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ABSTRACT

The Accelerated Life Model is one of the most commonly used tools in the analysis of

survival data which are frequently encountered in medical research and reliability studies.

In these types of studies we often deal with complicated data sets for which we cannot

observe the complete data set in practical situations due to censoring. Such difficulties are

particularly apparent by the fact that there is little work in statistical literature on the

Accelerated Life Model for complicated types of censored data sets, such as doubly censored

data, interval censored data, and partly interval censored data.

In this work, we use the Weighted Empirical Likelihood approach (Ren, 2001) [33] to

construct tests, confidence intervals, and goodness-of-fit tests for the Accelerated Life Model

in a unified way for various types of censored data. We also provide algorithms for imple-

mentation and present relevant simulation results.

I began working on this problem with Dr. Jian-Jian Ren. Upon Dr. Ren’s departure

from the University of Central Florida I completed this dissertation under the supervision

of Dr. Marianna Pensky.
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CHAPTER 1
INTRODUCTION

The Accelerated Life Model is one of the most commonly used tools in the analysis of survival

data. Due to the nature of survival data, we often encounter data sets which are subject

to censoring, i.e., we cannot observe the complete data set in practical situations. Until

now, there has been little work in statistical literature on the Accelerated Life Model for

complicated types of censored data sets, such as doubly censored data, interval censored

data, and partly interval censored data. In this research, we use the Weighted Empirical

Likelihood approach (Ren, 2001) [33] to construct tests, confidence intervals, and goodness-

of-fit tests for the Accelerated Life Model in a unified way for various types of censored

data.

This chapter is organized as follows. Section 1.1 briefly introduces some basic concepts

and notations in survival analysis. Section 1.2 introduces the Accelerated Life Model and re-

views some relevant recent works. Section 1.3 describes various types of censored data with

examples, and reviews some relevant asymptotic results on the nonparametric maximum

likelihood distribution estimators. Section 1.4 reviews the techniques of Parametric Like-

lihood, Empirical Likelihood (Owen, 1988)[31], and Weighted Empirical Likelihood (Ren,

2001)[33]. Finally, Section 1.6 summarizes the main results of this dissertation, and outlines

the organization of the rest of this dissertation.
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1.1 Introduction

Survival analysis is an area of statistical research which is concerned with the failure time

of subjects. An example of this in medical research is a treatment study where a new drug

or treatment is being tested. Researchers may want to determine the effects of the new

treatment on survival time for patients with diseases such as diabetes, AIDS, cancer, etc.

While there may be many different explanatory variables, survival analysis primarily deals

with a univariate lifetime variable, which is often referred to as failure time. To determine

failure time precisely, we need a clearly defined time origin, a way of measuring time, and an

explicit definition of the meaning of failure. In medical research, the time origin is usually

defined as the time at which a patient enters a clinical trial, time is measured in days or

months, and failure is defined as the time when a disease relapses or the time when a patient

dies from the disease of interest.

One challenge in the analysis of survival data is that in practical situations, we often are

unable to observe the failure time of an individual due to censoring. Such a challenge can be

quite difficult to handle mathematically, which is why there has been so little work done in the

statistical literature on the Accelerated Life Model with complicated types of censored data,

such as doubly censored, interval censored, and partly interval censored data. But it is well

known that these complicated types of censored data are encountered in important clinical

trials in medical research; see Section 1.3 for descriptions of various types of censored data

2



and real data examples. Thus, it is important for us to develop new statistical procedures

to handle these types of censored data.

As follows, we introduce some commonly used definitions and notations in survival anal-

ysis. Let T denote the lifetime random variable, which is continuous and nonnegative. And

let f
T

(t) and FT (t) denote the density function and distribution function of T , respectively.

Definition 1.1. The survival function of T is defined by

F̄T (t) = P{T ≥ t} = 1− FT (t). (1.1)

Definition 1.2. The hazard function of T is defined by

hT (t) = lim
∆→0+

P{t ≤ T < t+ ∆ | T ≥ t}
∆

. (1.2)

Note that the hazard function is the instantaneous rate of mortality at time t given T ≥ t.

Also, note that Definition 1.2 implies that the hazard function can be expressed in terms of

the density function and distribution function of T as below:

hT (t) = lim
∆→0+

P{t ≤ T < t+ ∆ | T ≥ t}
∆

= lim
∆→0+

P{t ≤ T < t+ ∆}
P{T ≥ t} ·∆

= lim
∆→0+

FT (t+ ∆)− FT (t)

F̄T (t) ·∆
=
F ′T (t)

F̄T (t)
=
f
T

(t)

F̄T (t)
.

(1.3)

The hazard function hT (t) in (1.2) plays a key role in the Cox Proportional Hazards

Model (Cox, 1972) [8], which is one of the most commonly used models in survival analysis.

However, the model assumptions of the Cox Proportional Hazards Model do not hold in

some practical situations. Hence, the Accelerated Life Model is a commonly used alternative

model in survival analysis. In the next section, we describe the Accelerated Life Model and

discuss its relation to the Cox Proportional Hazards Model.
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1.2 Accelerated Life Model

In this section, we describe the Accelerated Life Model (ALM). Specifically,

Subsection 1.2.1 discusses the Two-Sample Accelerated Life Model; Subsection 1.2.2

discusses the general case of the Accelerated Life Model and its relationship with the Cox

Proportional Hazards model; and Subsection 1.2.3 briefly reviews some recent relevant works

on the Accelerated Life Model.

1.2.1 Two-Sample Accelerated Life Model

The basic underlying assumption for the Accelerated Life Model is that the covariate vector

z acts multiplicatively on the failure times. The following summarizes the relevant topics

from Section 5.1 of Cox and Oakes (1984). [9]

Consider the simple case where we have a single indicator variable z such that z = 0

corresponds to the control group, and z = 1 corresponds to the treatment group. In survival

analysis, this could mean a study which assesses the effectiveness of a new medical treatment

that is anticipated to increase the survival time of individuals in, say, a cancer study. The

data from the treatment group z = 1 and the control group z = 0 are the following lifetime

random samples, respectively:

Treatment z = 1 : X1, . . . , Xn1

i.i.d.∼ FX ,

Control z = 0 : Y1, . . . , Yn0

i.i.d.∼ FY .

(1.4)
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The assumption of the Accelerated Life Model is that lifetime random variables X and Y

are proportional to each other, which is denoted by

Y =
X

γ
0

, (1.5)

where γ
0

is an unknown positive scale parameter, and model (1.5) is referred to as the

Two-Sample Accelerated Life Model.

From model assumption (1.5), the following relationships among the distribution func-

tion, density function, and hazard function of the random variables X and Y are implied:

FY (t) = P{Y ≤ t} = P

{
X

γ
0

≤ t

}
= P{X ≤ γ

0
t} = FX(γ

0
t),

f
Y

(t) = F ′Y (t) = [FX(γ
0
t)]′ = F ′X(γ

0
t)γ

0
= f

X
(γ

0
t)γ

0
,

hY (t) =
f
Y

(t)

F̄Y (t)
=

f
X

(γ
0
t)γ

0

F̄X(γ
0
t)

= hX(γ
0
t)γ

0
.

(1.6)

In the Two-Sample Accelerated Life Model (1.5), we also make the following observations.

If γ
0
> 1, then the failure time of X is greater than the failure time of Y . In terms of the

clinical study, this indicates that the treatment is effective. On the other hand, if 0 < γ
0
≤ 1,

then the failure time of X is not greater than the failure time of Y , which indicates that the

treatment is not effective.

In practice, the scale parameter γ
0

in (1.5) is unknown. For statistical inferences, we use

the available data to estimate γ
0
. To determine if the treatment is effective, the following

hypothesis test may be considered:

H0 : 0 < γ
0
≤ 1 (treatment not effective)

H1 : γ
0
> 1 (treatment effective).

(1.7)
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Also, point estimators and interval estimators for γ
0

based on the available data may be

used to assess the effectiveness of the treatments.

1.2.2 General Accelerated Life Model

In the general case, we may be interested in the effects of several different variables or

covariates on the failure time. For these cases, we consider, more generally, a covariate

vector z of explanatory variables, and the general Accelerated Life Model is given by

T =
T0

ψ(z)
, (1.8)

where T0 corresponds to the baseline lifetime random variable with z = 0, and ψ(z) ≥ 0 is

a function of the explanatory variables z satisfying ψ(0) = 1. Below is an example on the

general Accelerated Life Model (1.8).

Example 1. Consider a new treatment for lung cancer with z = (z1, z2, z3), where

z1 = gender; z2 = treatment; and z3 = [change in size of tumor]. In model (1.8), we have T

as survival time from lung cancer treatment.

From model assumption (1.8), the following relationships among the distribution func-

tion, density function, and hazard function of the lifetime random variables T and T0 are

6



implied. Let F0 denote the distribution function of T0, then we have

F (t; z) = P{T ≤ t} = P

{
T0

ψ(z)
≤ t

}
= P{T0 ≤ tψ(z)} = F0(tψ(z)),

f(t; z) = F ′(t; z) = F ′0(tψ(z))ψ(z) = f
0
(tψ(z))ψ(z),

h(t; z) =
f(t; z)

F̄ (t; z)
=

f
0
(tψ(z))ψ(z)

F̄0(tψ(z))
= h0(tψ(z))ψ(z).

(1.9)

Moreover, taking the natural logarithm of both sides of (1.8) yields

log T = log T0 − logψ(z) = µ0 − logψ(z) + ε, (1.10)

where µ0 is the mean of log T0, and ε is a random variable with mean 0 whose distribution

does not depend on z.

In some cases, a parametric form for ψ(·) may be needed, say, in the form of ψ(z;β) by

introducing a parameter β. Since we require ψ(z) = ψ(z;β) ≥ 0 and ψ(0;β) = 1 in (1.10),

a natural choice is

ψ(z;β) = eβ
T z. (1.11)

With this choice, Accelerated Life Model (1.8) or (1.10) is written as

log T = µ0 − βTz + ε, (1.12)

which is the log linear model with parameter β, and the usual linear model technique may

used to study this model.

Two-Sample ALM vs. General ALM. In (1.11), we have ψ(0, β) = 1 and

ψ(1, β) = eβ ≡ γ
0
. Thus, a special case of (1.8) with function (1.11) for z = 0, 1 gives:

T =
T0

ψ(0; β)
= T0, T =

T0

ψ(1; β)
=
T0

γ
0

, (1.13)
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which coincides with the Two-Sample Accelerated Life Model (1.5). In the situation with a

limited number of distinct values of z, it is unnecessary to specify a parametric form for ψ(z)

such as (1.11), and with limited information, if any, about the underlying distribution, the

choice of (1.11) may not even be reasonable. In cases where we have only a few treatment

levels, we may use pairwise studies, i.e., the Two-Sample Accelerated Life Model (1.5), to

compare the effects of different treatments. For these reasons, we focus on the Two-Sample

Accelerated Life Model (1.5) throughout the rest of this dissertation.

Relation to Proportional Hazards Model. The Accelerated Life Model and the

Cox Proportional Hazards model are the two main models used in survival analysis. The

Cox Proportional Hazards Model (Cox, 1972) [8] is given by

h(t; z) = h0(t)eβ
>z, (1.14)

where h(t; z) is the conditional hazard function of T given Z = z, and h0(t) is an arbitrary

baseline (control group) hazard function. It has been shown that the Accelerated Life Model

and Cox Proportional Hazards Model coincide if and only if the failure time follows a Weibull

distribution (Cox and Oakes, 1984; page 71-72)[9]. When there is no evidence that the

survival time follows a Weibull distribution or when the Cox Model assumption does not

hold for the available data, it is vital to develop estimation and testing procedures for the

Accelerated Life Model which is an important alternative model to the Cox Model in survival

analysis.

Model Checking. The Accelerated Life Model is applicable when different levels of

stress or different treatments are applied to subjects and each different level of stress or

8



treatment is in turn believed to increase or decrease the failure time of the subjects. As

mentioned previously, we can study the effects of new medical treatments that are antici-

pated to increase the survival time of individuals in the study. Since the distributions of log T

in (1.12) differ only by a translation for different values of z, the variance of log T should be

constant. A simple analysis where we calculate the mean and standard deviation at different

treatment levels can help to determine if the model is adequate. In treatment levels where

severe censoring is present, the mean and standard deviation may be over or underestimated.

In these cases, we need to explore different methods to deal with the censoring issue, and

it is always desirable to develop goodness-of-fit tests for assessment of the validity of the

model assumptions. In the context of this research, goodness-of-fit tests for the Two-Sample

Accelerated Life Model (1.5) with various types of censored data are important. If the data

set does not fit the model assumption, then any statistical conclusion under model assump-

tion (1.5) is not reliable. To our best knowledge, up to now there has been no work done on

goodness-of-fit tests for the Two-Sample Accelerated Life Model (1.5) for complicated types

of censored data such as doubly censored, interval censored, and partly interval censored

data, which are described in Section 1.3.

1.2.3 Review of Recent Work

Rank-based monotone estimating functions are developed for the ALM with right censored

observations in Jin, Lin, Wei and Ying (2003).[21] Using a resampling technique, which

9



does not involve nonparametric density estimation or numerical derivatives, they estimate

the limiting covariance matrices. These estimators, which are given by the roots of non-

monotone estimating equations based on the familiar weighted log-rank statistics, are shown

to be consistent and asymptotically normal. These estimators can be obtained by linear

programming, and two examples are provided to show that the proposed methods perform

well in practical settings.

Using semiparametric transformation models, Cai and Cheng (2004) [5] analyze doubly

censored data with additional assumptions on the right and left censoring variables. In their

paper, inference procedures for the regression parameters are given, and the asymptotic

distributions are studied.

Chen, Shen and Ying (2005) [7] also consider right censored data and propose a rank

estimation procedure based on stratifying a Gehan-type extension of the Wilcoxon-Mann-

Whitney estimating function. The resulting estimate is shown to be consistent and asymp-

totically normal. It is shown that the stratification poses little loss of information. These

techniques can be done with linear programming.

Using the empirical likelihood method, Zhou (2005) [46] derives a test based on the rank

estimators of the regression coefficient for the Accelerated Life Model with right censored

data. Simulations and examples show that the chi-squared approximation to the distribution

of the log empirical likelihood ratio performs well and has some advantages over the existing

methods.
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Odell, Anderson, and D’Agostino (1992) [30] study a Weibull-based accelerated failure

time model with left and interval censored data. This approach assumes a parametric model.

