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ABSTRACT 

  In this thesis we employ two recent analytical approaches to investigate the possible 

classes of traveling wave solutions of some members of recently derived integrable family of 

generalized Camassa-Holm (GCH) equations.  

  In the first part, a novel application of phase-plane analysis is employed to analyze the 

singular traveling wave equations of four GCH equations, i.e. the possible non-smooth peakon, 

cuspon and compacton solutions. Two of the GCH equations do no support singular traveling 

waves. We generalize an existing theorem to establish the existence of peakon solutions of the 

third GCH equation. This equation is found to also support four segmented, non-smooth M-wave 

solutions. While the fourth supports both solitary (peakon) and periodic (cuspon) cusp waves in 

different parameter regimes. 

  In the second part of the thesis, smooth traveling waves of the four GCH equations are 

considered. Here, we use a recent technique to derive convergent multi-infinite series solutions 

for the homoclinic and heteroclinic orbits of their traveling-wave equations, corresponding to 

pulse and front (kink or shock) solutions respectively of the original PDEs. Unlike the majority 

of unaccelerated convergent series, high accuracy is attained with relatively few terms. Of 

course, the convergence rate is not comparable to typical asymptotic series. However, asymptotic 

solutions for global behavior along a full homoclinic/heteroclinic orbit are currently not 

available.  
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CHAPTER 1: INTRODUCTION 

 

The Camassa-Holm (CH) equation [1], 

                                                                                      

where u = u(x, t) and   is a constant (and subscripts denote partial derivatives), has attracted 

much research interest in recent years [2]. This equation came to prominence with the work of 

Camassa et al. in 1993 and 1994 [1], where it was argued that the equation could be taken as a 

model for the unidirectional propagation of waves in shallow water.  

    For   = 0, Camassa and Holm showed that Equation (1.1) has peakons of the form 

          |    |. In mathematics and physics, a soliton is a solitary wave packet or pulse that 

maintains its shape while traveling at constant speed. This type of wave has been the focus 

interest since solitons are thus stable, and do not disperse over time. Peakons are a type of non 

smooth soliton, which were discovered by Camassa and Holm in 1993; these waves have a sharp 

peak where it has a discontinuous derivative. The wave profile is similar to the graph of the 

function   | |. 
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Figure 1: Plot of u(x,t) with the change of x and t showing two peakons with different wave 

speed colliding with each other forming double peakon (Image taken from Reference [3]). 

 

 Equation (1.1) can be re-written in the following form: 

     
                                                 

 

  
            

belonging to the class: 

     
      (                            )                                        

which has attracted much interest, particularly the possible integrable member of equation [3,4]. 

The Camassa–Holm equation is integrable by the inverse scattering transform. It possesses an 

infinite hierarchy of local conservation laws, bi-Hamiltonian structure and the various other 

remarkable properties of integrable equations. Despite its non-evolutionary form, the Camassa–

Holm equation possesses an infinite hierarchy of local higher symmetries [4]. 
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   Until 2002, the Camassa-Holm equation was the only known integrable example of the 

type of Equation (1.3). Later, Degasperis and Procesi [3, and references therein] found another 

nonlinear PDE with similar properties, and this, so-called DP equation, has been studied quite 

intensively. Much more recently, Novikov [4] and Mikhailov and Novikov [5] showed that there 

are other different examples of Equation (1.3) which are integrable. Novikov presented a detailed 

summary of integrable and homogeneous polynomial generalizations of the Camassa–Holm type 

equation with quadratic and cubic nonlinearities [4]. He showed that the obtained equations can 

be treated as non-local symmetries of local scalar evolution quasi-linear integrable equations of 

orders 2, 3 and 5. 

  In this thesis, the dynamical behavior of the traveling wave solutions of some of these 

generalized Camassa-Holm equations [4] is discussed. In particular, we consider the following 

four member nonlinear PDEs (NLPDEs): 

     
                    

                                                            

     
             [       ]

                                                        

                          

     
         

       
        

                                                    

and 

     
            

                                                                            

from Novikov‟s list of 27 generalized Camassa-Holm equations [4]. 
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  Since these integrable generalized CH equations are new, and the properties of the 

solutions of only one of them has been considered in any sort of depth [6], we investigate the 

possible travelling wave solutions of Equations (1.4)-(1.7) in detail in this thesis. 

  Two separate approaches are employed. Since Equations (1.4)-(1.7) are integrable 

generalized CH equations, non-smooth solutions as in the CH equation are a definite possibility. 

To investigate these, we employ a somewhat unusual variant of phase–plane analysis [7] which 

has been recently applied to consider peakon and cuspon solutions of a wide variety of NLPDEs. 

Since the approach is quite novel, we first review it in Chapter 2 before applying it to our PDEs 

in Chapter 3. 

  In Chapter 4, we consider regular smooth traveling wave solutions of our system of 

Equations (1.4)-(1.7). As is well known, homoclinic and heteroclinic orbits of the traveling wave 

ODE (of any PDE) correspond to pulse and front (shock or kink) solutions of the governing 

PDE. 

  In particular, we apply a recently developed technique [8,9] to analytically compute 

convergent multi-infinite series solutions for the possible homoclinic and heteroclinic orbits of 

the traveling-wave ODEs of Equations (1.4)-(1.7). They correspond to convergent series for 

pulse or front (shock) solutions of these generalized CH Equations (1.4) - (1.7). Since the later 

terms in the series fall off exponentially, we show high accuracy may be obtained for the pulse  

and front shapes using only small number of terms. The actual convergence of such series is 

analogous to the earlier treatments [8,9], and is omitted here. 

  The remainder of this thesis is organized as follows. In Chapter 2, the recently developed 

theory for singular traveling-wave ODEs is reviewed [7]. This is then applied to our generalized 
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CH systems Equations (1.4)-(1.7) in Chapter 3. Chapter 4 develops analytic pulse and front 

solutions of Equations (1.4)-(1.7). The results and the outlook for further work are summarized 

in Chapter 5.  
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CHAPTER 2: BASIC MATHEMATICAL THEORY OF SINGULAR 

TRAVELLING WAVE SYSTEMS 

 

2.1 Some background on dynamical systems 

  In this chapter, we begin by reviewing some background material on the phase plane 

analysis of dynamical systems. Virtually anything that evolves over time can be thought of as a 

dynamical system. A spring-mass system, a pendulum, economic growth, RLC circuits- these are 

all examples of dynamical systems. A dynamical system has two parts: a state vector (consisting 

of the physical variables) which describes exactly the state of some real or hypothetical system, 

and a function (i.e., a rule) which tells us, given the current state, what will be the state of the 

system at the next instant of time. 

  A dynamical system consists of a phase (or state) vector     . This vector can consist 

of several variables. For example, a ball tossed straight up can be described using two numbers: 

its height h above the ground and its (upward) velocity v. Once we know these two numbers, h 

and v, the time evolution of the ball is completely determined. The pair of numbers (h, v) is a 

vector which completely describes the state of the ball and hence is called the state vector of the 

system. The second part of a dynamical system is a rule or a function,         
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Here the function      describes how the system evolves over time. We consider the following 

autonomous differential equation,  

  

  
                                                                                             

  Assume that the function      satisfies Lipschitz condition for all    and thus satisfies the 

condition of existence and uniqueness for the solution of Equation (2.1). The function given by 

  (      ) defines a vector field V on Rn 
associated with Equation (2.1). A point        on 

R2n
 is called the Phase point or a state. We say that the evolution of       is governed by the 

dynamical system.  

  For a differentiable function  , the derivative    is given by the nn Jacobian matrix 

   [
   

   
]. A point     Rn

 is called an equilibrium point or critical point of Equation (2.1) if 

       . The linear system  

  

  
                                                                      

is called the linearized system of Equation (2.1) at the point     

  For an orbit        of Equation (2.1) satisfying                and 

               ,        is called a homoclinic orbit if    , and        is said to be a 

heteroclinic orbit if     . Let H : Rn
  Rn  R be a smooth function given by  

(                    )   (                    ) 

and define the associated Hamiltonian system on R2n
 with Hamiltonian H by  
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Hamiltonian systems are conservative because the Hamiltonian function  

 (                    ) remains constant along the orbit of Equation (2.3). We now 

consider an analytic planar system: 

  

  
                

  

  
                                                               

which can be rewritten into the form of vector field          
 

  
       

 

  
   A system of 

Equation (2.4) is called integrable, if there exists a first integral         , where h denote an 

integral constant, such that 

  

  
              

  

  
         

  

  
               

  

  
                    

The function        is called an integrating factor. In particular, if         , then Equation 

(2.4) becomes a Hamiltonian system with one degree of freedom. 

 A critical point          of a system of Equation (2.4) is a center if the real part of the 

eigenvalue of the Jacobian matrix evaluated at the critical point        , is zero. A critical point  

        of a system of Equation (2.4) is a saddle point if the matrix 

 



 

9 

 

          

(

 
 

          

  

          

  

          

  

          

  )

 
 

 

of the linearized system of Equation (2.4) at         has one positive eigenvalue and one 

negative eigenvalue. A critical point of a system of Equation (2.4) is a node if 

   (         )    and (           )
 
      (         )     

  Having reviewed the basic background theory we next consider its application to 

traveling wave solutions of three generic classes of nonlinear PDEs [7] which cover many 

important systems.   

