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ABSTRACT 
 

   

Computed Tomography (CT) is the standard in medical imaging field. In this study, we look at 

the curvelet transform in an attempt to use it as a basis for representing a function. In doing so, 

we seek a way to reconstruct a function from the Radon data that may produce clearer results. 

Using curvelet decomposition, any known function can be represented as a sum of curvelets with 

corresponding coefficients. It can be shown that these corresponding coefficients can be found 

using the Radon data, even if the function is unknown. The use of curvelets has the potential to 

solve partial or truncated Radon data problems.   

As a result, using a curvelet representation to invert radon data allows the chance of higher 

quality images to be produced. This paper examines this method of reconstruction for computed  

tomography (CT). A brief history of CT, an introduction to the theory behind the method, and 

implementation details will be provided. 
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CHAPTER ONE: INTRODUCTION 

 

 

CT is a standard medical imaging technique which first came into clinical use in the 1970’s. 

During the CT process, X-rays are transmitted through an object: most commonly an animal or 

human. The intensities of the outgoing x-rays, known as projections, are then measured. An 

algorithm takes the measurements of the projections and mathematically reconstructs the image 

from its line integrals [1].  

The Curvelet transform is a higher dimensional generalization of the Wavelet transform that has 

become popular in the fields of image processing, signal processing and scientific computing. 

Curvelets provide a multi-scale object representation of images or signals at different scales and 

different angles. Also, the curvelet transform provides an ideal mathematical methodology for 

representing objects which display smoothness apart from singularities along smooth curves or 

have a minimal scale length, for example, in cartoons or text. Two unique mathematical 

properties curvelets possess are; singularities along curves can be closely approximated with few 

coefficients in a non-adaptive manner and they differ from other directional wavelet transforms 

because the degree of localization in orientation varies with scale. The shape of the curvelet basis 

function at scale j is 2
-j
 by 2

-j/2
 so the fine-scale bases are highly directionally dependent at fine 

scales [2]. 

This paper will introduce computed tomography and curvelet theory, describe the 

implementation, and explore the numerical application. In particular, section 2.1 explains the 

details of the current standard practice of CT scans, while the reconstruction methods will be 
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described in the rest of chapter 2. Next, chapter 3 will discuss the methodology of analysis, 

clarify the algorithms used in the Matlab code, and derive numerical implementations of the 

Matlab code. Chapter 4 will provide numerical results, showing curvelet application for various 

situations. Finally, chapter 5 summarizes the conclusions of this paper. Matlab code for the 

algorithms is provided in the appendix. 
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CHAPTER TWO: CONCEPTS  

 

In classical CT, a slice of the entire body is taken in order to reconstruct what is inside the 

patient’s body. CT algorithms reconstruct two dimensional slices of an object using either the 

parallel-beam, or fan-beam, x-ray scanning [3]. There are many types of methods used for the 

reconstruction. The most popular algorithms are part of a family called the filtered back 

projection (FBP) family, which involve sequential one dimensional filtering then computing an 

integral. These algorithms are the most widely used because they are accurate and efficient [4]. 

Reconstruction can also be curvelet based. The following sections in this chapter introduce the 

theory and background information utilized in the experimental setup.  

  

2.1 Computer Tomography Scanning 

Alessandro Vallebona was an Italian radiologist who suggested a method to represent a single 

slice of the body. This suggested process was the birth of tomography. Soon after Bernard 

Ziedses des Plantes develops planigraphy. In doing so, he laid the ground work for the 

tomographic technique and was able to produce as a result geometrically perfect images for the 

first time. Since the early 1900s, many advancements have been made [5]. In 1972, Godfrey 

N.Hounsfield’s development of computed tomography marks the beginning of a new era in 

diagnostic imaging. With the aid of computed tomography it was possible for the first time to 

produce non-superimposed images of an object slice. By 1989 the first spiral CT scans were 

operational [6].  
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Until the 1970’s, if a patient had a problem with something going on inside his body, a doctor 

would either use conventional X-rays or have to operate in order to identify it. Conventional X-

rays do not always help in identifying the problem. However, operation was clearly not a very 

safe method of diagnosis since any invasive procedure carries significant risk. This is especially 

true for medical problems involving the brain [7]. However, in more recent years, advances in 

science have made it possible to look inside the body without requiring surgery; a method known 

as medical imaging. Medical imaging uses sources from inside or outside of the body in order to 

detect what is going on in a patient. X-rays and ultrasound devices are often used in the medical 

imaging methods that require sources and detectors outside of the body to capture what is going 

on inside the body. One of the most common of which would be computerized axial 

tomography(CAT). Other imaging methods use a source inside the body. These include magnetic 

resonance imaging (MRI), positron emission tomography (PET) and single photon emission 

computed tomography (SPECT). The most common competitors to CT are MRI and ultrasound. 

