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ABSTRACT 

 

 For this action research project, I wanted to examine my practice of teaching 

mathematics. Specifically, I encouraged students to improve their communication skills during 

my math class through daily discussion and writing tasks. After establishing a class set of 

sociomathematical norms, the students solved problems provided by the Every Day Counts: 

Calendar Math program and used verbal and written formats to describe their problem solving 

methods and reasons. My study showed the effects of using discussion and writing to help 

students develop their conceptual understanding of mathematical ideas. Focus was placed on the 

quality of daily discussions and written tasks both at the beginning of the study and continually 

as the study progressed. Through daily discussions, monthly written assessments, and student 

interviews, the study helped to determine the importance of developing students’ mathematical 

communication skills and building conceptual understanding of mathematical ideas.  
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CHAPTER 1: INTRODUCTION 

 

What I can do, I can think about. What I can think about, I can talk about. What I can say, 

I can write. What I can write, I can read. The words remind me of what I did, thought, 

and said. I can read what I can write and what other people can write for me to read 

(Cited in Van de Walle, 1994, p. 33) 

 

Rationale 

 
Deep mathematical understanding does not happen in isolation. We cannot expect our 

students to sit silently, listen to lectures, and absorb any kind of useful information. “For 

effective learning to occur, the learner must be an active agent in the learning process and be able 

to reflect on this learning” (Sherin, Mendez et al. 2004). Sherin et al. also add that students must 

be able to work cooperatively, sharing and supporting each others’ learning. According to Van 

de Walle (1994), students not only need to be able to think on their own and share their learning 

with a group, but they also need opportunities to write about their learning, embedding the 

learned concepts into the students’ minds and providing a reflective tool for further 

understanding. Throughout the learning process, students are actively engaged in the 

mathematics they are learning and are ultimately held accountable for the concepts they have 

learned.  

In the past, this type of mathematical instruction would have been seen as radical. A more 

traditional, procedural-based method of teaching math was preferred. Since I began teaching, I 

have seen program after program come and go in the school system that all claimed to “fix” 



 2

every student’s problems with learning mathematics. However, these “fix-it-all” programs did 

little more than to delineate prescriptive steps for completing menial mathematical tasks. 

Students were no longer expected to think about their mathematics learning – math simply 

became a matter of memorizing the steps. 

For some students, this task was easy. Memorizing the steps for solving math problems 

required little or no effort. For others, however, the task of memorizing complex math algorithms 

was not only a daunting task, sometimes it seemed downright impossible. As more complex 

math concepts trickled their way down to the elementary level and standards were written that 

expected more out of students, students began to sink in the ocean of information they were 

expected to memorize. To make matters worse, standardized tests began emerging that required 

students to not only solve complex math problems, but to explain their thought processes as they 

did so. I witnessed first-hand as my students continually struggled with these tasks. Being a 

relatively new teacher, it frustrated me that I was unable to help them more effectively.   

With the emergence of these standardized tests, math curriculum and standards were 

revised to help better prepare students. The National Council for Teachers of Mathematics 

(NCTM) produced four Standards documents – Curriculum and Evaluation Standards (1989), 

Professional Standards (1991), Assessment Standards (1995), and Principles and Standards for 

School Mathematics (2000) – that were intended to promote classroom mathematics that reflects 

the way mathematics is used outside the classroom. The primary goal of the Standards is to 

“shift toward classrooms as mathematics communities (NCTM, 1991, p. 3). These documents 

included major reforms for the teaching of mathematics, including a vision to encourage student 

interactions in small and large group settings as well as stressing discussion and argumentation 

of mathematical ideas among students.  
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Recently, NCTM published the Curriculum Focal Points for Prekindergarten through 

Grade 8 Mathematics (NCTM, 2006). These Focal Points are an extension of NCTM’s 

Principles and Standards for School Mathematics (NCTM, 2000) which outlines guidelines for 

the development of school mathematics curriculum as well as providing specific expectations for 

pre-K-grade 2, grades 3-5, grades 6-8, and grades 9-12. The Focal Points elaborate on the 

Standards, identifying “areas of emphasis within each grade from prekindergarten through grade 

8” (NCTM, 2006, p. 1). This approach was designed to create a shift in mathematical instruction 

and help educators think about topics that are truly important in each grade level, moving away 

from the days of long lists of specific grade level expectations grouped under general standards. 

NCTM also designed the Focal Points in an effort to continue to emphasize the Process 

Standards included in the Principles and Standards – communication, reasoning, representation, 

connections, and problem solving – while simultaneously providing a “connected, coherent, ever 

expanding body of mathematical knowledge and ways of thinking” (NCTM, 2006, p. 1).  

Mathematics instruction in the United States has been described as “a mile wide and an 

inch deep” (Schmidt, McKnight, and Raizen, 1997). Simply put, students were expected to learn 

so much at each grade level that teachers really only had time to briefly cover topics before 

moving on to the next. There was no time for in-depth work with any particular topic, and 

mathematical reasoning and problem solving were nearly forgotten altogether. What precious 

little time teachers were afforded was spent trying to get students to memorize mathematical 

rules. The Focal Points are an attempt to remedy the inconsistencies in mathematics standards 

across the county. According to NCTM, identifying a small number of key concepts at each 

grade level and ensuring that the concepts in the later grades build on and connect logically to 

what was learned in the earlier grades provides students access to “extended experience with 
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core concepts and skills… [which] can facilitate deep understanding, mathematical fluency, and 

an ability to generalize” (NCTM, 2006, p. 5). 

NCTM’s goal for the Standards and Focal Points documents has always been to promote 

high-quality mathematics instruction through the use of the five Process Standards. Using these 

Process Standards as a vehicle for teaching mathematics, students will begin to view 

mathematics as much more than a slew of formulas and algorithms to memorize and regurgitate 

for a test. Instead, students will begin to see mathematics as a tool that will help them function 

when they exit school and enter the world outside of the classroom. 

My goal for this study is not unlike NCTM’s vision of the future of mathematics 

instruction. All too often I hear colleagues complain that students ascend the grade levels 

unprepared to meet curricular demands and expectations. One area of mathematics that just about 

every teacher complained that students were deficient in was number sense and operations. 

Basically, students had little or no concept of the place value of numbers and had difficulty in 

memorizing basic facts. To compensate for these deficiencies, repeated reteaching of basic skills 

became common practice. When questioned about the use of problem solving and mathematical 

communication and reasoning in the classroom, the answer was always the same – there is not 

enough time. Time constraints brought on by the pressures of performing well on standardized 

tests had all but eliminated critical thinking in the mathematics classroom. My goal for this 

study, then, became clear. Following in the footsteps of NCTM, I wanted to teach math in a way 

that would encourage students to take ownership of their understanding of mathematical 

concepts.  

Being a writing teacher as well as a math teacher, I understand the power of writing to 

focus thoughts and communicate ideas. No matter what type of writing is being used, the writer 
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has the responsibility to his audience to make his ideas clear and comprehensible. In my writing 

class, I often give students opportunities to discuss with a partner what they are going to write 

about or ideas for revisions they would like to make. After these discussions, students are better 

able to focus their work and produce exquisite pieces of writing. Having experienced the power 

of this combination – discussion and writing – in my writing class, I began to wonder if the same 

effect holds true for mathematics. Early explorations of teaching strategies with the purpose of 

helping students think more critically about mathematics concepts, as well as work in several 

graduate classes focused on math instruction, caused me to begin thinking about the connection 

between mathematical thinking, discussion, and writing. 

 

Question 

All of this led me to ask several questions.  I wanted to research, “Are discussion and 

writing about mathematics related? How?”  and “How do discussion and written explanations 

affect student understanding of mathematical concepts?” Specifically, I was interested in 

investigating the impact that communicating mathematical ideas through discussion and writing 

would have on fourth grade students’ conceptual understanding of mathematics. 

As this topic evolved, several focal points jumped out at me that I felt needed to be 

explored: (a) the history of the use of sociomathematical norms and discourse in mathematics 

classrooms, (b) various ways writing has been used in mathematics classrooms, and (c) how 

discussion and writing can be used jointly to enhance my own teaching practices.  
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Sociomathematical Norms and Discourse 

Students like to talk. This is a basic fact that every teacher understands full well. Some 

find student talk at most an annoyance and a waste of precious learning time. Discussion, 

however, can be a very powerful teaching tool. The trick is to develop expectations, or norms, 

for discussion that will focus student talk for the purpose of enhancing their education.  

Yackel (2001) explains that classroom norms relating to mathematical explanation and 

justification are both social and sociomathematical in nature. These norms describe the 

expectations and obligations that delegate interactions in the classroom. “Normative 

understandings of what counts as mathematically different, sophisticated, efficient and elegant 

are examples of sociomathematical norms. Similarly, what counts as an acceptable mathematical 

explanation and justification is a sociomathematical norm. The distinction between social norms 

and sociomathematical norms is subtle” (Yackel, 2001, pp. 6-7). In short, social norms are 

defined as the expectations for interactions in any subject area whereas sociomathematical norms 

are unique to mathematics (Cobb & Yackel, 1996). 

Yackel (2001) continues by describing four classroom norms that characterize student 

interactions. “These include that students are expected to develop personally-meaningful 

solutions to problems, to explain and justify their thinking and solutions, to listen to and attempt 

to make sense of others’ interpretations of and solutions to problems, and ask questions and raise 

challenges in situations of misunderstanding or disagreement” (p. 6). The fact that students are 

expected not only to focus on their own mathematical reasoning, but to also consider the 

interpretations of others, demonstrates a shift in thinking about how students are expected to 

learn mathematics. The heart of real-world mathematics lies in group thinking, and since our 
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goal as educators is to prepare our students for participation in the adult world, it seems only 

right that classroom activity should emulate the world beyond the classroom. 

Pang (2001) argues that mathematics education reform involving the engagement of 

students in the social make-up of the classroom may help students develop a deeper conceptual 

understanding and value of mathematics in their lives. Her study illustrates that there is much 

more to this kind of reform than simply changing sociomathematical norms within the 

classroom. “Simply changing classroom social norms promotes neither students’ conceptual 

learning opportunities nor their social engagement toward characteristically mathematical ways 

of thinking and communicating” (Pang, 2001, p. 11). According to this study, social norms and 

sociomathematical norms must remain in focus for student interaction in mathematics to be 

effective. 

For the purpose of my study, I understood the need to develop sociomathematical norms 

along with my students early on. The majority of my students have never experienced math 

instruction in this way. They have always been taught math using more traditional methods: 

textbooks, pencils, and paper. Usually, in their past experiences with mathematics, my students 

would participate in a teacher-directed lesson or activity (possibly involving a manipulative), and 

then would move into an independent assignment, typically out of the textbook or a workbook. 

The focus of these lessons would almost always be procedural-based – did students know how to 

regroup while adding, for example – with the teacher and students’ primary goal being to get the 

right answers. Knowing that my students were likely to have limited experience with 

mathematical discourse, it became apparent that the development of sociomathematical norms as 

part of my math instruction was essential.  
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Writing in Math 

 Writing is an interdisciplinary skill that is often overlooked in the mathematics 

classroom. This happens for several reasons. First, mathematics teachers who are more 

procedural in their instructional methods do not see a purpose for written work. Another is that 

many teachers have varying ideas of what writing actually is. When most mathematics teachers 

think “writing,” their initial thoughts centralize around essays presenting logically organized 

arguments or ideas. These essays tend to be prompt-based and have more language value than 

math value. While writing in math may include these types of formal writing, they represent only 

one kind of mathematical writing. 

 Writing to learn (Connolly, 1989) generally involves informal, less-structured forms of 

writing, including notes, brief explanations, and drawings to illustrate thinking processes. 

“Proponents of writing to learn have identified many potential benefits when students write as a 

regular part of their mathematics instruction” (Baxter et al., 2005, p. 120). Baxter et al. found 

that writing not only enhanced their students’ conceptual understanding of mathematics by 

providing an alternate method of expressing their understanding, but it also provided them an 

additional connection to the teacher.  

 Marilyn Burns (1995) claims that mathematical writing is not so different procedurally 

than writing in the language arts.  

The process of writing requires gathering, organizing, and clarifying thoughts. It demands 

finding out what you know and don’t know. It calls for thinking clearly. Similarly, doing 

mathematics depends on gathering, organizing, and clarifying thoughts, finding out what 

you know and don’t know, and thinking clearly. Although the final representation of a 

mathematical pursuit looks very different from the final product of a writing effort, the 
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mental journey is, at its base, the same – making sense of an idea and presenting it 

effectively. (p. 3) 

 Another reason that writing can be an effective learning tool for a mathematics classroom 

is that it forces students to focus on their metacognitive processes. Metacognition, or thinking 

about one’s own thinking, is essential for students to identify the appropriate information and 

strategies used during problem solving. When asked to write in math class, students must 

deliberately think about the specific steps they took to solve a problem and justify why those 

steps were appropriate to the problem. In a study by Pugalee (2001), a metacognitive framework 

was evident in student writing about problem solving processes. “Through written accounts of 

problem solving processes, these students demonstrated their mathematical reasoning. The data 

showed students’ use of metacognitive behaviors in the orientation, organization, execution, and 

verification phases of problem solving” (Pugalee, 2001, p. 243).  

 In this study, I hope to use writing not only to increase my students’ metacognitive 

awareness and problem solving skills, but also as an assessment to measure student achievement 

in mathematics. Miller and Hunt (1994) found that writing could also serve as a powerful tool for 

teachers, providing valuable information about students’ understanding and misunderstanding 

that would help to shape future reteaching or individual assistance. By reading and reflecting 

upon student writing, I will be able to make more informed decisions about what needs to be 

taught, when, and to whom.  

 

Bringing Discourse and Writing Together 

 Mathematics is more than a simple list of algorithms for students to study, memorize, and 

be able to use. Deep understanding and clear communication of mathematics concepts is required 
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for real-world applications. If our students are to have full access to the school curriculum and 

ultimately to opportunities in the adult world, mathematical literacy, or what the British call 

“numeracy,” is just as important as verbal literacy (Pugalee, 1999).  

 David Pugalee (1999), in his article, Constructing a Model of Mathematical Literacy, 

describes the necessary components for the development of mathematical literacy. Among 

others, one of these components is communication. Pugalee continues to discuss the increasing 

use of discourse as a facilitator of the construction of mathematical knowledge. “It is powerful 

when individuals become engaged in the type of discourse that forces them to reason about the 

mathematics they are using” (Pugalee, 1999, p. 21).  

 The development of mathematical literacy stems not only from discourse, however. 