2.2  Phase portraits of traveling wave equations having singular straight lines 

2.2.1 The dynamics of the first type of singular traveling waves  

  We first consider the following three nonlinear evolution equations [7] 

                                                                                                  

    (    )
  

   (    )
    

                                                                               

and 

              (    )
 
                                                                                

where f,   and G are smooth nonlinear functions, and   is a constant parameter. Substituting 

               into Equations (2.6)-(2.8), integrating twice and once for (2.7) and (2.8) 

respectively, we have the following three systems: 
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and 

  

  
                

  

  
  

               

    
                                                

Clearly, these systems have the same form. So we can say that the above nonlinear wave models 

have traveling wave systems of the following general form: 

  

  
                    

  

  
  

            

    
                                                    

System of Equation (2.12) also admits a first integral: 

                ∫                                                           

where, h is the integral constant. 

  We assume G, F are at least C
2
 – functions in order to guarantee the existence and 

uniqueness of the solutions of the initial value problem.                                                                             

(1) The function      has exactly one simple zero, at    
 
 ,   ( 

 
)   ; 

(2) The function      has exactly two simple zeros,    
   

     
 
  

 
 and   ( 

 
)    

  ( 
 
)   . 
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Then, system of Equation (2.12) has two elementary critical points at     ( 
   

  ). In the 

straight line    
 
 of the       phase plane, the right hand of the second equation of (2.12) is 

discontinuous. We call    
 
 a singular straight line in which there exist two critical points 

(2.12) at    (  
  √ ) if     

 (  )

  (  )
   . We denote that       ( 

   
  ) and    

 ( 
 
  √ ). For convenience, we will refer to the Equations (2.12) as “first type of singular 

traveling systems”.  

  The so called “three step method” will be introduced into the following: 

a) Make a transformation of the independent variable, such that the “singular system” (2.12) 

becomes a “regular system”. 

b) Discuss the dynamical behavior of the “regular system”. 

c) Use known dynamical behavior of the “regular system”, to obtain the wave profiles 

determined by all the bounded solutions of the “singular system”. 

As the first step, let us make the transformation           , for    
 
  and the Equation 

(2.12) becomes: 

  

  
                        

  

  
  (            )                                                    

Obviously, the straight line    
 
 now becomes an invariant straight line of Equation (2.14). 

Since the systems of Equations in (2.12) and (2.14) have the same invariant curve 

solutions, as a second step, we study the associated “regular system” Equation (2.14) in order to 

get the phase portraits of Equation (2.12). In fact, for each orbit of Equation (2.14) with a given 
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level curve of Equation (2.13), the essential difference between Equations (2.14) and (2.12) is the 

parametric representation of the orbit. Near    
 
 Equation (2.14) uses the “fast time variable” 

 , while Equation (2.12)  uses the “slow time variable”  . 

  The Jacobian of the linearized system of Equation (2.14) at the critical point     ( 
   

  ) 

and   (  
  √ ) is given by 

 ( 
   

  )    ( 
   

)  ( 
   

)             ( 
 
  √ )     (  ( 

 
))

 

 

By the theory of planar dynamics, we know that if    , then the critical point is a saddle point. 

Thus the critical points    are saddle points.  

  If   
 
  

   
, the critical point ( 

 
  ) is a saddle, when  ( 

 
)    or a center if  ( 

 
)  

 , while the critical point ( 
 
  ) is a center (or a saddle point).  

  If  
 
  

   
, the critical point ( 

 
  ) or ( 

 
  ) is a second - order critical point.  

 2.2.2 Main theorems to identify the profiles of waves 

 In this section, we will review three theorems [7] in order to identify the profiles of 

traveling wave solutions of Equations (2.6)-(2.8) determined by different phase orbits of 

Equation (2.14). The traveling wave system having least singular straight line is shown. The 

essential difference of profiles of nonlinear waves determined by system of Equations (2.12) and 

(2.14) is also pointed out here.  

 For a planar dynamical system of Equation (2.14), by the theory of invariant manifolds, 

all periodic solutions and all stable and unstable manifolds connecting critical points have the 
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same smoothness as the given vector field with respect to time variable  .  But for system of 

Equation (2.12), even though it has the same invariant level curves as system of Equation (2.14), 

the smooth property of orbits of Equation (2.12) with respect to time variable   should be 

studied, because the line    
 
 is not an orbit of Equation (2.12). In order to understand the 

dynamical behavior of Equation (2.12) with respect to the time variable  , the behavior of the 

orbits closer to the singular straight line    
 
 needs to be studied, i.e. we should be able to 

distinguish the singular straight line    
 
of Equation (2.12) geometrically from the straight 

line solution    
 
of Equation (2.14).  

 We consider two types of phase portraits of Equation (2.14), which are drawn in Figure 2. 

In Figure 2 on the left-hand side of the straight line    
 
   there is a periodic annulus 

around the center   (  
  ), which has a boundary curves consisting of segment      and an arc 

    ̂ defined by the level curve           as given in the Equation (2.13). If     , along 

these two orbits the phase point (         ) of Equation (2.14) tend to the critical points    and 

  . But for the Equation (2.12),      lies on the singular straight line    
 
. An orbit  of the 

family of periodic orbits in the periodic annulus of    is a closed branch of the invariant curves 

         , where    ( ( 
 
  )   ). 

 We can see in Figure 2 that if a point C near the left boundary curve, starts moving along 

the periodic orbit  whose energy level    is close to   , then as   increases the point will move 

to the right until it reaches the turning point   , at the intersection point with the horizontal 

inclination curve     
              of the vector fields defined by the Equation (2.12). 

Then, it will fall down almost vertically, to the lower arc of .  



 

14 

 

                        

Figure 2: Two types of phase portraits of Eq. (2.14) [7]. 

After passing through another turning point   , it will move to the left, and complete its motion 

of one period to C. Suppose that     and     are two points in the right neighborhood of    and 

   respectively, on the orbit of . 

Theorem 1: (The rapid jump property of 
  

  
   near the singular straight line) When 

    , the periodic orbits of the periodic annulus surrounding P2 approach the boundary curves. 

Let (  
  

  
  ) be a point on the periodic orbit  of Equation (2.12). Then, along the line 

segment        near the straight line    
 
, in a very short time interval of  , 

  

  
   jumps 

down rapidly[7].   

Proof: The first conclusion follows from the continuity of the level set          given 

by Equation (2.13). We will show the second conclusion. Near the segment    
 
 , we assume 

that  
 
      . Notice that  

 
 is a simple zero of     .  

(a) (b) 



 

15 

 

          

Figure 3:      and         plotted against   corresponding to Figure 2.1 [7]. 

 

Thus, we can write the system of Equation (2.12) as the following relaxation oscillation “slow 

system” with the “slow time scale”  .  

  

  
                     

  

  
  (         )                                                    

where,     
 (  )

  (  )
   

We have from Equation (2.15) that 

 
  

  
(          )                                                     

Thus, as    , the segment        of every periodic orbit will tend to the segment S1S2 in the 

straight line    
 
.  
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 Now we consider the periodic orbit  near the energy level      (Figure 2). According 

to the Equation (2.15), the period of  satisfies 

  ∮
  

 
 (∫

      

 ∫
       

)
  

 
                         

 

 

The contribution over the straight segment          is  

   ∫
  

 
 ∫

    

   
 ∫

   

          
     

    

    

    

    

    

    

                        

Because             along the straight segment from     to    . Thus, Equation (2.18) 

implies that in a very short time interval of  ,       jump up rapidly as in Figure 2(a).  Figure 3 

shows the profiles of       and      with respect to the variable  . 

  Theorem 2: (Existence of the finite time intervals of solutions with respect to   in the 

positive or negative directions) Let (  
  

  
  ) be the parametric representation of an orbit  of 

system of Equation (2.12) and ( 
 
  √ ) be two points on the singular straight line    

 
. 

Suppose that one of the following three conditions holds: 

a)     and, along the orbit , as   increases or decreases, the phase point (         ) 

tends to the points ( 
 
  √ ), respectively. 

b)     and, along the orbit , as   increases or decreases, the phase point (         ) 

tends to the point ( 
 
  ) and  is in contact with the y-axis at the point ( 

 
  ).  
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Figure 4: The profiles of          and solitary waves of two types [7]. 

 

c) Along the orbit , as   increases or decrease, the phase point (         ) approaches the 

straight line    
 
 in the positive direction or negative direction respectively, and 

       
| |   .  

Then, there exist a finite value    ̃ such that       ̃       
 
. 

Theorem 3: 

1) The curve triangle in Figure 2(a) defined by           gives rise to a solitary cusp 

wave solutions of the peak type, called peakon, of Equation (2.6)-(2.8) as in Figure 4.  

2) The arch curves in Figure 2(b) defined by           gives rise to a periodic cusp wave 

of the peak type,  called Cuspons, of Equation (2.6)-(2.8).  

3) The oval curve defined by           gives rise to a smooth periodic wave solutions, 

called Compacton, of Equations (2.6)-(2.8). 

4) The family of open curve (which approaches the singular straight line    
 
 in two 

direction of   and is defined by         ,          , where ( 
 
  ) is a saddle point) 
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gives rise to uncountably infinitely many bounded breaking wave solutions of      of 

Equations (2.6)-(2.8). 

5) The stable and unstable manifolds of a saddle point gives rise to a one-sided breaking 

kink wave solutions and an one-sided breaking anti-kink wave solutions of Equations 

(2.6)-(2.8) respectively. 

