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Abstract

The world bond market is nearly twice as large as the equity market. The goal of this

dissertation is to study the dynamics of bond price. Among the liquidity risk, interest rate

risk and default risk, this dissertation will focus on the liquidity risk and trading strategy.

Under the mathematical frame of stochastic control, we model price setting in U.S. bond

markets where dealers have multiple instruments to smooth inventory imbalances. The

difficulty in obtaining the optimal trading strategy is that the optimal strategy and value

function depend on each other, and the corresponding HJB equation is nonlinear. To solve

this problem, we derived an approximate optimal explicit trading strategy. The result shows

that this trading strategy is better than the benchmark central symmetric trading strategy.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Bonds are an important source of financing for governments and corporations. As of 2009,

the size of the outstanding U.S. bond market debt was $31.2 trillion, according to Bank for

International Settlements. Nearly all of the $822 billion average daily trading volume in the

U.S. bond market takes place between broker-dealers and large institutions in a decentralized,

over-the-counter (OTC) market.

In the OTC market, typically, dealers act as counterparties: they buy from public sellers

and sell to public buyers. Dealers quote a pair of bid and ask prices to customers and have the

obligation to buy or sell, respectively, at the quoted prices if their clients wish to exchange at

the quoted price. Dealers provide market liquidity and make their profit from the difference

between their bid and ask (buying and selling) prices and a service charge. Their objective

is to profit from the spread between bid and ask prices, not from price movements. In that

regard, they are different from ordinary investors, who seek to profit by betting on how the

price moves.
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By virtue of their central position and role as price setters, dealers are a logical starting

point for an exploriation of how prices are actually determined inside the “black box.”

Dealers’ trading strategies contribute to price formation. Dealers face an inventory risk when

receiving consecutive trades in the same direction. For example, when a dealer’s inventory

position is large and positive, it is potentially very risky because if the bond depreciates

due to the interest rate change or default, the dealer will lose a considerable amount. For

a risk-averse dealer, this is certainly undesirable. Thus, they can adjust bid and ask prices

to induce more buy orders rather than sell orders and bring their inventory position back

to zero. However, if dealers lower the ask price below the previous bid price at which they

bought the bond, they may lose money. To avoid such situations, dealers may consider

selling a certain amount bond to other dealers or dealer brokes.

The goal of this dissertation is to model bond price determination in the over-the-counter

market. Essentially, the dealers are profit-maximizers, who control their buying and selling.

We modeled the activities of dealers under the framework of stochastical control. Based on

this model, we will answer the following questions:

1. What is the optimal price quoting strategy for a dealer that maximizes profit? Does

it exist? If it exists, is it explicit?

2. What is the comparison with the other strategies, such as a frozen strategy or a bench-

mark symmetric strategy?
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1.2 Literature Review

One set of papers, including [Garman 1976], [Amihud and Mendelson 1980], [Madhaven and

Smidt 1993 ], [Avellaneda 2008], models the pricing and inventory behavior of risk-averse

dealers, usually assuming either monopolistic dealers or ignoring the interactions among

dealers’ quotes.

Garman (1976) first presented a rigorous stochastic model of the dealers’ market, explor-

ing the nature of possible failure that the dealer’s inventory of stock or cash becomes zero.

Based on Garman’s framework, Amihud and Mendelson (1980) proved that the bid and ask

prices are monotone decreasing functions of the inventory level and that the spread (the

difference between the ask and bid price) is increasing in distance from the preferred posi-

tion. Due to the complexity of the model, neither Garman nor Amihud were able to give the

closed form solutions to their models. Later, Madhaven and Smidt(1993) derived the quoted

price as a function of inventory deviation from preferred level in a similar framework. Recent

work by Avellaneda and Stoikov (2008) has also focused on the optimal trading strategy.

However, the above-mentioned models of price formation assumed that bid and ask prices

are the only instruments by which a dealer can adjust inventory levels. Indeed, in dealers’

market, dealers may pass around their imbalance of inventory. Without concerning the inter-

dealer trading, the model may fail to be realistic. Since the liquidity in bond markets is very

limited, the optimal strategy would be not to buy and to sell at a unreasonablely low price.

3



Ho and Stoll (1983) used a framework that permits inter-dealer trading, although it does

not arise in the model solution. Lyons (1997) developed a simultaneous trade model of the

spot foreign exchange market, called the “hot potato” model, in which dealers trade with

dealers, passing around inventory imbalances, which is the basis of this dissertation.

The second set of papers, including Hasbrouck and Sofianos (1993), and Hansch and Neu-

berger (1996), studied the empirical trading behavior of dealers. Hasbrouck did empirical

analysis of New York Stock Exchange (NYSE) specialists. His study examined a compre-

hensive sample of quote, trade, and inventory data. He studied 138 stocks from November

1988 through August 1990. The avarage daily closing inventory was 118.97 (hundred shares)

with a standard deviation of 605.44 (hundred shares). The overall average holding period

was only 0.84 days. His evidence suggested that dealers do have impact on the market. In

his study, he also found out that dealers have different levels of risk aversion, which leads to

different trading behaviors. Even though Hasbrouck studies NYSE specialists, not dealers in

bond market, one thing is in common: both study traders’ behavior under the same objec-

tive. Hansch and Neuberger (1998) used a rich database from the London Stock Exchange,

which allows them to observe market maker inventories directly, something previous studies

have not been able to do. Their results showed that dealers will not protect themselves from

informed customers with wide spreads, but will instead seek to attract them with narrow

spreads.
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This dissertation attempts to extend existing models of dealers’ price setting behavior to

capture the essential features of markets with inter-dealer trading in an empirically tractable

way.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES

This chapter collects all the concepts, theorems and examples that are needed in later chap-

ters. For the reader’s convenience, proofs are given for some theorems.

2.1 Stochastic Process

Definition 1 (Oksendal 1998) Given (Ω,F ,P),(1) a stochastic process Xt is a collection

{Xt : t ∈ I} of random variables where the index t belongs to some index set I. We call

that {Xt} is a continuous-time stochastic process if I is an interval in R, or discrete- time

stochastic process if I is a subset of {0, 1, 2, · · · , n, · · · }. We also call t→ Xt(ω) the sample

path of the stochastic process Xt.

(2) a stochastic process {Xt, t ≥ 0} is called an independent increment process if for

any n and any 0 ≤ t0 < t1 < · · · < tn, the increments X0, Xt1 − Xt0 , · · · , Xtn − Xtn−1 are

independent.
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(3) Let an Rn-valued stochastic process X(·) be defined on a filtered probability space

(Ω,F , F = (Ft, t ≥ 0),P). If for any t ≥ 0 and s > t

P(X(s) ∈ B|Ft) = P(X(s) ∈ B|X(t)), ∀B ∈ B(Rn)

process X(·) is called a Markov process, where B(Rn) is the Borel σ-fields of Rn.

Theorem 2 An independent increment process is a Markov process.

Definition 3 A stochastic process {Bt, t ≥ 0} defined on a probability space (Ω,F ,P) is

called a Brownian motion if :

1. B0 = 0

2. Bt is an independent increment process

3. for 0 ≤ s < t, the increment Bt −Bs has a normal distribution N(0, t− s)

Brownian motion is an independent increment process, therefore it is a Markov process.

Definition 4 A stochastic process {Nt, t ≥ 0} defined on a probability space (Ω,F ,P) is

called a Poisson process of rate λ if it verifies the following properties:

1. N0 = 0

2. Nt is an independent increment process

7



3. for 0 ≤ s < t, the increment Nt−Ns has a Poisson distribution with rate λ(t− s), that

is,

P (Nt −Ns = k) = e−λ(t−s) (λ(t−s))k
k! , k = 0, 1, 2, · · ·

where k = 0, 1, 2, · · · ,.

Poisson process is an independent increment prosess, therefore it is a Markov process.

Theorem 5 Let Lt and Mt be two independent Poisson processes with respective rates λ

and µ. Then the process Nt = Lt +Mt, called the superposition of the processes Lt and Mt,

is a Poisson process of rate λ+ µ.

Theorem 6 Let Nt be a Poisson process with rate λ. Let Yn be a sequence of independent

Bernoulli random variables with parameter p ∈ (0, 1), independent of Nt. Set

Mt = Y1 + Y2 + · · ·+ YNt

and

Lt = Nt −Mt.

Then the processes Lt and Mt are independent Poisson processes with respective rates λp and

λ(1− p).

Definition 7 A stochastic process {Ct, t ≥ 0} defined on a probability space (Ω,F ,P) is

called a compound Poisson process if it is of the form

Ct =
Nt∑
n=0

Xn,

8



where Xn, n = 0, 1, · · · are indepent identically distributed and Nt is a Poisson process.

Theorem 8 Wald Equation Let Xn;n ∈ N be an infinite sequence of real-valued, finite-

mean random variables and let N be a nonnegative integer-valued random variable. Assume

that

(i) N has finite expectation,

(ii) Xn;n ∈ N all have the same expectation,

(iii) E[Xn1N≥n] = E[Xn]P (N ≥ n) for every natural number n, and

(iv) the series
∑∞

n=1 E
[
|Xn|1{N≥n}

]
is convergent.

Then the random sum S :=
∑N

n=1Xn is integrable and

E[S] = E[N ] E[X1],

which is called the Wald equation

Condition (iii) in the above theorem means that for all n, N is not necessary to be

independent of Xn for the Wald equation holds, but {N ≥ n} is independent of Xn.

For a compound Poisson process, due to the independence of Nt and Xn, {Nt ≥ n} is

independent of Xn for all n ≥ 0. Thus, the Wald equation holds.

9



2.2 Generator of a Process

Let an Rn-valued Markov process X(·) be defined on a filtered probability space (Ω,F , F =

(Ft, t ≥ 0),P). The transition distribution of X(·) is defined as follows:

P̂ (t, x, s, B) = P(X(s) ∈ B|X(t) = x), 0 ≤ t ≤ s, B ∈ B(Rn), x ∈ Rn

Further, for any φ(·) ∈ C(Rn; R) ≡ {φ : Rn → R| φ(·) is continuous}, we define

E(φ(X(s; t, x)) =

∫
Rn
φ(y)P̂ (t, x, s, dy), 0 ≤ t ≤ s,

as long as the right-hand side exists.

Definition 9 Suppose X(·) is an Rn-valued process. Let

D(A) =

{
φ ∈ C([0, T ]×Rn)| lim

h→0+

Eφ(t+ h,X(t+ h; t, x))− φ(t, x)

h
exists

}
,

and define

(Aφ)(t, x) = lim
h→0+

Eφ(t+ h,X(t+ h; t, x))− φ(t, x)

h
, ∀φ ∈ D(A),

We call A the Backward Evolution Operator of X(·).

Theorem 10 (Dynkin’s formula [Fleming 2006]) For t < s,

Eφ(s,X(s; t, x))− φ(t, x) = E

∫ s

t

Aφ(r,X(r; t, x))dr, ∀φ ∈ D(A), 0 ≤ t ≤ s

10



Definition 11 Suppose X(·) is an Rn-valued stochastic process. Let

D(L) =

{
f ∈ C(Rn)| lim

h→0+

E[f(X(t+ h; t, x))− f(x)]

h
exists

}
.

Define

Lf(x) = lim
h↓0

E[f(X(t+ h; t, x))− f(x)]

h
, ∀f ∈ D(L).

We call L the generator of X(·).

Example 12 (Fleming 2006) The generator of a Poisson process, with rate λ > 0 is

(L)f(x) = λ[f(x+ 1)− f(x)]

Example 13 (Fleming 2006) The generator of a compound Poisson process

X(s) = x+
Ns∑
i=1

Ji,

where Ns is a Poisson process with rate λ(s, x) at time s, is

Lf(x) = λ(t, x)

∫
Rn

(f(x+ y)− f(x))Π(t, x, dy), ∀f ∈ D(L)

where Π(t, x, dy) is the density function of jump size conditional on X(t) = x

It is known that [Fleming 2006] the relation between backward evolution operator A and

generator L is given by

Aφ = φt + Lφ(t, ·), ∀f ∈ D(A)

11



2.3 Ito’s Lemma and Feynman-Kac Formula

In its simplest form, Ito’s lemma states the following: let Xt be a solution of the following

stochastic differential equation

dXt = µt dt+ σt dBt. (2.1)

such an Xt is called an Ito drift-diffusion process. Let f(t, x) be a twice differentiable function

of two real variables t and x, the following holds:

df(t,Xt) =

(
∂f

∂t
+ µt

∂f

∂x
+
σ2
t

2

∂2f

∂x2

)
dt+ σt

∂f

∂x
dBt, (2.2)

where the last term is the differential form of Ito integral. This immediately implies that

f(t,X) itself is an Ito drift-diffusion process.

The Feynman-Kac formula establishes a link between parabolic partial differential equa-

tions (PDEs) and the expected values. It offers a method of solving certain PDEs by simu-

lating random paths of a stochastic process. Conversely, an important class of expectations

of random processes can be computed by deterministic methods.

Suppose Xt solves the scalar stochastic differential equation

dXt = b(Xt, t)dt+ σ(Xt, t)dBt

and let

u(x, t) = E[f(XT )|Xt = x]

12



be the expected value of f(XT ), given that Xt = x. Then u solves the PDE,
∂u
∂t

+ b(x, t)∂u
∂x

+ 1
2
σ2(x, t)∂

2u
∂x2 = 0

u(x, T ) = f(x)

(2.3)

The following example will be used in later chapter.

Example 14 Assume that dSt = σStdBt where σ is a constant, then

v(s, t) = E(x+ qST − γ(qST )2|St = s)

is a solution to the following PDE:
ut + 1

2
σ2s2uss = 0, t ∈ [0, T ], s ∈ R+

u(q, s, T ) = x+ qs− γq2s2

(2.4)

2.4 Dynamic Programming

We now consider problems in which the Markov process X(·) is actively infulenced by a

control u(·) ∈ U [t, T ] where

U [t, T ] = {u : [t, T ]× Rn → U}

More precisely, for any (t, x) ∈ [0, T ]×Rn, u(·) ∈ U [t, T ], X(·) = X(·; t, x, u(·)) is defined on

[t, T ]. For convenience, let us call X(·; t, x, u(·)) a controlled Markov process.

