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Abstract

A nonlinear second order differential equation related to vortex motion is derived. This

equation is analyzed using various numerical and analytical techniques including finding

approximate solutions using a perturbative approach.

iii



This thesis is dedicated to my wife: for all of her love and support.

iv



Acknowledgments

I would like to first thank Dr. Rollins for being a professor very involved in my maturing

as a first year graduate student as well as his guidance in overseeing my research ever since.

I would also like to thank Dr. Mohapatra and Dr. Moore for serving on my thesis committee

and being available to give assistance and feedback along the way. A special thank you goes

out to Dr. Li and the mathematics staff who have been there from day one to support me and

answer countless of logistical questions. Lastly I would like to acknowledge the professors

and fellow graduate students who have imparted to me immense amounts of mathematical

enrichment over my graduate experience.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1 INTRODUCTION AND DERIVATION . . . . . . . . . . . . 1

1.1 Introduction to Vortex Motion and Superfluid 4He . . . . . . . . . . . . . . . 1

1.2 Derivation of System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Summary of Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

CHAPTER 2 STABILITY OF EQUILIBRIUM SOLUTIONS . . . . . . . . 8

2.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Case I - Real Eigenvalues (n even) . . . . . . . . . . . . . . . . . . . 10

2.1.2 Case II - Complex Eigenvalues (n even) . . . . . . . . . . . . . . . . . 11

2.1.3 Case III - n odd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The Phase Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Numerical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Additional Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vi



CHAPTER 3 ANALYSIS OF PERIODICITY . . . . . . . . . . . . . . . . . 21

3.1 Hamiltonian Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Nearly Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPTER 4 PERTURBATION APPROXIMATIONS . . . . . . . . . . . . 28

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 The van der Pol Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Finding a Better Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Stability and Numeric Solutions . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Analytic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Other Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 5 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . 40

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



LIST OF FIGURES

1.1 Vortex filament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Rollin Film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Phase plane where a = 1, b = 1
2
; 4b > a2 . . . . . . . . . . . . . . . . . . . . 15

2.2 Phase plane where a = 2, b = 1
2
; 0 < 4b < a2 . . . . . . . . . . . . . . . . . 16

2.3 Phase plane where a = 1
100

, b = 2; 4b > a2 . . . . . . . . . . . . . . . . . . . 17

2.4 Phase plane of pendulum equation . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Phase plane where a = ± 7
10
, b = 1

10
; 0 < 4b < a2 . . . . . . . . . . . . . . . 19

2.6 Phase plane where a = −1, b = 1; 4b > a2 . . . . . . . . . . . . . . . . . . . 20

3.1 Plot of contour Γ from (3.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Integral from (3.9) evaluated for 0 < A < 2 . . . . . . . . . . . . . . . . . . . 27

4.1 Phase plane of equation (4.3) van der Pol . . . . . . . . . . . . . . . . . . . . 30

4.2 Phase plane of equation (4.5) where a = ±1
2
, b = 1; 4b > a2 . . . . . . . . . 33

4.3 Phase plane of equation (4.23) where a = 1, b = 1; 4b > a2 . . . . . . . . . 38

viii



CHAPTER 1

INTRODUCTION AND DERIVATION

1.1 Introduction to Vortex Motion and Superfluid 4He

We first give a concise overview of the physical topics in which we are about to explore.

Let us first introduce vortices and a few of their many appearances in various phenomena.

According to H. Lamb [8], a line drawn from point to point so that its direction is everywhere

that of the instantaneous axis of rotation of the fluid is called a vortex-line. If through every

Figure 1.1: Vortex filament

point of a small closed curve we draw the corre-

sponding vortex-line, we obtain a tube, which

is called a vortex-tube. The fluid contained

within such a tube constitutes what is called a

vortex-filament, or simply a vortex. Put sim-

ply, a vortex is a rotating flow of fluid; the

motion of the fluid spinning rapidly around a

center is called a vortex. I. Kroo [7] asserts

that a vortex filament may be visualized as a

thin tube in which the flow has vorticity, ω (the tendency for elements of the fluid to spin).
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As the diameter is made small, but the circulation, Γ, is held fixed, this region of vortic-

ity is called a vortex filament. An illustration is also provided by I. Kroo which we have

reproduced in Figure 1.1 [7]. Such phenomena occur in various avenues including tornadic

activity, airplane wings and propellers, and of interest to us, in superfluid.

Now we will discuss the topic of superfluid liquid helium-4 or 4He. Liquid 4He is comprised

of a normal fluid state helium I above a specific temperature and a superfluid state helium

II below that temperature. The temperature at which this transition occurs is at about

2.2 K; this is called the λ-point (Bunch, [2].) We are mostly interested in the superfluid

phase. Superfluids have properties very distinct to that of normal fluids. For instance,

the superfluids 3He and 4He are the only liquids which do not solidify even at absolute zero

temperature, (Volovik, [15].) Another distinct phenomena of superfluids is that they are said

to be made up of two components: a normal component which is viscous and a superfluid

component which has zero viscosity (Leitner, [10].) D.S. Viswanath [14] observes that when

a liquid flows, it has an internal resistance to flow. Viscosity is a measure of this resistance

to flow. In other words, the more viscous the fluid is, the greater its difficulty of movement.