Writing is a method of communication that can also be a powerful tool in developing students’ 

mathematical reasoning skills. Vygotsky (1987) argued that writing involves several cognitive 

and metacognitive processes that force the producer to be an active participant in his or her 

learning. Writing also serves in helping students clarify, refine, and consolidate their 

mathematical thinking (NCTM, 1989). The NCTM Principles and Standards for School 

Mathematics (2000) list five components for mathematical learning that all instructional 

programs should include: problem solving, reasoning and proof, communication, connections, 

and representation. For the purposes of this study, I plan to focus on the component of 

communication, which states that students should be able to: 

• Organize and consolidate their mathematical thinking through communication; 

• Communicate their mathematical thinking clearly and coherently to teachers, peers, and 

others;  

• Analyze and evaluate the mathematical thinking and strategies of others; and  
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• Use the language of mathematics to express mathematical ideas precisely. (p. 63) 

 In this study, I will be using a combination of discourse and writing to analyze the 

development of student understanding of whole number concepts and operations. I believe that a 

balanced mathematics program requires the ability of students to not only use mathematics skills, 

but also communicate their thought processes to others verbally and in writing. By bringing 

discourse and writing together to teach mathematics, I hope to be able to increase my students’ 

ability to solve problems, explain their solutions, and justify their reasoning using whole 

numbers and basic operations.  

 

Conclusion 

 The purpose of this study is to analyze the effects discourse and writing have on student 

understanding of whole number concepts and operations. By working with students to develop 

sociomathematical norms (Yackel, 2001) I hope to provide students with opportunities to 

vocalize their thinking about mathematical concepts, listen to others’ interpretations of and 

solutions to mathematical problems, ask questions to clarify misunderstandings, and ultimately 

construct meaning about mathematics through an integration of all three of these components.  

Likewise, I will use writing as a communication tool that will help students focus and 

reflect on their understanding of mathematical concepts so that their knowledge can be applied in 

various situation. For the purposes of this study, writing and discourse will be used in a 

reciprocal way; discourse will lead into writing, and vice versa.  

My plan is to require students to think, share, reflect upon, and revise their mathematical 

understanding of whole number concepts by placing the responsibility for learning on the 

student. My role in this will shift from “giver of information” to “facilitator/coach,” in which I 
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will act as an observer in times of accomplishment and as a guide through times of struggle. If 

we expect our students to eventually become productive members of society, we need to learn 

how to allow them to take control of their learning. While teachers will never be obsolete, the 

role of the teacher in a mathematics classroom needs to change in order for effective learning to 

occur.  

A review of significant literature provided much information. By looking at what others 

had done in regards to developing conceptual understanding through mathematical 

communication, I was able to determine which methods I felt would be best in my 

implementation of this plan. While I anticipate roadblocks and struggles of my own during this 

journey, I am excited about the opportunities this study will provide in learning valuable 

information about my students and about my teaching style.  
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CHAPTER 2: LITERATURE REVIEW 

 

Introduction 

 One of my main goals as a classroom teacher includes helping my students become 

autonomous learners. I want my students to be curious about the world around them and to 

motivate themselves to learn about that world and the role they play in it. Until recently, I had 

always thought that successful mathematics instruction was as simple as a student having all of 

his basic multiplication facts memorized or a student knowing that length multiplied by width 

was the formula for area of a rectangular figure. The notion of having students reason 

mathematically and explain their thinking using mathematically appropriate language was 

preposterous. 

 An ever-increasing body of mathematics education research has documented a shift away 

from the thinking that mathematics is little more than a collection of facts and formulas that 

students need to memorize and apply on a test. In this chapter, I have discussed the details of 

several studies that have concluded that students learn mathematics differently than originally 

thought. The following sections addressed several aspects of a cohesive mathematics learning 

environment, including how children must learn the language of math in order to communicate 

their thinking effectively, assisting students in building conceptual understanding of 

mathematical ideas, structuring a classroom environment that encourages and supports critical 

thinking about math concepts, and the relationship between talking and writing about 

mathematics. In addition, this chapter will also elucidate the implications of these studies on my 

own research.  
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Communicating Mathematically 

Communication is essential to virtually every aspect of life. Unfortunately, not all 

students come to school with the same level of communication skills. Some are able to verbalize 

their ideas eloquently, while others struggle to form a simple sentence. Communication is 

especially central in the learning of mathematics. The communication standards outlined in 

NCTM’s Standards documents (1989, 1991, 1995, and 2000) emphasize the importance of being 

able to talk about, write about, describe, and explain mathematical ideas. According to Hiebert et 

al. (1998), communication is a key component of developing students’ mathematical 

understanding, and includes “talking, listening, writing, demonstrating, watching…participating 

in social interaction, sharing thoughts with others, and listening to others share their ideas” (p. 5).   

The ability to express ideas clearly and coherently is a skill that helps students gain 

insight into their own thinking as well as the thinking of others and to build a conceptual 

knowledge base from the conglomeration of all of those ideas. Students should be able to express 

mathematical ideas both verbally and symbolically, learning not only to interpret the language of 

mathematics, but also to use it (Van de Walle, 1994). Without effective communication, math 

students miss prime opportunities to learn from their peers and to become familiar with the world 

of math that exists beyond the classroom. 

Communicating mathematical ideas provides students opportunities to combine their own 

understanding and experiences to that of their classmates. It is also important for students to 

learn how to make sense of and evaluate another’s methods and weigh the strengths and 

limitations of different approaches.  Through this series of trials and revisions, students become 

critical thinkers about mathematics (NCTM, 2000). 
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Mathematical communication can take a variety of forms. The purpose of this literature 

review is to explore two communication formats – discussion and writing – and their influence 

on student understanding of mathematics. This review will also look at how discussion and 

writing affect students’ abilities to communicate mathematically as well as the teacher’s and 

students’ roles in a classroom environment where social interaction and written explanations take 

center stage.  

According to a study conducted by Yackel (2000), the theory of symbolic interactionism 

is “useful when studying students’ learning in inquiry mathematics classrooms because it 

emphasizes both the individual’s sense-making processes and the social processes” (p. 2). During 

this study, Yackel examined the combined use of both social and sociomathematical norms in a 

variety of classrooms and their affects on student understanding of mathematical concepts. The 

result was that students began to listen to and make sense of others’ thinking, making 

mathematical argumentation possible. The existence of social and sociomathematical norms in 

the classroom both allowed students to think and speak freely about mathematics but also 

provided distinct parameters for the social interactions taking place. In planning for my study, I 

decided to use an inquiry-based approach to mathematics instruction. Since this type of 

instruction may differ from other instructional methods used at my school, I hoped that 

developing social sociomathematical norms with my students will help to facilitate our class 

discussions. 

In a study conducted by Steinbring (2005), mathematical communication was found to be 

a complex structure; it requires the combination of cognitive and social processes in a way that 

supports student thinking and mathematical understanding. These two systems – one mental; one 

social – must work closely together in order for mathematical understanding to be achieved. 
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“Without the participation of consciousness systems there is no communication, and without the 

participation in communication, there is no development of consciousness” (p. 320).  

Steele (2001) discussed the implications of a sociocultural environment, in which 

students sharing their reasoning and listening to others share their ideas is essential to building 

mathematic understanding. She quoted Vygotsky (1994), who stated that individuals learn the 

rules of a culture by interacting with them, internalizing them, and are transformed by them as 

they explore the language of that culture. This idea parallels the mathematical culture in that 

students construct understanding and develop mathematical meaning as they learn to explain and 

justify their thinking using the language of mathematics. The more active students are in thinking 

and communicating about mathematics, the stronger their understanding of mathematical 

concepts becomes.  

In her study, Steele (2001) analyzed the interactions between a fourth grade teacher and 

her students as she attempted to teach mathematics using a sociocultural approach. Steele 

specifically looked for characteristics of instructional strategies that most clearly represented the 

sociocultural perspective. The study focused mainly on the teaching practice and the reasoning 

behind the teacher’s decisions before, during, and after each lesson. Two themes of 

communication emerged during the study, including ways the teacher helped students acquire 

and apply the language of mathematics and ways the teacher used visual representations to 

explain their thinking. Pirie (1998) is quoted in the discussion as saying, “[T]here are several 

ways of using language to communicate about mathematics. Teachers and students communicate 

using ordinary language, mathematics verbal language, symbolic language, visual representation, 

unspoken but shared assumptions, and quasi-mathematical language” (p. 412). According to 

Pirie, each of these forms of communication should be present in every mathematics classroom 
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as each is justifiable. For example, a student may use an ordinary word like middle to describe 

the center of a circle, and it would be the teacher’s responsibility to replace the ordinary word 

with the appropriate mathematical term, thereby expecting students to use the appropriate term to 

explain and justify their thinking henceforth. 

Pirie (1998) also stated that visual representation is a powerful tool for guiding the 

growth of mathematical communication. If students have a concrete representation of the 

abstract terminology to study, then new understanding is created much more easily. In my study, 

I plan on using visual representations (in the form of a bulletin board display) derived from 

several math disciplines as a spring board to help launch students into meaningful mathematical 

discussions. According to Pirie, students who are learning the language of mathematics acquire 

communication skills more quickly with visual representations acting as a learning scaffold.  

 

Classroom Environment 

If the goal of the mathematics reform movement is to move away from traditional views 

of mathematics and towards developing classrooms as mathematical communities (NCTM, 

1991), then it is the teacher’s responsibility to create a classroom environment that supports 

mathematical discourse (Van de Walle, 1994) – the communication of thought by talk or writing. 

The Principles and Standards for School Mathematics (NCTM, 2000) supports the belief that 

elementary mathematics instruction should promote more than students’ abilities to make sense 

of mathematics, but should also provide students with choices that help them connect the 

mathematics they are learning to their prior knowledge through the use of concrete materials.  

The Constructivist theory supports a similar belief. For this study, I define constructivism 

as a student’s ability to reflect on what has already been learned and connect prior knowledge to 
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new or unfamiliar concepts. I planned to use a social constructivist approach, which involves 

student-teacher and student-student interactions through discussion and writing about concrete 

mathematical experiences. These experiences were designed to help my students make 

connections to previously learned math concepts and apply that knowledge to the unknown.  

To help guide students through the process of making sense of mathematics through both 

concrete materials and abstract symbols, the Constructivist approach includes three levels of 

representation: concrete (enactive), representational (iconic), and abstract (symbolic) (Bruner, 

1966). The concrete level includes the use of mathematical manipulatives, providing students a 

“hands-on” approach to mathematical learning. Students should then phase into the 

representational level, in which they demonstrate their understanding of mathematical concepts 

through the use of pictures, graphs, charts, and other mathematical representations. Finally, 

students move into the abstract level, in which they begin to use the symbols associated with the 

mathematics they are exploring to express their mathematical ideas. Students should also be able 

to make a connection between all three levels and use that connection, along with the appropriate 

mathematical vocabulary, to further their mathematical understanding. 

Mathematics is thinking, problem solving, and searching for order. The symbolism so 

closely associated with mathematics is only a means of recording and expressing 

mathematics and conveying these ideas to others. Children need to view written work 

with this perspective. In the same sense, children need to learn other modes of 

mathematical expression, including oral and written reports, drawings, graphs, and charts. 

Each day should include discussion and/or writing about the mathematical thinking that 

was going on in the classroom. No better way exists for wrestling with an idea than to 
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attempt to articulate it to others. Mathematical expression, therefore, is part of the process 

and not an end in itself. (Van de Walle, 1994, p. 8) 

 

Constructivist vs. Traditionalist Teaching  

Mathematics is traditionally taught in a lecture-based format. According to Wood (2001), 

the traditionally taught mathematics classroom involves “the teacher present[ing] a problem, 

ask[ing] for the solution, and then ask[ing] a series of questions to insure that students know a 

mathematical idea and the written symbols” (p. 110). In this traditional view of mathematics, 

students are not required to think as much as they are required to determine which mathematical 

rule or procedure should be used (Van de Walle, 1994).  

As mentioned previously, constructivist teachers devote time to creating a classroom 

environment where students feel comfortable reflecting on theirs and others’ prior knowledge, 

and then use that knowledge to expand their thinking about new or unfamiliar concepts. 

Traditionalist teachers typically use teacher-centered instructional strategies that include a focus 

on facts and theoretical principles, few opportunities for experiential learning, and grades that are 

based on rote memorization and regurgitation of facts, such as multiple choice, true-false, and 

matching item (Wingfield & Black, 2005). 

Kutz (1991) argued that teachers are neither Constructivist nor Traditionalist in nature; 

they tend to teach the way they were taught and use what has consistently worked in the past. 

Cobb, Yackel, and Wood (1992) claim that these two teaching and learning methods are in 

constant conflict. Learning can be viewed in two perspectives: a) as a “process in which students 

actively construct mathematical knowledge as they try to make sense of their world” (p. 6) or b) 

as a “process of apprehending or recognizing mathematical relationships presented in 
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instructional representations” (p. 6). In other words, learning can bee seen as a social process, 

where students build an understanding through various experiences, or as a banking system 

(Freire, 1970), which depends upon the teacher’s expertise of preexisting mathematical 

knowledge and his or her delivery of that knowledge to students.  

Cobb et al. (1992) identified three dangers of the second definition of mathematical 

learning. First, students will have difficulty grasping mathematical relationships presented 

through instructional representations unless they are explicitly told what they are supposed to 

learn. Second, the representation provided by the teacher may not be sufficient in helping 

students identify the “correct” mathematical relationships. Finally, students who are taught in a 

more traditional manner are likely to disconnect the mathematics they learn in school from 

mathematics used in other settings, where problem solving and mathematical reasoning play a 

predominant role.  

In looking at this comparison of these two teaching methods, a very basic necessity of 

teaching comes into focus: the classroom environment. A supportive learning environment is an 

important factor in a student’s achievement or failure. Every teacher wants a classroom that 

operates smoothly and in which the students feel safe. In order to accomplish this, teachers must 

be willing to plan, implement, and enforce specific expectations for their students. When 

teachers take the time to do this, students will know what is expected of them and adapt to the 

methods used by the teacher (Desiderio and Mullennix, 2005). “Teachers have the ability to 

empower their students. They may establish roles for themselves and their students” 

(Egendoerfer, 2006, p. 10).  

In planning for this study, I hoped that I would see a change in the way my classroom 

operates. In past reflections of my teaching practice, I came to realize that I had been teaching in 
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a very traditional way – chiefly through lecture and presenting the procedural aspect of 

mathematics. There was very little opportunity for students to think on their own, let alone 

attempt to communicate their ideas to their peers. By working with my students to establish 

social and sociomathematical norms to help guide our math work, I hoped to in turn create a 

classroom environment that would encourage more student-student interactions and less teacher-

directed lecture. 

 

Classroom Interactions 

According to Yackel (2000), two types of interactions can take place during mathematics 

instruction. The first is an intellectual interaction between teacher and students as the discussion 

focuses on specific aspects of mathematical problems. The other is a social interaction, as the 

teacher and students shift from discussing the mathematical concepts to talking about how to act 

and contribute to the discussion. It is due to these two types of interactions that the need for both 

social and sociomathematical norms is crucial to a mathematics classroom. 

