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ABSTRACT 

This thesis is devoted to a study about Fractals and Fractal Polynomial 

Interpolation. Fractal Interpolation is a great topic with many interesting applications, 

some of which are used in everyday lives such as television, camera, and radio. The 

thesis is comprised of eight chapters. Chapter one contains a brief introduction and a 

historical account of fractals. Chapter two is about polynomial interpolation processes 

such as Newton’s, Hermite, and Lagrange. Chapter three focuses on iterated function 

systems. In this chapter I report results contained in Barnsley’s paper, Fractal Functions 

and Interpolation. I also mention results on iterated function system for fractal 

polynomial interpolation. Chapters four and five cover fractal polynomial interpolation 

and fractal interpolation of functions studied by Navascués. Chapter five and six are the 

generalization of Hermite and Lagrange functions using fractal interpolation. As a 

concluding chapter we look at the current applications of fractals in various walks of life 

such as physics and finance and its prospects for the future. 
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CHAPTER 1:  INTRODUCTION 

1.1 Introduction to Fractals 

People are always fascinated by interesting shapes and often wonder how it is 

possible to create beautiful images and scenes like those seen in the movies. There is a lot 

of interest in the phenomenon called Star Wars. George Lucas is a pioneer of the movie 

industry due to the original Star Wars movies, which contained special effects like never 

seen before. In the film Return of the Jedi we see a major weapon the size of a small 

moon called the “Death Star.” Fractals were used to create the outline of this magnificent 

weapon. Fractals were also used in many other notable Hollywood movies such as Apollo 

13, The Perfect Storm and Titanic. The following are pictures from the movies, The 

Return of the Jedi and Apollo 13. 

   
 

Figure 1:  Star wars and Apollo 13 

 

The field of fractals is fascinating. Fractals are not only man made but also be 

seen in nature. When you see a branch in a tree, which is similar to the tree, then the tree 

is an example of a fractal. Other examples include mountains, flowers, lightning strikes, 

rivers, coastlines and seashells. The following are pictures of a cloud and a fern leaf 

which are examples of a fractal as the exhibit self-similarity. 
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Figure 2:  Pictures of a cloud and a fern leaf 

  

The mathematics of fractals began to take shape in the 17
th

 century when Leibniz 

considered the idea of straight lines being self-similar. Leibniz made the error of thinking 

that only straight lines were self-similar. It was  in 1872 that Karl Weierstrass gave an 

example of a function which was continuous everywhere, but nowhere differentiable. In 

1902, Helge von Koch gave a geometric definition of Weierstrass’s analytical definition 

of the non-differentiable function and this is now called the Koch snowflake. Such self-

similar recursive properties of functions in the complex plane were further investigated 

by Henri Poinćare, Felix Klein, Pierre Fatou and Gaston Julia. Finally, in 1975 Benoit 

Mandelbrot coined the term “fractals”, whose Latin meaning stands for “broken” or 

“fractured”.  

Two of the most important properties of fractals are self-similarity and non-

integer dimension. Self-similarity is the property where a small partition of an object is 

similar to the whole object. For example, a bark of a tree is similar to the tree itself and a 

floret of cauliflower is similar to the whole cauliflower. Self-similarity can be explained 

using the power law which is  

dhct  

http://en.wikipedia.org/wiki/Felix_Klein
http://en.wikipedia.org/wiki/Pierre_Fatou
http://en.wikipedia.org/wiki/Gaston_Julia
http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot
http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot
http://en.wikipedia.org/wiki/Beno%C3%AEt_Mandelbrot
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It is called the power law because t changes as if it was a power of h . Taking logarithm 

of both sides of the equality sign we obtain 

log log logt d h c  

Which implies that  

log( / )

log

t c
d

h
 

Fractal dimension can be obtained using a relationship between the number of copies and 

the scale factor. For example, if a line segment is cut into four equal pieces then the 

fractal dimension would be 
log log 4

log log(1/ 4)

c
d

r
, where c is the number of copies 

and r is the scale factor.  

1.2 Interpolation Process 

People are often in search of a good digital camera. A camera with a higher mega 

pixel level will have more resolution and clarity. It is interpolation that lets the camera 

obtain the maximum level of mega pixel, which makes the images sharper. Other uses of 

interpolation include estimating a predicted value for the temperature at a grid point from 

data from weather stations located in its neighborhood and predicting the price of stocks 

from its past behavior from a time series data. 

In mathematics, interpolation process is the computation of values between the 

ones that are known or tabulated using the surrounding points or values. According to 

Springer online reference works, “Interpolation is a process of obtaining a sequence of 

interpolation functions )}({ zf n for some indefinitely growing number of interpolation 

conditions.” The aim of the interpolation process is to approximate by means of 
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interpolation functions )(zf n of an initial function )(zf about which there is incomplete 

information or which is complicated to deal with directly. Some of the famous 

interpolation processes are Newton’s divided difference interpolation, Aitken’s 

interpolation, Lagrange interpolating polynomial, Bessel’s interpolating formula and 

Gauss’s interpolating formula. 

CHAPTER 2:  POLYNOMIAL INTERPOLATION METHODS 

2.1 Polynomial Interpolation 

 

Table 1:  1n  Data Points ),( ii yx
 

x  
0x  

1x  . . . . . . 
nx  

y 
0y  

1y  . . . . . . 
ny  

 

If 1n data points such as in Table 1 is given, then our goal is to find a polynomial 

p of lowest possible degree for which  

ii yxp )(  )0( ni  

Such a polynomial is called an interpolating polynomial and a fundamental result is: 

Theorem 1: If 0 1, ,..., nx x x  are ( 1)n distinct real numbers, and 0y , 1y ,…, ny are 

( 1)n arbitrary values, then there is a unique polynomial np of degree at most n such that  

iin yxp )(  )0( ni  

The proof of this theorem can be found in [7] 



 5 

2.2 Newton’s Interpolation Polynomial 

Let us assume that the function ( )f x is known at several values of x such and in 

Table 1. It is not assumed that the x’s are evenly spaced or that the values are arranged in 

a particular order. Consider the thn degree polynomial  

0 0 1 0 1 2 0 1 1( ) ( ) ( )( ) ( )( ) ( )n n nP x a x x a x x x x a x x x x x x a  

If the ia ’s are chosen such that ( ) ( )nP x f x
 
at the n+1 known points, ( , ), 0, ,i ix f i n , 

then ( )nP x is an interpolating polynomial where the ia ’s are determined using the 

Newton’s divided difference tables [5]. 