Since superfluid 4He has a zero viscosity component, it can essentially defy gravity and creep

up the walls of an object to form a thin film called the Rollin film (Leitner, [10].) This

phenomena is shown in Figure 1.2.
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(a) Superfluid exiting a medium (b) Superfluid entering a medium

Figure 1.2: Rollin Film

1.2 Derivation of System

B.K. Shivamoggi [12] considers that upon including the effect of the frictional force ex-

erted by the normal fluid on a vortex line, the self-induced velocity v of the vortex line in the

reference frame moving with the superfluid according to the local induction approximation

is given by the Hall-Vinen equation

v = γκT̂× N̂+ αT̂× (U− γκT̂× N̂)− α′T̂× [T̂× (U− γκT̂× N̂)]. (1.1)
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Here we have defined the friction coefficients to be α and α′, which are usually found to be

small except near the λ-point. γ is a constant related to the quantum of circulation and the

effective core radius of the filament. We recognize the average curvature as κ, while the unit

tangent and unit normal vectors to the vortex filament are T̂ and N̂ respectively. Lastly, U

is the normal fluid velocity taken to be constant in space and time and prescribed [12]. In

this paper we will, like B.K. Shivamoggi [12], consider the vortex essentially aligned along

the x-axis with U = U1î+ U2ĵ+ U3k̂, then equation (1.1) becomes

v = (1− α′)γκT̂× N̂+ αT̂×U+ αγκN̂− α′U1T̂. (1.2)

Consider a vortex line parametrized by x of the form y = y(x) lying in a plane which

is rotated with angular velocity Ω [12], so we will have r =< x, y(x), 0 >. Please take note

that for the remainder of this paper we will resort to ordered set notation when referencing

vectors rather than labeling them î, ĵ, and k̂. Now recall the following definitions (Larson,

[9]) for the unit tangent vector, unit normal vector, and curvature

T̂ =
r′

||r′||
(1.3)

N̂ =
T̂

′

||T̂
′
||

(1.4)

κ =
||T̂

′
||

||r′||
(1.5)
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where prime denotes differentiation with respect to x. Evaluating equations (1.3), (1.4), and

(1.5) give the following

T̂ =
< 1, yx, 0 >

(1 + y2x)
1/2

(1.6)

N̂ =
< −yx, 1, 0 >

(1 + y2x)
1/2

(1.7)

κ =
yxx

(1 + y2x)
3/2

. (1.8)

Assuming the velocity is in the x direction only, that is U =< U1, 0, 0 >, preforming the

appropriate cross products, and substituting into equation (1.2) yields

v = (1− α′)γ
yxx

(1 + y2x)
3/2

< 0, 0, 1 > +α
−U1

(1 + y2x)
1/2

< 0, 0, yx >

+ αγ
yxx

(1 + y2x)
2
< −yx, 1, 0 > −α′ U1

(1 + y2x)
1/2

< 1, yx, 0 > .

Substituting in angular velocity v = Ωyk̂ and taking the z direction we obtain

− Ωy = (1− α′)γ
yxx

(1 + y2x)
3/2

− αU1
yx

(1 + y2x)
1/2

. (1.9)

We can renormalize the vortex strength γ so that (1.9) can be written as

− Ωy = γ
yxx

(1 + y2x)
3/2

− αU1
yx

(1 + y2x)
1/2

(1.10)

and put yx = tan θ so θ is the angle between the tangent to the vortex and the x-axis

(Shivamoggi, [12])

− Ωy = γ
yxx

(1 + tan2 θ)3/2
− αU1

tan θ

(1 + tan2 θ)1/2

−Ωy = γ
yxx
sec3 θ

− αU1 sin θ. (1.11)
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To continue with the transformation of equation (1.9) we apply the chain rule to find yxx.

During this transformation we will also need to recall the arc length definition ds
dx

= ||r′(x)||

from [9].

d2y

dx2
=

ds

dx

d

ds

(
dy

dx

)
=

√
1 + y2x

d

ds
(tan θ) =

√
1 + tan2 θ sec2 θ

dθ

ds

yxx = sec3 θ
dθ

ds
(1.12)

Now substituting (1.12) into (1.11) gives

γ
dθ

ds
− αU1 sin θ = −Ωy (1.13)

After differentiating equation (1.13) with respect to arc length, we obtain the following

nonlinear differential equation

d

ds

[
γ
dθ

ds
− αU1 sin θ + Ωy

]
= 0

γ
d2θ

ds2
− αU1 cos θ

dθ

ds
+ Ω

dy

ds
= 0. (1.14)

Recall that we let yx = tan θ. We will once more apply the chain rule

dy

dx
=

dy

ds

ds

dx

tan θ = sec θ
dy

ds

sin θ =
dy

ds
. (1.15)

Finally we can substitute equation (1.15) into (1.14) to obtain

γ
d2θ

ds2
− αU1 cos θ

dθ

ds
+ Ωsin θ = 0. (1.16)
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We recognize that equation (1.16) is a modification of the pendulum equation when U1 = 0

γ
d2θ

ds2
+ Ωsin θ = 0. (1.17)

The solutions of the pendulum equation (1.17) are Jacobi elliptic functions which are periodic

in s. Equation (1.17) will be revisited in relation to equation (1.16) briefly in Chapter 2 and

again at length in Chapter 3.

1.3 Summary of Introduction

In Section 1.1 we discussed some of the major physical topics involved in vortex motion

and superfluid; in the previous section we studied the mathematics that lead up to the

derivation of the equation of interest. In Chapters 2 and 3 we will do extensive mathematical

analysis of the equation given in (1.16) to discover its different properties. In Chapter 4 we

shall attempt to find a new perturbation approximation of the equation that retains the

properties found in Chapters 2 and 3. In the final chapter we shall conclude by discussing

and recounting our results and their potential for furter research in vortex motion.