Maximum likelihood estimators (MLEs) are compared with Midpoint estimators (MDEs) and

simulation studies indicate many instances where the MLE is superior to the MDE.

Betensky, Rabinowitz, and Tsiatis (2001) [4] study the accelerated failure time model

with interval censored data using estimating equations computed using examination times

from the same individual treated as if they had been obtained from different individuals.

This approach does not involve computing the nonparametric maximum likelihood estimate

of the distribution function. Simulation results are provided.

Komarek, Lesaffre, and Hilton (2005) [24] estimate parameters of an accelerated failure

time model using a semiparametric approach they developed. In this approach, they use a P-

spline smoothing technique which directly provides predictive survival distributions for fixed

values of covariates with the presence of left, right, and interval censored data. Applications

of this approach are provided as well.

Tian and Cai (2006) [41] use a novel approach to make inferences about the parameters in

the accelerated failure time model for current status and interval censored data through an

estimator constructed by inverting a Wald-type test for testing a null proportional hazards

model. In addition, a Markov chain Monte Carlo based resampling method is proposed

to obtain, simultaneously, the point estimator and a consistent estimator of its variance-

covariance matrix. Extensive numerical studies are provided.
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Komarek and Lesaffre (2008) [25] explore the relationship of covariates to the time to

caries of permanent first molars. An accelerated failure time model with random effects is

suggested, taking into account that the observations are clustered. These methods involve

analyzing multivariate doubly and interval-censored data. Model parameters are estimated

using a Bayesian approach with Markov chain Monte Carlo methodology.

To our best knowledge, up to now, the Accelerated Life Model has not been considered in

literature, in a unified way, for all of the types of censored data considered in this dissertation.

1.3 Censored Data

Let

X1, X2, . . . , Xn (1.15)

be a random sample from an unknown distribution function F0. In practice, we often do

not actually observe this sample due to censoring. In the following subsections, we describe

various types of censored data along with some real data examples, and summarize the

asymptotic results on the nonparametric maximum likelihood estimator F̂n for F0.
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1.3.1 Right Censored Data

The observed data for the random sample (1.15) are Oi = (Vi, δi), 1 ≤ i ≤ n, with

Vi =


Xi if Xi ≤ Ci, δi = 1

Ci if Xi > Ci, δi = 0,

(1.16)

where Ci is the right censoring variable and is independent of Xi. This type of censored data

has been extensively studied in statistical literature in the past few decades.

Data Example 1. Heart Transplant Data. In Miller and Halpern (1982), [28], a right

censored data set is presented, and a brief description of the this data set is as follows. The

Stanford heart transplantation program began in October 1967. By February 1980, 184

patients had received transplants. In this example, Xi is the survival time after a heart

transplant. Of these 184 patients, 71 were still alive at the end of the study; thus for each

of these patients, Xi occurs at some point after the study, resulting in 71 right censored

observations.

NPMLE and Asymptotic Properties: The likelihood function for F0 based on right

censored data (1.16) is given in Kaplan and Meier (1958). [22]. The nonparametric maximum

likelihood estimator (NPMLE) F̂n for F0 is the function that maximizes this likelihood func-

tion. For right censored data, the product-limit estimator of Kaplan and Meier (1958) [22] is

the unique NPMLE for F0. For right censored data, Wellner (1982) [43] showed the asymp-

totic efficiency of the NPMLE F̂n. In Gill (1983) [14], it is shown that
√
n(F̂n − F0) weakly
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converges to a centered Gaussian process under certain conditions. Also, it has been shown

by Stute and Wang (1993) [40] that ||F̂n − F0||
a.s.−−→ 0, as n→∞.

1.3.2 Doubly Censored Data

The observed data for the random sample (1.15) are Oi = (Vi, δi), 1 ≤ i ≤ n, with

Vi =



Xi if Di < Xi ≤ Ci, δi = 1

Ci if Xi > Ci, δi = 2

Di if Xi ≤ Di, δi = 3,

(1.17)

where Ci is a right censoring variable, Di is a left censoring variable, and (Ci, Di) is indepen-

dent of Xi with P{Di < Ci} = 1. As mentioned previously in Subsection 1.2.3, the results in

Cai and Cheng (2004) [5] only apply to a special case of above doubly censored data (1.17).

Specifically, Cai and Cheng (2004) [5] impose the restrictive assumption that the left and

right censoring variables are always known, but in (1.17) the censoring variables are not al-

ways observed and the left and right censoring variables Ci and Di are never observed at the

same time. Thus, up to now, there have been no works on the Accelerated Life Model (1.5)

for doubly censored data (1.17).

Data Example 2. African Infant Precocity. A classic example of doubly censored data,

discussed in Turnbull (1974) [42], comes from Leiderman et al. (1973) [26], and a brief

description of this data set is as follows. In Leiderman et al. (1973) [26], a study was done in

a community in Kenya to establish norms for infant development as compared to the known
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standards in the United States and the United Kingdom. The data set contains information

on 65 children born between July 1 and December 31, 1969. The infants were tested at

approximately 2-month intervals, beginning in January, 1970, to see when they learned a

certain task. In this example, Xi is the age of an infant when he/she can first perform the

certain task. Some infants were able to perform the task at the first test; thus for these

infants, Xi occurs at some point before the first test, resulting in left censored observations.

On the other hand, some infants were never able to perform the task during the study; thus

for these infants, Xi occurs at some point after the final test, resulting in right censored

observations. For the remaining infants, the first time that they performed the task was

observed, resulting in uncensored observations.

Data Example 3. Effectiveness of Screening Mammograms. In Ren and Peer (2000), [37]

a doubly censored data set is studied, and a brief description of this data set is as follows.

The study is based on the serial screening mammograms obtained in Njmegen, The Nether-

lands, 1981-1990. There were 289 patients in the study. In this example, Xi is the age at

which the tumor can be detected for the ith patient when biennial mammographic screening

is the only detection method. Of these patients, 45 had tumors observed at their first screen-

ing mammogram; thus for each of these patients, Xi occurs at some point before the study

began, resulting in 45 left censored observations. On the other hand, 132 of the patients

never had a tumor observed; thus for these patients, Xi occurs at some point after the study

ended, resulting in 132 right censored observations. For the remaining 112 patients, a tumor

was detected during the serial screening mammogram, i.e., the tumor was observed at one
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mammogram at time t = Xi, but was not observed in the previous mammogram. Thus for

each of these patients, Xi was actually observed, resulting in 112 uncensored observations.

NPMLE and Asymptotic Properties: The likelihood function for F0 based on doubly

censored data (1.17) is given in Mykland and Ren (1996). [29] The NPMLE F̂ for F0 based on

the data (1.17) is the distribution function that maximizes the likelihood function. Mykland

and Ren (1996) [29] give necessary and sufficient conditions for a self-consistent estimator

for F0 to be the NPMLE. In Turnbull (1974), [42] an iterative procedure was proposed to

obtain an estimate for the survival function when the data is grouped. For the general case,

Mykland and Ren (1996) [29] give an algorithm to compute the NPMLE F̂n. It has been

shown by Chang and Yang (1987) [6] and Gu and Zhang (1993) [17] that ||F̂n−F0||
a.s.−−→ 0, as

n→∞. It is also shown in Gu and Zhang (1993) [17] that for doubly censored data (1.17),

that
√
n(F̂n − F0) weakly converges to a centered Gaussian process under certain regularity

conditions.

1.3.3 Interval Censored Data

Case 1: The observed data for the random sample (1.15) are Oi = (Ci, δi), 1 ≤ i ≤ n, with

δi = I(Xi ≤ Ci); (1.18)
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Case 2: The observed data for the random sample (1.15) are Oi = (Ci, Di, δi), 1 ≤ i ≤ n,

with

δi =



1 if Di < Xi ≤ Ci

2 if Xi > Ci,

3 if Xi ≤ Di,

(1.19)

where Ci and Di are independent of Xi and satisfy P{Di < Ci} = 1.

Data Example 4. HIV Data. The following interval censored case 2 data (1.19) were en-

countered in AIDS reserach; see De Gruttola and Lagakos (1989),[10] and see Ren (2003) [34]

for a detailed discussion, while a brief description is as follows.

In De Gruttola and Lagakos (1989), [10] an interval censored data set on

X = {time of HIV infection}

from AIDS research was presented. Since 1978, 262 people with Type A and B haemophilia

have been treated at Hôpital Kremlin Bicêtre and Hôpital Cœur des Yvelines in France. For

each individual, the only information available on X is X ∈ [XL, XR], while it is assigned

XL = 1 if the individual was found to be infected with HIV on his/her first test for infection.

Along with the retrospective tests for evidence of HIV infection, observations XL and XR

were determined by the time at which the blood samples were stored. In this data set, time

is measured in 6-month intervals, with X = 1 denoting July 1978, and one of the interests

of the study is the distribution of X.
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Kim, De Gruttola and Lagakos (1993) [23] gave the updated version of this data set for

104 individuals in the heavily treated group, i.e., patients who received at least 1000 µg/kg

of blood factor for at least one year between 1982 and 1985. This data set always satisfies

XL < XR, and it is associated with interval censored case 2 data (1.19) in the following way:

1 < XL < XR <∞ ⇐⇒ δ = 1, D = XL, C = XR

1 < XL < XR =∞ ⇐⇒ δ = 2, D = XL, C =∞

1 = XL < XR <∞ ⇐⇒ δ = 3, D = 1, C = XR.

Note that due to the way in which XL and XR were determined, we may assume that

[XL, XR] is independent of X, because the available blood samples were stored purely from

haemophilia treatment which had nothing to do with HIV infection Thus, this is a real data

example for interval censored case 2 data (1.19).

NPMLE and Asymptotic Properties: The likelihood functions for F0 based on

interval censored data (1.18) and (1.19) are given in Groeneboom and Wellner (1992), [15]

respectively. The NPMLE F̂n for F0 in each case is the distribution function that maximizes

the respective likelihood function. It is shown in Groeneboom and Wellner (1992) [15] that

we have ||F̂n − F0||
a.s.−−→ 0, as n→∞. For interval censored case 1 data (1.18), we have

n1/3[F̂n(t0)− F0(t0)]
D−→ C0Z, as n→∞ (1.20)

where C0 is a constant and Z =argmin(W (T ) + t2) with W as the two sided Brownian

motion starting from 0. For interval censored case 2 data (1.19), Wellner (1995) [44] and

Groeneboom (1996) [16] showed that (1.20) holds under certain regularity conditions. But
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the general convergence rate for F̂n with interval censored case 2 data (1.19) is not known

up to now.

1.3.4 Partly Interval Censored Data

Case 1: The observed data for the random sample (1.15) are

Oi =


Xi if 1 ≤ i ≤ k0

(Ci, δi), if k0 + 1 ≤ i ≤ n,

(1.21)

where δi = I{Xi ≤ Ci} and Ci is independent of Xi.

General Case: The observed data for the random sample (1.15) are

Oi =


Xi if 1 ≤ i ≤ k0

(C, δi), if k0 + 1 ≤ i ≤ n,

(1.22)

where for N potential examination times C1 < · · · < CN , letting C0 = 0 and CN+1 = ∞,

we have C = (C1, . . . , CN) and δi = (δ
(1)
i , . . . , δ

(N+1)
i ) with δ

(j)
i = 1, if Cj−1 < Xi ≤ Cj; 0,

elsewhere. This means that for intervals (0, C1], (C1, C2], . . . , (CN ,∞), we know which one

of them Xi falls into.

Data Example 5. Framingham Heart Disease Study. Odell et al. (1992) [30] discuss a

partly interval censored data set originally found in Feinleib et al. (1975), [13] and a brief

description of the data set is as follows. The original Framingham Heart Study began in

1949 to determine the genetic effects of risk factors. In the follow up study on the children of
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the original patients we have 2,568 female children. Each of these individuals was observed

at the Framingham Heart Study facilities in Boston, Massachusetts at three different exam

times to determine the first occurrence of subcategory angina pectoris (AP) in coronary heart

disease. In this example, Xi is the time that the ith patient acquires AP, and C1 < C2 < C3

denote the three exam times. Also, C0 = 0 and C4 =∞. For 8 of the patients, Xi is actually

observed. None of the 2,568 patients had acquired AP by the first exam; thus Xi did not

occur in the interval [0, C1) for any patients in the study. Of the 2,568 patients, 16 patients

had not acquired AP by the second exam; thus for these patients, Xi occurs in the interval

[C1, C2). Of the 2,568 patients, 13 patients had not acquired AP by the second exam, but

had acquired AP by the third exam; thus for these patients, Xi occurs in the interval [C2, C3).

The remaining 2,531 had not acquired AP by the third exam; thus for these patients, Xi

occurs in the interval [C3,∞), resulting in 2,531 right censored observations.

NPMLE and Asymptotic Properties: The likelihood functions for F0 based on the

partly interval censored data (1.21) and (1.22) are given in Huang (1999), [18] respectively.

The NPMLE F̂n for F0 for each case is the distribution function maximizing the respective

likelihood function. Huang (1999) [18] showed that for partly interval censored data (1.21)

and (1.22), ||F̂n − F0||
a.s.−−→ 0, as n → ∞, and that

√
n(F̂n − F0) weakly converges to a

centered Gaussian process under certain conditions.
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1.4 Likelihood

In this section, we briefly review the likelihood methods. Specifically, Subsection 1.4.1 re-

views parametric likelihood; Subsection 1.4.2 reviews empirical likelihood (Owen,1988); [31];

and Subsection 1.4.3 discusses weighted empirical likelihood (Ren, 2001). [33]

1.4.1 Parametric Likelihood

Consider a random sample X1, X2, . . . , Xn from a distribution with density function f(x; θ),

where θ ∈ Rq is an unknown parameter. Heuristically, the likelihood function is the prob-

ability that we observe what we observed. This translates into the following parametric

likelihood function L(θ | X) for parameter θ:

L(θ | X) = P{Observe what we observed} =
n∏
i=1

f(Xi | θ), (1.23)

where X = (X1, X2, . . . , Xn). If we can maximize L(θ | X) with respect to θ over the entire

parameter space Θ, then the value θ̂, at which L(θ | X) attains its maximum, is called the

maximum likelihood estimator (MLE) for θ.