 

2.2.3 The dynamics of the second type of singular traveling waves 

 The second class of singular traveling wave system is given by [10] 

  

  
                 

  

  
 

      

      
                                                               

where the function        and        satisfies   
       

  
 

       

  
  , which implies there exists 

a first integral of Equation (2.19). It is also notice that  
  

  
 

      

      
  is not defined on the set of 

real planar curves         , and when the phase point       passes through every branch of 

        , 
  

  
 changes sign [10]. We also consider the following system, which is called the 

associated regular system of Equation (2.19)  

  

  
                       

  

  
                                                          

where            , for         . 

  For the second type of singular traveling system of Equation (2.19), the existence of the 

singular curve          implies that there exists a breaking wave solution      of the 

corresponding nonlinear wave equation, on the singular curve         , even though the 
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associated regular system of Equation (2.20) has a family of smooth periodic solutions and 

homoclinic or heteroclinic orbits. 

  Having laid out the basic background theory of singular traveling waves, we will attempt 

to apply it next to our new family of generalized Camassa- Holm equations (1.4)-(1.7). 
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CHAPTER 3: PHASE PLANE ANALYSIS OF THE GENERALIZED 

CAMASSA-HOLM EQUATIONS: POSSIBLE SINGULAR AND REGULAR 

SOLUTIONS 

 

  Having outlined the basic theory and technique for analyzing non-smooth traveling wave 

solutions of NLPDEs in Chapter 2, we now apply it to our generalized Camassa-Holm Equations 

(1.4)-(1.7). These equations are considered in turn in Sections 3.1 - 3.4. 

 

3.1  Phase portrait/possible solutions of Equation (1.4) 

  Equation (1.4) can be simplified and written as 

        
 

  
[                  

 ]                               

Now, let                    , where        and c is the wave speed. Then we have 

the following 

     
  

  
     

  

  
       

   

   
         

   

   
 

Then equation (3.1) becomes, 

  
  

  
  

   

   
 

 

  
[      

   

   
  (

  

  
)
 

   
  

  
  ]
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Integrating this equation once with respect to z,  

     
   

   
 [      

   

   
  (

  

  
)
 

   
  

  
  ]                                        

where   is the constant of integration. 

Equation (3.2) is equivalent to the following 2-dimensional systems 

  

  
    

  

   
 

                

    
                                                      

which is the traveling wave system for Equation (1.4) 

   The system of Equation (3.3) has the two regular equilibria,    (
   √     

 
  ) and  

    (
   √     

 
  ), when   

  

 
   Notice that when     the point    reduces to the origin and 

when   
  

 
 the two equilibria collapse into the unique equilibrium    ( 

 

 
  ) . In the straight 

line    
 

 
, of the       phase plane, the second equation of (3.3) is discontinuous. The straight 

line    
 
  

 

 
  is the singular straight line described in the previous chapter. 

  As described in chapter 2, to avoid this discontinuity on the singular straight line we 

make the transformation               Under this transformation Equation (3.3) becomes,   

  

  

  
          

  

   
                                                     

System of Equation (3.4) is the associated regular system, of Equation (3.3). Since the first 

integral of both Equations (3.3) and (3.4) are same, therefore both of them have the same phase 
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orbit, except on the straight line     
 
  

 

 
. The equilibrium points on the singular straight 

line are      (
  

 
 
   √     

 
) and     (

  

 
 
   √     

 
). 

  We will study the stability analysis of the equilibrium points   ,    ,    and     using the 

linearized system of Equation (3.4). 

  For     and     
  

 
, the equilibrium points    ,    and    are saddle point, while 

the equilibrium point    is a stable node. 

  For    ,     and | |  
  

 
, there is a change in the dynamical behavior of the 

equilibrium points    and   . Now the equilibrium points   ,    and    are saddle point, while 

the equilibrium point    is a stable node. 

  For     and     
  

 
 , the equilibrium point    is an unstable node while   ,    and 

   are saddle point. 

  For    ,     and | |  
  

 
 , the equilibrium point    ,    and    are saddle points, 

while    is an unstable node. 

   When the constant of integration „g‟ is equal to zero, the equilibrium points of Equation 

(3.4) are           ,     ( 
 

 
  ) and     (

  

 
 
  

 
). Here    and    are the regular fixed 

points, while    is a singular fixed point.   

  The equilibrium point    is a saddle point for both     and    . 
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   Let M (    be the coefficient matrix of the linearized system of Equation (3.4) evaluated 

at the critical point     (
  

 
  ). The determinant of the Jacobian matrix evaluated at    is zero. 

Thus, we cannot conclude anything about the stability of the equilibrium point   , from the 

linearized system of Equation (3.4). 

 Similarly the singular equilibrium point     (
  

 
 
  

 
)   is a saddle point for both     

and    .  

  Depending on the parameter       the phase portraits of Equation (3.4) are drawn in 

Figure 5. In general, besides the heteroclinic orbit in Figure 5(a) and 5(c) (which will be 

computed in chapter 4), the other significant feature is that the stable manifolds of the saddles act 

as separatrices dividing the phase-plane into disjoint regions. 

  We can see from Figure 5 that there are no closed orbits adjacent to the singular straight 

line    
 
  

 

 
 which, as they limit to the singular straight line    

 
  

 

 
, could give us  

singular solutions. And from the discussion and theorems of the previous chapter, in the absence 

of either closed arched curves or curved triangles, neither singular peakons nor cuspons are 

possible. 
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Figure 5: The phase portraits (y plotted against  ) of Equation (3.4). 

(e) (f) 

(a) (b) 

c > 0, g < 0 

 

 (c) 

c < 0, g < 0 

 

 

c > 0 
0 <g < (c

2
/32) 

c < 0 
0 <g < (c

2
/8) 

g = 0, c > 0 g = 0, c < 0 

(d) 
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     3.2  Phase portrait/possible solutions of Equation (1.5) 

 Now we will discuss the phase portrait of Equation (1.5). Equation (1.5) can be written as 

        
 

  
              

                                                

Now, let                    , where        and c is the wave speed.  

As before we obtain,  

     
   

   
       

   

   
  (

  

  
)
 

  
  

  
  
   

   
                                       

where g is the constant of integration. 

  Equation (3.6) is equivalent to the following 2- dimensional system 

  

  

  
    

  

   
 

            

       
                                                                   

  Equation (3.7) is a second type of singular traveling wave system for the equation (1.5), 

which has the general form of equation (2.19). Here           defines the set of real 

planar curves, such that second part of equation (3.7) is discontinuous on these curves, and when 

the phase point       passes through every branch of            
  

    
 changes sign. 

  Let us make a transformation                , for          , then 

equation (3.7) becomes,  
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Equation (3.8) is the associated regular system of (3.7). 

Let,                and            . We can show that for a fixed     the 

following hold. 

1)    . When   
  

  
 ,      has no real zero; when   

  

  
,      has a double zero     

     ; when   
  

  
 then      has two simple zeros     

 

  
   . 

2)    . When | |  
  

  
,      has two simple zeros        ; when | |  

  

  
, then      

has two simple zeros           ; when | |  
  

  
 ,      has two simple zeros 

          .  

   The equilibrium points of Equation (3.8) are,    (
   √      

  
  )   

   (
   √      

  
  ) and    (

      

  
 
     

  
). Here    and    are the regular equilibrium 

point, while    is a singular equilibrium point.  We use the linearized system of Equation (3.8) to 

study the stability of these equilibrium points. 

 For      ,     and         , the equilibrium point    and    are saddle, while 

the equilibrium point    is a center. The phase portrait is drawn in Figure 6(a).  
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  For   0, c > 0 and   
  

  
, the equilibrium point       (

  

  
  ) is a center, while 

the equilibrium point    (
      

  
 
     

  
) is a saddle. The phase portrait is drawn in Figure 

6(b).  

  For   < 0, c > 0 and    
  

  
, the equilibrium point    and    are saddle, while the 

equilibrium point    is a center. The phase portrait is drawn in Figure 6(c).   

  For   > 0, c < 0 and   
  

  
, the equilibrium point    and    are saddle, while the 

equilibrium point    is a center. The phase portrait is drawn in Figure 6(d).   

  For    , c < 0,  and    
  

  
, the equilibrium point the equilibrium point    and    are 

saddle, while the equilibrium point    is a center. The phase portrait is drawn in Figure 6(e).   

  For    , Equation (3.8) has the equilibrium points,          ,    ( 
 

 
  ) and 

   (
  

 
 
  

 
), where    and     are the regular equilibrium points while    is the singular 

equilibrium point, of these          and    (
  

 
 
  

 
) are saddle points, where as     

( 
 

 
  ) is a center. The phase portraits of Equation (3.8) for     are drawn in Figure 6(f) and 

Figure 6(g) for c > 0 and c < 0 respectively. 

  We see that there exists a homoclinic orbit at the origin for   = 0 [Figure 6(f), 6(g)], 

whose series solution will be calculated in Chapter 4. We will also compute the homoclinic orbit 

for    . 
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(a) 

(b) 

(c) 

(d) 

(e) 

c > 0,  
0 <g < (c

2
/32) 

g > 0, c > 0 
g = (c

2
/32) 

g < 0, c > 0 
g > -(c

2
/32) 

g > 0, c < 0 
g < (c

2
/32) 

g < 0, c < 0 
|g| < (c

2
/32) 

(f) 
g = 0, 
 c =2> 0 
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Figure 6: The phase portraits (y plotted against  ) of Equation (3.8). Dotted line is the singular 

line           . 

     

  By using the above results we can draw the phase portraits of (3.8), depending on the 

parameter      . The phase portraits of (3.8) are shown in Figure 6.  

