges with respect to VSGL. Future work is necessary to address the effect of 

VSGL on fracture strain analysis in DIC and the mesh size dependence for fracture analysis in FE 

simulations. 
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CHAPTER 4 STRAIN RATE DEPENDENT FRACTURE MODELING 

OF ADVANCED HIGH STRENGTH STEELS 

In this chapter, an extended rate-dependent MMC fracture model is proposed based on 

comprehensive quasi-static and high-speed fracture test data of four grades of advanced high 

strength steels (AHSS) sheets over a wide range of loading conditions. The new phenomenological 

fracture model aims to provide a bounded solution for modeling material fracture at high speed 

events within the range of low and intermediate strain rates for metal forming and crashworthiness 

applications. Finite element simulations are performed to correlate the test results under dynamic 

loading conditions. 

4.1 Experimental Results and Analysis 

This section presents the mechanical testing results of four grades of automotive AHSS 

sheets: QP980, MP980, DP1180 and PHS1300. AHSS grades contain significant alloying and two 

or more phases. AHSS are usually named in metallurgical designations providing the process 

information followed by the ultimate tensile strengths (UTS). Table 4-1 lists the four AHSS grades 

with tensile strength of 1000 MPa or above (also called “GigaPascal steels”) studied in this chapter. 

All the experimental results presented here are along the rolling direction of the AHSS sheet. 

Table 4-1. AHSS sheets investigated in the present study  

Steel Grade Type of Steel Tensile Strength (MPa) 

QP980 Quenching and Partitioning steels 980 

MP980 Multi-Phase steels 980 

DP1180 Dual-Phase steels 1180 

PHS1300 Press Hardened Steels 1300 
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4.1.1 Experiments at Quasi-static and High-speed Conditions 

The AHSS sheets were tested by coupon specimens at both quasi-static and high-speed 

conditions. Figure 4-1 and Figure 4-2 show the schematic drawings of the coupon specimens of 

MP980, DP1180, PHS1300. The coupon specimen designs for QP980 are slightly different than 

the other three materials and are shown separately in Figure 4-3. In each test, 3-5 specimens were 

tested to ensure experimental reliability.  

 

Figure 4-1. Schematic drawings of specimens tested under quasi-static conditions for MP980, DP1180 and PHS1300. 
(1) UT: uniaxial tension (2) UH: uniaxial tension with central hole (3) NT: notch tension (4) SH: shear (5) BX: biaxial 
punch (6) BE: plane strain bending (7) BU: hydraulic bulging. 
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Figure 4-2. Schematic drawings of specimens tested under high-speed conditions for MP980, DP1180 and PHS1300. 
(1) UT: uniaxial tension (2) BE: plane strain bending (3) BX: biaxial punch.  

 

Figure 4-3. Schematic drawings of specimens tested under quasi-static and high-speed conditions for QP980. (a)(b) 
UT: uniaxial tension (c) NT: notch tension (d) SH: shear (e) BX: biaxial punch  
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The experiments of coupon samples at quasi-static conditions were conducted on universal 

testing machines. In the experiments, a stereo digital image correlation (DIC) system was used to 

in-situ measure the strain fields on the surface of the samples. The DIC system included a pair of 

CCD cameras operated at an adjustable low frame rate to allow sufficient resolution of strain states 

close to fracture. The testing machines and the DIC systems were triggered simultaneously at the 

beginning of each test, and the load signals measured in-situ by the load cells were continuously 

transferred into the DIC software to synchronize with the corresponding images during the tests.  

The in-plane tests of coupon samples at high-speed conditions were conducted at different 

target effective strain rates on servo-hydraulic high-speed testing machines equipped with piezo 

load washers. The planar DIC systems equipped with a high-speed camera was used to capture the 

deformation and failure of the samples. The camera frame rate was set up to a high frequency with 

respect to the target strain rate to ensure the desired pixel resolution for fracture strain analysis. In 

order to record sufficient images for post-processing the strain close to fracture, the image 

acquisition was triggered by the rise of the force signals captured by the piezo load washer and 

thus the images can be synchronized with the force signals for DIC analysis. 

Except for the in-plane tests, the AHSS sheets were also tested out-of-plane under bending, 

hydraulic bulge and punch tests. The hydraulic bulge tests were done at quasi-static loading 

condition only. The punch tests were carried out in a custom fixture equipped on the universal 

testing machine, or a Nakajima testing setup on a servo-hydraulic press. Due to the limitation of 

the universal testing machine and the servo-hydraulic press, the nominal effective strain rates were 

targeted at the order of magnitude of low strain rate 𝜀̇ = 1 − 10/𝑠. 
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Table 4-2 summarizes the fracture tests of the four grades of AHSS sheets at quasi-static 

and high-speed conditions. 

Table 4-2. Fracture test summary of AHSS sheets at quasi-static and high-speed conditions 

Material Fracture Tests 
Test Condition 

Quasi-static High-speed 

MP980 

DP1180 

PHS1300 

(1) UT: uniaxial tension v = 0.1 mm/s v = 1, 4, 10 m/s 

(2) UH: uniaxial tension with central hole v = 0.05 mm/s × 

(3) NT: notch tension v = 0.01 mm/s × 

(4) SH: shear v = 0.005 mm/s × 

(5) BE: plane strain bending v = 0.1 mm/s v = 50, 100 mm/s 

(6) BU: hydraulic bulging P ≈ 0.3 MPa/s × 

(7) BX: biaxial punch v = 0.1 mm/s v = 50, 100 mm/s 

QP980 

(1) UT: uniaxial tension v = 0.025 mm/s v = 25, 2500 mm/s 

(2) NT: notch tension v = 0.01 mm/s v = 10, 1000 mm/s 

(3) SH: shear v = 0.01 mm/s v = 2.5, 250 mm/s 

(4) BX: biaxial punch v = 0.25 mm/s v = 25, 250 mm/s 

4.1.2 Experimental Results of Fracture Strain 

The strain paths of all four loading conditions of QP980 at different strain rates are 

summarized in Figure 4-4. The quasi-static, slow and high speed dynamic test results are plotted 

by black, green and red lines respectively. For the same test, each repeat was represented by a 

specific line style. The test results show that when strain rate increases, the fracture strain drops 

significantly in uniaxial tension, but strain rate effect on fracture appears insensitive in other three 

loading conditions. Despite that the statistical differences in DIC analysis may be reduced in 

further analysis or cross-checked by physical measurement methods, the same conclusion is 

expected. 
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Figure 4-4. Strain paths for QP980 steel sheets at quasi-static, slow-speed and high-speed dynamic tests under different 
loading conditions (from left to right): (1) shear (2) uniaxial tension (3) notch tension (4) Nakazima punch test 

Figure 4-5 to Figure 4-7 show the strain paths of quasi-static testing results of MP980, 

DP1180 and PHS1300. All test results are from the rolling direction of AHSS sheets. The strain 

path to fracture in each test was extracted from the critical location of the sample in the DIC 

analysis. The different test types are represented by different line colors. Five samples were tested 

for each test. The quasi-static tests cover a wide range of loading conditions from strain ratio 𝛼 ≈−1 (shear) to strain ratio 𝛼 ≈ +1 (equi-biaxial tension). Except for the shear tests, the other six 

fracture tests can be divided into 3 groups: (1) Fracture under uniaxial tension loading condition 

characterized by uniaxial tension (UT) and uniaxial tension with central hole (UH) tests (2) 

Fracture under plane strain tension loading conditions characterized by the notch tension (NT) and 

plane strain bending (BE) tests (3) Fracture under biaxial tension characterized by hydraulic 

bulging (BU) and biaxial punch (BX) tests.  
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Figure 4-5. Strain paths to fracture for all 7 types of quasi-static tests of MP980: (1) SH: shear (2) UH: uniaxial tension 
with central hole (3) UT: uniaxial tension (4) NT: notch tension (5) BE: plane strain bending (6) BU: hydraulic bulging 
(7) BX: biaxial punch. The test results are along rolling direction of the samples. 

 

Figure 4-6. Strain paths to fracture for all 7 types of quasi-static tests of DP1180: (1) SH: shear (2) UH: uniaxial 
tension with central hole (3) UT: uniaxial tension (4) NT: notch tension (5) BE: plane strain bending (6) BU: hydraulic 
bulging (7) BX: biaxial punch. The test results are along rolling direction of the samples. 
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Figure 4-7. Strain paths to fracture for all 7 types of quasi-static tests of PHS1300: (1) SH: shear (2) UH: uniaxial 
tension with central hole (3) UT: uniaxial tension (4) NT: notch tension (5) BE: plane strain bending (6) BU: hydraulic 
bulging (7) BX: biaxial punch. The test results are along rolling direction of the samples. 

For high-speed tests of MP980, DP1180 and PHS1300, the local fracture strain data were 

obtained from physical measurement of the fracture surfaces. Table 4-3 lists the analytical 

equations for fracture strain estimations from physical measurements. 

Table 4-3. Local fracture strain estimation from physical measurements 

Uniaxial tension Plane strain bending Punch test 𝜀𝑓̅ = 𝑙𝑛 (𝑤0𝑡0𝑤𝑓𝑡𝑓) 𝜀𝑓̅ = 2√3 𝑙𝑛 (𝑡0𝑡𝑓) 𝜀𝑓̅ = 2𝑙𝑛 ( 𝑅 𝑡0⁄ + 1𝑅 𝑡0⁄ + 1/2) + 𝑙𝑛 (𝑡0𝑡𝑓) 

In Table 4-3, 𝑤0 and 𝑤𝑓 are the original and final widths of the uniaxial tension sample; 𝑡0 

and 𝑡𝑓 are the original and failure thickness of the AHSS sheet at the fracture location; and R is the 

radius of the punch.  

The fracture strain data of high-speed tests for MP980, DP1180 and PHS1300 are shown 

in Figure 4-8 to Figure 4-10. In each figure, the equivalent plastic strain data are shown in plot (a). 
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For high-speed bending and biaxial punch tests, since no strain paths are available from DIC 

analysis, the equivalent plastic strain data from physical measurement were converted to the 

principal strains by assuming the same strain ratio as in the quasi-static tests. For high-speed 

tension tests, the fracture strain data from DIC analysis and physical measurement are compared 

in plot (c) and (d). The stress triaxialities were calculated correspondingly under the assumption 

of linear strain path and associated flow rule. Note that the nominal strain rate ranges are different 

for the high-speed tests conducted on different testing machines: (1) low strain rate range (𝜀̇ = 1 −10/𝑠) for high-speed bending and punch tests and (2) intermediate strain rate range (𝜀̇ = 50 −500/𝑠) for high-speed tension tests. The nominal strain rates of high-speed bending and punch 

tests are the average strain rates obtained from the local fracture strain divided by the total time to 

fracture, while the nominal strain rates of high-speed tension tests are uniformly distributed over 

the gauge section of the sample. 

The fracture data of high-speed tension tests obtained from physical measurement are 

consistent with DIC analysis results for MP980 and PHS1300. For DP1180, the fracture strain 

obtained from physical measurement are smaller than those from DIC analysis. In addition, for all 

three materials, the fracture strain values from high-speed bending tests appear underestimated by 

the analytical equation in Table 4-3. This may be attributed to the inhomogeneous strain 

distribution through the thickness direction during the plane strain bending tests. 
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Figure 4-8. Fracture strain for high-speed uniaxial tests of MP980 (a) fracture strain from physical measurement (b) 
fracture strain from physical measurement of bending (BE) and punch (BX) tests (c) fracture strain from physical 
measurement of uniaxial tension (UT) tests (d) fracture strain from DIC analysis of uniaxial tension (UT) tests 
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Figure 4-9. Fracture strain for high-speed uniaxial tests of DP1180 (a) fracture strain from physical measurement (b) 
fracture strain from physical measurement of bending (BE) and punch (BX) tests (c) fracture strain from physical 
measurement of uniaxial tension (UT) tests (d) fracture strain from DIC analysis of uniaxial tension (UT) tests 
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Figure 4-10. Fracture strain for high-speed uniaxial tests of PHS1300 (a) fracture strain from physical measurement 
(b) fracture strain from physical measurement of bending (BE) and punch (BX) tests (c) fracture strain from physical 
measurement of uniaxial tension (UT) tests (d) fracture strain from DIC analysis of uniaxial tension (UT) tests 
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4.2 Rate-dependent MMC Model and Fracture Strain Analysis 

The material model presented in this section will serve as an efficient solution for the rate- 

dependent fracture problems in metal sheet stamping and full vehicle crashworthiness simulations.  

The MMC fracture locus at quasi-static condition based on work of Bai and Wierzbicki 

(2010) reads 

𝜀𝑓(𝜂, 𝜃) = {𝐴𝐶2 [𝐶𝜃𝑠 + √32 − √3 (𝐶𝜃𝑎𝑥 − 𝐶𝜃𝑠) (sec 𝜃𝜋6 − 1)] [√1 + 𝐶123 cos 𝜃𝜋6 + 𝐶1 (𝜂 + 13 sin 𝜃𝜋6 )]}−
1𝑛
 (4-1) 

Under plane stress condition, Lode angle 𝜃 and stress triaxiality 𝜂 are uniquely linked by 

𝜃 = 1 − 2𝜋 𝑎𝑟𝑐𝑐𝑜𝑠 [−272 𝜂 (𝜂2 − 13)] (4-2) 

The MMC fracture model is extended to a rate-dependent fracture model, by introducing a 

sigmoid function (or reversed “S-curve”) 𝑔(𝜀̇) as follows 𝑔(𝜀̇) = 𝑠0 + 𝑠𝑑1 + 𝑒−𝑠𝑐𝜀̇ (4-3) 

The fully-uncoupled rate-dependent MMC fracture model then becomes 𝜀𝑓(𝜂, 𝜀̇) = 𝜀𝑓(𝜂)𝑔(𝜀̇) (4-4) 

The S-curve model 𝑔(𝜀̇)  is schematically shown in Figure 4-11. The S-curve 𝑔(𝜀̇) 
smoothly decreases from an upper bound of (𝑠0 + 𝑠𝑑) to a lower bound of (𝑠0 + 𝑠𝑑/2). The rate-

dependent fracture solution is now well-bounded from quasi-static to intermediate strain rate for a 

variety of modeling applications. The trend of the S-curve interprets such experimental phenomena 

over a wide range of strain rates that (1) at low strain rate range (0.1-10/s), material fracture strain 

decreases slowly with increasing strain rate; (2) at intermediate strain rate range (10-1000/s), the 

fracture strain drops significantly but gradually saturated toward the lower bound; (3) at high strain 
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rate range (>103/s), fracture strain ceases to decrease and maintain a constant value. The S-curve 

prediction is in a general consistency with the present fracture data of QP980 steel, particularly for 

high speed uniaxial tension and punch tests in two different strain rate ranges.  

Another advantage of S-curve model is that, if compared to Johnson-Cook (J-C) damage 

model with strain rate dependent term only, the S-curve model is capable of predicting realistic 

material fracture in high speed deformation scenarios. As shown in Figure 4-11 (c), the strain rate 

dependent J-C fracture model predicts linear behavior in semi-log scale plot and the fracture limit 

is not bounded at high strain rate. This behavior may lead to unrealistic fracture prediction in finite 

element simulations. For example, in a forming or high velocity impact event, the local strain rate 

within an element does not remain constant during deformation and increases dramatically after 

the onset of necking. It is very likely to predict early fracture either if the model is unable to predict 

less ductility loss at low strain rate range, or if the model is not bounded at high strain rate range.  