7



CHAPTER 2

STABILITY OF EQUILIBRIUM SOLUTIONS

2.1 Stability Analysis

In the introduction we derived equation (1.16), we now wish to examine the stability of

the solutions of the initial valued nonlinear ordinary differential equation
θ′′ + a cos θ θ′ + b sin θ = 0, a ̸= 0, b > 0

θ(0) = c θ′(0) = d

(2.1)

where the constants a and b have been re-defined by scaling (1.16) as a = −αU1

γ
and b = Ω

γ
;

c and d are initial conditions on θ. We note that a may be positive or negative depending

on the sign of the velocity term U1 while b is strictly positive. Also note that we are now

using prime notation instead of differential operators where prime denotes differentiation

with respect to s. To analyze linear stability, we write this nonlinear differential equation as

a system of first order differential equations. Let

x = θ

y = θ′
. (2.2)

8



Differentiating both sides of (2.2) with respect to time and solving for θ′′ from (2.1) yields

the system.

x′ = y (2.3)

y′ = −a cos x y − b sin x (2.4)

The equilibrium solutions are found by setting the equations in (2.3) and (2.4) equal to zero

0 = y

0 = −a cosx y − b sinx

we see that y must be 0 which leaves us with

0 = −b sinx. (2.5)

Since b is nonzero, our equilibrium solutions are

(nπ, 0), n ∈ Z. (2.6)

Now that we have found our equilibrium points, we now wish to analyze the stability of

these solutions. To do this, we find the Jacobian matrix of the equations we formulated in

(2.3) and (2.4).

J =

 0 1

ay sin x− b cos x −a cosx

 (2.7)
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2.1.1 Case I - Real Eigenvalues (n even)

Evaluating the matrix from (2.7) at our equilibrium points when n is even gives

J =

 0 1

−b −a

 . (2.8)

Now consider the following process of finding eigenvalues of this matrix

0 = |J − λI| = λ2 + aλ+ b.

Then by making use of the Quadratic Formula

λ =
−a±

√
a2 − 4b

2
. (2.9)

If we take 0 < 4b < a2, then we will obtain from (2.9) two real eigenvalues. Let us, without

loss of generality, choose λ1 to be the smaller of the two eigenvalues and λ2 to be the larger;

we will continue to make this generalization, where possible, throughout the duration of this

paper. We see that even inside this case we have two subcases; if a < 0 then λ1, λ2 > 0, but

if a > 0 then λ1, λ2 < 0.

Using some basic ordinary differential equation stability theory [5], we observe that in

the case that λ1 and λ2 are negative we have stable solutions whereas when the eigenvalues

are positive we acquire unstable solutions at the equilibrium points. In summary of this case

we should expect to see stable solutions at (nπ, 0), for even integer values of n, when a > 0

and unstable solutions when a < 0.

10



2.1.2 Case II - Complex Eigenvalues (n even)

Consider again equation (2.9), but now take 4b > a2. This will force the discriminant to

be negative, thus giving complex conjugate eigenvalues

λ = −a

2
± i

2

√
4b− a2. (2.10)

We see that the real part of these eigenvalues depend on a; if a < 0 then ℜ(λ) > 0, but if

a > 0 then ℜ(λ) < 0. Again we reference Grimshaw [5] and note that when the real part of

the eigenvalues in (2.10) are negative we have stable spiral solutions whereas when the real

part is positive we obtain unstable spiral solutions at the equilibrium points.

2.1.3 Case III - n odd

When evaluating the Jacobian matrix given in (2.7) at the equilibrium points found in

(2.6) for odd integers of n, we obtain

J =

 0 1

b a

 . (2.11)

Following a similar process for finding eigenvalues as we did previously, we come to the

following result

0 = |J − λI| = λ2 + aλ− b

λ =
a±

√
a2 + 4b

2
. (2.12)
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Since a, b ∈ R and b > 0, λ1 < 0 < λ2 ∀ values of a and b. Thus we obtain saddle points at

equilibrium points (nπ, 0) for odd integer values of n.

Having obtained saddle points, one topic of interest would be the orientation of the

trajectories. We can examine which solutions begin far away from the saddle then grow

closer and which do the opposite by observing the eigenvectors Xk associated with the

eigenvalues λk, for k = 1, 2.

0 = (J − λkI)Xk 0

0

 =

 −λk 1

b a− λk


 Xk

Yk



0

0

=

=

−λkXk + Yk

bXk + (a− λk)Yk
Yk

Yk

=

=

λkXk

− b
a−λk

Xk

(2.13)

So we see that when we use λ1 we will obtain a line with a negative slope whereas when we

choose λ2 we obtain a line with a positive slope. This leads us to conclude that the solution

with positive slope running through the saddle point is unstable while the other approaches

the saddle point as t → ∞.

All three of the cases just discussed will be further illustrated by phase plane plots in the

coming sections.
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2.2 The Phase Plane

We have already alluded to the language of phase plans and trajectories, but now we will

define and analyze these topics in a more formal way. Consider the following general first

order system of equation 

x′ = F (x, y)

y′ = G(x, y)

x(t0) = α, y(t0) = β

. (2.14)

L.C. Andrews [1] considers the solution functions x = x(t) and y = y(t) of (2.14) as para-

metric equations of an arc in the xy-plane that passes through the point (α, β) The xy-plane

is then called the phase plane. L.C. Andrews [1] continues by stating that any arc described

parametrically by a solution of (2.14) is called a trajectory, with the positive direction along

the trajectory defined by the direction of increasing t. By eliminating the parameter t we can

find the trajectories. Taking the ratio of the two equations in (2.14) is one way to eliminate

t

y′

x′ =
dy

dx
=

G(x, y)

F (x, y)
. (2.15)

The solutions of (2.15) are the trajectories. Thus for equation (2.1) we have

dy

dx
= −a cos x y + b sinx

y
. (2.16)
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2.3 Numerical Solutions

To illustrate numerically the results we found in the previous two sections we did some

implementation using MATLAB. First we needed to create an .m file that modeled equation

(2.1). To do this we referred to the first order equations that we formulated in (2.3) and

(2.4) and formed a matrix U = (x′, y′).