   From Figure 6, we see that there are no closed orbits adjacent to the singular straight line 

          which, as they limit to the singular straight line          , could give us  

singular solutions. And from the discussion and theorems of the previous chapter, in the absence 

of either closed arched curves or curved triangles, once again neither singular peakons nor 

cuspons are possible. 

 

3.3  Phase portrait/possible solutions of Equation (1.6) 

Equation (1.6) can be written as, 

            
       

        
                                                         

(g) 
g = 0,  
c = -2 <0 
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Now let                    , where        and c is the wave speed.  

Then equation (3.10) becomes  

  
  

  
  

   

   
 

 

  
[     

   
  (

  

  
)
 

 (
  

  
)
    

   
   ]                                 

Integrating (3.11) with respect to z, 

     
   

   
      

   
  (

  

  
)
 

 (
  

  
)
    

   
                                              

where g is the constant of integration.  

Equation (3.12) is equivalent to the following 2-dimensional system 

  

  
    

  

   
 

           

       
                                                                    

  Equation (3.13) belongs to the second type of singular traveling wave system described in 

section 2.2.3. Here           defines the set of real planar curves such that the second 

part of the equation (3.13) is discontinuous on these curves. When the phase point       passes 

through every branch of             
  

    
 changes sign. 

  Let us make the transformation     (       )  , for           , then 

equation (3.13) becomes  

  

  
  (       )  

  

   
     [       ]                                       
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Equation (3.14) is the associated regular system of Equation (3.13). 

 Let              and            . For a fixed     the following hold: 

1)    . When   
  

 
√

 

 
 ,      only has a negative zero     √

 

 
 ; when   

  

 
√

 

 
 , 

     has one simple zero    and a double zero      √
 

 
 ; when   

  

 
√

 

 
,      has 

three simple zeros         √
 

 
    √   

2)    . When | |  
  

 
√

 

 
 ,      has a positive zero    √

 

 
 ; when | |  

  

 
√

 

 
 ,      

has only one simple zero    and a double zero      √
 

 
 ; when | |  

  

 
√

 

 
 ,      has 

three simple zeros  √      √
 

 
      √

 

 
     

  Suppose         be the coefficient matrix of the linearized system (3.14) at the critical 

point         . Then,  

                        
      

                                                           

  According to planar dynamical systems theory, for a critical point of a planar integrable 

system, if J    , then the critical point is a saddle, if    , then it is a center point. Let us 

define                    , where H is the first integral of the system (3.14). It is clear from 

equation (3.14) that when   
  

 
√

 

 
  (or | |  

  

 
√

 

 
 ,    ), the unique critical point          

of (3.15) is a saddle point, where      
  

 
√

 

 
  the point          is a center and          is 
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a saddle point, where the value    of   is defined such that the homoclinic orbit of Equation 

(3.14) determined by the first integral           to the saddle point          passes through 

the point   (√   ), with    
 

 
  √  . 

3) If    , for both     and     the equilibrium point       is a saddle point.  

  By using the above results we can draw the phase portrait of (3.14), depending on the 

parameters      . The phase portraits of (3.14) are shown in Figure 7 where the graph of the 

hyperbola         is also shown Figure 7(b). We note that, unlike the case of having 

singular straight line as in system (2.12), for the system (3.14) the hyperbola         is not a 

solution of (3.14). For every fixed    , when       , system (3.14) has got a family of 

periodic orbits defined by the first integral         . There exists homoclinic orbit of system 

(3.14) defined by          , which transversely intersect the hyperbola         at two 

points,   (  
    ) , where  

 
 

  

 
 and    √  (

  

 
)
 

.  

  Now, theorem 2 can be seen (following the details in [7]) to apply to the closed orbits 

adjacent to the singular hyperbola  
       in Figure 7(b).  

  In particular, note that these closed orbits adjacent to the singular hyperbola have the 

arched curve form seen earlier in Figure 2(b). However, the existence of the periodic cusp waves 

or cuspons to which they gave rise (see theorem 3(2) in chapter 2) rested on theorem 1 in chapter 

2 which holds only for the singular traveling wave equations of the first type (2.12). Since our 

singular traveling wave equation (3.13) is of the second type, viz (2.19) we generalize theorem 1, 

in chapter 2 to apply to our Equation (3.13).  
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  Generalized theorem 1 for (3.13): Theorem 1 applies to system (3.13) 

  Proof: Near the singular hyperbola  
       of (3.13) assume 

 
 
    , where  

 
  √    . Then, Equation (3.13) may be written as 

  

  
    

  

   
 

    √         

  √    
 

Dividing, we have  

  

  
(    √         )     √      

Now, considering the closed periodic arched curve orbit  near the singular hyperbola  
     

  in Figure 7(b), the first equation above gives the periodic as  

  ∮
  

 
 ∫

  

 
 ∫

  

                     

       

The contribution over the straight segment BA where the ordering  
 
     holds is  

   ∫
  

 
 ∫

  

 

  

  

  

  

  

  
 ∫

   

 *    √         +
  

  

  

 

  

using the expression for 
  

  
. Now, in general      √       along the segment BA adjacent 

to the hyperbola (except at the two end points). Hence, the denominator is of O(1) and          

  Thus, the rapid jump property along the singular hyperbola  
       in Figure 7(b) 

holds. In conjunction with theorem 2 in chapter 2, this implies the existence of periodic cusp 

waves or cuspons of Equation (3.13).  
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 c > 0, g > 0 
g > (2c/3) (c/3)

1/2 
 c > 0, g > 0 
g < (2c/3) (c/3)

1/2 

 c > 0, g > 0 
g = (2c/3) (c/3)

1/2  c > 0, g < 0 
|g| = (2c/3) (c/3)

1/2 

 c > 0, g < 0 
|g| < (2c/3) (c/3)

1/2 

 c > 0, g < 0 
|g| > (2c/3) (c/3)

1/2 

(a) (b) 

(c) (d)

) 

(e) (f) 
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Figure 7: The phase portraits (y plotted against  ) of Equation (3.14). 

  

The profiles of the waves are as in Figure 3, and the jumps occur each time     
 
  √      

as the orbits cycle along the arched curves adjacent to    
 
  √      in Figure 7 (b). 

  Unlike for the system (3.14), for the system (3.13), the hyperbola         is a 

singular curve of the vector field of the system. We consider    , when   varied along the loop 

orbit defined by          , the vector field of the system (3.13)  has different direction on 

both the left hand side and right hand side of the hyperbola        . In fact on the right hand 

side of the hyperbola         in the 1
st
 quadrant, one has 

  

  
    ,  

  

   
 

           

        

 . This implies that the loop orbit of system (3.14) consists of three breaking solution of the 

system. 

  Thus we have the following result [10]  

1) For any fixed     when       , equation (1.6) has a M-shape wave solution 

defined by the branch of the level curves          , which consists of three breaking wave 

solutions.  

 c > 0, g = 0  c < 0, g = 0 

(g) 
(h) 



 

36 

 

2) For any fixed     when       , equation (1.6) has W-shape wave solution 

defined by branch of level curves          , which consists of three breaking wave solutions.  

  The infinite series solution for the homoclinic orbit, as seen in Figure 7(b) and 7(e) will 

be calculated in chapter 4. 

 

3.4 Phase portrait/possible solutions of Equation (1.7) 

  Equation (1.7) can be simplified and written as 

        
 

  
[       

       ]                                         

Now, let                    , where        and c is the wave speed. Then we have 

the following 

     
  

  
     

  

  
       

   

   
         

   

   
 

Then equation (3.16) becomes, 

  
  

  
  

   

   
 

 

  
[      

   

   
  (

  

  
)
 

  ] 

Integrating this equation once with respect to z,  

     
   

   
 [      

   

   
  (

  

  
)
 

    ]                                           

where, g is the constant of integration. 

  Equation (3.17) is equivalent to the following 2-dimensional system 
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which is the traveling wave system for Equation (1.5) 

  Equation (3.18) belongs to the first type of singular traveling wave system (2.12) as 

described in chapter 2. In the straight line    
 

 
, of the       phase plane, the second equation 

of (3.18) is discontinuous. The straight line    
 

 
  is the singular straight line described in the 

previous chapter. 

  As described in chapter 2, to avoid this discontinuity on the singular straight line we 

make the transformation               Under this transformation Equation (3.18) becomes,   

  

  
          

  

   
                                                        

System of Equation (3.19) is the associated regular system of Equation (3.18). Since the first 

integral of both Equations (3.18) and (3.19) are same, therefore both of them have the same 

phase orbit, except on the straight line    
 

 
.  

  The system of Equation (3.19) has the following equilibrium points: 

    (
   √      

 
  ) ,     (

   √      

 
  ),     (

  

 
  

√     

 
) and     (

  

 
 
√     

 
) . 

Here,    and     are called the regular equilibrium points, while    and    are called the singular 

equilibrium points.  

  We study the stability of these equilibrium points using the linearized system of Equation 

(3.19).  
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  When c           
  

  
 , the equilibrium point    is a center, while the equilibrium 

points   ,    and    are saddle points. The phase portrait is drawn in Figure 8(a). 

  When             | |  
  

 
, the equilibrium point    is a center, while the 

equilibrium points   ,    and    are saddle points. The phase portrait is drawn in Figure 8(b) 

  When             
  

  
, the equilibrium points    ,    and    are saddle points, 

while    is a center. The phase portrait is drawn in Figure 8 (c). 