In Eq. (4-3) and (4-4), the strain rate term 𝑔(𝜀̇) is fully decoupled from 𝜀𝑓(𝜂). In other 

words, the same magnitude of ductility loss applies to all stress states. Such an assumption is 

reasonable for a quick assessment for fracture model implementation from limited amount of test 

data, for instance, if only high speed tension is available. Nevertheless, in fact, the fracture data 

have demonstrated that for the present QP980 steel, strain rate does not cause ductility loss in other 

loading conditions than uniaxial tension. Therefore, a coupled rate-dependent MMC fracture 

model is tentatively proposed here to mathematically describe the experimental phenomenon, by 

assuming another piecewise sigmoid function ℎ(𝜃̅) coupled with strain rate:  
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ℎ(𝜃̅) = {  
  0,                                   𝜃̅ ≤ 011 + ( 𝜃̅1 − 𝜃̅)−𝛽ℎ , 𝜃̅ > 0 (4-5) 

The coupled strain rate dependent MMC fracture model then becomes a double-S-curve 

model as indicated in Eq. (4-6). 𝑔(𝜀̇, 𝜃̅) = 𝑠0 + 𝑠𝑑1 + 𝑒−𝑆𝑐ℎ(𝜃̅)𝜀̇ (4-6) 

The function ℎ(𝜃̅) plot is shown in Figure 4-11(d). Here, ℎ(𝜃̅) is chosen from zero to unity. 

The lower bound ℎ(𝜃̅) = 0 indicates that for arbitrary strain rate, there is no ductility loss at this 

given stress state (e.g. 𝜃̅ = 0 for shear and 𝜃̅ = −1 for equi-biaxial tension). The upper bound ℎ(𝜃̅) = 1 indicates that for the given stress state (e.g. 𝜃̅ = 1 for uniaxial tension), strain rate fully 

determines the ductility loss for the S-curve model by the original 𝑔(𝜀̇) in Eq.(4-3). Note that 

Eq.(4-2) can help to transfer 𝜃̅ (in Eq.(4-6)) to 𝜂 for plane stress conditions in implementation if 

needed. 
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Figure 4-11. Fracture model plot for QP980: (a) MMC fracture locus at quasi-static condition (b) Fracture forming 
limit diagram (FFLD) at quasi-static and dynamic conditions in strain space (c) S-curve model 𝑔(𝜀̇) from quasi-static 
to intermediate strain rate and comparison with Johnson-Cook model (d) Lode angle coupling term ℎ(𝜃̅) in Eq.(4-5).  

The fully uncoupled and coupled rate-dependent MMC fracture model can be further 

viewed in 3D space in Figure 4-12. In case of the full uncoupled model, fracture strain drops 

equally for all stress states according to Eq.(4-3). On the contrary, the coupled model is bounded 

at shear (𝜃̅ = 0) and equi-biaxial tension (𝜃̅ = −1) for all strain rates investigated. 
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Figure 4-12. 3D fracture envelopes of QP980 under plane stress condition (a) Fully uncoupled rate-dependent MMC 
fracture model by Eq.(4-4). (b) Coupled rate-dependent MMC fracture model by replacing Eq.(4-4) with Eq.(4-6).  

The rate-dependent MMC fracture models developed above were similarly applied for 

MP980, DP1180 and PHS1300. The high-speed test data for these three materials are not as 

comprehensive as QP980, hence only the fully decoupled S-curve model 𝑔(𝜀̇) in Eq.(4-3) was 

used to fit the available fracture test data. Figure 4-13 shows the S-curve model 𝑔(𝜀̇) fit with the 

test data of these three AHSS sheets in terms of equivalent plastic strain at fracture.  
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Figure 4-13. Full decoupled S-curve model 𝑔(𝜀̇) of MP980, DP1180 and PHS1300 from quasi-static to intermediate 
strain rate conditions  

The full decoupled rate-dependent fracture forming limit diagrams (FFLD) and the 

corresponding MMC fracture loci for MP980, DP1180 and PHS1300 are shown from Figure 4-14 

to Figure 4-19, respectively. Two representative rate-dependent fracture loci were plotted at two 

different strain rates: (1) Fracture locus within the low strain rate range (𝜀̇ = 1 − 10/𝑠) (2) 

Fracture locus within the intermediate strain rate range (𝜀̇ = 50 − 500/𝑠). The test data available 

for low strain rate range is the high-speed punch tests at punch speed of 50 and 100 mm/s. The test 

data available for the intermediate strain rate range is the high-speed tension tests at pulling speed 

of 1, 4, 10 m/s, which are faster than the quasi-static test speed by several order of magnitude. 

High-speed bending test results were not included in the figures due to the test data uncertainty. 
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Figure 4-14. Fracture forming limit diagram (FFLD) of MP980 at (1) Quasi-static (QS) (2) Low strain rate and (3) 
Intermediate strain rate conditions. Strain ratio 𝛼 = 𝑑𝜀2 𝑑𝜀1⁄  

 
Figure 4-15. MMC fracture locus of MP980 at (1) Quasi-static (QS) (2) Low strain rate and (3) Intermediate strain 
rate conditions. 
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Figure 4-16. Fracture forming limit diagram (FFLD) of DP1180 at (1) Quasi-static (QS) (2) Low strain rate and (3) 
Intermediate strain rate conditions. Strain ratio 𝛼 = 𝑑𝜀2 𝑑𝜀1⁄  

 
Figure 4-17. MMC fracture locus of DP1180 at (1) Quasi-static (QS) (2) Low strain rate and (3) Intermediate strain 
rate conditions.  
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Figure 4-18. Fracture forming limit diagram (FFLD) of PHS1300 at (1) Quasi-static (QS) (2) Low strain rate and (3) 
Intermediate strain rate conditions. Strain ratio 𝛼 = 𝑑𝜀2 𝑑𝜀1⁄  

 
Figure 4-19. MMC fracture locus of PHS1300 at (1) Quasi-static (QS) (2) Low strain rate and (3) Intermediate strain 
rate conditions. 
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4.3 Finite Element Analysis of High-Speed Tests 

This section presents the FE simulation results for high-speed tests of the AHSS sheets. 

The FE simulations were performed using the dynamic explicit solver in LS-DYNA. Test 

specimens were modeled using fully-integrated shell elements with five integration points assigned 

through the thickness direction. In order to model crack initiation, full size samples were modeled 

using the element erosion technique. Since the temperature dependent test data are not available, 

the thermal softening effect was not considered in FE simulations. 

4.3.1 FE Simulation Results of QP980 sheets 

This section presents the FE simulation results for high-speed uniaxial tension and punch 

tests of QP980. The strain rate effects of plastic hardening and fracture were modeled using 

keywords *MAT_024 and *MAT_ADD_DAMAGE_GISSMO. The mesh size was selected in 

accordance to the virtual strain gauge length (VSGL) from strain analysis in the DIC software. 

In this work, only strain hardening effect was considered based on the available test data. 

The dynamic effects of strain rate hardening are modeled by Cowper-Symonds model: 

 𝜎 = 𝜎0 [1 + (𝜀𝐶̇)1 𝑃⁄ ] (4-7) 

The Cowper-Symonds model is a common and simple rate-dependent plasticity model for 

explicit dynamic simulations. 𝜎0 defines the hardening curve at quasi-static condition; and 𝜎 is the 

yield stress scaled with strain rate effect at dynamic condition. C and P are two material constants 

calibrated from uniaxial tension test results at different nominal strain rates. 
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The present QP980 sheet samples are in general isotropic. A linear combination of Swift-

Voce hardening law is used here for determination of post-necking hardening before fracture. The 

model parameters were determined in a hybrid experimental-numerical approach.  𝜎0(𝜀𝑝̅) = 𝛼[𝐴(𝜀0 + 𝜀𝑝̅)𝑛] + (1 − 𝛼)[𝑘0 + 𝑄(1 − 𝑒−𝛽𝜀̅𝑝)] (4-8) 

For modeling rate-dependent fracture, only the fully uncoupled strain rate dependent MMC 

fracture model were considered in FE simulations due to its simplicity. The material parameters 

of rate-dependent plasticity and fracture models are listed in Table 4-4. 

Table 4-4. Plasticity and fracture parameters for QP980 steel 

Plasticity parameters 
C P A n 𝜀0 𝛼 𝑘0 Q 𝛽 

6500 1.2 1750 0.215 0.008 0.6 654.6 559.5 14.98 

Fracture parameters 
A n 𝑐1 𝑐2 𝑐𝜃𝑠 𝑐𝜃𝐴𝑋 𝑠0 𝑠𝑑 𝑠𝑐  

1750 0.215 0.13 955.4 1.008 1.038 1.4 -0.8 0.058 

The FE simulation results are shown in Figure 4-20. The test results are denoted by lines 

and the FE simulation results are presented by scattered markers. In the uniaxial tension 

simulations, for quasi-static and slow speed conditions, the FE results show slight differences than 

the test results. However, at intermediate strain rate, the difference becomes noticeable: the FE 

result predicted longer elongation until fracture after the onset of necking. This difference is mainly 

because in the FE model, only strain rate hardening effect was considered, and the thermal 

softening effect was neglected. In real high speed tension tests, the strain rate is sufficiently high 

to generate adiabatic heating in the localized necking zone. The deformation-induced thermal 

softening effect will decrease the flow stress and promote earlier fracture (Wagoner & Chenot, 

1996). Special attention is drawn to the readers that for high speed tension, despite that the uniform 

elongation is much longer than quasi-static and slow speed tension, the local fracture strain is still 
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lower as in FE model input. Fracture is a local phenomenon rather than an average response over 

a wide gauge area on the sample. 

In the punch test simulations, as punch speed increases, the strain rate hardening effect is 

similarly observed as in uniaxial tension. For both experiments and simulations of the highest 

speed punch tests (v = 250 mm/s), the punch stroke at fracture is smaller than those at the slow 

speeds. The results are expected because when strain rate increases, the strain rate dependent MMC 

fracture model predicts lower fracture strain. However, the ductility loss in high-speed punch is 

only marginal. Unlike in high-speed tension tests, the nominal strain rates in high-speed punch 

tests are within low strain rate range. 

 

Figure 4-20. FEA results of (left) uniaxial tension and (right) punch tests of QP980 sheets at different speeds 
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The loading path histories were extracted from critical elements at fracture initiation in the 

FE simulations. Figure 4-21 shows the evolution of equivalent strain with respect to strain rate and 

stress triaxiality in a 3D space. For a given loading condition, the evaluation of triaxiality η is 

almost the same at different strain rates. For example, in uniaxial tension, triaxiality η started at 

1/3 during uniform deformation, and then shifted to 0.4-0.5 after the onset of necking. In punch 

test modeling, triaxiality of the critical element remained close to 2/3 during punch stroke, which 

implies a proportional loading condition along equi-biaxial tension. 

The effect of strain rate evolution during plastic deformation is more pronounced. Despite 

that constant velocities were applied as boundary conditions, the local strain rates of the critical 

elements increased dramatically even by one order of magnitude. For example, in high speed 

tension tests, the nominal strain rate is targeted at 100/s. But the actual local strain rate of the 

critical element changed approximately from 50/s to 500/s before fracture. Therefore, the FE 

results shed light on the importance of the proposed S-curve model. The bounded smooth S-shape 

curve model represents its capability of producing realistic simulation results for fracture model 

with element erosion.  
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Figure 4-21. FEA results of rate-dependent loading paths to fracture of QP980 for uniaxial tension (solid lines) and 
punch (dashed lines) tests at 3 different speeds: quasi-static (black), slow speed (green) and high speed (red). Note 
that the strain rate range for the highest speed of uniaxial tension (intermediate 𝜀̇) is different than punch test (low 𝜀̇). 

4.3.2 FE Simulation Results of MP980, DP1180 and PHS1300 sheets 

Similar modeling approach was applied to the other AHSS sheets: MP980, DP1180 and 

PHS1300. The FE simulations were carried out for (1) uniaxial (2) plane strain bending and (3) 

punch tests by dynamic explicit analysis in LS-DYNA. Test specimens were modeled using fully-

integrated shell elements (ELFORM = 16) with five integration points assigned through the 

thickness direction. The strain rate effects of plastic hardening and fracture were modeled using 

keywords *MAT_224. In *MAT_224, the rate-dependent hardening curve input are effective 

stress versus effective plastic strain at different strain rates as shown in Figure 4-22. Since the 
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temperature dependent test data are not available, the thermal softening effect was not considered 

in FE simulations. 

 
Figure 4-22. An example (MP980) of rate-dependent hardening curve input by *MAT_224 in LS-DYNA 

The rate-dependent plasticity and fracture behavior were modeled using the Cowper-

Symonds model in Eq.(4-7) and the fully uncoupled rate-dependent fracture model in Eq.(4-3). 

The material parameters of rate-dependent plasticity and fracture models of MP980, DP1180 and 

PHS1300 are summarized in Table 4-5. The plots of Figure 4-13 in Section 4.2 demonstrates the 

S-curve model 𝑔(𝜀̇) using the fracture parameters in Table 4-5.  

Table 4-5. Plasticity and fracture parameters for MP980, DP1180 and PHS1300 

Plasticity parameter C P A n 𝜀0 𝛼 𝑘0 Q 𝛽 

MP980 21362 2.30 1238 0.062 0.0001 0.7 893.2 166.9 32.47 

DP1180 14976 2.05 1512 0.070 0.0001 0.5 1025.5 241.5 36.95 

PHS1300 1565 0.45 1980 0.070 0.0001 0.0 1125.6 432.9 109.7 

Fracture parameter A n 𝑐1 𝑐2 𝑐𝜃𝑠 𝑐𝜃𝑐  𝑠0 𝑠𝑑 𝑠𝑐  

MP980 1238 0.062 0.049 655.8 0.9276 0.9996 1.608 -1.216 0.054 

DP1180 1512 0.070 0.061 795.8 0.9324 1.0020 1.551 -1.103 0.111 

PHS1300 1980 0.070 0.058 1025.4 0.9240 0.9996 1.701 -1.402 0.053 
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Figure 4-23 to Figure 4-25 show the FE simulation results of uniaxial tension tests for 

MP980, DP1180 and PHS1300. The test results are denoted by solid lines and the FE simulation 

results are shown as dashed lines. The FE simulation results predict the global force (or engineering 

stress) responses very well as compared to the test results. This is as expected because the rate-

dependent Cowper-Symonds plasticity model was calibrated from the high-speed uniaxial tension 

results. The FE simulations predict late fracture for some cases (e.g. MP980-50/s). This is mainly 

because only strain rate hardening effect was considered in the model setup. In real high speed 

tension tests, adiabatic heating was generated in the localized necking zone and the thermal 

softening effect would decrease the flow stress and lead to earlier fracture after necking. In addition, 

despite that the global displacements to fracture are the greatest at the highest speed tests (i.e. 

nominal strain rate 500/s) for all 3 materials, the local fracture strain, on the other hand, is close to 

or smaller than the low speed test results (i.e. nominal strain rate 50/s). 

 

Figure 4-23. FEA results of high speed tests in uniaxial tension at different target nominal strain rates for MP980. The 
test results are shown in solid lines and the FEA results are shown in dashed lines. 



81 

 

 

Figure 4-24. FEA results of high speed tests in uniaxial tension at different target nominal strain rates for DP1180. 
The test results are shown in solid lines and the FEA results are shown in dashed lines. 

 

Figure 4-25. FEA results of high speed tests in uniaxial tension at different target nominal strain rates for PHS1300. 
The test results are shown in solid lines and the FEA results are shown in dashed lines. 

The FE simulation results of high-speed bending tests are shown in Figure 4-26 to Figure 

4-28. The displacements at fracture initiation from FE simulations are consistent with the 

experimental results for all three materials. In FE simulations, fracture was initiated when the 
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integration point on the tensile bending surface failed, but elements were deleted after all 

integration points through thickness failed. In experiments, fracture initiation was determined from 

the DIC images by observation of multiple cracks on the tensile side of the blank during the 

bending tests. From the simulation results, it can be seen that the force responses are 

underestimated for the high speed bending tests. The force difference between FE simulations and 

experimental results may be explained by two possible factors: (1) the simple rate-dependent 

Cowper-Symonds model did not consider strain rate hardening coupling with the stress state. The 

Cowper-Symonds model was calibrated from high speed uniaxial tension tests so the rate-

dependent hardening curves along plane strain tension may not follow the same scaling factor as 

in uniaxial tension. (2) the assumption of isotropic hardening may also account for discrepancy 

between the FE simulation and test results. 