Consider the following hypothesis test:

H0 : θ = θ0 vs. H1 : θ 6= θ0. (1.24)

Then, the likelihood ratio test statistic is given by:

R(X; θ) =
supH0

L(η | X)

supL(η; X)
= sup

η=θ0

L(η | X)

L(θ̂ | X)
=

L(θ0 | X)

L(θ̂ | X)
, (1.25)
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and the rejection region for (1.24) is:

{X | R(X; θ) ≤ c} (1.26)

for some predetermined constant 0 < c < 1. With the level of significance 0 < α < 1, we

can determine c in the following way:

α = P{Type I error} = P{reject H0 | H0} = P{R(X; θ) ≤ c | θ = θ0}

= P{R(X; θ0) ≤ c} = P{−2 logR(X; θ0) ≥ −2 log c} ≈ P{χ2
1 ≥ −2 log c},

(1.27)

because Wilks (1938) [45] showed that the limiting distribution of −2 logR(X; θ0) is a chi-

squared distribution.

The acceptance region for (1.24) is

{X | R(X; θ) ≥ c}. (1.28)

Let

λ(η) =
L(η | X)

L(θ̂ | X)
. (1.29)

Then, a (1− α)100% confidence interval for θ = θ0 is given by:

C(X) = {η | λ(η) ≥ c}. (1.30)

When using parametric likelihood methods based on (1.23), we assume that the data come

from a known distribution up to an unknown parameter. The main problem with this method

is that in practical situations, we may not know anything about the underlying distribution.

Assuming an incorrect underlying distribution can lead to incorrect statistical conclusions.

This is especially a concern in survival analysis where sample sizes are generally small or
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moderate, thus usually there is no sufficient information to justify the parametric assumption

on the underlying distribution. Hence, a nonparametric approach is not only desirable, but is

essential in survival analysis. In the next subsection, we outline the nonparametric likelihood

method, called the empirical likelihood method, which provides flexibility through the use of

a likelihood function that requires no parametric assumption on the underlying distribution.

1.4.2 Empirical Likelihood

Consider a random sample X1, X2, . . . Xn from an unknown distribution function F0. In

Owen (1988) [31], the empirical likelihood function or nonparametric likelihood function is

given as:

L(F ) =
n∏
i=1

[F (Xi)− F (Xi−)], (1.31)

where F is any distribution function. It is shown that the distribution function that maxi-

mizes (1.31) over all distribution functions F is the empirical distribution function, denoted

by

Fn(x) =
1

n

n∑
i=1

I{Xi ≤ x}, −∞ < x <∞. (1.32)

Next, we review the empirical likelihood method which is analogous to the parametric like-

lihood method described in the previous section.

Assume that a parameter θF0 of F0 can be expressed as θF0 = T (F0), where T (·) is a

statistical functional. Analogous to (1.24), we consider the following hypothesis test:

H0 : θF0 = θ0 vs. H1 : θF0 6= θ0. (1.33)
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Then, the empirical likelihood ratio test statistic for (1.33) analogous to (1.25) is given by:

R(X |F0) =
supF∈H0

L(F )

supF L(F )
= sup

T (F )=θ0

L(F )

L(Fn)
, (1.34)

where Fn is given in (1.32) and the rejection region analogous to (1.26) is:

{X | R(X |F0) ≤ c} (1.35)

for some predetermined constant 0 < c < 1. With the level of significance 0 < α < 1,

analogous to (1.27), we can determine c in the following way:

α = P{Type I error} = P{reject H0 | H0} = P{R(X |F0) ≤ c | T (F0) = θ0}

= P{R0 ≤ c} = P{−2 logR0 ≥ −2 log c} ≈ P{χ2
1 ≥ −2 log c},

(1.36)

where under H0 in (1.33)

R0 = R(X |F0), when T (F0) = θ0, (1.37)

because Owen (1988) [31] showed that, usually, −2 logR0 has a limiting chi-square distribu-

tion under the null hypothesis.

The acceptance region for (1.33) analogous to (1.28) is:

{X | R(X |F0) ≥ c}. (1.38)

Similar to (1.25) and (1.29), let

λ(F ) =
L(F )

L(Fn)
. (1.39)

It can be shown that when T (F ) is continuous, a (1−α)100% confidence region for θF0 = θ0

analogous to (1.29)−(1.30) is given by

C(X) =

{
θ
∣∣∣ sup
T (F )=θ

λ(F ) ≥ c

}
= {θ = T (F ) |λ(F ) ≥ c} . (1.40)

24



In the special case where the parameter of interest is the mean of F0, i.e.,

θF0 = T (F0) =

∫
xdF0(x), (1.41)

Owen (1988) [31] showed that the confidence region (1.40) is an interval. Specifically, Owen

(1988) [31] established the following theorem.

Theorem 1 (Owen, 1988) Assume F0 is non-degenerate with
∫
|x|3 dF0 < ∞. For

0 < c < 1, and for θ0 =
∫
xdF0(x), we have in (1.40)

C(X) = [XL,n, XU,n], (1.42)

where XL,n = infF
∫
x dF and XU,n = supF

∫
x dF , and we have

lim
n→∞

P (XL,n ≤ θ0 ≤ XU,n) = lim
n→∞

P (−2 logR0 ≤ −2 log c) = P (χ2
1 ≤ −2 log c), (1.43)

where χ2
1 is a random variable with a chi-squared distribution with 1 degree of freedom.

Generally, the empirical likelihood method approach is preferred over the parametric ap-

proach in areas such as survival analysis, where, as mentioned earlier, information is limited

and we have no sufficient evidence to assume a parametric form for the underlying distri-

bution. Another desirable property is that empirical likelihood based confidence intervals

have been shown to have good coverage levels when compared to parametric approaches

Owen (2001) [32]. Much work has been done using the methods of empirical likelihood.

In particular, the NPMLE F̂n for each type of censored data mentioned in Section 1.3 was
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obtained through writing out the empirical likelihood function and maximizing it. For each

type of censored data, the asymptotic properties of the NPMLE F̂n have been studied and

summarized in Section 1.3. However, one drawback of the empirical likelihood method is

that usually it is difficult to incorporate a model assumption into the formulation of the

likelihood function along with censored data. Recently, Ren (2001) [33] developed a new

nonparametric method for censored data, called weighted empirical likelihood, which was

successfully used to solve several difficult statistical inference problems with different types

of censored data mentioned in Section 1.3. Based on these results, we use the weighted

empirical likelihood method for the problem of Two Sample Accelerated Life Model (1.5)

described in Sections 1.2−1.3. In the next subsection, we outline and discuss the weighted

empirical likelihood method.

1.4.3 Weighted Empirical Likelihood

In Ren (2001) [33], the weighted empirical likelihood function is given in a simple form that is

applicable to various types of censored data in a unified form. This simple form is convenient

and more easily to be used for incorporating the model assumptions into the formulation of

the likelihood function for censored data. Next, we describe the weighted empirical likelihood

function and its applications.
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As explained in Ren (2008a) [35], the weighted empirical likelihood method can be un-

derstood as follows. As in equation (1.15) from Section 1.3, we consider a random sample

X1, . . . , Xn (1.44)

from an unknown distribution function F0. Recall from Section 1.3, in practice we often do

not observe the complete sample (1.44), instead we observe various types of censored data

denoted by:

O1, . . . ,On, (1.45)

which is the observed censored sample for sample (1.44) and the data are possibly one of

the types of censored data mentioned in Section 1.3; i.e., the Oi’s in (1.45) could be right

censored (1.16), doubly censored (1.17), interval censored Case 1 or Case 2 (1.18)−(1.19), or

partly interval censored (1.21)−(1.22), etc. As reviewed in Section 1.3, the NPMLE F̂n for

F0 has been studied for censored data (1.16)−(1.22), and it is shown that from the observed

censored data (1.45), there exist m distinct points

W1 < W2 < . . . < Wm, (1.46)

along with p̂
j
> 0, 1 ≤ j ≤ m such that the NPMLE F̂n can be expressed as:

F̂n(x) =
m∑
i=1

p̂
i
I{Wi ≤ x}, (1.47)

for right censored data (Kaplan and Meier, 1958), [22] doubly censored data (Mykland

and Ren, 1996), [29] interval censored data Case 1 and Case 2 (Groenboom and Wellner,

1992), [15] and partly interval censored data (Huang, 1999). [18] Specifically, for right cen-
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sored data (1.16), the Wi’s are the noncensored observations and m is the number of un-

censored observations (Kaplan and Meier, 1958). [22] For the more complicated types of

censored data (1.17)−(1.22) discussed in Section 1.3, the Wi’s and p̂
i
’s are obtained through

computing the NPMLE F̂n. Since, as reviewed in Section 1.3, the NPMLE F̂n is shown to be

a strong uniform consistent estimator for the underlying distribution F0 under certain regu-

larity conditions for the types of censored data aforementioned, we expect a random sample

X∗1 , . . . , X
∗
n taken from F̂n to behave asymptotically the same as random sample (1.44). Let

F ∗n denote the empirical distribution function (1.32) of the random sample X∗1 , . . . , X
∗
n, then

we have F̂n ≈ F ∗n , in turn, we have
n∏
i=1

P{X = Xi} ≈
n∏
i=1

P{X∗ = X∗i }

=
m∏
j=1

(
P{X∗ = Wj}

)n[F ∗n(Wj)−F ∗n(Wj−)]

≈
m∏
j=1

(
P{X∗ = Wj}

)n[F̂n(Wj)−F̂n(Wj−)]

=
m∏
j=1

(
P{X∗ = Wj}

)np̂j
.

(1.48)

Hence, the weighted empirical likelihood function for F0 is given by

L̂(F ) =
m∏
i=1

[F (Wi)− F (Wi−)]np̂i , (1.49)

where F is any distribution function and F̂n maximizes L̂(F ). Thus, the weighted empirical

likelihood function L̂(F ) may viewed as the asymptotic version of the empirical likelihood

function L(F ) in (1.31) for censored data (Ren, 2008a). [35]

Note that when there is no censoring, it is shown (Ren, 2001) [33] that the weighted empir-

ical likelihood function (1.49) coincides with the empirical likelihood function (1.31) given in
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Owen (1988) .[31] Also, from the formulation of (1.49), the censoring mechanism is reflected

in L̂(F ) via the probability mass of the NPMLE F̂n for F0. Since the simple form of (1.49)

depends only on the Wi’s and p̂
i
’s obtained from the NPMLE F̂n, the weighted empirical

likelihood method is easily applicable in a unified way to all of the types of censored data

discussed in Section 1.3. In particular, once the Wi’s and p̂
i
’s are computed from the NPMLE

F̂n with the specific type of censored data, the routines for computing weighted empirical

likelihood based confidence intervals, test statistics, etc., are the same for the different types

of censored data; thus weighted empirical likelihood simplifies the likelihood based com-

putational problems for statistical inference problems with various types of censored data.

Another advantage of the weighted empirical likelihood method based on (1.49) is that the

theoretical and asymptotic results often can be obtained in a unified way via the statistical

functional of the NPMLE F̂n for different types of censored data. Moreover, the simple form

of weighted empirical likelihood function (1.49) also makes it easier to incorporate model

assumptions into the formulation of the likelihood function for complicated types of cen-

sored data, such as doubly censored data (1.17), interval censored Case 1 or Case 2 data

(1.18)−(1.19), and partly interval censored data (1.21)−(1.22). For these complicated types

of censored data, the resulting empirical likelihood function is usually very complicated and

mathematically intractable.

It has been shown that the weighted empirical likelihood method can be used to solve

difficult statistical inference problems with the various types of censored data mentioned

above. For instance, in her recent work, Ren (2008a) [35] uses the weighted empirical likeli-
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hood method to solve problems involving two sample semi-parametric models with various

types of censored data, and Ren (2008b) [36] uses the weighted empirical likelihood method

to construct smoothed weighted empirical likelihood ratio confidence intervals for quantiles

with censored data. Based on the success of these recent works, since the problem of Two-

Sample Accelerated Life Model (1.5) with complicated types of censored data described in

Section 1.2, though very difficult on its own, is slightly related to the problems considered

in Ren (2008a), [35] we apply the weighted empirical likelihood method to this problem in

this research. It is through this weighted empirical likelihood method that we are able to

provide solutions to the very difficult problems considered in this dissertation.

1.5 Centered Gaussian Processes

A Gaussian Process [39] G is a specific type of stochastic process such that the joint density

function of any subset of the random variables is itself a multivariate Gaussian random

variable. When each of these random variables have mean zero, we call this a centered

Gaussian Process.

1.6 Summary of Main Results

In this research, we use the Weighted Empirical Likelihood approach to study the Accelerated

Life Model with all of the types of censored data mentioned in Section 1.3. We outline
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and compare inferences on the the scale parameter and the treatment using both Normal-

Based Approximation and the weighted empirical likelihood approach. In particular, we

obtain point estimates, hypothesis tests, and construct confidence intervals for both the

scale parameter and the treatment mean. We also develop goodness-of-fit tests and provide

simulation results to illustrate the effectiveness of our inferences.

This dissertation is organized as follows: Chapter 1 gives an introduction to the model

and methods being utilized.

Chapter 2 introduces estimation for the Accelerated Life Model and discusses goodness of

fit. In particular, in Section 2.2 we construct a Treatment Distribution Estimator for FX in

(1.4), we establish asymptotic properties for this estimator in Proposition 2.2 and establish

rates of convergence for the estimator in Theorem 2.3 and Theorem 2.4 for right censored

data (1.16), doubly censored data (1.17), and partly interval censored data (1.21)−(1.22).

At the end of Section 2.3 we provide an approach for computing the p-value for a goodness

of fit test statistic for right censored data (1.16), doubly censored data (1.17), and partly

interval censored data (1.21)−(1.22).

Chapter 3 discusses estimation of the scale parameter in the Accelerated Life Model

(1.5). In particular, in Section 3.1 we construct a naive estimator for γ
0

in (1.5), establish

asymptotic properties for this estimator in Theorem 3.1 and construct normal based tests

and confidence intervals for γ
0

based on this estimator. In Section 3.2 we discuss a rank

based estimator and construct normal based tests and confidence intervals for γ
0

based on

this estimator. We also provide an algorithm at the end of Section 3.2 for computing the rank
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based estimator in practice which is applicable to all of the complicated types of censored

data discussed in this dissertation. In Section 3.3 we discuss Weighted Empirical Likelihood

Ratio based confidence intervals for γ
0

based on the rank based estimator.