These methods have certain advantages over CT in safety as X-rays can easily damage soft tissue 

[8]. However, MRI is slow and ultrasound has low spatial resolution, so CT will remain an 

essential diagnostic tool. For this reason, doctors would like to be able to localize the CT scan, to 

minimize the effect of the harmful X-rays. This paper will focus on CT, medical imaging using 

X-ray sources outside of the body. Wavelets have been used for reconstruction of the CT data, 

and because curvelets are an extension of the wavelet transform, curvelets may prove to be an 

effective means of reconstruction. 
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Figure 1: Detectors take measurements of the x-ray projections through the body. 

 

Figure 2: From the projections, an image of a "slice" of the body is constructed. 
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2.2 Radon Transform 

During the process of image reconstruction, the CT data is converted “back” into the image using 

the inverse Radon transform [9]. Without access to a CT scanner, the data needs to be computer-

generated in order to run a test. The Radon transform is a process that can be used to simulate the 

data received by a CT scan. 

The Austrian mathematician Johann Radon introduced what is now called the Radon transform 

in 1917.  Since this paper focuses on two dimensional image reconstruction, this section will 

discuss the two dimensional Radon transform.  

The Radon transform is an integral operator that involves the integral of a function over straight 

lines [10]. It is defined by   

  
 

   
 

,

  ,
L s

R f s f x dS x


     (1) 

where                                 . L can be understood as the line 

parameterized by                                        where s is the distance 

of L from the origin and   is the angle the normal vector to L makes with the x axis. This idea 

can be seen in the figure below.  
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Figure 3: The concept of the computation of the Radon transformation. 

Consider the following example. 

Example 1: Radon Transform of a Disc 

A disc centered at the origin with radius one has the formula 

  

 
2 21   1

( , )
0  

if x y
f x y

otherwise

  
 


 (2) 
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Figure 4:Graphical representation of a disc centered at the origin with radius one. 
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Then, the Radon transform of the function can be computed. 

( , )

2 2

2 2 2 2 2 2 2 2

( , ) ( , ) ( )

( sin cos , cos sin )dt

1  ( sin cos ) ( cos sin 1

0

1  sin 2 cos sin cos cos sin 2 sin cos 1

0

1

L s

Rf s f x y dS x

f t s t s

if t s t s
dt

otherwise

if t st s t s st
dt

otherwise

i





   

   

       















   

     
 



      
 













2

2

2 2 2 2 2 2

2 2

2

1

1

2

 (sin cos (cos sin 1

0

1  1

0

1  1

0

1

2 1

s

s

f t s
dt

otherwise

if t s
dt

otherwise

if t s
dt

otherwise

dt

s

   














 

    



  
 



  
 





 








(3) 

   

 Notice that the Radon transform of our function is independent of  . Since this function is a disc 

centered at the origin, the value for   does not change the value of the Radon transform. If the 

disc were not centered at the origin, then the value for   would affect the Radon transform.  
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2.3 Wavelet Transform  

Although this paper is primarily concerned with the curvelet transform, this section is devoted to 

the wavelet transform. The curvelet transform is an extension of the wavelet transform, so the 

wavelet transform will be described enough to help with understanding the curvelet transform 

origin. To help with comprehension, examples will primarily refer to the discrete wavelet 

transform (DWT).  

Fourier transform gives the contents of the signal without specifying the location. The wavelet 

transform generalizes the Fourier transform by using a basis. This basis characterizes both 

location and spatial frequency. DWTs are wavelet transforms performed non-continuously, and 

are generally used in signal and image processing [11]. A wavelet is a mathematical function 

used to divide a given function into different scale components. Each scale component can then 

be studied with a resolution that matches its scale. Wavelets can accurately deconstruct and 

reconstruct a function with discontinuities, an image or signal. The major disadvantage of the 

wavelets is that it does not encode the edge information.  

 

2.4 Curvelet Transform 

Lines and curves commonly occur in nature. Discrete wavelet transform has the disadvantage of 

poor directionality. This causes DWT to be less applicable in certain situations. This issue gave 

birth to the family of directional wavelet transforms. Curvelets, a member of this family, were 

created in order to maintain directionality. They use basis functions that are localized in 

orientation. This means that directional wavelet transforms not only identify the content and 
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location, but also the orientation at that point. As the name suggests, curvelets are an edge(curve) 

preserving structure giving orientation. In particular, the basis functions are long, needle-like 

structures, as shown in the figure below. A curvelet transform varies from other directional 

wavelet transforms in that the degree of localization changes with scale [2].  

 

Figure 5: The fine-scale basis functions are “needles” with a specifically defined orientation. 

 

Conceptually, the curvelet magnifies the object. Instead of magnifying everything uniformly in 

each direction, curvelets magnify what is necessary. It then creates a “container” to fit the edges 

of the object. This requires the curvelet to be directionally dependent. In the 2D image case, the 

curvelet goes in two directions. 