 

Figure 4-26. FEA results of high speed bending tests for MP980 at punch velocity of (a) 50 mm/s and (b) 100 mm/s. 
The test results are shown in color lines and the FEA results are shown in black lines. 
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Figure 4-27. FEA results of high speed bending tests for DP1180 at punch velocity of 50 mm/s. The test results are 
shown in color lines and the FEA results are shown in black lines. 

 

Figure 4-28. FEA results of high speed bending tests for PHS1300 at punch velocity of 50 mm/s. The test results are 
shown in color lines and the FEA results are shown in black lines. 

The FE simulation results of high-speed punch tests are shown in Figure 4-29 to Figure 

4-31. The FE simulation results agree well with experimental results of MP980. However, for 

DP1180 and PHS1300, the simulation results predicted greater punch loads and earlier fracture 

than experiments. The noticeable discrepancies obtained can be attributed to the similar factors as 
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discussed in high-speed bending simulations: (1) strain rate hardening not coupling with stress 

states and (2) the assumption of isotropic yield and isotropic hardening. For high-speed punch test 

simulations, the second factor may be more important in controlling the plastic flow between plane 

strain tension and equi-biaxial tension. In addition, thermal softening effect is another possible 

factor influencing the localized necking behavior of the AHSS sheets. In conclusion, the strain rate 

hardening and necking behavior under multi-axial stress states deserves further investigation on 

constitutive models with higher accuracy for FE simulations.  

 
Figure 4-29. FEA results of high speed punch tests for MP980 at punch velocity of (a) 50 mm/s and (b) 100 mm/s. 
The test results are shown in solid lines and the FEA results are shown in dashed lines. 
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Figure 4-30. FEA results of high speed punch tests for DP1180 at punch velocity of (a) 50 mm/s and (b) 100 mm/s. 
The test results are shown in solid lines and the FEA results are shown in dashed lines. 

 
Figure 4-31. FEA results of high speed punch tests for PHS1300 at punch velocity of (a) 50 mm/s and (b) 100 mm/s. 
The test results are shown in solid lines and the FEA results are shown in dashed lines. 
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4.4 Discussions 

In this work, only the strain rate effects were considered in modeling for simplicity. 

Temperature effects have been buried into the rate effects in the present plasticity and fracture 

models. However, it is well-known that at sufficient high strain rate, adiabatic heating induced 

from plastic deformation plays an important role on lowering material flow stress. The heat 

generated in localized neck of high strain has a detrimental effect on material formability and 

fracture (Sung et al., 2010). Research work on temperature coupling with strain rate effect is 

extensive but is primarily concerned with the one-dimensional constitutive model. It is difficult to 

evaluate the temperature effects comprehensively in the practical experiments, if strain hardening, 

strain rate hardening, thermal softening and multi-axial stress states are fully considered. 

Furthermore, coupling of thermal softening effect into hardening and fracture will impose extra 

challenges for model development and FE analysis. The study on temperature effect on plasticity 

and fracture AHSS is thereby reserved for the future work. 
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CHAPTER 5 ZONES OF MATERIAL SEPARATION IN CUTTING 

SIMULATIONS 

5.1 Algebraic and Slip Line Field Analysis 

Experiments show that most plastic deformation in plane strain orthogonal cutting of 

ductile solids is concentrated in a narrow band of shear (the so-called primary shear plane) inclined 

at an angle 𝜙 to the cut surface, the simplest representation for which is Piispannen’s ‘deck of 

cards’ model (Atkins, 2009). In the Ernst-Merchant algebraic analysis of orthogonal cutting of 

ductile solids, cutting forces are determined from the plastic flow along the primary shear plane of 

by which the chip is formed, and from secondary plastic flow and friction along the rake face of 

the tool, see e.g. Shaw and Cookson (2005). Cook, Finnie, and Shaw (1954) showed that for the 

kinematics of the ‘deck of cards’ model to operate, a gap XY having the width of the shear plane 

has to form at the tool tip simultaneously with slip along the shear plane. The reason is because 

plastic flow occurs under constant volume, and without the gap, ZWV is an inadmissible increase 

in plastic volume under the plane strain conditions of orthogonal cutting. 

 

Figure 5-1. Piispanen’s ‘deck of cards’ model. If slip occurs in plane strain in a finite width band along the primary 
shear plane, plastic volume cannot be conserved unless a gap occurs in the region of XY. Otherwise ZWV is an 
increase in plastic volume  (Atkins, 2009) (adapted from (Cook et al., 1954)). 
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Shaw and Cookson (2005) understood that the formation of new surface XY required work 

and that this work ought to be incorporated in analyses of cutting forces. To estimate the magnitude 

of the work of separation they employed the surface free energy  of the new surface, which for 

all materials has an order of magnitude value of a few 𝐽 𝑚2⁄ .  They concluded that the incremental 

work of formation of new surfaces in cutting (i.e. the incremental work of separation of material 

at the tool tip) was negligible in comparison with the component incremental works of plastic flow 

and friction during cutting. That became the received wisdom, so that developments of algebraic 

and slip line field analyses of machining in the second half of the 20th century concentrated on the 

effects of work-hardening in flow fields more complicated than the simple deck of cards model, 

strain rates and temperature on primary and secondary plastic flow and friction, to link theory and 

experiment. Even with such refinements, many observations in machining cannot be explained by 

traditional analyses (Atkins, 2009).  

Atkins (2003) argued that the surface free energy  was not the correct parameter by which 

to estimate the work of surface formation in cutting:  is a short-range parameter concerning the 

unmatched chemical bonds exposed on free surfaces with the rest of the body unaffected, but 

surfaces in cutting are not formed that way. Instead, there are highly deformed boundary layers 

contiguous with all practically cut surfaces, and the associated work of formation per unit area 

within the boundary layers must be included in the total work of surface formation. The same 

question had arisen in the development of the subject of fracture mechanics where, because of this 

additional work of sub-surface deformation, Orowan and Irwin had to use 1000 in place of  in 

the Griffith formula to make sense of experimental results (Knott, 1973). Even in cleavage, where 
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sub-surface deformation is limited,  is not used directly to predict forces from fracture mechanics 

formulae (Cottrell, 1964). The ‘1000’ property of materials is called the fracture toughness and 

is given the symbol R in this paper (𝐺𝑐 and 𝐽𝑐 are also used). R represents the irreversible work 

done as the microstructure within the boundary layers is damaged up to failure, leading to 

separation at the tip of the cutting tool which, in turn, permits the tool to move forward. R may be 

viewed as some measure of workpiece ductility.  

When R (in place of ) is employed in modelling the mechanics of continuous chip 

formation, the controlling parameter is not just strength (equivalent to hardness) as in traditional 

analyses, but rather the toughness-to-strength ratio (R/k), where k is the shear yield strength. It 

seems reasonable that cutting mechanics should involve a measure of ductility as well as strength, 

since the cutting behavior of materials having the same R but different k, and vice-versa, can be 

quite different. It is known that the hardest material is not always the most difficult to cut 

(Kopalinsky & Oxley, 1987). In fact, cutting is not a problem just of plasticity, but is a branch of 

elastoplastic fracture mechanics. The formation of continuous or discontinuous chips, with steady 

or fluctuating cutting forces, simply reflects ‘cube-square’ energy scaling inherent in the 

mechanics of fracture. The type of chip formed depends upon the depth of cut relative to the length 

scale given by (R/k). When the non-dimensional number Z = (R/kt) is large, ductile cutting ensues 

with continuous chips; when Z is small, brittle chipping takes place (Atkins, 2009). At intermediate 

values, serrated or discontinuous chips are formed. 

The new analysis explains why 𝜙 is different for different materials − it depends on 

workpiece (R/k) − and why quasi-linear plots of cutting force vs depth of cut (uncut chip thickness) 
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do not pass through the origin but have a positive intercept on the force ordinate. Such plots are 

well-known in the literature, but the intercepts are often explained away in terms of so-called 

ploughing (blunt tools), wear on the flank (clearance) face of the tool, rubbing on the clearance 

face etc. While all those factors will play a part in increasing tool forces, experiments show that 

when efforts are made to eliminate all these effects, an intercept remains, the magnitude of which 

depends on the fracture toughness of the workpiece material. The slopes of the plots are determined 

by the yield stress of the workpiece (Atkins, 2009). 

Favorable comparison of theory and experiment for a wide range of engineering and 

biological materials is summarized in Atkins (2009). Nevertheless, there is an assumption in 

Atkins’ analysis that the individual component works of plasticity, friction and separation are 

uncoupled. This implies that the separation work is confined to very thin boundary layers and one 

aim of the present paper is to investigate the size and extent of these highly damaged zones in 

comparison with the rest of the plastic flow fields. 

5.2 Review of Finite Element Modeling 

As soon as plastic flow problems like forging had begun to be successfully simulated by 

FEM codes, the same programs were applied to the simulation of cutting. But a difficulty arose. It 

was found that the cutting tool would only travel an appreciable distance when a ‘separation 

criterion’ was employed at the tool tip to release nodes, yet no separation criterion was required 

when the same programs were used for plastic forming operations. It is clear that attempts to model 

cutting without inclusion of a separation criterion were simulating the different problem of an 

indentation by an inclined wedge (the tool) into the end of the workpiece, in which the material at 
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the cutting edge is stretched around the line of the wedge but is not separated. What was being 

simulated was a type of hardness test. In the FEM simulations reported in subsequent sections of 

this paper, the ‘indentation’ problem, rather than the ‘cutting’ problem, was replicated when the 

criterion for separation at the cutting edge was switched off. 

In finding that the cutting tool would not move appreciably, FEM modelers had 

rediscovered what Cook et al. had said in (Cook et al., 1954), and what Astakhov said in (Astakhov, 

1998) namely that the difference between cutting and other types of plastic flow problem is that in 

cutting there is physical separation of the piece being removed. In ordinary plastic flow all material 

elements retain the same neighbors before and after deformation irrespective of the severity of the 

deformation. In cutting, elements just above and just below the putative cut line that were 

neighbors before being separated, are far removed from one another after cutting: those below the 

cut line remain on the machined surface, those above go away on the underside of the chip. If 

controlled just by plasticity they would be still attached.  

Separation criteria employed in FEM simulations of cutting have taken many forms (Huang 

& Black, 1996): some were entirely empirical and were more by way of ‘computational fixes’ to 

overcome the singularity at the tool tip; others represented physical microstructural events that 

might be taking place at the tool tip to permit separation of nodes, such as the attainment of a 

critical effective von Mises strain or critical plastic work per volume in elements along the 

direction of cut. A more recent review article about separation criteria can be found from Vaz, 

Owen, Kalhori, Lundblad, and Lindgren (2007). The separation criteria can be categorized based 

on (1) nodal distance (Lo, 2000; Mamalis, Horvath, Branis, & Manolakos, 2001; McClain, Batzer, 

& Maldonado, 2002; Obikawa & Usui, 1996; Sasahara, Obikawa, & Shirakashi, 1996; Shih, 1995, 
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1996; Shirakashi & Usui, 1974; Usui & Shirakashi, 1982; Zhang & Bagchi, 1994) (2) strain energy 

density (Ceretti, Fallböhmer, Wu, & Altan, 1996; Ceretti, Lucchi, & Altan, 1999; Hua & Shivpuri, 

2004; Iwata, Osakada, & Terasaka, 1984; Lin & Lo, 2001; Lin & Pan, 1993; Lin & Lin, 1992), (3) 

critical stress (Hashemi, Tseng, & Chou, 1994; Li, Gao, & Sutherland, 2002; Marusich & Ortiz, 

1995; McClain et al., 2002; Shet & Deng, 2003; Shi, Deng, & Shet, 2002), and (4) equivalent 

plastic strain to fracture (Barge, Hamdi, Rech, & Bergheau, 2005; Benson & Okazawa, 2004; 

Carroll & Strenkowski, 1988; Hashemi et al., 1994; Mabrouki & Rigal, 2006; Marusich & Ortiz, 

1995; Ng, El-Wardany, Dumitrescu, & Elbestawi, 2002; Soo, Aspinwall, & Dewes, 2004; Yang 

& Liu, 2002). Irrespective of the actual separation criterion employed, no published FEM 

simulations seem to have evaluated the local work involved in separation of nodes to check 

whether it was negligible as averred by Shaw and co-workers. Again, the number of elements 

attaining the separation criterion has not been reported, nor their distribution ‘above’ and ‘below’ 

the cut surface to see how confined the damaged region is. What is significant, however, is that 

when a number of different separation criteria were applied to the same problem, the plastic flow 

fields for chip formation were very similar and almost independent of the detail of the different 

criteria. 

In early 2D finite element analysis of machining using Lagrangian formulations, node-

splitting method by a pre-defined parting line (Lei, Shin, & Incropera, 1999; Li et al., 2002; 

McClain et al., 2002; Obikawa & Usui, 1996; Shi et al., 2002; Shih, 1995; Shih & Yang, 1993) 

was extensively applied to model chip separation. Initially bonded nodes along the parting line are 

assumed to debond when either geometrical or physical indicator reaches a critical threshold value. 

It is argued in (Movahhedy, Gadala, & Altintas, 2000) that the parting line method creates an open 
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crack ahead of the tool tip, leaving an unrealistic material gap which is not observed in 

experimental studies of ductile materials. Similar to the concept of pre-defined parting line, several 

recent studies (Asad, Girardin, Mabrouki, & Rigal, 2008; Mabrouki, Girardin, Asad, & Rigal, 2008; 

Mabrouki & Rigal, 2006; Zhang, Mabrouki, Nelias, & Gong, 2011) attempt to use pre-defined 

sacrificial element layer along the tool tip travel path. By doing this, presumed fracture energy 

values were implemented as input data in the pre-defined sacrificial element layer and the chip. 

Despite that this approach gives more realistic results and physical insight into the fracture 

mechanism than previous studies of ductile materials, further investigations are necessary to 

incorporate robust plasticity and ductile fracture models which enable to capture the intrinsic 

features during deformation under multiaxial stress states and their associated fracture mechanisms. 

The chip separation and breakage, along with chip flow characteristics should be determined 

simultaneously without being restricted to a certain presumed fracture mode as in the assumption 

of pre-defined parting line or sacrificial layer method. Recent development on coupled/uncoupled 

ductile fracture model in orthogonal cutting modelling can be found from (Childs, 2013; Ducobu, 

Rivière-Lorphèvre, & Filippi, 2014; Ducobu, Rivière-Lorphèvre, & Filippi, 2015; Liu, Bai, & Xu, 

2014).  

Nevertheless, the necessity of having to employ a separation criterion in FEM simulations 

of cutting is an anathema to many workers, particularly if the criteria are linked to microstructural 

fracture events at the cutting edge as argued by Atkins (2003). There remains a strong belief, 

particularly among those in the field of metal cutting, that fracture parameters can play no role in 

the mechanics of cutting since ‘cracks are not seen at the tool tip in continuous-chip steady-state 

cutting of ductile metals’. This belief fails to distinguish between crack existence (where the crack 
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velocity coincides with the tool velocity when cutting ductile materials) and crack stability (where 

the crack velocity is faster than the tool velocity). Tool tip cracks are visible when cutting less-

ductile materials that have smaller (R/k) as shown, for example in (Fleck, Kang, & Williams, 1996). 