2.3 Newton’s Divided Difference Interpolation. 

Let  
0

( ) ( )
n

kn
k

x x x then 
0 0 11

1

( ) ( ) [ , , , ]
n

k nk
k

f x f x f x x x R  

Here 0 1[ , , , ]kf x x x  is the divided difference of f at 0 1[ , , , ]kx x x  and the remainder is  

( 1)

0 1

( )
( ) ( )[ , , , ] ( )

1 !

n

n nn n

f
R x x x x x x

n
 

for 0 nx x

 

According Gerald and Wheately [5], using the standard notation, a divided difference 

table is shown in standard form as follows 

Table 2:  Newton’s Divided Difference Table 

ix  if  1[ , ]i if x x  1 2[ , , ]i i if x x x  1 2 3[ , , , ]i i i if x x x x  

0x  0f  0 1[ , ]f x x  0 1 2[ , , ]f x x x  0 1 2 3[ , , , ]f x x x x  

1x  1f  1 2[ , ]f x x  1 2 3[ , , ]f x x x  1 2 3 4[ , , , ]f x x x x  

2x  2f  2 3[ , ]f x x  2 3 4[ , , ]f x x x   
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3x  3f  3 4[ , ]f x x    

4x  4f     

 

Here,  

1 2 0 1 1
0 1

0

[ , ,..., ] [ , ,..., ]
[ , ,..., ] n n

n

n

f x x x f x x x
f x x x

x x
 

Hence, 

0 0 0 1 0 1 0 2 0 1 1 0 1( ) [ ] ( ) [ , ] ( )( ) [ ,..., ] ... ( )( )...( ) [ , ,..., ]n n nP x f x x x f x x x x x x f x x x x x x x x f x x x

 

2.4 Lagrange Interpolation Polynomial. 

An alternative method of expressing the interpolating polynomial P is of the form  

0 0 1 1

0

( ) ( ) ( ) ( ) ( )
n

n n k k

k

p x y x y x y x y x     

Where 0 1, , , n   represent polynomials that depend on the nodes 0 1, , , nx x x . Let,  

0

( ) ( ) ( )
n

ij n j k k j i j

k

p x y x x   

Here, ki is the Delta function where ki = 1 if k i and ki = 0 if k i. Consider 0 to be a 

polynomial of degree n, which takes on the value of 0 at 1 2, , , nx x x and 1 at 0x .  

0 1 2

1

( ) ( )( ) ( ) ( )
n

n j

j

x c x x x x x x c x x  

By putting 0x x we obtain  

0

1

1 ( )
n

j

j

c x x  

Therefore, 
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1

0

1

( )
n

j

j

c x x  

and 

0

1 0

( )
n

j

j j

x x
x c

x x
  

Each of the i ’s, 1,2,...,i n , are obtained by a similar reasoning. In general 

0

( )
n

j

i

j i j
j i

x x
x

x x
  (0 )i n  

For the set of nodes 0 1, , , nx x x , these polynomials are called the cardinal function. The 

cardinal functions together with  

 
0 0 1 1

0

( ) ( ) ( ) ( )
n

n n k k

k

p x y x y x y y x     (2.1) 

yields the Lagrange form of the interpolation polynomials. 

2.5 Hermite Interpolation 

A loose definition of Hermite Interpolation is the interpolation of a function and 

its derivatives at a set of nodes. The simpler interpolation where no derivatives are 

interpolated is often referred to as Lagrange interpolation. Kincaid and Cheney [7] 

provide a useful example in their book Numerical Analysis where they require a 

polynomial of least degree that interpolates a function f and its derivative f at two 

distinct points 0x  and 1x . The polynomial which we seek will satisfy  

( ) ( )i ip x f x   ( ) ( )i ip x f x  ( 0,1)i  
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There are four conditions and therefore it is reasonable to seek a solution in 3 , a linear 

space of all polynomials of degree at most three. An element of 3  has four coefficients. 

Instead of writing p(x) in terms of 2 31, , ,x x x , we write 

2 2

0 0 0 1( ) ( ) ( ) ( ) ( )p x a b x x c x x d x x x x  

This leads to 

2

0 0 1 0( ) 2 ( ) 2 ( )( ) ( )p x b c x x d x x x x d x x  

The four conditions on p can be written as 

0( )f x a  

0( )f x b  

2

1( )f x a bh ch   1 0( )h x x  

2

1( ) 2f x b ch dh  

In a Hermite problem it is assumed that whenever a derivative ( )j

ip x is to be prescribed 

(at a node ix ), then ( 1) ( 2)( ), ( ), , ( )j j

i i ip x p x p x , and ( )ip x will also be prescribed. Let 

0 1 2, , , , nx x x x be the nodes and let the following interpolation conditions be given at the 

node ix  

( )j

i ijp x c   (0 1,0 )ij k i n  

The total conditions on p is denoted by m+1 and therefore 

0 11 nm k k k  

Theorem 2 [7]: There exists a unique polynomial p in m  fulfilling the Hermite 

interpolation condition 

( )j

i ijp x c   (0 1,0 )ij k i n  
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When there is only one node, we require a polynomial p of degree k for which 

0 0( )j

jp x c   (0 )j k  

then the solution is the Taylor polynomial. 