To create the phase plane we used a MATLAB function called phasePlane which calls the

functions RungeKutta and RKStep; all of which were created by a fellow University of Cen-

tral Florida graduate student, Johann Veras. As the name would indicate the RungeKutta

function employs the Runge–Kutta forth order method of solving ordinary differential equa-

tions. We then created a row vector that represented the initial values of the system; this

vector contained thirty four points. We chose these points in a careful systematic way such

that the plots would fill the display in an orderly and symmetric pattern. Finding the eigen-

vectors from (2.13) proved helpful numerically as well because we were able to choose initial

values very close to the saddle point which gave us very accurate plots around these equilib-

rium points; four of the thirty four points were dedicated to this purpose. Finally we chose

our time interval T to be an interval of values ranging from an initial time of 0 and final

time of 1000 and the number of points for which the system was to be computed on, 10000.

The following figure is the product of the phasePlane function.

14
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0
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2D Phase Plane

x

y

Figure 2.1: Phase plane where a = 1, b = 1
2
; 4b > a2

The function not only computes solutions going forward in time on the specified interval,

but solutions moving backward in time as well. The black lines indicate moving forward in

time while the blue denotes negative time. This trend will continue for all phase plane plots

in this paper. Upon close observation, one may notice where lines pass from black to blue;

such areas are the initial values that we chose to formulate the plot.

From Figure 2.1 we note that the equilibrium points appear to lie on (nπ, 0). It also is

clear that when n is even that the said equilibrium points are stable spirals and when n is

odd the equilibrium points form saddle points. As the caption in Figure 2.1 indicates, we

are looking at the case when 4b > a2, thus from Section 2.1.2 we expected stable spirals;

15



hence, all of our numerical analysis and implementation agrees with the analysis preformed

in Section 2.1 thus far.

The following figure shows the case where 0 < 4b < a2.

−2 0 2 4 6 8
−6

−4

−2

0

2

4

6

2D Phase Plane

x

y

Figure 2.2: Phase plane where a = 2, b = 1
2
; 0 < 4b < a2

The major difference between the plot in Figure 2.1 and that of Figure 2.2 is that Figure

2.2’s plot has stable solutions; whereas, Figure 2.1 has stable spiral solutions.

It should be noted that if there were no damping term on equation (2.1), then we would

have the well documented pendulum equation. With this in mind we found it of interest to

see how the system behaves when the damping term a took on small values. In Chapter 4

we will take a more formal analytic approach in examining certain perturbations.
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x

y

Figure 2.3: Phase plane where a = 1
100

, b = 2; 4b > a2

The solutions of this phase plane look very much like those of a pendulum equation which

is shown in Figure 2.4. The major difference between the plots produced for a = 1
100

and

a = 0 is that Figure 2.3 contains stable spirals while Figure 2.4 produces centres at (nπ, 0).
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Figure 2.4: Phase plane of pendulum equation

Since we know that the pendulum equation has periodic solutions and it looks and behaves

very much like equation (2.1) for small values of a, we became interested in the periodicity

of solutions to equation (2.1). This will be discussed in much detail in Chapter 3

2.4 Additional Plots

Let us recall the implicit substitution for the coefficient of the cosine term that we made

when we moved from equation (1.16) to equation (2.1): a = −αU1

γ
. We have simply called the

damping coefficient a for the majority of this paper, but when we consider that a contains

U1, the normal fluid velocity, we see that we should consider plots were a is negative.
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(a) a < 0

−2 0 2 4 6 8
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2D Phase Plane

x
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(b) a > 0

Figure 2.5: Phase plane where a = ± 7
10
, b = 1

10
; 0 < 4b < a2

Please take note of the earlier distinction made between the blue lines and the black lines;

the blue lines move backward in time and the black lines move forward in time. We can see

the instability in Figure 2.5a, at (nπ, 0) for n even, that was initially discussed in Section

2.1.1. Figure 2.5b was plotted to show the contrast between the stability when a > 0

versus the instability when a < 0. It is also worth noting that these plots are of the case

of stable/unstable solutions as opposed to stable/unstable spiral solutions, but since the

difference between 4b and a2 is so small it becomes slightly ambiguous to tell whether the

stable/unstable solutions are spiraling or not. Figure 2.6 illustrates a plot for a < 0 with

unstable spirals.

19



−2 0 2 4 6 8
−6

−4

−2

0

2

4

6

2D Phase Plane

x

y

Figure 2.6: Phase plane where a = −1, b = 1; 4b > a2

We also observed some plots in which the values of a and b were much larger in comparison

to the previous plots. Such plots exhibited behavior similar in nature, thus it would be

redundant to produce such a plot here.
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CHAPTER 3

ANALYSIS OF PERIODICITY

3.1 Hamiltonian Systems

In Section 2.3 we briefly compared the characteristics of equation (2.1) with the pendulum

equation using Figures 2.3 and 2.4. Graphically, the phase planes looked very similar when

the coefficient a of the damping term a cos θ θ′ was small. As we began to mention in

Chapter 2, the periodicity of solutions of equation (2.1) became a topic of interest because

of the similarity to the pendulum equation which has periodic solutions and is characterized

as a Hamiltonian system.