A great deal of effort has been spent trying to find ways of simulating cutting without using 

a separation criterion in FEM (i.e. (Dirikolu, Childs, & Maekawa, 2001)). The lack of consensus 

on an appropriate separation criterion was encountered in Lagrangian formulation. The Eulerian 

(Carroll & Strenkowski, 1988; Dirikolu et al., 2001; Iwata et al., 1984; Joshi, Dixit, & Jain, 1994; 

K. W. Kim, W. Y. Lee, & H.-c. Sin, 1999; K. W. Kim, W. Y. Lee, & H. C. Sin, 1999; Raczy, 

Elmadagli, Altenhof, & Alpas, 2004; Strenkowski & Athavale, 1997; Tyan & Yang, 1992; Wu, 

Dillon Jr, & Lu, 1996) and arbitrary Lagrangian Eulerian (ALE) formulations (Benson & Okazawa, 

2004; Movahhedy et al., 2000; Olovsson, Nilsson, & Simonsson, 1999; Pantalé, Bacaria, Dalverny, 

Rakotomalala, & Caperaa, 2004; Rakotomalala, Joyot, & Touratier, 1993) came to be alternative 

solutions to handle the numerical problems of large element distortion. However, what has not 

been done in the fluid-flow-type programs and continuous re-meshing modelling is to investigate 

whether somewhere in the flow field a criterion for fracture has been satisfied. The chip formation 

is a result of plastic flow of materials around the tool. The absence of fracture criterion benefit 

from a numerical point of view but its physical validity could be questioned. It is rather like solving 

an elasticity problem out to large strains without enquiring whether somewhere a yield criterion 

has been satisfied. Again, re-meshing simulations ought not to attain a steady state cutting force 

since the flow strains keep on increasing with tool travel. The only reason steady-state cutting 

forces are obtained is because the stress-strain constitutive relations employed saturate out at large 

strains to a constant value. 
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We shall show in this paper that re-meshing simulations do not represent the physics of 

what happens at the cutting edge even though they may predict sensible flow fields. We show that  

(i) FEM simulations using the JC damage relation as a criterion for separation at the tool tip, 

predict the sorts of quasi-linear relation between cutting force and depth of cut found 

experimentally for all ductile materials. 

(ii) At small depths of cut, the FEM predictions for cutting force depart from linearity and 

“curve down towards the origin”, but still do not pass through the origin and have a positive 

intercept as the depth of cut tends to zero. 

(iii) Those material elements that fracture according to the JC criterion are confined to thin 

layers of material between the underside of the chip and surface of the cut body. 

(iv) The JC damage criterion, expressed as a plastic work/volume (given by the area under the 

effective stress-effective strain curve out to the JC failure strain), together with the size of the 

damaged region, is related to the fracture toughness as determined from the force intercept. 

5.3 Finite Element Model Setup 

A thermo-mechanical 2D plane strain model was established in commercial finite element 

software Abaqus/Explicit v6.11. Figure 5-2 illustrates the configuration and boundary conditions 

in the model. Since the supposed value of feed rate (depth of cut) is much smaller than the 

designated radial cutting depth, it is reasonable to assume plane strain condition for the simulations 

in this study. The cutting tool was defined as a 2D analytical rigid body. The tool tip is sharp as 

assumed in the single shear plane algebraic model in Section 5.6. The workpiece in the experiments 
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was simplified as a single-part 2D rectangle with planar dimension of 12 mm × 1.2 mm. The mesh 

size of the workpiece is 20 μm with plane strain thickness specified at 4 mm. Quadrilateral coupled 

temperature-displacement continuum element CPE4RT was assigned as the element type in the 

workpiece during the dynamic analysis. For simplicity, a surface-to-surface contact pair was 

defined for the tool-workpiece interaction using finite sliding formulation during the analysis step. 

The friction coefficient μ and shear stress limit 𝜏𝑐𝑟𝑖𝑡 was set to be 0.17 and 161 MPa respectively, 

the same as other experimental and numerical study of 2024-T351 aluminum alloy (Li et al., 2002; 

Liu et al., 2014; Mabrouki et al., 2008). 90% of dissipated energy caused by friction was assumed 

for heat conversion. As an initial condition, the temperature field was predefined uniformly 

throughout the workpiece at constant 25 °C.  

In order to obtain a comprehensive group of simulation data for this study, 60 finite element 

simulations in total were carried out at 6 different rake angles (-20°, 0°, 10°, 20°, 30°, 40°) and 10 

different depths of cut 𝑡0 from 50 μm to 500 μm with a progression of 50 μm between 𝑡0 values.  

 

Figure 5-2. Configuration and boundary condition of the FEM model for orthogonal cutting simulations in this study 



97 

 

5.4 Johnson-Cook Plasticity and Damage Model 

In this study, the Johnson-Cook (JC) plasticity and damage models (Johnson & Cook, 1983) 

are  adopted as the material model for the purpose of investigating both chip flow and the formation 

of separation zones.  

The JC plasticity model is often used in forming and crashworthiness simulations because 

it provides good descriptions of most metals undertaking large deformation at a wide range of 

strain rates and temperatures, and it is particularly suitable for high-strain rate deformation in 

adiabatic transient dynamic simulations. The equivalent stress in JC plasticity model uncouples 

the effect of strain hardening, temperature softening, and strain rate dependence, and it is given by 

𝜎 = (𝐴 + 𝐵𝜀𝑝̅𝑙𝑛) [1 + 𝐶 𝑙𝑛 ( 𝜀̅̇𝜀 ̅0̇)] [1 − ( 𝑇 − 𝑇𝑟𝑜𝑜𝑚𝑇𝑚𝑒𝑙𝑡 − 𝑇𝑟𝑜𝑜𝑚)𝑚] (5-1) 

 Here, A, B and n are material constants for strain hardening; C is the material constant for 

strain-rate hardening; m is the material constant for thermal softening; T represents the current 

temperature, whereas 𝑇𝑚𝑒𝑙𝑡 and 𝑇𝑟𝑜𝑜𝑚 stand for the melting and reference ambient temperature, 

respectively.  

Table 5-1.  Johnson-Cook plasticity parameter values for AA2024-T351   

A B N C m 

352 440 0.42 0.0083 1 

The JC plasticity parameters for AA2024-T351 are listed in Table 5-1 and the physical 

parameters of the workpiece are summarized in Table 5-2. The parameters in both tables are the 

same as Mabrouki et al. (2008).  
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Table 5-2.  Physical properties of the workpiece material AA2024-T351   

Physical parameter Workpiece (A2024-T351) 

Density, ρ (𝑘𝑔 m3⁄ ) 2700 

Elastic modulus, E (GPa) 73 

Poisson’s ratio, ν 0.33 

Specific heat, 𝐶𝑝 (J/(kg°C)) 𝐶𝑝 = 0.557𝑇 + 877.6 

Thermal conductivity, λ (W/(m°C)) 
𝜆 = 0.247𝑇 + 114.4   (25 ≤ 𝑇 ≤ 300) 𝜆 = −0.125𝑇 + 226.0   (300 ≤ 𝑇 ≤ 𝑇𝑚𝑒𝑙𝑡) 

Thermal expansion, 𝛼𝑑 (μm m/°C) 𝛼𝑑 = 8.9 × 10−3𝑇 + 22.2 𝑇𝑚𝑒𝑙𝑡  (°C) 520 𝑇𝑟𝑜𝑜𝑚 (°C) 25 

The JC fracture criterion is a phenomenological model for predicting damage initiation due 

to nucleation, growth, and coalescence of voids. The equivalent plastic strain at fracture initiation 

is assumed to be of the form in Eq.(5-2). The effects of strain rate and temperature are incorporated 

in a similar manner as in the JC plasticity model. 

𝜀𝑓̅𝑝𝑙 = (𝑑1 + 𝑑2𝑒𝑑3𝜂) [1 + 𝑑4 𝑙𝑛 ( 𝜀̅̇𝜀 ̅0̇)] [1 + 𝑑5 ( 𝑇 − 𝑇𝑟𝑜𝑜𝑚𝑇𝑚𝑒𝑙𝑡 − 𝑇𝑟𝑜𝑜𝑚)] (5-2) 

where η is the stress triaxiality, i.e. the ratio of mean stress to Mises equivalent stress; 𝑑1~5 

are empirical damage parameters. Recent researches have shown that ductile fracture is dependent 

on both stress triaxiality and Lode angle (Bai & Wierzbicki, 2008, 2010, 2015). However, the 

cutting simulation is assumed to be in plane strain, where the Lode angle parameter is fixed (𝜃̅ = 

0). Hence the use of the JC fracture criterion for the present study is in order. 
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Table 5-3.  Material parameters in Johnson-Cook damage model 

Damage Parameter 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 

Present study 0.5 0.13 -1.5 0 0 

Mabrouki et al. (2008) 

Liu et al. (2014) 
0.13 0.13 -1.5 0.011 0 

Table 5-3 lists two sets of the empirical damage parameters: the first row gives those used 

in the present study; the second row are those used in Liu et al. (2014) and Mabrouki et al. (2008). 

It should be noted that the damage parameter 𝑑1 in the present paper is much higher than 0.13 in 

Liu et al. (2014) and Mabrouki et al. (2008), but 𝑑5 is the same. The reason for using larger 𝑑1 but 

the same 𝑑5 is as follows. First, the present authors realize that only the first term in Eq. (2) was 

present in the original reference paper (Wierzbicki, Bao, Lee, & Bai, 2005), in which the damage 

parameters 𝑑1 , 𝑑2  and 𝑑3  were found from Johnson and Holmquist’s curve fitting with 

experimental data (Wierzbicki et al., 2005). However, it appears from Fig.14 in (Wierzbicki et al., 

2005) that Johnson and Holmquist only provided a lower bound for the Johnson-Cook fracture 

locus for this material. Secondly, 𝑑5 = 0 in Liu et al. (2014) and Mabrouki et al. (2008) because 

the experiments in Wierzbicki et al. (2005) were carried out at constant strain rate under room 

temperature. During the high-speed machining process, temperature in the cutting zone can rise 

significantly, resulting in a remarkable increase in ductility and fracture strain. Experimental 

studies on AA2024-T351 (Johnson & Cook, 1983; Leseur, 1999) show that the ductility enhances 

notably with increasing temperature. Given the fact that it is difficult to obtain 𝑑4 and 𝑑5 unless a 

tremendous number of tests under different loading conditions at high temperatures are performed, 

we average out the effects of strain rate and temperature (i.e. neglecting the last two terms in Eq. 
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(2)) by adding them into 𝑑1. In other words, even though the current damage parameters lack the 

support of experimental data, it simplifies the comprehensive uncoupled JC fracture model with 

reasonable approximation. Thirdly, our simulation will be compared with analytical solutions of 

cutting forces, where the effects of temperature and strain rate are neglected or averaged out. This 

simplification makes the comparative study easier. 

In this study, the JC constitutive model was implemented by a user material subroutine 

VUMAT in Abaqus/Explicit. Elements are assumed to fail and are deleted when the damage 

indicator D exceeds unity. 

𝐷 =∑∆𝜀𝑝̅𝑙𝜀𝑓̅𝑝𝑙  (5-3) 

where ∆𝜀𝑝̅𝑙 is the incremental equivalent plastic strain updated during the analysis, and 𝜀𝑓̅𝑝𝑙 
is the equivalent plastic strain at fracture for a particular loading condition (or ‘fracture locus’). 

The subroutine enables the FE program to update plastic strain energy density after each increment. 

The plastic work/volume and the size of the damaged region is believed to have an intrinsic relation 

with the specific work of new surface formation (fracture toughness). The flow chart in Figure 5-3 

shows how the damage indicator and plastic strain energy density are updated in the codes.   
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Figure 5-3. Flow chart of the user material subroutine VUMAT in Abaqus/Explicit 

A final remark in this section relates to the stress triaxiality “cut-off” value implemented 

to the JC fracture locus. According to the analytical study by Bao and Wierzbicki (2005), ductile 

materials would never fail if the stress triaxiality is less than -1/3. Actually, a “cut-off’ region exists 

for a general loading condition Bai and Wierzbicki (2010, 2015) if the Lode angle effect is 

considered. Since the current simulations are under plane strain condition, a “cut-off” value is used. 

Neglecting the “cut-off” value could lead to unreasonable results for chip formation and cutting 

forces.  
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5.5 Finite element simulation results 

5.5.1 Forces  

Figure 5-4 shows plots of the cutting force vs. tool travel distance for all depths of cut and 

rake angles investigated in this study. The data in the plot were extracted from predefined history 

outputs (horizontal reaction force and displacement) of the rigid tool in the simulations. The curves 

are terminated after 500 μs when representative chip formation and force curve were found. Two 

types of force curves can be observed from Figure 5-4 depending upon depth of cut 𝑡0 and rake 

angle α: (1) smooth quasi-steady load at small 𝑡0 and large α; and (2) fluctuating load at large 𝑡0, 

with small or negative α. The corresponding chip morphologies are shown in Figure 5-5. Smooth 

cutting forces correspond to ribbon-like continuous chip formation, while fragmented 

discontinuous chips are accompanied by fluctuating loads, the amplitudes of which increase with 

depth of cut. During the formation of continuous chips, the JC fracture relation predicts separation 

by crack propagation along the same direction as the tool tip travels, at approximately the same 

speed as the tool velocity. The chip curls up and bends over at nearly constant radii so that the 

force required for pushing up the chip does not change much throughout the entire cutting process. 

When the rake angle decreases, more compression and shear deformation are induced. Shear type 

discontinuous chips become dominant in small and negative rake angles. The reasons for large 

load fluctuation are as follows. After the load increases to the first peak under elastoplastic loading, 

it drops rapidly because the crack runs ahead of the tool in the direction of cut and also along the 

primary shear zone towards the free surface of the workpiece. The chip is not completely detached 

before the tool tip again touches the uncut workpiece. Continued tool travel compacts the uncut 
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material, the load increases and the process start over again. It is found that the frequency of load 

peaks (or valleys) determines the number of discontinuous chips separated out of the workpiece, 

while the magnitude of the load wave decides their sizes.  

5.5.2 Deformation Fields of Stress, Strain and Temperature 

Figure 5-5 shows the FE simulation results of von Mises stress distribution at selected 

depths of cut for each rake angle. The figures are displayed at different cutting time instants in 

favor of a better presentation of the major features in the deformation field. The primary shear 

zones are clearly demonstrated: under a large amount of plastic deformation, stress is highly 

concentrated within a narrow region radiating from the tool tip towards the free surface at the chip 

root. On the other hand, the contour plots of the cut chips in green and blue indicate much lower 

stress values due to thermal softening effect and unloading after material separation. In all cases, 

deformation is negligible in the areas far from the tool-workpiece interaction zone. 

The present simulation results in Figure 5-5 also captured the main characteristics of the 

chip morphology that have been discussed extensively in metal cutting books (Astakhov, 1998; 

Shaw & Cookson, 2005; Stephenson & Agapiou, 2016; Trent & Wright, 2000). For the condition 

of high cutting speed in this study, continuous chips were produced at large rake angles and small 

depths of cut (e.g. in Figure 5-5 (1a-3a) and (1b-3b)). In these cases, chips were separated from 

the workpiece along the constant depth of cut paths of the tool cutting edge. Discontinuous chips 

were generated when shear cracks propagate in the primary shear zone, particularly noticeable for 

the cases of negative rake angle (Figure 5-5 (6a-6c)). A few serrated chips (e.g. in Figure 5-5 (3c) 
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and (4b)) were formed when segmentations on continuous chips were initiated by the growing 

bending state and promoted by its interaction with the tool advancement. 