0
00 01 0 0( ) ( ) ( )

!

kkc
p x c c x x x x

k
 

Hermite interpolations problems can also be solved using Newton’s divided difference 

method and Lagrange interpolation formula [7]. 

2.6 Error in Polynomial Interpolation 

Theorem 3 [7]: Let f be a function in 1[ , ]nC a b , and let p be a polynomial of degree n  

that interpolates the function at n+1 distinct points 0 1 2, , , , nx x x x in the interval [ , ]a b . 

To each x in [ , ]a b  there corresponds a point in x [ , ]a b  such that  

1

0

1
( ) ( ) ( ) ( )

( 1)!

n
n

x i

i

f x p x f x x
n
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CHAPTER 3:  ITERATED FUNCTION SYSTEMS 

Definition 1: [6] A metric space is a pair ( , )M d  where M is a non-empty set and 

:d M M R is a real valued function called a metric on M, with the following 

properties 

i) Positive definite, i.e. , , ( , ) 0x y M d x y  

ii) Symmetric, i.e. , , ( , ) ( , )x y M d x y d y x  

iii) Triangle inequality, i.e. , , , ( , ) ( , ) ( , )x y z M d x y d x z d z y  

Definition 2 [6]: Let ( , )M d  be a metric space and let a be the family of all closed 

subsets of M. For 0r  and A in a, let ( ) { : ( , ) }rV A m d m a r  , and definite for 

members A and B of a, ( , ) inf{ : ( )rd A B r A V B  and ( )}rB V A . Here, d is the well-

known Hausdörff metric.  

Let M be a compact metric space and H be the set of all nonempty closed subsets 

of M. Then H is a compact metric space with the Hausdörff metric. Note that A and B are 

subsets of M. 

 Let nw M M for {1,2,..., }n N be continuous. 

 { , : 1,2,..., }nM w n N  (3.1)  

is called an iterated function system (IFS).  

Consider ( ) { ( ) : }n nw A w x x A . Define :W H H by 

 1 2( ) ( ) ( ) ... ( ) ( )N n
n

W A w A w A w A w A  for A H   (3.2) 

Any set G H such that  

 ( )W G G  (3.3) 
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is called an attractor for the IFS.  

According to Barnsley [1] the IFS always admits at least one attractor. An IFS is called 

hyperbolic if, for some s, 0 1s  and {1,2,..., }n N ,  

 ( ( ), ( )) ( , ),n nd w x w y s d x y   ,x y M  (3.4) 

In this case W is a contraction mapping which obeys 

( ( ), ( )) ( , ),h W A W B s h A B   ,A B H  

Also, W admits a unique attractor. Barnsley in [1] explains how to find this unique 

attractor. 

Given a set of data points{( , ) : 0,1,..., }i ix y I R i N , where 0[ , ]NI x x R is a closed 

interval, see Fig. 3.  

 
Figure 3:  0[ , ]NI x x R  

The functions that we are concerned with are functions :f I R which interpolate the 

data { :1 0,1,2,..., }iy N such that  

 ( )i if x y , 0,1,2,..,i N  (3.5) 

as seen in Fig. 4 

 
Figure 4:  :f I R  
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The graphs of these functions { , ( ) : }G x f x x I are attractors of the IFS. In 

other words there exists a compact subset M of I R , and a collection of continuous 

mappings :nw M M such that the unique attractor of the IFS is G. Barnsley in [1] 

refers to such functions as the Fractal Interpolation Functions (FIF). 

Here we are working with the compact metric space [ , ]M I a b  for 

some a b , with the Euclidean metric or an equivalent metric viz. 

1 1 2 2 1 2 1 2(( , ), ( , )) { , }d c d c d Max c c d d  

Assign 1[ , ]n n nI x x and let :n nL I I for {1,2,..., }n N be contractive homeomorphisms 

such that 

 0 1( )n nL x x , ( )n N nL x x , (3.6) 

1 2 1 2( ) ( )n nL c L c l c c  1 2,c c I , 

for some l, 0 1l . Also, let the mappings : [ , ]nF M a b be continuous for 

some 0 1q  satisfying 

0 0 1( , )n nF x y y , ( , )n N N nF x y y , 

1 2 1 2( , ) ( , )n nF c d F c d q d d ,  

for all c I , 1 2, [ , ]d d a b , and {1,2,..., }n N .  

We now define functions :nw M M for {1,2,..., }n N by  

 ( , ) ( ( ), ( , ))n n nw x y L x F x y , 1,2,...,n N  (3.7) 

Here, { , : {1,2,..., }nM w n N is an IFS, but this may not be hyperbolic.  
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Theorem 4 [1]: The iterated function system (IFS) { , : 1,2,.., }nM w n N admits a unique 

attractor G, which is the graph of a continuous function : [ , ]f I a b , and that function 

satisfies (3.5) 

Proof: Let G be any attractor of the IFS. Let  

ˆ { : ( , )I x I x y G  for some [ , ]}.y a b  

Note that 0[ , ]NI x x R is a closed interval, see Fig 1.  

From (3.2)  and (3.3)
nn

G w G , and it follows that ˆ ˆ( )nn
I L I .  

{ , : 1,2,..., }nI L n N  is a hyperbolic IFS (3.4) whose unique attractor is I.  

Hence,  

0
ˆ [ , ]nI I x x  

To show that G is the graph of the function : [ , ]f I a b , we start off by proving that 

there is only one y-value corresponding to each x-value (definition of a function).  