Chapter 4 discusses estimation for the mean µX of the treatment group in (1.4). In

particular, we construct point estimators for µX in Section 4.1. We construct normal based

tests and confidence intervals for µX based on these point estimators in Section 4.2 and

provide algorithms for computing these confidence intervals. In Section 4.3 we construct

Weighted Empirical Likelihood Ratio based confidence intervals for µX based on the rank

based point estimator and provide algorithms for computing these intervals in practice.

Chapter 5 discusses the bootstrap method and provides simulation results on the work

described above.

Finally, Chapter 6 summarizes the research that has been done and provides direction

for further development of the ideas in this dissertation.
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CHAPTER 2
ESTIMATION AND GOODNESS OF FIT

In this chapter, we study the estimation problem for the treatment distribution function

FX in (1.5) and goodness-of-fit tests for the Two-Sample Accelerated Life Model (1.5). The

methods developed in this chapter are applicable in a unified way to those different types

of censored data described in Section 1.3. The organization of this chapter is as follows.

Section 2.1 derives the weighted empirical likelihood function for (γ
0
, FX) under the Two-

Sample Accelerated Life Model (1.5). Section 2.2 obtains an estimator for the treatment

distribution function FX in (1.5). Section 2.3 constructs goodness-of-fit tests for the Two-

Sample Accelerated Life Model.

2.1 Weighted Empirical Likelihood for Accelerated Life Model

Consider the Two-Sample Accelerated Life Model (1.5), and consider that the two samples

in (1.4) are censored data, denoted by:

OX
1 , . . . ,O

X
n1

is the observed sample for treatment sample X1, . . . , Xn1

OY
1 , . . . ,O

Y
n0

is the observed sample for control sample Y1, . . . , Yn0 ,

(2.1)

where these two observed samples are independent, and the OX
i ’s or OY

i ’s are possibly one of

the types of censored data in Section 1.3, i.e., right censored data (1.16), doubly censored data

(1.17), interval censored data Case 1 and Case 2 (1.18)−(1.19), or partly interval censored

data (1.21)−(1.22). Note that it is not necessary for the two samples to be subject to the
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same type of censoring; for instance, the data from the treatment group could be doubly

censored and the data from the control group could be right censored.

Let Ĝ and Ĥ be the NPMLE for FX and FY in (1.4) based on observed first and second

censored data (2.1), respectively. As reviewed in Section 1.4.3, we know that there exist

distinct points WX
1 < · · · < WX

m1
and W Y

1 < · · · < W Y
m0

as in (1.46) along with p̂X
i
> 0 and

p̂Y
j
> 0 such that Ĝ and Ĥ can be expressed as

Ĝ(x) =

m1∑
i=1

p̂X
i
I{WX

i ≤ x} and Ĥ(x) =

m0∑
j=1

p̂Y
j
I{W Y

j ≤ x}, (2.2)

respectively, for various types of censored data aforementioned. Note that Ĝ and Ĥ in

(2.2) are not necessarily proper distribution functions. For this dissertation, we will adjust

both Ĝ and Ĥ to proper distribution functions by setting Ĝ = 1 and Ĥ = 1 at the largest

observations of the corresponding observed data sets in (2.1). Note that this adjustment

implies that in (2.2) we have

m1∑
i=1

p̂X
i

= 1 and

m0∑
j=1

p̂Y
j

= 1, (2.3)

and that this kind of adjustment of the NPMLE is a generally adopted convention for

censored data (Efron, 1967; Miller, 1976).[11] [27]

To derive the weighted empirical likelihood function for (γ
0
, FX) in Two-Sample Ac-

celerated Life Model (1.5) based on observed two-sample censored data (2.1), we apply

weighted empirical likelihood function (1.49) as follows. First, via Ĝ and Ĥ in (2.2), we

apply weighted empirical likelihood function (1.49) to the two observed censored samples in

(2.1), respectively. Since the two observed samples in (2.1) are independent, the weighted

34



empirical likelihood function based on the combined two samples in (2.1) is the product of

the two weighted empirical likelihood functions. Thus, from the model assumption on the

Two-Sample Accelerated Life Model (1.5)−(1.6) and from assumptions (2.2)−(2.3) for the

NPMLE Ĝ and Ĥ, we can write this weighted empirical likelihood function as follows:(∏m1

i=1[FX(WX
i )− FX(WX

i −)]n1p̂Xi

)(∏m0

j=1[FY (W Y
j )− FY (W Y

j −)]
n0p̂Yj

)
(1.6)
=

(∏m1

i=1[FX(WX
i )− FX(WX

i −)]n1p̂Xi

)(∏m0

j=1

[
γ

0
[FX(γ

0
W Y
j )− FX(γ

0
W Y
j −)]

]n0p̂Yj

)
= γ

n0
∑m0
j=1 p̂

Y
j

0

(∏m1

i=1[FX(WX
i )− FX(WX

i −)]n1p̂Xi

)(∏m0

j=1[FX(γ
0
W Y
j )− FX(γ

0
W Y
j −)]

n0p̂Yj

)
(2.3)
= γn0

0

(∏m1

i=1[FX(WX
i )− FX(WX

i −)]n1p̂Xi

)(∏m0

j=1[FX(γ
0
W Y
j )− FX(γ

0
W Y
j −)]

n0p̂Yj

)
.

Hence, the weighted empirical likelihood function for (γ
0
, FX) in Two-Sample Accelerated

Life Model (1.5) based on observed data (2.1) is given by

L(γ, F ) = γn0

( m1∏
i=1

[F (WX
i )− F (WX

i −)]n1p̂Xi

)( m0∏
j=1

[F (γW Y
j )− F (γW Y

j −)]
n0p̂Yj

)
, (2.4)

where F is any distribution function.

To simplify (2.4) for computational purpose, we introduce the following notations:

Wγ = (W γ
1 , . . . ,W

γ
m) = (WX

1 , . . . ,W
X
m1
, γW Y

1 , . . . , γW
Y
m0

),

(w1, . . . , wm) = (ρ
1
p̂X

1
, . . . , ρ

1
p̂Xm1

, ρ
0
p̂Y

1
, . . . , ρ

0
p̂Ym0

),

(2.5)

where m = m0 +m1, n = n0 +n1, ρ
1

= n1/n, and ρ
0

= n0/n. From (2.5), weighted empirical

likelihood function (2.4) can be rewritten as

L(γ, F ) = γn0

m∏
i=1

pnwi
i
, (2.6)

where γ is any positive real number, and F is given by

F (x) =
m∑
i=1

p
i
I{W γ

i ≤ x}, for p
i

= F (W γ
i )− F (W γ

i −), 1 ≤ i ≤ m. (2.7)
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Hence, the weighted empirical likelihood based MLE (γ̂, F̂n) for (γ
0
, FX) is the solution that

maximizes L(γ, F ) in (2.6).

2.2 Treatment Distribution Estimator

In this section, based on weighted empirical likelihood function (2.6) we derive an estimator

for the treatment distribution FX in Two-Sample Accelerated Life Model (1.5) with observed

two-sample censored data (2.1), and we establish some asymptotic properties of this esti-

mator for FX . Note that the weighted empirical likelihood based MLE (WELMLE) (γ̂, F̂n)

for (γ
0
, FX) is rather difficult to obtain, which requires additional restrictions and will be

discussed later in Chapter 3. Here, we consider a simpler approach to obtain an estimator

for FX . The idea of this approach is that first, for a fixed γ > 0, we maximize L(γ, F ) over

F , then we replace γ with a consistent estimator for γ
0
.

For a fixed γ > 0, to maximize L(γ, F ) in (2.6) over all F given by (2.7), we need to

solve the following optimization problem:
Maximize L(γ, F ) = γn0

m∏
i=1

pnwi
i
,

subject to: 0 ≤ p
i
≤ 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1.

(2.8)

Note that if one of the p
i
’s above is 0, then L(γ, F ) = 0. Also, note that if one of the p

i
’s is

1, then constraint
∑m

i=1 pi = 1 implies that all other p
i
’s equal 0, thus L(γ, F ) = 0. Hence,
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optimization problem (2.8) is equivalent to
Maximize L(γ, F ) = γn0

m∏
i=1

pnwi
i
,

subject to: 0 < p
i
< 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1.

(2.9)

To solve optimization problem (2.9), we note that for all 1 ≤ i ≤ m, we have

logL(γ, F ) = n0 log γ + n
m∑
i=1

wi log p
i
. (2.10)

Thus, to find a candidate for the solution using the Lagrange Multipliers, we denote

H (p, λ) = n

m∑
i=1

wi log p
i

+ λ

[
1−

m∑
i=1

p
i

]
, (2.11)

then, we have for 1 ≤ i ≤ m,

0 =
∂H

∂p
i

=
nwi
p
i

− λ ⇒ p
i

= nwi/λ. (2.12)

From (2.12) and constraint
∑m

i=1 pi = 1 in (2.9), we have

1 =
m∑
i=1

p
i

=
m∑
i=1

nwi
λ
, (2.13)

which, along with (2.3) and (2.5), implies that

λ =
m∑
i=1

nwi = n

[
m1∑
i=1

wi +
m∑

i=m1+1

wi

]
= n

[
ρ

1

m1∑
i=1

p̂X
i

+ ρ
0

m0∑
j=1

p̂Y
j

]
= n[ρ

1
+ ρ

0
] = n[(n1 + n0)/n] = n1 + n0 = n.

(2.14)

Thus, from (2.12) and (2.14) a candidate for the solution of (2.9) is given by

p̂ = (w1, . . . , wm). (2.15)

The following lemma shows that this candidate is the unique solution for (2.9).

Lemma 2.1. For any fixed γ > 0, p̂ in (2.15) is the unique solution of (2.9).
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Proof We prove that p̂ = (p̂
1
, . . . , p̂m), given by (2.15), is the unique solution to (2.9) by

verifying the Karush-Kuhn-Tucker (KKT) conditions in Theorem 4.3.8 of Bazarra, Sherali,

and Shetty (1993; page 164) [1] as follows. From (2.11), let

h(p) = n
m∑
i=1

wi log p
i

(2.16)

and let

A =

{
p

∣∣∣∣ 0 < p
i
< 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1

}
. (2.17)

The Hessian matrix (Bazarra, Sherali, and Shetty, 1993; page 90) [1] of h(p) given in (2.16),

exists on the set A and is given by

∂2h(p)

∂p
i
∂p

j

=


−nwi
p2
i

if i = j

0 if i 6= j.

=⇒ Hh = diag

{
−nw1

p2
1

, . . . ,−nwm
p2
m

}
. (2.18)

Since Hh is a diagonal matrix with diagonal elements −nwi
p2
i

< 0, 1 ≤ i ≤ m, for p ∈ A,

Hh is negative definite on A. Note that A is a convex set because for any p, q ∈ A and

r = λp + (1− λ)q with any λ ∈ (0, 1) we have

0 < ri = λp
i

+ (1− λ)q
i
< λ+ (1− λ) = 1, 1 ≤ i ≤ m;

m∑
i=1

ri = λ
m∑
i=1

p
i

+ (1− λ)
m∑
i=1

q
i

= λ+ (1− λ) = 1.
(2.19)

Thus, function h(p) is strictly concave on A by Theorem 3.3.8 of Bazarra, Sherali, and Shetty

(1993; page 92 and page 79). [1] To verify the conditions in Theorem 4.3.8 of Bazarra, Sherali,

and Shetty (1993; page 164), [1] note that Xp = {p | 0 < p
i
< 1 , 1 ≤ i ≤ m} is a nonempty

open set in Rm, and that h(p) and h1(p) = 1−
∑m

i=1 pi are both from Rm → R. Since p̂ ∈ Xp
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satisfies constraint h1(p̂) = 0, p̂ is a feasible solution for (2.9) (Bazarra, Sherali, and Shetty,

1993; page 99). [1] Also, note that with v1 = n, the KKT conditions are satisfied because

∇h(p̂) + v1∇h1(p̂) =


nw1/p̂1

...

nwm/p̂m

+ n


−1

...

−1

 = 0.

Since h(p) is concave and differentiable on A, h(p) is psuedoconcave on A (Bazarra, Sherali,

and Shetty, 1993; page 116). [1] Since h1 is a linear function, which means that h1 is both

quasiconvex and quasiconcave on A (Bazarra, Sherali, and Shetty, 1993; pages 116, 118), [1]

by Theorems 3.4.2 and 4.3.8 of Bazarra, Sherali, and Shetty (1993; page 101, 164), [1] p̂ in

(2.15) is the unique global optimal solution to (2.9), which completes the proof.

To write the solution of (2.9) in form of (2.7) for any fixed γ > 0, we plug p̂ in (2.15)

into F (x) in (2.7) and obtain:

F̂n(x; γ) =
m∑
i=1

p̂
i
I{W γ

i ≤ x}

=

m1∑
i=1

wiI{W γ
i ≤ x}+

m∑
i=m1+1

wiI{W γ
i ≤ x}

= ρ
1

m1∑
i=1

p̂X
i
I{WX

i ≤ x}+ ρ
0

m0∑
j=1

p̂Y
j
I{γW Y

j ≤ x}

= ρ
1

m1∑
i=1

p̂X
i
I{WX

i ≤ x}+ ρ
0

m0∑
j=1

p̂Y
j
I{W Y

j ≤ x/γ}

= ρ
1
Ĝ(x) + ρ

0
Ĥ(x/γ).

(2.20)

Thus, F̂n(x; γ
0
) is the WELMLE for treatment distribution FX in (1.4)−(1.5) if γ

0
is known.

This means that in practice, if there exists a consistent estimator η̂ for γ
0
, an estimator for
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FX is given by

F̂n(x; η̂) = ρ
1
Ĝ(x) + ρ

0
Ĥ(x/η̂). (2.21)

The following proposition establishes some asymptotic properties on this estimator F̂n(x; η̂).