Define the performance function:

J(t, x, u(·)) = E{W (X(T ; t, x, u(·)))|Xt = x} (2.5)
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Then define the value function:
V (t, x) = sup

u(·)∈U [t,T ]

J(t, x, u(·))

V (T, x) = W (x)

(2.6)

Theorem 15 Bellman’s Priciple of Optimality. Let X(s; t, x, u(·)) be a controlled Markov

process. If W : Rn → R is continuous, then

V (t, x) = sup
u(·)∈U [t,s]

E{V (s,X(s; t, x, u(·)))}, 0 ≤ t < s ≤ T (2.7)

Proof: For all u(·) ∈ U [t, T ] and 0 ≤ t < s ≤ T , by the property of conditional expectation,

J(t, x, u(·)) = Et{W (X(T ; t, x, u(·)))}

= Et{E(W (X(T ; t, x, u(·)))|Fs)}

= Et{E(W (X(T ; t, x, u(·)))|X(s; t, x, u(·)))}

= Et{E(W (X(T ; s,X(s; t, x, u(·)), u(·))))}

= Et{J(s,X(s; t, x, u(·)), u(·))}

(2.8)

The third equation holds because X(·) has the Markov property. Since

J(s,X(s; t, x, u(·)), u(·)) ≤ V (s,X(s; t, x, u(·))),

we have

J(t, x, u(·)) ≤ Et{V (s,X(s; t, x, u(·)))} ≤ sup
u(·)∈U [t,s]

Et{V (s,X(s; t, x, u(·)))}

14



and this implies

V (t, x) ≤ sup
u(·)∈U [t,s]

Et{V (s,X(s; t, x, u(·))} (2.9)

Next, for any ε > 0 and any u(·) ∈ U [t, s], there exists a uε(·) ∈ U [s, T ], depending on ε

and u(·), such that

V (s,X(s; t, x, u(·)))− ε ≤ J(s,X(s; t, x, u(·)), uε(·))

For any u(·) ∈ U [t, T ], we now construct a control

ũ(s) =


u(s) if r ∈ [t, s),

uε(r) if r ∈ [s, T ]

Then ũ(·) ∈ U [t, T ], which is still depending on ε and u(·) ∈ U [t, s), and

V (t, x) ≥ J(t, x, ũ(·))

= Et{J(s,X(s; t, x, u(·)), uε(·))}

≥ Et{V (s,X(s; t, x, u(·)))− ε)}, ∀u(·) ∈ U [t, s]

(2.10)

Consequently,

V (t, x) ≥ sup
u(·)∈U [t,s]

Et{V (s,X(s; t, x, u(·)))} − ε (2.11)

Since ε > 0 is arbitrary, we must have

V (t, x) ≥ sup
u(r),t≤r≤s

Et{V (s,X(s; t, x, u))} (2.12)

From (2.9) and (2.12), we get V (t, x) = supu(·)∈U [t,s] E{V (s,X(s; t, x, u(·)))}
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2.5 Heat Equation

We consider the following standard inhomogeneous heat equation:
ut = 1

2
σ2uxx + f(u), t ∈ [0, T ]

u(0, x) = g(x)

(2.13)

Theorem 16 If f : X → X satisfies the Lipschitz condition,

|f(u)− f(û)| ≤ L|u− û|, ∀u, û ∈ X, for some constant L > 0, (2.14)

then equation (2.13) admits a unique solution which coincides with that of the following

integral equation:

u(t, x) = et∆g(x) +

∫ t

0

e(t−s)∆f(u(s, x))ds (2.15)

where

et∆g(x) =

∫
Rn
G(t, x− y)g(y)dy,

G(t, x) =
1√

2πtσ
e−

x2

2σ2t

(2.16)

Next, we consider the following problem:
ut + 1

2
σ2x2uxx + f(u) = 0, t ∈ [0, T ], x > 0

u(T, x) = g(x), x > 0

u(t, 0) = 0, t ∈ [0, T ]

(2.17)

Theorem 17 The initial value problem (2.17) is equivalent to the following integral equa-

tion:

v(τ, z) = eτ∆g(ez) +

∫ τ

0

e(τ−s)∆f(v(s, z))ds, (τ, z) ∈ [0, T ]× R. (2.18)
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where

τ = T − t

z = lnx− 1

2
σ2τ

eτ∆g(x) =

∫
Rn
G(τ, x− y)g(y)dy,

G(τ, x) =
1√

2πτσ
e−

x2

2σ2τ .

(2.19)

Proof: Let

τ = T − t, z = lnx− 1

2
σ2τ (2.20)

We denote

v(τ, z) = u(T − τ, ez+
1
2
σ2τ ),

which gives

vτ (τ, z) = −ut(t, x) +
1

2
σ2xux

vzz(τ, x) = x2uxx + xux

(2.21)

Subsituting (2.20) and (2.21) back into (2.17) yields
vτ = 1

2
σ2vzz + f(v), z ∈ R

v(0, z) = g(ez)

(2.22)

By applying the result of theorem (16), we obtained our conclusion.

In a later chapter, we are interested in the following homogeneous heat equation.
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Example 18 
ut + 1

2
σ2s2uss = 0, t ∈ [0, T ], s > 0, q > 0

u(T, q, s) = qs− γq2s2

(2.23)

Let

τ = T − t, z = lns− 1

2
σ2τ (2.24)

we denote

v(τ, q, z) = u(q, ez+
1
2
σ2τ , T − τ).

After differentiating both sides in terms of τ and z, respectively, we have

vτ = us
ds

dτ
+ ut

dt

dτ
=

1

2
σ2sus − ut

vz = us
ds

dz
= sus

vzz = s2uss + sus

(2.25)

Therefore, equation (2.23) becomes
vτ = 1

2
σ2vzz, τ ∈ [0, T ], z ∈ R, q ≥ 0

v(τ, q, z) = qez − γq2e2z

(2.26)

The solution of equation (2.26) is∫ +∞

−∞

1√
2πτσ

e−
(z−y)2

2σ2τ (qey − γq2e2y)dy

=qe−
z2−(σ2τ+z)2

2σ2τ − γq2e−
z2−(2σ2τ+z)2

2σ2τ

=qe
σ2τ+2z

2 − γq2e2(z+ 1
2
σ2τ)

=qelns − γq2elns
2

eσ
2(T−t)

=qs− γq2s2eσ
2(T−t)

(2.27)
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Also, the solution of the following inhomogeneous heat equation gives an insight into

problems found in chapter 4.

Example 19 
ut + 1

2
σ2s2uss +M = 0, t ∈ [0, T ], s > 0, q > 0

u(T, q, s) = 0

(2.28)

Let

τ = T − t, z = lns− 1

2
σ2τ (2.29)

and we denote

v(τ, z) = u(q, ez+
1
2
σ2τ , T − τ).

Then equation (2.28) becomes
vτ = 1

2
σ2vzz +M, t ∈ [0, T ], z ∈ R

v(0, q, z) = 0

(2.30)

The solution of equation (2.30) is

v(τ, q, z) =

∫ τ

0

∫ +∞

−∞

1√
2π(τ − l)σ

e
− (z−y)2

2σ2(τ−l)Mdydl

=

∫ τ

0

Mdl

=Mτ

(2.31)

That is, u(q, s, t) = M(T − t)
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CHAPTER 3

EMPIRICAL ANALYSIS

In order to build a realistic model, we will take a look at some basic facts in the bond

markets. First we briefly review the bond market in U.S. Then, we explore the real trading

data provided by Trade Reporting and Compliance Engine (TRACE) 1. The data will serve

to help calibrate our model in simulation. Lastly, we provide the evidence that dealers do

adjust their inventory through controlling the bid and ask prices, which is the reason why

we build the model under the frame of stochastical control.

3.1 Bond Market Introduction

3.1.1 U.S. Bond Market

The most striking observation is that the world’s stock and bond markets, in aggregate,

have a market value in U.S dollar terms of more than $125 trillion in 2009, or approximately

two times the value of the world’s economic output, estimated at approximately $61 trillion

in 2008. It is also interesting to note that the world bond market exceeds the world stock

1http://cxa.marketwatch.com/finra/BondCenter/Default.aspx
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market in size by a factor of nearly 2 to 1. U.S. bonds account for $31, 172 billion 2, a

portion of the global bond market at nearly 38%, despite the fact that U.S. economic output

accounts for less than one-fourth of global output. Due to its size, importance and easily

accessible and free trading data, we focus on modeling the U.S. bond market.

Table (3.1) shows that the largest segment of the U.S. bond market is the mortgage-

backed bond market, and the second largest segment is the U.S. Treasury 3.

Table 3.1: U.S. Bond Market Debt Outstanding As of 30 June 2009, in billions of dollars

U.S. Treasury 6,927.8

Agencies of the U.S. 2,972.4

State and Municipal 2,726.8

Corpotate 6,778.4

Money Market 3,430.3

Mortgage-backed 8,948.7

Asset-backed 2,533.6

Most bonds are issued by one of four groups: the U.S. government, a U.S. government-

sponsored agency, state and local governments, or corporations.

The bonds issued by the U.S. government are called treasurys and are grouped into three

categories based on their time to maturity: treasury bills, treasury notes and treasury bonds.

2Data is provided by The Bank for International Settlements (BIS)
3This Data is provided by the Securities Industry and Financial Markets Association (SIFMA). The total

U.S. debt outstanding as of 31 March 2009 was $31.2 trillion according to BIS, compared to $34.2 trillion
according to SIFMA
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Treasury bills mature from 28 days to one year. Treasury notes mature from 1 to 10 years.

Treasury bonds mature from 10 to 30 years. Treasurys are widely regarded as the safest bond

investments because they are backed by the full faith and credit of the U.S. government. The

income earned from treasurys is exempt from state and local taxes.

Agency bonds are issued by U.S. government-sponsored agencies. The offerings of these

agencies are backed by the U.S. government, but not guaranteed by the full faith and credit

government since the agencies are private entities. Such agencies have been set up in order

to allow certain groups of people to access low cost financing, especially students and first-

time home buyers. Some prominent issuers of agency bonds are the Student Loan Marketing

Association (Sallie Mae), the Federal National Mortgage Association (Fannie Mae) and the

Federal Home Loan Mortgage Corporation (Freddie Mac). Agency bonds are usually exempt

from state and local taxes, but not federal tax.

The bonds issued by state and local government are called municipal bonds. Municipal

bonds are a step-up on the risk scale from Treasurys, but they make up for it in tax trickery.

Many munis are exampt from city, state and federal taxes (triple tax-free). Because tax-free

income is so enticing to high-income investors, triple tax-free munis generally offer a lower

coupon rate than equivalent taxable bonds.

Corporate bonds, issued by corporations, are generally the riskiest fixed-income securities

of all because companies, even large, stable ones, are much more susceptible than govern-

ments to economic problems, mismanagement and competition. Cities do go bankrupt, but

it’s infrequent. Not so rare is the once-proud company brought low by foreign rivals or
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management missteps. Pan Am, LTV Steel and the Chrysler bankruptcies of 1979 are the

facts.

Corporate bonds come in several maturities: short term, one to five years; intermediate

term, five to 15 years; long term, longer than 15 years.

The credit quality of companies and governments is closely monitored by two major debt-

rating agencies: Standard & Poor’s and Moody’s. They assign credit ratings based on the

entity’s perceived ability to pay its debts over time. Those ratings, expressed as letters (Aaa,

Aa, A, etc.), help determine the interest rate that a company or government has to pay.

Corporations, of course, do many things to keep their credit ratings high. The difference

between an A rating and a BBB rating can mean millions of dollars in extra interest paid.

But even companies with less-than-investment-grade (B and below) ratings issue bonds.

These securities, known as high-yield, or junk bonds, are generally too speculative for the

average investor, but they can provide higher return with greater risk.

Zero-coupon bonds are fixed-income securities that do not make periodic interest pay-

ments like regular bonds. Instead, the bond is sold at a deep discount to its face value and at

maturity, the bondholder collects all of the compounded interest, plus the principal. Zeros

are usually priced aggressively and are useful for investors who are looking for a set payout

on a given date, instead of a stream of payments that they have to figure out where to invest

elsewhere.
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Table 3.2: U.S. Bond Types, Tax Exemption and Risk Level

Types Issurer Tax Exemption Risk

Treasureies U.S. Government State and Local Safest

Agency U.S.Government-sponsored Agency State and Local Safer

Municipal State and Local Government Federal, State and Local Safe

Corporate Corporate None Risky

3.1.2 Features of Bonds

The most important features of a bond are:

1. nominal, par or face value: the amount on which the issuer pays interest, and which,

most commonly, has to be repaid at the end of the term. Usually, the face value is

1, 000 per bond.

2. issue price: the price at which investors buy the bonds when they are first issued,

which will typically be approximately equal to the nominal amount.

3. maturity date: the date on which the issuer has to repay the nominal amount. As long

as all payments have been made, the issuer has no more obligation to the bond holders

after the maturity date.

4. coupon rate: the interest rate that the issuer pays to the bond holders. Usually this

rate is fixed throughout the life of the bond. It can also vary with a money market

index.
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5. callability: the right given to the issuer to repay the bond before the maturity date

on the call dates. These bonds are referred to as callable bonds. Most callable bonds

allow the issuer to repay the bond at par. With some bonds, the issuer has to pay

a premium, the so called call premium. This is mainly the case for high-yield bonds.

These have very strict covenants, restricting the issuer in its operations. To be free

from these covenants, the issuer can repay the bonds early, but only at a high cost.

6. putability: the right given to the holder to force the issuer to repay the bond before

the maturity date on the put dates.

3.1.3 Risks and Pricing

A bond is not risk-free. Its inherent risks are liquidity risk, default risk and interest rate

risk.

Liquidity risk describes the danger that when investors need to sell a bond, investors will

not be able to. The simple truth is that when a bond is sold on the secondary market, there

is not always a buyer. The market for bonds is considerably more illiquid than for stocks.

The most activly traded bond has only about 10 trades a day on average. For an illiquid

bond, it only has 1 trade a month.

Default risk is that bond issuer fails to pay the payments to the bond holder. A bond is

nothing more than a promise to repay the debt holder. And promises are made to be broken.

25



Treasury bond are guaranteed by the full faith and credit of the federal government. But

Municipal Bond and corporate bond are possible to default.

Interest rate risk is that the bond price may go down due to the change of interest rate.

If investors want to sell it, they may loose money. Bond prices have an inverse relationship

to interest rates. When one rises, the other falls. However, if investors hold a security until

maturity, interest rate risk is not a factor.

The higher the risk, the higher the return, the principle of pricing. In general, the risk for

Treasury bond is lowest, then the municipal bond, and the highest risk bond is a corporate

bond. In figure (3.1), the x-axis stands for the maturity of bond and the y-axis stands for

the yields. The upper curve is the AAA corporate bond, treasury bond is the lower curve,

and the circle dots are for the municiple bond. The data is collected on Dec.2010 1.

Bond pricing is another branch of the literature different from the focus of this disser-

tation. Bond pricing computes the premium of risk, or the true value. This dissertation

focuses on the trading strategy of dealer, however, dealer’s trading strategy is based on the

true price. The methods of bond pricing are introduced in Appendix B.

3.2 The Data

In this section, we explore the statistic of data, which will be useful for chosing the right

parameters in the simulation of later chapters. The time series data used consists of trade-

1http://finance.yahoo.com/bonds
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Figure 3.1: Yield curve of Treasury, Municipal and Corporate Bonds

by-trade information from Trade Reporting and Compliance Engine (TRACE). TRACE is

the FINRA 0 developed vehicle that facilitates the mandatory reporting of over-the-counter

secondary market transactions in eligible fixed income securities. All broker/dealers who

are FINRA member firms have an obligation to report transactions in corporate bonds to

TRACE under an SEC approved set of rules. Current TRACE reporting time is 15 minutes.

0Financial Industry Regulatory Authority
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TRACE started operation in July 2002.