Consider the x-values 0 1{ , ,..., }Nx x x . Let, 

{( , ) : }i iS x y G x x  for {0,1,..., }.i N  

Note that from (3.7)  

0 0( ) ( ( ), ( )n n nw s L x F S  

0 1 1( ) ( , )n n nw s x y  

Therefore, 0 0( ) 0nw S S  for 1n , we should have 1 0 0( )w S S , but 1w  is a strict 

contraction on the compact metric space 0S , so 0 0 0( , )S x y and similarly ( , )N N NS x y .  

For {1,2,..., 1}I N the only points which can map to iS are 0S (under 1iw ) and NS  

(under iw ). Therefore,  
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 1 0( ) ( ) ( , )i i i N i iS w S w S x y  (3.8) 

Let, 

{ : ( , ), ( , ) , }Max s t x s x t G x I  

Due to the compactness of G, the maximum is achieved at some pair of points ˆ( , )x s  and 

ˆ( , )x t  in G, with s t . From (3.7) it can be assumed that 1
ˆ ( , )n nx x x for some n. 

But, there exists two points in G, 

1 ˆ( ( ), )nL x u and 1 ˆ( , )nL x v  

with,  

1 ˆ( ( ), )n ns F L x u and 1 ˆ( ( ), )n nt F L x v  

Hence, 

1 1ˆ ˆ( ( ), ) ( ( ), )n n n ns t F L x u F L x v  

q u v q  

with 0 1q , hence 0 . Therefore, G is the graph of the function : [ , ]f I a b  which 

satisfies ( )i if x y . G is unique because the union of two attractors is still an attractor.  

To prove that ( )f x is continuous, let ( )C I denote the Banach space of all continuous 

real-valued function :g I R . Define a norm { ( ) : }g Max g x x I . Let us define a 

contraction mapping 0 0: ( ) ( )T C I C I , where ( )C I consists of those ( )g C I such 

that : [ , )g I a b , and which obeys 0 0( )g x y  and ( )N Ng x y . Let 0 ( ) ( )C I C I . 

1 1( )( ) ( ( )), ( ( ))n n nTg x F L x g L x  when , 1, 2,...,nx I n N . 

Using the definition of the norm 
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1 1 1 1

1 1

{ ( ( )), ( ( )) ( ( )), ( ( ))}

{ ( ( )) ( ( ))}

n n n n n n

n n

Th Tg Max F L x h L x F L x g L x

Max q h L x g L x

q h g

 

Hence we know that T has a unique fixed point 0
ˆ ( )h C I such that ĥ  is the attractor of 

the IFS. Hence the function ˆf h  is continuous. This completes the proof of the 

theorem. 
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CHAPTER 4:  FRACTAL INTERPOLATION FUNCTIONS 

In this chapter we shall consider the problem of Fractal Interpolation. Initial 

results in this direction were obtained by Barnsley [2]. Before we go to more recent 

results on this topic, we consider necessary definitions and some of the known results 

which will be used in subsequent chapters. 

Definition 3 [2]: A data set is a set of points of the form  

2{( , ) : 0,1,2,..., }i ix f i N  

where, 

0 1 2 ... Nx x x x  

This set of data points has an interpolation function corresponding to it which is a 

continuous function 0:[ , ]Nf x x 
 
such that  

( )i if x F  for 0,1,2,..,i N  

Here, the points 2( , )i ix f   are called the interpolation points and the function f 

interpolates the data points. The graph of the function f passes through the interpolation 

points.  

For example, let 2{( , ) : 0,1,2,..., }i ix f i N  denote a set of data. Let 

0:[ , ]Nf x x  denote the unique continuous function which passes through the 

interpolation points and which is linear on each of the subintervals 1[ , ]i ix x . 

That is  

1
1 1

1

( )
( ) ( )

( )

i
i i i

i i

x x
f x f F F

x x
for 1[ , ], 1,2,...,i ix x x i N  
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The function ( )f x is called the piecewise linear interpolation function. The graph of 

( )f x is illustrated in Fig. 5  

 

Figure 5:  Graph of the Piecewise Linear Interpolation Function  

 

 The figure above is the graph of the piecewise linear interpolation function ( )f x through 

the linear interpolation points{( , ) : 0,1, 2,3, 4}i ix F i . This graph is also the attractor of an 

Iterated Function System of the form { , 1,2,3,4}nw n  where the maps are affine. The 

term affine stands for everything that is related to the geometry of affine spaces. A co-

ordinate system for the n-dimensional affine spaces n is determined by any basis of n 

vectors, which are not essentially orthonormal. Therefore, the resulting axes are not 

necessarily mutually perpendicular nor have the same unit measure. 

Here, 

0

0

n n

n

n n

a ex x
w

c fy y
 

Where, 
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1

0

( )
,

( )

n n
n

N

x x
a

x x
 1 0

0

( )

( )

N n n
n

N

x x x x
e

x x
 

1

0

( )
,

( )

n n
n

N

F F
c

x x
 1 0

0

( )

( )

N n n
n

N

x F x F
f

x x
 

for 0,1,2,..,n N . 

Let 0 1 ... Nt t t  be real numbers, and consider 0 , NI t t  , the closed interval that 

contains 0 1 ... Nt t t .  Given the set of data points , : 0,1,2,...,n nt x I n N . 

Consider 1,n n nI t t  and let : , 1,2,...,n nL I I n N be contractive homeomorphisms 

such that 
0 1 1 2 1 2 1 2, , ,n n n N n n nL t t L t t L c L c l c c c c I and for some 

0 1l . Also, let the mappings :nF F  be continuous for some 1 1n  satisfying 

0 0 1( , )n nF t x x , ( , )n N N nF t x x , ( , ) ( , )n n nF t x F t y x y , for all 

c d , 1 1n , and {1,2,..., }n N . In the precious chapter we defined 

IFS ( , ) ( ( ), ( , ))n n nw t x L t F t x , 1,2,...,n N . From Theorem 4 we know that the IFS 

admits a unique attractor G which is the graph of a continuous function :f I   which 

satisfies 0,1,2,...,n nf t x n N . This function is called the fractal interpolation 

function (FIF) corresponding to 
1{( ( ), ( , ))}N

n n nL t F t x . Let  be the set of continuous 

functions 0:[ , ] [ , ]Nf t t c d  such that 0 0( )f t x  and ( )N Nf t x . We know that  is a 

complete metric space with respect to the uniform norm ( , ) .
 