Definition 1. (Grimshaw, [5]) A Hamiltonian system is one for which the equations can

be obtained from a single scalar function, H(x, y), called the Hamiltonian. The system of

equations is of the form

x′ =
∂H

∂y
(x, y), y′ = −∂H

∂x
(x, y). (3.1)
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An important property of autonomous Hamiltonian systems is that they are said to be

conservative [5]. Consider

H ′ =
∂H

∂y
y′ +

∂H

∂x
x′

=
∂H

∂y

(
−∂H

∂x

)
+

∂H

∂x

(
∂H

∂y

)
= 0,

thus we see that H = constant on its trajectories.

Consider the pendulum equation obtained from equation (2.1) by letting a = 0. For the

sake of consistency, let us use the substitution used in (2.2) and write the equation as

x′′ + b sin x = 0. (3.2)

To put equation (3.2) into the Hamiltonian form, let y = x′. Then (3.2) becomes

x′ = y, y′ = −b sinx.

This has the Hamiltonian form (3.1) if we define the Hamiltonian to be

H(x, y) =
1

2
y2 − b cosx. (3.3)

3.2 Nearly Hamiltonian

We will now attempt to put equation (2.1) into the Hamiltonian form; let y = x′. Equa-

tion (2.1) becomes

x′ = y, y′ = −ay cos x− b sin x.

22



By integrating we obtain

H(x, y) =
1

2
y2 + ay sin x− b cos x,

which presents a problem because this does not preserve the required property that x′ =

∂H
∂y

(x, y) and y′ = −∂H
∂x

(x, y). Thus, we cannot write equation (2.1) in such a way that it

would have a Hamiltonian form, but we would like to see if it can be characterized as a

nearly Hamiltonian system. A system is informally said to be nearly Hamiltonian if it is

a perturbation of a Hamiltonian system that preserves the periodic nature of the original

Hamiltonian system. P. Glendinning [4] considers a perturbation of a Hamiltonian system,

x′ = f1(x, y) + ϵg1(x, y), f1(x, y) =
∂H

∂y
(x, y) (3.4)

y′ = f2(x, y) + ϵg2(x, y), f2(x, y) = −∂H

∂x
(x, y) (3.5)

and states that if Γϵ is a periodic orbit for this perturbed equation, then we must have∫
Γϵ

dH = 0 (3.6)

since Γϵ is a closed curve. But dH = (∂H
∂x

)dx+ (∂H
∂y

)dy and thus∫
Γϵ

((−y′ + ϵg2(x, y)) dx+ (x′ − ϵg1(x, y)) dy) = 0.

Being that Γϵ is a trajectory∫
Γϵ

(−y′ dx+ x′ dy) =

∫
Γϵ

(−y′x′ + x′y′) dt

so ∫
Γϵ

(g2(x, y) dx− g1(x, y) dy) = 0.
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We are operating under the assumption that Γϵ is a perturbation of some solution Γ of an

unperturbed equation; thus, the periodic orbit for the perturbed equation is close to the

periodic orbit for the unperturbed equation Γ such that

∫
Γ

(g2(x, y) dx− g1(x, y) dy) = 0.

Finally, we use Green’s theorem for the closed solutions of the unperturbed equation and

obtain ∫∫
int(Γ)

(
∂g1
∂x

+
∂g2
∂y

)
dx dy = 0. (3.7)

So we see that this integral must vanish if the perturbed trajectories are to be closed trajec-

tories.

Now we will go through the procedure just outlined using the pendulum equation (3.2)

as the unperturbed orbit and equation (2.1) as the perturbed orbit. We first recall our result

from equation (3.3) that H(x, y) = 1
2
y2 − b cos x. Since H is constant on a given trajectory,

(3.3) can be written without loss of generality as

A− b =
1

2
y2 − b cos x

where A is a constant. Solving for y yields

y = ±
√
2(A+ b(cosx− 1)). (3.8)

Now connecting back to our original equation we can identify g1 and g2 as outlined in

equations (3.4) and (3.5) as 0 and cos x y respectively. Now to compute the integral from
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(3.7), we need to find the limits of integration from the interior of the closed contour that

(3.8) forms.
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Figure 3.1: Plot of contour Γ from (3.8)

For illustration purposes we chose A = 2 and b = 1. From this numerical plot, the contour

does not look closed, but it can be quickly verified that the contour is closed between -π

and π. We can see that the upper and lower limits would be
√
2(A+ b(cosx− 1)) and

−
√
2(A+ b(cosx− 1)) respectively, but we can make use of symmetry. To find the limits

on x inside of the contour we let y = 0 and solve for x. After solving, we obtain x =

± cos−1
(
1− A

b

)
, but again we will use symmetry. Thus after differentiating, substituting,

and inserting the limits of the double integral, equation (3.7) becomes

− 4

∫ cos−1(1−A
b )

0

∫ √
2(A+b(cosx−1))

0

cosx dy dx = 0.
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Evaluating the first integral and dividing out unneeded constants gives

∫ cos−1(1−A
b )

0

cos x
√

A+ b(cosx− 1) dx = 0. (3.9)

The limits on this integral force the restriction 0 < A < 2b on A. A necessary and sufficient

condition for periodic orbits is that we find a value of A that satisfies equation (3.9). With the

parameter A appearing in both the integrand and the upper limit of the integral combined

with an analytic nightmare as the integrand, the condition must be tested numerically.