Social Norms 
“’Norm’ is a sociological construct and refers to understandings or interpretations that 

become normative or taken-as-shared by the group” (Yackel, 2000, p. 7). Norms describe the 

expectations that guide classroom interactions. According to Planas and Gorgorió (2004), social 

norms describe not only the way individuals are expected to behave in the classroom setting, but 

they also describe the collective behaviors of the group comprising the class, including the 

teacher. Vacha (1979) stated that social norms are created and shared by all of the members of a 

group. So long as a majority of the group members support and conform to the norm, it shall 

remain taken-as-shared during the group’s interactions. In his observations of second and third 
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grade students vying for a playing field with the intent of initiating a game of kickball, several 

problems ensued. Rather than fighting, for which it was commonly known would result in the 

involvement of the supervising teachers, the students compromised and worked out their own 

norms for deciding who would play on the field and when. 

While in this example norms were established without the assistance or interference of a 

teacher, classroom norms require input from the teacher. In the classroom setting, the teacher is a 

member of the group, and social norms are only effective when all members of the group are 

supportive of them. Throughout the course of my study, I plan to first work with my students to 

establish the social norms necessary to guide acceptable behaviors as well as the adequate 

exchange of ideas within the classroom. I have identified this as an important first step in my 

research because I want my students to have clear expectations for their behavior and social 

interactions in order to maintain a high level of academic integrity. 

Sociomathematical Norms 
In mathematics, the specific expectations for student and teacher interactions are called 

sociomathematical norms. They act as guidelines for the specific exchanges between students 

and teachers during math class. Yackel, Cobb, and Wood (1992), in their study that involved 

several levels of classrooms, examined the use of instructional approaches that viewed 

mathematics as both an individual and a cooperative activity. During the study, the authors 

discussed several difficulties that underlie the representational view of the learning process, 

arguing that strict adherence to this view contradicts many of the goals of recent mathematics 

instructional reform. Instead, they offer alternatives to the representational view that help to 

illustrate the point that mathematical learning takes place “not between students’ internal 

representations and mathematical relations contained in external representations but between the 
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students’ interpretation of instructional materials and the taken-as-shared interpretations of 

mathematically acculturated members of the wider community” (p. 17). There for, the authors 

concluded that, in order for classroom interactions to remain as authentic as possible, students 

must be active participants in the construction of classroom norms. 

Sociomathematical norms take shape when mathematical explanations and justifications 

become acceptable (Hershkowitz and Schwarz, 1999). This acceptability results from the 

comprehension and replication of explanations and justifications of mathematical solutions. No 

longer is the teacher expected to be the central power in the classroom. Students are now being 

asked to become critical thinkers about mathematics and take responsibility for their own 

understanding of mathematical concepts. “The establishment of new sociomathematical norms is 

directly related to the Constructivist approach in that students are active in their role and take 

responsibility for their part in mathematical discussions” (Egendoerfer, 2006, p. 10).  

Sociomathematical norms play a major role in the discussions that take place within a 

mathematics classroom. Not only do they outline what makes mathematical explanations and 

justifications acceptable, but they also “deal with the actual process of making a contribution” 

(McClain and Cobb, 2001, p. 238) during mathematical discussions. McClain and Cobb noted 

the process of developing sociomathematical norms in one first-grade classroom over the course 

of several months. One of their goals was to develop activities that would encompass mental 

computation and estimation of numbers up to 100. During the study, McClain and Cobb tried to 

“account for the students’ learning in the social context of the classroom throughout the school 

year” (p. 240).  Two main instructional sequences were used in the study: the Patterning and 

Partitioning Sequence and the Structuring Numbers Sequence (McClain & Cobb, 2001 and 

Gravemeijer et al, 2000).  The Patterning and Partitioning Sequence involved students 
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conceptualizing and organizing a group of up to ten objects in various ways. For example, a 

student might represent eight items as four and four, five and three, or two less than ten 

depending on the situation. This sequence focused on finger patterns, spatial patterns, and mental 

conceptualization. The Structuring Numbers Sequence was, in short, instructional activities 

designed to increase student computational abilities through various thinking and composing 

strategies. As a result of their twelve-week study, McClain and Cobb found that 

sociomathematical norms are not a set of predetermined rules that should be laid out before 

students enter a classroom. These norms should be revisited, reflected upon, and revised if the 

needs of the class require it.  

Williams and Baxter (1996), in a study involving a middle school classroom, sought to 

demonstrate that it is “both feasible and responsible to implement instructional programs that 

foster the acquisition of mathematical thinking and reasoning skills by students attending middle 

schools in economically disadvantaged communities (Silver & Lane, 1993, p. 12), as part of their 

work with the Quantitative Understanding: Amplifying Student Achievement and Reasoning 

(QUASAR) project. Through their three-year observation of one middle school classroom, they 

identified two types of scaffolding that would support student achievement in mathematics: 

analytic and social. Social scaffolding is “the scaffolding of norms for social behavior and 

expectations regarding discourse” (Williams and Baxter, 1996, p. 24) and is intended to support 

positive student interactions during discussions (Nathan and Knuth, 2003). Analytic scaffolding, 

on the other hand, is “the scaffolding of mathematical ideas for students” (Williams and Baxter, 

1996, p. 24) and is intended to support students’ learning of mathematical concepts (Nathan and 

Knuth, 2003).   
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The teacher plays an important role in the classroom, acting as a guide in the 

development of sociomathematical norms. By involving the students in the process of 

developing sociomathematical norms, teachers take on a dual role of supporting “both the 

student’s mathematical development and development of mathematical autonomy” (McClain and 

Cobb, 2001, p. 238). In this attempt to guide the development of sociomathematical norms, 

teachers try to also influence their students’ beliefs in what it means to learn and do mathematics. 

McClain and Cobb (2001) also found that the teacher’s role as a guide depended upon the 

teacher’s ability to be flexible, as teaching is a process that involves reflection and adaptation 

when expectations are challenged by unanticipated events. In other words, the teacher needs to 

often take on the role of a mediator between the social interactions that are typical of any 

classroom situation and the interactions that are mathematical in nature (Pang, 2001). “One 

fundamental role of the teacher in promoting communication is to create a classroom 

environment of mutual trust and respect in which students can critique mathematical thinking 

without personally criticizing their peers” (Pugalee, 2001, January, p. 297). This flexibility 

supports the shift in mathematical instruction towards a more student-centered classroom by 

presenting mathematical ideas as “emerging in a continuous process of negotiation through 

social interaction” (Pang, 2001, p. 1).   

For example, based on the observed needs of the students, McClain and Cobb (2001) 

worked with first grade teacher Ms. Smith to incorporate her previously-established classroom 

norms into her mathematics instruction. These included:   

1. The students were expected to explain and justify their reasoning. They were also 

expected to raise their hands to indicate that they had a contribution to make. 
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2. On those occasions where a student’s contribution was judged to be invalid in some 

way by the classroom community, Ms. Smith frequently intervened to clarify that this 

student had acted appropriately by attempting to explain his or her thinking. Further, 

Ms. Smith emphasized that such situations did not warrant embarrassment.  

3. The students were expected to listen and make sense of others’ explanations. Ms. 

Smith directed students giving explanations to speak loudly enough for all to hear. 

4. Ms. Smith often commented on or redescribed students’ contributions, frequently 

notating their reasoning on the white board or overhead projector as she did so.  

5. Students were expected to indicate nonunderstanding and, if possible, to pose 

clarifying questions to the student explaining the problem. 

6. Students were expected to explain why they did not accept explanations that they 

considered invalid (McClain & Cobb, 2001, p. 245). 

In my study, I plan to work with my students to establish sociomathematical norms for 

use in the classroom. This may prove to be as crucial as the development of social norms, as 

discussions with other teachers at my school have indicated to me that my students are entering 

my classroom with a purely algorithmic view of mathematics. In other words, they do not know 

how to think critically or talk about mathematics, merely because they have never been expected 

to do so. In the words of Sir Isaac Newton, I hope to be able to see further because I have stood 

on the shoulders of giants. By adapting the ideas presented in this chapter to my particular group 

of students, I hope to see a dramatic improvement in the way I teach mathematics.  
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Communication through Writing 

 The development of sociomathematical norms needs not only apply to classroom 

discussion of mathematical concepts. These norms may also apply to student writing about 

mathematical concepts as well. As stated earlier, the communication standards outlined in 

NCTM’s Standards documents (1989, 1991, 1995, and 2000) emphasize the importance of being 

able to talk about, write about, describe, and explain mathematical ideas. However, writing often 

involves a much more structured utilization of language. “When students learn to use language to 

find out what they think they become better writers and thinkers” (Countryman, 1992. p. 11).  

Unfortunately, mathematical language is very rarely taught directly or assessed for correct usage 

(O’Shea, 2004). Little or no opportunities to write and think result in students’ inability to write 

and think well. “When math classes, like writing classes, are focused on rote performance of 

academic exercises, there is equally little opportunity to think” (Rose, 1989, p. 9).  

Much like literary conventions, mathematical conventions consist of a combination of 

words and symbols that work together to express ideas. Incorrect use of mathematical terms and 

symbols is “not only annoying to the reader but it can also lead to mistakes and 

misunderstandings” (O’Shea, 2004, p. 102). Written assignments that extend the 

sociomathematical norms of the classroom and require students to explain and justify their 

problem solving strategies have the potential to support oral discussions. When written tasks and 

discussion are combined, the opportunity for students to construct knowledge is increased 

exponentially.  

In my study, I wanted to help my students make a connection between the social 

interactions of the classroom discussions and their ability to communicate their mathematical 

ideas in writing. I hoped that my students would be able to make the transition between using our 
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social and sociomathematical norms during discussions and using the same guidelines to drive 

their writing. I also wanted my students to understand that while discussing, ideas are heard and 

responded to instantaneously. While writing explanations, however, feedback is not as readily 

available. It is the responsibility of the writer to be sure that all ideas are elucidated as eloquently 

as possible to prevent confusion when the ideas finally reach the intended audience. 

Mathematical language must be used appropriately and accurately, and therefore classroom 

assignments involving writing should be designed to support students in this endeavor.  

A prime example of a writing activity that required students to use mathematical 

language appropriately and accurately was developed in a study conducted by Tichenor and 

Jewell (2001). The researchers made arrangements for 13 elementary education majors to 

correspond via e-mail with 21 second grade students. The college students’ objective was to use 

questioning techniques to try to get the second graders to share their thoughts about 

mathematical concepts in meaningful ways in their writing. The participants benefited from the 

project in both expected and unexpected ways. The college students learned about effective 

questioning techniques and the usefulness of writing as an instructional tool in mathematics. The 

second graders felt as though their math and writing skills improved as a result of the project. All 

in all, the project provided an authentic method of incorporating writing into mathematics 

instruction. 

In addition, writing can provide an alternative form of active participation for students 

who are reluctant to partake in verbal conversations (Baxter et al., 2005). With conversation, one 

person talks at a time while everyone else listens, forms their own thoughts on the subject, and 

waits for their turn to speak. During this time, some students may easily become disengaged or 

even allow more dominant students to do all of the work. By asking students to write prior to 
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discussing, all students are more apt to participate and contribute to the ideas presented during 

the discussion (Countryman, 1992).  

In their study, Baxter and her colleagues wanted to examine the mathematical proficiency 

of low-achieving students through their writing. The study was one in a series focusing on 

mathematics instructional reforms with low-achieving middle school students. By observing data 

from classroom discussions, student journals, and interviews with the teacher, the researchers 

were able to obtain a complete view of classroom communication.  The results of the study 

indicated that students who do not participate actively in mathematics discussions were just as 

reluctant to write about their mathematical reasoning. Just as important, these students who 

would not participate in whole group discussions demonstrated mathematical proficiency in a 

smaller groups setting, such as in pairs. After these small group discussions, students were more 

willing to write about the mathematical experience in their journal, showing an increasing ability 

to express their mathematical thinking. Simply put, writing allowed the students to express their 

ideas about mathematics at their own pace, using their own experiences and language in 

combination with mathematical language. When used in conjunction with discussion, writing 

also plays a role in creating a caring and cooperative classroom environment through interaction 

(Connolly, 1989). 

Writing about mathematics has many benefits. For one, writing forces the learner to slow 

down their thinking, creating an awareness of the processes being used. These metacognitive 

behaviors are essential for effective problem solving (Pugalee, 2001, May). Through writing, 

students are able to keep track of their mathematical reasoning much more effectively than in 

conversations, which tend to be more fast-paced. Therefore, “writing can be a tool for supporting 

a metacognitive framework and that this process is more effective that the use of think-aloud 
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processes” (Pugalee, 2001, January, p. 44). Pugalee (2001, May) also found that writing provides 

a source of information for teachers to assess their students thinking about and learning 

mathematical concepts. Writing assignments become a record for teachers to refer to when 

determining students’ strengths and weaknesses and how best to address further instruction.  

Charged with the instruction of such a variety or learners, teachers are constantly looking 

for ways to meet the needs of all learners. “Writing can revive the bored students and provide a 

less threatening activity for the student who is math-anxious or has a lower skill level. For the 

strong math student, writing is a chance to show creativity” (Birken, 1989, p. 38). Also, strong 

math students who run into cognitive blocks may use writing to clarify confusion and internalize 

concepts (Birken, 1989). Baxter et al. (2005) determined that journal writing not only enhanced 

students’ cognitive processes, but it also served as a way for lower-achieving students to connect 

with the teacher on a more continual basis. Reflecting on mathematical experiences and then 

recording those reflections in writing enables students to show what they know and exposes what 

they do not know (Baxter et al., 2005). When students are given opportunities to develop control 

over their own learning, they feel a sense of accomplishment, which in turn improves students’ 

attitudes toward mathematics (Powell & López, 1989). 

 

Conclusion 

 A review of literature shows that students need to be active participants in their 

education. By learning to communicate mathematically, students can take control of their 

learning and become critical thinkers. Teachers have the responsibility to create a classroom 

environment which creates a press for conceptual understanding (Kazemi & Stipek, 2001) and 

supports positive social interactions between students. The verbal and written discourse in which 
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students take part helps to construct mathematical understanding that lays a foundation for future 

mathematical learning. 

When students are given the opportunity to communicate about mathematics, they engage 

thinking skills and processes that are crucial in developing mathematical 

literacy…Students who are supported in their “speaking, writing, reading, and listening in 

mathematics reap dual benefits: they communicate to learn mathematics, and they learn 

to communicate mathematically” (NCTM, 2000, p. 60). Communication, then, should be 

a fundamental component in implementing a balanced and effective mathematics 

program. (Pugalee, 2001, January) 

In taking a detailed look at the differences in the Constructivist and Traditionalist 

approaches, the benefits of the development of sociomathematical norms, and the effectiveness 

of using writing in the mathematics classroom, teachers can employ communication strategies 

that are applicable for all types of learners. 