Define :T   by  

1 1

1( ) ( ), ( ) , , 1,2,...,n n n n nTf t F L t f L t t t t n N . 

T is a contraction mapping on  follows from 



 19 

Tf Tg t g , where a max , 1,2,...,na n N  

and 1
 
since 1 1n . As a consequence T has a unique fixed point on  from 

the  Banach fixed point theorem. Thus f  such that 0( ) ( ) , NTf t f t t t t . This 

function ( )f t is a Fractal Interpolation Function corresponding to the IFS 

( , ) ( ), ( , )n n nw t x L t F t x . 

Also, :f I  is a unique function that satisfies the following equations 

, 1,2,..., ,n nf L t F t f t n N t I  

or 

 1 1

1, 1,2,..., , ,n n n n n nf t F L t f L t n N t I t t  (4.1)  
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CHAPTER 5:  FRACTAL POLYNOMIAL INTERPOLATION 

Until recently, interpolation and approximations have been carved out with the aid 

of smooth functions. These functions are sometimes infinitely differentiable. 

Unfortunately, in the real world we deal with signals which do not posses such smooth 

qualities. Signals recorded with respect to time suggest “original functions with, abrupt 

changes, whose derivatives posses sharp steps or even do not exist at all,” (Navascués 

[13].) The fractal interpolation functions (FIF) are considered to be an important advance 

in this field because the interpolants of the FIF are not necessarily differentiable over a 

set and in certain cases are not even point-wise differentiable. “They appear ideally suited 

for the approximation of naturally occurring functions which display some kind of 

geometric self-similarity under magnification,” (Barnsley, [10].) 

 Navascués [13], in her paper, proposes to create a base for fractal interpolants 

which are perturbations of polynomials whose aim is to define a non-smooth fractal 

version of conventional interpolations. A complete description of the frequency domain 

of the fractal functions is obtained by means of their Fourier Transform. “This fact is 

particularly important because such functions are defined implicitly in the time domain 

by a functional equation,” (Navascués [13].) 

Let us review the IFS (3.1) which admits a unique attractor G, which is the graph 

of a continuous function :f I R  that obeys ( )n nf t x  , 0,1,2,..,i N . This function is 

called a fractal interpolation function corresponding to
1{( ( ), ( , ))}N

n n nL t F t x . Till this day, 

the most studied fractal interpolation function (FIF) has been defined by the iterated 

function system (IFS) [13] 
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( ) ( )

( , ) ( )

n n n

n n n

L t a t b

F t x x q t
 (5.1) 

where na  is a vertical scaling factor for the transformation nw
 
and  1 2( , ,..., )N  is 

the scale vector of the IFS.  

 Michael Barnsley, who is a pioneer in the use of data points to create fractal 

functions [1], proposes a generalization of a continuous function h by means of a fractal 

interpolation using the IFS (5.1) with a polynomial ( ) ( ) ( )n n nq t h L t b t . Here b is a 

continuous function such that 0 0( )b t x , ( )N Nb t x  . Here, the case that we will be 

looking at is b h c , with the function c being a continuous and increasing function 

0 0( ) , ( )N Nc t t c t t . As an example, Navascués in her paper [13] considers the family 

( ) ( 1) / ( 1), 0tc t e e  on an interval[0,1] . 

Proposition 1 [13]: Let : [ , ]h I a b R , be continuous, 0 1: ... Na t t t b , be a 

partition of [ , ]a b , 1N , NR  and such that 1 . The IFS (3.1) where 

1 0( ) / ( )n n n Na t t t t , 1 0 0( ) / ( )n N n N Nb t t t t t t , ( ) ( ) ( )n n nq t h L t h c t   and c an 

increasing continuous function such that 0 0( )c t t ; ( )N Nc t t ,  defines an FIF 

( ) ( )n nh t h t for all 0,1,...,n N .  

Proof:  First step is to check and see whether the conditions for nL and nF  are satisfied. 

We look at (3.6) with 0 1( )n nL t t , ( )n N nL t t {1,2,..., }n N , where :n nL I I are 

contractive homeomorphisms and ( )n nx h t . We have  
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and 

( , ) ( )

( ) ( )

( )

n N N n N n N

n N n N n N

n N N n N

n N N n N

N

F t x x q t

x h L t h c t

x h t h t

x h t x

x

 

  . 

nF  is uniformly Lipschitz, 1 2 1 2( , ) ( , )n nF c d F c d d d  , in the second variable 

with constant 1.  

Define :T G G , where 0{ [ , ] : ([ , ]) [ , ], ( ) , ( ) }NG g C a b g a b c d g a x g b x , 

according to 1 1( ) ( ( ), ( ))n n nT f t F L t f L t . According to Theorem 4 T admits a unique 

attractor, h such that  

1 1( ) ( ( ), ( ))n n nh t F L t h L t , nt I .  

Using (5.1)  

      1 1( ) ( ) ( )n n n nh t h L t q L t   

Substituting into the above ( ) ( ) ( )n n nq t h L t h c t  , we obtain  

  

1 1

1 1

1

( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( )

( ) ( ( )) ( )

n n n n n

n n n n

n n

h t h L t h L t h c t L t

h L t h h c t L t

h t h h c t L t

   

  

 

 (5.2) 

h passes through the points ( , )n nt x since, 

0 0 0 0

0 0 0

0 1 0

0 1 0

1

( , ) ( )

( ) ( )

( ) ( )

n n n

n n n

n n n

n n n

n

F t x x q t

x h L t h c t

x h t h t

x x x

x

 
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1 1

1 1

( ) ( ( ), ( ))

( , )

( ) ( ( ), ( ))

( , )

n n n n n n

n N N

n n n n n n n

n N N

n

h t F L t h L t

F t x

x h t F L t h L t

F t x

x



  (5.3) 

Note that since ( ) ,n N nL t t we have 1( )n n NL t t  and 1( ) ( )n n N Nh L t h t x . 