We computed the integral in (3.9) in MATLAB using a function called AQGKIntegral

which stands for Adaptive Quadrature Gauss-Kronrod Integration. The code for AQGK-

Integral was obtained from L.F. Shampine, R.C. Allen, and S. Pruess’ publication [11].

With AQGKIntegral we were able to, rather expensively, integrate numerically using A as

a parameter. We rescaled the original differential equation so that b = 1 which made the

computation simpler.
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Figure 3.2: Integral from (3.9) evaluated for 0 < A < 2

As was alluded to above, we required A to take on about one hundred values within the

domain of A and used AQGKIntegral to evaluate (3.9) on each of those values, thus the

horizontal axis refers not to the value of A, but the iteration of A on the interval (0, 2).

As Figure 3.2 indicates, the integral in equation (3.9) never takes on the value of zero

for 0 < A < 2. This leads us to conclude that although equation (2.1) bears a striking

resemblance to other systems with periodic orbits it itself does not contain periodic orbits

because it will not satisfy (3.6).
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CHAPTER 4

PERTURBATION APPROXIMATIONS

4.1 Motivation

A.W. Bush [3] declares that “the governing equations of physical, biological and economic

models often involve features which make it impossible to obtain their exact solutions”; this

is true of the vortex motion equation that we have been analyzing throughout this paper.

J.P. Keener [6] adds this statement, “At present one of the best hopes of solving (a problem

that we do not know how to solve) occurs if it is “close” to another problem we already

know how to solve. We study the solution of the simpler problem and then try to express

the solution of the more difficult problem in terms of the simpler one modified by a small

correction.” In terms of the system expressed by equation (2.1), we wish to construct a

system that preserves the properties discussed in the previous chapters, yet provide exact or

approximate solutions, or at least yield to some attractive characteristics.
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4.2 The van der Pol Equation

B.K Shivamoggi [12] proposed an approximation of equation (2.1) that would replace

the trigonometric functions with polynomial functions. He did this by applying Taylor’s

Theorem to obtain the following.

cos θ ≈ 1− θ2

2
(4.1)

sin θ ≈ θ (4.2)

Substituting (4.1) and (4.2) into equation (2.1) yields

θ′′ + a

(
1− θ2

2

)
θ′ + bθ = 0 (4.3)

the van der Pol equation. The van der Pol equation certainly has some desirable properties

and is easier to manipulate in many ways than the system that we began with.

We would like to find the equilibrium point(s), plot a phase plane, and discuss periodicity

so that we can judge how good of an approximation equation (4.3) is to equation (2.1). We

will make the same substitutions to find stability as we did in (2.2). After setting each first

order equation equal to zero, we see that

0 = y

0 = a
(
1− x2

2

)
y − bx

.

Thus it is clear, since b ̸= 0, that there is only one equilibrium solution (0, 0). The Jacobian

matrix for this system evaluated at the equilibrium point yields the zero matrix; hence, it is

29



trivial to show that the nodes λk are both equal to zero. Figure 4.1 has been provided below

to illustrate the phase plane of equation (4.3) when a = 0.1 and b = 1
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Figure 4.1: Phase plane of equation (4.3) van der Pol

In Simmons and Krantz [13] they conclude that since the van der Pol equation meets the

conditions of Liénard’s theorem, then equation (4.3) “has a unique closed path (periodic

solution) that is approached spirally (asymptotically) by every other path (nontrivial solu-

tion).” We can see this in Figure 4.1. Thus, other than a critical point at the origin, the van

der Pol equation does not seem to exhibit behavior or properties that would qualify it to

be a good approximation of equation (2.1). Although equation (2.1) has only been a recent

topic of interest, in the past (Shivamoggi, [12]) we have used the van der Pol equation for

approximations; we now search for more accurate approximations.
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4.3 Finding a Better Approximation

Between limit cycles, periodicity, critical points, and stability we concluded that the van

der Pol equation should not be associated with equation (2.1) anymore; because of these

unsatisfactory properties in the current approximation of equation (2.1), we began to search

for a more suitable equation for approximation.

We observed in Section 4.2 that equation (4.3) was obtained by expanding the cosine and

sine functions using Taylor polynomials. Note that (4.1) and (4.2) were only carried out to

two terms and one term respectively. We could certainly take the polynomial representations

of sine and cosine out to many more terms and obtain systems with incredible accuracy, but

this would cost us the convenience of making an approximation in the first place. Instead

let us try again only this time taking the sine term out to two terms rather than one. Thus

we use

sin θ ≈ θ − θ3

6
. (4.4)

Hence, substituting (4.1) and (4.4) into equation (2.1)

θ′′ + a

(
1− θ2

2

)
θ′ + b

(
θ − θ3

6

)
= 0 (4.5)

yields an equation that appears very similar to equation (4.3) which we have rejected as a

good approximation. In fact, equation (4.5) is in some respect a combination of the Duffing

equation and the van der Pol equation; it has the same damping term as the van der Pol

equation while having the same oscillatory term as the Duffing equation.
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As before, we find a system of first order differential equations and set each equation

equal to zero

0 = y

0 = −a
(
1− x2

2

)
y − b

(
x− x3

6

) .