Proposition 2.2. Assume Two-Sample Accelerated Life Model (1.5) holds and assume

(AS1) ρ
0

= n0

n
and ρ

1
= n1

n
remain the same as n→∞;

(AS2)
√
n (η̂ − γ

0
)

D−→ N(0, σ2
0), as n→∞;

(AS3)
√
n1(Ĝ− FX)

w⇒ GX, as n1 →∞;

(AS4)
√
n0(Ĥ − FY )

w⇒ GY, as n0 →∞;

where GX and GY are centered Gaussian processes. Then,
√
n (F̂n( · ; η̂) − FX) weakly con-

verges to a centered Gaussian process as n→∞.

Remark 2.1. On Assumptions of Proposition 2.2. For assumption (AS2), it is not dif-

ficult to construct an estimator η̂ for γ
0

satisfying (AS2), which will be studied for all the

types of censored data (1.16)−(1.19) and (1.21)−(1.22) considered in this dissertation. For

assumptions (AS3)−(AS4), as reviewed in Section 1.3, under certain regularity conditions

these assumptions hold for right censored data (Gill, 1983) [14], doubly censored data (Gu

and Zhang, 1993) [17], and partly interval censored data (Huang, 1999) [18]. For interval

censored Case 1 or Case 2 data (1.18)−(1.19), assumptions (AS3)−(AS4) do not hold be-

cause, as reviewed in Section 1.3, Wellner (1995) [44] and Groenboom (1996) [16] showed

that the convergence rate of the NPMLE for interval censored Case 1 data (1.18) is n1/3, not

√
n; see (1.20) in Section 1.3.3. Up to now, the convergence rate of the NPMLE for interval

censored Case 2 data (1.19) is not known.
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Proof From (1.6), (2.5) and (2.21), we have:

√
n
[
F̂n(x; η̂)− FX(x)

]
=
√
n
[
ρ

1
Ĝ(x) + ρ

0
Ĥ(x/η̂)− FX(x)

]
=
√
n
[
ρ

1
Ĝ(x)− ρ

1
FX(x) + ρ

0
Ĥ(x/η̂)− ρ

0
FX(x)

]
=

√
n1

ρ
1

ρ
1

[
Ĝ(x)− FX(x)

]
+

√
n0

ρ
0

ρ
0

[
Ĥ(x/η̂)− FX(x)

]
=
√
ρ

1

√
n1

[
Ĝ(x)− FX(x)

]
+
√
ρ

0

√
n0

[
Ĥ(x/η̂)− FY (x/γ

0
)
]
. (2.22)

Note that
√
ρ

1

√
n1

[
Ĝ(x)− FX(x)

]
w→ GX. Considering the second part of 2.22, we have:

√
ρ

0

√
n0

[
Ĥ(x/η̂)− FY (x/γ

0
)
]

=
√
ρ

0

√
n0

[
Ĥ(x/η̂)− FY (x/η̂) + FY (x/η̂)− FY (x/γ

0
)
]

=
√
ρ

0

√
n0

[
Ĥ(x/η̂)− FY (x/η̂))

]
+
√
ρ

0

√
n0

[
FY (x/η̂)− FY (x/γ

0
)
]

(2.23)

where
√
ρ

0

√
n0

[
Ĥ(x/η̂)− FY (x/η̂))

]
w→ GY (η̂) and

√
ρ

0

√
n0

[
FY (x/η̂)− FY (x/γ

0
)
]
→ QX,

as n→∞, where QX is a centered Gaussian process. Thus, from (AS1)−(AS4), (2.22)−(2.23)

and the fact that a linear combination of centered Gaussian processes is also a centered

Gaussian process (Iranpour and Chacon, 1988; pg. 166), [20], we have that as n → ∞,

√
n
[
F̂n(x; η̂)− FX(x)

]
converges weakly to a centered Gaussian process, which completes

the proof.
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2.3 Goodness of Fit for Accelerated Life Model

Consider the following goodness-of-fit hypothesis test:

H0 : Two-Sample Accelerated Life Model (1.5) holds

H1 : Two-Sample Accelerated Life Model (1.5) does not hold

(2.24)

To construct a test statistic for (2.24), note that there are two ways to estimate FX in

Two-Sample Accelerated Life Model (1.5) based on censored data (2.1). One estimate is the

NPMLE Ĝ for FX given in (2.2), which is calculated using only the first sample in (2.1).

Another estimate F̂n( · ; η̂) given in (2.21) is calculated using two samples in (2.1) under H0

in (2.24). Since F̂n( · ; η̂) is derived under model assumption (1.5) and Ĝ is not, the difference

between F̂n( · ; η̂) and Ĝ measures the validity of the model assumption, and a large difference

between F̂n( · ; η̂) and Ĝ indicates that H0 in (2.24) does not hold.

The following theorems establish the convergence rate for F̂n( · ; η̂) for right censored data

(1.16), doubly censored data (1.17), and partly interval censored data (1.21)−(1.22).

Theorem 2.3. Under the assumptions of Proposition 2.2, we have
√
n (F̂n( · ; η̂) − Ĝ)

weakly converges to a centered Gaussian process as n→∞.

Proof From (2.5), we have:

√
n
[
F̂n(x; η̂)− Ĝ(x)

]
=
√
n
[
F̂n(x; η̂)− FX(x)− Ĝ(x) + FX(x)

]
=
√
n
[
F̂n(x; η̂)− FX(x)

]
−
√

n

n1

√
n1

[
Ĝ(x)− FX(x)

]
=
√
n
[
F̂n(x; η̂)− FX(x)

]
− 1
√
ρ

1

√
n1

[
Ĝ(x)− FX(x)

]
.
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Then, from Proposition 2.2 and assumptions (AS1) and (AS3) in Proposition 2.2, since

the linear combination of centered Gaussian processes is also a centered Gaussian process

(Iranpour and Chacon, 1988; pg. 166), [20] we have that as n → ∞,
√
n
[
F̂n(x; η̂)− Ĝ(x)

]
converges weakly to a centered Gaussian process, which completes the proof.

Theorem 2.4. Assume (AS1)−(AS4) in Proposition 2.2. When Two-Sample Accelerated

Life Model assumption (1.5) does not hold, we have
√
n ‖ F̂n( · ; η̂)− Ĝ ‖ P→∞, as n→∞.

Proof Assume that Two-Sample Accelerated Life Model (1.5) does not hold. From (2.5)

and (2.21), we have:

‖ F̂n(·; η̂)− Ĝ ‖ = sup
0≤t<∞

∣∣∣F̂n(t; η̂)− Ĝ(t)
∣∣∣ = sup

0≤t<∞

∣∣∣ρ1
Ĝ(t) + ρ

0
Ĥ(t/η̂)− Ĝ(t)

∣∣∣
= sup

0≤t<∞

∣∣∣ρ0
Ĥ(t/η̂) + (ρ

1
− 1)Ĝ(t)

∣∣∣ = sup
0≤t<∞

∣∣∣ρ0
Ĥ(t/η̂)− ρ

0
Ĝ(t)

∣∣∣
= ρ

0
sup

0≤t<∞

∣∣∣Ĥ(t/η̂)− Ĝ(t)
∣∣∣ = oa.s.(1) + ρ

1
‖FY (t/η̂)− FX(t)‖

We also have η̂
P→ γ

0
which implies that FY (t/η̂) → FY (t/γ0) provided that d.f. FY is

uniformly continuous. Note that if Two-Sample Accelerated Life Model (1.5) does not hold,

from (1.6), we have FY (t/γ
0
) 6= FX(t) and thus, ‖ F̂n(·; η̂)− Ĝ ‖→ δ > 0, as n→∞, which

completes this proof.

From Remark 1 and Theorems 2.3 and 2.4, for right censored data, doubly censored

data, and partly interval censored data, we may use the following Kolmogorov-Smirnov type

statistic (Serfling, 1980; page 63) [38] as the test statistic for goodness-of-fit test (2.24):

Tn =
√
n ‖ F̂n( · ; η̂)− Ĝ ‖ =

√
n sup

0≤t<∞

∣∣∣ F̂n( t ; η̂)− Ĝ(t)
∣∣∣ . (2.25)
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In practice, we need to compute the p-value for test statistic Tn in (2.25) based on

observed data (2.1) for a given level of significance 0 < α < 1. One possible approach is

given below.

Boostrap procedure for computing the p-value for test statistic Tn in (2.25):

Step 1. Generate bootstrap samples

OX∗

1 , . . . ,OX∗

n1
and OY ∗

1 , . . . ,OY ∗

n0
, (2.26)

with replacement, from the two observed censored samples in (2.1), respectively.

Step 2. Compute Ĝ∗ and Ĥ∗ based on (2.2) and compute η̂∗ using the bootstrap sam-

ples (2.26).

Step 3. Compute F̂ ∗n( · ; η̂∗) based on (2.21) as follows:

F̂ ∗n(x; η̂∗) = ρ
1
Ĝ∗(x) + ρ

0
Ĥ∗(x/η̂∗). (2.27)

Step 4. Calculate the bootstrap estimate of test statistic (2.25) as follows:

T ∗n =
√
n max

x

∣∣∣(F̂ ∗n(x; η̂∗)− Ĝ∗(x)
)
−
(
F̂n(x; η̂)− Ĝ(x)

)∣∣∣ . (2.28)

Step 5. Repeat Steps 1−4 B times to obtain T ∗n(b), b = 1, . . . B, where B is usually chosen

to be 1000. The bootstrap estimate for the p-value of goodness-of-fit test (2.24)

is given by

p̂∗ =
#{T ∗n(b) ≥ Tn}

B
. (2.29)
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Remark 2.2. Note that if η̂ is determined by Ĝ and Ĥ (see Chapter 3), i.e., η̂ = η(Ĝ, Ĥ),

then F̂n(t; η̂)− Ĝ(t) in (2.25) is a functional of Ĝ and Ĥ because

F̂n(t; η̂)− Ĝ(t)
(2.21)
= ρ

1
Ĝ(t) + ρ

0
Ĥ(t/η(Ĝ, Ĥ))− Ĝ(t) ≡ τ(Ĝ, Ĥ). (2.30)

Thus, under Two-Sample Accelerated Life Model (1.5), assuming γ
0

= η(FX , FY ), we have

τ(FX , FY ) = ρ
1
FX(t) + ρ

0
FY (t/η(FX , FY ))− FX(t)

= ρ
1
FX(t) + ρ

0
FY (t/γ

0
)− FX(t)

(1.6)
= ρ

1
FX(t) + ρ

0
FX(t)− FX(t)

(2.5)
≡ 0.

Hence, under model assumption (1.5), goodness-of-fit test statistic Tn in (2.25) can be ex-

pressed by:

Tn =
√
n ‖ F̂n( · ; η̂)− Ĝ ‖ =

√
n ‖ τ(Ĝ, Ĥ)− τ(FX , FY ) ‖ .

By the bootstrap principle given in Bickel and Ren (2001), [3] the distribution of Tn under

H0 in (2.24) can be consistently estimated by

T ∗n =
√
n ‖ τ(Ĝ∗, Ĥ∗)− τ(Ĝ, Ĥ) ‖

(2.30)
=

√
n max

x

∣∣∣(ρ1
Ĝ∗(x) + ρ

0
Ĥ∗(x/η̂∗)− Ĝ∗(x)

)
−
(
F̂n(x; η̂)− Ĝ(x)

)∣∣∣
(2.27)
=

√
n max

x

∣∣∣(F̂ ∗n(x; η̂∗)− Ĝ∗(x)
)
−
(
F̂n(x; η̂)− Ĝ(x)

)∣∣∣ ,
where η̂∗ = η(Ĝ∗, Ĥ∗), which gives (2.28). Such bootstrap method consistency relies on

the n out of n bootstrap consistency for
√
n1(Ĝ − FX) estimated by

√
n1(Ĝ∗ − Ĝ) and

for
√
n0(Ĥ − FY ) estimated by

√
n0(Ĥ∗ − Ĥ), respectively, which has been established

for right censored data (1.16), doubly censored data (1.17), and partly interval censored
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data (1.21)−(1.22) by Bickel and Ren (1996) [2] and Huang (1999);[18] see the review in

Section 1.3. Furthermore, it is worth noting that from Remark 1, we know that assumptions

(AS3)−(AS4) do not hold for interval censored Case 1 or Case 2 data (1.18)−(1.19), but we

still can check the validity of model assumption (1.5) graphically by comparing the curves

of F̂n( · ; η̂) and Ĝ; i.e., if these curves differ obviously, then H0 in (2.24) does not hold.
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CHAPTER 3
ESTIMATION AND TESTS ON SCALE PARAMETER

In this chapter, we construct hypothesis tests and estimates for the scale parameter γ
0

in

Two-Sample Accelerated Life Model (1.5) based on a naive estimator, a rank-based estima-

tor and the Weighted Empirical Likelihood Method, respectively. The methods developed

in this chapter are applicable in a unified way to those different types of censored data de-

scribed in Section 1.3. The organization of this chapter is as follows. Section 3.1 gives a

naive estimator γ̂
E

for γ
0
, based on which tests and confidence intervals are constructed.

Section 3.2 considers a rank-based estimator γ̂
R

for γ
0
, based on which tests and confidence

intervals are constructed. Section 3.3 constructs Weighted Empirical Likelihood Ratio based

tests and confidence intervals for γ
0
.

3.1 Naive Estimator

The idea of the construction of our naive estimator γ̂
E

for γ
0

is as follows. Note that taking

the expected value of both sides of equation (1.5), we obtain E(Y ) = E(X/γ
0
), and by

denoting µX = E(X) and µY = E(Y ), we obtain

µY =
µX
γ

0

⇐⇒ γ
0

=
µX
µY

. (3.1)

Thus, a naive estimator for γ
0

is naturally given by:

γ̂
E
≡ µ̂X
µ̂Y

, (3.2)
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where µ̂X and µ̂Y are estimators for µX and µY , respectively; for instance, we have

µ̂X =

∫
x dĜ(x) =

m1∑
i=1

p̂X
i
WX
i and µ̂Y =

∫
x dĤ(x) =

m0∑
i=1

p̂Y
i
W Y
i (3.3)

with Ĝ and Ĥ given in (2.2). The following theorem establishes asymptotic properties of γ̂
E

in (3.2).

Theorem 3.1. Assume γ
0

= µX/µY and assume

(AS5)
√
n1(µ̂X − µX)

D→ N(0, σ2
1), as n1 →∞;

(AS6)
√
n0(µ̂Y − µY )

D→ N(0, σ2
2), as n0 →∞.