As an example let us consider the graph of the function ( ) cos
2

h t t
t

. The first figure 

is the original graph of the function ( )h t . The second figure is the graph of the 

corresponding fractal function with the partition 
1 1 1 1 1 1 1

: 0 1
8 7 6 5 4 3 2

 

Let us consider the case where 
2( )c t x , a quadratic in the interval 0,1 . Note that 

(0) 0, (1) 1c c . Let 0.2 1,...,8n n . The third figure is the graph obtained from 

the Lagrange Polynomial Interpolation of the function ( )h t . All of the graphs below are 

generated using Maple 10.  

 
Figure 6:  Graph of the Function h 
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Figure 7:  Graph of the - fractal function of h  

 

 
Figure 8:  Graph of the Lagrange Interpolation polynomial of h  

 

The graphs above were generated using the following Maple 10 code. 
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Find na and nb for each n. 
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Definition 4 [10]: Let ( )h C I , , c, and be as  in Proposition 1. The FIF 
ch  defined 

in this proposition is termed - fractal function of h with respect to  and c. Define the 

-fractal operator (attractor) respect to  and c by 

, : ( ) ( )cO C I C I

h h

 

Definition 5 [10]: An - fractal polynomial is an element ( ) ( )p t C I such that there is 

a polynomial [ , ]p P a b with ( )O p p . If p has degree m, then p is an - fractal 

polynomial of degree m.  

In the definition above, [ , ]mP a b  is a set of polynomials of degree less than or 

equal to m on the interval [ , ]I a b  and
1

[ , ] [ , ]mm
P a b P a b . 

2{1, , ,...}t t constitutes a 

basis of [ , ]P a b . For notation purposes Navascués and Sebastián in [13] assume 

that [ , ] ( [ , ], [ , ]) ( [ , ])m mP a b O P a b P a b O P a b .  

Let us consider another example to emphasize the importance of fractal 

polynomial interpolation. I used Maple 10 to plot the graph of a polynomial and a graph 

of the fractal interpolation polynomial using a program created by Ken Monks [10]. The 

graph in Figure 6 is the graph of a function 
10

1

1
( ) sin(6 )

2

k

k
k

f x x on in interval[0,1] . The 
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graph in Figure 7 is the graph of the same function interpolated using the Lagrange 

interpolation formula in the interval [0,1] created using four partitions and the one in 

Figure 8 is the graph of the fractal function on the same interval created using four 

partitions.  

           

Figure 9:  Graph of the function f 

 

 Figure 10:  Graph of the Lagrange interpolation polynomial of f 
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Figure 11:  Graph of the fractal function 

 

An example of Lagrange polynomial interpolation is given in chapter 7. The 

graphs above were drawn using the following commands in Maple 10 respectively. 
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 Notice that the Lagrange interpolation gave a smooth curve which did not 

highlight the finer details in the graph. The stock market and weather data fluctuates by 

the minute and the fractal functions are ideal to capture the minute details and predict the 

future up to a certain extent.  

 The procedure for fitting a real world data utilizing Fractal Interpolation 

Functions is described in the following paragraph.  

First of all let us consider the set of data * *, , 0,1,...,i it y i M . The FIF is built as a 

perturbation of an interpolant g of a subset of the data. Let the subset of 

* *, , 0,1,...,i it y i M  be , , 0,1,...,n nP t x n N  where * *

0 0 0 0, ,t x t x and 

* *, ,N N M Mt x t x . Let the interpolant g be a function that passes through P. Consider 

the IFS (5.1) with 1 0( ) / ( )n n n Na t t t t  , 1 0 0( ) / ( )n N n N Nb t t t t t t  and  

( ) ( ) ( )n n nq t h L t b t  , here b is continuous and 0 0( )b t x and ( )N Nb t x . Also, let 

h be the corresponding FIF.  
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 Let ( ), , 1,2,...,n n n

j jt x j m be the intermediate points in 1,n n nI t t not in P: 

( )

1 1,...,j n

n n nt t t j m . According to (5.2), 1( ) ( ) ( ( )) ( )n nh t h t h h c t L t  . 

Adding the condition j j

n nh t x to (5.2) yields 

1n n n

j j n n jx h t h b L t  

And 

1n n n

j j n n jx h t h b L t  . 

Choosing n such that the sum of the square residuals is minimum yields  

( ) 2

1

1

min

nm
n n n

n j j n n j

j

E h t x h b L t  

Solving the above equation for 
' 0nE yields 

( )

( )

1 1

1

2

1 1

1

n

n

m
n n n n

j j n j n j

j

n
m

n n

n j n j

j

h t x h L t b L t

h L t b L t

 

Let ( ) ( ),..., n n

n n n n

j j m m
h t x h t x and 

( ) ( )

1 1 1 1,..., n n

n n n n

b n j n j n nm m
h L t b L t h L t b L t  

Substituting these back in n yields 
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2

b

n

b

 

According to Navascués [14], “If the interpolant h converges to the original function 

when the diameter of the partition tends to 0, we get 0j jh t x and 0 .” 

Therefore, we can choose n  such that 1, 1,2,..,n n N . The function h together 

with the scale vector determine the fitting curve h . 