This time we reach more attractive results with respect to the original system; the equilibrium

points are (0, 0) and
(
±
√
6, 0

)
. While the equilibrium points of equation (2.1) are (nπ, 0),

we can at least see similar behavior with this new approximation (4.5) for small values of x;

whereas, the one critical point given from the van der Pol equation does not assist us in this

manner.

4.3.1 Stability and Numeric Solutions

At the critical point (0, 0) we obtain the same results reached in Sections 2.1.1 and 2.1.2

0 = |J − λI|

λ =
−a±

√
a2 − 4b

2
.

Again, depending on the relationship between a and b and the positive or negative orientation

of a, we will have two cases with two subcases; stable/unstable nodes and stable/unstable

spirals. On the other hand, when we evaluate the Jacobian matrix

J =

 0 1

ayx− b+ 1
2
bx2 −a+ 1

2
ax2
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at the critical points
(
±
√
6, 0

)
we obtain

J =

 0 1

2b 2a

 . (4.6)

As we find the eigenvalues associated with (4.6)

0 = |J − λI|

λ = a±
√
a2 + 2b

we see that, much like the results in Section 2.1.3, saddle points will form at these critical

points. Let us illustrate the results just found via phase plane portraits of equation (4.5) for

both positive and negative values of a.
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Figure 4.2: Phase plane of equation (4.5) where a = ±1
2
, b = 1; 4b > a2

While equation (4.5) only has three critical points, each of them exhibits the same type

of behavior as the corresponding critical points of equation (2.1), (0, 0) and (±π, 0). From
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Figure 4.2 we do see that as we move out to larger values of x, the approximation is no

longer helpful; this is to be expected from approximations obtained from Taylor expansions.

Because of this we will want to restrict such approximations to small values of x.

4.3.2 Analytic Solutions

While the numerical results found in Section 4.3.1 are helpful in determining the re-

lationship between equations (2.1) and (4.5), in Section 4.1 we noted that our interest in

approximations stemmed from a curiosity of the analytic solutions of the original system. We

will begin by considering the following initial valued perturbation approximation of equation

(2.1) 
d2θ
ds2

+ ϵa
(
1− θ2

2

)
dθ
ds

+ b
(
θ − θ3

6

)
= 0, a ̸= 0, b > 0

θ(0) = ϵ θ′(0) = 0

. (4.7)

Initially we tried substituting the standard expansion

θ = θ0 + ϵθ1 + ϵ2θ2 +O
(
ϵ3
)
,

but that led to contribution of the nonlinear term − b
6
θ3. Instead we chose θ0 to be zero so

that the lowest order equation would be linear

θ = ϵθ1 + ϵ2θ2 +O
(
ϵ3
)
; (4.8)

however, the straightforward two-term expansion

θ = ϵ cos
(√

bs
)
+

ϵ2a

2

[
1√
b
sin

(√
bs
)
− s cos

(√
bs
)]

(4.9)
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yielded nonuniformities because of the secular term s cos
(√

bs
)

that was introduced. In

order to eliminate such nonuniformities we introduce the method of multiple scales; we will

use two space scales

S0 = s and S1 = ϵs. (4.10)

We must first change the derivatives from equation (4.8) to time derivatives

d
ds

= ∂
∂S0

+ ϵ ∂
∂S1

d2

ds2
= ∂2

∂S2
0
+ 2ϵ ∂2

∂S0∂S1
+ ϵ2 ∂2

∂S2
1

. (4.11)

Now substituting (4.11) into (4.7) we have

∂2θ

∂S2
0

+ 2ϵ
∂2θ

∂S0∂S1

+ ϵ2
∂2θ

∂S2
1

+ ϵa

(
1− θ2

2

)(
∂θ

∂S0

+ ϵ
∂θ

∂S1

)
+ b

(
θ − θ3

6

)
= 0 (4.12)

Now we will use the substitution from (4.8) to obtain the following set of equations

O(ϵ) : ∂2θ1
∂S2

0
+ bθ1 = 0 (4.13)

O
(
ϵ2
)
: ∂2θ2

∂S2
0
+ bθ2 = −2

∂2θ1
∂S0∂S1

− a
∂θ1
∂S0

(4.14)

O
(
ϵ3
)
: ∂2θ3

∂S2
0
+ bθ3 = −2

∂2θ2
∂S0∂S1

− a
∂θ2
∂S0

− ∂2θ1
∂S2

1

− a
∂θ1
∂S1

(4.15)

The solution of the homogenous partial differential equation (4.13) is

θ1 = A(S1) cos
(√

bS0

)
+B(S1) sin

(√
bS0

)
. (4.16)

Substituting (4.16) into equation (4.14) gives

∂2θ2
∂S2

0

+bθ2 = 2
√
b

[
dA

dS1

sin
(√

bS0

)
− dB

dS1

cos
(√

bS0

)]
+a

√
b
[
A sin

(√
bS0

)
−B cos

(√
bS0

)]
∂2θ2
∂S2

0

+ bθ2 =
√
b

[(
2
dA

dS1

+ aA

)
sin

(√
bS0

)
−

(
2
dB

dS1

+ aB

)
cos

(√
bS0

)]
(4.17)
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At this point we realize that should we solve this equation as it stands, then we would in-

troduce secular terms of the form s sin
(√

bS0

)
or s cos

(√
bS0

)
. The following requirements

will ensure that our expansion remains uniformly valid

2
dA

dS1

+ aA = 0 and 2
dB

dS1

+ aB = 0

Solving these linear differential equations yields

A(S1) = c1e
− 1

2
aS1

B(S1) = c2e
− 1

2
aS1

.