 

Figure 5-4. cutting force vs. tool travel distance at different depths of cut and rake angles 

The equivalent plastic strain field is shown in Figure 5-6. SDV1 represents the equivalent 

plastic strain 𝜀𝑝̅𝑙 in the user-defined material subroutine in ABAQUS. For the convenience of a 
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consistent representation of simulation results, the value range of SDV1 in the legend box of the 

contour plot was specified from 0 (blue) to 1 (red) for all cases. The areas in grey color indicate 

that the field output value exceeds the maximum limit, i.e. 𝜀𝑝̅𝑙 > 1.  The equivalent plastic strain 

in the grey area was accumulated under massive compression at the initial moment when the tool 

tip touches the workpiece. After the chip curls-up, the underside of the chip is subjected to tension 

due to bending. This phenomenon is particularly evident for continuous chips (e.g. Figure 5-6 (1a-

5a)): the smaller the rake angles, the more compression induced towards the free surface of the 

chips. For serrated or discontinuous chips (e.g. Figure 5-6 (4b) and (6b)), severe plastic 

deformation was accumulated in a highly localized shear band. The elements within the shear band 

at this moment were initially deformed under compression, followed by shear dominated 

deformation, and then split with the chip or workpiece after the fracture criterion was satisfied.  
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Figure 5-5. von Mises stress distribution of chip formations at different rake angles and selected depths of cut 
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Figure 5-6. Equivalent plastic strain distribution of chip formations at different rake angles and selected depths of cut. 
Blue means 0 and red means 1.0 
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Figure 5-7 shows the temperature distribution (SDV4) in three representative chip types. 

In the subroutine, 90% of plastic energy was assumed to dissipate into heat generation in form of 

temperature rise. As the tool tip moves forward, the temperature increases from the root of the chip 

and evolves towards the chip-free side. As a result of large plastic deformation and friction, the 

temperature on the underside of the chip is higher than in the other areas in Figure 5-7(a) and (b). 

In Figure 5-7(c), significant temperature rise is concentrated within the primary shear zone. The 

equivalent stresses are consequently lower in the vicinity of these highly deformed areas due to 

thermal softening.  

 

Figure 5-7. Temperature distribution in three representative chip types (unit: K) 

5.5.3 Separation Zones 

In the cutting simulations, separation zones refer to groups or layers of elements removed 

after the fracture criterion is satisfied. As mentioned in Section 5.4, in the user-defined material 

subroutine, elements are deleted when the damage indicator exceeds unity (D>1). Figure 5-8 shows 

the distribution of the damage indicator D on the chip and the cut workpiece. Since D is defined 

on a strain basis, damage distribution on the chip and workpiece is analogous to the contour plot 

of equivalent plastic strain. However, it is worth mentioning that in the visualization module of 

Abaqus, the separation zone can be only visible in the contour plot on undeformed shape. Figure 

5-9 exhibits some examples of damage distribution for different chip types in the contour plots of 
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undeformed shapes. The elements in red indicate their damage value is greater than unity so that 

they are deleted and invisible in the contour plots on deformed shapes.  

In the contour plot of damage distribution on the undeformed shape Figure 5-9(a), the 

elements along the horizontal tool tip travel path were severely damaged and eventually deleted in 

the contour plot on deformed shape. This group of elements are defined as type(i) separation zone 

in this paper. In Figure 5-9(b)(c), the highly damaged shear bands during the formation of serrated 

and discontinuous chips, are referred as type(ii) separation zone. It is important to note that type(i) 

and type(ii) separation zones coexist for the cases of serrated and discontinuous chips. The focus 

of this paper is to discuss the damaged boundary layer associated with type(i) separation zone for 

the case of continuous chips. The formation of type(ii) separation zone by possible shear fracture 

along the primary shear plane, is an entirely different problem beyond the scope of this study. 

The damage accumulation process can be illustrated by an arbitrary element on the 

underside of the continuous chip. Figure 5-10 shows how the equivalent plastic strain 𝜀𝑝̅𝑙  and 

damage indicator D evolves with loading history in this element. When the tool tip travels close to 

the element, plastic deformation starts accumulating at triaxiality η close to 0.5. The element is 

then subjected to compression with the tool advancement during which 𝜀𝑝̅𝑙 increases from 0.32 to 

1.72. However, the increase in D is not that significant (from 0.22 to 0.45) within the compression 

regime. After the chip curls up and bends over, the loading condition in the element switches from 

compression to tension. According to Eq. (5-3), damage is accumulated at a rate of 1/𝜀𝑓, where 𝜀𝑓 is the fracture strain on the JC fracture locus for 𝜂 ≥ −1/3. Note that during this period, even 

though its 𝜀𝑝̅𝑙 value is much larger than the corresponding 𝜀𝑓 on JC fracture locus, the element is 
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however not deleted. This reveals an important point that damage accumulation depends upon the 

loading history, rather than an instant loading condition or instant equivalent plastic strain. 

 

Figure 5-8. Damage distribution on the contour plot of deformed shape at different rake angles and selected depths of 
cut. Blue means 0 and red means 1.0. 
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Figure 5-9. Damage distribution on the contour plot of undeformed shape (𝑡0 = 0.3 mm) 

 

Figure 5-10. Evolutions of plastic strain, stress triaxiality and damage indicator for an element on the underside of the 
chip (α = 40°, 𝑡0 = 0.25 𝑚𝑚) 
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5.5.4 Conversion of Incremental Tool tip Work into Fracture Toughness 

For continuous chip formation, there exists an intrinsic relation between the incremental 

tool tip work/area (fracture toughness) and plastic work/volume in the highly-deformed region 

associated with type (i) separation zones (Atkins, 2003). The following proposes the methodology 

of calculating incremental plastic work/area done in the boundary layer from FEM simulation 

outputs in this study.  

A representation of the highly deformed boundary layer is illustrated in a simulation 

contour plot in Figure 5-11. Figure 5-11(a) and (b) indicate the evolution of boundary layer 

between two cutting instants, during which new surface pairs were formed parallel to the tool travel 

path along the horizontal direction. The incremental volume of the boundary layer along the tool 

tip travel path is 𝑑𝑉 = (𝑑𝐿)ℎ𝑤, where 𝑑𝐿 is the incremental distance the tool tip travels, h is the 

height of the boundary layer, and w is the plane strain thickness specified in the simulation. 

Assume there are N elements in the boundary layer, then the volume per element 𝑉𝑒 = (𝑑𝐿)ℎ𝑤/𝑁 . 
The incremental area of the new surface is 𝑑𝐴 = (𝑑𝐿)𝑤. The incremental plastic strain energy 

density in each element is denoted as (𝑑𝑈𝑝𝑙)𝑖,   𝑖=1~𝑁. Therefore, the total plastic strain energy in 

the boundary layer is 𝑑𝛤 = (𝑑𝑈𝑝𝑙)1𝑉𝑒 + (𝑑𝑈𝑝𝑙)2𝑉𝑒 +⋯+ (𝑑𝑈𝑝𝑙)𝑁𝑉𝑒 = (𝑑𝑈𝑝𝑙)𝑡𝑜𝑡𝑎𝑙𝑉𝑒 (5-4) 

where (𝑑𝑈𝑝𝑙)𝑡𝑜𝑡𝑎𝑙 is the sum of incremental plastic strain energy density of all N elements 

in the boundary layer. The specific work of new surface formation becomes 

𝑅 = 𝑑𝛤𝑑𝐴 = (𝑑𝑈𝑝𝑙)𝑡𝑜𝑡𝑎𝑙𝑉𝑒(𝑑𝐿)𝑤 = (𝑑𝑈𝑝𝑙)𝑡𝑜𝑡𝑎𝑙ℎ𝑁 = (𝑑𝑈𝑝𝑙)𝑎𝑣𝑔ℎ (5-5) 
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where (𝑑𝑈𝑝𝑙)𝑎𝑣𝑔  is the averaged incremental plastic strain energy density of the N 

elements in the boundary layer. The FEM simulation output results of (𝑑𝑈𝑝𝑙)𝑎𝑣𝑔 are shown in 

Figure 5-12. Atkins (2003) employed a similar method to estimate the magnitude of surface work 

by converting the critical work/volume into critical work/area in the highly distorted boundary 

layer from other FEM simulation reports. The critical work/volume in Atkins (2003) was simply 

calculated by multiplying the work-hardened yield strength with the critical fracture strain. The 

averaged incremental plastic strain energy density (𝑑𝑈𝑝𝑙)𝑎𝑣𝑔 for a JC hardening model in this 

study, is essentially equivalent to the critical work/volume in Atkins (2003). The equivalence of 

yield stresses between work hardening material in the present simulations and rigid-plastic 

material in the algebraic model is further discussed in Section 5.6.  

 

Figure 5-11. A representation of highly-deformed boundary layer on the contour plot of damage distribution at cutting 
instant of (a)150 μs (b)200 μs. Figures on the right shows an extruded 3D representation of the model. 
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Figure 5-12. FEM simulation result of averaged incremental plastic strain energy density (𝑑𝑈𝑝𝑙)𝑎𝑣𝑔 at each depth of 
cut and rake angle in cases of continuous chip formation 

The procedures for calculating incremental tool tip work done from simulation outputs and 

converting it to specific work of new surface formation (fracture toughness) are described as 

follows:  

(1) In the visualization module, setup the plot contours on undeformed shape. 

(2) Select a region during steady state cutting regime and pick up corresponding elements in the 

boundary layer as shown in Figure 5-11. 

(3) Average the plastic strain energy density (𝑑𝑈𝑝𝑙)𝑖,   𝑖=1~𝑁 of the elements in the boundary layer. 

(4) Apply Eq.(5-5) to calculate the fracture toughness R (Section 5.6). 

5.6 Comparison with Algebraic Models 

Atkins’ single shear plane model (Atkins, 2003) states that during steady-state orthogonal 

cutting of ductile solids, the external work is balanced by internal work of plasticity, friction and 

new surface formation, as given by 
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𝐹𝑐𝑉 = (𝜏𝑦𝛾)(𝑡0𝑤𝑉) + [𝐹𝑐  𝑠𝑒𝑐(𝛽 − 𝛼) 𝑠𝑖𝑛𝛽] 𝑉 𝑠𝑖𝑛𝜙cos(𝜙 − 𝛼) + 𝑅𝑤𝑉 (5-6) 

 Here, V is the cutting velocity, w is the width of the workpiece, 𝑡0  is the uncut chip 

thickness, 𝜏𝑦 is the rigid-plastic shear yield stress of the ductile material, γ is the shear strain along 

the primary shear plane, given by 𝛾 = 𝑐𝑜𝑡𝜙 + 𝑡𝑎𝑛(𝜙 − 𝛼) = 𝑐𝑜𝑠𝛼/𝑐𝑜𝑠 (𝜙 − 𝛼)𝑠𝑖𝑛𝜙, 𝜙 is the 

angle of the primary shear plane, β is the friction angle given by 𝑡𝑎𝑛𝛽 = 𝜇 , where μ is the 

coefficient of friction, α is the rake angle, and R is the specific work of surface formation.  

Eq.(5-6) can be simplified into 

𝐹𝑐 = (𝜏𝑦𝑤𝛾𝑄 ) 𝑡0 + 𝑅𝑤𝑄  (5-7) 

where Q is the friction correction parameter given by 

𝑄 = 1 − 𝑠𝑖𝑛𝛽 𝑠𝑖𝑛𝜙cos(𝛽 − 𝛼) 𝑐𝑜𝑠(𝜙 − 𝛼) (5-8) 

It is found experimentally that at sufficiently large 𝑡0 , both  and Q are constant. 

‘Sufficiently large’ means a non-dimensional material-dependent parameter 𝑍 = 𝑅/𝜏𝑦𝑡0 < 0.1 

(Atkins, 2003). Under these conditions, 𝐹𝑐 vs 𝑡0 plots are predicted to be linear with slope given 

by (𝜏𝑦𝑤𝛾 𝑄⁄ ) and positive force intercept of (Rw/Q). At small 𝑡0, the plot droops downwards 

below the straight line for  and Q being constant, but still intersects the force ordinate at a value 

close to (Rw). From the definitions of  and Q, one can see that for given α and β,  and Q are 

totally determined by the shear angle 𝜙. If no separate experimental measurements are available 

for 𝜙, it can be predicted analytically by the argument of minimum work (minimum force over the 
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same displacement), Williams, Patel, and Blackman (2010) derived a closed-form solution for ϕ 

as follows: cot𝜙 = 𝑡𝑎𝑛(𝛽 − 𝛼) + √1 + 𝑡𝑎𝑛2(𝛽 − 𝛼) + 𝑍 [tan𝛼 + 𝑡𝑎𝑛(𝛽 − 𝛼)] (5-9) 

It follows from Eq.(5-9) that 𝜙 not only depends on the toughness/strength ratio of the 

material, but also on the depth of cut. Once 𝜙 is known, the procedures in (Atkins, 2003, 2005) 

are followed to establish 𝑅 and 𝜏𝑦 from the 𝐹𝑐 vs. 𝑡0 plot. The flow chart (Figure 5-13) concisely 

illustrates the iterative process of finding 𝜙 and simultaneously determining 𝑅 and 𝜏𝑦 based on the 

detailed procedures described in (Atkins, 2003, 2005).  

 
Figure 5-13. An iterative process of determination of shear angle ϕ, rigid-plastic yield stress 𝜏𝑦, and specific work of 
surface formation R in the algebraic model from 𝐹𝑐 vs. 𝑡0 plot 
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It can be noticed from the flow chart that the algebraic solutions (𝜙, 𝛾, 𝑄, 𝜏𝑦, 𝑅) are mostly 

determined by the slope S and intercept I values given in the linear curve fitting of the 𝐹𝑐 vs. 𝑡0 

plot. Since Atkins’ algebraic theory is only successful when continuous chips are formed and the 

load is steady, the 𝐹𝑐 vs. 𝑡0 plots given here were evaluated using the data points displaying linear 

relations within the regime of continuous chip formation. That is, first, the data points within the 

regime of discontinuous chip formation were ignored; second, the data points at the smallest depth 

of cut (0.05mm) were discarded since they were within the non-linear “drooping down” region. 

The remaining data points were fitted using least square method and the results are shown in Figure 

5-14, including the regressed equations between 𝐹𝑐 and 𝑡0.  

Figure 5-15 (a-e) show a comparison, at different rake angles and depths of cut, between 

the shear angle 𝜙 measured from FEM simulations and predicted by the algebraic model. The 

dashed lines refer to the analytical solutions and the error bars indicate the estimated values from 

FEM simulations. For each simulation case, three 𝜙 angle values - minimum, medium and 

maximum possible values - were measured manually from the stress-concentrated area along the 

primary shear plane (Figure 5-15 (f)). The difference between the maximum and minimum values 

gives the magnitude of deviation of an error bar. From the closed-form solution of 𝜙 in Eq. (5-9), 

the analytical model predicts nearly constant 𝜙 over the range of depths of cut investigated, while 

decreasing rake angle α lowers the 𝜙 curves. The analytical solutions agree well with the measured 

values at small and zero rake angles (Figure 5-15 (c-e)), yet overestimate them at large rake angles 

(Figure 5-15 (a-b)). The overestimation may be related with the estimated 𝑅/𝜏𝑦 value from the 
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linear fitting result in the 𝐹𝑐 vs. 𝑡0 plot, but overall, it can be concluded that the analytical solutions 

satisfy to give reasonable quantitative agreement with FEM simulation measurements.  

 

Figure 5-14. Cutting force 𝐹𝑐 vs. depth of cut 𝑡0 plot and linear curve fitting within the regime of continuous chip 
formation only 

 

Figure 5-15. A comparison of shear angle ϕ between calculations from analytical model and measurements from FE 
simulations  
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Figure 5-16 shows the primary shear strain γ, friction correction parameter Q, and their 

ratio γ/Q calculated from the analytical model. It can be seen that at those depths of cut where 𝜙 

is constant, γ, Q and /Q are also constant for given α. As 𝑡0 → 0, Q increases marginally towards 

to unity.  