Then,
√
n (γ̂

E
− γ

0
)
D→ N(0, σ2

E), as n→∞, where σ2
E > 0.

Remark 3.1. Assumptions of Theorem 3.1. Note that since the data in survival analysis

are lifetimes, we always have µY > 0, hence γ
0

= µX/µY is well-defined. Also note that

assumption γ
0

= µX/µY in Theorem 3.1 does not require Two-Sample Accelerated Life

Model assumption (1.5). For assumption (AS5), note that as n1 →∞,

√
n1(µ̂X − µX) =

√
n1

[∫
x dĜ(x)−

∫
x dFX(x)

]
=
√
n1

[∫ (
1− Ĝ(x)

)
dx−

∫ (
1− FX(x)

)
dx

]
= −

∫ √
n1

(
Ĝ(x)− FX(x)

)
dx

D→
∫

G0(x) dx, (3.4)

because as reviewed in Section 1.3,
√
n1(Ĝ − FX) weakly converges to a centered Gaus-

sian process G0 for right censored data (1.16), doubly censored data (1.17), and partly

interval censored data (1.21)−(1.22). From properties of centered Gaussian processes (see

Iranpour and Chacon (1988) pages 154-157 [20]), we know that
∫
G0(x) dx is a zero-mean
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normal random variable N(0, σ2
1) for some 0 < σ2

1 <∞. Similarly, assumption (AS6) holds

for the aforementioned types of censored data. For interval censored data Case 1 and Case

2 (1.18)−(1.19), by a different argument, assumptions (AS5)−(AS6) also hold under certain

conditions; see Huang and Wellner (1995) [19].

Proof From (2.5) and (3.2) we have

√
n (γ̂

E
− γ

0
) =

√
n

(
µ̂X
µ̂Y
− µX
µY

)
=
√
n

(
µ̂XµY − µ̂Y µX

µ̂Y µY

)
=
√
n

(
µ̂XµY − µXµY + µXµY − µ̂Y µX

µ̂Y µY

)
=
√
n

(
µY (µ̂X − µX)

µ̂Y µY

)
+
√
n

(
µX(µY − µ̂Y )

µ̂Y µY

)
=
√
n

(
µ̂X − µX

µ̂Y

)
+
√
n

(
γ

0
(µY − µ̂Y )

µ̂Y

)
=

√
n1

ρ
1

(
µ̂X − µX

µ̂Y

)
+

√
n0

ρ
0

(
γ

0
(µY − µ̂Y )

µ̂Y

)
=

1

µ̂Y

[
1
√
ρ

1

·
√
n1 (µ̂X − µX) +

γ
0√
ρ

0

·
√
n0 (µY − µ̂Y )

]
D→ N(0, σ2

E),

(3.5)

by (AS5) and (AS6), which completes the proof.

In the next two subsections, we construct tests and confidence intervals for γ
0

based on

naive estimator γ̂
E

given in (3.2).

3.1.1 Hypothesis Tests based on Normal Approximation

Recall from Section 1.2 that γ
0
> 1 in Two-Sample Accelerated Life Model (1.5) indicates

that the treatment is effective. Hence, the following hypothesis test (which is analogous to
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hypothesis test (1.7)) is often useful to assess the effectiveness of the treatment:

H0 : γ
0

= 1 vs. H1 : γ
0
> 1. (3.6)

Based on point estimator γ̂
E

for γ
0
, in practice we reject H0 in (3.6) if γ̂

E
≥ c for some

predetermined c > 0. For level of significance 0 < α < 1, we may determine c in practice via

Theorem 3.1 as follows:

α = P{Type I Error} = P{reject H0 | H0 is true} = P
{
γ̂
E
≥ c | γ

0
= 1
}

= P

{
γ̂
E
− γ

0

σE/
√
n
≥

c− γ
0

σE/
√
n

∣∣∣∣ γ0
= 1

}
≈ P

{
Z ≥ c− 1

σE/
√
n

}
,

(3.7)

which gives

c− 1

σE/
√
n

= zα ⇒ c = 1 +
σE√
n
zα, (3.8)

where Z is the standard normal random variable, and zα is the (1−α)100th percentile of Z.

In practice, we need to estimate the unknown parameter σE in (3.8). One possible ap-

proach is the following bootstrap procedure (Efron and Tibshirani, 1993) [12], which is valid

for all of the types of censored data considered in this dissertation because of Theorem 3.1.

Boostrap procedure for estimating σE in (3.8)

Step 1. Generate bootstrap samples OX∗
1 , . . . ,OX∗

n1
and OY ∗

1 , . . . ,OY ∗
n0

as in (2.26).

Step 2. Compute Ĝ∗ and Ĥ∗ based on (2.2) using the bootstrap samples (2.26).

Step 3. Compute µ̂∗X =
∫
x dĜ∗(x), µ̂∗Y =

∫
x dĤ∗(x), and γ̂∗

E
= µ̂∗X/µ̂

∗
Y .
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Step 4. Repeat Steps 1−3 B times to obtain γ̂∗
E

(b), b = 1, . . . B, where B is usually chosen

to be 1000. The bootstrap estimate for σE in (3.8) is given by

ŝeγ̂
E

=

 B∑
b=1

(
γ̂∗
E

(b)− 1
B

∑B
i=1 γ̂

∗
E

(i)
)2

B − 1


1/2

. (3.9)

3.1.2 Confidence Intervals based on Normal Approximation

A (1 − α)100% confidence interval for γ
0

based on point estimator γ̂
E

is constructed as

follows. From Theorem 3.1, we have

1− α = P
{
|Z| ≤ zα/2

}
≈ P

{
−zα/2 ≤

γ̂
E
− γ

0

σE/
√
n
≤ zα/2

}
= P

{
γ̂
E
− σE√

n
zα/2 ≤ γ

0
≤ γ̂

E
+
σE√
n
zα/2

}
.

(3.10)

Thus, an approximated (1− α)100% confidence interval for γ
0

based on γ̂
E

is given by

γ̂
E
± σE√

n
zα/2, (3.11)

where σE can be estimated by the above bootstrap procedure in (3.9), which gives

γ̂
E
±
ŝeγ̂

E√
n
zα/2. (3.12)

Some simulation results on this are presented in Chapter 5.
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3.2 Rank-Based Estimator

In this section, we discuss a rank-based estimator γ̂
R

for γ
0

in Two-Sample Accelerated

Life Model (1.5), construct hypothesis tests and confidence intervals analogous to those

constructed in Section 3.1, and discuss computation of γ̂
R

.

A rank-based estimator for γ
0

is given as the solution of the following estimating equation:

2
m∑
i=1

Ĝ(W γ
i )p

i
= 1, (3.13)

where Ĝ is given in (2.2), and W γ
i ’s and p

i
’s are given in (2.5)−(2.7). Since it is shown in

Section 2.2 that F̂n( · ; γ) given by (2.15)−(2.20) maximizes the weighted empirical likelihood

function L(γ, F ) in (2.6) for any fixed γ, we plug F̂n( · ; γ) into (3.13), i.e., p
i

= wi, to obtain

the following estimating equation:

g(γ) = g(γ; Ĝ, Ĥ) ≡
m∑
i=1

(
Ĝ(W γ

i )− 1

2

)
wi ≡̇ 0, (3.14)

where “≡̇” means that the solution of equation (3.14) is the value of γ where g(γ) is closest

to 0. Thus, our rank-based estimator γ̂
R

for γ
0

is given by the solution of (3.14). Note that

the use of “≡̇” in (3.14) is necessary because it is shown later in Section 3.2.3 that g(γ) is

a piecewise step-function, hence equation g(γ) = 0 may not have an exact solution. Also in

Section 3.2.3, we discuss additional properties of g(γ) and computation of γ̂
R

.

Remark 3.2. Rank-based estimating equations (3.13)−(3.14). Note that the rank-based

estimating equation given in (3.13)−(3.14) is applicable to all types of censored data consid-

ered in this dissertation, because Ĝ and Ĥ in (2.2), and W γ
i ’s and wi’s in (2.5) are general

notations for any types of censored data.
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Ren (2008) [35] establishes the following theorem on asymptotic properties of γ̂
R

.

Theorem 3.2. Assume (AS5)−(AS6). Then,
√
n (γ̂

R
− γ

0
)

D→ N(0, σ2
R), as n → ∞,

where σ2
R > 0.

In the next two subsections, we construct tests and confidence intervals for γ
0

based on

rank-based estimator γ̂
R

.

3.2.1 Hypothesis Tests

Consider hypothesis test (3.6) from Section 3.1.1. Based on point estimator γ̂
R

for γ
0
, in

practice we reject H0 in (3.6) if γ̂
R
≥ c for some predetermined c > 0. For level of significance

0 < α < 1, we may determine c in practice via Theorem 3.2 as follows:

α = P{Type I Error} = P{reject H0 | H0 is true} = P
{
γ̂
R
≥ c | γ

0
= 1
}

= P

{
γ̂
R
− γ

0

σR/
√
n
≥

c− γ
0

σR/
√
n

∣∣∣∣ γ0
= 1

}
≈ P

{
Z ≥ c− 1

σR/
√
n

}
,

(3.15)

which gives

c− 1

σR/
√
n

= zα ⇒ c = 1 +
σR√
n
zα. (3.16)

In practice, we need to estimate the unknown parameter σR in (3.16). One possible ap-

proach is the following bootstrap procedure (Efron and Tibshirani, 1993) [12], which is valid

for all of the types of censored data considered in this dissertation because of Theorem 3.2.
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Boostrap procedure for estimating σR in (3.16)

Step 1. Generate bootstrap samples OX∗
1 , . . . ,OX∗

n1
and OY ∗

1 , . . . ,OY ∗
n0

as in (2.26).

Step 2. Compute Ĝ∗ and Ĥ∗ based on (2.2) using the bootstrap samples (2.26).

Step 3. Compute γ̂∗
R

, which is the solution of g(γ; Ĝ∗, Ĥ∗) ≡̇ 0 as in (3.14).

Step 4. Repeat Steps 1−3 B times to obtain γ̂∗
R

(b), b = 1, . . . B, where B is usually chosen

to be 1000. The bootstrap estimate for the standard error is given by

ŝeγ̂
R

=

 B∑
b=1

(
γ̂∗
R

(b)− 1
B

∑B
i=1 γ̂

∗
R

(i)
)2

B − 1


1/2

. (3.17)

3.2.2 Confidence Intervals

A (1 − α)100% confidence interval for γ
0

based on point estimator γ̂
R

is constructed as

follows. From Theorem 3.2, we have

1− α = P
{
|Z| ≤ zα/2

}
≈ P

{
−zα/2 ≤

γ̂
R
− γ

0

σR/
√
n
≤ zα/2

}
= P

{
γ̂
R
− σR√

n
zα/2 ≤ γ

0
≤ γ̂

R
+
σR√
n
zα/2

}
.

(3.18)

Thus, an approximated (1− α)100% confidence interval for γ
0

based on γ̂
R

is given by

γ̂
R
± σR√

n
zα/2, (3.19)

where σR can be estimated by the above bootstrap procedure in (3.17), which gives

γ̂
R
±
ŝeγ̂

R√
n
zα/2. (3.20)

Some simulation results on this are presented in Chapter 5.
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3.2.3 Computability

In this subsection, we study the existence and uniqueness of the solution of g(γ) ≡̇ 0 in

(3.14), and provide an algorithm for computing γ̂
R
.

Some simulation results on γ̂
R

are given in Chapter 5.

Existence and Uniqueness of Solution to g(γ) ≡̇ 0 : To show the existence of a solution,

we study the monotonic properties of g(γ), and determine the behavior of g(γ) at the end

points of the interval (0,∞).

First, we simplify g(γ) in (3.14) as follows:

g(γ) =
m∑
i=1

Ĝ(W γ
i )wi −

1

2

= ρ
1

m1∑
i=1

Ĝ(WX
i )p̂X

i
+ ρ

0

m0∑
i=1

Ĝ(γW Y
i )p̂Y

i
− 1

2
(3.21)

= ρ
1

m1∑
i=1

[
p̂X
i

m1∑
j=1

p̂X
j
I{WX

j ≤ WX
i }

]
+ ρ

0

m0∑
i=1

[
p̂Y
i

m1∑
j=1

p̂X
j
I{WX

j ≤ γW Y
i }

]
− 1

2

= ρ
1

m1∑
i=1

[
p̂X
i

i∑
j=1

p̂X
j

]
+ ρ

0

m0∑
i=1

[
p̂Y
i

m1∑
j=1

p̂X
j
I{WX

j ≤ γW Y
i }

]
− 1

2

= ρ
0

m0∑
i=1

[
p̂Y
i

m1∑
j=1

p̂X
j
I{(WX

j /W
Y
i ) ≤ γ}

]
+Q (3.22)

= Q+ ρ
0

m0∑
i=1

m1∑
j=1

p̂Y
i
p̂X
j
I{(WX

j /W
Y
i ) ≤ γ}, (3.23)

where

Q = ρ
1

m1∑
i=1

[
p̂X
i

i∑
j=1

p̂X
j

]
− 1

2
. (3.24)

Note that Q is a constant (not depending on γ) and is calculated based on Ĝ in (2.2) via

the treatment sample in (2.1). Thus, we have the following lemma on g(γ) by (3.23).
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Lemma 3.3. The function g(γ) in (3.14) has the following properties:

(i) g(γ) is a piecewise step-function;

(ii) g(γ) is non-decreasing;

(iii) g(γ) is right-continuous.

To study the values of g(0) and g(∞), recall that, as reviewed in Section 1.3, for different

types of censored data (1.16)−(1.19) and (1.21)−(1.22) considered in this dissertation, we

know that under suitable conditions, we have ‖ Ĝ − FX ‖
a.s.−−→ 0, as n → ∞. Thus, since

Ĝ(0) = 0, in (3.21) we have Ĝ(γW Y
i ) = 0 for γ = 0 and

g(0) = ρ
1

∫ ∞
0

Ĝ(x) dĜ(x)− 1

2
= ρ

1

[∫ ∞
0

FX(x) dFX(x) + op(1)

]
− 1

2

= ρ
1

∫ 1

0

x dx+ op(1)− 1

2
=

ρ
1
− 1

2
+ op(1),

where op(1) converges to 0 in probability as n→∞. In turn, we have that as n→∞,

g(0) < 0 in probability, (3.25)

because 0 < ρ
1
< 1. Similarly, since Ĝ(∞) = 1, in (3.21) we have Ĝ(γW Y

i ) = 1 for γ = ∞

and by (2.3),

g(∞) = ρ
1

∫ ∞
0

Ĝ(x) dĜ(x) + ρ
0
− 1

2
= ρ

1

[∫ ∞
0

FX(x) dFX(x) + op(1)

]
+ ρ

0
− 1

2

= ρ
1

∫ 1

0

x dx+ ρ
0
− 1

2
+ op(1) =

ρ
1

2
+ ρ

0
− 1

2
+ op(1) =

1− ρ
1

2
+ op(1).