  When c            | |  
  

 
 , the equilibrium points   ,    and    are saddle points, 

while    is a center. The phase portrait is drawn in Figure 8 (d) 

 If we consider the constant of integration „g‟ of Equation (3.17) to be zero then, the 

system of Equation (3.19) has equilibrium points,    ( 
 

 
  

 

 
) ,    ( 

 

 
 
 

 
) ,          

and     ( 
 

 
  ). Here   ,    are the singular equilibrium points, while    ,    are the regular 

equilibrium points.   

 The eigenvalue of the Jacobian of the Equation (3.19) with g = 0 at the fixed point 

   ( 
 

 
  

 

 
) are 2c and -c, thus for both c > 0 and c < 0, the fixed point    ( 

 

 
  

 

 
) is a 

saddle point.  

 The eigenvalue of the Jacobian of Equation (3.19) with g = 0 at the fixed point    

( 
 

 
 
 

 
) are -2c and c, thus for both c > 0 and for c < 0, the fixed point    ( 

 

 
 
 

 
) is a saddle 

point.  
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  The eigenvalue of the Jacobian of Equation (3.19) with g = 0 at the fixed point    

      are c and –c, thus for both c > 0 and for c < 0, the fixed point          is a saddle point. 

  The real part of the eigenvalue of the Jacobian of Equation (3.19) with g = 0 at the fixed 

point     ( 
 

 
  ) is zero, thus for c > 0 and for c < 0, the fixed point    ( 

 

 
  ) is a 

center.  

  The phase portrait of Equation (3.19) for g = 0 are drawn in Figure 8(e) and Figure 8(f) 

for c > 0 and c < 0 respectively. 

  Now, theorem 2 can be seen (following the details in [7]) to apply to the closed orbits 

adjacent to the singular straight line    
 
  

 

 
 in Figure 8(b), 8(d), 8(e) and Figure 8(f).  

  In particular in Figure 8(e) and 8(f), note that these closed orbits adjacent to the singular 

straight line, have the curve triangular form seen earlier in Figure 2(a). We notice that, the 

singular traveling wave Equation (3.18) is of the first type (2.12) as discussed in chapter 2. Thus 

from theorem 3 in chapter 2 we can conclude that these curve triangles give rise to solitary cusp 

waves of the peak type called peakons. 

  Similarly in Figure 8(b) and 8(d), we notice that these closed orbits adjacent to the 

singular straight line, have the arched curve form seen earlier in Figure 2(b). Thus from theorem 

3 in chapter 2 we conclude that, these arch curve give rise to a periodic cusp waves of the peak 

type called cuspons. 
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Figure 8: The phase portraits (y plotted against  ) of Equation (3.19).  

c > 0 
0<g < (c

2
/16) 

g < 0, c > 0 
|g| < (c

2
/2) 

 c < 0, 
0<g < (c

2
/16) 

g < 0, c < 0 
|g |< (c

2
/2) 

g = 0, c > 0 g = 0, c < 0 

(a) 
(b) 

(c) 

(d) 

(e) 
(f) 
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CHAPTER 4: ANALYTIC SOLUTIONS FOR HOMOCLINIC AND 

HETEROCLINIC ORBITS OF GENERALIZED CAMASSA HOLM 

EQUATIONS   

 

  In this chapter, we change gears and consider convergent, multi-infinite, series solutions 

for the possible homoclinic and heteroclinic orbits of the generalized Camassa-Holm Equations 

(1.4) – (1.7). 

   Homoclinic orbits of dynamical systems have been widely treated in recent years by a 

variety of approaches. For instance, an early review integrating bifurcation theoretical and 

numerical approaches was given in [11]. Homoclinic orbits are important in applications for a 

variety of reasons. In the context of ODE systems, they are often anchors for the local dynamics 

in their vicinity. Under certain conditions, their existence may indicate the existence of chaos in 

their neighborhood [12, 13]. In a totally different setting, if the governing dynamical system is 

the traveling-wave ODE for a partial differential equation or equations, its homoclinic orbits 

correspond to the solitary wave or pulse solutions of the PDEs, which have many important uses 

and applications in nonlinear wave propagation theory, nonlinear optics, and in various other 

settings [11]. 

  We employ a recently developed approach [8, 9], using the method of undetermined 

coefficients to derive heteroclinic and homoclinic orbits of Equations (3.2), (3.6), (3.12) and 

(3.17). Convergent analytic series for these orbits corresponding to pulse/front solutions of the 

generalized CH Equations (1.4)-(1.7) are derived and investigated here. 
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4.1  Infinite Series for heteroclinic orbits of Equation (3.2) 

 Equation (3.2) can be written as  

                                                                                                     

where the  indicates the derivative with respect to z. 

  The Equation (4.1) is non-reversible under the standard reversibility of classical 

mechanical systems: 

         (        )   (         )                                                      

Mathematically, this would translate to solutions having odd parity in z, but solutions of 

Equation (4.1) would not display this property.   

  Let us consider a parameter range in which Equation (3.4) admits a heteroclinic orbit. 

When c > 0 and     
  

 
 the equilibrium     (

   √     

 
  ) is a saddle and the equilibrium 

    (
   √     

 
  ) is a stable node. A heteroclinic orbit joins z1 and z2 in this parameter range, 

for example when c = 3 and g = 1.1 as shown in Figure 5(a). Let us now proceed to construct the 

series solution for the heteroclinic orbit joining two equilibrium points     and   . 

  We look for a solution of the following form: 

     

{
  
 

  
          ∑   

   

 

   

           

                                                           

         ∑   
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where    
   √     

 
    

   √     

 
  . Moreover     and     are undetermined constant 

and           are, at the outset, arbitrary coefficients. From the expression for       it 

follows that the terms into the equation (4.1) can be written as: 

         ∑   
   

 

   

                                                                                                                 

   ∑        

 

   

                                                                                                                              

  

    ∑   
       

 

   

                                                                                                                        

       
     ∑   

   

 

   

  ∑ ∑       
    

   

   

                                                                  

 

   

 

    

           ∑       
   

 

   

  ∑ ∑               
    

   

   

                                        

 

   

 

  

              ∑     
   

 

   

  ∑ ∑                   
   

   

   

                            

 

   

 

  

Using (4.4)-(4.9) in the irreversible Equation (4.1) we have  
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∑                               
           

   

 

   

  ∑ ∑[                       ]       
   

   

   

                               

 

   

 

As         
     , comparing the coefficients of       for each k we obtain for k=1: 

 

(                      )                                                                             

Assuming      (otherwise      for all     by induction), results in the values:  

     
   √  

                

       
                                                            

                                                           

When c > 0 and     
  

 
 , the quantities      are both real and negative.                                                                                           

  As our solution for (4.4) needs to converge for z    , we indifferently can choose    or 

  . Here we pick the negative root    
   √  

                

       
 . Therefore, 

         ∑   
     

 

   

                                                                                                    

  For      , let for       from Equation (4.10) we have 

                
       

  

where                                  , thus  
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Similarly for k=3, 

    ∑
[                         

 ]      

      
                                                             

 

   

 

For k > 0, 

    ∑
[                         

 ]      

      
                                              

   

   

 

  Therefore the coefficients        can be directly obtained from the Equation (4.16) as 

follows                                                             

       
                                                                                           

where        are functions which can be obtained using equation (4.14)-(4.16) and 

depending on    and coefficients of the Equation (4.1). 

  The first part of the heteroclinic orbit corresponding to     has thus been determined in 

terms of                     

            
    ∑    

                                                                 

 

   

 

  We shall now construct the second part corresponding to    . Since the equation (4.1) 

is not reversible we do not have any symmetric property for the solution, therefore impose the 

following solution form:     
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               ∑   
    

 

   

                                                                           

      

where real part of    , because the solution       needs to converge for      Working as 

for    , we obtain for     the following equation 

       

((                      )  )                                             

   Assuming      (otherwise      for all     by induction), we find the roots in 

Equation (4.20):  

     
   √  

                

       
                   

which are real and opposite in our parameter regime. We choose      
   √  

                

       
 

,with     , since our solution (4.19) needs to converge for z < 0. 

  Similarly for z    , for     , we obtain the following equation 

          ∑[                         
 ]                                         

   

   

 

where the polynomial  

       (                          )                                

  Analogously to the treatment for     we obtain: 
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    ∑
[                         

 ]      

      
                                                 

   

   

 

   Thus, the series coefficients can be obtained as for     as follows: 

       
                                                                                                                

         

where    are given in terms of    and the coefficient of equation (4.1). 

  We want to construct a solution continuous at    , therefore we impose  

                ∑    
 

 

   

                                                                    

                ∑    
 

 

   

                                                                    

 

and we choose    and    as the nontrivial solutions of the above polynomial equations (4.25) and 

(4.26). 

  Let us choose the parameter values as c = -2 and g = 0.2 <  
  

 
 (See Figure 5(c)). In this 

case the equilibrium     0.1127 is a saddle with eigenvalues       and         , and the 

equilibrium           is an  unstable node with eigenvalues       and           .  



 

48 

 

 

 

Figure 9: The parameters are chosen as c = -2 and g = 0.2. (a) Discontinuous series solution for 

the heteroclinic orbit joining x1= 0.1127 and x2 =0.8873  (b) The series coefficients ak converge 

(c) The series coefficient bk converge. 

 

The equation for the continuity (4.25) admits no solution on the right side, therefore we choose 

the arbitrary value         which lead to the convergence of the series coefficients    [see 

Figure 9 (b)], but the solution (4.3) is discontinuous from the right [see Figure 9(a)]. 