 

Figure 5-16. Analytical results of (a) shear strain γ (b) friction correction parameter Q (c) ratio γ/Q with respect to 
different depths of cut 𝑡0 at each rake angle α 

It follows from Eq. (5-7) that when continuous chips are formed, and in the range where 

/Q is constant, 𝐹𝑐 plots linearly against 𝑡0 with slope of 𝑤𝛾𝜏𝑦/𝑄. The shear yield stress 𝜏𝑦 from 

the analytical model, therefore, equals to 𝑄𝑆/𝑤𝛾, where S is the slope in the linear Fc vs. 𝑡0 plot. 

In FEM simulations, 𝜏𝑦 can be calculated indirectly from the primary shear zone. According to the 

von Mises yield criterion assumed in this study, 𝜏𝑦 = 𝜎𝑦/√3, where 𝜎𝑦 is the von Mises yield 

stress. Since 𝜏𝑦  is defined as rigid-plastic shear yield stress, but the JC hardening model was 
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employed in the simulations, 𝜎𝑦 is hence different from element to element. Therefore, 𝜎𝑦 along 

the primary shear zone was taken as an averaged value of JC equivalent yield stress from the 

highlighted elements shown in Figure 5-17 (a). It is important to note that during the steady-state 

cutting regime, the individual and averaged values of SDV2 in the elements within the primary 

shear zone are approximately the same at different instants.  

Figure 5-17 (b) shows the comparison of shear yield stress 𝜏𝑦 between analytical and FEM 

simulation results with respect to rake angle α. Undoubtedly, 𝜏𝑦 also depends on depth of cut 𝑡0, 

however, both analytical and simulation results indicate that the effect of 𝑡0  on 𝜏𝑦  is almost 

negligible. It can be seen from Figure 5-17 (b) that simulation results agree well with analytical 

predictions: τy is nearly constant (~350 MPa) for all rake angles calculated from simulation results; 

however, the analytical model predicts an increasing 𝜏𝑦 (310-370 MPa) as α increases. Strictly 

speaking, 𝜏𝑦 is a material constant and should be independent of depth of cut 𝑡0 and rake angle α. 

The deviation of analytical solutions as compared to the nearly constant FEM simulation results 

could be caused by the shear angle ϕ which subsequently influences the Q/γ value. 

 

Figure 5-17. (a) Elements along primary shear plane were used for calculating the shear yield stress 𝜏𝑦 (b) Comparison 
of shear yield stress 𝜏𝑦 between FEM simulations and analytical model 
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The analytical solution for the work of new surface formation (or fracture toughness) R is 

related to the positive intercept I in the linear 𝐹𝑐 vs. 𝑡0 plot: 𝑅 = 𝑄𝐼/𝑤. In FEM simulations, as 

derived in Section 5.5.4, R is linked with averaged plastic strain energy density (𝑑𝑈𝑝𝑙)𝑎𝑣𝑔 and 

height of the boundary layer h. In Figure 5-12, (𝑑𝑈𝑝𝑙)𝑎𝑣𝑔  is known at each 𝑡0  and α. Now it 

remains to determine h. For continuous chip formation, separation of material occurs at the tool 

tip, to form highly deformed boundary layers contiguous with all practically cut surfaces. As 

shown in a contour plot from simulation (Figure 5-18), the boundary layer zone essentially consists 

of three sublayers: (1) the underside of the chip (2) the separation zone and (3) the top of the 

machined surface. From the fracture mechanics point of view, the energy required for material 

separation mainly comes from the plastic deformation energy around the advancing crack tip and 

newly created rough surfaces. When the tool tip travels through the separation zone, not only the 

plastic deformation energy in the deleted elements in sublayer (2), but also certain amount of 

plastic work in sublayers (1) and (3) contribute to the total work of surface formation. In other 

words, the plastic work in sublayer (2) gives a lower-bound value of R. The upper-bound value of 

R, however, depends on the height of sublayer (1) and (3). For the present simulations with mesh 

size of 20 μm, a reasonable attempt for the value range of h would be between 20 μm (only sublayer 

(2)) and 60 μm (sublayer (1) + (2) + (3)). Figure 5-19 shows the result for fracture toughness R 

given by both analytical and simulation calculations. Since Q is independent of depth of cut 𝑡0 for 

given rake angle α (Figure 5-16 (b)), the analytical solution of R is correspondingly independent 

of 𝑡0. Hence Figure 5-19 is presented with respect to rake angle α only, in which each error bar 

indicates the range of R values at different 𝑡0 converted from simulation outputs(𝑑𝑈𝑝𝑙)𝑎𝑣𝑔. It is 
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further assumed here that the height of the boundary layer h is independent of 𝑡0 and α. Three 

values of h were attempted: 20 μm, 60 μm and 35 μm. It can be seen from Figure 5-19 that 35 μm 

appears to be a reasonable size for the boundary layer. 

 

Figure 5-18. (a) Boundary layer zone on a contour plot of deformed shape (b) Boundary layer zone on a contour plot 
of undeformed shape. The boundary layer zone contains three sublayers on the contour plot of undeformed shape. 
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Figure 5-19. Comparison of specific work of new surface formation R (fracture toughness) between simulation results 
and analytical solutions using three h values. The magnitude of error bar at each rake angle indicates the range of R 
at different 𝑡0 converted from (𝑑𝑈𝑝𝑙)𝑎𝑣𝑔 in simulations. 

Both analytical and simulation results predict greater fracture toughness value R at smaller 

rake angle α. The reasons are as follows. First, the underside of the chip accumulated more 

equivalent plastic strain from greater compressive deformation at smaller α. Second, in the case of 

continuous chip formation during orthogonal cutting process, mixed tensile and shear fracture 

mode coexist. The JC equivalent fracture strain is a monotonic decreasing function of stress 

triaxiality. When the rake angle decreases, shear fracture becomes more dominant; elements will 

be deleted at larger fracture strain. Wyeth and Atkins (2009) postulated a simple rule of estimating 

the mixed mode fracture toughness from RI  (tensile) and RII  (shear) at different rake angles, 

however, what governs the mixity still needs further investigation.  
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5.7 Discussions and Summary 

The effectiveness of the present FEM modelling methodology can be cross-checked from 

a separate case study (Mabrouki et al., 2008) where the rake angle α = 17.5° and cutting velocity 𝑉𝑐 = 800 m/min . Figure 5-20 compares the chip morphology and cutting force with the 

experimental and numerical results in Mabrouki et al. (2008). The saw-tooth chip morphology in 

Figure 5-20 (a) is similarly predicted as Figure 5-20 (b) and (c). The present simulation result 

shows less saw tooth thickness on the chip segment. This is because self-contact of the workpiece 

in (Mabrouki et al., 2008) provokes more bending on the chip and consequently induces chip 

fragmentation. Other phenomena in the experiments, such as thermal softening, pre-existing 

micro-cracks and machine tool vibrations could also participate in the formation of saw-tooth chip 

shape (Mabrouki et al., 2008). However, the present model successfully predicted the experimental 

cutting force within a reasonable error range (7%). The validity of the present FEM model 

encourages the “simulation experiments” on the study of separation zones.  

 
Figure 5-20. (a) Damage evolution and chip morphology in the present study (α = 17.5°, 𝑉𝑐 = 800 𝑚/𝑚𝑖𝑛) (b) FEM 
simulation result of damage evolution in Mabrouki et al. (2008) (c) chip morphology in real experiment (𝑡0 = 0.4 mm, 𝑉𝑐 = 800 𝑚/𝑚𝑖𝑛) in Mabrouki et al. (2008) 

In both algebraic modelling and FEM simulations, a constant friction coefficient 0.17 was 

used for simplicity. In actual cutting experiments, the effective friction coefficient μ is usually 
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determined by resolution of the force 𝐹𝑇 perpendicular to the cut surface and the cutting force 𝐹𝐶 

parallel to the surface (Atkins, 2009). The horizontal and vertical force outputs from the present 

FEM simulations, which can be considered as “experimental forces”, predict that the friction angle 

β varies with rake angle and depth of cut (Figure 5-21). This is not unexpected, since μ is known 

to alter with increase of t0 owing to a change in the relative lengths of ‘sticking’ and ‘sliding’ 

regions along the rake face of the tool (Atkins, 2015). More elaborate friction models expressed in 

terms of normal and frictional stress have been introduced and modified by other researchers 

(Childs, Maekawa, Obikawa, & Yamane, 2000; Dirikolu et al., 2001; Obikawa & Usui, 1996; 

Ohbuchi & Obikawa, 2005; Sasahara et al., 1996; Shirakashi & Usui, 1974; Usui & Shirakashi, 

1982). By comparing with experimental results, it is concluded in (Özel, 2006) that the predictions 

are more accurate when using variable friction models at the tool-chip contact in the FE 

simulations. 

 

Figure 5-21. Friction coefficient μ calculated from Atkins algebraic model for all α and 𝑡0 

We may conclude from Section 5.6 that the simple single shear plane algebraic model has 

very good capability of predicting continuous chip formation, quasi-steady forces, and giving 
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satisfactory agreement with 𝜙, 𝜏𝑦  and R values calculated from FE simulations. Another 

interesting question to ask is how plasticity, friction and fracture contribute to the total work. 

Figure 5-22 gives the proportions of total work due to plasticity, friction and fracture at rake angle 

30° based on the analytical model. It is obvious from Figure 5-22 that large depth of cut involves 

a smaller proportion of fracture work because R is nearly constant but cutting force increases. The 

proportion of friction, however, is almost constant for all depths of cut due to the friction correction 

parameter Q. Consequently, total work attributed to plasticity increases with depth of cut for a 

given rake angle. The proportion of fracture work can be significant from 7.5% to 24.5% in 

continuous chip machining. Examination of other rake angle cases suggests that the proportion of 

plasticity, friction and fracture work tends to be similar to the present case. 

 

Figure 5-22. Proportions of plasticity, friction and fracture work at rake angle α = 30° 

In this paper, the FE simulations of orthogonal cutting using the Johnson-Cook fracture 

criterion demonstrate that the present method gives great promise for evaluating material 

separation (damaged regions), the local work involved in separation of nodes and its relationship 

with algebraic models. The conclusions are summarized as follows: 
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(1) FE simulations using the JC damage relation as a criterion for separation at the tool tip, 

predicted quasi-linear relation between cutting force 𝐹𝑐 vs. depth of cut 𝑡0 at large positive 

rake angles α over the range of 𝑡0 investigated. Linear behaviour was also observed at small 

α but limited to certain range of 𝑡0. At negative α, 𝐹𝑐 is possibly linear with 𝑡0 but further 

investigations are required.  

(2) At the smallest depth of cut, the FEM predictions for cutting force depart from linearity 

and “curve down towards the origin”, but still do not pass through the origin and have a 

positive intercept as 𝑡0 tends to zero.  

(3) The JC damage criterion, expressed as a plastic work/volume (plastic strain energy density), 

together with the size of the highly deformed boundary layer, is related to the fracture 

toughness as determined from the force intercept. The slope in the linear 𝐹𝑐  vs. 𝑡0 plot 

relates to the shear yield stress. 

(4) The boundary layer contains three sublayers contiguous with all practically-cut surfaces: 

the underside of the chip, the separation zone and the machined surface of the workpiece. 

The associated plastic work within the boundary layers must be included in the total work 

of surface formation. 

(5) The size of the damaged boundary layer is some 35 μm and appears to be independent of 𝑡0 and α over the range investigated within the regime of continuous chip formation.  

(6) The material length scale is given by 𝑅 𝑘⁄ ≈ (20 × 103) (350 × 106)⁄ ≈  6 × 10−5. The 

boundary layer therefore is some 0.6(𝑅 𝑘⁄ ). 
(7) For continuous chip formation, Atkins’ single shear plane algebraic model gives 

satisfactory quantitative agreement with the shear angle 𝜙, fracture toughness R and shear 
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yield stress 𝜏𝑦 as compared to FE simulation results. The results successfully validate that 

in cutting with continuous chips, works of plasticity, friction and separation are essentially 

uncoupled. 
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CHAPTER 6 APPLICATIONS OF DUCTILE FRACTURE MODELING 

IN METAL FORMING PROCESSES 

In this chapter, the ductile fracture modeling method is applied to predict fracture initiation 

of advanced high strength steels (AHSS) sheets in (1) square punch tests (2) Nakazima tests and 

(3) three point bending tests of hat-sections. These tests are common engineering practices for 

metal sheet industrial applications in investigation of part loading history effect, determination of 

material formability and fracture, and validation of material model for structural components. 

Specifically, for ductile fracture modeling, they are good candidates for validating the fracture 

model calibrated from coupon test from a given grade of metal sheet. The experimental results are 

compared with finite element simulation results using calibrated plasticity and fracture parameters. 

Advanced high strength steels (AHSS) have been developed in automotive industry over 

the past decade to meet the requirements for safety, efficiency, manufacturability, durability and 

quality at a low cost. AHSS provide high-strength and other advantageous properties, while 

maintaining key criteria including crash performance, stiffness and forming requirement. In spite 

of the advantages of AHSS, low formability is a primary drawback. Forming limit by necking or 

instability have been of interest to sheet metal forming because once necking occurs, thinning will 

progress rapidly under decreasing loads or pressures until the sheet cracks. Forming limit diagram 

(FLD) is widely used in deep-drawing industry as a useful tool for predicting limits of sheet 

forming operations. Analytical models were proposed for calculating limit strains and constructing 

FLDs of sheet metals, such as Hill’s localized necking model (Hill, 1952), Swift’s diffuse necking 

model (Swift, 1952), and Marciniak-Kuczynski (M-K) model (Marciniak & Kuczyński, 1967; 

Marciniak, Kuczyński, & Pokora, 1973) based on thickness imperfection. However, under some 
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circumstances (e.g. deep drawn and stretched parts with complex geometries), FLD cannot indicate 

whether the sheet failure occurs by local necking or fracture, whereas ductile fracture is the main 

factor that limits the attainable deformation of metal sheets (Atkins, 1996).  

Numerous studies have been conducted on ductile fracture of metals such as steel and 

aluminum alloys over the last few decades. One large group of research is on physically based 

fracture models, based on mechanisms of nucleation, growth and coalescence of micro-voids 

(Tvergaard & Needleman, 1984). In parallel, there has been a growing interest in developing 

phenomenological models (Bai & Wierzbicki, 2008, 2010, 2015) which can be calibrated from 

adequate number of tests on bulk and/or sheet metals. In this paper, the modified Mohr–Coulomb 

(MMC) failure criterion proposed by Bai and Wierzbicki (2010) is used as an original fracture 

locus in the space of stress triaxiality, Lode angle parameter and equivalent plastic strain. The 

MMC fracture model covers a wide range of loading conditions. It does not only include uniaxial 

tension to equi-biaxial tension as in conventional FLD, but also enables to predict shear and 

compressive failure (Kim, Sung, Piao, & Wagoner, 2011; Li, Luo, Gerlach, & Wierzbicki, 2010). 

There are only four parameters in MMC fracture criterion and it is hence a good choice for 

industrial applications (Jia & Bai, 2016a, 2016b; Li et al., 2010).  

6.1 Formability and Fracture tests 

6.1.1 Square Punch Tests 

The AHSS sheet is 1.58 mm thick DP780 from ArcelorMittal. The square punch tests were 

conducted to obtain fracture strain at different critical locations. For all tests, the sheets are in 

square shape with initial side length 𝐷0 = 7.50 inch. The radius of the die entry 𝑟𝑑 is 0.258 inch. 
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The punch features a square cross-section with edge length of 𝑑 = 3.50 inch. The radius of the 

square punch head 𝑟𝑝 is 0.468 inch. Corresponding blank-holders were employed to match the 

punch geometry. In order to investigate different fracture behavior, the sheet was arranged at two 

orientations (0° and 45°) by rotating the rolling direction of the sheet with respect to the coordinate 

system of the punch. The velocity of the punch travel is 5 mm/s. The schematic diagram of the 

square punch test is shown in Figure 6-1. 