Thus, we have that as n→∞,

g(∞) > 0 in probability. (3.26)
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Note that by definition, g(γ) ≡̇ 0 in (3.14) always has a solution. But, by Lemma 3.3 (i),

g(γ) = 0 does not necessarily have a solution. However, Lemma 3.3 and (3.25)−(3.26) imply

that in probability, all scenarios for g(γ) are as shown in Figures 3.1−3.3.

Figure 3.1: Scenarios for g(λ): |g(γL)| < |g(γ′)|

Figure 3.2: Scenarios for g(λ): |g(γL)| > |g(γ′)|
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Figure 3.3: Scenarios for g(λ): |g(γL)| = |g(γ′)|

From Figures 3.1−3.3, clearly we see that there exists a unique value γ′ such that in proba-

bility

g(γ′−) < 0 and g(γ′) ≥ 0, (3.27)

which means that the solution of g(γ) ≡̇ 0 is not unique.

Throughout this dissertation, we define the solution γ̂
R

of (3.14) as follows:

γ̂
R

=



γ
L

+ γ′

2
if |g(γ

L
)| < |g(γ′)|

γ′ + γ
U

2
if |g(γ

L
)| > |g(γ′)|

γ
L

+ γ
U

2
if |g(γ

L
)| = |g(γ′)|,

(3.28)

where

γ
L

= inf
{
γ
∣∣ g(γ) = g(γ′−)

}
and γ

U
= sup

{
γ
∣∣ g(γ) = g(γ′)

}
. (3.29)
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Algorithm for Computing γ̂
R

: In order to compute γ̂
R

in (3.28), we need to find γ′ in

(3.27). Note that from Lemma 3.3 (ii) and (3.25)−(3.26), γ′ can be found using a bisec-

tion algorithm, but the resulting solution is an estimated one. On the other hand, from

Lemma 3.3 (i)−(ii) and (3.23), we know that g(γ) only has jumps at the following points:

SJP =

{
WX
i

W Y
j

∣∣∣∣ i = 1, . . . ,m1, j = 1, . . . ,m0

}
. (3.30)

Thus, let

U1 < U2 < . . . < UN−1 < UN (3.31)

denote all distinct points in SJP in ascending order, then from Figures 3.1−3.3, we know that

γ′ is one of the values among U1, . . . , UN . Hence, to find γ′, we need to find point UN ′ = γ′

such that (3.27) holds. The following procedure outlines how to compute γ̂
R

in practice:

Bootstrap procedure for computing γ̂
R
:

Step 1. Obtain the values U1 < U2 < . . . < UN in (3.31);

Step 2. Find UN ′ such that (3.27) holds for UN ′ = γ′;

Step 3. Compute γ̂
R

by (3.28)−(3.86).

Remark 3.3. Note that this algorithm for computing γ̂
R

is applicable to all types of

censored data considered in this dissertation, because rank-based estimating equation (3.14)

is applicable to these different types of censored data; see Remark 3.2. Also, note that

the computational efficiency in Step 2 is essential in this algorithm. While there are many

different methods for finding γ′, the approach we used in this dissertation is based on the

idea of “bisection” and it performs well.
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3.3 Weighted Empirical Likelihood Ratio Tests and Confidence Intervals

Recall that in Section 2.2, it is mentioned that additional restrictions are required to obtain

the WELMLE (γ̂, F̂n) for (γ
0
, FX) in Two-Sample Accelerated Life Model (1.5). To see this,

consider the following natural optimization problem for the weighted empirical likelihood

function L(γ, F ) given by (2.6):


Maximize L(γ, F ) = γn0

m∏
i=1

pnwi
i

subject to: 0 ≤ p
i
≤ 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1; 0 < γ <∞.
(3.32)

For F (x) in (2.7), let Fm(x) =
∑m

i=1
1
m
I{W γ

i ≤ x}. Then, we have in (3.32):

L(γ, Fm) = γn0

(
1

m

)mnwi
→∞, as γ →∞,

which means that the solution of optimization problem (3.32) is ∞. This suggests that to

have a finite solution in (3.32), we need additional constraint on γ. So far in statistical

literature, Zhou (2005) [46] dealt with this issue by using a rank-based estimating equation

on γ for right censored data (1.16), which came from Jin, Lin, Wei and Ying (2003) [21].

However, Zhou’s estimating equation is not obviously applicable to the complicated types of

censored data considered in this dissertation. One possible constraint on γ in (3.32) is to let

γ = γ̂
E

, where γ̂
E

given in (3.2) is applicable to all types of censored data considered in this

dissertation. However, our studies show that this constraint results in a trivial solution and

leads to nowhere. Another possible constraint on γ in (3.32) is to let γ be the solution to

rank-based estimating equation (3.13), which, as discussed in Remark 3.2, is applicable to
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all types of censored data considered in this dissertation. The optimization problem (3.32)

with this rank-based estimating equation (3.13) is written as follows:
Maximize L(γ, F ) = γn0

m∏
i=1

pnwi
i

subject to: 0 ≤ p
i
≤ 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1; 2
m∑
i=1

Ĝ(W γ
i )p

i
= 1.

(3.33)

By the same argument used in (2.8)−(2.9), we know that for F given in (2.7), optimization

problem (3.33) is equivalent to:
Maximize L(γ, F ) = γn0

m∏
i=1

pnwi
i

subject to: 0 < p
i
< 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1; 2
m∑
i=1

Ĝ(W γ
i )p

i
= 1.

(3.34)

In the next two subsections, via (3.34) we construct Weighted Empirical Likelihood Ratio

based tests and confidence intervals for γ
0
.

3.3.1 Hypothesis Tests

Under Two-Sample Accelerated Life Model (1.5), we consider the following hypothesis test

for a given value γ
00
> 0, which is more general than that in (3.6):

H0 : γ
0

= γ
00

vs. H1 : γ
0
6= γ

00
. (3.35)

Under (3.34), the weighted empirical likelihood ratio test statistic for (3.35) analogous to

(1.34) is given by:

R(On) =
sup(γ,F )∈H0

L(γ, F )

sup(γ,F ) L(γ, F )
= sup

(γ,F )∈H0

L(γ, F )

L(γ̂, F̂n)
, (3.36)
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where the supremum is taken over (γ, F ) satisfying the constraints in (3.34), (γ̂, F̂n) is the

solution of (3.34), and by (2.1),

On =
{
OX

1 , . . . ,O
X
n1
,OY

1 , . . . ,O
Y
n0

}
. (3.37)

To compute (3.36), we consider the computation of the denominator and numerator of

(3.36), respectively, as follows.

Computation of the denominator in (3.36):

To solve (3.34), note that for any fixed γ > 0, F̂n( · ; γ) given by (2.15)−(2.20) maximizes

L(γ, F ) over all F satisfying the constraints in (2.9); see Section 2.2. Plugging F̂n( · ; γ), i.e.,

p
i

= wi, into the last constraint equation in (3.34), we obtain the following equation:

2
m∑
i=1

Ĝ(W γ
i )wi = 1 ⇐⇒ g(γ) = 0, (3.38)

where g(γ) is given in (3.14). From Section 3.2, we know that g(γ) = 0 does not necessarily

have a solution. Thus, for solution γ̂
R

of g(γ) ≡̇ 0 as in (3.14), the approximated solution

(γ̂, F̂n) to optimization problem (3.34) is given by:

γ̂ = γ̂
R

and F̂n = F̂n( · ; γ̂
R

). (3.39)

From (2.5)−(2.6), (2.15), (3.34) and (3.39), the denominator of (3.36) is given by

L(γ̂, F̂n) = γ̂n0

m∏
i=1

wnwii . (3.40)

Note that for the rest of this dissertation, we treat (γ̂, F̂n) in (3.39) as the WELMLE for

(γ
0
, FX) in Two-Sample Accelerated Life Model (1.5).
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Computation of the numerator in (3.36): Note that the numerator is given by the

solution of (3.34) under H0 in (3.35), i.e., we need to find the solution of

sup

{
L(γ

00
, F )

∣∣∣∣ 0 < p
i
< 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1; 2
m∑
i=1

Ĝ(Wi)pi = 1

}
, (3.41)

where p
i
’s are given by (2.7) with γ = γ

00
, and from (2.5) we use the following notation:

(W1, . . . ,Wm) = Wγ00 = (W
γ00
1 , . . . ,W

γ00
m ). (3.42)

To solve optimization problem (3.41), we note that for all 0 < p
i
< 1, we have

logL(γ
00
, F ) = n0 log γ

00
+ n

m∑
i=1

wi log p
i
.

Thus, to find a candidate for the solution using the Lagrange Multipliers, we denote

H (p, β, λ) =
∑

=

log
i

+ β

[
−
∑

=
i

]
+ λ

[
−
∑

=

Ĝ (W)
i

]
, (3.43)

then, we have for 1 ≤ i ≤ m,

0 =
∂H

∂p
i

=
nwi
p
i

− β − 2nλĜ(Wi) ⇒ p
i

=
nwi

β + 2nλĜ(Wi)
. (3.44)

From (2.3), (2.5), (3.44) and the last two constraints in (3.41), we have

βp
i

= nwi − 2nλĜ(Wi)pi ⇒ β
m∑
i=1

p
i

= n
m∑
i=1

wi − 2nλ
m∑
i=1

Ĝ(Wi)pi

⇒ β = n− n ⇒ β = n(1− λ).

(3.45)

Plugging β in (3.45) into (3.44), we have

p
i

=
nwi

n(1− λ) + 2nλĜ(Wi)
=

wi

1 + λ(2Ĝ(Wi)− 1)
, 1 ≤ i ≤ m. (3.46)
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From the constraints in (3.41) and p
i

in (3.46), we have

1 =
m∑
i=1

p
i

=
m∑
i=1

wi

1 + λ(2Ĝ(Wi)− 1)
(3.47)

and

1 = 2
m∑
i=1

Ĝ(Wi)pi =
m∑
i=1

2Ĝ(Wi)wi

1 + λ(2Ĝ(Wi)− 1)
(3.48)

which give

0 =
m∑
i=1

2Ĝ(Wi)wi

1 + λ(2Ĝ(Wi)− 1)
−

m∑
i=1

wi

1 + λ(2Ĝ(Wi)− 1)
=

m∑
i=1

wi(2Ĝ(Wi)− 1)

1 + λ(2Ĝ(Wi)− 1)
. (3.49)

Thus, from (3.46) and (3.49), a candidate for the solution of (3.41) is given by

p̂0

i
=

wi

1 + λ0(2Ĝ(Wi)− 1)
, 1 ≤ i ≤ m, (3.50)

with λ0 as a solution of equation (3.49). The following lemma shows that this candidate

(3.50) is the unique solution for (3.41).

Lemma 3.4. For optimization problem (3.41), the probability of the following events

tend to one as n→∞.

(i) Equation (3.49) has a unique solution on interval(
−1

2Ĝ(W(m))− 1
,

−1

2Ĝ(W(1))− 1

)
, (3.51)

where

W(1) = min{W1, . . . ,Wm} and W(m) = max{W1, . . . ,Wm}; (3.52)

(ii) p̂0 = (p̂0
1
, . . . , p̂0

m) in (3.50) is the unique solution of (3.41).
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Proof of (i) First, we show that

Ĝ(W(1)) <
1

2
< Ĝ(W(m)), in probability. (3.53)

As reviewed in Section 1.3, under certain regularity conditions we have ‖Ĝ− FX‖
a.s.→ 0 for

right censored data (1.16) [40], doubly censored data (1.17) [6] and [17], interval censored

Case 1 or Case 2 data (1.18)−(1.19) [15], and partly interval censored data (1.21)−(1.22)

[18], which implies that

‖Ĝ− FX‖
P−→ 0, as n→∞ (3.54)

for the aforementioned types of censored data. Also, from (2.2), we have Ĝ(WX
1 −) = 0 and

Ĝ(WX
m1

) = 1 and from (3.42), we have W(m) ≥ WX
m1

; in turn, we have

Ĝ(W(m)) ≥ Ĝ(WX
m1

) = 1 > 1/2,

because Ĝ is a non-decreasing function. We choose δ > 0 such that

0 < FX(mX − 2δ) ≤ FX(mX − δ) < FX(mX) = 1/2, (3.55)

where mX is the median of X, that is FX(mX) = 1/2. Since Ĝ(WX
1 − δ) = 0, we have

P{WX
1 ≥ mX − δ} = P{WX

1 − δ ≥ mX − 2δ} ≤ P{Ĝ(WX
1 − δ) ≥ Ĝ(mX − 2δ)}

= P{0 ≥ Ĝ(mX − 2δ)} → 0, as n→∞,
(3.56)

because, from (3.54),

Ĝ(mX − 2δ)
P−→ FX(mX − 2δ) > 0, as n→∞.
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Also, from (3.55), we choose ε > 0 such that FX(mX − δ) + ε < 1/2. Then, we have that for

∆ = Ĝ(mX − δ)− FX(mX − δ),

P
{
WX

1 < mX − δ
}
≤ P

{
Ĝ(WX

1 ) ≤ Ĝ(mX − δ)
}

= P
{
Ĝ(WX

1 ) ≤ FX(mX − δ) + ∆
}

= P
{
Ĝ(WX

1 ) ≤ FX(mX − δ) + ∆
∣∣ |∆| < ε

}
+ P

{
Ĝ(WX

1 ) ≤ FX(mX − δ) + ∆
∣∣ |∆| ≥ ε

}
≤ P

{
Ĝ(WX

1 ) ≤ FX(mX − δ) + ε
}

+ P
{∣∣∆∣∣ ≥ ε

}
≤ P

{
Ĝ(WX

1 ) < 1/2
}

+ P
{∣∣∆∣∣ ≥ ε

}
.