In beginning this qualitative action research project, I was interested in studying a 

different way of teaching mathematics than I had previously been accustomed to. With the 

demands laid down upon teaching by state standards and high-stakes tests, a reflection of my 

past teaching practices revealed that I was relying on rote, procedural-based instructional 

methods and drilled practice to teach mathematics. For the sake of test scores, I was ignoring the 

fact that my students come to me with vast experiences in mathematics and have the ability to 

communicate their experiences, albeit in a rudimentary manner. After experiencing great success 

with creating a positive learning environment through the development of social norms and 

classroom expectations, I was interested in trying to improve my students’ mathematical 

communication skills through the development of sociomathematical norms and applying them 
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to both whole-class discussions as well as individual student writings.  I was also interested in 

redefining my role in the classroom as well as the responsibilities of my students. I hoped that 

the changes I planned to implement in my teaching practices would have a positive effect on the 

classroom environment I continually strive to create as well as on my students’ learning and 

understanding of mathematics.  

The following three chapters will describe and explain my methodology, my data 

analysis, and my conclusions. Convenient access to a willing group of fourth grade students 

provided me with many opportunities to collect useful data. In the next chapter, I will describe 

the data collection methods I used and the rationale behind them. My questions, “Are discussion 

and writing about mathematics related? How?” and “How do discussion and written explanations 

affect student understanding of mathematical concepts?” will be explored in greater detail in the 

remaining chapters. 
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CHAPTER 3: METHODS 

 
 In order to answer my questions, “Are discussion and writing about mathematics related? 

How?” and “How do discussion and written explanations affect student understanding of 

mathematical concepts?”  I needed to provide a context for gathering data. In this chapter, I 

describe the setting and the methods used within my fourth grade classroom to collect 

appropriate information to answer my questions. 

 

Design of Study 

 My goal in this process was to look closely at my practice of teaching mathematics and to 

determine if certain methods of teaching were effective in increasing student understanding of 

mathematical concepts. Therefore, I conducted an Action Research study with my students. 

“Action research is a qualitative study conducted in the natural classroom setting” (Egendoerfer, 

2006). By using this type of research, I was able to perform the dual tasks of teacher and 

researcher without overloading myself or my students with work. Part of my goal was to provide 

narrative describing my students’ daily encounters with mathematical concepts and my 

observations of their use of discussion and writing during math time. 

 

Setting 

School Setting 

 The school is located in an average population school district in the state of Florida. Out 

of the 63,000 students who attend school in the district, the school houses 817 students, including 
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the fourth largest population of low socioeconomic students in the district, making the school 

eligible for federal Title I funds. Free and reduced lunch is offered at the school, of which 63% 

of the students qualify. Of the 817 students who attend the school, 29% are African American, 

3% are Asian, 25% are Hispanic, 10% are Multiracial, and 31% are Caucasian. In addition, 11% 

of the student population are speakers of other languages and 11% have been identified as 

needing special education services. 

 

Classroom Setting 

 My action research study was conducted with a diverse group of 22 fourth grade students. 

These students, who ranged in age from nine to eleven years, were randomly placed in my class 

by the school administration. This random selection takes place during the summer months. Each 

year, teachers fill out information cards on each student, providing data such as academic 

standing (above, at, or below grade level), test scores, and any special services received. The 

boys’ cards are blue and the girls’ cards are pink. After turning them into administration, the 

cards are then divided into classes randomly to ensure that each teacher receives a fair mix of 

students.  

Each student gave assent to participate in the study. During the course of the study, one 

student moved out of the class. The class consisted of 10 boys and 11 girls. The group was made 

up of 5 Caucasian students, 5 African American students, 7 Hispanic students, 1 Asian student, 

and 3 Multiracial students. Two students received English as a Second Language (ESL) services, 

2 students received services for Emotionally Disabled (ED), 2 students received services for 

Speech and Language Impairment, and 12 students received free or reduced lunch.  
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Methods 

Data Collection 

 After receiving Institutional Review Board (IRB) approval (Appendix A) and principal 

approval (Appendix B), I prepared a parent consent form (Appendix C). Our school holds a 

“Meet the Teacher” day the week before school starts, so I planned to speak to parents about the 

study during that event. I received 16 signatures out of 22 that day, so I sent the remaining forms 

home with students on the first day of school. The remaining forms were returned, giving all of 

my students the permission required to participate in the study and to be video or audio taped. On 

the first day of school I read the student assent form (Appendix D) to my students, explaining the 

study and answering any questions they might have had. I then asked students to complete a 

pretest (Appendix E) designed to measure their writing ability at the beginning of the school 

year. The task was also intended to help me gauge my students’ ability in expressing themselves 

in a mathematical context. I then selected three students from my class to analyze their written 

explanations. I chose these students based on information I was given about their performance in 

mathematics in third grade. One student was high-achieving, one was an average student, and 

one was low-achieving. This assessment marked the beginning of my data collection. 

 

Procedures 

  In order to provide my students with concrete visuals as an anchor for their discussions, I 

began using Every Day Counts Calendar Math (Gillespie & Kanter, 2005). Every Day Counts 

Calendar Math is a researched based mathematics program published by Great Source Education 
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Group, which is a division of Houghton-Mifflin Company. This program was designed to meet 

five criteria: 

1. Children need to learn mathematics incrementally, giving them the opportunity to 

develop understanding over time; 

2. Visual models help children visualize and verbalize number and geometric relationships; 

3. Classroom discussion fosters the growth of language acquisition and development of 

reasoning. It also allows children to discover that there are many strategies for solving 

problems. 

4. Over time, children can learn to think algebraically. Early exposure to this type of 

thinking will lead them to a successful future in mathematics. 

5. Observing and listening to children is essential to ongoing assessment that can guide 

instruction (Gillespie & Kanter, 2005, p. 4). 

Since the underlying purpose of the Every Day Counts Calendar Math program was to 

provide concrete, visual models intended to initiate discussion about mathematics, I felt that it 

would be a great structure for the purpose of my study.  

The first part of the Calendar Math is the Calendar. This component delivers a different 

pattern of colors, numbers, and geometric shapes every month. As the month progresses, 

students develop patterning and algebraic thinking skills as they predict what the next calendar 

piece will look like. Another important component is the Daily Depositor, which is a place value 

pocket chart used to collect a certain amount of money every day of the month. Students utilize 

the Daily Depositor to make predictions about how much money will be collected in the month 

based on that month’s pattern and to develop mental addition, subtraction, and multiplication 

skills. A third component of the Calendar Math program is the Counting Tape, which keeps 
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track of the number of days of school. One new number is written on the Tape every day and the 

numbers are used in a study of multiples. Multiple Markers are placed on the Tape so that 

students can see common multiples and factors of numbers from 1-180. Finally, the Coin 

Counter gives students practice with counting mixed coins, determining change from purchases 

of one or more items, and introduces students to decimal notation in tenths and hundredths.  

While these four components are staples of the program and are continuously discussed 

and updated for the entire school year, other components are integrated throughout various 

months. The Graph gives students realistic ways to collect, organize, display, and analyze data. It 

also serves as a tool that introduces students to probability concepts. A Fraction a Day introduces 

students to proper and improper fractions, mixed numbers, equivalent fractions, and simplifying 

fractions using a variety of methods. The fractions are shown as both a part of a whole and a part 

of a set. The Measurement component helps students experience the language of estimation, 

comparing, measuring, and conversion using customary and metric units of length, weight, and 

capacity. Lastly, the Clock gives students daily practice reading and setting the hands of an 

analog clock, understanding A.M. and P.M., and working with the concept of elapsed time. For 

the purposes of this study, I will focus only on the first three components of the program: 

Calendar, Daily Depositor, and Counting Tape. 

During the first two weeks of school, as we worked through the Calendar, Daily 

Depositor, and Counting Tape components for the first time, I also conducted several discussions 

with my class about our classroom norms. The basic expectations and guidelines for classroom 

interactions had been a topic of discussion several times before, but now I wanted my students to 

think about how these guidelines applied to mathematics. As we discussed the mathematical 

content of the calendar display, we also took time to analyze the discussions themselves. We 
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talked about the importance of explaining and justifying thinking in a clear way. The students 

expressed that clear explanations would help them understand others’ ideas and that responding 

to various solution methods in a nonjudgmental manner would make it easier for them to take 

risks and participate in the discussions.  

Throughout the course of these discussions, guided by my own knowledge of Yackel and 

Cobb’s work, we established 5 social/sociomathematical norms which we called the 

Expectations for Math Discussions. The expectations were: 

1. Students will explain and justify their thinking. They will tell what they did to 

solve the problem and the reason(s) for that solution method. 

2. Students will share their thoughts with others using clear, precise language and 

using mathematical terms correctly. 

3. Students will listen to others’ explanations and try to make sense of their thinking. 

4. Students will agree and disagree respectfully. There will be no put-downs. 

5. If students are confused, they will ask the student who gave the explanation 

specific clarifying questions to help clear up the confusion. 

Once these expectations were composed, I recorded them on chart paper and posted them 

in the classroom prominently so that we could refer to them during mathematical discussions. As 

the weeks progressed, I also began incorporating writing into my students’ daily mathematical 

discussions. I used the written tasks as a way for my students to organize their thoughts before 

discussing and to have a reference point for making sense of others’ explanations while the 

discussion took place. The data collected from this process, which will be analyzed in the next 

chapter, was the result of a twelve week study of my students’ abilities in the areas of discussing 

and writing about mathematics. Table 1 shows the months of school the study took place during, 
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what components of the calendar were discussed, what specific skills were addressed using each 

component, and some key terms that were used during the course of study. 
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Table 1: Mathematical Content Discussed During the Study 

 

 

Month Calendar Daily Depositor Counting Tape Important 
Terms 

 
 
 

Aug. 

Multiples of 2 & 5 
 

Square & 
Rectangle 

 
Horizontal 

Vertical 

Mental Addition 
 

1x day of school 

Multiples of 2 multiples 
factors 

2-dimensional 
square 

rectangle 
regroup 
decimal 

hundredths 
tenths 

 
 
 

Sept. 

Multiples of 2 & 5 
 

Square & 
Rectangle 

 
Horizontal 

Vertical  

Mental Addition 
 

1x day of month 

Multiples of 2 multiples 
factors 
square 

rectangle 
regroup 
decimal 

hundredths 
tenths 

 
 
 
 
 

Oct. 

Multiples of 3 & 6 
 

Types of triangles 
 

180º rotation 
reflection 

Mental Addition 
 

2x day of month 

Multiples of 2 & 3 multiples 
factors 
double 

equilateral 
isosceles 
scalene 

right 
acute 

obtuse 
regroup 
decimal 

hundredths 
tenths 

 
 
 
 

Nov. 

Multiples of 4 & 8 
 

Types of 
quadrilaterals 

 
90º rotation 

Mental Add. & 
Subtract. 

 
10x day of month 

Multiples of 2, 3, and 
4 

multiples 
factors 

quadrilateral 
square 

rectangle 
rhombus 
trapezoid 
regroup 
decimal 

hundredths 
tenths 
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The daily lesson consisted of an update of all of the components of the bulletin 

board set. Each day, one or two components would be discussed in detail. At first, 

students were only required to participate in the discussion. This was to ensure that each 

student could hear the appropriate mathematical language necessary to explain and justify 

each component and skill. Many times, especially at the beginning of the school year, I 

would rephrase a student’s explanation using more accurate mathematics terminology, 

and then explain why the language I was using was appropriate. Eventually, the students 

began to automatically use appropriate language when giving their explanations and 

justifications.  

Once I was confident that my students were comfortable with the mathematical 

language during discussions, I began to incorporate written tasks into our daily discussion 

of the calendar. I asked my students to begin bringing their math journals with them to 

the discussion, and I would request that they respond to my questioning in writing in their 

journals before we engaged in the verbal discussion. I then collected journals for analysis 

periodically from selected students to monitor their progress.  

I also placed a video camera in the classroom on the first day of school. Since a 

video camera is not a regular part of my classroom environment, I decided it would be 

easier for the students to get used to the idea of being video taped if the camera was in 

sight from the onset. Even though the camera was off for the first two weeks of school, it 

gave my students an opportunity to get accustomed to seeing it in our classroom.  

I video taped selected lessons to illustrate my students’ progression with the 

mathematical language and skills throughout one month of the study. The first video was 

recorded on the first day of the month, when a new calendar was revealed and all of the 



 

42 

components were reset. The next recording took place around the middle of the month, 

and a final recording was made on the last day of the month. Using these recordings, I 

observed the dialogue taking place during the lesson, focusing on how effectively my 

students were explaining and justifying their solutions, listening to others, and asking 

clarifying questions when they became confused.  

Finally, toward the end of my data collection, I asked my students to complete a 

posttest (Appendix F). This assessment was designed to mirror the questions asked on the 

pretest and was intended to measure their mathematical writing ability at the end of the 

study. I also interviewed selected students (Appendix G) to gain insight into their 

thoughts on the instructional methods used during the study. The same students chosen 

for analysis from the pretest (Appendix E) were selected for the posttest analysis and the 

interviews.  

 

Data Analysis 

 The following methods were used to collect data during this study: a pre- and 

post-test (Appendices E and F) focusing on student ability to write mathematical 

explanations, video recording during math instructional time focusing on student ability 

to verbalize mathematical concepts and justify solutions, student work on monthly 

assessments, and student interviews (Appendix G). Table 2 shows when each of these 

collection methods were used. 
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Table 2: Timeline of Data Collection Methods 

Timeframe Collection Method 
Week 1  Pre-Test 

Weeks 7, 11, 14 Monthly Writing Assessments 
Weeks 11, 13, 14 Video Taping 

Week 15 Post-Test, Student Interviews 
 

 Both the pre- and posttests (Appendices E and F) were created by the teacher 

using a Scott-Foresman Test Generator CD ROM. All of the questions on the tests were 

selected from a bank of items correlated to the Florida Sunshine State Standards. For 

each test, 3 multiple choice items were chosen to assess student ability with number 

concepts, the unit I planned to teach early in the school year. The last 2 items on the tests 

were written response questions, intended to assess my students’ ability to explain and 

justify their problem solving strategies in writing. 

The written responses on the pre- and post-tests (Appendices E and F), along with 

student journal responses and the responses written on the monthly assessments were 

analyzed using a rubric and anecdotal notes. The rubric consisted of a two-point scale. A 

response that was incoherent, incorrect, or missing received zero points. Responses that 

were partially correct received one point. For these partial responses, the student either 

provided a correct answer to the problem without an explanation, or the student provided 

an explanation that made sense but resulted in an incorrect answer. Finally, responses that 

were completely correct, including a correct answer to the problem combined with an 

acceptable explanation, received two points. I used the same rubric scores for all student 

writing samples in order to maintain consistency in my analysis of the data. 

Video recordings were transcribed, and samples of student dialogue are included 

in the next chapter. When listening to the verbal explanations, I looked for several 
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factors. First, I was listening to be sure that students were using mathematical vocabulary 

in a clear and concise manner. Second, I listened to the clarity of student explanations. I 

wanted to know if the students were improving in their ability to construct knowledge 

based on not only their own thoughts, but on the thoughts of others as well. Finally, I 

listened to myself, paying close attention to how often I interjected and in what manner. I 

wanted to know if I was merely giving students information or if I was guiding their 

thinking by asking questions and helping to clarify complex ideas. I kept anecdotal notes 

in my own daily journal when I noticed that I was controlling the conversation. This 

made me aware of my own behavior during the discussions and caused me to consciously 

modify my level of involvement in later discussions. 