12 
 

Because curvelets have nice properties, they are becoming increasingly popular in image 

processing and scientific computing. Curvelets occur at all scales, locations, and orientations. 

What makes them unique is that a curvelet occurs at all dyadic lengths, as shown in Figure 6. 

 

Figure 6: Curvelets occur at dyadic lengths 

The curvelets are directionally dependent and become increasingly more so with decreasing 

scale. Another characteristic of curvelets is that they obey a scaling relation which says that the 

width of a curvelet element is about the square of its length. These needles are conceptually 

stretching the signal at various levels to find an area of significance. 

The next thing to consider is when curvelets would be an appropriate basis. Curvelets are best 

used when representing piecewise smooth images or functions. These images can have 

singularities along the smooth curves. This property holds for cartoons and text. The edges of 

such images appear increasingly straight at small scales. Taking advantage of this property, the 

basis defines the higher resolution curvelets to be skinnier than the lower resolution curvelets. 
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Natural images usually have this property. Therefore, curvelets can provide a sparser 

representation than other wavelet transforms if the image is of the correct type [2].  

For scale 2 j
, 0j

, define, as in [12], the generating curvelet, 

    
/2 1

3 4

,0,0

2
, 2 2

j

j j

j s W s V  


  
 

 
      

 

  (4) 

in the frequency domain using polar coordinates  ,s  , where  W s  is a radial window and 

 V   is an angular window.  Assume the windows W and V are real and smooth, and that they 

satisfy the following conditions, 

    2 2 1,      3 / 4,3 / 2 ,j

j

W s s




    (5) 

    2 1,      1/ 2,1/ 2 .
l

V l 




      (6) 

  

There are many possible functions to satisfy these conditions, so the ones used in the 

experiments will be explicitly expressed in the methodology portion. 

Translating and rotating the generating curvelets ,0,0j constructs the family of curvelets 

  , , , ,j l k j l k
x . These are defined in [12] by 

     
,

,

, , ,0,0 ,
j l

j l

j l k j kx R x b     (7) 
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where 
,j l

R denotes the rotation matrix  

 
cos sin

sin cos
R

 

 

 
  

 
  (8) 

 

with respect to ,j l , the scale dependent rotation angles, 

 
/2 1 /2 1 /2 1

, 2 ,       2 2
j j j

j l l l 
                     (9) 

where 
,j l

kb  are the scale dependent locations defined by 

  
,

, 1 21 2
1 2/2

, ,       ,
2 2j l

T

j l

k j j

k k
b R k k k

  
   

 
  (10) 

This means that all curvelets in the curvelet family are created from one curvelet through 

rotation, translation, and changing the scale. This implies that, in the frequency domain, each 

curvelet is defined 

    
,

, ,3 /4

, ,

,1

2 2
j l

ki b j lj j

j l k

j

e W s V
  

 


  
 

  
 
 

  (11) 

The curvelet functions are supported in the frequency domain inside a polar wedge with radius 

1 12 2j js    and angle 
   /2 /2

2 1 2 1

2 2

j j
l l 



         
   [2]. This means that the support of 

the curvelet function         does not depend on the position 
,j l

kb , so will not change with changes 

in k. Support concepts are shown in Example 2. 
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Example 2: Support of a Curvelet 

 

 

Figure 7: Supports for curvelets of scale j=2 at locations l =7 and l =4 (light gray), and curvelets 

of scale j=4 at locations l =1 and l =7 (dark gray). 

The curvelet function in the frequency domain,  2,7, ,k s  , is supported in the wedge with 

angle 
3

2
4


 


    and radius 2 8s  . This support wedge is unaffected by the choice of 

value for k. Figure 7 shows the effects of differing values for scale j and location l, while the 

combination of each can be seen in Figure 8.  

After discretization, the support alters slightly into a pseudo polar support in the frequency 

domain, as seen in Figure 9. Calculations with computers use this pseudo polar support. The 

tiling in the 2D Fourier domain corresponds to 5 scales. The angular wedges change with 
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increased scale, with 16 angle intervals at the second coarsest level and 64 angle intervals at the 

fifth and finest scale. Each angular wedge has a length proportional to 2
j
, with a width 

proportional to 2
j/2

.  

 

Figure 8: Supports for curvelet functions expressed in Figure 7. Similar graphic in [13] 
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Figure 9: Pseudo-polar support in the frequency domain for discrete curvelet transforms, similar 

graphic can be found in [12]. 

 

 

 

2.5 Reconstructions 

The computer uses algorithms in order to reconstruct an image from the CT partition data. This 

is an example of an “inverse problem”. A great deal of effort has been invested in looking for 

faster and more accurate reconstruction methods [1]. This section will give a brief background 

on the two most common methods. 