After applying the initial conditions A(0) = 1 and B(0) = 0 we determine that c1 = 1 and

c2 = 0. This condenses equation (4.17) to a homogenous equation with the following solution

θ2 = C(S1) cos
(√

bS0

)
+D(S1) sin

(√
bS0

)
.

Thus we can be sure that the solution

θ = ϵe−
1
2
aS1 cos

(√
bS0

)
+O

(
ϵ2
)

is uniformly valid for s = O(1/ϵ). At this stage we may back substitute from (4.10) to obtain

θ = ϵe−
1
2
aϵs cos

(√
bs
)
+O

(
ϵ2
)
. (4.18)

Such a solution makes sense in terms of our original system (2.1) because we see the unstable

growth for a < 0 as well as the stable decay when a > 0.
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4.4 Other Approximations

Equation (4.7) is certainly a system that better exemplifies the characteristics of equation

(2.1) than the current approximation in the van der Pol equation, but it is not the only

approximation worthy of mention. Consider making the substitution u = sin θ in equation

(2.1). After applying the chain rule in order to make the change of variable we obtain

dθ

ds
=

1√
1− u2

du

ds
(4.19)

and

d2θ

ds2
=

1√
1− u2

d2u

ds2
+

u√
(1− u2)3

(
du

ds

)2

. (4.20)

Now substituting u as well as equations (4.19) and (4.20) into equation (2.1) we obtain

(
1− u2

)−1/2
u′′ + u

(
1− u2

)−3/2
u′2 + au′ + bu = 0 (4.21)

where prime denotes differentiation with respect to s. We can rewrite (4.21) as

u′′ + u
(
1− u2

)−1
u′2 + a

(
1− u2

)1/2
u′ + bu

(
1− u2

)1/2
= 0. (4.22)

Recalling from the Binomial Theorem that (a+ b)r ≈ ar + rar−1b, we express (4.22) as

u′′ + uu′2 + a

(
1− 1

2
u2

)
u′ + bu

(
1− 1

2
u2

)
+O(u3) = 0. (4.23)

Following the processes outlined several times in this paper we observe the following

results about equation (4.23): the critical points are (0, 0) and (±
√
2, 0), the eigenvalues

associated with (0, 0) are the same as that of (2.9), and the eigenvalues associated with
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(±
√
2, 0) are λ1 = −

√
2b and λ2 =

√
2b. Each critical point and eigenvalue leads to the same

properties as equation (2.1) in terms of types and form of stability.
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Figure 4.3: Phase plane of equation (4.23) where a = 1, b = 1; 4b > a2

Figure 4.3 exhibits behavior qualitatively similar to the original system for small values of x.

It seems that equation (4.5) is a better approximation quantitatively than equation (4.23)

because the critical points of (4.5) are closer to the original’s points. Finally taking a to be

small and imposing initial conditions we can rewrite equation (4.23) as
d2u
ds2

+ u
(
du
ds

)2
+ ϵa

(
1− 1

2
u2
) (

du
ds

)
+ bu

(
1− 1

2
u2
)
= 0, a ̸= 0, b > 0

u(0) = ϵ u′(0) = 0

.

Following the method of multiple scales previously demonstrated, we obtain this solution

u = ϵe−
1
2
aϵs cos

(√
bs
)
+O

(
ϵ2
)
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which is uniformly valid for s = O(1/ϵ). After back substitution we obtain

θ = arcsin
[
ϵe−

1
2
aϵs cos

(√
bs
)]

+O
(
ϵ2
)
. (4.24)
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CHAPTER 5

CONCLUDING REMARKS

In this paper we have thoroughly researched the mathematical properties of the topic of

rotating vortex filament in superfluid 4He. We now know what to expect in terms of stability

for different values of θ, the angle between the tangent to the vortex filament and the x-axis.

We can also note that when the damping coefficient α is not equal to zero, and if the normal

fluid velocity is in the same direction as vorticity in the undisturbed vortex αU1 > 0, then

there is growth of the vortex line length. In contrast, when the normal velocity is in the

opposite direction αU1 < 0, then there is decay of the vortex line length.

We have also shown that the system of interest does not have periodic solutions unless

the damping coefficient α or the normal fluid velocity U1 is equal to zero; in such a case

periodic vortex shape is possible. This knowledge aided us in determining that the van der

Pol equation is not a sufficient approximation for our system.

Potentially most importantly we found two systems, equations (4.5) and (4.23), that

preserve the qualities of the original system in a satisfactory way. In connection with these

perturbation approximations we found analytic solutions which may serve to be of use in

future research regarding this system.
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On the note of approximations and future research, one may consider several options.

The initial values that we chose while preforming perturbation expansions led to fitting

results while others did not; it is possible that there are other initial values that will also

produce analytic solutions. In research we used two space scales in solving our perturbed

systems as well as three space scales. The latter did not seem to lend to any particularly

interesting results, but it did introduce nonlinear terms in the O (ϵ3) equations. We have

verified that these nonlinear terms do not introduce any nonuniformities, but we have not

investigated in detail its effects on the analytic solutions. Also one may try using a different

substitution or attempt expanding the trigonometric functions beyond the first two terms

from their respective Taylor series representations in order to find new approximations.

Beyond a search for better approximations, one may explore the physical implications

of the approximations already discussed as well as the associated analytic solutions which

we obtained. We have explored, in a rudimentary sense, the effects of positive and negative

friction coefficients and normal fluid velocity in our analytic solutions and verified that they

produce the desired results, but further interpretation may very well be helpful in future

physical research.
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