We choose one bond as an example. In Figure (3.2), it is the trading data of bond issued

by Bank of America 1 from Jan. 1 of 2009 to Jan.1 of 2010. Letter “S” stands for the price of

selling to customer, “B” for buying from customers and “D” for inter-dealer trading. We can

see that “B<D<S”, that is, the inter-dealer price is always between the buying and selling

prices.

Figure 3.2: BAC bond trading data: time period 1/1/2009 - 1/1/2010

1CUSIP: 060505BP8. Security Category: Corporate. Offer date:08/23/2004. Maturity Date: 10/01/2010.
Coupon Rate: 4.250%. Coupon Type: Fixed. Pay Frequency: Semi-annually. Offer Price: $99.478 . Offer
Size: $750,000,000.00 . S&P rating:A.
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In Table (3.3), some statistics of the data above are given. There are about 3000 trades

during 1/1/2009 to 1/1/2010. Regardless the order types, the maximal order arrival rate

is 77 on 4/16/2009, the median order size is 25,000 dollars, and the median price is 99.50

dollars.

Table 3.3: BAC Bond Trading Data Statistic, time period 1/1/2009 - 1/1/2010

Date quantity Price

4/16/2009: 77 Min. : 1000 Min. : 79.80

5/12/2009: 68 1st Qu.: 10000 1st Qu.: 97.15

3/17/2009: 52 Median : 25000 Median : 99.50

4/15/2009: 48 Mean : 114931 Mean : 98.85

4/2/2009 : 48 3rd Qu.: 50000 3rd Qu.: 101.89

2/17/2009: 43 Max. : 5000000 Max. : 103.92

There are 518 trades that buy from the customers, summarized in Table (3.4). The

maximal order arrival rates is 16 on 1/20/2009, the median trade quantity of buying from

the customer is 30,000 dollars, and the median price is 99.64 dollars.

There are 1172 trades that sell to the customers and 1366 trades that take place inter-

dealers, shown in Table (3.5) and Table (3.6), respectively.
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Table 3.4: The Statistic of Buying, time period 1/1/2009 - 1/1/201

Date quantity Price

1/20/2009: 16 Min. : 1000 Min. : 79.80

2/20/2009: 9 1st Qu.: 15000 1st Qu.: 96.90

2/19/2009: 7 Median : 30000 Median : 99.64

2/25/2009: 7 Mean : 224921 Mean : 98.31

2/26/2009: 7 3rd Qu.: 100000 3rd Qu.:101.80

2/4/2009 : 7 Max. :5000000 Max. :103.43

3.3 Empirical Results

3.3.1 Inventory adjustment

To test if dealers adjust their inventories, we check the total quantity buying from customers,

total quantity selling to customers and total quantity trading between dealers, where quantity

is counted by the traded par value.

To avoid a tedious data display, we only elaborate one statistic in Table 3.7, bond issued

by Bank of America with symbol BAC.

From the Table 3.7, buying from customers is slightly more than selling to customers in

the first 500 trades, however, there is significant jump after that: Selling to customers is
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Table 3.5: The statistic of Selling

Date quantity Price

5/12/2009: 38 Min. : 1000 Min. : 86.45

4/16/2009: 33 1st Qu.: 10000 1st Qu.: 97.59

2/13/2009: 26 Median : 25000 Median : 99.62

3/17/2009: 25 Mean : 121823 Mean : 99.14

4/15/2009: 25 3rd Qu.: 50000 3rd Qu.:101.75

5/5/2009 : 25 Max. :5000000 Max. :103.92

much higher than buying from customers between 500 and 2000 trades, and in the last 1000

trades, buying and selling are about even.

In order to scale the trading volume, we divide the volume by the offersize, obtaining the

percentage in terms of the offersize, which is shown in Table (3.8). The volume selling to the

customers is about twice as much as that buying from the customers between 500 and 2000

trades. In addition, we test the correlation of buying from customers, selling the customers

and inter-dealer trades. Buying from customers is highly correlated with inter-dealer trades.

Thus far, we know that a dealer does control his inventory. How does the dealer control

his inventory? We suspect that the dealer controls his inventory through adjusting the price.

In next section, we will test our hypothesis.
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Table 3.6: The Statistic of Inter-dealer trades

Date quantity Price

4/16/2009: 41 Min. : 1000 Min. : 82.00

5/12/2009: 29 1st Qu.: 10000 1st Qu.: 97.00

3/17/2009: 25 Median : 25000 Median : 99.39

4/2/2009 : 25 Mean : 67308 Mean : 98.80

3/12/2009: 21 3rd Qu.: 50000 3rd Qu.:102.03

3/16/2009: 21 Max. :3030000 Max. :103.53

Table 3.7: Trading Volume Dynamics, in millions of dollars. BAC: period 1/1/2009-1/1/2010

Trades type 1-500 501-1000 1001-1500 1501-2000 2001-2500 2501-3000

Buy from customers 19.182 19.237 9.563 10.854 18.007 35.638

Sell to customers 15.535 30.435 15.157 25.599 17.694 35.295

Inter-dealer trades 15.164 14.533 8.889 13.555 11.593 24.928

3.3.2 Price Determination

First, we check the correlation of prices. In Table (3.10), both the prices buying from the

customers and the price selling to the customers are highly correlated with the price of inter-

dealer trading. They three co-move up and down. However, it shows a weak correlation

between price and trading volume in Table (3.11). This seems to be contrary to what we
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Table 3.8: Trading Volume Dynamics, percentage of offersize.BAC: period

1/1/2009-1/1/2010

Trades type 1-500 501-1000 1001-1500 1501-2000 2001-2500 2501-3000

Buy from customers 2.5576 2.5649 1.2751 1.4472 2.4009 4.7517

Sell to customers 2.0713 4.058 2.0209 3.4132 2.3592 4.706

Inter-dealer trades 2.0219 1.9377 1.1852 1.8073 1.5457 3.3237

Table 3.9: Correlation of Monthly Trading Volume

Correlation Buy from customers Sell to customers Inter-dealer

Buy from customers 1 0.6213955 0.9198096

Sell to customers 0.6213955 1 0.6686847

Inter-dealer trades 0.9198096 0.6686847 1

expect. To understand this puzzle, a further exploration is done by checking the correlation

between the price and the accumulated trading volume, shown in Figure (3.3).

From Figure (3.3), we can tell that

1. The accumulated trading volume fluctuates around zero.

2. During the big downturn period, the variance of the accumulated trading volume is

significantly larger than the other periods.

3. During the big downturn period, the buying trades take place at a very low price,

which indicate the desire not to buy.
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Table 3.10: Correlation of Weekly Average Price

Correlation Buy from customers Sell to customers Inter-dealer

Buy from customers 1 0.9534928 0.9602006

Sell to customers 0.9534928 1 0.9944935

Inter-dealer Sell 0.9602006 0.9944935 1

Table 3.11: Correlation of Average Price and Trading Volume

Correlation Buy Volume Sell Volume Inter-dealer volume Imbalance

Price Buy 0.057 -0.283 0.265 0.486

Price Sell 0.105 -0.245 0.285 0.492

Price Inter-dealer 0.077 -0.244 0.274 0.454

The information from the accumulated trading volume tells us that the price weakly

responds to the volume of each single trade, however, the price strongly responds to the

accumulated trading volume associated with the dealer’s inventory.

3.3.3 Summary

The following are our findings.

1. The retail prices (bid and ask) are positively strongly correlated with inter-dealer price.

2. The price weakly corresponds to each single trading volume.
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Figure 3.3: Price and Accumulated Trading Volume

3. The bid and ask prices are not central symmetric to the inter-dealer trading price.

4. The accumulated trading volume fluctuates around zero. The price corresponds to the

significant fluctuation of the accumulated trading volume. This is the evidence that

the dealers control their inventory thought adjusting their quoting prices.

All of these findings will be explained by the results of our model later.
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CHAPTER 4

CONTINUOUS TIME MODEL WITH INTER-DEALER

TRADING

A bond dealer’s objective is to maximize his profit from providing liquidity and avoiding

the inventory risk at the same time. Lyons (1997) introduced a simultaneous trade model

of the spot foreign exchange market in which dealers trade with other dealers. We adopt a

similar idea for bond market trading since inter-dealer trading exists in bond market, as our

empirical analysis shows in Chapter 3. In our model, bid price, ask price and the amount

traded with other dealers are three instruments for the dealer to achieve his objective.

4.1 The Model

In this section, we will describe the model and settings.

The time horizon. We consider a time horizon of one day or a short time period [0, T ],

which is far away from the issuance date and the maturity date of the bond.
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The market dynamics. We assume that the random source governing the true price

S(·) of the bond is exougenous, and S(·) follows the following stochastic differential equation:
dS(τ) = σS(τ)dB(τ), τ ≥ 0

S(t) = s

(4.1)

where B(τ) is a one dimensional standard Brownian motion and σ > 0 is a constant. The

dealer measures the risk of his inventory based on the true price S(·).

The dealer’s state variables and controls. The dynamics of the dealer’s cash and

inventory are described by the following equations:

C(τ) = x+

Ns
τ∑

i=1

(S(τi) + δs(τi))V
s
i −

Nb
τ∑

i=1

((S(τi)− δb(τi)))V b
i +

Nd
τ∑

i=1

(S(τi) + δd(τi))v
d(τi)

Q(τ) = q +

Nb
τ∑

i=1

V b
i −

Ns
τ∑

i=1

V s
i −

Nd
τ∑

i=1

vd(τi), τ ∈ [t, T ]

C(t) = x,Q(t) = q

(4.2)

In the above,

• C(τ) is the cash position at time τ .

• Q(τ) is the inventory position at time τ .

• δb(τ) is the spread of the buying price to customers at time τ . In another words,

S(τ)− δb(τ) is the price at which bonds are purchased from customers.

• δs(τ) is the spread of the selling price from customers at time τ . In another word,

S(τ) + δs(τ) is the price at which bonds are sold to customers.
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• δd(τ) is the spread of the inter-dealer price at time τ , which is oberserved from the

market. In another word, S(τ) + δd(τ) is the price traded between dealers.

• V s
i is the volume of bonds sold to customers at time τi. V s

i i≥1 is a sequence of i.i.d

random variables.

• V b
i is the volume of bonds purchased from customers at time τi. V

b
i i≥1 is a sequence of

i.i.d random variables.

• vd(τ) is the volume of bonds bought or sold in inter-dealer market at time τ .

• N b
τ and N s

τ are Poisson processes with intensities λb and λs, which depend on δb and

δs. We assume that N b
τ and N s

τ are independent.

• Nd
τ is a Poisson process with intensities λd, which is a constant. Process Nd

τ is inde-

pendent of N s
τ and N b

τ .

The wealth process of the dealer is given by

W (τ) = C(τ) + S(τ)Q(τ), τ ∈ [t, T ] (4.3)

The objective. The objective of the dealer is to maximize his expected profit from

transactions given the uncertainty in the security’s value. Therefore, we will use the following

objective function:

J(t, x, q, s;u(·)) = Et(W (T )− γ(Q(T )S(T ))2), (4.4)
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where γ > 0 is a fixed constant, risk aversion coefficient, u(·) = (δb(·), δs(·), vd(·)) is the

control processes. The value function is defined by

v(t, x, q, s) = max
u(·)∈U [t,T ]

J(t, x, q, s;u(·)), (4.5)

with U [t, T ] being a set of all admissible controls u(·) = (δb(·), δs(·), vd(·)).

4.2 Frozen Strategy and Reservation Price

A frozen strategy is defined as one in which the dealer holds his inventory until the terminal

time T . In this case, the dealer takes δb(τ) = δb0, δs(τ) = δs0, and vd(τ) = 0 such that

λb(δb(τ), δs(τ)) = λb(δb0, δ
s
0) = 0,

λs(δb(τ), δs(τ)) = λs(δb0, δ
s
0) = 0,

(4.6)

and we denote u0(·) = (δb0, δ
s
0, 0). Under the control u0(·), the dealer’s cash and inventory

position remain as constants on [t, T ], that is, Q(τ) = q, C(τ) = x, τ ∈ [t, T ].

For convenience, we refer to v0(t, x, q, s) as the frozen value function,

v0(t, x, q, s) ≡ J(t, x, q, s;u0(·)) = Et(x+ qST − γ(qST )2), ∀(t, x, q, s) ∈ [0, T ]×R×R×R+.

(4.7)

The following proposition gives a representation of the frozen value function v0(t, x, q, s).

Proposition 20

v0(t, x, q, s) = x+ qs− γq2s2eσ
2(T−t) (4.8)
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Proof: Applying Ito’s Lemma to lnS(τ) with S(τ) being the solution of (4.1), we have

d lnS(τ) =
1

S(τ)
dS(τ) +

1

2
(− 1

S2(τ)
)S2(τ)σ2dτ = −1

2
σ2dτ + σdB(τ) (4.9)

Therefore,

ln
S(T )

s
= −1

2
σ2(T − t) +

∫ T

t

σdB(τ) = −1

2
σ2(T − t) + σ(B(T )−B(t)) (4.10)

Noticing that S(T )
s

is log normal distributed with mean −1
2
σ2(T − t) and variance σ2(T − t),

one has

E(
S(T )

s
) = e−

1
2
σ2(T−t)+ 1

2
σ2(T−t) = 1

E(
S(T )

s
)2 = (eσ

2(T−t) − 1)e−2 1
2
σ2(T−t)+σ2(T−t) + 1 = eσ

2(T−t)

(4.11)

Therefore,

v0(t, x, q, s) =Et(W (T )− γ(Q(T )S(T ))2)

=Et(x+ qS(T )− γ(qS(T ))2) = x+ qs− γq2s2eσ
2(T−t)

(4.12)

proving (4.8)

Reservation price [Avellaneda 2008] is the price that would make the dealer indifferent

between his current inventory and his current inventory plus or minus 1. The following is

an extension of this notion.

Definition 21 Let v be the objective function of the dealer, the reservation bid price at

(t, q, s, y), denoted by rb(t, q, s, y), is given by the relation

v(t, x− rb(t, q, s, y)y, q + y, s) = v(t, x, q, s)
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The reservation ask price at (t, q, s, y), denoted by rs(t, q, s, y), is given by

v(t, x+ rs(t, q, s, y)y, q − y, s) = v(t, x, q, s)

Note that the case y = 1 is the notion introduced in [Avellaneda 2008]. The following

results give the explicit formulas for rb(t, q, s, y) and rs(t, q, s, y)

Proposition 22 For the value funtion v0(x, q, s, t) = x+ qs− γq2s2eσ
2(T−t), the reservation

bid and ask prices at (t, q, s, y) are given by

rb(t, q, s, y) =s− (y + 2q)γs2eσ
2(T−t)

rs(t, q, s, y) =s+ (y − 2q)γs2eσ
2(T−t)

(4.13)

Proof: By definition (21) and (4.8),

0 =v0(t, x− rb(t, q, s, y)y, s, q + y)− v0(t, x, q, s)

=x− rb(t, q, s, y)y + (q + y)s− γ(q + y)2s2eσ
2(T−t) − (x+ qs− γq2s2eσ

2(T−t))

=− rb(t, q, s, y)y + ys− (2qy + y2)γs2eσ
2(T−t)

(4.14)

This leads to the first formula in (4.13) Similarly, we can show the second formula in (4.13).