 

Figure 6-1. (a) Schematic diagram of the square punch test (front view) (b) top view of square punch test with 0° sheet 
orientation (c) top view of square punch test with 45° sheet orientation 

The test sheet samples were electrochemically gridded using square grids of 2.5 mm and 

lubricated with prelube before the tests started. During each punch test, constant clamping load 

was applied on the blank sheet as it drew into the die cavity. However, clamping load is different 

for different target fracture locations. For each test, the drawing depth was gradually increased 

until the first crack was observed on the sheet. The drawing depths and load–displacement 

responses were recorded. The samples were formed until a predefined load drop was detected. 

Clamping load Clamping load

Punch force

Blank-holder

DieDie

Blank-holder

Punch

Blank
Punch

Blank

Rolling

Punch Blank
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(b)
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After the test sample fractured, the strain on its fracture location was measured from the 

electrochemical grid. Two different fracture locations were observed: (1) at the corner of die radius 

for 45° oriented sheet and (2) at the corner of punch radius for 0° oriented sheet. The two test cases 

are named as DP-45 and DP-0 hereafter (Table 6-1). Each test case was repeated twice. 

Table 6-1. Summary of square punch tests on DP780 sheet 

Test DP-45 DP-0 

Blank orientation 45° 0° 

Clamping load (kip) 50 130 

Fracture location Die entry Punch corner 

Major strain 𝜀1 at fracture 0.59 ± 0.01 0.22 ± 0.01 

Minor strain 𝜀2 at fracture -0.65 ± 0.01 -0.006 ± 0.001 

6.1.2 Nakazima and Three-point Bending Tests 

The Nakazima tests are widely used for determination of forming limit diagram (FLD) in 

sheet forming industrial applications. The FLD represents the intrinsic limit of a material in plastic 

deformation assuming a proportional strain path, and the principal of Nakazima test can be applied 

for construction of fracture forming limit diagram (FFLD) for less ductile AHSS sheets. The FLD 

is the localized necking strain limit and the FFLD is the fracture strain limit. In the present study, 

the Nakazima tests was carried out on QP980 sheets of 1.24 mm thickness in accordance with the 

ISO 12004-2. The Nakazima toolset has a die entry radius of 6.35 mm and a single circular 

drawbead with a height of 5.08 mm and a tight bend radius of 1.52 mm. In order to mitigate 

premature fracture at the drawbead during binding-closing process prior to the motion of the punch, 

a carrier blank was placed in between the AHSS blank and the blank holder. Oil-based lubrication 
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was applied in the contact areas between different parts to reduce friction. In all tests, the blank 

holder force was set to 400 kN and the punch velocity was set to 0.25 mm/s.  

Figure 6-2 shows the strain paths at the critical location to the failure zone from DIC 

analysis of QP980 sheets under Nakazima tests. The diameter of the circular blank along the rolling 

direction is fixed at 7 inch, and different strain paths to fracture were obtained by altering the 

specimen width. Four representative strain paths were designed using the following width w: (1) 

uniaxial tension (w = 1 inch), (2) plane strain tension (w = 4 inch), (3) intermediate stretching 

strain state (w = 5 inch) and (4) equi-biaxial tension (w = 7 inch).  

 
Figure 6-2. Strain paths to fracture of Nakazima tests of QP980 

The 3-point-bending (3PB) tests on the hat sections of the same QP980 sheets (in Section 

6.1.2) were conducted to validate the calibrated fracture models. The 3PB tests on the hat section 

samples are designed to simulate the side impact on automotive B-pillar structures (Figure 6-3 (a)). 

The experiments were conducted on a servo-hydraulic high-rate testing machine equipped with a 

100 kN load cell. In each test, the anvil bent a sample by 100 mm from contact to stop at a nominal 
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speed of 10 mm/s. Each hat section sample has a width of 381 mm and the span of the two 

supporters beneath a sample was set to 305 mm. Figure 6-3(b) shows an example of the bent hat 

section sample – it is essentially a brake-bent top channel spot-welded to a base panel.  

  

Figure 6-3. (a) B-pillar bending example (2016 Tesla Model S side IIHS crash test) (b) an example of three-point 
bending test on a hat section sample 

6.2 Material Model Calibration 

6.2.1 Isotropic Plasticity and Fracture Model  

The present AHSS sheets are nearly isotropic. For plane stress condition, von Mises yield 

criterion is in the form of 𝜎12 + 𝜎22 − 𝜎1𝜎2 = 𝜎𝑌2 (6-1) 

where 𝜎1 , 𝜎2  are two principal stresses on the sheet plane, and 𝜎𝑌  is the von Mises 

equivalent yield stress. 

Proper identification of the strain hardening after the onset of necking is very important for 

reliable determination of the fracture strains. Two approaches are suggested for extrapolate the 

hardening curve in the post-necking regime from recent studies. The first approach is to use an 
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inverse method of manually adjusting the true stress-strain data in the post-necking regime until 

force-displacement curve from simulation agrees well with that from the experiment (e.g. (Luo et 

al., 2012)). The second approach is to use a linear combination of a power hardening and saturation 

type of hardening law, inspired by the work in (Sung et al., 2010) and followed-up by Mohr and 

co-workers (Marcadet & Mohr, 2015; Mohr & Marcadet, 2015; Roth & Mohr, 2014). The 

combined Swift-Voce hardening function ensures a smooth piece-wise increasing curve and 

improves the efficiency of model calibration compared to the inverse method. The second 

approach is adopted in the present study. The combined isotropic strain hardening function is 

represented as 𝑘(𝜀𝑝̅) = 𝛼𝑘𝑠(𝜀𝑝̅) + (1 − 𝛼)𝑘𝑣(𝜀𝑝̅) (6-2) 

where the Swift law is a power law function 𝑘𝑠(𝜀𝑝̅) = 𝐴(𝜀0 + 𝜀𝑝̅)𝑛 (6-3) 

and the Voce law is an exponential function 𝑘𝑣(𝜀𝑝̅) = 𝑘0 + 𝑄 (1 − exp(−𝛽𝜀𝑝̅)) (6-4) 

The parameters of the Swift and Voce hardening law are calibrated separately from curve 

fitting of the true stress-plastic strain up to necking. The weighting factor 𝛼  was determined 

iteratively by comparison with engineering stress-strain curve in the post-necking regime. The 

material hardening parameters are summarized in Table 6-2. The extrapolated combined Swift-

Voce hardening curve is illustrated in Figure 6-4.  
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Table 6-2. Isotropic hardening parameters of DP780 and QP980 

 
Figure 6-4. (a) Illustration of the post-critical regime after necking in the engineering stress-strain curve (b) an example 
of post-necking extrapolation by combined Swift-Voce law 

The modified Mohr-Coulomb (MMC) phenomenological model was applied for modeling 

ductile fracture locus. The MMC fracture criterion reads 

 𝜀𝑓(𝜂, 𝜃) = {𝐴𝐶2 [𝐶𝜃𝑠 + √32 − √3 (𝐶𝜃𝑎𝑥 − 𝐶𝜃𝑠) (sec 𝜃𝜋6 − 1)] [√1 + 𝐶123 cos 𝜃𝜋6 + 𝐶1 (𝜂 + 13 sin 𝜃𝜋6 )]}−
1𝑛
 (6-5) 

Here, 𝜂 is the stress triaxiality; 𝜃̅ is Lode angle parameter; 𝐴, 𝑛, 𝐶1, 𝐶2, 𝐶𝜃𝑠 and 𝐶𝜃𝑎𝑥 are the 

MMC fracture model parameters. Note that the fracture model parameters 𝐴 and 𝑛 are decoupled 

from the Swift hardening model, but the same values can be chosen as initial estimations. 

In the case of plane stress, the stress triaxiality 𝜂 and Lode angle parameter 𝜃̅ are uniquely 

related by Bai and Wierzbicki (2008) 

−272 𝜂 (𝜂2 − 13) = 𝑠𝑖𝑛 (𝜋2 𝜃̅) (6-6) 

The original MMC fracture model is stress-based because the fracture strain is a function 

of two stress invariants - stress triaxiality and Lode angle parameter. However, the stress-based 

Parameter 𝐴 𝑛 𝜀0 𝛼 𝑘0 𝑄 𝛽 

DP780 1180 0.12 0.001 0.6 595 316 28 

QP980 1749.6 0.215 0.008 0.6 654.6 559.5 14.98 
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parameters are difficult to measure in practical applications, and the model calibration relies on 

the inverse method from finite element simulations. It is therefore desired to develop an all-strain-

based ductile fracture model directly applicable for model calibration. For metal sheet applications, 

under the plane stress condition and associated flow rule, the stress invariant based MMC fracture 

locus can be transferred into the fracture forming limit diagram (FFLD) defined in the space of 

principal strains. The transformation from MMC to FFLD is shown in the following. 

The transformation from stress-based MMC to strain-based FFLD are related to the strain 

incremental ratio α and stress ratio β, defined as 𝑑𝜀2 = 𝛼𝑑𝜀1, 𝜎2 = 𝛽𝜎1 (6-7) 

Assuming the Mises-Levy flow rule, it can be derived that 

𝛼 = 2𝛽 − 12 − 𝛽  (6-8) 

The relationship between the stress triaxiality η and the stress ratio β is 

𝜂(𝛽) = 𝜎𝑚𝜎 = 𝜎1 + 𝜎23√𝜎12 + 𝜎22 − 𝜎1𝜎2 = 𝛽 + 13√𝛽2 − 𝛽 + 1 (6-9) 

Using the relation between the strain incremental ratio α and stress ratio β in Eq.(6-8), there 

is a unique relation between η and α 

𝜂(𝛼) = 𝛼 + 1√3√𝛼2 + 𝛼 + 1 (6-10) 

The equivalent plastic strain incremental 𝑑𝜀 ̅can be expressed in the form of 

𝑑𝜀̅ = 2𝑑𝜀1√3 √𝛼2 + 𝛼 + 1 (6-11) 
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Both the stress-based original MMC fracture locus and the strain-based FFLD describe the 

fracture limit based on proportional loading under linear strain path. The integral of Eq.(6-11) until 

fracture gives the relation between fracture strain 𝜀𝑓̅ and maximum principal strain 𝜀1: 

𝜀𝑓̅ = 2𝜀1√3 √𝛼2 + 𝛼 + 1 (6-12) 

The 2D MMC fracture locus can be transformed to the space of principal strains using 

Eq.(6-12). Using the transformation equations of (6-7) to (6-12), the calibrated fracture locus in 

form of stress-based MMC and strain-based FFLD are shown in Figure 6-5 and Figure 6-6. 

 
Figure 6-5. The MMC fracture locus and the fracture forming limit diagram (FFLD) calibrated from uniaxial tension 
and square punch tests of DP780 sheets. 

  

Figure 6-6. The MMC fracture locus and the fracture forming limit diagram (FFLD) of QP980 sheets. 
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All the parameters in the MMC fracture model are decoupled form the plasticity model. 

The parameters are free to adjust with the best fit of the fracture data points. The calibrated fracture 

parameters for DP780 and QP980 are listed in Table 6-3. 

Table 6-3. MMC fracture model parameters for DP780 and QP980 

6.2.2 GISSMO Fracture Model in LS-DYNA 

In LS-DYNA, GISSMO is the “Generalized Incremental Stress-State dependent Damage 

Model”. The GISSMO damage model is a phenomenological formulation that allows for an 

incremental description of damage accumulation including softening and failure (Manual, 2017). 

It can be used in combination with a variety of material cards available for metallic materials.  

The incremental formulation of damage accumulation in GISSMO reads: 

∆𝐷 = 𝑛𝐷(1−1 𝑛⁄ )𝜀𝑓 ∆𝜀𝑝 (6-13) 

Where 𝐷  is the damage variable ( 0 ≤ 𝐷 ≤ 1 ), ∆𝜀𝑝  is the equivalent plastic strain 

increment, 𝑛 is the exponent for nonlinear damage accumulation, and 𝜀𝑓 is the equivalent plastic 

strain to failure determined as a function of the current triaxiality value 𝜂. 

GISSMO allows stress softening from material instability up to the load-bearing capacity 

completely vanishing as D reaches unity. The model assumes damage coupling with stress once 

the material instability criterion is reached. The material instability criterion can be defined as an 

analytical instability model (e.g., Swift, Hill, Marciniak-Kuczynski, etc.), or an actual forming 

limit curve (FLC) measured from experiments. Similar to the definition of damage variable D, the 

Parameter 𝐴 𝑛 𝑐1 𝑐2 𝐶𝜃𝑠 𝐶𝜃𝑠 
DP780 1180 0.120 0.127 630.6 0.960 1.000 

QP980 1750 0.215 0.220 1059.2 1.098 1.062 
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instability measure F is accumulated using the following relation and the instability curve is used 

as an input (Manual, 2017): 

∆𝐹 = 𝑛𝐹(1−1 𝑛⁄ )𝜀𝑝,𝑙𝑜𝑐 ∆𝜀𝑝 (6-14) 

Where 𝜀𝑝,𝑙𝑜𝑐 defines the instability curve similarly as the fracture locus defined by 𝜀𝑓 in 

Eq.(6-13). When the instability measure F reaches unity, the current value of damage D in the 

respective element is stored as a critical damage 𝐷𝐶𝑅𝐼𝑇. Damage from this point on will be coupled 

to the flow stress using the relation (Manual, 2017): 

𝜎 = 𝜎̃ [1 − (𝐷 − 𝐷𝐶𝑅𝐼𝑇1 − 𝐷𝐶𝑅𝐼𝑇 )𝐹𝐴𝐷𝐸𝑋𝑃] (6-15) 

Where FADEXP refers to an exponent for damage-related stress fadeout. The GISSMO 

damage model is demonstrated by a simplified process as shown in Figure 6-7. The model was 

simplified using (1) constant critical plastic strain 𝐸𝐶𝑅𝐼𝑇 = 0.16 and (2) constant fracture strain 𝜀𝑓 = 0.4. Figure 6-7 illustrates the damage accumulation with evolution of plastic strain according 

to Eq. (6-13), and stress softening effect after material instability according to Eq. (6-15).  
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Figure 6-7. Demonstration of a simplified stress softening and damage accumulation for QP980 in GISSMO. The 
material instability and fracture strain are simplified as a fixed value of 𝐸𝐶𝑅𝐼𝑇 = 0.16 and 𝜀𝑓 = 0.4. Non-linear 
damage accumulation exponent n = 2 and exponent for damage-related stress fadeout FADEXP = 2. The softening 
factor is the term in the bracket of Eq. (6-15).  

Figure 6-8 illustrates an example of fracture locus and material instability curve defined 

for QP980. The fracture locus was calibrated from coupon test results in the last section, and the 

material instability curve was converted from the analytical Swift instability model using necking 

strain of 0.16. Note that for QP980, the post-necking regime, which is referred as the region 

between the fracture locus and the instability curve, indicates that material fracture is preceded by 

necking. At low triaxiality region (η < 0.1), necking is suppressed by fracture. Failure with strain 

localization or not prior to fracture is material dependent. Note that the choice of the instability 

curve is determined by the user. For real applications of forming or crashworthiness simulations 

using larger mesh sizes, the instability curve is not the only factor influencing the simulation results. 

The fading exponent in the damage coupling and regularization factor constitutes another two 

elements of the fracture strain regularization procedures. 
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Figure 6-8. An example of MMC fracture locus and Swift instability curve of QP980 in GISSMO 

6.3 Finite Element Simulations 

6.3.1 Finite Element Model Setup 

Finite element simulations of square punch tests were performed in ABAQUS/Explicit. 