 32 

CHAPTER 6:  HETMITE FRACTAL POLYNOMIAL 

INTERPOLATION 

Section 2.5 gives a brief introduction to Hermite interpolation which can also be 

obtained using Newton’s divided difference table and Lagrange interpolation. In [11] 

M.A. Navascués and M.V. Sebastián give an introduction to obtaining a Hermite 

interpolation function by means of fractal interpolation. In order to obtain the Hermite 

interpolation function let us look at a couple of theorems by Barnsley. 

Theorem 5 [4]: Let 0 1 ... Nt t t  and ( )nL t , 1,2,...,n N , the affine function 

( )n n nL t a t b satisfying the expressions in (3.6). Let 1 1

0

( ) n n
n n

N

t t
a L t

t t
 

and ( , ) ( )n n nF t x x q t , 1,2,...,n N satisfying 0 0 1( , )n nF t x x , ( , )n N N nF t x x , 

1 2 1 2( , ) ( , )n nF c d F c d d d (check Proposition 1). Suppose for some integer 0p , 

p

n na  and
0[ , ]p

n Nq C t t , 1,2,...,n N . Let  

( )

( ) ( )

1 0
0, ,

1 1

( )
( , ) , 1,2,...,

( ) ( )
, , 1,2,...,

k

n n
nk k

n

k k

N N
k N kk k

N N

x q t
F t x k p

a

q t q t
x x k p

a a

 

If 
1, , 0 0,( , ) ( , )n k N N k nk kF t x F t x  with 2,3,...,n N  , then 

1{( ( ), ( , ))}N

n n nL t F t x  

determines a FIF
0[ , ]p

Nf C t t  and 
( )kf  is the FIF determined by 

1{( ( ), ( , ))}N

n nk nL t F t x  

for 1,2,...,k p .  

The above theorem leads us to expect the Hermite fractal interpolation problems 

can be solved uniquely and assures the existence of a differentiable FIF. This FIF has 

1p  derivatives prescribed at (( , ); 0,1,..., ; 0,1,..., )n nkt x n N k p .  
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Theorem 6 [11]: Let 0 11, , ... NN p t t t  and ; 0,1..., ; 0,1,...,nkx n N k p by 

given. Let 1 2, ,..., N be real numbers such that 1,2,..., ,p

n na n N with 

1

0

n n
n

N

t t
a

t t
. Then there exists precisely one function of fractal interpolation 

pf C defined by an IFS given by: 

( ) ( )

( , ) ( )

n n n

n n n

L t a t b

F t x x q t  

Where ( ) 1,2,..,nq t n N are polynomials of degree at most 2p+1, such that 

( ) ( )k

n nkf t x for 0,1,..., ; 0,1,...n N k p . 

Proof: Consider 1

0

n n
n

N

t t
a

t t
, 1 0

0

N n n
n

n

t t t t
b

t t
 and define 

 ,

k

n n

nk k

n

x q t
F t x

a
 (6.1) 

for 0 k p with the degree of nq , deg 2 1nq p .  

The polynomial nq t is computed as solution of the system of equations 0 k p  

 

0 0

0 0 1,, ,

,

k

n k n

nk k n kk

n

k

n Nk n N

nk N Nk nkk

n

x q t
F t x x

a

x q t
F t x x

a

 (6.2) 

The 2 2p unknowns of the above equation are the coefficients of nq t . Solving the 

above equation for nq t , we obtain 
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1 0
1 0 1,

1

1
,

1

k k n k
n n n n n kk k

n n

k k n Nk
n n n n N nkk k

n n

x
q L t q t x

a a

x
q L t q t x

a a




 

for 0 k p .  

The function 
1

n nq L t  is a polynomial with a degree of at most 2 1p and whose 

derivatives up to order p at 1nt and nt are 0
1,

n k
n k k

n

x
x

a
and n Nk

nk k

n

x
x

a
. Thus it can be 

concluded that 
1

n nq L t is a Hermite interpolating polynomial in the interval 1,n nt t . 

This Hermite polynomial exists and is unique [8] and thus it can be deduced that 

nq t exists and is unique.  

Let us verify that the functions defined by (6.1) equation reference goes here satisfies the 

hypothesis of Barnsley and Harrington’s Theorem 5.  

From (6.2) we know that 0 0 1, 1,, , 2,3,...,nk k n k n k N NkF t x x F t x n N . Therefore, 

we know that the hypothesis is satisfied and thus from Theorem 5, we can guarantee the 

existence of 
pf C such that 

k
f  is the FIF defined by the IFS

1{( ( ), ( , ))}N

n n nL t F t x . As a 

consequence, we know that 
k

f is the fixed point of a contraction mapping 

:k k kT M M . 

Similar to Chapter 3, page 15.  Let us define a norm { : }f g Max f t g t x I . 

Let us define a contraction mapping :T M M , where M consists of those f M such 

that 0: , ,Nf t t c d , and which obeys 0 0( )f t x  and ( )N Nt t x . Let us define the 

mapping T by 
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1 1( )( ) ( ) , ( )n n nTf t F L t f L t  when 1,n nt t t . 

Using the definition of the norm 

1 1 1 1{ ( ( )), ( ( )) ( ( )), ( ( ))}n n n n n nTf Tg Max F L x f L x F L x g L x  

1 1( ( )) ( ( ))n nMax f L x g L x  

f g  

Hence we know that T has a unique fixed point 
k

f of :k k kT M M and the function 

k
f is continuous. 

1 1

1, ,k nk n n n nT g t F L t g L t t t t  

 
0 0 ,

k k

k N Nkf t x f t x  (6.3) 

From (6.2) and (6.3) we can conclude that  

1 1, , ,
k k k

n nk n n n n nk N N nk N Nkf t F L t f L t F t f t F t x  

0,1,2,...,n N  and 0,1,2,...,k p  

The function f generalizes the Hermite functions as 0 1,2,...,n n N . 
pf C and 

1 1 1

0 ,n n n n nf t F L t f L t q L t  if 1,n nt t t . f is a polynomial of degree less 

than or equal to 2 1p in the interval 1,n n nI t t and as a consequence f is a Hermite 

function since it satisfies all the conditions prescribed in section 2.5.  