If the dealer quotes the bid price S(t)−δb(t) < rb(t, q, s, y) and ask price S(t)+δs(t) > rs,

his value function v > v0. This implies the fozen strategy u0(·) = (δb0, δ
s
0, 0) = (s−rb, rs−s, 0).

It is easy to see that v0 satisfies the following PDE:


wt + 1

2
σ2s2wss = 0, t ∈ [0, T ], s ∈ R+

w(q, s, T ) = x+ qs− γq2s2

(4.15)
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This inspires us to break down the problems in the model in Section 1. We will use this

result to construct the value function of the model in section 6.

4.3 A Symmetric Strategy

In this section, we consider a benchmark strategy that is symmetric around the true price,

regardless of the inventory, and inter-dealer trading is not considered. More precisely, a

trading strategy u(·) = (δb(·), δs(·), vd(·)) is called a symmetric strategy if δb(τ) = δs(τ) =

δ, vd(τ) = 0, τ ∈ [t, T ]. Further, we assume that the arrival rates satisfy the following

λ(δ) = λs(δ) = λb(δ) = Ae−kδ,

where A, k are positive constants.

Lemma 23 Let uδ(·) = (δ, δ, 0). If E(V b
i ) = E(V s

i ) = v̄ and
E(V bi )2

v̄
=

E(V si )2

v̄
= ε, then

J(t, x, q, s;uδ(·)) = x+ qs− γq2s2eσ
2(T−t) + 2Ae−kδ(T − t)v̄(δ − γεs2eσ

2(T−t)) (4.16)

When δ = δ̄ ≡ 1/k + γεs2eσ
2(T−t), J(t, x, q, s;uδ(·)) reaches its maximum.

Proof: Under uδ(τ) = (δ, δ, 0), τ ∈ [t, T ], Q(τ) and C(τ) are compound Poisson processes.

By the Wald equation,

Et(QT ) = q + Et(N
b
T )Et(V

b
1 )− Et(N s

T )Et(V
s

1 )

= q + λb(δ)(T − t)v̄ − λs(δ)(T − t)v̄

= q

(4.17)
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since E(

Nb
T−t∑
i=1

V b
i −

Ns
T−t∑
i=1

V s
i ) = 0,

Et(QT )2 = E(q +

Nb
T−t∑
i=1

V b
i −

Ns
T−t∑
i=1

V s
i )2

= q2 + E(

Nb
T−t∑
i=1

V b
i )2 + E(

Ns
T−t∑
i=1

V s
i )2 − 2E(

Nb
T−t∑
i=1

V b
i )(

Nb
T−t∑
i=1

V b
i )

= q2 + E(N b
T−t)E(V b

1 )2 + E((N b
T−t)

2 −N b
T−t)(E(V b

1 ))2

+ E(N s
T−t)E(V s

1 )2 + E((N s
T−t)

2 −N s
T−t)(E(V s

1 ))2

− 2λb(δ)(T − t)v̄λs(δ)(T − t)v̄

= q2 + 2λ(T − t)εv̄

(4.18)

Similarly, we have

Et(C(T )) = E(x+

Ns
T−t∑
i=1

(Sti + δ)V s
i −

Nb
T−t∑
i=1

(Sti − δ)V b
i )

= x+ E(N s
T−t)(s+ δ)v̄ − E(N b

T−t)(s− δ)v̄

= x+ 2λ(T − t)v̄δ

(4.19)

Therefore,

J(t, x, q, s;uδ(·)) = Et(C(T ) + STQT − γ(STQT )2)

= x+ 2λ(T − t)v̄δ + qs− γ(q2 + 2λ(T − t)εv̄)s2eσ
2(T−t)

= x+ qs− γq2s2eσ
2(T−t) + 2λ(T − t)v̄(δ − γεs2eσ

2(T−t))

= v0(t, x, q, s) + 2Ae−kδ(T − t)v̄(δ − γεs2eσ
2(T−t))

(4.20)
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This gives (4.16). Now, we maximize δ → 2Ae−kδ(T − t)v̄(δ − γεs2eσ
2(T−t)) ≡ g(δ). To this

end, we let

0 = g′(δ) = −2kAe−kδ(T − t)v̄(δ − γεs2eσ
2(T−t)) + 2Ae−kδ(T − t)v̄ (4.21)

Solving (4.21) for δ, we obtain δ̄ = 1/k + γεs2eσ
2(T−t). It is easy to show that g′′(δ̄) < 0.

sup
δ>0

J(t, x, q, s, uδ) = x+ qs− γq2s2eσ
2(T−t) +

2Av̄(T − t)
ke

e−kγεs
2eσ

2(T−t)

= v0 +m(t),

(4.22)

where m(t) = 2Av̄(T−t)
ke

e−kγεs
2eσ

2(T−t)
.

It is interesting to see that m(t) > 0, t < T , decreasing function in t.

Another meaningful result that one can obtain from Lemma (23) is that δ is an increasing

function in σ. This suggests that the larger the volatility of the true price is, the larger the

dealers’ quoting spread.

4.4 HJB Equation

We have calculated a special case in the previous section in which the optimal quoting prices

can be obtained through calculating the objective function directly. However, it is difficult

to calculate the objective function when δs and δb are not constant over time, so that we can

not obtain the optimal quoting price. Therefore, we need to explore some other ways. In
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this section, we apply Bellman’s principle to obtain the HJB equation satisfied by the value

function. We first derive the HJB equation for the model introduced in section (4.1).

Proposition 24 Let the processes C(τ), Q(τ), S(τ) be determined by (4.1) and (4.2) Sup-

pose f ∈ C2(R4, R), then, for any u = (δb, δs, vd) ∈ U

Auf(t, x, q, s) =ft +
1

2
s2σ2fss

+ λs(δb, δs)

∫
R
{f(t, x+ (s+ δs)y, q − y, s)− f(t, x, q, s)}F (dy)

+λb(δb, δs)

∫
R
{f(x− (s− δb)y, q + y, s, t)− f(x, q, s, t)}F (dy)

+λd{f(t, x+ (s+ δd)vd, q − vd, s)− f(t, x, q, s)}

(4.23)

where Au is the backward evolution operator of C(τ), Q(τ), S(τ) (Definition (9)), F b, F s are

the distribution functions of V b
i , V

s
i respectively.

Proof: In (t, t+ ∆t), by applying Taylor expansion, we have

f(t+ ∆t, C(t+ ∆t; t, x), Q(t+ ∆t; t, q), S(t+ ∆t; t, s))− f(t, x, q, s)

=f(t+ ∆t, C(t+ ∆t; t, x), Q(t+ ∆t; t, q), S(t+ ∆t; t, s))− f(t+ ∆t, x, q, S(t+ ∆t; t, s))

+ f(t+ ∆t, x, q, S(t+ ∆t; t, s))− f(t+ ∆t, x, q, s)

+ f(t+ ∆t, x, q, s)− f(t, x, q, s)

=ft(t, x, q, s)∆t+ fs(t+ ∆t, x, q, s)(S(t+ ∆t)− s) +
1

2
fss(t+ ∆t, x, q, s)(S(t+ ∆t)− s)2

+ f(t+ ∆t, C(t+ ∆t; t, x), Q(t+ ∆t; t, q), S(t+ ∆t; t, s))− f(t+ ∆t, q, S(t+ ∆t; t, s))

+ o(∆t) + o((S(t+ ∆t)− s)2)

(4.24)
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For the term fs(t+ ∆t, x, q, s)(S(t+ ∆t)− s), we notice that

Et(S(t+ ∆t)− s) = 0,

hence we have

lim
∆t→0

1

∆t
Et{fs(t+ ∆t, x, q, s)(S(t+ ∆t)− s)} = 0 (4.25)

For the third term,

Et(S(t+ ∆t)− s)2 = s2(eσ
2∆t − 1),

therefore,

lim
∆t→0

1

∆t
Et{

1

2
fss(t+ ∆t, x, q, s)(S(t+ ∆t)− s)2}

= lim
∆t→0

1/2fss(t+ ∆t, x, q, s)s2 e
σ2∆t − 1

∆t

=
1

2
σ2s2fss(x, q, s, t)

(4.26)

For the last term,

f(t+ ∆t, C(t+ ∆t; t, x), Q(t+ ∆t; t, q), S(t+ ∆t; t, s))− f(t+ ∆t, q, S(t+ ∆t; t, s)),

we can not apply Taylor expansion since C(t) and Q(t) are not continuous processes.

Note that Poisson processes N s
t , N

b
t , N

d
t are independent. In a short enough time period

(t, t+∆t), there is only one order, selling, buying, or inter-dealer, coming in with probability

(λs + λb + λd)∆t, and there is two or more orders coming in with probability O((∆t)2).
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Denote Nt = N s
t +N b

t +Nd
t .

lim
∆t→0

1

∆t
Et(f(t+ ∆t, C(t+ ∆t; t, x), Q(t+ ∆t; t, q), S(t+ ∆t))− f(t+ ∆t, x, q, S(t+ ∆t)))

= lim
∆t→0

1

∆t

∞∑
n=0

Et(f(t+ ∆t, C(t+ ∆t; t, x), Q(t+ ∆t; t, q), S(t+ ∆t))

− f(t+ ∆t, x, q, S(t+ ∆t))|Nt+∆t = n)P (Nt+∆t = n)

= lim
∆t→0

1

∆t
{λs(δb, δs)∆t

∫
R
{f(t, x+ (s+ δs)y, q − y, s)− f(t, x, q, s)}F s(dy)

+λb(δb, δs)∆t

∫
R
{f(t, x− (s− δb)y, q + y, s)− f(t, x, q, s)}F b(dy)

+λd∆t{f(t, x+ (s+ δd)vd, q − vd, s)− f(t, x, q, s)}

+
∞∑
n=2

Et(f(t+ ∆t, C(t+ ∆t; t, x), Q(t+ ∆t; t, q), S(t+ ∆t))

− f(t+ ∆t, x, q, S(t+ ∆t))|Nt+∆t = n)
e−(λb+λs+λd)∆t((λb + λs + λd)∆t)n

n!
}

=λs(δb, δs)

∫
R
{f(t, x+ (s+ δs)y, q − y, s)− f(t, x, q, s)}F s(dy)

+λb(δb, δs)

∫
R
{f(t, x− (s− δb)y, q + y, s)− f(t, x, q, s)}F b(dy)

+λd{f(t, x+ (s+ δd)vd, q − vd, s)− f(t, x, q, s)}

(4.27)

Combining (4.24),(4.25),(4.26)and (4.27), we obtain our conclusion.

Corollary 25 If f ∈ C2(R4, R) and λs + λb + λd ≤M , then,

lim
∆t→0

sup
u∈U

1

∆t
Et{f(t+ ∆t, C(t+ ∆t; t, x), Q(t+ ∆t; t, q), S(t+ ∆t; t, s))− f(x, q, s, t)}

= sup
u∈U

Auf(x, q, s, t), uniformly in u ≡ (δb, δs, vd) ∈ U

(4.28)
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Proof: By (4.24) and (4.27), in (t, t+ ∆t), we have

1

∆t
Et{f(C(t+ ∆t; t, x), Q(t+ ∆t; t, q), S(t+ ∆t; t, s), t+ ∆t)− f(x, q, s, t)}

=ft(x, q, s, t) +
1

2
fss(x, q, s, t+ ∆t)s2 e

σ2∆t−1

∆t

+
1

∆t
Et{f(C(t+ ∆t; t, x), Q(t+ ∆t; t, q), S(t+ ∆t; t, s), t+ ∆t)− f(x, q, S(t+ ∆t; t, s), t+ ∆t)

+ o(1)}

=ft(x, q, s, t) +
1

2
fss(x, q, s, t+ ∆t)s2 e

σ2∆t−1

∆t

+ λs(δb, δs)

∫
R
Et{f(x+ (s+ δs)y, q − y, S(t+ ∆t; t, s), t+ ∆t)

− f(x, q, S(t+ ∆t; t, s), t+ ∆t)}F s(dy)

+ λb(δb, δs)

∫
R
Et{f(x− (s− δb)y, q + y, S(t+ ∆t; t, s), t+ ∆t)

− f(x, q, S(t+ ∆t; t, s), t+ ∆t)}F b(dy)

+λdEt{f(x+ (s+ δd)vd, q − vd, S(t+ ∆t; t, s), t+ ∆t)− f(x, q, S(t+ ∆t; t, s), t+ ∆t)}}

+ o(1) +O(∆t)

(4.29)

Taking the supremum over u ≡ (δb, δs, vd) ∈ U and sending ∆t → 0, we obtain our

conclusion.

Theorem 26 If the value function is in C2(R4, R), then it satisfies the HJB eqution
vt + 1

2
s2σ2vss +H(t, v(t, x, q, s)) = 0, t ∈ [0, T ]

v(T, x, q, s) = x+ qs− γq2s2, (x, q, s) ∈ R2 × R+

v(t, x, q, 0) = x, (t, x, q) ∈ [0, T ]× R2
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where

H(t, v(t, x, q, s))

= sup
u∈U
{λs(δs, δb)

∫
R
{v(t, x+ (s+ δs)y, q − y, s)− v(t, x, q, s)}F (dy)

+λb(pa, δb)

∫
R
{v(t, x− (s− δb)y, q + y, s)− v(t, x, q, s)}F (dy)

+λd{v(t, x+ (s+ δd)vd, q − vd, s)− v(t, x, q, s)}}

(4.30)

Proof: By the property of conditional expectation, we have

Et(WT − γ(QTST )2) = Et(Et+∆t(WT − γ(QTST )2)) (4.31)

By the Bellman’s priciple,

v(t, x, q, s) = sup
u(·)∈U [t,T ]

(Et(WT − γ(QTST )2))

= sup
u(·)∈U [t,T ]

Et(Et+∆t(WT − γ(QTST )2))

= sup
u(·)∈U [t,t+∆t]

Et( sup
u(·)∈U [t+∆t,T ]

Et+∆t(WT − γ(QTST )2))

= sup
u(·)∈U [t,t+∆t]

Et(v(t+ ∆t, C(t+ ∆t; t, x), Q(t+ ∆t; t, q), S(t+ ∆t; t, s)))

(4.32)

Fix (t, x, q, s) ∈ [t, T ]× R+ × R× R+, for any u ∈ U, we have

v(t, x, q, s) ≥ Et(v(t+ ∆t, C(t+ ∆t; t, x, u), Q(t+ ∆t; t, q, u), S(t+ ∆t; t, s))) (4.33)

Consequently, by substracting v(t, x, q, s) both sides and letting ∆t→ 0, we have

0 ≥ 1

∆t
Et(v(t+ ∆t, C(t+ ∆t; t, x, u), Q(t+ ∆t; t, q, u), S(t+ ∆t; t, s))− v(t, x, q, s))

0 ≥ Auv(t, x, q, s), ∀u ∈ U

(4.34)
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Consequently,

sup
u∈U

Auv(x, q, s, t) ≤ 0. (4.35)

On the other hand, for any ζ > 0, and ∆t small enough, there exists a uζ,∆t ∈ U [t, T ] such

that

v(t, x, q, s)− ζ∆t ≤ Et{v(t+ ∆t, C(t+ ∆t; t, x, uζ,∆t), Q(t+ ∆t; t, q, uζ,∆t), S(t+ ∆t; t, s))}

−ζ ≤ 1

∆t
sup
u∈U

Et{vt+ ∆t, (C(t+ ∆t; t, x, u), Q(t+ ∆t; t, q, u), S(t+ ∆t; t, s))

− v(t, x, q, s)}

→ sup
u∈U

Auv(x, q, s, t)

(4.36)

In proving the last limit above, we used (4.28). Combining (4.35) and (4.36), since ζ > 0 is

arbitrary, we obtain our conclusion.
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4.5 Existence and Uniqueness of the Solution to the HJB

Equation

For any v(·) ∈ C([0, T ] × R+ × R × R+), define operator T : C([0, T ] × R+ × R × R+) →

C([0, T ]× R+ × R× R+) by

(Tv)(t, x, q, s))

= sup
u∈U
{λs(δb, δs)

∫
R
{v(t, x+ (s+ δs)y, q − y, s)− v(t, x, q, s)}F s(dy)

+λb(δb, δs)

∫
R
{v(t, x− (s− δb)y, q + y, s)− v(t, x, q, s)}F b(dy)

+λd{v(t, x+ (s+ δd)vd, q − vd, s)− v(t, x, q, s)}}

(4.37)

Theorem 27 Suppose

λs(δb, δs) + λb(δb, δs) + λd ≤M, ∀δb, δs ∈ R+,

then operator T is bounded.