18 
 

 

2.5.1 Filtered Back Projections 

Filtered back projection (FBP) is the most popular method of solving the current CT image 

reconstruction problems [3]. There must be a full angle range of non-truncated data in order to 

use this type of reconstruction. FBP uses two steps [11]. The first step is filtering. The formula 

used for filtering is the convolution defined by 

  
 ,

,
pRf p

g q dp
q p


 

   (12) 

where         is the partial derivative, with respect to p, of the Radon transform. Next, define 

the operator  

     
2

*

0

,R x x d



        (13) 

This operator is the dual of the Radon transform, and satisfies the condition                

where f is in the       domain, and   is in the Radon, or      domain. It takes a function from 

the Radon domain to the image domain. This operator helps define the back projection,  

     *

2

1

4
f x R g x


   (14) 

which is the second step of FBP. When using Matlab, the command iradon(x), which stands for 

inverse Radon transform, does FBP. The fact that Matlab has a command for FBP adds to the 

convenience of the method for reconstructing an image from Radon data.
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2.5.2 Iterative Reconstruction 

Even though FBP is the most popular method of image reconstruction, it often has limitations on 

the image quality produced. Noisy data produces a noisy image when using FBP, which leaves 

no room for improvements. With iterative reconstruction, adjustments are made at each step of 

forward projection in order to produce a better quality image [14]. 

Example 3: Steps to do Iterative Reconstruction 

-An initial estimate of the activity distribution is made, usually assuming that all pixels have the 

same value. 

-Using forward projection, an estimate is made of the counts that would be acquired in each 

projection. 

-The estimated projections are compared with the actual measured projections acquired by the 

data. 

-This comparison is then used to update the original estimate. The complete process is repeated 

until the differences between the measured projections and the estimate are negligible. 
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CHAPTER THREE: METHODOLOGY 

 

This section will derive a few of the numerical implementations of the Matlab code.   

Sections 2.1 and 2.2 explain the method of data collection. The next question to answer would be 

what to do with the data once it is received.  

Curvelet decomposition states that any function can be represented as a summation of curvelets 

with corresponding coefficients.  

 f c 


   (15) 

Furthermore, the coefficients can be found by evaluating the inner product of the function and 

the curvelet. In other words, every function can be represented as a summation of curvelets, 

 ,f f  


    (16) 

 

Example 4: Formula for Curvelet Coefficient 

Let  ,s   and the terms  , , , ,: ,j l k j l kc f f   be the curvelet coefficients. Then, the curvelet 

coefficients can be found by  
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   (17)  

 

Depending on the available information, it may be easier to calculate using the second row of 

(14). Using whichever equation is most appropriate, the value for the coefficient can be 

approximated using a summation.  

 

The problem with direct curvelet decomposition is that, for problems such as CT scans, the 

function is unknown. Therefore, the coefficients to the curvelets would be impossible to 

calculate using this decomposition. The next issue to be discussed would be how to recreate a 

function using the Radon transform of the function. This section introduces new concepts to 

calculate these curvelet coefficients. 

Let 
, ,j l k be a curvelet, with ,j l

kb and 
,j l  as defined in section 2.4. Let    cos ,sin

T
     

Then, the Radon transform of the curvelet given by 

   (18) 

The proof of this is shown in [15].  
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Before moving forward, the window functions W  and V  need to be defined. It is important to 

satisfy the conditions [16]: 

  2 1,       
l

V t l t




     (19) 

  2 2 1,       0.j

j

W r r




    (20) 

This explicit example will represent the window functions used in this construction of the 

curvelet. These functions will use the definition of the scaled Meyer’s windows [13].  

    

1 1 3

cos 3 1 1 3 2 3
2

0

t

V t t t

else




 

  

     
 




  (21) 

  

 

 
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2
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2

0

r r

r
W r

r r

else







  
    

 
  

 
       




  (22) 

  

where   is a smooth function satisfying  the condition 

      
0 0

1 1,      x
1 1

x
x x x

x
  


    


  (23) 
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Possibilities for such functions would be  x x  , or a smoother polynomial such as 

  2 33 2x x x   . The smooth window function leads to a faster decay of the curvelets. An 

arbitrary smooth window using the example from [17] is given by 

  
 

   
     

2 2

1 1

1 1

0 0

1
0 1 with      

1

1 1

x x

x

s x
x x s x e

s x s x

x



 
  
   



 

   
 

 


  (24) 

Equation (21) will be the smooth function used in the experimentation. A plot of the V and W 

window functions are shown in Figure 10, a similar plot is shown in [13]. 

  

Figure 10: Window Functions. 