 The student work was generated in a variety of ways. First, students recorded 

daily thoughts and questions in their math journal. They also used their journals to solve 

and explain math problems. Daily calendar study assisted in providing authentic 

problems for students to solve. These journals will be discussed in greater detail in the 

next chapter. A second form of student work that was collected were monthly mini-

assessments that presented students will problems requiring application of the skills 

learned from the calendar that month. These problems involved solving the problem and 

explaining and justifying the solution methods. These strategies provided an immense 

amount of information about my students’ mathematical understanding.  

 As a culminating activity, I selected three students from my class to interview 

about their feelings toward the way we learned math this year. I chose these three from 

the class based on pre-existing information I had been given about the students.  I felt that 

these three students each represented a wider population of students within my 
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classroom. A sample of interview questions (Appendix G) was created and used as a 

guide during each interview. The purpose of the interview was to gain insight into student 

interpretations of the math learning they had participated in and how they felt the 

instructional methods used impacted their learning. 

 In a thorough inductive analysis of the data collected, I was specifically looking 

for the quality of the verbal and written explanations concerning mathematical concepts. I 

was also looking for a connection between the quality of verbal explanations and the 

quality of written explanations. In order to maintain consistency between verbal and 

written responses, I tried to match the language I used during classroom discussions in 

the questions I asked on the monthly assessments. In addition, I looked for evidence of a 

shift in my students’ mathematical thinking. I wanted to know if thinking, talking, and 

writing about mathematical ideas would begin to change the way my students thought 

about the way they learned math. This task marked the end of my data collection. 

 

Summary 

 The qualitative research methodology provided an appropriate setting for me to 

study and describe the effects of using discussion and writing on my students’ conceptual 

understanding of mathematics. The action research we participated in as a class, along 

with the Every Day Counts Calendar Math program, supplied the setting needed to help 

identify these effects. 

 Elucidation of these data will be provided in Chapter Four, Data Analysis. A 

detailed analysis of the data will describe our daily discussions, provide examples of 
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student writing, and demonstrate my students’ ever-evolving conceptual understanding of 

mathematics.  
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CHAPTER 4: DATA ANALYSIS 

Introduction 

 In the planning stages of my action research project, I considered past students 

and their mathematical abilities. I asked myself what I wanted to improve about my 

teaching that would also reach the needs of my students. I realized that most of the math 

instruction at my school, due mainly to the pressures of getting the students to score well 

on the test, had devolved into memorizing mathematical facts and formulas. Students, no 

matter how adept they were at solving math problems, chiefly had little rhyme or reason 

to the methods they were using to solve those problems, other than that was way they had 

been taught. Critical thinking skills had all but been eliminated from studying math for 

the sake of better test scores. I then decided to examine my own teaching practices and 

modify what I was doing in my classroom in order to help students not only prepare for 

taking the test, but also to aid them in thinking about mathematics more critically, which 

included providing explanations for their thinking that were mathematically sound. I used 

my research questions, “Are discussion and writing about mathematics related? How?” 

and “How do discussion and written explanations affect student understanding of 

mathematical concepts?” to guide the design of my action research project. 

 It was my original intention to restructure my normal math instruction time to 

meet the needs of this project. However, I came across a program that provided me with 

exactly the structure I needed to accomplish my goals. Every Day Counts Calendar Math, 

as I described in the pervious chapter, gave me everything I was looking for to both 

change my teaching practices and incorporate discussion and writing into my daily math 

routine. The components of this program allowed for daily interaction with mathematical 
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concepts while also providing students opportunities to practice solving real-world 

problems, record their own explanations of their mental math strategies, and discuss and 

compare their solutions with their peers.  

 In this chapter, I will discuss patterns I noticed during class discussions and in my 

students’ daily journaling. First, I inquired about student feelings about math and their 

expectations of my class. Next, I implemented the Calendar Math program and monitored 

my students’ abilities with explaining and justifying their problem solving strategies. 

During this time, I studied my students’ progress with the skills presented through the 

Calendar Math program in depth over the course of one month. Finally, I reflected on and 

responded to what I observed, analyzing my students’ work both during class discussions 

and in their written classwork. The results of my study show that this method of teaching 

had a profound impact on both my teaching and my students’ learning of mathematics. 

 

Student Work Samples 

Pre-Test Assessment 

 During the first week of class, I gave my students an assessment titled Whole 

Number Concepts and Operations (Appendix E). This assessment was intended to serve 

two purposes. One, I wanted to gain a better understanding of my students’ abilities in 

working with numbers in various contexts. This was to be accomplished in the form of a 

series of multiple choice questions dealing with number concepts, including comparing 

and ordering large numbers, analyzing number patterns, estimation, and basic 

mathematical computations. Two, I wanted to gain a better understanding of their ability 

to explain and justify their problem solving methods in writing. Therefore, I included two 
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open response questions, for which a portion of the score would come from a written 

explanation and justification of the solution methods.  

 On the whole, most of the students performed very well with the multiple choice 

questions, both of which asked the students to compare numbers with digits in the 

thousands place or greater. I did not notice very many students struggling with the 

concept of comparing and ordering numbers, indicating to me that they had at the very 

least a basic understanding of place value concepts. Because of this, I decided to use the 

pretest to analyze my students’ ability to explain their mathematical ideas in writing. In 

looking at the 2 written response questions, however, I noticed that their writing ability 

was lacking. 

 The first open response question required students to look at a table that was 

partially completed and determine an addition rule and a multiplication rule that could be 

used to complete it. The initial table is shown below (Figure 1). 

In 3 4 5 6 7 
Out 9 ? ? ? ? 

Figure 1 – Input-Output Table Problem 

 About half the class could determine an appropriate addition or multiplication rule 

for the table. The students correctly identified the addition rule as being “add six” and the 

multiplication rule as being “multiply by three”, and were also able to apply those rules 

and complete the table correctly. However, identifying the rules and completing the table 

was only part of the question. Upon looking for the written explanation and justification 

that should have accompanied each completed table, I found that not a single student had 

included one.  
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 Next, I looked at the second open response question. This question (Figure 2) asks 

students to estimate the distance a pilot flies between three cities and then calculate an 

exact distance. In addition, the students were required to explain and justify their 

solutions. 

 

Figure 2 – Distance Problem 

 When I started analyzing student responses, the first thing I looked for was the 

estimation strategy. What I found with almost every student were varying estimations of 

the distance flown in the problem. Since the problem did not give specific directions 

about which place value the students should use to do their estimating, several different 

estimations were acceptable, as long as the student was able to support their solution with 

an explanation. Unfortunately, as with the Table Problem, not a single student provided 

an explanation or justification for their estimation strategies. On top of that, most students 

did not even record their thought processes for the estimation – only a final estimated 

distance was recorded in the space provided on the test form.  

A pilot flies from Los Angeles to Dallas to Chicago and then back to Los Angeles. What 
is the total distance? Estimate first and then calculate the answer. 
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 The second part of the problem asked students to calculate an exact distance. 

More students – about 75% - showed the work necessary for adding the three distances 

together. Out of these students, most of them were able to come up with the correct sum. 

The most common problem for those who did not have the correct sum was simple 

addition miscalculations. Once again, though, there were no explanations or justifications 

for the solution methods.  

 These two problems provided me a world of information about my students’ 

mathematical abilities. In the Table Problem, I learned that my students had some sense 

of algebraic thinking and could apply basic computational algorithms. However, when 

required to use those computational skills with larger numbers, as in the Distance 

Problem, some students had difficulty applying their knowledge. Had the explanations 

and justifications been included, they might have given me more information about the 

students’ thinking while solving these problems. Since they were not, I can only surmise 

what the issues might have been. First, it was possible that the students who had 

difficulty lacked conceptual knowledge about place value in the base ten number system. 

Another possibility is that they worked too quickly to get to the answer, resulting in 

careless mistakes.  

 Regardless of the reason for the computational errors, the complete lack of written 

explanations was troublesome, yet not surprising. Knowing that my students had learned 

math in the past as a series of facts and formulas, I had already prepared myself for the 

reality that they would not be able to explain and justify their problem solving methods. 

But was it simply the fact that they had never been expected to explain their 

mathematical thinking, and therefore lacked the words to do so, that prevented them from 
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writing their thoughts on the assessment? Or could it be that they truly lacked the 

conceptual knowledge behind the strategies they were using to be able to explain what 

they were doing and why? Whatever the reason, I knew that I was going to need more 

research in order to come to a conclusion. 

 

Classroom Discussions 

 In order to help my students become better writers of mathematics, I knew that I 

had to first help them become better talkers of mathematics. Several authors (Pugalee, 

2001; Baxter, Woodward, and Olson, 2005; Yackel, 2001; and Ediger, 2006) have 

written about the distinct connection between student talk and student writing in 

mathematics: if student talk about mathematics is encouraged and developed, then the 

language of mathematics becomes more natural when students are asked to write about 

mathematics. Therefore, I made it my goal to make classroom discussion a primary focus 

during my daily math instruction.  

 Daily discussions were focused around the Every Day Counts: Calendar Math 

bulletin board display in my classroom. This program provides students with daily 

mathematical situations which require them to think mathematically and explain and 

justify their thinking. The beginning of each month introduced new concepts to be 

studied and ownership of those concepts were gradually released to the students over the 

course of the month. The photograph below (Figure 3) illustrates what the Calendar and 

Daily Depositor components of the bulletin board display looked like at the beginning of 

a month. 
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Figure 3 – Calendar Math, Beginning of November 

 The calendar pieces are flipped backwards with the intention of helping the 

students look for patterns and being able to predict the continuation of a pattern. The 

Daily Depositor begins every month completely empty, and students use mental math 

strategies to add a certain amount to the chart each day of the month. 

 The initial discussion about the calendar display was largely dependent upon 

teacher-student interactions. The following dialogue illustrates the discussion about the 

display on the first day of the month. 
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Mr. R.: “As we have discussed in previous months, we cannot make a 

prediction about the calendar pattern because we do not see a 

pattern yet. Therefore, I will begin the month by flipping over the 

first calendar piece.” 

I move to the calendar and flip the first piece on the display.  

Mr. R.: “What do you see?” 

Student 1: “I see an orange square.” 

Mr. R.: “How do you know it is a square?” 

Student 1: “Because it has four sides that are all the same.” 

Student 2: “I know it is a square because it has four square corners.” 

Mr. R.: “Can anyone clarify what is meant by ‘four sides that are all the 

same’ and ‘four square corners’?” 

Student 3: “I remember that we talked about squares back in September. A 

square is a four-sided figure, and all of the sides are equal in 

length.” 

Mr. R.: “Excellent! In math, when we see two things are the same, one 

word we can use to describe them is that they are equal.” 

Student 4: “Oh! I remember, too! Squares have four vertices that form right 

angles.” 

Mr. R.: “I like that you used the word vertices instead of corners. A vertex 

is the mathematically correct term for a corner, or a place where 

two line segments meet. What do you mean by right angles?” 

Student 4: “Right angles are angles that measure ninety degrees.” 
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Mr. R.: “Right. So, we see a 4-sided figure that looks like all of the sides 

are equal in length and all of the angles are right angles. Is there 

any way we could prove that?” 

There is a moment of silence as students ponder this question. 

Student 5: “We could measure each side using a ruler.” 

Mr. R.: “Good! We can use a ruler to measure the length of each side.” 

Another moment of silence as a student is chosen to measure each side of the 

figure. 

Student 6: “Each side measures 3 inches. That means they are all the same…I 

mean, equal…length.” 

Mr. R.: “Very good use of vocabulary! Since every side of the figure 

measured 3 inches, we can describe the sides as being equal in 

length. How can we prove if the angles are really right angles?” 

More silence as the student think. 

Student 7: “We could take a piece of paper and match up the corners and see 

if they are the same.” 

Mr. R.: “Why would you solve the problem in that way?” 

Student 7: “Because the corners of a piece of paper look like they are the 

same as the corners of the square.” 

Mr. R.: “Okay, we could solve the problem that way. But how do you 

know that the vertices of a piece of paper are really right angles? 

Would that give us the information we would need to really prove 

that the vertices of this figure are right angles?” 
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Several students shake their heads. The students are now silent. 

Mr. R.: “There is a special tool that people use to measure angles. Raise 

your hand if you have ever heard of a protractor.” 

A few students raise their hands. Mr. R. holds up a protractor for students to see. 

Mr. R.: “This is a protractor. It is used to measure angles.” 

Mr. R. demonstrates how to use a protractor as students watch. At the end of the 

demonstration, every angle on the figure is shown to measure ninety degrees. 

Mr. R.: “Now that we have proven that all of the sides are equal in length 

and the angles are right angles, what can we officially call this 

figure?” 

Student 8: “A square.” 

Mr. R. records the observations made by the class on an untitled chart that would 

serve as a record of student discoveries throughout the month. 

 During the month of November, the pattern on the calendar concentrated on 

various types of quadrilaterals as well as multiples of 4 and 8. Over the next two weeks, 

during discussions that took place between recording dates, I noticed a shift in my 

students’ verbal explanations. The class began to take more of an ownership of the 

mathematical language represented in the calendar display, using that language to 

explain, justify, and argue their ideas. Figure 4 portrays what the calendar looked like at 

mid-month. 
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Figure 4 – Calendar at Mid-November 

Mr. R.:  “Today is Friday, November 16th. Look at the pattern we have 

been building with the calendar. What quadrilateral will be on 

today’s calendar piece?” 

Student 1:  “I think that today’s calendar piece will be an isosceles trapezoid 

because yesterday’s piece was a rhombus and we always have a 

trapezoid after a rhombus.” 

Student 2: “I agree that today will be an isosceles trapezoid, but I figured it 

out in a different way. I think that it will be an isosceles trapezoid 

because we always have a trapezoid on a multiple of four, but it 
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looks like the isosceles trapezoids will only show up on days that 

are multiples of eight, and 16 is a multiple of 8.” 

Other students nod their heads in agreement. 

Mr. R.:  “So, if it is true that the isosceles trapezoids appear on days that are 

multiples of 8, when should the next isosceles trapezoid appear?? 

Student 3: “The next multiple of 8 after 16 is 24, because 8 more than 16 are 

24. So the next isosceles trapezoid will appear on November 24th.” 

 Similar shifts in discussion ability were also noted during Daily Depositor. 

Figures 5 and 6 illustrate what the Daily Depositor looked like at mid-month. 

 

Figure 5 – Daily Depositor at Mid-November 
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Figure 6 – Calendar Math – Mid-November 

Mr. R.:  “After we added money to our chart yesterday, we had $1,200. If 

today is November 16th, and we continue to multiply the date times 

$10, how much money will we add to the chart today?” 