Proof: For any v(·) ∈ C([0, T ]× R+ × R× R+),

‖(Tv)(·)‖∞ ≤ 2(λs + λb + λd) ‖v(·)‖∞

≤ 2M ‖v(·)‖∞

(4.38)

Therefore, operator T is bounded.
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Rewrite the HJB equation as follows:
vt + 1

2
s2σ2vss + (Tv)(t, x, q, s) = 0

v(T, x, q, s) = x+ qs− γq2s2

v(t, x, q, 0) = x

Making transformation:

τ = T − t, z = ln s− 1

2
σ2τ, (4.39)

and denoting

w(τ, x, q, z) = v(T − τ, x, q, ez+
1
2
σ2τ ).

The HJB equation becomes 
wτ = 1

2
σ2wzz + (Tw)(τ, x, q, z)

w(0, x, q, z) = x+ qez − γq2e2z

(4.40)

We study this equation via the corresponding integral equation

w(τ, x, q, z) = eτ∆w(τ, x, q, z) +

∫ τ

0

e(τ−r)∆(Tw)(r, x, q, z)dr, (4.41)

where

eτ∆f(z) =

∫
R
G(τ, z − y)f(y)dy,

G(τ, z) =
1√

2πτσ
e−

z2

2σ2τ

(4.42)

We collect some well known facts about the semigroup eτ∆[Weissler 1981].

Proposition 28 1. ‖G(τ, ·)‖1 = 1 for all τ > 0.

2. If f ≥ 0, then eτ∆f ≥ 0 and
∥∥eτ∆f

∥∥
1

= ‖f‖1.
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3. If 1 ≤ p ≤ ∞, then
∥∥eτ∆f

∥∥
p

= ‖f‖p for all τ > 0

Theorem 29 If λs + λb + λd ≤M , then equation ( 4.40) admits a unique solution.

Proof: For any w(·, ·) ∈ C([0, T ]×R3), define operator F : C([0, T ]×R3)→ C([0, T ]×R3)

by

(Fw)(x, q, z, τ) = eτ∆w(0, x, q, z) +

∫ τ

0

e(τ−r)∆(Tw)(r, x, q, z)dr (4.43)

The equation (4.41) becomes

w(τ, x, q, z) = (Fw)(τ, x, q, z)

We claim that, for δ = 1
4M

, ∀w1, w2 ∈ C([0, δ]× R+ × R× R+)

‖Fw1 − Fw2‖∞ ≤
1

2
‖w1 − w2‖∞ (4.44)
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In fact, by the theorem (27) and proposition (28.2),

‖Fw1 − Fw2‖∞

= sup
(τ,x,q,z)∈[0,δ]×R3

|(Fw1)(τ, x, q, z)− (Fw2)(τ, x, q, z)|

= sup
(τ,x,q,z)∈[0,δ]×R3

|
∫ τ

0

e(τ−r)∆((Tw1)(r, x, q, z)− (Tw2)(r, x, q, z))dr|

≤
∫ δ

0

sup
(τ,x,q,z)∈[0,δ]×R3

|e(τ−r)∆((Tw1)(r, x, q, z)− (Tw2)(r, x, q, z))|dr

≤
∫ δ

0

sup
(τ,x,q,z)∈[0,δ]×R3

|(Tw1)(r, x, q, z)− (Tw2)(r, x, q, z)|dr

≤2M

∫ δ

0

‖w1 − w2‖∞ dr

≤2δM ‖w1 − w2‖∞

=
1

2
‖w1 − w2‖∞

(4.45)

Hence, by the contraction mapping principle, equation (4.38) admits a unique solution

in [0, δ]. Repeating this process, we obtain our conclusion.

4.6 Optimal Trading Strategy

In order to obtain the optimal trading strategy, we explore the solution to the following HJB

equation:
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
vt + 1

2
σ2s2vss +H(t, v(t, x, q, s)) = 0, (t, x, s, q) ∈ [0, T ]× R+ × R× R+,

v(T, x, q, s) = x+ qs− γq2s2, (x, s, q) ∈ R+ × R× R+,

v(t, x, q, 0) = x, (t, x, q) ∈ [0, T ]× R+ × R,

(4.46)

where

H(t, v(t, x, s, q)) = sup(δb,δs,vd)∈R3
+
{λb(δb, δs)

∫
R[v(t, x− (s− δb)y, q + y, s)− v(t, x, q, s)]F (dy)

+ λb(δb, δs)
∫

R[v(t, x+ (s+ δs)y, q − y, s)− v(t, x, q, s)]F (dy)

+ λd[v(t, x+ (s+ δd)vd, q − vd, s)− v(t, x, q, s)]}.
(4.47)

Recall that the solution to 
wt + 1

2
σ2s2wss = 0, t ∈ [0, T ]

w(T, q, s) = x+ qs− γq2s2

(4.48)

is given by

w(t, x, q, s) = x+ qs− γq2s2eσ
2(T−t).

Let

θ(t, x, q, s) = v(t, x, q, s)− [x+ qs− γq2s2eσ
2(T−t)],

then

θ(T, x, q, s) = 0

We will show that θ(t, x, q, s) is actually independent of variable x. First, we find the equation

which θ(t, x, q, s) satisfies. It is easy to see that

θt +
1

2
σ2s2θss = vt +

1

2
σ2s2vss = −H(t, v(t, x, q, s)) (4.49)
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Note that

v(t, x− (s− δb)y, q + y, s)− v(t, x, q, s)

=θ(t, x− (s− δb)y, q + y, s) + [x− (s− δb)y + (q + y)s− γ(q + y)2s2eσ
2(T−t)]

− θ(t, x, q, s)− [x+ qs− γq2s2eσ
2(T−t)]

=θ(t, x− (s− δb)y, q + y, s)− θ(t, x, q, s) + δby − γy(2q + y)s2eσ
2(T−t)

(4.50)

Also,

v(t, x+ (s+ δs)y, q + y, s)− v(t, x, q, s)

=θ(t, x+ (s+ δs)y, q − y, s) + [x+ (s+ δs)y + (q − y)s− γ(q − y)2s2eσ
2(T−t)]

− θ(t, x, q, s)− [x+ qs− γq2s2eσ
2(T−t)]

=θ(t, x+ (s+ δs)y, q + y, s)− θ(t, x, q, s) + δsy + γy(2q − y)s2eσ
2(T−t)

(4.51)

and

v(t, x+ (s+ δd)y, q − vd, s)− v(t, x, q, s)

=θ(t, x+ (s+ δd)y, q − vd, s) + [x+ (s+ δd)vd + (q − vd)s− γ(q − vd)2s2eσ
2(T−t)]

− θ(t, x, q, s)− [x+ qs− γq2s2eσ
2(T−t)]

=θ(t, x+ (s+ δd)y, q − vd, s)− θ(t, x, q, s) + (pb − s)vd − γvd(2q − vd)s2eσ
2(T−t)

(4.52)
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Hence, θ(t, x, q, s) satisfies the following:

θt + 1
2
σ2s2θss

+ supδs λ
s
∫

R{δ
sy + γy(2q − y)s2eσ

2(T−t) + θ(t, x− (s− δb)y, q − y, s)− θ(t, x, q, s)}F (dy)

+ supδb λ
b
∫

R{δ
by − γy(2q + y)s2eσ

2(T−t) + θ(t, x+ (s+ δs)y, q − y, s)− θ(t, x, q, s)}F (dy)

+ supvd λ
d(δdvd + γvd(2q − vd)s2eσ

2(T−t) + θ(t, x+ (s+ δd)vd, q − vd, s)− θ(t, x, q, s)) = 0,

θ(T, x, q, s) = 0

θ(t, x, q, 0) = v(t, x, q, 0)− x = x− x = 0,

(4.53)

Since the terminal condition and boundary condition do not depend on variable x, it is

natural for us to introduce the following:


θt + 1

2
σ2s2θss + Ĥ(t, θ(t, q, s)) = 0, (t, q, s) ∈ [0, T ]× R2

+

θ(T, q, s) = 0, (q, s) ∈ R× R+

θ(t, q, 0) = 0, (t, q) ∈ [0, T ]× R

(4.54)

where

Ĥ(t, θ(t, q, s)) = sup
δs
λs
∫

R
{δsy + γy(2q − y)s2eσ

2(T−t) + θ(t, q − y, s)− θ(t, q, s)}F s(dy)

+ sup
δb
λb
∫

R
{δby − γy(2q + y)s2eσ

2(T−t) + θ(t, q + y, s)− θ(t, q, s)}F b(dy)

+ sup
vd
λd(δdvd + γvd(2q − vd)s2eσ

2(T−t) + θ(t, q − vd, s)− θ(t, q, s)),

(4.55)

If we can find a solution θ(t, q, s) (independent of x) to (4.54), then

v(t, x, q, s) = x+ qs− γq2s2eσ
2(T−t) + θ(t, q, s)
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will be a solution to (4.46).

Now we observe that∫
R
{δby − γy(2q + y)s2eσ

2(T−t) + θ(t, q + y, s)− θ(t, q, s)}F b(dy)

=

∫
R
{−γy(2q + y)s2eσ

2(T−t) + θ(t, q + y, s)− θ(t, q, s)}F b(dy) + δs
∫

R
yF b(dy)

=D+ + δbvb

and∫
R
{δsy + γy(2q − y)s2eσ

2(T−t) + θ(t, q − y, s)− θ(t, q, s)}F s(dy)

=

∫
R
{γy(2q − y)s2eσ

2(T−t) + θ(t, q − y, s)− θ(t, q, s)}F s(dy) + δs
∫

R
yF s(dy)

=D− + δsvs,

(4.56)

where D+ =
∫

R{−γy(2q + y)s2eσ
2(T−t) + θ(t, q + y, s)− θ(t, q, s)}F b(dy) + δs

∫
R yF

b(dy),

D− =
∫

R{γy(2q−y)s2eσ
2(T−t)+θ(t, q−y, s)−θ(t, q, s)}F s(dy). From the first-order optimality

condition in equation (4.54), we obtain the optimal δs, δb and vd. They are given by the

implicit relations

δb = −λ
b(δb)

λ̇b(δb)
− D+

vb

δs = −λ
s(δs)

λ̇s(δs)
− D−

vs

vd = q − θq − δd

2γs2eσ2(T−t)

(4.57)

Intuitively, the optimal strategy are obtained through a two-step procedure. First, we solve

the equation (4.54) in order to obtain D+,D− and θq. Second, we solve the implicit equations

(4.57) and obtain the optimal strategy.
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4.6.1 A Modification of HJB Equation

We see that equation (4.54) is highly nonlinear. Thus, it is difficult to find an explicit solution.

In this section, we introduce a modified HJB equation by linearizing Ĥ(t, θ(t, q, s)).

We assume that the arrival rates

λs(δ) = λb(δ) = Ae−kδ, (4.58)

where A, k are positive constants, and vb = vs = v̄. Then,

δb =
1

k
− D+

v̄

δs =
1

k
− D−

v̄

(4.59)

Substituting (4.59) back into (4.54) yields:


θt + 1

2
σ2s2θss + Ĥ(t, θ(t, q, s)) = 0, (t, q, s) ∈ [0, T ]× R× R+

θ(T, q, s) = 0, (q, s) ∈ R× R+

θ(t, q, 0) = 0, (t, q) ∈ [0, T ]× R,

(4.60)

where

Ĥ(t, θ(t, q, s)) =
Av

ke
(e

kD+
v̄ + e

kD−
v̄ )

+ sup
vd
λd(δdvd + γvd(2q − vd)s2eσ

2(T−t) + θ(t, q − vd, s)− θ(t, q, s))
(4.61)

Taking a first-order approximation of the order arrival term Av
ke

(e
kD+
v + e

kD−
v )

Av

ke
(e

kD+
v + e

kD−
v ) =

Av

ke
(2 +

k

v
(D+ +D−) + · · · ), (4.62)
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we notice that

D+ +D− = −2γs2eσ
2(T−t)

∫
R

y2F (dy) +

∫
R

[θ(t, q + y, s) + θ(t, q − y, s)− 2θ(t, q, s)]F (dy),

(4.63)

and the highest degree of q in Ĥ(t, θ(t, q, s)) is 2. Therefore, we now try to find θ(t, q, s) of

the following form:

θ(t, q, s) = θ0(t, s) + θ1(t, s)q + θ2(t, s)q2, (4.64)

then

D+ +D− = 2(θ2(t, s)− γs2eσ
2(T−t))

∫
R

y2F (dy), (4.65)

and 
δs = 1

k
− D−

v

δb = 1
k
− D+

v

vd = q + δd−θ1(s,t)

2(γs2eσ
2(T−t)−θ2(s,t))

(4.66)

Substituting the optimal strategy given by (4.66) and (4.65) into (4.54) and , we have
θt + 1

2
s2σ2θss + Av

ke
(2 + 2k

v̄
((θ2 − γs2eσ

2(T−t))
∫
R
y2F (dy)))

+ λd(γs2eσ
2(T−t) − θ2)(q + δd−θ1

2(γs2eσ
2(T−t)−θ2)

)2 = 0

θ(T, q, s) = 0

(4.67)

Therefore, if we subsitute (4.64) into (4.67) and group terms of order q0, we obtain
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
θ0
t + 1

2
s2σ2θ0

ss + Av
ke

(2 + 2k
v̄
((θ2 − γs2eσ

2(T−t))
∫
R
y2F (dy))) + λd( (δd−θ1)2

4(γs2eσ
2(T−t)−θ2)

) = 0

θ0(T, s) = 0

(4.68)

Grouping terms of order q yields
θ1
t + 1

2
s2σ2θ1

ss + λd(δd − θ1) = 0

θ1(T, s) = 0,

(4.69)

whose solution is θ1(t, s) = δd(1− e−λd (T−t)).