 

Next, define the operator on one variable, as defined in [16] , by 

   (25) 
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where       is the Fourier transform of the function. There are many variants of the Fourier 

transform. In order to be consistent with Matlab definitions, this paper will use the Fourier 

transform defined by  

   (26) 

Therefore, the definition for the inverse transform is 

   (27) 

Notice the relationship between the  operator and the inverse Fourier transform. The reason 

for defining the operator is to construct a function such that   

 2 j

m mR U     (28) 

where R
*
 is the same as defined in (13).  Using the result from [16], define such functions by 

      2, 2   ,j

m mU s I R s        (29) 

with  , ,m m j l k , where 2  acts on the radial variable s, and I acts on the angular variable  .  

 

Example 5: Finding Curvelet Coefficients using Radon Transform of a Function 

Using the property of the frames, 2 j

m mR U   , a new method of finding the curvelet 

coefficients can be computed. Recall that regular curvelet decomposition has the curvelet 

coefficient , mf  . From this, the new curvelet coefficient can be calculated 
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, , 2

2 ,

2 ,

j

m m

j

m

j

m

f f R U

f R U

Rf U

 



 





  (30) 

This shows that the curvelet coefficients can be found with the Radon transform of the function.  

 

Before plugging values into Matlab, there must be some calculations to create the code that 

computes mU . The objective is to simplify the long formula for mU  into something that can 

more easily be converted into an algorithm using Matlab. With this in mind, this section will 

analyze calculations for mU .  

 

(31) 

   

where          
   

                 can be found by the following calculation. Let 2 j    

and  ,

,2 ,j j l

k j lb     , then 
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   (32) 

 

Since the window function W  is an explicitly-defined function, and only nonzero inside an 

interval (18), the value for an integral can easily be approximated by a summation. 

 

Using these equations, the corresponding coefficient for each curvelet can be approximated. It 

can be done regardless of whether the function is known or unknown. If the function is unknown, 

then the Radon transform of the function can be used.  

This study’s Matlab code creates an approximation for the curvelet coefficient using the Radon 

transform of a function.  
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CHAPTER FOUR: RESULTS 

 

 

Numerical experiments will show the extension of the theoretical results in practice. All of the 

experiments were done in Matlab. Curvelab, a software available for download, has written 

Matlab code in order to do the curvelet transform on 2D or 3D graphics [18].  This paper will be 

examining the curvelet transform on two dimensional function.  

Before doing experiments using the Radon data, consider an experiment of representing an 

image using curvelet decomposition. For the experiment, let  f  be the image to represent as a 

sum of curvelets.  

Using Curvelab, code can be created to show how curvelet decomposition can be used for image 

reconstruction. In the experiments, depicted in Figure 11 and Figure 12, first the curvelet 

transform is taken of an image. The image must be a grayscale image. If it is not, then the image 

can easily be converted to one using the command rgb2gray(x), where x is the colored image. To 

make the computations more efficient for Curvelab, the grayscale image is then resized to a 512 

by 512 image matrix. Because the curvelets occur at dyadic lengths, having a 512 by 512 matrix 

simplifies the curvelet decomposition. Next, select a percentage of the largest coefficients in 

modulus, and set the others to zero. Lastly, the code uses the inverse curvelet transform to create 

a partial reconstruction of the original image. 
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Figure 11: Image reconstruction. Clockwise from top left: original image, 10% of curvelets 

retained, 50% of curvelets retained, 20% of curvelets retained 
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Figure 12: Image reconstruction. Top: 50% of curvelets retained (left) and 30% of curvelets 

retained(right). Bottom: Original image. 
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Figure 11 and Figure 12 show the benefit of using curvelets as a basis in a sparse respresentation 

for images. This gives evidence needed to pursue representing images in medical field. In the 

experiments doing partial reconstruction of a function, the function to represent is an image. For 

medical imaging, the function to represent is a slice of the body, showing what is inside to help 

diagnose a patient. The problem with representing the image of the slice of the body is that the 

slice of the body is unknown. The CT scan gives the detected X-ray projections for each line of 

transmitted X-rays, which is equivalent to the Radon transform of the body slice, Rf. The 

problem is to reconstruct the image of the function,the slice of the body, using the Radon 

transform of the function, the CT scan data. From the image reconstruction experiments, it is 

clear that curvelets can do well when used as a basis for image reconstruction. With this in mind, 

the next step is to do curvlet decomposition on a figure, and then see if those values can be found 

with the Radon data. The objective of curvelet decomposition is to find the corresponding 

curvelet coefficients for a function.  

 

Figure 13: A curvelet's coefficient becomes larger as more of the function edge it overlaps. 
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As shown in Figure 13, there are different scenarios that can happen with curvelets. There is little 

overlap of the function and curvelet a, but it is not very much, so the corresponding coefficient is 

close to zero. Curvelet b is following the edge of the function. Thus, the corresponding 

coefficient for curvelet b is nonzero. For curvelet c, there is no overlap of the function edge, 

therefore the corresponding coefficient is zero. 