Student 4: “Today we will add $160, because everyday we add $10 more than 

the day before. Yesterday we added $150, so today we will add 

$160.” 

Mr. R.: “That was a great mental math strategy. Did anyone solve it in a 

different way?” 



 

60 

Student 5: “I solved it by breaking apart the numbers before multiplying. I 

remembered that 10 times 10 equal 100, and that 10 times 6 equal 

60. Then I added 100 plus 60 and got 160.” 

Mr. R.: “How did you know you could break apart the number 16 in that 

way?” 

Student 5:  “I saw that 16 has a 6 in the ones place, giving it a value of 6, and a 

1 in the tens place, giving it a value of 10. Since 10 plus 6 equal 

16, I knew that if I multiplied both parts times 10 and then added 

their products, I would get the product of 16 times 10.” 

Mr. R.: “So if we add $160 from today to the $1,200 in the chart, how 

much money will we have altogether?” 

Students are silent as they apply mental math strategies to solve the problem. 

Student 6: “We would have $1,360. I figured it out by adding each place 

value together. In the ones place, zero plus zero is zero. In the tens, 

zero tens plus 6 tens is 6 tens. There aren’t enough tens to regroup, 

so I just added the hundreds next. 2 hundreds plus 1 hundred is 3 

hundreds. There also aren’t enough hundreds to regroup, so I 

moved on to the thousands. 1 thousand plus zero thousands is 1 

thousand. Then I put all the digits together and got $1,360.” 

Student 7: “I got $1,360, too, but I did it differently. I added $1,200 plus 

$100, which is $1,300. Then I added the leftover $60, giving me 

$1,360.” 
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These verbal explanations show that students’ conceptual understanding of 

numbers had increased tremendously. They demonstrated an enhanced mastery of 

mathematical vocabulary, using the language of mathematics appropriately most of the 

time in support of their solution methods. The dialogue also shows that students are using 

several different problem solving methods, all of which are valid. The students who were 

able to see the reasoning behind a given explanation and recognize that their solution was 

different demonstrated that they were listening to and trying to understand their 

classmates’ thinking. Some students liked to talk and did so as often as they could during 

classroom discussions, even though they were reluctant to write. Other students would 

write their explanations effortlessly, but would not participate in the discussions. Others 

still fell somewhere in between those two extremes. While I found that a range of 

students existed within my classroom, every student was able to demonstrate 

improvement in their mathematical thinking and communication one way or another. 

The quality of student explanations continued to improve over the course of the 

month. The following photographs (Figures 7, 8, and 9) were taken on the last day of the 

month.  
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Figure 7 – Calendar at the End of November 

 

Figure 8 – Daily Depositor at the End of November 
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Figure 9 – Calendar Math – End of November 

On the last day of each month, we did not discuss the elements of the bulletin 

board as a class. Instead, we quickly updated the display to finish off the month, and then 

the students completed an end-of-the-month review assessment designed to evaluate the 

students’ ability to respond to mathematical problems in writing. In the next section, I 

will provide a progression of student responses to various problems during the first three 

months of school.  
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Progression of Written Responses 

 In order to show an improvement in the writing ability of my students, I selected 

three students to focus on throughout the study. As stated previously, one student was 

high-achieving in mathematics based on third-grade performance, on student was 

average, and one student was low-achieving. I analyzed the work of these three students 

for all of the written tasks: the pretest (Appendix E), each monthly assessment, the 

posttest (Appendix F), and the student interview. This section presents the analysis of 

each of the monthly assessments. 

September 
 In this task, students were asked to solve math problems based on our daily 

discussions, explaining and justifying their thinking in writing. The first question was, 

“What is 37 + 6? Show your work and explain how you solved the problem.” In this 

question, I wanted to assess my students’ ability to add with regrouping, and the 

explanation would give me information about their conceptual understanding of place 

value and multi-digit addition. 

 One student wrote, “37 + 6 = 43 Because 6 + 7 = 13 add that ten to 30 equals 40 

then add 3 to 40 equals 43” This response clearly shows that the student understands the 

concept of place value and its connection to multi-digit addition. By adding the ones 

place of both addends, the student found the sum to be greater than 10, indicating a need 

to regroup. The student then added the 10 in 13 to the 30 in 37, totaling 40. The 3 ones 

remaining were then added to 40, giving a total sum of 43. Although justification for this 

method was not provided, the explanation shows an understanding of the concepts.  
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 Another student wrote, “43. 37 + 6 = 43. 7 + 6 = 13 so I carryied the one and 

added 1 + 3 = 4.” While this response shows that the student understands the process of 

addition, an understanding of place value concepts is lacking. It was apparent to me after 

reading this response that this student needed more work on place value concepts and 

their use in mathematical computations.  

 A third student solved the problem a little differently. “43, because 7 + 3 = 10 +3 

= 13, drag the ten to the tens place. 30 + 10 = 40, 40 + 3 = 43.” This response shows that 

the student initially broke the 6 into 3 + 3, and then added the 3s separately. This method 

tells me that the student was thinking in terms of tens and saw that 3 more than 37 were 

40. The remaining 3, combined with 40, were 43.  

 The second question I asked on the assessment was, “How do you know that 19 is 

not a multiple of 2? Explain your answer.” 

 One student responded, “19 is not a multiple of 2 because there would be 2 groups 

of 9 with 1 left over.”  

 Another student wrote, “I know that 19 is not a multiple of 2 because you can’t 

split it into 2 equal groups.” 

 Yet another student wrote, “I know that 19 is not a multiple of 2 because you 

can’t split 19 into 2 equal groups, there will be 10 in one group and 9 in the other.” 

 Similar responses to this question were given by every student. Overall, I noticed 

that the students had a grasp of the concept of multiples of two, indicated by their 

responses that 19 cannot be divided into two equal groups. Our discussions during the 

month had centered around identifying multiples of two based on a number’s divisibility 

into two equal groups. We then used hearts to mark the multiples of two that we 
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identified as a class on a number line at the front of the classroom, a portion of which is 

shown in Figure 10. Figure 11 also shows the students’ identification of all of the 

multiples of 2 found on a hundreds chart. 

 

Figure 10 – Counting Tape with Multiple Markers 

 

Figure 11 – Hundreds Chart with Multiples of 2 Identified 



 

67 

October 
 During the month of October, new concepts were introduced. One concept we 

explored using the bulletin board display was doubling numbers. To add money to the 

Daily Depositor, the students were asked to double the date and then add the result to the 

total. On the end of the month assessment, I asked the students to solve the following 

problem. 

“What is 26 doubled? Explain how you found your solution.” 

Responses to the question varied, showing a wide array of problem solving 

methods. Here are a few examples: 

“26 doubled is 52. because 6 + 6 = 12 carrey the one over the 2 tens and you get 

52.” This response illustrates an understanding of the doubling process, but only partially 

explains the process from a conceptual standpoint. The student is not applying place 

value concepts (“carrey the 1” instead of “regroup the 10”), indicating that the student’s 

thinking is still dependent upon the process of adding multi-digit numbers. 

“26 doubled is 52 because 26 doubled means 26 x 2. 26 x 2 = 52.” This response 

shows an explanation for how the student came to translate the word doubled into 

mathematical symbols (doubled means times 2). This tells me that the student is making 

connections between mathematical words and symbols and is able to apply knowledge of 

both. 

“26 doubled is 52. I figured this out by adding 6 + 6 = 12 and 20 + 20 = 40, then I 

did 12 + 40 = 52.” This response shows that the student has a complete understanding of 

what it means to double a number. The student literally doubled each part of the number. 

6 doubled is 12 and 2 tens doubled is 4 tens, or 40. The student then combined the two 
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doubled parts and found the sum. This is an excellent mental math strategy that would 

prove useful when doing any kind of multiplication. 

The next question I asked on the end of the month assessment once again dealt 

with the concept of multiples. Using the number line (see Figure 14) the students were 

responsible for identifying the multiples of 3, or finding numbers that were evenly 

divisible by 3, and marking them with a triangle. They also were asked to find all of the 

multiples of 3 on a hundreds chart (Figure 16). As they did this, they began to notice a 

pattern emerging – numbers like 6, 12, 18, and 24 were multiples of both 2 and 3. In 

other words, these numbers could be divided into two equal groups and divided into three 

equal groups. Because of these discussions, I wanted to assess their explanations for the 

following question: 

 “Name a number that is both a multiple of 2 and a multiple of 3. Explain how you 

know the number you chose is a multiple of both 2 and 3.” 

 Below are a few of the responses to the question. 

 “6 is a multiple of 2 and 3. It is because 3 + 3 = 6 and 2 + 2 + 2 = 6.” 

 “12 because it can be split into 2 equal groups of 6. 12 can be split into 3 equal 

groups of 4.” 

 “6 is a multiple of 3 and 2 because 2 x 3 = 6 and 3 x 2 = 6.” 

 Most of the responses for this question used numbers lower than 20, and all of the 

explanations were similar. The reasoning demonstrated in the responses show that 

students are becoming more comfortable with the concept of groups of numbers and how 

factors and multiples, along with addition and multiplication, are related. Although I 

would have liked students to extend their thinking to larger numbers, the question did not 
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require such extension. However, the students’ responses show a clear understanding of 

the concept of multiples and the relationships between numbers. 

 Once again, the last day of the month was also spent identifying the multiples of 3 

on a hundreds chart (Figure 12). Just as with the multiples of 2, students began to notice 

patterns emerging on the hundreds chart as well as on the counting tape (Figure 14), to 

which multiple markers in the shape of triangles were used to locate the multiples of 3. 

As these activities were completed, students noted that every other multiple of 3 was also 

a multiple of 2, demonstrating a growing understanding of the relationship between the 

two numbers. 

 

Figure 12 – Hundreds Chart with Multiples of 3 Identified 

  

 

 



 

70 

November 
 Learning from the previous month, I made sure to ask a more specific question 

about my students’ understanding of multiples during the month of November. 

Throughout the month, we studied multiples of 4 and 8, although the main focus was on 

multiples of 4. On the end of the month assessment, I asked the following question: 

 “What is the first multiple of 4 greater than 30? How do you know it is a multiple 

of 4?” 

 The question was designed to not only assess student understanding of multiples 

of 4, but also to se if they could apply their understanding to numbers greater than 20. 

Here are a few of the responses. 

 “32 because you can multiple this  4 x 8 = 32.” 

 “The first multiple of 4 greater than 30 is 32 because if you count by fours you 

go: 4, 8, 12, 16, 20, 24, 28, 32.” 

 “The first multiple of 4 that is greater than 30 is 32. I know this because if there 

were 32 pieces of pie and share it with 4 people each person will get 8.” 

 The responses given to this question were very similar from the previous month. 

They continued to demonstrate understanding of multiples as groups of the same number. 

The differences were in the operations used to illustrate that understanding. From the first 

response, we can see a direct approach through multiplication. The second response 

shows that the student is still using a skip counting method but is still able to come to the 

same result. Finally, the third response demonstrates a work-backward approach, starting 

with 32 pieces and dividing them equally among four groups. All three methods are valid 

and indicate the students continue to build their understanding of number relationships. 
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 Finally, as in previous months, the students were given an opportunity to identify 

the multiples of 4 on a hundreds chart (Figure 13) and on the counting tape (Figure 14). 

The multiples of 4 were indicated on the counting tape using squares as markers. Once 

again, students took note of the patterns emerging, observing that every other multiple of 

2 was also a multiple of 4, and that every third multiple of 4 was also a multiple of 3, 

continuing their understanding of the relationships between the numbers. 

  

 

Figure 13 – Hundreds Chart with Multiples of 4 Identified 

 Another concept we explored as a class during the month of November was 

multiplying numbers by 10. As part of the Daily Depositor, the students multiplied each 

date by 10 and added that amount of money to the chart. To assess their mental math 

strategies, I asked the following question: 

 “What is 34 x 10? Explain your solution.” 
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 As expected, a variety of solutions resulted in the student responses. These 

examples are a small selection of the responses received. 

 “340 because you can count by tens 34 times and it will equal 340.” 

 “34 x 10 = 340 because 30 x 10 = 300, 4 x 10 = 40, and 300 + 40 = 340.” 

 “34 x 10 = 340 because I doubled 34 and got 68. I added 68 five times and got 

340. 68 + 68 + 68 + 68 + 68 = 340.” 

 I chose the first two responses because they represented the majority of the 

solution methods used. On the whole, students either counted by tens or used the 

distributive property by breaking apart 34 into 30 and 4 and multiplying both parts by ten 

and adding them together. These solution methods show that students understand 

multiplying larger numbers (2-digit by 2-digit) without the use of the algorithm. The third 

response was unique among the class. This student in particular demonstrated that 

numbers can be thought about in various ways. Instead of breaking apart 34, the student 

broke apart 10 into 5 x 2.  He then noticed that he could distribute 34 across the equation, 

providing an opportunity to apply a previously learned skill – doubling. Although still 

faced with the problem of 68 x 5, the student then applied another previously learned 

concept – multiplication as repeated addition.  By applying both of these concepts, the 

student was able to come to the desired answer – 340 – albeit by an entirely original 

solution method. 

Summary 
As I have illustrated throughout this section, and as Steele (2001) stated, 

representation of ideas can be a useful tool in helping students verbalize their thoughts 

about mathematical concepts. Although I used a pre-existing math program as the basis 
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of my research, the program was designed in a way that allowed for classroom discussion 

to progress naturally. The Teacher’s Guide provided in the Every Day Counts Calendar 

Math kit gave suggestions for probing students’ thinking, but its primary purpose was to 

present mathematical concepts in a context that would facilitate students as they 

transitioned from using ordinary language to using mathematical language.  

In addition, the calendar math allowed for students to examine the multifaceted 

nature of mathematics, providing several opportunities throughout each month for 

students to make connections and construct relationships between various mathematical 

disciplines. For example, numbers became much more than objects to be added, 

subtracted, multiplied, and divided. Instead, my students began to see numbers all around 

them: in geometry, measurement, and in the collection and analysis of data. Even though 

their mathematical thinking is still far from perfect, I feel that the instructional 

approaches used in conjunction with the calendar math have guided my students to 

thinking more critically about their mathematics education.  

 

Post-Test Assessment 

 The last piece of data that I collected was in the form of a post-test (Appendix F). 

This assessment, which mirrored the pre-test, was meant to help me compare my 

students’ writing ability from the beginning to the end of the study. I did not score the 

written responses in the same way that I had for the pre-test; the results of the pre-test 

showed that their ability to express their mathematical ideas in writing was practically 

non-existent. Instead, I used the post-test to see if there had been any change in the 

amount of written explanations the students were providing along with their problem 
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solving methods. While multiple choice questions were still a part of the assessment, I 

did not focus on them as much as in the pre-test.  

During the pre-test, the students had solved the problems but included no written 

responses. On the post-test, I noticed an increase in the amount of written explanations 

provided with the solutions. The students demonstrated that they had the ability to 

express their mathematical ideas in writing, even if their solution method or final answer 

was not completely correct. 