Grouping terms of order q2 yields


θ2
t + 1

2
s2σ2θ2

ss + λd(γs2eσ
2(T−t) − θ2) = 0

θ2(T, s) = 0,

(4.70)

whose solution is

θ2(s, t) = γs2(eσ
2(T−t) − e(σ2−λd)(T−t)).

Now, we are at the position to compute the explicit optimal strategy δs,δb and vd.

Theorem 30 Under the assumptions, the explicit optimal strategy is

δs = max
1

k
+ δd(1− e−λd (T−t)) + γs2e(σ2−λd)(T−t)(ε− 2q), 0

δb = max
1

k
− δd(1− e−λd (T−t)) + γs2e(σ2−λd)(T−t)(ε+ 2q), 0

vd = q +
δd

2γs2eσ2(T−t)

(4.71)
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where ε =
∫
R y

2F (dy)

v̄

Proof: We obtain this result through substituting θ1 and θ2 back into (4.66). First, we

compute D− and D+.

D− =

∫
R
{γy(2q − y)s2eσ

2(T−t) + θ(q − y, s, t)− θ(q, s, t)}F (dy)

=

∫
R
{γy(2q − y)s2eσ

2(T−t) − θ1(s, t)y − θ2(s, t)y(2q − y)}F (dy)

= (γs2eσ
2(T−t) − θ2(s, t))(2qv −

∫
R
y2P (dy))− θ1(s, t)v

= γs2e(σ2−λd)(T−t)(2qv −
∫

R
y2P (dy))− θ1(s, t)v

(4.72)

D+ =

∫
R
{−γy(2q + y)s2eσ

2(T−t) + θ(q + y, s, t)− θ(q, s, t)}F (dy)

=

∫
R
{−γy(2q + y)s2eσ

2(T−t) + θ1(s, t)y + θ2(s, t)y(2q + y)}F (dy)

= (θ2(s, t)− γs2eσ
2(T−t))(2qv +

∫
R
y2P (dy)) + θ1(s, t)v

= −γs2e(σ2−λd)(T−t)(2qv +

∫
R
y2P (dy)) + θ1(s, t)v

(4.73)

then, we substitute D− and D+ back into (4.66), which gives

δs = max{1

k
+ δd(1− e−λd (T−t)) + γs2e(σ2−λd)(T−t)(ε− 2q), 0}

δb = max{1

k
− δd(1− e−λd (T−t)) + γs2e(σ2−λd)(T−t)(ε+ 2q), 0}

(4.74)

In the third equation of (4.66), since

θq(t, q − vd, s) = θ1(t, s) + 2θ2(t, s)(q − vd),
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we have

vd = q − θ1(t, s) + 2θ2(t, s)(q − vd)− δd

2γs2eσ2(T−t)

= q − δd(1− e−λd (T−t)) + 2γs2(eσ
2(T−t) − e(σ2−λd)(T−t))(q − vd)− δd

2γs2eσ2(T−t)

(4.75)

Solving for vd gives

vd = q +
δd

2γs2eσ2(T−t)

4.6.2 Value Function

Recall that the value function is

v(t, x, q, s) = x+ qs− γq2s2eσ
2(T−t) + θ(t, q, s),

The solution for θ0 is

θ0 =
2Av

ke
(T − t)− 2Avγε

eλd
s2(eσ

2(T−t) − e(σ2−λd)(T−t))

+
λd

4γ(4σ2 + λd)
s−2(e3σ2(T−t) − e−(σ2+λd)(T−t))),

(4.76)

in addition,

θ1(t, s) = δd(1− e−λd (T−t))

and

θ2(t, s) = γs2(eσ
2(T−t) − e(σ2−λd)(T−t))
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therefore,

v(t, x, q, s) = v0(t, x, q, s) + θ(t, q, s)

= x+ θ0(s, t) + (δd(1− e−λd(T−t)) + s)q − γs2e(σ2−λd)(T−t)q2

(4.77)

We define the preferred inventory level to be the inventory level at which the value

function reaches the maximum. By this definition the preferred inventory q̂ is

q̂ =
δd(1− e−λd(T−t)) + s

2γs2e(σ2−λd)(T−t) (4.78)

4.7 A comparison with existing models

We have four quoting strategies at hand: reservation bid/ask price (δsr , δ
b
r) with y = ε,

symmetric strategy (δss = δbs = δ), without dealer trading strategy (δso, δ
b
o), and with dealer

trading strategy (δsw, δbw).

We summarize all the strategies in the following.

δsr = γ(ε− 2q)s2eσ
2(T−t), δbr = γ(ε+ 2q)s2eσ

2(T−t).

δss = δbs = δ =
1

k
+ γεs2eσ

2(T−t).

δso =
1

k
+ γs2eσ

2(T−t)(ε− 2q), δbo =
1

k
+ γs2eσ

2(T−t)(ε+ 2q).

δsw =
1

k
+ δd(1− e−λd (T−t)) + γs2e(σ2−λd)(T−t)(ε− 2q),

δbw =
1

k
− δd(1− e−λd (T−t)) + γs2e(σ2−λd)(T−t)(ε+ 2q)

(4.79)

It is interesting to see that
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Conclusion 1

δsr + δbr = 2δ − 2

k
, δso + δbo = 2δ, δsw + δbw < 2δ (4.80)

This conclusion tells that the market with inter-dealer trading is more liquid than the

market without inter-dealer trading.

Next, we compare the value functions with these four trading strategies, listed as the

following.

value function of reservation prices:

vr(t, x, q, s) = x+ qs− γq2s2eσ
2(T−t),

value function of symmetric strategy:

vs(t, x, q, s) = x+ qs− γq2s2eσ
2(T−t) +

2Av(T − t)
k

e−1−kγεs2eσ2(T−t)

value function without inter-dealer trading:

vo(t, x, q, s) = x+ qs− γq2s2eσ
2(T−t) +

2Av(T − t)
ke

(1− 2kγεs2eσ
2(T−t))

value function with inter-dealer trading:

vw(t, x, q, s) = x+ θ0(s, t) + (δd(1− e−λd(T−t)) + s)q − γs2e(σ2−λd)(T−t)q2

(4.81)

Conclusion 2 If γεs2eσ
2(T−t) < 1/k and q ≥ 2Av(T−t)

ke2δd(1−e−λd(T−t))
, then

vr < vo < vs < vw (4.82)

Proof: 1. It is obvious that vr < vo if γεs2eσ
2(T−t) < 1/k.

2. Since e−x − 1 + x > 0 for x > 0, it is easy to show that vo < vs.
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3. Since λd

4γ(4σ2+λd)
s−2(e3σ2(T−t) − e−(σ2+λd)(T−t)) > 0 for 0 ≤ t ≤ T , λd ≥ 0,

vw − vs ≥θ0 − 2Av(T − t)
k

e−1−kγεs2eσ2(T−t)
+ δd(1− e−λd(T−t))q

≥2Av(T − t)
ke

(1− e−kγεs2eσ
2(T−t) − kγεs2eσ

2(T−t)) + δd(1− e−λd(T−t))q

≥− 2Av(T − t)
ke2

+ δd(1− e−λd(T−t))q

≥0

(4.83)

Remark: The conditions for the conclusion (4.82) are not necessary. The reason to use

these conditions is that it has a nice form.

4.8 The Cost of Liquidity

In practice, a market with very low transaction costs is characterized as liquid and one

with high transaction costs as illiquid [M.J. Flemming 2003]. Measuring these costs is not

simple, however, as they depend on the size of a trade, its timing, the trading venue, and the

counterparties. Furthermore, the information needed to calculate transaction costs is often

not available.

As a consequence, a variety of measures are employed to evaluate a markets liquidity.

The bid-ask spread is a commonly used measure of market liquidity. It directly measures the

cost of executing a small trade, with the cost typically calculated as the difference between

the bid or offer price and the bid-ask midpoint (or one half of the bid-ask spread). A liquidity
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measure used in the Treasury market is the liquidity spread between more and less liquid

securities, often calculated as the difference between the yield of an onthe- run security and

that of an off-the-run security with similar cash flow characteristics.1 Trading volume is an

indirect but widely cited measure of market liquidity. Its popularity may stem from the

fact that more active markets tend to be more liquid, and from theoretical studies that

link increased trading activity with improved liquidity. A closely related measure of market

liquidity is trading frequency. Trading frequency equals the number of trades executed within

a specified interval, without regard to trade size.

[M.J. Flemming 2003] reveals that the simple bid-ask spread is a useful measure for

assessing and tracking liquidity for the U.S. Treasury market. The spread can be calculated

quickly and easily with data that are widely available on a real-time basis. The bid-ask

spread thus increases sharply with the equity market declines in October 1997, with the

financial market turmoil in the fall of 1998, and with the market disruptions around the

Treasurys quarterly refunding announcement in February 2000. By contrast, trading volume

and trading frequency are weak proxies for market liquidity, as both high and low levels of

trading activity are associated with periods of poor liquidity.

The spread can be difficult to interpret, however, for the reason that the spread reflects

both the price of liquidity as well as differences in liquidity between securities. In addition,

1An on-the-run security is the most recently auctioned security of a given (original) maturity and an
off-the-run security is an older security of a given maturity. Off-the-run securities are sometimes further
classified as first off-the-run (the most recently auctioned off-the-run security of a given maturity), second
off-the-run (the second most recently auctioned off-the-run security of a given maturity), and so on
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factors besides liquidity can cause the differences of spread. Our results offer an interpreta-

tion of the spread. We notice that the optimal trading strategy

δsw =
1

k
+ δd(1− e−λd (T−t)) + γs2e(σ2−λd)(T−t)(ε− 2q),

δbw =
1

k
− δd(1− e−λd (T−t)) + γs2e(σ2−λd)(T−t)(ε+ 2q)

(4.84)

has three components: 1
k
, ±δd(1−e−λd (T−t)) and γs2e(σ2−λd)(T−t)(ε±2q). The first component

is related to the sensitivity for the customers to the price changes. The more sensitive to

the price changes the customers, the narrower the spread. The second component is from

the inter-dealer trading, if the cost of inter-dealer trading measured by δd is low, the spread

to the customers is also low. The last component is related to the cost for holding the bond,

by comparing with the reservation strategy.

4.9 Calibration of Model

The optimal quoting bid and ask price can be computed given values for the parameters. In

practice, we need to determine the parameters using observed bond prices. In this section,

we will discuss how to determine the parameters involved in this model.

In terms of the meaning of the parameters, based on the statistic of bond trading data

in chapter 3 , we use the following values for the simulation:

• T : the terminal time. We use 1 day or one week.
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• t: the current time.

• A: the maximum order arrival rates. We let it take 40 if T is one day and 200 if T is

one week.

• k: order sensitivity to the price change. We let k = 1.5.

• λd: the average inter-dealer order rates. We let it take 20 if T is one day and 100 if T

is one week.

• v̄: the average order size. We let it be 250, the median of the quantity. (In table 3.2,

the median quantity is $25000, we divide it by face value $100.)

• ε:
∫
R y

2F (dy)

v̄
. We use a discrete distribution for F .

• σ: the variance of the log middle price of bid and ask. It is 0.01.

• s: the current middle price. It is 100.

• q: the current inventory. We let it be 0.

• γ: the risk aversion coefficient. We let it be 0.0000001. It is determined by calibrating

the quoting price to a reasonable range.

4.10 Simulation

The simulation is obtained through the following procedure.
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1. At time t, given the state variables, the dealer quotes

δs =
1

k
+ δd(1− e−λd(T−t)) + γs2e(σ2−λd)(T−t)(ε− 2q)

δb =
1

k
− δd(1− e−λd(T−t)) + γs2e(σ2−λd)(T−t)(ε+ 2q)

(4.85)

and sell vd = q + δd

2γs2eσ
2(T−t) to dealer.

2. At time t + dt, the state variables are updated. Generate a random number ν with a

distribution F . With probability λs(δs)dt, the inventory variables decreases by ν and

the wealth increases by (s + δs)ν. With probability λb(δb)dt, the inventory variables

increases by ν and the wealth decreases by (s − δb)ν. The ture price is updated by

St(1 + α) where α is a normal distributed random number with mean 0 and variance

σdt.

3. Repeat step 2 until time T .

Figure (4.1) illustrates one simulation of a trading path. The first graph shows the bid

and ask quotes for one path of the bond price. The second graph shows the corresponding

accumulated inventory prosition. The third graph shows the profit of the dealer. The green

lines in all three graphs stand for the benchmark strategy. The red lines stand for the

inventory strategy.

Notice that, at time t = 25, the accumulated inventory is relatively high, but the bid and

ask quotes are not significantly low as we expect. This is because the dealer can trade his

inventory with the other dealers. The inventory quickly returns to zero by the time t = 26.
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Figure 4.1: Inventory strategy compare with benchmark strategy.
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We then run 1000 simulations to compare our inventory strategy to the symmetric strat-

egy, shown in figure (4.2). The red lines still stands for our inventory, and the green line is

for the symmetric strategy. First, the spread of our inventory strategy converges to that of

the symmetric strategy as the time approches the terminal time. Indeed, when we are close

to the terminal time, our inventory position is considered less risky, since the true price is

less likely to move drastically. Second, the average inventory position of symmetric strategy

is larger than that of our inventory strategy while the average profit of symmetric strategy

is lower than that of the inventory strategy. Though our inventory strategy has a narrower

spread than the symmetric strategy, it still has higher profit than the symmetric strategy

since our inventory strategy involves inter-dealer trading, and therefore has a higher volume

of trading than the symmetric strategy.

4.11 Conclusion

In this chapter, we introduced a continuous time trading model in the bond market with

inter-dealer trading. Due to the nonliearity of the HJB equation, the explicit solution is not

available even though the uniqueness and existence of the solution was approved. Therefore,

we introduced an approximate method to obtain the explicit solution. This approximate

solution has a better performance than the benchmark symmetric quoting strategy as fol-

lowing.
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1. The spread of this inter-dealer trading model is smaller than that of the benchmark

model.

2. The value function of this inter-dealer trading model is greater than that of the bench-

mark model.

The research in this chapter tells that the inter-dealer market is more liquid than the

market that without inter-dealer trading. For a dealer, the risk for holding an inventory is

reduced by trading with the other dealers.
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Figure 4.2: The Average of 1000 Simulations
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CHAPTER 5

DISCRETE TIME MODEL WITH INTER-DEALER TRADING

Since it is difficult to find the exact explicit solution in the continuous time model, we bulit

a dicrete time model to explore exact explicit solution without a sacrifice for complexity of

model settings. The only model setting that we have changed is that the dealer put the

quotes at a fixed time instead of a continuous time. We are able to find the exact explicit

solution under this discrete time model.

5.1 Model Settings

We will consider all the uncertainty on a filtered probability space (Ω,F,Ft,P).