(a) 

(b) (c) 
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Figure 10: The parameters are chosen as c = -2 and g = 0.2. (a) Series solution for the 

heteroclinic orbit joining x1 = 0.1127 and x2 = 0.8873. Here  
+
(0) =  

-
(0) = 0.8637, (b) The series 

coefficients ak converge (c) The series coefficient bk converge. 

The equation for the continuity (4.26) admits the solution b1 = -0.1107, which also lead to the 

convergence of the series coefficients   , see Figure 9 (c). 

 To obtain also the continuity, we choose           and          , in such a way 

to preserving the convergence of the series coefficients    and obtaining the continuity at the 

origin, imposing that        
           . Figure 10(a) shows the continuous solution  (x) 

(a) 

(b) (c) 
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versus x at different fixed instants t. In Figure 10 (c) the converging series of the coefficients     

is given. The series coefficients    is as in Figure 10(b). 

  In Figure 10(a), the traveling wave nature of the solution of Equation (3.2) is shown for 

instance t = 0, t = 2, and t = 4.  

  Let us now choose the parameter values as c = 3 and g = 1.1 <  
  

 
 (See Figure 5(a)). In 

this case the equilibrium     -.6382 is a saddle with eigenvalues       and          , 

and the equilibrium            is an attractive stable node with eigenvalues       and 

         .  

  We truncate the series solution at M = 25. The equation for the continuity (4.25) admits 

no solution, therefore we choose the arbitrary value         which lead to the convergence of 

the series coefficients   (see Figure 11 (b)), but the solution (4.3) is discontinuous from the right 

[see Figure 11(a)]. The equation for the continuity (4.26) admits the solution b1=0.2350, which 

also lead to the convergence of the series coefficients   , see Figure 11 (c). 

  To obtain also the continuity, we choose          , in such a way to preserving the 

convergence of the series coefficients   and obtaining the continuity at the origin, imposing that 

       
            . Figure 12(a) shows the continuous solution  (x) versus x at 

different fixed instants t. In Figure 12 (b) the converging series of the coefficients     is given. 

The series coefficients    is as in Figure 11(b). 
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Figure 11: The parameters are chosen as c = 3 and g=1.1. (a) Discontinuous series solution for 

the heteroclinic orbit joining x1 = -0.6382 and x2 = -0.8612. (b) The series coefficients ak 

converge (c) The series coefficient bk converge. 

(a) 

(b) 
(c) 
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Figure 12: The parameters are chosen as c = 3 and g = 1.1. (a) Series solution for the heteroclinic 

orbit joining x1 = -0.6382 and x2 = -0.8612. Here  
+
(0) =  

-
(0)          (b) Converging series 

coefficient bk versus k. 

  As can be seen in Figures 11-12(a), the solution is not symmetric where the positive 

portion of  (x) decays faster (α1= -1.0) comparing to that in the negative portion of x (β2 = 

0.2595). In Figure 12(a), the traveling wave nature of the solution of Equation (3.2) is shown for 

instance t = 0, t = 2, and t = 4. 

 

4.2  Infinite Series for homoclinic orbits of Equation (3.6)   

    Equation (3.6) can be written as 

                                                                                                        

where the  indicates the derivative with respect to z. 

(a) 
(b) 
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  As shown in section 3.2 the Equation (3.8) admits saddle points and homoclinic orbit to 

such points have been observed (see for example Figure 6(a), 6(c), 6(e)). 

   Let us now proceed to construct, at first formally, the series solution for the homoclinic 

orbit to such a point, here indicated with   . Suppose that for    : 

      ∑   
   

 

   

                                                                              

where     is an undetermined constant and,        are, at the outset, arbitrary coefficients. 

From Equation (4.28) we have 

   ∑     
   

 

   

                                                                                                      

    ∑   
       

 

   

                                                                                                

     (∑ ∑       
    

   

   

   
     ∑   

   

 

   

 

   

)                                     

        ∑ ∑               
    

   

   

                                                          

 

   

 

     (     )    ∑ ∑                     
   

   

   

    ∑   
       

 

   

                

 

   

 

Substituting Equations (4.28)-(4.33) into the irreversible Equation (4.27) we have, 
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    ∑(                     )   

   

 

   

 ∑ ∑[                           ]       
                             

   

   

 

   

 

where the quantity         
    is identically zero, being    an equilibrium of equation 

(4.27). 

  Now we compare the coefficients of       for each k, for k = 1, we have from Equation 

(4.34), 

                                                                                                   

  Assuming      (otherwise      for all     by induction), results in the two 

possible values of :  

   √
      

     
                    √

      

     
                                                                      

As    is a saddle point (here we skip all the details about the possible choice of c and g, as it has 

been done in Chapter 3), the quantities      have opposite real parts.  

  As our solution (4.28) needs to converge for    , we pick the negative root     . 

Thus we have 

      ∑   
       

 

   

                                                                                     



 

55 

 

For k    , from Equation (4.34) we have 

               
     

    
  

where                               

Thus, we obtain 

                                      
      

     
    

 

      
                                                        

Similarly for      we have, 

 

   ∑
[          

                 ]      

      
                          

 

   

 

 Thus, for         

   ∑
[           

                  
 ]      

      
                        

   

   

 

  Therefore, the coefficients        can be directly obtained by iterating the Equation 

(4.40) yielding: 

                                     
                                                                                                                     

 

where        are functions which can be obtained using Equations (4.38)-(4.40). They 

depend on    and the coefficients of the Equation (4.27). 
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  The first part of the homoclinic orbit corresponding to     has thus been determined in 

terms of                     

            
    ∑    

                                                                            

 

   

 

   We shall now construct the second part of the homoclinic orbit corresponding to    . 

Since the Equation (4.27) is not reversible, we do not have any symmetric property for the 

solution, therefore we impose the following solution form: 

          ∑   
       

 

   

                                                                                             

where real part of    , because the solution       needs to converge for      Working as 

for    , we obtain for     the following equation        

                                                                                                               

  Assuming      (otherwise      for all     by induction), the Equation (4.44) is 

solved by choosing     . Moreover, for     one obtains the following equation 

           ∑[           
                  

 ]                             

   

   

 

     ∑
[           

                  
 ]        

      

   

   

                                           

 

where the polynomial                                   is non-zero for    . 

Therefore, the series coefficients can be easily obtained as for     as follows: 
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where    are given in terms of    and the coefficient of Equation (4.27). As we want to 

construct a solution of the following form: 

     {
                    
                               
                    

                                                                        

which is continuous at    , we impose  

             ∑    
    

 

   

                                                                    

        

         ∑    
                                                                        

 

   

 

  hence we choose    and    as the nontrivial solutions of the above polynomial equations 

(4.49) and (4.50).  

  Let us consider the first numerical test. We choose c = -1 and g = -1.25. With this choice 

both the equilibria z1 = 0.4627 and z2 =-0.3377 are saddles, but only a homoclinic orbit to the 

point z1 has been observed (See Figure 6(e)). Here we construct this orbit. The eigenvalues 

relative to the point z1 are α1 = -2.7434 and α2 = 2.7434. If we truncate the series solution at 

M=25, the continuity equation (4.49) has the only solution a1 = -0.06 and the continuity equation 

(4.50) has the only solution b1 = -0.3948.  
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 Figure 13: The parameters are chosen as c = -1 and g = -1.25. (a) Series solution for the 

homoclinic orbit to the point x0 = 0.4627. (b) The series coefficients ak versus k does not 

converge. (c) The series coefficients bk versus k does not converge. 

 

   

 

(a) 

(b) (c) 
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Choosing this value for a1 and b1 we obtain the continuous solution as in Figure 13(a). 

Nevertheless, the corresponding series coefficients    and    both diverge, as shown in Figures 

13(b)-(c).  

  To obtain the convergence of the series coefficients   we arbitrarily choose        , 

see Figure 14(b). With this choice of    the solution (4.48) becomes discontinuous at the origin. 

Therefore, we choose           in such a way that        
            and the solution 

is still continuous into the origin. This value for    also preserves the convergence of the series 

coefficients bk , see Figure 14(c). The travelling wave nature of the obtained continuous solution 

has been shown in Figure 14(a). As it is obvious that the solution is similar to a symmetric 

peakon having α1 = -2.7434 and α2 = 2.7434. 

  Let us consider a second numerical test choosing c = 3 and g = 0.1. In this case the 

equilibrium z1 = -0.0370 is a saddle and z2 = -0.3380 is a center. Here we construct the 

homoclinic orbit to the point z1 as observed in Chapter 3 [Figure 6(a)]. 

  The eigenvalues relative to the point z1 are α1 = -0.9189 and α2 = 0.9189. We truncate the 

series solution at M = 10, the continuity equation (4.49) has the only solution a1= -0.0368 and the 

continuity equation (4.50) has the only solution b1 = -0.0362. Choosing theses values for a1 and 

b1 we obtain the continuous solution as in Figure 15(a). Moreover, the corresponding series 

coefficients    and    both converge, as shown in Figures 15(b)-(c). As it is obvious the solution 

is similar to a symmetric peakon having α1 = -0.9189 and α2 = 0.9189. The traveling wave nature 

of the solution is shown in Figure 15(a) for different time instant. 
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Figure 14: The parameters are chosen as c = -1 and g = -1.25. (a) Series solution for the 

homoclinic orbit to the point x0 = 0.4627. Here, a1 = 0.04 and b1 = 0.0348 to have continuity a 

the origin:  
+
(0) =  

-
(0)         . (b) The series coefficients ak versus k converges. (c) The 

series coefficients bk versus k converges. 