The following experiments will work to compute the curvelet coefficients of a function using the 

Radon data. To do this, the first thing to inspect is the curvelet in the discrete space for function 

representation. Figure 14 shows the effects of changing the scale in the curvelets. Notice the 

localization in the curvelets as the values for j increases. The length of the curvelet is 

approximately 2
-j
. For large values of j, such as j=7, the curvelet is smaller and more localized 

than the other curvelets of smaller values for j. This means the smaller details of the image would 

use curvelets with higher j in reconstruction.  
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Figure 14: Curvelets at different scales; in order, j=3, j=4, j=5, j=7.  

 

Next, consider the Radon data and the format of the acquired Radon data. On the original image, 

a line is made through the image with the equation cos sinx y s   , where   is the angle and 

s is the distance from the center. The integral of each line is a number that is put into a matrix 

whose columns represent   and rows represent s . See Figure 15 for an example. 
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Figure 15: Modified Shepp-Logan head phantom (left) and its Radon transform (right). 

 

After doing the Radon transform on an image, the experimental code will use the equations 

formulated in the methodology section to estimate the expected curvelet coefficient. Consider the 

image on which the experiment will be done, shown in Figure 16, along with the image of its 

Radon transform.  

  

Figure 16: Test image to estimate curvelet coefficents(left) and corresponding Radon 

transform(right) 
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In order to compare the methods of curvelet coefficient extraction, the next thing is to choose 

which curvelets to inspect. Figure 17 shows five curvelets and the respective location in the test 

image.  

  

Figure 17: Curvelets of interest in test image 

 

The test curvelets are in areas of interest in the image, and so would be best for comparing 

coefficient values. To calculate the coefficients, the curvelets will be estimated using a 

summation.  

                                 

   

      

    

   

      

                                            

Looking at the curvelet examples in Figure 14, one can notice a ripple effect. This ripple effect 

will occur because of the conversion from the Fourier domain. The ripples go on infinitely, but 

the magnitude of the ripples decreases as the distance from the curvelet increases. These ripples 
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make computation slow. To counteract this, a person could have the code set all small values to 

zero, which will make the computation more efficient.  

Before computing the coefficients for each curvelet, the code will calculate estimations for mU . 

Those values are used with the Radon data to compute the coefficients.  

 

Figure 18: Image representation of example Um 

 

Figure 18 shows an image for the approximation of Um. Notice the dimensions are the same as 

those of the Radon data in Figure 16, where the rows are the radial values and the columns are 

the angle values. Also, notice that Um is nonzero only for a specific window with the angular 

variable. In addition, the Um quantities have the same ripple effect as that of the curvelets, so the 
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values decay for large values of s. This gives hope toward localization using curvelets. From 

these numbers, the curvelet corresponding coefficients will be computed using the formula, 

           
   

   
       

   

   
 

   

   

    

   

      

                                            

  

 

Example 6: Comparing the Methods for Finding Curvelet Coefficients 

 Method  

Curvelet Found , mf   2 ,j

mRf U  Relative Error 

A 7750590 7691364 .4% 

B 2514301 2464984 1.9% 

C 3262012 3227391 1.1% 

D 1400844 1397639 .2% 

E 2300461 2193825 4.6% 

 

Comparing the values in the table, the first thing to notice is how large the numbers are. This is 

because, for this experiment, each pixel in the 512x512 image was set to a weight of one square 

unit. Therefore, this experiment is equivalent to a graph with the boundaries 256 256x    and 

256 256y    with each unit square with a specific weight. This weight was determined by the 

grayscale shade in the image where 0 is black and 256 is white. For parts of this function, 

specifically the areas of interest, the intensity can get very large, so the corresponding 

coefficients are large.  

The next detail to notice is the difference between the coefficients found with the method using 

the known function and the coeffients found using the Radon transform of the function. One 
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cause of this difference is the “ripple effect” seen in the approximated curvelets. The extra 

weight carried in the ripples will cause the difference to increase. This difference can also be 

attributed to the code approximating the coeffecients using a summation. The error is 

compounded at each step of the summation. With this in mind, the error can improve by taking a 

tighter sum. Since the coefficients are calculated through integrals, the approximating sum will 

improve with smaller intervals of approximation.  

The relative error in curvelet e is much higher than would be expected with this pattern. Figure 

19 shows curvelet e. Notice that the curvelet ripple is wrapping around the image and appearing 

on the other side of the image. The aliasing effect causes the curvelet to “pick up” values from 

incorrect parts of the function. To improve the error in the curvelet coefficient calculation, the 

wrap around issue needs to be addressed.  