The finite discrete time horizon. We consider a discrete time model with a trading

horizon of one day. We divide a day into n periods 0 = t0 < t1 < . . . < tn = T . At the

beginning of periods i (0 ≤ i ≤ n), the dealer sets bid and ask quotes (pbi , p
s
i ).
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The market dynamics. We assume that the true price process is exougenous, which

is given by

dSt = σStdBt, where Bt is a Brownian Motion (5.1)

since here we use discrete time model, we will use the following approximation

∆Si = Si+1 − Si

= σSi(Bi+1 −Bi)

(5.2)

The dealer’s state variables and controls. The dynamics of the dealer’s cash and

inventory are described by the following eqautions:

Ci = Ci−1 + V s
i p

s
i−1 − V b

i p
b
i−1 + qdi p

d
i−1,

Ii = Ii−1 − V s
i + V b

i − qdi

(5.3)

where Ci denotes the cash at time ti, Ii denotes the inventory at time ti, and V s
i and V b

i mean

the buy orders and sell orders from customers at time ti. The dealer decides the amount qdi

to buy or sell to the interdealer market when he observes the interdealer price pdi . If pdi is

positive (negative), it means selling to (buying from) the dealer broker. In the other words,

the dealer controls psi ,pbi and qdi at time i.

The wealth of the dealer is

Wi = Ci + SiIi, where Si = Sti (5.4)

The change in wealth over period (ti, ti+1) will depend on (1) the arrival of transaction

and (2) return on security held in inventory. Therefore, we decompose the change in wealth
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into two components

∆Wi = Wi+1 −Wi

= ∆Ci + Si+1Ii+1 − SiIi

= ∆Ci + (Si+1 − Si)Ii+1 + Si(Ii+1 − Ii)

= ∆Ci + Si∆Ii + ∆SiIi+1

= V s
i+1p

s
i − V b

i+1p
b
i + qdi p

d
i + Si∆Ii + ∆SiIi+1

= V s
i+1(Si + δsi )− V b

i+1(Si − δbi ) + qdi p
d
i + Si∆Ii + ∆SiIi+1

= V s
i+1δ

s
i + V b

i+1δ
b
i + (V s

i+1 − V b
i+1)Si + qdi p

d
i + Si∆Ii + ∆SiIi+1

= V s
i+1δ

s
i + V b

i+1δ
b
i + qdi (p

d
i − Si) + ∆Xi

= V s
i+1δ

s
i + V b

i+1δ
b
i + qdi δ

d
i + ∆Xi

(5.5)

where V s
i+1δ

s
i + V b

i+1δ
b
i + qdi (p

d
i is the change wealth due to transaction and ∆Xi = ∆SiIi+1 is

the change in the market value of the inventory. We denote δdi = pdi − Si.

The dealer quotes bid and ask prices around the true price,

psi = Si + δsi

pbi = Si − δbi

(5.6)

Order dynamics. We simply assume that the order V s
i and V b

i are random variables

with

Ei(V
s
i ) = λs(δsi ), V ari(V

s
i ) = (σs∆t)2

Ei(V
b
i ) = λb(δbi ), V ari(V

b
i ) = (σb∆t)2

(5.7)
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The bid and ask quotes affect the arrival rates of orders. The further away from the ture

price the dealer positions his quote, the less often he will receive buy and sell orders. In the

other words, λs(δs) is a decreasing function of δs, and λb(δb) is a decreasing function of δb.

In the other way, it is equivalent to assume that

V s
i = λs(δsi ) + εsi , V ari(ε

s
i ) = (σs∆t)2

V b
i = λb(δbi ) + εbi , V ari(ε

b
i) = (σb∆t)2,

(5.8)

where εsi and εsi are the orders of uninformed customers, or noise customers. The rest of

incoming order flow, λs(δsi ) and λb(δbi ), is informed. These customers react to the price

change. Their demand is related to the spread.

The objective. The objective of the dealer is to maximize his profit from transaction

and minimize his risk from uncertainty in the security’s value. Therefore, we will use the

following objective function:

J(x, q, s,U0) = E(WT )− γV ar(Σn
j=0∆Xj) (5.9)

where γ > 0 is a fixed constant, risk aversion coefficient, uj = (δsj , δ
b
j , q

d
j ) is the control at

time tj, Ui = (ui, ui+1, · · · , uT−1). The value function is defined by

v(x, q, s) = max
U0∈U [0,T−1]

J(x, q, s,U0) (5.10)

with U [0, T − 1] being a set of all admissible controls U0.
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5.2 Optimal quoting strategy for one period model

In the case of one period model, we only consider the trading period (ti, ti+1). The objective

function and value function can be written as

J(Ci, Ii, Si, ui) = Ei(Wi+1)− γV ari((Si+1 − Si)Ii+1)

v(Ci, Ii, Si) = max
ui

J(Ci, Ii, Si, δ
s
i , δ

b
i )

(5.11)

Lemma 31

Ei(Wi+1) = Wi + (δsiλ
s
i + δbiλ

b
i)∆t+ qdi δ

d
i ,

Ei(I
2
i+1) = (Ii + (λb(δbi )− λs(δsi ))∆t)2 + ((σs)2 + (σb)2)(∆t)2

V ari((Si+1 − Si)Ii+1) = σ2S2
i ∆t((Ii + (λbi − λsi )∆t− qdi )2 + ((σs)2 + (σb)2)(∆t)2)

(5.12)

Proof:

Ei(Wi+1) = Ei(Wi + ∆Wi)

= Wi + Ei(V
s
i+1δ

s
i + V b

i+1δ
b
i + qdi δ

d
i + ∆Xi)

= Wi + (δsiλ
s
i + δbiλ

b
i)∆t+ qdi δ

d
i

(5.13)

Ei(I
2
i+1) = Ei(Ii + ∆Ii)

2

= V ari(Ii + ∆Ii) + (Ei(Ii + ∆Ii))
2

= ((σs)2 + (σb)2)(∆t)2 + (Ii + (λbi − λsi )∆t− qdi )2

(5.14)
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Since Ei(∆SiIi+1) = 0, we have

V ari(∆SiIi+1) = Ei(∆SiIi+1)2

= σ2S2
i ∆t((Ii + (λbi − λsi )∆t− qdi )2 + ((σs)2 + (σb)2)(∆t)2)

(5.15)

From lemma 31,

J(Ci, Ii, Si, ui) = Wi + (δsiλ
s
i + δbiλ

b
i)∆t+ qdi δ

d
i

− γσ2S2
i ∆t((Ii + (λbi − λsi )∆t− qdi )2 + ((σs)2 + (σb)2)(∆t)2)

(5.16)

Lemma 32 The first order condition of optimal ui = (δsi , δ
b
i , q

d
i ) for one-period model is

δsi = − λsi
(λsi )

′ + δdi

δbi = − λbi
(λbi)

′ − δ
d
i

qdi = Ii + (λbi − λsi )∆t+
δdi

2γσ2S2
i ∆t

(5.17)

Proof: Based on the result of lemma 31, take the first order partial derivative of objective

fuction 5.16 in terms of δsi , δ
b
i , q

d
i respectively,

δsi = − λsi
(λsi )

′ − 2γσ2S2
i ∆t(Ii + (λbi − λsi )∆t− qdi )

δbi = − λbi
(λbi)

′ + 2aσ2S2
i ∆t

2(Ii + (λbi − λsi )∆t− qdi )

qdi = Ii + (λbi − λsi )∆t+
δdi

2aσ2S2
i ∆t

.

(5.18)

Substituting qdi in equations of δsi ,δ
b
i yields

80



δ̂si = − λsi
(λsi )

′ + δdi

δ̂bi = − λbi
(λbi)

′ − δ
d
i

q̂di = Ii + (λbi − λsi )∆t+
δdi

2aσ2S2
i ∆t

(5.19)

Since λsi (λ
b
i) is a function of δsi (δ

b
i ). The following theorem will give the conditions that

equations 5.17 exist solutions.

Theorem 33 For decreasing function λsi and λbi defined on [0,M ], if 0 <
λsi

(λsi )
2 (λsi )

′′ < 2 and

0 <
λbi

(λbi )
2 (λbi)

′′ < 2, equations 5.17 exist an unique solution.

Proof: We define g(x) = − f(x)
f ′(x)

+C. Since g′(x) = −1+ f(x)
(f ′(x))2f

′′(x), if 0 < f(x)
(f ′(x))2f

′′(x) < 2

on [0,M ] , then |g′(x)| < 1. By fixed point theorem, equation x = g(x) has an unique

solution. Applying λsi and λbi as f(x), qdi and −qdi as C, we have the conlusion.

Theorem 34 If δdi ∈ [0, D],0 <
λsi

(λsi )
2 (λsi )

′′ < h < 2,
(λsi )

′

λsi
> h−2

2δdi h
, ,(λsi )

′ < 0,0 <
λbi

(λbi )
2 (λbi)

′′ <

2, (λbi)
′ < 0, then the optimal ui = (δsi , δ

b
i , q

d
i ) for one period model is

δsi = − λsi
(λsi )

′ + δdi

δbi = − λbi
(λbi)

′ − δ
d
i

qdi = Ii + (λbi − λsi )∆t+
δdi

2aσ2S2
i ∆t

(5.20)
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Proof: We only need to prove that 5.17 is optimal. So, if ∂2J
∂(ui)2 is negative definite, 5.17 is

the optimal solution.

∂2J

∂(ui)2
=


αs −B((λsi )

′∆t)2 + δdi (λ
s
i )
′′∆t B(λsi )

′(λbi)
′(∆t)2 −B(λsi )

′∆t

B(λsi )
′(λbi)

′(∆t)2 αb −B((λbi)
′∆t)2 + δdi (λ

s
i )
′′∆t B(λbi)

′∆t

−B(λsi )
′∆t B(λbi)

′∆t −B

 .

∼


αs + δdi (λ

s
i )
′′∆t 0 0

0 αb + δdi (λ
s
i )
′′∆t 0

−B(λsi )
′∆t B(λbi)

′∆t −B


(5.21)

where αs = (δsi (λ
s
i )
′′ + 2(λsi )

′)∆t, αb = (δbi (λ
b
i)
′′ + 2(λbi)

′)∆t and B = 2aσ2S2
i ∆t.

αs + δdi (λ
s
i )
′′∆t =(δsi (λ

s
i )
′′ + 2(λsi )

′)∆t+ δdi (λ
s
i )
′′∆t

=(δsi + δdi )(λ
s
i )
′′∆t+ 2(λsi )

′)∆t

<(δsi + δdi )∆t
h((λsi )

′)2

λsi
+ 2(λsi )

′)∆t

=(λsi )
′)∆t((− λsi

(λsi )
′ + δdi )

h(λsi )
′

λsi
+ 2)

=(λsi )
′)∆t(2− h+ 2δdi h

h(λsi )
′

λsi
)

<0

(5.22)
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αb + δdi (λ
b
i)
′′∆t =(δbi (λ

b
i)
′′ + 2(λbi)

′)∆t− δdi (λbi)′′∆t

=(δbi − δdi )(λbi)′′∆t+ 2(λbi)
′)∆t

<(δbi − δdi )∆t
2((λbi)

′)2

λbi
+ 2(λbi)

′)∆t

=(λbi)
′)∆t((− λbi

(λbi)
′ − 2δdi )

2(λbi)
′

λbi
+ 2)

=− 4∆tδdi
((λbi)

′)2

λbi

<0

(5.23)

and obviously −B ≤ 0. Therefore, ∂2J
∂(ui)2 is negative definite at ûi. Function J attain its

maximum at ûi.

Example 35 Let λsi = A1e
−k1δs, λbi = A1e

−k1δb, A1, A2, k1, k2 are positive. For δdi ∈ [0, D],

if k1 <
1

2δdi
, the optimal solution is

δsi =
1

k1

+ δdi

δbi =
1

k2

− δdi

qdi = Ii + (λbi − λsi )∆t+
δdi

2aσ2S2
i ∆t

(5.24)

Remark 36 1. Theorem 34 shows that the quoted bid/ask price is not directly related to

dealer’s inventory, but positively correlated to the price of inter-dealer. The bid/ask

price to customers and the price of inter-dealer co-move up and dowm together, which

is consistent with the finding from the empirical data analysis.

2. The spread δsi + δbi is not related to the inter-dealer price.
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3. The value function is

V (Ci, Ii, Si) =Wi + (δ̂si λ̂
s
i + δ̂bi λ̂

b
i)∆t+ q̂di δ

d
i

− (δdi )
2

4γσ2S2
i ∆t

+ ((σs)2 + (σb)2)(∆t)2)

=Wi + Ŷi + q̂di δ
d
i −−

(δdi )
2

4Bi∆t
+ A

(5.25)

5.3 Multi-period Model

In the case of multi-period model, we will consider the trading period (ti, tT ) 0 ≤ i ≤ T .

The optimal control for multi-period model will refer a sequence of decisions uj = (δsj , δ
b
j , q

d
j ),

i ≤ j ≤ T − 1. Each decision (δsj , δ
b
j , q

d
j ) only depends on the current state (Ci, Ii, Si). We

call Ui = (ui, ui+1, · · · , uT−1) policy. We denote the optimal policy Ûi = (ûi, ûi+1, · · · , ûT−1)

We notice that

WT = Wi + ΣT−1
j=i ∆Wj, (5.26)

and

V ari(Σ
n
j=i∆Xj) = Σn

j=i(V ari∆Xj), (5.27)

therefore,

Ji(Ci, Ii, Si, ui) = Ei(WT )− γV ari(Σn
j=i∆Xj)

= Wi + Σn
j=i(Ei(∆Wj − a(∆Xj)

2))

(5.28)
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We denote the second term of equation 5.28Gi(Ci, Ii, Si, ui) = Σn
j=i(Ei(∆Wj−a(∆Xj)

2)).