 

(a) 

(b) (c) 
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Figure 15: The parameters are chosen as c = 3 and g = 0.1 (a) Series solution for the homoclinic 

orbit to the point x0 = -0.0370. (b) The series coefficients ak versus k rapidly converges. (c) The 

series coefficients bk versus k rapidly converges. 

   

 

(b) (c) 

(a) 
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  Notice the “symmetry” properties of the solution just changing the sign of c, as the 

equilibria z1 and z2 exchange their role. Choosing c = 1 and g = -1.25, the equilibria z1 =0.3377 

and z2 = -0.4627 are both saddles, but only a homoclinic orbit to the point z2 has been observed 

(See Figure 6(c)). The eigenvalues relative to the point z2 are α1 = -2.7434 and α2 = 2.7434. If we 

truncate the series solution at M=25, the continuity equation (4.49) has the only solution a1 =0.06 

and the continuity equation (4.50) has the only solution b1 = 0.3948. Choosing these values for a1 

and b1 we obtain a continuous solution, but the corresponding series coefficients    and    both 

diverge, as already found in the “symmetric” case shown in Figures 13(b)-(c).  

  To obtain the convergence of the series coefficients   we arbitrarily choose        . 

With this choice of    the solution (4.48) becomes discontinuous at the origin. Therefore, we 

choose           in such a way that        
             and the solution is still 

continuous into the origin. This value for    also preserves the convergence of the series 

coefficients bk, see Figure 16(c). The travelling nature of the obtained continuous solution has 

been shown in Figure 16(a). As it is obvious that the solution is similar to a symmetric peakon 

having α1=-2.7434 and α2=2.7434. 

  Next, we discuss the behavior of solution for a particular case when g = 0. When g=0, 

Equation (3.8) has two fixed points, (0,0) which is a saddle (it corresponds to the equilibrium 

point z1) and ( 
 

 
   ), which is a center. Let us compute the series solution of the homoclinic 

orbit to the origin (See Figure 6(f), 6(g)), i.e.      in Equations (4.28), (4.48)-(4.50). 

Interestingly, we have noticed that all the series coefficients    in Equation (4.28) become zero 

for all values of k, independently on the choice of   . Therefore, an arbitrary value of a1 is taken 

for all the plots when g = 0. 
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Figure 16: The parameters are chosen as c = 1 and g = -1.25. (a) Series solution for the 

homoclinic orbit to the point x0 = -0.4627. Here a1 = 0.04 and b1 = 0.0521 to have continuity a 

the origin  
+
(0) =  

-
(0) = -0.4112. (b) The series coefficients ak versus k converges. (c) The 

series coefficients bk versus k converges. 

   

(a) 

(b) (c) 
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  Note that the zero solution resulting for     is worth for future investigation as to 

whether it is the only possible homoclinic solution in that domain. It is also reminiscent of the 

phenomenon of „Quenching‟ in nonlinear oscillators where the solutions go to zero in certain 

parts of the domain. 

  For    ,    is zero for k > 2. Therefore, to obtain       , from Equation (4.50) we 

get        , where,        
       . So, to satisfy the continuity as shown in Equation 

(4.48) the value of    will be,    
  

 
    . We also get another solution b1=0 from Equation 

(4.48) which obviously will not yield any series solution. However in present case for g=0, since 

the right side of the solution does not have any a1 that satisfies Equation (4.48) we took b1 so that 

 
-
(0)=  

+
(0).  

  In Figure 17(a), [using Equation (4.43) and relation z = x – ct]      is plotted against x 

for c=0.5, 1.0, and 2.0. The initial value was arbitrarily taken as a1=0.1 and as mentioned before 

all other ak (for k>2) are zero. Therefore, the initial value was  
+
(0)=0.1. For a particular value of 

c, to maintain  
-
(0)=  

+
(0), we obtain two different solutions of b1. For example, the solutions for 

b1 are for c = 0.5, b1 = -0.4570 and 0.0821; for c = 1.0, b1 = -0.8393 and 0.0894; and for c = 2.0 

b1 = -1.5940 and 0.0941. For negative values of b1 as seen in Figure 17(a), the negative side is 

more susceptible to variation of c, which is not seen in Figure 17(c) for positive values of b1. 

From Figures 17(a) and 17(c) we can see that, only one set of b1 (here the positive values) yield a 

peakon shaped wave profile; whereas for the negative values of b1, we have profile for M-shaped 

wave in negative side but a peakon shaped profile on the positive side [see Figure 17(a)]. 
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Figure 17:      plotted as a function of x for c = 0.5, 1.0, and 2.0 for (a) negative, and (c) 

positive values of b1. The series coefficients bk verses k is plotted for c = 0.5, 1.0 and 2.0 for (b) 

negative, and (d) positive values of b1. 

 

Figures 17(b) and 17(d) show the plot of bk versus k for negative and positive values of b1, where 

it is obvious that bk is zero when k is greater than 2; therefore only two values of bk is available. 

 

 

(a) (c) 

(b) (d) 
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Figure 18:      plotted as a function of x for c = 0.5 at different time instances showing wave 

nature of the solution for (a) b1 = -0.4570, and (b) b1 = 0.0821.  

   

 To demonstrate the traveling wave nature of the solution     , Figure 18 shows the plots 

of      at constant times, t=0, 10, and 20. As mentioned before, for c=0.5 we have two solutions 

of b1 to maintain continuity of  
-
(0)=  

+
(0) =0.1 which are b1=-0.4570 and 0.0821. 

 

4.3  Infinite Series for homoclinic orbits of Equation (3.12) 

  In the particular case     , Equation (3.12)  can be rewritten as: 

(         ) (     )                                                                                                  

 where the  indicates the derivative with respect to z and it can be exactly integrated. The 

solutions are:  

 
 
       

     
   

(a) (b) 
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        [                    ] 

 
 
    

 

 
        [              ]        

for all     ,          . 

  In the general case with g different from zero, let us consider an equilibrium point    of 

Equation (3.14) and assume to choose the parameters c and g in such a way that it is a saddle 

point and a homoclinic orbit to this equilibrium is given (As done in the stability analysis in 

Chapter 3). Equation (3.12) can be written as  

                                                                                                       

  Suppose for     

      ∑   
   

 

   

                                                                                        

where     is an undetermined constant and,        are, at the outset, arbitrary coefficients. 

Substituting the series (4.53) into the Equation (4.52), we obtain the following expressions for 

each term: 

      ∑   
       

 

   

                                                                                                         



 

68 

 

   
  
 ∑ ∑∑  

   

   

   

   

                    

 

   

      ∑ ∑        

   

   

 

   

       
      

   
 ∑   

       

 

   

                                                                                                       

       ∑ ∑∑  
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  Using Equations (4.53)-(4.58) in the reversible Equation (4.52) we have  

        
   

 ∑[          
      

   ]    
   

 

   

 ∑ ∑∑[                                   ]

   

   

   

   

 

   

           

   ∑ ∑[                 

   

   

 

   

    ]          
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  As    is an equilibrium for the equation (3.14),         
      . Comparing the 

coefficients of       for each k, one has for k=1, 

[       
      

   ]                                                                                           

Assuming      (otherwise      for all     by induction), results in the two possible 

values of : 

      √
   

   

  
   

                                                                                                           

    We are dealing with the case when the equilibrium      is a saddle, i.e. when c <   
  or  

c > 3  
 . In this case, as our series solution for Equation (4.53) needs to converge for z    , we 

pick the negative root     √
   

   

  
   

 , therefore: 

      ∑   
             

 

   

                                                                                                    

For k = 2 we obtain:                          
 )  

 , 

where                 
      

    and the coefficient    is easily obtained in terms of 

  : 

   
         

  

      
  
                                                                                           

For k=3 we obtain: 
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  Once substituted the formula (4.63) into the Equation (4.64) one obtains    in terms of 

  . And so on for all k the series coefficients    can be iteratively computed in terms of   . 

  Notice that the equation (3.12) is reversible, therefore the series solution for z < 0 can be 

easily obtained based on the intrinsic symmetry property of the equation, i.e., 

       ∑   
             

 

   

                                                                                              

  We want to construct a solution of the form: 

     {
                 
                       
                 

                                                                        

which is continuous at    , we impose  

                 ∑    
 

 

   

                                                                    

Hence, we choose    as the nontrivial solutions of the following polynomial equations:  

       ∑    
 

 

   

                                                                                       

In practice the Equation (4.67) is numerically solved and the corresponding series solutions are 

not unique. 
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 .  

Figure 19: The parameters are chosen as c = 2 and g = 0.8, (a) Homoclinic orbit to the saddle 

point z1 = (0.4436,0), x0 = 0.4436 (b) ak versus k, shows the series coefficients converge. 

 

   Let us now choose c = 2 and g = .8. In this case the equation (3.14) admits three real 

equilibrium points, two equilibria                                 are saddles and the 

other                is a center. We do not observe any homoclinic orbit at the saddle point 

               in the phase portrait drawn in chapter 3.  Thus we build homoclinic orbit the 

saddle point              (See Figure 7(b)). Truncating the series at M = 25, we find that the 

continuity condition (4.66) is satisfied only for a1= -.4572. This choice of a1 guarantees the 

continuity (see Figure 19(a)), the series coefficients    also converge, see Figure 19(b).  