 

Figure 19: Curvelet e with aliasing prominent. 
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Many curvelets can overlap in one area when representing a function as a sum of curvelets. This 

makes the method extremely robust. However, finding each curvelet coefficient using the Radon 

data is not yet as efficient as FBP. This might be a small price to pay for the robustness of the 

method. On the other hand, in practical use, the patient would need to be able to be diagnosed as 

soon as possible.  
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CHAPTER FIVE: CONCLUSION 

 

Computed tomography was created in the 1970’s. With increased power in technology, more 

time and money is being spent each year to create more efficient and accurate methods for data 

analysis and image reconstruction. The results in this study show the possibility for improvement 

in image reconstruction using curvelets. By efficiently encoding the edge information, curvelets 

can create a sparser image representation which might allow for more efficient image 

reconstruction.  

The coefficients can be calculated using the Radon data. Therefore, the next step would be to 

extract the curvelet coefficient from partial or truncated data. Future research on curvelets may 

show that these functions are an accurate representation for more medical uses. Localizing image 

reconstruction would be useful, requiring less radiation for the patient. Finding an effective way 

to invert the radon data, localized in the problem area, will lower the amount of harmful X-rays. 

To reduce the negative effects of the damaging radiation, the ability to focus on a specific part of 

the body is critical. Previous studies have shown the ability to localize the inversion of radon 

data using wavelets [19]. Those results could be extended into using curvelets as a basis in 

reconstruction.  

It is important to note that each curvelet’s corresponding coefficient was calculated using an 

approximation. Therefore, these experiments indicate a “rough” estimation for the coefficients. 

The true values can be calculated more accurately, but will be more costly. Using a higher 

processing machine will help improve efficiency. For more accurate results in calculating the 

curvelet coefficients, the issue of aliasing also needs to be addressed.  
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In this paper’s experiment, each of these coeffecients were computed one at a time, so 

reconstructing an entire image may be  too computationally expensive. With current processes, 

the computational cost of the curvelet transform is higher than that of some of the competing 

methods, such as FBP. Fast curvelet based algorithms need to be used to make this approach 

practically relevant. The development of the Fast Discrete Curvelet Transform made the curvelet 

transform more efficient, which will lead to more practical applications for curvelets [12]. An 

option might be to create a more efficient “pseudo-curvelet” transform [17]. This transform 

would have most of the characteristics of curvelets, but be more efficient. 
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APPENDIX: CODE 
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% reconstruction.m does a partial reconstruction of an image using functions 

% in Curvelab. 

 

% Set the percentage of coefficients used in the partial reconstruction  
pctg = 0.3; 

  
% Load image 
%x= phantom('Modified Shepp-Logan'); %load Lena; X = Lena; clear Lena; 
%x=imread('C:\Users\Jill\Desktop\MATH programs\AroundDeHeadCartoon','jpg'); 

  
x=imread('C:\Users\Jill\Desktop\MATH programs\thesis\Jill Set\Stuff to try 

for doing magic on\grandcyanon2','jpg'); 
x=rgb2gray(x); 
X=imresize(x,[256 256]); 

 
% Forward curvelet transform 
disp('Take curvelet transform: fdct_usfft'); 
tic; C = fdct_usfft(double(X),0); toc; 

  
% Get threshold value 
cfs =[]; 
for s=1:length(C) 
  for w=1:length(C{s}) 
    cfs = [cfs; abs(C{s}{w}(:))]; 
  end 
end 
cfs = sort(cfs); cfs = cfs(end:-1:1); 
nb = round(pctg*length(cfs)); 
cutoff = cfs(nb); 

  

  
% Set small coefficients to zero 
for s=1:length(C) 
  for w=1:length(C{s}) 
    C{s}{w} = C{s}{w} .* (abs(C{s}{w})>cutoff); 
  end 
end 

  
disp('Take inverse curvelet transform: ifdct_usfft'); 
tic; Y = ifdct_usfft(C,0); toc; 
Z = afdct_usfft(C,0); 
F = ifftshift(fft2(fftshift(Z))); 

  

 
figure 
colormap gray; imagesc(real(X)); axis('image'); title('original image'); 
figure 
colormap gray; imagesc(real(Y)); axis('image'); title('partial 

reconstruction'); 
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function curvelet=one 
tic 
[P Phat P_hat]=curvelet_MATRIX(5,-45,-45,10); 
 

 

%%%% To make a sparser matrix, set small coefficients to zero by uncommenting  

%%%% the following code. 