The punch, the die and the blank-holder were modeled as discrete rigid bodies using 4-node 3D 

bilinear rigid quadrilateral elements (R3D4). The rigid bodies were discretized using global mesh 

size of 5 mm in the edge region and local meshes as fine as 1 mm at contact region. The square 

sheet was meshed by four-node, reduced integration points shell elements (S4R) with mesh size 

of 1 mm × 1 mm. For all models, 5 Simpson integration points through the thickness of shell 

elements were assigned to obtain reliable simulation results which involve bending features. 

Modeling metal forming process is a highly nonlinear problem which involves contact and 

large deformations. In order to obtain economical quasi-static solutions using an explicit dynamics 

solver, an appropriate mass scaling factor was applied during the explicit analysis. In the initial 
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step, a small gap between the blank-holder and the sheet was set up to avoid numerical oscillation 

caused by potential initial penetration during contact. The numerical analysis of the punching 

process was divided into two steps: In the first step, a blank-holder force was applied as a ramp 

load to establish contact between the blank-holder and the sheet. In the second step, the punch 

moved vertically at a constant velocity of 5 mm/s. During both steps, the die was fixed; the blank-

holder and the sheet were given free boundaries. The punch was fixed in the first step and allowed 

for only vertical movement in the second step. The fracture initiation and crack propagation were 

modeled using element deletion technique. The element would be deleted when all integration 

points through thickness reach unity.  

In the finite element analysis, penalty friction formulation was used to model the tangential 

behavior between contact surfaces. The friction coefficient was assumed constant in the contact 

areas between the interactions of the rigid tool and the blank. Since there is no direct method for 

determining the friction coefficients in the square punch test, an inverse method was adopted here 

to adjust friction coefficient to best correlate the experimental load-displacement curves. The load-

displacement response of the punch is very sensitive to the friction coefficient. It is well known 

that friction changes the state of stress and strain in sheets (Lee, Woertz, & Wierzbicki, 2004). 

During the punch test, friction from the punch corner radius prevents tension across the face of the 

punch from increasing sufficiently to stretch the material over the face of the punch. At the corner 

of die radius, the contact friction also restricts material flow, thereby hinders the development of 

large tensile strain. The force acting on the punch is in equilibrium with the tension on the side-

wall. The higher the friction, the tension is larger on the side wall. Friction also plays a key role of 

deciding the formation of neck and location of the fracture initiation. With high friction, fracture 
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tends to initiate near the contact with the punch, where the deformation is in plane strain tension 

because of the circumferential direction constraint from the neighboring material in contact with 

the punch. With lower friction, the maximum punch stroke increases, and the failure site moves 

toward the die corner.  

6.3.2 FE Simulations of Square Punch Tests 

Figure 6-9 and Figure 6-10 show the comparison between finite element analysis and test 

results for the two square punch test cases. For case DP-0, the crack is located at the punch radius 

of the sheet and propagated circumferentially, while the crack for the case of DP-45 is located at 

the die radius of the sheet and propagated circumferentially. The crack location and propagation 

for both cases are well captured by FE simulations. 

The experimental and numerically predicted force-displacement curves for test case DP-0 

and DP-45 are shown in Figure 6-11. The punch loads are predicted accurately for given clamping 

load and adjusted friction coefficients. The initially calibrated fracture locus almost predicts the 

accurate moment of fracture initiation. Fracture in simulations occurred slightly early but if the 

fracture parameters were fine-tuned, the simulation would give more accurate results. However, 

the most important is that by calibrating the original MMC fracture locus in the all-strain-based 

space, only one-time calibration is adequate for giving satisfactory results. No tedious iterations 

of FE simulations are needed. This is because the deformation at these two critical locations in 

square punch tests was dominated by proportional loading under linear strain path.    
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Figure 6-9. Finite element analysis and experimental results of square punch tests for case DP-0. Fracture initiates at 
the corner of punch radius. PEEQ denotes the equivalent plastic strain.  

 

Figure 6-10. Finite element analysis and experimental results of square punch tests for case DP-45. Fracture initiates 
at the corner of die radius. PEEQ denotes the equivalent plastic strain.  

 

Figure 6-11. Experimental and numerically predicted force-displacement curves for test case DP-45 and DP-0.  

During square punch test, material points at different locations on the sheet have different 

strain paths. The element at the corner of the punch radius is under a combined biaxial tension and 

bending. On the other hand, the element at the corner of the die radius experiences a combined 

bending and in-plane shear. The mechanism of generating in-plane shear at the corner of the die 
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radius is illustrated in Figure 6-12. The material point located at the intersection of two bending 

surface pairs is under combined tension and compression, which generates in-plane shear 

deformation at the corner. The relative amount of tension and compression under certain 

experiment conditions determines how close to pure shear it is. It was found in experiments that 

for DP780, it is possible to generate in-plane shear by rotating the sheet 45° with respect to the 

square punch when applying certain clamping load and sufficient lubrication.  

 

Figure 6-12. Illustration of the mechanism of generating in-plane shear in square punch test. 

Figure 6-13 shows the strain histories extracted from the critical element at fracture 

initiation site (within the red regions in the contour plot of FE simulations) for each case. Strain 

paths of 3 integration points (5 used in analysis and 3 used for output) on the negative, middle, and 

positive surfaces are present in the figure. The strain path of the integration point on the middle 

surface is very close to proportional loading: (1) pure shear at the die radius for DP-45 and (2) 

plane strain tension at the punch radius for DP-0. For the outer surfaces, there are bending history 

effects so that the strain paths are not strictly linear. For the critical element at the corner of punch 

radius in case of DP-0, the material located on the positive surface is in equi-biaxial tension first 

and then shift to plane strain tension, while the material located on the negative surface is in 
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compression first and then shift to plane strain tension. Similarly, for the critical element at the 

corner of die radius in case of DP-45, the material located on the positive surface is in uniaxial 

tension first and shift to pure shear, while the material located on the negative surface is in 

compression first and then shift to pure shear.  

 

Figure 6-13. Strain histories extracted from the critical element at fracture initiation site for the case of (a) green: DP-
45 (b) blue: DP-0 (c) orange: uniaxial tension in the space of principal strain. The solid, dashed and dotted lines 
represent the integration point on the middle, positive and negative surface, respectively. 

Figure 6-14 shows damage evolution of the three integration points through thickness of 

the critical element for DP-0 and DP-45 during square punch test. Linear damage evolution law 

was used in Abaqus built-in damage model. Integration point fails when the damage indicator 𝐷 =∫ 𝑑𝜀̅𝑝𝜀𝑓(𝜂) = 1𝜀̅𝑝0 , where 𝜀𝑓(𝜂) is the fracture strain as function of stress triaxiality under different 

loading conditions. The damage evolution rule takes strain history effect and non-proportional 

loading into consideration. Elements are deleted if all integration points through thickness fail. 
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Fracture initiation site is identified as the crack position where the first element is deleted. Different 

than FLD determined by necking, the MMC fracture locus is not only as a strain limit, but also as 

an integral part of damage evolution rule.  

 
Figure 6-14. Damage evolution of the three integration points through thickness extracted from the critical element 
for case DP-45 and DP-0. The solid, dashed and dotted lines represent the integration point on the middle, positive 
and negative surface, respectively.  

For case DP-0, the integration point on the negative surface of the critical element at the 

punch corner failed first, and the other two integration points failed rapidly thereafter. All the three 

integration points through thickness experienced similar proportional loading paths of plane strain 

tension. In Figure 6-15, it can be seen that the critical element experienced continuous thinning 

before it failed. Bending history effect on damage evolution of the critical element is not that 

significant. When the strain paths reach the FFLD in the space of principal strains, the damage 

indicator D reaches unity almost at the same time.  

For case DP-45, the integration point on the positive surface of the critical element at the 

die corner failed first, but failure was delayed for the other two integration points. The three 

different damage evolution curves are attributed to bending effect. The strain path for the middle 

integration point is nearly linear under pure shear at all time, but the strain paths for the surface 

integration points are not strictly linear. Damage accumulation for the integration point on the 
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positive surface starts early from uniaxial tension and continues under pure shear, while it starts 

late for the integration point on the negative surface because it deformed first from compression, 

which features a very high fracture limit. In Figure 6-15, it can be seen that after the critical element 

started to flow into the die cavity, it was thickened first and then thinned, indicating a transition 

from compression to tension dominant state through pure shear. It is noted that if linear damage 

evolution rule was used as in this study, unless the strain path is strictly linear, whether it reaches 

the FFLD or not does not necessarily indicate the damage indicator D reaches unity simultaneously.  

 
Figure 6-15. Thickness history of the critical element for case DP-0 and DP-45. 

6.3.3 FE Simulations of Nakazima and Three-point Bending Tests 

Figure 6-16 shows the force-displacement curve from FE analysis of the Nakazima tests 

and its comparison with experimental results. The force was measured from load sensors of the 

hydraulic press and the displacement is the punch stroke after the contact with the blank. The FE 

results agree very well with the experiments for uniaxial tension test (w = 1 inch) and equi-biaxial 

tension test (w = 7 inch). For plane strain tension (w = 4 inch) and intermediate stretching (w = 5 

inch), some discrepancy is seen in the results. This is mainly caused by the use of an isotropic yield 

function. The global force and displacement at fracture can be better correlated with the test results 
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if an anisotropic yield function (e.g. Yld2000-2d) was employed for more accurate description of 

plastic flow and yield stress. 

 

Figure 6-16. FE simulation results of Nakazima Tests of QP980 sheets 

Figure 6-17 shows Nakazima test samples after fracture in both experiments and FE 

simulations. The fracture locations in the experiments are near the dome center and are well 

captured by the FE simulations except for the case of intermediate stretching. As discussed earlier, 

the friction effect influences the fracture location. In stretching over a hemispherical punch, the 

effect of friction is to reduce tension at the dome center and spread the strain over a greater area. 

The critical potential failure location is at some distance from the pole with the friction effect due 

to the relocation of maximum circumferential strain component. The strain distributions in Figure 

6-17 (c) suggest that the fracture strain follows the fracture locus calibrated in Figure 6-6. 
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Figure 6-17. (a) Fracture samples in Nakazima Test (b) Fracture in FE simulations (c) Equivalent plastic strain contour 
plot before fracture 

The three-point bending crash tests were used to demonstrate the application of ductile 

fracture modeling. Figure 6-18 shows the test and simulation results of three point bending samples 

with hat section. Two punch design was used: cylinder punch and cross punch. In the case of using 

cylinder punch, both the constant fracture strain criterion and the GISSMO predicted the same 

fracture locations as in the tests (Figure 6-18 (a)). The advantage of GISSMO is demonstrated in 

Figure 6-18 (b) using the cross-punch design. The fracture location was correctly predicted along 

the longitudinal direction. GISSMO covers a wide range of stress states which allow for failure 

prediction of complex loading conditions considering damage histories.  
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Figure 6-18. Three-point bending of hat section (a) using cylinder punch (b) using cross-punch. The different punch 
design demonstrates the use of GISSMO damage model for stress state dependent fracture modeling in LS-DYNA 
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CHAPTER 7 CONCLUSIONS AND FUTURE STUDIES 

This work proposed a new modeling framework for solving anisotropic plasticity and 

anisotropic fracture problems under plane stress conditions, which offers simple and efficient 

solution for model calibration in the forming process design stage. The test results suggest strong 

anisotropic effect of 7075 aluminum alloy sheets only under uniaxial tension for both plasticity 

and fracture. The anisotropic plasticity was modeled by the Yld2000-2d yield function with flow 

stress correction by Lode angle dependence. A new all-strain based anisotropic fracture model 

eMMC-Srp was proposed based on the strain rate potential functions and the methodology of linear 

transformation. The FE simulation results demonstrate the capability of the current model.  

Static and dynamic fracture tests were performed on AHSS sheets to investigate the strain 

rate effect on fracture under four loading conditions. The experimental results demonstrated that 

for the present material, significant ductility loss was observed for uniaxial tension, but strain rate 

effect on fracture appears to be insensitive for other loading conditions. The quasi-static MMC 

fracture model was extended to a fully uncoupled rate-dependent MMC fracture model 𝜀𝑓(𝜂)𝑔(𝜀̇) 
and coupled rate-dependent MMC fracture model 𝜀𝑓(𝜂)𝑔(𝜀̇, 𝜃̅). 

The FE simulations of orthogonal cutting using the Johnson-Cook fracture model explain 

that the works of plasticity, friction and separation are essentially uncoupled with formation of 

continuous chips. The simulations predicted quasi-linear relation between cutting force and depth 

of cut at large positive rake angles. The size of the highly deformed boundary layer is related to 

the fracture toughness. The associated plastic work within the boundary layers appears to be 

independent of chip thickness and rake angle over the range of investigation. The single shear 
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plane algebraic model gives satisfactory quantitative agreement with the shear angle, fracture 

toughness and shear yield stress as compared to the simulation results.  

The material ductile fracture was investigated by real applications in formability and 

component tests. A new practical calibration approach of ductile fracture locus was introduced by 

square punch tests. The original stress based MMC fracture model was transformed into strain-

based FFLD defined by principal strains under plane stress condition. The strain and damage 

evolution histories of the two critical locations in the square punch tests reveal that material 

experienced shear-induced fracture at the die entry and plane-strain tension dominated fracture at 

the corner of the punch radius. Shear failure was able to be predicted in which conventional FLD 

cannot tackle. The material models calibrated from coupon tests were also validated by Nakazima 

and three-point bending tests. The FE modeling results at component level testing demonstrate that 

the present ductile fracture modeling approach has significant benefits in predicting material 

formability and fracture by considering complex part loading conditions. 

The following topics are suggested for future studies. 

• Temperature effect in plasticity and fracture. The current study shed light on ductile 

fracture with strain rate effect under multi-axial stress state and contributes to a better 

understanding of the coupling effect between strain rate and stress state. At large 

deformation under high speed loading conditions, significant increase in temperature is 

induced by local plastic work, leading to thermal softening in material constitutive behavior. 

In this work, temperature effect was accounted by the strain rate effect and not discussed 

separately. Further investigation is recommended to explore the temperature effects on 

constitutive modeling and fracture analysis during dynamic loading events. This requires 
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an extra dimension of experimental test program under isothermal conditions and through 

investigation of temperature coupling/decoupling with strain rates and stress states. 

• Anisotropic hardening.  Most studies on anisotropic plasticity in the last few decades focus 

on developing anisotropic yield functions. Hardening is more critical to describe the plastic 

flow behavior under complex deformation path. The present solution provides a 

generalized anisotropic hardening framework under proportional loading conditions. More 

sophisticated constitutive models considering distortional hardening and Bauschinger 

effect under stress reversal conditions deserve further exploration. 

• Size effect in ductile fracture modeling. The phenomenological ductile fracture models are 

developed from mechanical tests of small test coupons with FE simulation correlations 

using small mesh sizes (0.1-1 mm). Mesh size effect arises for modeling large deformation 

at large scales (mesh size > 5 mm) such as forming and crashworthiness simulations. Future 

research into the area of gradient plasticity theory may be useful for solving the problem 

of using shell elements.  

• Statistical analysis for ductile fracture modeling. In order to account for the stochastic 

behavior of material fracture from the manufacturing processes, the probabilistic fracture 

limit band with safety margin levels are suggested rather than conventional fracture locus. 

An example work of statistical analysis of ductile fracture analysis using Gaussian and 

Weibull probability functions can be found from (Teng, Mae, Bai, & Wierzbicki, 2008). 

The uncertainty of fracture data from physical or DIC measurements can be also evaluated 

by the reliability of the fracture limit band from statistical analysis. 
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