  Let us now choose c = 0.5 and g = 0.13. In this case the equation (3.14) admits three real 

equilibrium points, two equilibria                                  are saddles and the 

other                is a center. From Figure 7, we do not observe any homoclinic orbit at the 

saddle point                , thus we construct the homoclinic orbit to the saddle    

(a) (b) 
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      , we find that the continuity condition (4.66) does not admit any real solution. Therefore 

the solution will be discontinuous at the origin, or we have to choose an arbitrary a1 and impose 

that in zero the solution does not take the value zero, but the common value of       and       

for that a1. 

  In Figure 20 we have chosen a1= 0.1 and              and the travelling nature of the 

solution has been shown in Figure 20(a). Moreover, for this choice of the parameters the series 

solution converges, as shown in the following Figure 20(b) where the ak rapidly goes to zero. 

  Let us now choose c = 0.5 and g = -0.1. In this case the equation (3.14) admits three real 

equilibrium points, two equilibria                                  are saddles and the 

other                 is a center. From Figure 7, we do not observe any homoclinic orbit at 

the saddle point               , thus we construct the homoclinic orbit to the saddle    

        (See Figure 7(e)), we find that the continuity condition (4.66) admits real solution for 

         . The values of ak also converges to zero. In Figure 21 we have chosen a1= 0.2287 

and the travelling nature of the solution has been shown in Figure 21(a). Moreover, for this 

choice of the parameters the series solution converges, as shown in the following Figure 21(b) 

where the ak rapidly goes to zero. 
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Figure 20: The parameters are chosen as c = 0.5 and g = 0.13, (a) Homoclinic orbit to the saddle 

point z2 = 0.3356. Here  (0) = 0.44705, (b) ak versus k, shows the series coefficients converges. 

 

 

Figure 21: The parameters are chosen as c = 0.5 and g = -0.1 (a) Homoclinic orbit to the saddle 

point z2 = (-0.2218,0), x0 = -0.2218, (b) ak versus k, shows the series coefficients converge. 

 

(a) (b) 

(a) (b) 
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  4.4 Infinite Series for homoclinic orbits of Equation (3.17) 

  Equation (3.17) can be written as  

                                                                                                

where the  indicates the derivative with respect to z. 

  Let us consider equilibrium point           of the Equation (3.19) and assume to 

choose the parameters c and g in such a way such that           is a saddle point and a 

homoclinic orbit to this equilibrium is given (As done in the stability analysis in Chapter 3).  

  Let us now proceed to construct the homoclinic orbit of Equation (3.17). Suppose for 

    

      ∑   
   

 

   

                                                                                        

where     is an undetermined constant and,        are, at the outset, arbitrary coefficients. 

Substituting the series (4.69) into the Equation (4.68), we obtain the following expressions for 

each term: 

      ∑   
       

 

   

                                                                                         

       
     ∑   

   

 

   

  ∑ ∑       
    

   

   

                                                       

 

   

 

           ∑       
   

 

   

  ∑ ∑               
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        ∑ ∑               
    

   

   

                                                                                     

 

   

 

Using Equation (4.69)-(4.73) into the reversible Equation (4.68) we have, 

        
    ∑(                    )   

   

 

   

 ∑ ∑[                     ]       
                                           

   

   

 

   

 

  As    is an equilibrium of Equation (3.19),          
     . Comparing the 

coefficients of       for each k, one has for k=1,  

[               ]                                                                                           

  Assuming      (otherwise      for all     by induction), results in the two 

possible values of : 

      √
     

     
                                                                                                           

  We are dealing with the case when the equilibrium      is a saddle, i.e. when c       or 

      . In this case, as our series solution for Equation (4.69) needs to converge for z    , 

we pick the negative root     √
     

     
 , therefore: 

      ∑   
             

 

   

                                                                                                    



 

76 

 

For k = 2 from Equation (4.74) we obtain: 

               
    

 ,   

where        [     
              ] and the coefficient    is easily obtained in 

terms of    as, 

   
      

  

      
  
                                                                                                   

For k = 3 we obtain from Equation (4.74) 

               
                                                                                         

  Once substituted the Equation (4.78) into the Equation (4.79) one obtains    in terms of 

  . Thus, for         

   ∑
[         

           
   ]      

      
                        

   

   

 

  Therefore, the coefficients        can be directly obtained by iterating the Equation 

(4.80) 

  Notice that the Equation (4.68) is reversible, therefore the series solution for z < 0 can be 

easily obtained based on the intrinsic symmetry property of the equation, i.e.: 

       ∑   
             

 

   

                                                                                              

We want to construct a solution of the form: 
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     {
                 
                       
                 

                                                                        

which is continuous at    , we impose  

                 ∑    
 

 

   

                                                                    

Hence, we choose    as the nontrivial solutions of the following polynomial equations:  

       ∑ 
 
  
 

 

   

                                                                                       

 

In practice the Equation (4.83) is numerically solved and the corresponding series solutions are 

not unique. 

  Let us now choose c = 0.5 and g = 0.014. In this case the equation admits two real 

equilibria: two equilibria                                   . In this parameter regime z1 

is a center and    is a saddle. 

  Let us build the homoclinic orbit to the saddle point    (See Figure 8(a)). We find the 

following continuous solution for the homoclinic orbit. Notice that the Figure 22(a) also shows 

the travelling nature of the solution. Here a1 = 0.0357. For this choice of the parameters the series 

solution converges, as shown in the Figure 22(b) where the ak rapidly goes to zero. 
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Figure 22: (a)      plotted as a function of x for different values of t for c = 0.5 and g = 0.014 at 

the equilibrium point z2, showing traveling wave nature of the solution Equation (3.17), here a1= 

0.0357 (b) Plot of ak versus k shows the series coefficients are converging. 

       

 

Figure 23: (a)      plotted as a function of x for t = 0, c = -1 and g = 0.06, here a1= 0.3066 (b) 

Plot of ak versus k shows the series coefficients does not converge. 

 

(a) (b) 

(a) (b) 
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Figure 24: (a)      plotted as a function of x for different values of t for c = 0.5 and g = 0.014 

showing traveling wave nature of the solution Equation (3.17). 

 

 

Figure 25: (a)      plotted as a function of x for t = 0, c = -1 and g = 0.06, here a1= -0.0710. (b) 

Plot of ak versus k shows the series coefficients converge.  

 

(a) (b) 
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To show the travelling nature of the solution (when c = .5, g = .014) we plot just half part of the 

solution, for z > 0 to make the figure clearer, which is shown in Figure 24. 

  Let us consider another numerical example. We choose c = -1 and g = 0.06. In this case 

the Equation (3.19) admits two real equilibria, the two equilibrium points are                 

           . In this parameter regime z1 is a saddle (with eigenvalues             and z2 is a 

center. 

  Let us build the homoclinic orbit to the saddle z1 (See Figure 8(c)). The solution is not 

unique as the continuity condition admits more than one solution. Choosing a1= 0.3066 the series 

solution has been shown in Figure 23 (a), but the series coefficients ak does not converge.  

 Choosing a1 = -0.0710, both the convergence of the series coefficients and the continuity 

at the origin have been obtained, as shown in Figure 25. 
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CONCLUSIONS 

 

  In this thesis we apply two recent analytical approaches to investigate and analyze 

possible classes of traveling wave solutions of some members of integrable family of generalized 

Camassa-Holm (GCH) equations. These equations were recently derived and reported in the 

literature.   

  Since we employed a somewhat unusual variant of phase-plane analysis which has been 

recently developed to consider peakon and cuspon solutions of a wide variety of NLPDEs, we 

first reviewed it at the beginning of this thesis. There, the dynamics, phase portraits, and wave 

profiles of 1
st
 and 2

nd
 type of singular traveling waves were discussed in detail. 

  We chose the following four different GCH equations: 

     
                    

                                                     

     
             [       ]

                                                  

           
         

       
        

                                        

and                                                 
            

                                                 

and the novel application of phase-plane analysis Chapter 2 was applied to predict the possible 

occurrence of non-smooth peakon, cuspon, and compacton solutions.   
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  For the first two equations, the phase portraits were drawn and investigated for different 

conditions and values of g and c. We found that both the equations did not produce any closed 

curve triangles, arched curves or oval curves near the singular planar curve. Therefore for these 

two equations, neither peakon nor cuspons are possible. We generalized an existing theorem to 

establish the existence of peakon solutions of the third GCH equation. This equation was found 

to also support four segmented, non-smooth M-wave solutions. From the theorems in Chapter 2, 

the fourth GCH equation was found to support both solitary (peakon) and periodic (cuspon) cusp 

waves in different parameter regimes. 

  In the second part of the thesis, smooth traveling wave solutions of the above four GCH 

equations were considered. Here, we used a recent technique to derive convergent multi-infinite 

series solutions for the homoclinic and heteroclinic orbits of their traveling-wave equations, 

corresponding to pulse and front (kink or shock) solutions respectively of the original PDEs.  

          We performed many numerical tests in different parameter regime to pinpoint real saddle 

equilibrium points of the corresponding GCH equations. This ensured simultaneous convergence 

and continuity of the multi-infinite series solutions for the homoclinic and heteroclinic orbits.  

We have also shown the traveling wave nature of these GCH equations.  

          Unlike the majority of unaccelerated convergent series, high accuracy is attained with 

relatively few terms of our series. Of course, the convergence rate is not comparable to typical 

asymptotic series. However, asymptotic solutions for global behavior along a full 

homoclinic/heteroclinic orbit are currently not available.  
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