This result implies that the IFS in Theorem 6, 

( ) ( )

( , ) ( )

n n n

n n n

L t a t b

F t x x q t ,

 

can be called the Hermite Fractal Interpolation Function.  
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CHAPTER 7:  LAGRANGE FRACTAL POLYNOMIAL 

INTERPOLATION 

As a review let us look at the Lagrange polynomials given by equation (2.1), 

which is
0 0 1 1 ,

0

( ) ( ) ( ) ( )
N

N N i i N

i

p t x t x t x x t    , where 

0 1 1 1
,

00 1 1 1

( )( ) ( )( ) ( )
( )

( )( ) ( )( ) ( )

N
ji i N

i N

ji i i i i i i N i j
j i

t tt t t t t t t t t t
t

t t t t t t t t t t t t
 .  As an example let us 

interpolate 4( )f x x from [1,4] . The Lagrange polynomial ( )L x is given below. 

Table 3:  Example of Lagrange Interpolation 

ix  ( )if x  

0 1x  0( ) 1f x  

1 2x  1( ) 16f x  

2 3x  2( ) 81f x  

3 4x  3( ) 256f x  

 

1 2 3 0 2 3
0 1

0 1 0 2 0 3 1 0 1 2 1 3

0 1 3 0 1 2
2 3

2 0 2 1 2 3 3 0 3 1 3 2

( )( )( ) ( )( )( )
( ) ( ) ( )

( )( )( ) ( )( )( )

( )( )( ) ( )( )( )
( ) ( )

( )( )( ) ( )( )( )

( 2)( 3)
( ) 1

x x x x x x x x x x x x
L x f x f x

x x x x x x x x x x x x

x x x x x x x x x x x x
f x f x

x x x x x x x x x x x x

x x
L x

3 2

( 4) ( 1)( 3)( 4)
16

(1 2)(1 3)(1 4) (2 1)(2 3)(2 4)

( 1)( 2)( 4) ( 1)( 2)( 3)
81 256

(3 1)(3 2)(3 4) (4 1)(4 2)(4 3)

10 35 50 24

x x x x

x x x x x x

x x x
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Definition 6[13]: Navascués and Sebastián define the - fractal interpolant of the 

Lagrange polynomial as  

,

0

( ) ( ) ( )
N

N N i i N

i

p t O p x t
 

where, 

: The partition. 

,i N  : - fractal polynomial of 
,i N  with respect to the partition . 

( )Np t : A function which passes through the points ( , )n nt x as in Proposition 1 on page 

22. 

Let NL  represent a Lagrange operator that assigns an interpolant polynomial to a function 

f with respect to
0{( , ( ))}N

n n nt f t , then ( ) ( )N np t O L f . The basis polynomials of the 

Lagrange operator 
, ( )i N t  are orthogonal with respect to the norm 

, , , ,

0

, ( ) ( )
N

i N j N i N n j N n

n

t t    . The same property is true for ,i N . Therefore, 

, ,

0

,
N

n n

i N j N i j

n

  , where n

i
 is the Delta function (the definition of the Delta 

function can be found in page 7).  

 If [ , ]Np P a b , by the linearity of the operator O (see page 406 of [13] 

Corollary 1) 
,

0

N

i i N

i

p  . Also, the orthogonality of  ,i N  implies linear independence 

and therefore, ,{ }i N constitutes a basis for the space of -fractal polynomials for the 
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space [ , ]NP a b on the partition . [ , ]NP a b has a finite dimension which allows us to 

obtain a *p for each [ , ]h C a b  such that * *inf ; [ , ]a a

Nh p h p p P a b  

Utilizing the fractal polynomials in the Lagrange interpolation gives us the 

advantage of obtaining a non-smooth version of the Lagrange polynomials which will 

highlight the finer details of the graph.   
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CHAPTER 8:  USES OF FRACTALS 

One of the many uses of fractal geometry is the generation of programs that create 

images of clouds, trees, landscapes and the coastal line on the computer screen, fractals 

have many other applications. We have already went over the use of fractals in science 

fiction movies. Fractals together with knowledge of ecosystem are also used to determine 

the spread of smoke, acid rain, and other air borne or water borne toxicants. Fractal 

interpolation also provides a good representation of economic time series such as the 

stock market fluctuation and weather data. With the current economic crisis we need 

some new models that take into account many more variables and that provide more 

accurate interpretation of the future behavior and I think fractal polynomial interpolation 

can play a significant part in that. The financial markets are churning with the sub-prime 

home loan crisis in the US and the global banking system. The huge derivatives overhang 

is a problem that requires global cooperation to manage. Hike in food prices and increase 

of poverty. The Governments together with the Central Banks and Commercial Banks 

need to come up with a solution for these global problems. Modeling the problem 

involves several interdependent factors mostly in non-linear relationships- the model, in 

addition to traditional quantitative data, has to incorporate intangible qualitative factors 

such as political policies, changing food habits, subsidies and retail supply chain all of 

which are dynamically changing. We need to develop holistic models which are driven by 

the problem against the traditional approach wherein the problem is mutilated to suit 

known models such as OR resulting in short-term non-sustainable solutions. Benoit 

Mandelbrot, the father of fractals, has taken on the stock market and he is analyzing these 

problems."Markets, like oceans, have turbulence," he said. "Some days the change in 
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markets is very small, and some days it moves in a huge leap. Only fractals can explain 

this kind of random change." With the current economic crisis we need some new models 

that take into account many more variables and that provide more accurate interpretation 

of the future behavior and fractal polynomial interpolation can play a significant part in 

that.  
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