 The first open response question that was asked on the assessment presented a 

situation where a girl named Ashley wanted to arrange 21 stamps in a stamp book. The 

students were them asked to arrange the stamps into an array using at least two rows and 

write two multiplication sentences and two division sentences for the array. I selected two 

student responses that were representative of the responses provided by the entire class. 

 

Figure 14 – Array Problem 



 

75 

 In my analysis of this problem, I wanted to see if the students not only could 

follow the directions given, but I also wanted to see if they would include a written 

explanation with their work.  

 

Figure 15 – Student 1 Solves the Array Problem 

 The student’s work shows that she understands the relationships between arrays, 

multiplication, and division. However, her written explanation, which very clearly depicts 

her thinking as she solved this problem, shows that she also has a clear sense of what it 

means to multiply. She recognized that 7 was a factor of 21 (“7 x something equals 21”), 

and then used a skip counting method to determine the compatible factor, concluding that 

7 stamps put into 3 columns would help to solves Ashley’s problem. 
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Figure 16 – Student 2 Solves the Array Problem 

 This student also shows that he understand the relationship between arrays, 

multiplication, and division. His explanation illustrates what he did clearly and precisely, 

although elaboration on these steps is not provided. It seems that the student is still 

struggling with explaining why the solution method was chosen, not just how it was 

implemented. 

 The second question asked on the post-test required the students to find a way to 

convert a time period of 4 days into minutes. The question also provided a key, informing 

the students that there are 24 hours in 1 day and 60 minutes in 1 hour. 
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Figure 17: Days Problem 

 In my analysis of this problem, I was specifically looking for two things. First, I 

was very interested in seeing what strategies the students used to solve the problem. We 

had solved problems similar to this during our class discussions, but none were as 

complex as this. Second, I was looking again for evidence of coherent mathematical 

thinking, provided in the form of a written explanation of the solution method. 
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Figure 18: Student 1 Solves the Days Problem 

 This student illustrates an effective strategy, yet seems to be struggling with 

explaining her thinking. From the work she has shown, I can tell that she understands 

four days means four groups of 24 hours. She accurately uses repeated addition to find 

the number of hours in four days. She then demonstrates understanding that, if there are 

60 minutes in each of the 96 hours in four days, the final result can be found by 

multiplying 60 x 96. It is interesting to note that the student used repeated addition for the 

first conversion, but switched to using multiplication for the second. Perhaps she 

recognized that adding 96 sixty times (or vice versa) would take far too long. Although 

she did not multiply correctly, her solution method illustrates that she understands the 
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relationship between minutes, hours, and days. The justification of her work summarizes 

what she did, but once again does not go farther to explain why she chose those methods 

to solve the problem.  

 

 

Figure 19: Student 2 Solves the Days Problem 

 This response also demonstrates an understanding of the relationship between 

minutes, hours, and days, as well as the relationship between addition and multiplication. 

She begins solving the problem by adding 60 minutes 24 times, resulting in 1,440. She 
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then transfers that work to the work box by showing that 60 x 24 = 1,440. Her 

explanation is effective in describing exactly what she did. Once more, the explanation 

stops short. It does not explain why those steps were taken. Had the student elaborated 

and continued to explain why she chose to multiply 60 by 24, perhaps she would have 

noticed that her calculations only gave her the number of minutes in one day. She only 

solved part of the problem. Still, her response shows at least a partial conceptual 

understanding of the relationships included in the problem. 

 

Student Interviews 

 Once my collection of student work was complete, I wanted to hear my students’ 

thoughts about the methods we used to learn math. I decided to interview several students 

in order to see if there had been any connection between the discussions that took place 

around the calendar and the quality of their writing. I chose these three students based on 

pre-existing information I had been given about the students. These students were also 

chosen specifically to see if there had been a shift in their thinking about mathematics 

from the initial journal response until the time of the interview. A sample list of questions 

(Appendix G) was used to guide the interviews. These questions were designed to help 

the students explain their thinking while revealing their opinions about the discussions 

and writing that took place during our math class.  

 The first student that I interviewed was a very high-functioning student. He 

always demonstrated original thinking during discussions and easily identified several 

different solution methods to many of the problems we worked on. He had also scored 
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very high on the Math FCAT test in third grade and had been described by his third grade 

teacher as “very good” in math. The following dialogue took place during our interview. 

Mr. R.:  “Do you like math?” 

Student 1: “Yes.” 

Mr. R.: “Why?” 

Student 1: “I really like working with numbers and having challenges.” 

Mr. R.: “What do you mean by challenges?” 

Student 1: “I mean more difficult problems.” 

Mr. R.:  “Have you ever learned math by talking, listening, and writing 

about math problems? 

Student 1: “Sometimes, in my third grade class…I think we were getting into 

fractions. We talked about them and she taught us multiplication at 

the same time.” 

Mr. R.: “Can you explain how she did that?” 

Student 1: “Like if we were learning what zero-sevenths meant, she would 

show us that zero groups of 7 equal zero, not seven. Then we 

would get something for getting the right answer.” 

Mr. R.:  “Did you like learning math in this way this year?” 

Student 1: “Yeah…we’ll mainly know all of our multiplication facts, twos 

through nines, all the way up to 180.” 

Mr. R.:  “Was there anything else you liked about learning math in this 

way?” 
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Student 1: (slight pause) “I’m not really sure, I just thought it made it more 

interesting.” 

Mr. R.:  “Do you think it is important for students to talk about their math 

ideas and listen to the ideas of others?” 

Student 1: “Yes, you get to get inside their minds and see what they are 

actually thinking. That really helped some of the more challenging 

problems make more sense.” 

Mr. R.: “Is there anything else you would like to share with me about our 

math learning this year?” 

Student 1: “Well, I really liked playing games and doing the fun activities – 

that made learning math more fun. In second and third grade we 

did a lot more book work, and we didn’t really talk about our 

ideas.” 

 It is apparent from this interview that the student still has a limited view of 

mathematics. Despite his mature problem solving abilities, his mathematical learning 

seems to remain fixed upon learning basic facts. Also, it is clear that he considers a 

situation when the teacher explains an idea and students then mimic that idea, receiving 

rewards for correct answers, a discussion. In addition, although he apparently enjoyed the 

type of discussion we took place in this year, his thoughts about writing about 

mathematical ideas are missing from his interpretations of the math learning he has done 

over the past three years. This could mean that he did not find writing mathematical 

explanations useful, or perhaps he simply enjoyed the student-student interaction more. It 
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is clear, however, that he preferred hands-on math activities and math games as opposed 

to book work.  

 The next student I interviewed scored at an average level in math in third 

grade and had no apparent difficulties in learning math, according to her third grade 

teacher. During classroom discussions, she tended to solve problems in simple ways, but 

was always willing to expand her thinking by questioning and commenting on other 

students’ mathematical ideas. Here is a sample of our conversation. 

Mr. R.: “Do you think you are good at math?” 

Student 2: “Yes. My family and teachers have always said I was good at 

math.” 

Mr. R.: “How do you think you are good at math?” 

Student 2: “Because I feel very confident when I get the right answers.” 

Mr. R.: “Has talking about math ideas with your classmates helped you?” 

Student 2: “Mostly. It helps me to hear someone else’s explanation of a 

problem when I am confused. Sometimes they even have a better 

solution than I had, and that helps me learn.” 

Mr. R.:  “Have you ever learned math by talking, listening, and writing 

about math problems?” 

Student 2: “In the past, we used fraction models and tools to help with 

measurement. My third grade teacher also did something similar to 

the counting tape, where we had to find the multiples of each 

number. We didn’t do any writing, though. Mostly we just talked.” 
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Mr. R.: “Has discussing your math ideas helped you explain your thinking 

in writing?” 

Student 2: “Yes. Talking with others about my math ideas helped me organize 

my thoughts when I had to write my explanations. That made it 

easier to do.” 

Mr. R.: “What is the teacher’s job in a math class?” 

Student 2: “The teacher should give us a problem and then let us solve it and 

explain our solutions. Also, the teacher should help students when 

they are confused by asking questions and making some more 

difficult ideas more clear.” 

Mr. R.: “What is the student’s job in a math class?” 

Student 2: “Students should work to find various ways to solve problems. 

They should listen to the ways that other people solved the same 

problem. That way you can have lots of different ways to solve the 

same problem.” 

 It is evident from this interview that this student flourished in the environment of 

discourse. She had never written explanations before, yet revealed that both the talking 

and the writing helped her understand mathematical concepts. It seems as though her 

mathematics education in the past included some problem solving strategies, hands-on 

activities, and discussion of mathematical ideas. Although she claimed that her 

confidence is build when she gets the right answers, it is evident that she is more 

concerned with the process of solving problems when learning mathematics.  
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 The last student I chose to interview scored in the below-average range on the 

third grade test and had been identified by her third grade teacher as below grade level in 

mathematics. During class discussions, she was typically very quiet, listening very 

closely to others’ explanations but very reluctant to offer her own ideas. Her writing, 

although rudimentary, had improved drastically since the beginning of the study. Here is 

our conversation. 

Mr. R.: “Do you like math?” 

Student 3: “I like some math. Some of it is fun, but some of it is boring, too.” 

Mr. R.: “What makes math fun to learn?” 

Student 3: “Playing games makes math easy. I also like doing the hands-on 

activities, like when we filled the boxes with cubes to measure the 

volume. That made it easier to understand.” 

Mr. R.: “Have you ever learned math by talking, listening, and writing 

about math ideas?” 

Student 3: “Yes, my third grade teacher had us talk a lot. She would give us a 

problem and we would try to solve it. When we gave our answers, 

she always asked us how we got the answer. If we did it right, we 

got a prize.” 

Mr. R.: “Has talking about math ideas with your classmates helped you?” 

Student 3: “Yes. I really liked talking about the calendar. Hearing everyone’s 

ideas explained in different ways helped my understanding. I also 

liked that we didn’t have to get the right answer – all we had to do 
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was explain the math that we did. When I understood the math, it 

was easier to get the right answer.” 

Mr. R.: “Do you think it is important for you to talk about your math ideas 

and listen to others talk about their math ideas?” 

Student 3: “Yes. I think it helps to get you thinking about math in different 

ways. And, if you don’t get the right answer the first time, it helps 

to see it done in different ways so it can help you find a better way 

to solve the problem.” 

 It is evident from this student’s responses that she is a hands-on learner. She 

enjoys learning math in an exploratory way, whether she is learning through games or a 

manipulative-based activity. Her comment about her third grade teacher giving prizes for 

getting the right answers tells me that this student has not experienced true discourse. 

Perhaps the teacher was expecting the students to provide a specific response in regards 

to the solution method and was not open to allowing the students to solve the problems in 

ways that made sense to them. This also comes to light in the student’s revelation that she 

appreciated not having to worry about getting the right answer. By taking the pressure off 

of being correct, she was able to focus more on the math learning that was taking place. 

Listening to other students explain their ideas gave her an opportunity to find and correct 

any mathematical errors she may have made without the pressure of being reprimanded 

for solving the problem differently than the method taught.  

 Her comment about understanding the math also is a testament to the power of 

conceptual understanding. By understanding the math, the student was able to come to 



 

87 

the correct answer more often. This tells me that, for this student, there is certainly a big 

difference between the process of problem solving and the product of solving problems.  

 

Summary 

The data I collected revealed a wealth of information about the building of 

conceptual knowledge through dialogue and writing. Students were able to utilize the 

visual tools provided in the Calendar Math to find the appropriate words needed to 

explain and justify their mathematical thinking. Their daily discussions about the 

calendar math components helped them to improve the quality of their written work 

during math class. As they became more comfortable explaining and justifying their ideas 

during class discussions and interacting with their peers, the students established specific 

sociomathematical norms. As the study progressed, the students began expecting certain 

factors to drive their discussions. First, students expected that their peers thought about 

the explanations and tried to make sense of them. As a result of this, any student should 

have been able to reiterate another student’s explanation if asked to do so. Second, 

solution methods were expected to be able to be followed and replicated, resulting in the 

same answer, to prove that the solution method was valid. Finally, the students began to 

take ownership of their confusion by asking specific clarifying questions. It became 

routine that if an explanation was confusing it was nothing to be ashamed of. Confusion 

meant that the explanation was not clear enough and needed to be revised. Confusion 

eventually became a welcome part of the learning process, not something to be avoided.  

Clearly, discussion and writing are related in that they both are useful in helping 

students communicate mathematical ideas. Additionally, talking and writing about 
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mathematical concepts helps both the student and the teacher identify which ideas are 

understood and where misconceptions still exist. For many of my students, no longer was 

learning math only about getting the right answer. It became a discovery process, one that 

allowed for many different solution methods. The quality and quantity of their 

discussions and writing were both positively impacted by the increase in their value of 

the learning process. Students were able to apply the social and sociomathematical norms 

developed for classroom discussions in their written explanations, helping to enhance the 

quality of their overall communication skills. In the following chapter, I will review the 

key points of this study, highlight the implications of my findings, and discuss my 

recommendations for future studies. 
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CHAPTER 5: CONCLUSION 

Introduction 

 When I began this project, I was interested to see what would happen if I provided 

my students with opportunities to communicate about mathematics, both verbally and in 

writing. Through an action research study, I was able to answer my questions, “Are 

discussion and writing about mathematics related? How?” and “How do discussion and 

written explanations affect student understanding of mathematical concepts?” In this 

chapter I will review the results of my data analysis, investigate some limitations and 

implications of the study, and make some suggestions for future studies. 

 

Summary of Findings 

After collecting data from my students’ daily work and interactions over a period 

of four months, I found that the discussions we engaged in every day directly and 

positively impacted the students’ abilities to express their mathematical ideas in writing. 

Over the series of months that we worked with the Calendar Math bulletin board display, 

I noticed an increased transfer of the language we used in discussions to the students’ 

writing. By this I mean that as my students began to develop their mathematical language 

during discussions, they demonstrated an increasing ability to apply this language to their 

written explanations. The students became responsible for the learning taking place in the 

classroom. Just as Countryman (1992) stated, the acquirement of precise mathematical 

language helped the students to become better writers and thinkers of mathematics.  
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In addition, the acquisition of the language of mathematics caused my students to 

shift their thinking about how mathematics is learned. Instead of focusing on the product 

of problem solving, discussions and writing tasks were centered on the process of 

problem solving. In other words, I was less concerned with my students getting the right 

answer as opposed to being able to explain how they reached their answer. Most often, as 

students explored their problem solving processes, they were able to identify 

mathematical mistakes and modify their strategies. Similarly to Yackel (2000) and 

McClain and Cobb (2001), I found that the establishment of social and 

sociomathematical norms helped guide the daily discussions and kept the discussions 

focused on the mathematical content. Also, as Powell and López (1989) noticed, the 

students were able to develop control over their learning, enabling them to feel 

accomplished, which consequently resulted in an improvement in their attitude toward 

mathematics. 