Obviously, Ji(Ci, Ii, Si, ui) = Wi + G(Ci, Ii, Si, ui). Since Wi is not a function of ui, it is

equavalent to maximize Gi(Ci, Ii, Si,Ui). We simply denote

Vi(Ci, Ii, Si) = max
Ui

Gi(Ci, Ii, Si,Ui) (5.29)

We summarize the multi-period model as following.

max
Ui

Gi(Ci, Ii, Si,Ui) = Σn
j=i(Ei(∆Wj − a(∆Xj)

2))

where Ui is the control or policy

the state equations are

∆Wj = V s
i+1δ

s
j + V b

i+1δ
b
j + qdj δ

d
j + ∆Xj,

∆Xj = (Sj+1 − Sj)(Ij − V s
j+1 + V b

j+1 − qdj )

(5.30)

Theorem 37 Bellman’s Principle

For multi-period model 5.30, the Bellman’s equation of dynamic programming is

Vi(Ci, Ii, Si) = max
ui
{δsiλsi + δbiλ

b
i)∆t+ qdi δ

d
i

− aσ2S2
i ∆t((Ii + (λbi − λsi )∆t− qdi )2 + ((σs)2 + (σb)2)(∆t)2)

+ Ei(Vi+1(Ci, Ii, Si))}

(5.31)

We conject that the value function Vi is of form
∑n

j=iEi(Ŷj + q̂jδ
d
j ) + C where Ŷj =

(δ̂aj λ̂
a
j + δ̂bj λ̂

b
j)∆t and C is not related to δ̂sj , δ̂

b
j , q̂

s
j 1 ≤ j < n.
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We assume that λsi , 1 ≤ i < n satisfies the conditions

1. (λsi )
′ < 0

2. 0 <
λsi

(λsi )
2
(λsi )

′′ < h < 2

3.
(λsi )

′

λsi
>
h− 2

2δdi h

(5.32)

λbi , 1 ≤ i < n satisfies the conditions

1. (λbi)
′ < 0

2. 0 <
λbi

(λbi)
2
(λbi)

′′ < 2

(5.33)

Theorem 38 The optimal policy for multi-period model

For any 1 < k < n− 1, if δdi is a martingale on (Ω,F,Ft,P) and λsi satisfies conditions 5.32,

(λbi) satisfies 5.33, then the value function induction rule is given by

∂EkVk+1

∂δsk
=− δdk(λsk)′∆t

∂EkVk+1

∂δbk
=δdk(λ

b
k)
′∆t

∂EkVk+1

∂qsk
=− δdk

(5.34)

The optimal policy for multi-period model is given by

δsi =− λsi
(λsi )

′ + δdi

δbi =− λbi
(λbi)

′ − δ
d
i

qdi =Ii + (λbi − λsi )∆t

(5.35)
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Proof: Assume when i = k the induction 5.34 holds, by Bellman’s equation 5.31, the optimal

δsk, δ
b
k, q

d
k will satisfy the following equations:

δ̂sk = − λsk
(λsk)

′ − 2γσ2S2
k∆t(Ik + (λbk − λsk)∆t− qdk) + (n− k − 1)Ekδk+1

δ̂bk = − λbk
(λbk)

′ + 2aσ2S2
k∆t(Ik + (λbk − λsk)∆t− qdk)− (n− k − 1)Ekδk+1

q̂dk = Ii + (λbi − λsi )∆t.

(5.36)

Plug qdk back into δsk and δbk, then we have

δ̂sk = − λsk
(λsk)

′ + Ekδk+1

δ̂bk = − λbk
(λbk)

′ − Ekδk+1

q̂dk = Ii + (λbi − λsi )∆t.

(5.37)

Under the conditions 5.32, 5.33, ∂2Gk
∂(uk)2 is negative definite, because

∂2Gk

∂(uk)2
=


αs −B((λsk)

′∆t)2 + δdi (λ
s
k)
′′∆t B(λsk)

′(λbk)
′(∆t)2 −B(λsk)

′∆t

B(λsk)
′(λbk)

′(∆t)2 αb −B((λbk)
′∆t)2 + δdk(λ

s
i )
′′∆t B(λbk)

′∆t

−B(λsk)
′∆t B(λbk)

′∆t −B

 .

∼


αs + δdk(λ

s
k)
′′∆t 0 0

0 αb + δdk(λ
s
k)
′′∆t 0

−B(λsk)
′∆t B(λbk)

′∆t −B


(5.38)

where αs = (δsk(λ
s
k)
′′ + 2(λsk)

′)∆t, αb = (δbk(λ
b
k)
′′ + 2(λbk)

′)∆t and B = 2aσ2S2
k∆t.
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and αs + δdi (λ
s
i )
′′∆t < 0,αb + δdk(λ

s
k)
′′∆t < 0, then 5.37 is the optimal solution.

Now we check if it still holds when i = k − 1, by the conjection form of Vi,

∂Ek−1Vk
∂δsk−1

=
∂

∂δsk−1

n∑
j=k

Ek−1(Ŷj + q̂j)δ
d
j + C

=
∂

∂δsk−1

n∑
j=k

Ek−1q̂jδ
d
k

=− δdk−1(λsk−1)′∆t

(5.39)

The second equality holds because Ŷj is a function of δdj , which is independent with δsk.

Since

Ek−1q̂k+1 =Ek−1(Ek(q̂k+1))

=Ek−1(Ik + (λ̂bj − λ̂sj)∆t− q̂k)

=0

(5.40)

then we have that for any j ≥ k + 1, Ek−1q̂j = 0. Therefore, the third equality holds.

Similarly, we can prove

∂Ek−1Vk
∂δbk−1

=δdk−1(λsk−1)′∆t

∂Ek−1Vk
∂qbk−1

=− δdk−1

(5.41)

Under the induction rule, 5.37 is the optimal solution.
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5.4 Conclusion

The result of this trading model shows that

1. The dealer’s bid and ask price is positive correlated to inter-dealer’s price, which ex-

plains the finding from the data.

2. Dealer trades his whole imbalance with dealer broke or the other dealer, therefore,

the price movement is not directly related to inventory movement. The price is only

related to inter-dealer’s price and current order flow rate. That is why data shows

weak relation between trading drift and price.

3. The quoted price only reveal the cost of liquidity, not reflect the other risks such as

interest rate risk and default risk. As we mention in chapter 1, dealer trade for liquidity

and make profit from providing liquidity, not betting on the movement of the fair price

of the bond.
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
θ0
t + 1

2
s2σ2θ0

ss + Av
ke

(2− 2γkεs2e(σ2−λd)(T−t) + λd

4γs2
e−(σ2+λd)(T−t) = 0

θ0(s, T ) = 0

(.42)

Let

τ = T − t, z = lns− 1

2
σ2τ (.43)

The equation (.42) becomes
vt = 1

2
σ2vzz + Av

ke
(2− 2γkεe2ze(2σ2−λd)τ + λd

4γ
e−2ze−(2σ2+λd)τ ) = 0, t ∈ [0, T ]

v(q, z, τ) = 0

(.44)

The solution of equation (.44) is∫ τ

0

e(τ−r)∆Av

ke
(2− 2γkεe2ze(2σ2−λd)r +

λd

4γ
e−2ze−(2σ2+λd)r)dr

=
2Av

ke
τ − 2Avγε

e

∫ τ

0

e(2σ2−λd)re(τ−r)∆e2zdr +
λd

4γ

∫ τ

0

e−(2σ2+λd)re(τ−r)∆e−2zdr

=
2Av

ke
τ − 2Avγε

e

∫ τ

0

e(2σ2−λd)re2z+2σ2(τ−r)dr +
λd

4γ

∫ τ

0

e−(2σ2+λd)re−2z+2σ2(τ−r)dr

=
2Av

ke
τ − 2Avγε

e
e2z+2σ2τ 1− e−λdτ

λd
+

λd

4γ(4σ2 + λd)
e−2z+2σ2τ (1− e−(4σ2+λd)τ )

=
2Av

ke
(T − t)− 2Avγε

eλd
s2(eσ

2(T−t) − e(σ2−λd)(T−t)) +
λd

4γ(4σ2 + λd)
s−2(e3σ2(T−t) − e−(σ2+λd)(T−t))

(.45)
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APPENDIX B BOND VALUATION
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Bond valuation is to determine the fair price of a bond. The theoretical fair value of a

bond is the present value of the stream of cash flows it is expected to generate. Hence, the

value of a bond is obtained by discounting the bond’s expected cash flows to the present

using the appropriate discount rate. The discount rates in different maturity time are not

linear or log linear related, but in practice refered as term structure. How to determine the

term structure is usually what people say about meauring interest rate risk.

The term structure encapsulates the market’s views of the future behaviour of short-term

interest rates. The arrival of information leads to a revision of expectations and thus moves

the yield curve. Therefore, in section 1, we derive the term structure given the spot rate of

short term interest rate.

The price is not independent with the market, as bond price is contingent on interest

rate. Treasury bond prices usually service as a benchmark for pricing financial products.

HJM method extend this idea to use forward rate as a reference for pricing. Even though it

is not perfect, it offers us a novel insight into pricing. In section 2, we give a short review of

HJM method.

The parameters in single factor model change over time, which mean that it can not

catch the pattern of interest-rate volatilites across maturities. Then comes the multifactor

models, it shows that the parameters are persistent over time. In section 3, we introduce

the idea of multifactor model by a simple case, two factor model.
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In regard to default risk, in section 4, we start our analysis from a simple formular with

known default risk, which is available from credit rating company. My curiosity is how the

bond price of AAA company related to that of BBB company with various maturity.

.1 Interest Rate Models and Bond Pricing

In this section, we will briefly review interest rate models, under which we will price bonds

without default risk. (See details in notes by Robert V. Kohn)

Basic terminology

Short rate at time t, or instantaneous interest rate, is denoted by r(t).

A zero-coupon bond, maturing at time T, pays 1 at time T . Its price at time t, B(t, T ), is

given by

B(t, T ) = Et[exp{−
∫ T

t

r(u)du}]

The instantaneous forward rate f(t, T ) is defined by

f(t, T ) = −∂logB(t, T )

∂T
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This is the instantaneous interest rate, agreed upon at time t, for money borrowed at time

T. Integrating the above equation, we obtain∫ T

t

f(t, u)du =−
∫ T

t

−∂logB(t, u)

∂u
du

=− logB(t, u)‖u=T
u=t

=− logB(t, T ),

(.46)

so

B(t, T ) = exp{−
∫ T

t

f(t, u)du}

You can agree at time t to recieve interest rate f(t, u) at each time u ∈ [t, T ]. If you invest

$B(t,T) at time t and receive interest rate f(t, u) at each time u between t and T , this will

grow to

B(t, T )exp{
∫ T

t

f(t, u)du} = 1

at time T .

Interest Rate Models

1. Vasicek(1977). The short rate solves

dr(t) = (θ − ar(t))dt+ σdw(t) (.47)

with θ, a, and σ constant and a > 0. The advantage of such a model is that it leads

to explicit formulas. Moreover, P (t, T ) has lognormal statistics. The disadvantage of

such a model is that it has just a few paramters. So there is no hope of calibrating

it to match the entire yield curve P (0, T ) observed in the marketplace at time 0. For

this reason Vasicek and its siblings are rarely used in practice.
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2. Hull-White model. It extended Vasicek model, depending on a function of one variable.

dr(t) = (θ(t)− ar(t))dt+ σdw(t) (.48)

where a and σ are still constant but θ is a function of t.

3. Cox-Ingersoll-Ross (CIR) Model.

dr(t) = (θ − ar(t)dt+ σ
√
r(t)dw(t) (.49)

4. Factor Model (Duffie & Kan 1996).

The method to derive bond price contingent on the dynamic of interest rate is:

1. Assume B(t, T ) of affine form

B(r, t, T ) = A(t, T )e−rC(t,T )

2. Noticing that e−
∫ T
t r(u)duB(t, T ) is a martingale, find de−

∫ T
t r(u)duB(t, T ) and set the

dt term zero. Then we have a partial differential equation satisfying the terminal

condition B(r, T, T ) = 1.

3. Solving the partial differential equation, we obtain the formula of B(r, t, T )

Fortunately, under those three interest rate models, they all have closed form solution

for B(t, T ). We list all the solutions for reference.

Bond Price under Vasicek model

Under Vasicek model, the bond price at time t is given by

B(t, T ) = A(t, T )e−C(t,T )r(t) (.50)

96



where A(t, T ) = exp[( θ
a
− σ2

2a2 (C(t, T )− T + t)− σ2

4a
(C2(t, T ))] , C(t.T ) = 1

a
(1− ea(T−t))

Bond Price under Hull-White Model Under Hull-White model, the bond price at

time t is given by

B(t, T ) = A(t, T )e−C(t,T )r(t) (.51)

where A(t, T ) = exp[−
∫ T
t
θ(s)C(s, T )ds − σ2

2a2 (C(t, T ) − T + t) − σ2

4a
(C2(t, T ))] , C(t.T ) =

1
a
(1 − ea(T−t)) We can determine θ from the term structure at time 0 to calibrate the yield

curve observed from marketplace at time 0.

Bond Price under CIR Model Under CIR model, the bond price at time t is given

by

B(t, T ) = A(t, T )e−C(t,T )r(t) (.52)

where

A(t, T ) =(
2γe(α+γ)(T−t/2)

(α + γ)(eγ(T−t) − 1) + 2γ
)2θ/σ2

C(t, T ) =
2(eγ(T−t) − 1)

(α + γ)(eγ(T−t) − 1) + 2γ

γ =
√
α2 + 2σ2

(.53)

.2 Heath-Jarrow-Morton Method

Rather than work in terms of a short rate, it specifies the evolution of the instantaneous

forward rate f(t, T ) by solving an SDE in t:

df(t, T ) = α(t, T )dt+ σ(t, T )dW (t)
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The Bond prices

B(t, T ) = exp{−
∫ T

t

f(t, u)du}

satisfy

dB(t, T )/K(t) = (B(t, T )/K(t))((1/2σ2(t, T )−
∫ T

t

α(t, u)du)dt+ σ(t, T )dW (t))

To implement HJM, you specify a function σ(t, T ), 0 ≤ t ≤ T .

.3 Default Risk and Bond Pricing

Since Merton (1974) to Longstaff (1995), the value of a particular issue of corporate debt is

obtained through contingent-claims-based approach. In this approach, the corporate debt is

contingent on if the total dynamic value of the assets of the firm falls below a given threshold

value K for the firm at which financial distress occurs. Longstaff (1995) developed a simple

framework for pricing risky corporate bond that incorporated both default risk and interest-

rate risk. Applying the model, it derived a closed form expressions for fixed-rate and floating

rate debt. However, the dynamic of the total asset value of the firm is described only by

two constant parameters. It is too rough for the default risk. In addition, estimating those

parameters is difficult in practice. The demand for more realistic valuation of default bonds

leads to the development of an alternative, reduced form approach(Jarrow and Turnbull

1995; Duffie and Singleton 1999). The reduced form approach does not look at the structure
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of firm’s liabilities, but the default probability.

Credit rating companies, such as Fitch, Moody’s and Standard & Poors, are professional

in measuring default risk. Investors, issuers, investment banks, broker-dealers, and govern-

ments rely on their rating as reference.

In this section, we derive the bond price by using the default probability provided by the

rating company.

Let Bd(t, T ) denote the price of a default risky discount bond at time t with maturity

date T, B(t, T ) denote the price of a default free bond at time t with maturity date T.

Assumption 1 1: Let r denote the short-term riskless interest rate process. The dynamics

of r are given by

dr(t) = u(r(t), t)dt+ σ(r(t), t)dwt (.54)

Assumption 2 2: The payoff function is expressed as

1− wIγ<T

where I is an indicator function that takes value one if the firm defaults during the life of the

bond, and zero otherwise, w is writedown rate, and γ, a random variable, denotes the default

time. We assume that defaulting is an independent event with interest rate r(t). The default

risk α(t, T ) = Et(Iγ<T ) is a increasing function of maturity T , given by Moody’s rating.
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From the assumption 1 and 2, we are at the position to derive the formula of Bd(t, T ).

Bd(t, T ) =Et[exp{−
∫ T

t

r(u)du(1− wIt<T )}]

=(1− wEt(Iγ<T ))Et[exp{−
∫ T

t

r(u)du}]

=(1− wP{t < γ < T})B(t, T )

(.55)
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