%for i=1:512 

%    for j=1:512 

%        if abs(P_hat(i,j))<=.1 

%           P_hat(i,j)=0; 

%        end 

%    end 

%end 

 

 
curvelet=real(P_hat); 
colormap gray; imagesc(curvelet); axis('image'); 
A=zeros(512,512); 
 

pic=imread('C:\Users\Jill\Desktop\MATH programs\thesis\asdfasdf','jpg'); 
pic=rgb2gray(pic); 
X=imresize(pic,[512 512]); 

 
for x=1:512 
    for y=1:512 
        A(x,y)=real(X(x,y))*real(curvelet(x,y)); 
    end 
end 
Approx=sum(A,2); 
approx=sum(Approx) 
toc 
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function U=U_m_MATRIX(j,l,k1,k2,m,n) 
 

% this function creates a matrix of Um values to use with the Radon data 
 

tic 
alpha=2^j; 
Kposition= [k1/alpha k2/sqrt(alpha)]; 
bkjl=Kposition*inv(r(thetaJL(j,l))); 
%+2*pi 
integral=0; 
U=zeros(m,n); 
for s=1:m 
    s0=ceil(m/2)-s; 
    for w0=1:n 
        w1=(w0-1)*pi/180-2*pi; 
        beta=-bkjl*thetaO(w1+thetaJL(j,l)); 

         
 for count=1:alpha 
     t=2^(j+1)/3+(count-1); 
  integral(1,count)=abs(t)*exp(1i*s0*(t-beta))*w(t/alpha); 
 end 
 approx=sum(integral)/alpha; 
vwindow=v((2^(ceil(j/2)+1)/pi)*(w1+thetaJL(j,l))); 
c=2^(-7*j/4)*sqrt(2*pi)*vwindow*approx; 
U(s,w0)=c; 
end 

  
    end 
    toc 
% figure 
% imagesc(real(U)) 

     
end 
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function [P P_hat]=curvelet_MATRIX(j,k1,k2,l) 

  

  

 
P=zeros(129,129); 
alpha=2^j; 
Kposition= [k1/alpha k2/sqrt(alpha)]; 
bkjl=inv(r(thetaJL(j,l)))*Kposition'; 
for x=1:512 
    x0=x-255; 
    for y=1:512 

        
       y0=256-y; 
       s=sqrt(y0^2+x0^2); 
       if x0>0 
           w0=atan(y0/x0)-2*pi; 
       elseif x0<0 
           if y0<=0 
               w0=atan(y0/x0)-pi; 
           else 
               w0=atan(y0/x0)-pi; 
           end 
       else 
           if y0<=0 
               w0=pi/2-2*pi; 
           else 
               w0=3*pi/2-2*pi; 
           end 
       end 
 

 

       % for j of even value, insert w0= w0+2*pi, otherwise output is  

 % automatic zero. 

 

 

 beta=[y0 x0]; 
       e=beta*bkjl; 
 

b=exp(-1i*e)*alpha^(-3/4)*w(s*alpha^-1)*v((w0+thetaJL(j,l))/thetaJL(j,1)); 
P(y,x)=b; 
    end 

  
end 
P_hat=ifftshift(fft2(fftshift(P))); 
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function theta=thetaO(omeg)  
theta=[cos(omeg) sin(omeg)]'; 
end 
 

 

function thetajl= thetaJL(j,l) 
thetajl=l*pi*2^-(ceil(j/2)+1); 
end 

 

 
function vwindow=v(x) 
if abs(x)<=1/3 
vwindow=1; 
elseif abs(x)>2/3 
vwindow=0; 
else 
vwindow=cos(pi/2*Nu(3*abs(x)-1)); 
end 

 

 
function Nu_value=Nu(x) 
if x<=0 
Nu_value=0; 
elseif x>=1 
Nu_value=1; 
else 
Nu_value=exp(-(1/x^2+1/(2-x)^2))/( exp(-(1/x^2+1/(2-x)^2))+ exp(-

(1/(1+x)^2+1/(1-x)^2))); 
end 

 

 
function Rotation= r(x) 
Rotation=[cos(x) sin(x); -sin(x) cos(x)]; 
end 

 

 
function wwindow=w(x) 
if x<=5/3 
if x<=4/3 
if x<=5/6 
if x>=2/3 
wwindow=cos(pi/2*Nu(5-6*x)); 
end 
wwindow=0; 
end 
wwindow=1; 
end 
wwindow=cos(pi/2*Nu(3*x-4)); 
else 
wwindow=0; 
end 
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function [R, xp]=radar 

  
iptsetpref('ImshowAxesVisible','on') 
% I = zeros(100,100); 
% I(25:75, 25:75) = 1; 

 

 

 
% Load Picture 

  
%I=phantom('Modified Shepp-Logan'); 
% I=imresize(I,[256 256]); 
x=imread('C:\Users\Jill\Desktop\MATH programs\thesis\Jill Set\Stuff to try 

for doing magic on\grandcyanon2','jpg'); 
x=rgb2gray(x); 
X=imresize(x,[512 512]); 

  
theta = 0:360; 
[R,xp] = radon(X,theta); 
figure 
imshow(R,[],'Xdata',theta,'Ydata',xp,... 
            'InitialMagnification','fit') 
xlabel('\theta (degrees)') 
ylabel('x''') 
colormap(hot), colorbar 
iptsetpref('ImshowAxesVisible','off') 
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