With the assistance of the Every Day Counts Calendar Math bulletin board 

display, students were given tangible representations of mathematical concepts to help 

guide their conceptual development. They began speaking and writing like students of 

mathematics, building communication skills that moved beyond recitation of memorized 

facts and formulas. As students gained confidence in their ability to talk about 

mathematical concepts, their ability to express those ideas in writing became easier and 

more natural. They also learned that, although they may have solved a problem 

differently than someone else, their ideas were no less valid and could, in fact, help other 

students who did not “get it” the first time the concept was explained. Therefore, every 

student felt empowered in their knowledge of mathematics and their unique perspective 
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of challenging problems. As each month began, the teacher was responsible for 

introducing key words and concepts that would be the focus of study for the month. In 

the early part of each month, the students’ confidence level was low, but built as the 

month progressed and students were given daily opportunities to interact with the 

mathematics and each other. Eventually, authority over the mathematics was held almost 

entirely by the students; the teacher became more of an observer and guide. Despite this 

continual cycle of authority in the classroom between the teacher and the students, the 

teacher was no longer seen as the ultimate math expert, and the sharing of ideas among 

students made this point evident.  

 

Implications 

 Many studies have illustrated the importance of communication and its 

relationship to building conceptual understanding of mathematical ideas (Hiebert et al, 

1998; Van de Walle, 1994; Yackel, 2000; Steinbring, 2005; Steele, 2001; Vygotsky, 

1994; Pirie, 1998). Several studies also explored the usefulness of visual representations 

in helping to build mathematical concepts (Yackel, 2000; Steele, 2001; Vygotsky, 1994; 

Pirie, 1998). Moreover, research has shown that conceptual understanding of 

mathematics flourishes in classroom environments that utilize discussion effectively 

(Yackel, Cobb, & Wood, 1992; Hershkowitz & Schwarz, 1999; Egendoerfer, 2006; 

McClain & Cobb, 2001; Williams & Baxter, 1996; Silver & Lane, 1993; Nathan & 

Knuth, 2003; Pang, 2001; Pugalee, 2001, January). The development of social norms 

(Yackel, 2000; Planas & Gorgorió, 2004; Vacha, 1979) and sociomathematical norms 

(Yackel, Cobb, & Wood, 1992; Hershkowitz & Schwarz, 1999; McClain & Cobb, 2001) 
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within the classroom environment provide appropriate structures for student interaction 

with each other as well as with mathematical concepts.  

 Numerous other studies focused on the importance of writing as an expressive 

tool in mathematics learning (Countryman, 1992; O’Shea, 2004; Rose, 1989; Tichenor & 

Jewell, 2001; Baxter et al, 2005; Connolly, 1989; Pugalee, 2001, January and May; 

Birken, 1989; Powel & López, 1989). Writing about mathematical ideas and to explain 

problem solving processes helps students to organize their thoughts and expand their 

metacognition about the topic. By revealing what they know and what they do not know 

(Baxter et al, 2005), students are more apt to work through problems astutely, discovering 

the relationships and commonalities between mathematical concepts along the way.  

 If discussion and writing can both be used to help students build mathematical 

conceptual understanding and their ability to communicate their ideas about mathematics, 

then traditional instructional methods in mathematics classrooms need to be reevaluated. 

As times change, so do our students. Although many teachers teach the way they were 

taught or using methods that have been successful in the past (Kutz, 1991), those methods 

may not be as successful with the types of learners we have in our classrooms today. 

Today’s workforce has become increasingly demanding, requiring its members to be able 

to communicate ideas, work cooperatively, and apply a wide array of knowledge in 

various situations. If the goal of our educational system is to prepare students to meet 

these demands, then we need to begin providing them with the skills that will enable 

them to be successful, including the ability to solve problems and communicate ideas 

effectively.  
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 In my study, I created a learning environment that was different from any my 

students had experienced in previous classrooms at this school. Although some had 

experienced environments that incorporated a few of the aspects of a mathematics 

classroom that I have discussed, as was evident in the final interviews, I felt confident 

that I had created an environment that truly focused on process learning, student 

interaction, and verbal and written communication, all of which are important for helping 

students build their conceptual understanding of mathematical ideas. My findings support 

the research in regard to the effectiveness of using discussion and writing, constructivist 

approaches, and the development of an interactive classroom environment. Similarly to 

Pugalee (2001, January), I found communication to be an indispensible addition to my 

daily mathematics instructional methods. 

 What's more, I found that the use of discussion and writing as tools to teach 

mathematics also had additional benefits. Daily discussions and written tasks provided a 

form of alternative assessment, allowing me to “see” inside my students’ heads. Instead 

of assuming that they did not understand a concept based on wrong answers, I was able to 

guide them through their confusions and misconceptions as I listened to their 

explanations and as I read their writing. As Baxter et al. (2005) found, I realized that 

writing about mathematical ideas provided every student with an opportunity to 

participate in thinking about the concepts on some level. Furthermore, discussing and 

writing their mathematical ideas made students accountable for their work during our 

daily math lessons. Each student was responsible for not only inputting their own 

thoughts and ideas into the discussion, but they were also responsible for listening to 
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others’ explanations, thinking critically about the ideas presented, and responding to them 

in a mature, non-criticizing manner.  

 This causes me to firmly believe that it is no longer appropriate for teachers to 

deliver mathematical information to their students. As the expectations of student 

performance and learning increase, teachers need to find alternative teaching strategies 

that help meet those expectations. It is no longer enough to allow students to sit in neatly 

formed rows, passively absorbing mathematical facts and formulas. Students cannot learn 

to think for themselves if we continually force information into their heads.  

 While some of these implications may be challenging for many teachers to accept 

and implement, the alternative is to maintain the status quo. How can we expect changes 

to be made if we do not take risks? While these instructional strategies may not work in 

the same way for every teacher, the ultimate goal is for teachers to try new things, 

discover what works for them and for their students, and continually attempt to positively 

impact their students’ academic lives. 

Limitations 

 As teachers, we do not teach one class. We teach several students – individuals – 

whose needs should be taken into consideration every moment of the school day. 

Individual differences in student participation, motivation, mathematical background, and 

self-confidence all directly influenced my action research study.  

 Student minds are the result of their interactions with and their interpretations of 

the world around them. At the beginning of this research study, I knew that most of my 

students came from underprivileged home environments. Their parents, while supportive 

of education, lacked the time or energy to be as involved as necessary in the educational 
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process. In addition, I also was aware of the types of teaching strategies being used in 

each of the grade levels before mine. It was largely acceptable in the primary grades at 

my school to teach basic facts and mathematical rules. Much of the work students had 

done in math at each grade level prior to entering fourth grade was in an effort to prepare 

them for standardized tests. Classroom discussion and writing during mathematics 

instructional times, although highly recommended by the administration, was viewed as 

too time-consuming and consequently sacrificed to make more time for test preparation. 

Therefore, I was prepared to encounter students who might struggle with or even 

completely reject the teaching strategies I wanted to implement. While I saw positive 

results in using discussion and writing as part of my mathematics instruction, it would be 

impossible to generalize my findings to other students.  

 Teachers are as individual as their students. Each classroom has its own 

personality, its own voice – a voice that is a direct representation of the teacher in charge 

of it. Since my class was composed of students from a variety of different classes, I knew 

that each student was entering my classroom having been affected by the philosophy and 

teaching strategies of their previous years’ teachers. Every teacher has their own beliefs 

about how best to teach their students. Between the academic curriculum and the hidden 

curriculum, teachers support their own ideas and, whether consciously or unconsciously, 

pass those ideas to their students.  

Some teachers feel that they need to be in complete control of their students every 

moment of the school day. I was willing to relinquish some of that control when I 

challenged my students to think about mathematics in a different way. I was able to do 

this because I believe that students can learn just as much from each other as they can 
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from me. I did not feel that it was my job to merely impart knowledge onto my students 

through rote memorization and textbook work. During this process, I was forced to 

reflect on my teaching practices and make conscious changes that may or may not have 

been beneficial to my students’ mathematical learning. Other teachers may have been 

reluctant or apprehensive about such a daunting process. The fact that teachers have 

varying philosophies and expectations for the students I would be teaching this year 

would be a limitation in this study. 

 

Recommendations 

 Through my action research study, I found that students are capable of 

communicating mathematically, both verbally and in writing, without having to recite 

ideas as they were presented by a teacher. The daily anticipation of working with the 

calendar math seemed to help increase my students’ motivation about sharing their 

mathematical ideas.  

 Based on the results of my study, I would make three recommendations for the 

future. 1) Teachers could be more reflective about their practices and be open to teaching 

strategies that incorporate constructivist approaches. 2) Students could be given more 

opportunities in mathematics classes to work closely with the language of mathematics 

and visual representations of mathematical concepts. 3) Students could be given daily 

opportunities to discuss and write about their mathematical ideas and solution methods. 
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Teacher Change 

 “Educational change depends on what teachers do and think – it’s as simple and 

as complex as that” (Fullan, 2007, p. 129). As teachers are the primary decision-maker in 

their classrooms, it is the teacher who must manage the realities that accompany any 

change. It would be easy for legislators, educational researchers, and school 

administrators to implement changes in teaching strategies if they could change the way 

teachers think.  

This is especially true in mathematics classrooms. If the goal is to help students 

build mathematical conceptual understanding then several things must take place. First, 

teachers must be willing to analyze, evaluate, and modify their role in the classroom. It 

may require teachers and students to challenge the system that is already in place. 

However, when teachers are willing to relinquish the idea that they are the “giver of 

knowledge” and provide their students opportunities to construct knowledge through 

interaction, discovery, and writing, positive changes will occur.  

 A second way that teachers can initiate change in their classrooms is by 

recognizing when changes need to be made. Our students are not the same types of 

learners as they were ten years ago and yet our classrooms look the same as they ever did. 

Students are not the only factor affecting the way we teach. Teachers must take into 

account not only educational changes, but societal changes as well. As it is part of our 

responsibility to help our students become successful, functioning members of society, 

we need to be sure that we are preparing students for the society they will be entering – a 

society that requires them to think critically, work cooperatively, and communicate ideas 

effectively. 
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 By evaluating our practice and considering the various forces of change that affect 

our students, teachers can help to directly impact student participation in the classroom. 

Making students accountable for their learning is a crucial aspect of the educational 

system. So much emphasis has recently been placed on teacher accountability that 

students have become languid in their learning. Pressure is placed upon teachers to 

increase student achievement and, in effect, increase test scores. As a result, textbooks 

and scripted programs have been developed that have all but reduced the teaching and 

learning process to a series of unconnected skills to be memorized. “If teachers 

consistently place emphasis on students that can supply correct answers students will 

recognize the hidden agenda of the teacher. Students will supply correct answers when 

they can, and stay quiet when they are unsure” (Egendoerfer, 2006, p. 73).  

By working to create a learning environment where student interaction and 

discovery is encouraged, the teacher is sending the message that students are responsible 

for their learning, and therefore students will become more active participants in the 

learning process. In this type of learning environment, students quickly learn that 

misunderstanding and confusion is not something to be ashamed of. Struggle becomes a 

welcome part of the learning process – something that is necessary in order for true 

learning to take place. 

   

Mathematical Language 

 The acquisition of a language – any language – is indeed a difficult undertaking. 

The same is true about learning the language of mathematics. When we learn a new 

language, we often make mistakes: we use an incorrect term, phrase a statement in an 
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awkward manner, etcetera. Mathematical language is no different. Barwell (2005) points 

out that ambiguity can be useful in a mathematics classroom. Although mathematics is 

typically seen as a precise, technical subject, student confusion can actually be helpful in 

the learning process.  

 Mathematical discourse is cyclical in nature. As new vocabulary is encountered, it 

may not be instantly clear to the learner. By providing repeated encounters with 

mathematical vocabulary, exploring them in numerous, varied contexts, students’ 

understanding of these terms, along with their experience as part of a discursive 

environment, become more complex over time (Barwell, 2005).  

 Students can explore the language of mathematics through concrete and visual 

representations of mathematical ideas. These representations act as springboards into the 

world of mathematics for most students. The struggle students experience as they attempt 

to analyze and describe what they observe provides a setting of mathematical 

argumentation (Yackel, 2001; Morgan, 2005) that contributes to a student’s overall 

understanding of mathematical concepts.  

 By understanding the nature of language acquisition and applying that to 

mathematics classrooms, students can begin to communicate mathematical ideas in new 

and unique ways. Consistent, repeated exploration of mathematical ideas and vocabulary, 

through the use of concrete and visual representations, is a key component to helping 

students build their conceptual understanding of complex mathematical ideas. In a 

classroom environment that supports mathematical discourse, students and teachers can 

work together to find new ways to use language to do mathematics. 
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Verbal and Written Communication 

 “Giving students opportunities to develop skills in communicating mathematically 

should be a natural outgrowth of a well-balanced mathematics program” (Pugalee, 2001, 

January). My study supports this claim. My students began to build their understanding 

of the mathematical ideas represented on the calendar math bulletin board display 

through daily dialogue and writing.  

 At first, my students had a difficult time adjusting to my expectation that they 

explain and justify their own ideas regarding mathematical concepts. It seemed as though 

they were stuck in the assumption that learning math was only about getting the right 

answer. As they began to trust their own knowledge about mathematics and think 

critically about the others’ ideas, their communication skills improved. As was seen in 

the transcripts of our calendar discussions, my students began to realize how the language 

of mathematics was useful in helping them communicate their thought processes.  

 Something I would recommend to teachers who are considering implementing 

constructivist teaching approaches in their classroom is to make the change slowly. 

Change can be overwhelming, even for the most experienced teachers. I suggest making 

the change to using discussion to build conceptual knowledge during one part of the 

whole school day. That way the entire process does not become too much to handle on 

top of all of the other teaching responsibilities. Once some small successes have been 

achieved, choose another part of the school day to implement the change. This might take 

months, or even years, but the overall effects of the change will provide an educational 

experience our students deserve. 
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Summary 

 Education is a living entity – always moving, always changing. As teachers, we 

need to pinpoint what is most important in order to provide the best experience for every 

child that enters our classrooms. During this study, I made it a priority to incorporate 

discussion and writing about mathematics as part of my instructional practices. In the 

process, I learned that it is perfectly acceptable for me to step aside, allowing my students 

to elucidate their own thoughts and confusions during math class. Not only did this help 

me identify which areas my students were struggling with, but it also provided a vehicle 

for helping other students hear different perspectives about the same problem or topic. 

This, in turn, helped my students learn to communicate their mathematical ideas clearly 

and precisely, while simultaneously building their conceptual understanding of 

mathematics. From this experience, I learned that I have the ability to impact my 

students’ education either positively or negatively. If I continue to set priorities for my 

classroom based on my philosophies and beliefs, I can make decisions that will benefit all 

of my students. More than anything, I want to be the type of teacher who constantly acts 

with the best interests of my students at heart. By encouraging my students to believe in 

themselves and become active members of the classroom community, I feel confident 

that they will be successful in all aspects of life. 
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