(3.57)

Since lim
n→∞

P{WX
1 < mX − δ} = 1, from (3.54) and (3.56)−(3.57), we have

lim
n→∞

P{Ĝ(WX
1 ) < 1/2} = 1. (3.58)

Thus, we have Ĝ(WX
1 ) < 1/2 in probability, and from (3.42), we have W(1) ≤ WX

1 . In turn,

in probability, Ĝ(W(1)) ≤ Ĝ(WX
1 ) < 1/2 because Ĝ is a non-decreasing function. Hence, we

have (3.53).

Note that from (3.53), we have 2Ĝ(W(1)) − 1 < 0 and 2Ĝ(W(m)) − 1 > 0 in probability.

For 2Ĝ(Wi)− 1 > 0, we have:

2Ĝ(W(1))− 1 ≤ 2Ĝ(Wi)− 1 ⇔ −(2Ĝ(W(1))− 1) ≥ −(2Ĝ(Wi)− 1)

⇔ − 1

2Ĝ(Wi)− 1
≥ − 1

2Ĝ(W(1))− 1
,
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and

2Ĝ(W(m))− 1 ≥ 2Ĝ(Wi)− 1 ⇔ −(2Ĝ(W(m))− 1) ≤ −(2Ĝ(Wi)− 1)

⇔ − 1

2Ĝ(Wi)− 1
≤ − 1

2Ĝ(W(m))− 1
.

Then, from (3.46), wi > 0, and requirement p
i
> 0 for all 1 ≤ i ≤ m, we require for all

1 ≤ i ≤ m,

1 + λ(2Ĝ(Wi)− 1) > 0 ⇔ λ(2Ĝ(Wi)− 1) > −1

⇔ max
1≤i≤m

2Ĝ(Wi)−1>0

−1

2Ĝ(Wi)− 1
< λ < min

1≤i≤m
2Ĝ(Wi)−1<0

−1

2Ĝ(Wi)− 1

⇔ −1

2Ĝ(W(m))− 1
< λ <

−1

2Ĝ(W(1))− 1
.

Thus, to have all p
i
> 0 in (3.46), we are only interested in a solution of (3.49) on interval

(3.51). From (3.49), we denote

g(λ) =
m∑
i=1

wi(2Ĝ(Wi)− 1)

1 + λ(2Ĝ(Wi)− 1)
= 0. (3.59)

Then, since wi > 0 for 1 ≤ i ≤ m, and (3.53), we have that for any λ in interval (3.51),

g′(λ) = −
m∑
i=1

wi(2Ĝ(Wi)− 1)2[
1 + λ(2Ĝ(Wi)− 1)

]2 < 0. (3.60)

which implies that g(λ) is strictly decreasing on (3.51). Letting λ1 = −1

2Ĝ(W(m))−1
and

λ2 = −1

2Ĝ(W(1))−1
, we have

lim
λ→λ+1

g(λ) = lim
λ→λ+1

m∑
i=1

wi(2Ĝ(Wi)− 1)

1 + λ(2Ĝ(Wi)− 1)
= lim

λ→λ+1

∑
2Ĝ(Wi)6=1

wi
λ+ 1

2Ĝ(Wi)−1

=
∑

2Ĝ(Wi)6=1

Wi=W(m)

lim
λ→λ+1

wi
λ+ 1

2Ĝ(W(m))−1

+
∑

2Ĝ(Wi)6=1

Wi 6=W(m)

lim
λ→λ+1

wi
λ+ 1

2Ĝ(Wi)−1

=∞+ C1 =∞,

(3.61)
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and

lim
λ→λ−2

g(λ) = lim
λ→λ−2

m∑
i=1

wi(2Ĝ(Wi)− 1)

1 + λ(2Ĝ(Wi)− 1)
= lim

λ→λ−2

∑
2Ĝ(Wi)6=1

wi
λ+ 1

2Ĝ(Wi)−1

=
∑

2Ĝ(Wi)6=1

Wi=W(1)

lim
λ→λ−2

wi
λ+ 1

2Ĝ(W(1))−1

+
∑

2Ĝ(Wi)6=1

Wi 6=W(1)

lim
λ→λ−2

wi
λ+ 1

2Ĝ(Wi)−1

= −∞+ C2 = −∞,

(3.62)

where C1 and C2 are finite constants. Thus, (3.49) has a unique solution on (3.51).

Proof of (ii) We prove that p̂0 = (p̂0
1
, . . . , p̂0

m), given by (3.50), is the unique solution to

(3.41) by verifying the KKT conditions in Theorem 4.3.8 of Bazarra, Sherali, and Shetty

(1993; page 164) as follows. From (3.41) and (3.43), we introduce the notations

F =

{
p

∣∣∣∣ 0 < p
i
< 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1; 2
m∑
i=1

Ĝ(Wi)pi = 1

}
, (3.63)

and

h(p) = n
m∑
i=1

wi log p
i
. (3.64)

The Hessian matrix (Bazarra, Sherali, and Shetty, 1993; page 90) of h(p) given in (3.64),

exists on set F and is given by

∂2h(p)

∂p
i
∂p

j

=


−nwi
p2
i

if i = j

0 if i 6= j.

=⇒ Hh = diag

{
−nw1

p2
1

, . . . ,−nwm
p2
m

}
. (3.65)

Since Hh is a diagonal matrix with diagonal elements −nwi
p2
i
< 0, 1 ≤ i ≤ m, for p ∈ F ,

Hh is negative definite on F . Note that F is a convex set because for any p, q ∈ F and
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r = λp + (1− λ)q with any λ ∈ (0, 1) we have

0 < ri = λp
i

+ (1− λ)q
i
< λ+ (1− λ) = 1, for all 1 ≤ i ≤ m;

m∑
i=1

ri = λ

m∑
i=1

p
i

+ (1− λ)
m∑
i=1

q
i

= λ+ (1− λ) = 1;

2
m∑
i=1

Ĝ(Wi)ri = λ

(
2

m∑
i=1

Ĝ(Wi)pi

)
+ (1− λ)

(
2

m∑
i=1

Ĝ(Wi)qi

)
= λ+ (1− λ) = 1.

(3.66)

Thus, function h(p) is strictly concave on F by Theorem 3.3.8 of Bazarra, Sherali, and Shetty

(1993; pages 93 and 79). To verify the conditions in Theorem 4.3.8 of Bazarra, Sherali, and

Shetty (1993; page 164), note that Xp = {p | 0 < p
i
< 1, 1 ≤ i ≤ m} is a nonempty

open set in Rm, and that h(p), h1(p) = 1 −
∑m

i=1 pi , and h2(p) = 1 − 2
∑m

i=1 Ĝ(Wi)pi are

each from Rm → R. Since p̂0 ∈ Xp satisfies constraints h1(p̂0) = 0 and h2(p̂0) = 0, p̂0 is

a feasible solution for (3.41) (Bazarra, Sherali, and Shetty, 1993; page 99). Also, note that

with v1 = n(1− λ0) and v2 = nλ0, the KKT conditions are satisfied because

∇h(p̂0) + v1∇h1(p̂0) + v2∇h2(p̂0)

=


nw1/p̂

0
1

...

nwm/p̂
0
m

+ n(1− λ0)


−1

...

−1

+ nλ0


−2Ĝ(W1)

...

−2Ĝ(Wm)



=


n+ nλ0(2Ĝ(W1)− 1)

...

n+ nλ0(2Ĝ(Wm)− 1)

+


−n+ nλ0 − 2nλ0Ĝ(W1)

...

−n+ nλ0 − 2nλ0Ĝ(Wm)

 = 0.

Since h(p) is concave and differentiable on F , h(p) is pseudoconcave on F (Bazarra, Sherali,

and Shetty, 1993; page 116). Note that both h1 and h2 are linear functions which means

that both h1 and h2 are quasiconvex and quasiconcave on F (Bazarra, Sherali, and Shetty,
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1993; pages 116 and 118). Thus, by Theorems 3.4.2 and 4.3.8 of Bazarra, Sherali, and Shetty

(1993; pages 101 and 164), p̂0 is the unique global optimal solution to (3.41).

Hence, by Lemma 3.4, the numerator of (3.36) is given by

L(γ
00
, F̂ 0

n) = γ
00
n0

m∏
i=1

(
p̂0

i

)nwi
, (3.67)

where for p̂0
i
’s given by (3.50), we have F̂ 0

n(x) =
∑m

i=1 p̂
0
i
I{Wi ≤ x}.

From (3.40) and (3.67), weighted empirical likelihood ratio test statistic (3.36) for test

(3.35) is given by

R0 = R(On) =
L(γ

00
, F̂ 0

n)

L(γ̂, F̂n)
=
γ

00
n0
∏m

i=1

(
p̂0
i

)nwi
γ̂n0
∏m

i=1w
nwi
i

=

(
γ

00

γ̂

)n0 m∏
i=1

(
p̂0
i

wi

)nwi

, (3.68)

and we reject H0 in (3.35) when R(On) is small. In order to determine the rejection region,

we need to know the asymptotic distribution of −2 logR0 under H0, which is to be studied

in the future and is expected to be a scaled χ2 distribution.

3.3.2 Confidence Intervals

To obtain the weighted empirical likelihood ratio based confidence interval (WELRBCI) for

γ
0
, we first notice that R(On) in (3.36) can be written in the form of (1.34) by the following

way. Since the last constraint in (3.34) reflects the relation between γ and F under Two-

Sample Accelerated Life Model (1.5), γ and F are linked through the statistical functional

T (·) of F given by

T (F ) ≡ [ solution of ϕn(γ;F ) ≡̇ 0 ] ⇐⇒ γ = T (F ), (3.69)
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where F is given by (2.7) and we have

ϕn(γ;F ) ≡ ϕn(γ; p) = 2
m∑
i=1

Ĝ(W γ
i )p

i
− 1, (3.70)

because ϕn(γ;F ) = 0 is equivalent to the last constraint equation in (3.34). Thus, for F

given by (2.7), R(On) in (3.36) is given by

R(On) = sup
(γ,F )∈H0

L(γ, F )

L(γ̂, F̂n)

(3.69)
= sup

(γ,F )∈H0

γ=T (F )

L(T (F ), F )

L(γ̂, F̂n)

(3.35)
= sup

T (F ) = γ00

L(T (F ), F )

L(γ̂, F̂n)
= sup

T (F ) = γ00

L(F )

L(F̂n)
,

(3.71)

where

L(F ) ≡ L(T (F ), F ), (3.72)

and from (3.39) and (3.69), we have

L(F̂n) = L(T (F̂n), F̂n) = L(γ̂, F̂n). (3.73)

From (3.71), the acceptance region for (3.35), analogously to (1.38), is given by

{On |R(On) ≥ c} =

{
On

∣∣∣∣ sup
T (F ) = γ00

L(F )

L(F̂n)
≥ c

}
=

{
On

∣∣∣ sup
T (F ) = γ00

λ(F ) ≥ c

}
, (3.74)

for some predetermined 0 < c < 1, where similar to (1.39), from (2.6), (3.40) and (3.71)−(3.73),

we have

λ(F ) =
L(F )

L(F̂n)
=

(
T (F )

γ̂

)n0 m∏
i=1

(
p
i

wi

)nwi
. (3.75)

Analogous to (1.40), from (2.7) and (3.74)−(3.75), the weighted empirical likelihood ratio

confidence region for γ
0

= γ
00

is given by

S =

{
γ

∣∣∣∣ sup
T (F )=γ

λ(F ) ≥ c

}
= {T (p) | p ∈ Ec}, (3.76)
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provided that T (p) = T (F ) is continuous, where

Ec =

{
p

∣∣∣∣ 0 < p
i
< 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1;

(
T (p)

γ̂

)n0 m∏
i=1

(
p
i

wi

)nwi
≥ c

}
. (3.77)

3.3.2.1 Simplification of ϕn(γ; p):

Note that the continuity assumption on T (·) is required for the last equality in (3.76) to

hold. To study if T (p) in (3.69) is continuous, we note that the solution to ϕn(γ; p) ≡̇ 0

exists by the definition of the notation “≡̇” introduced in (3.14), and we simplify ϕn(γ; p)

in (3.70) as follows:

ϕn(γ; p) = 2

m1∑
i=1

Ĝ(WX
i )p

i
+ 2

m0∑
i=1

Ĝ(γW Y
i )p

i+m1
− 1 (3.78)

= 2

m1∑
i=1

Ĝ(WX
i )p

i
− 1 + 2

m0∑
i=1

p
i+m1

[
m1∑
j=1

p̂X
j
I{WX

j ≤ γW Y
i }

]

= 2

m1∑
i=1

Ĝ(WX
i )p

i
− 1 + 2

m0∑
i=1

m1∑
j=1

p
i+m1

p̂X
j
I{(WX

j /W
Y
i ) ≤ γ}

= h(p) +
N∑
i=1

∆i(p)I {Ui ≤ γ} , (3.79)

where Ui’s are as in (3.30)−(3.31), ∆i(p) denotes the size of the jump at Ui and we have

h(p) = 2

m1∑
i=1

Ĝ(WX
i )p

i
− 1. (3.80)

Note that (3.79) implies that for any fixed p, ϕn(γ; p) is a monotone non-decreasing piecewise

step-function, thus the solution to ϕn(γ; p) ≡̇ 0 is not unique. This means that T (p) as

written in (3.69) is not well-defined.
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In order to write T (p) as a well-defined function, we study the behavior of ϕn(γ; p) for

fixed p as follows. For fixed p, from Ĝ(0) = 0 and Ĝ(∞) = 1, respectively, we have in (3.78)

ϕn(0; p) = 2

m1∑
i=1

Ĝ(WX
i )p

i
− 1 = h(p) (3.81)

ϕn(∞; p) = 2

m1∑
i=1

Ĝ(WX
i )p

i
+ 2

m0∑
i=1

p
i+m1

− 1 = h(p) +
N∑
i=1

∆i(p). (3.82)

Since ϕn(γ; p) is a monotone non-decreasing function in γ, we know that for fixed p there

are three possible scenarios for ϕn(γ; p) at the end points of interval (0,∞) given as follows:

E1 = {p |ϕn(0; p) > 0 and ϕn(∞; p) > 0}; (3.83)

E2 = {p |ϕn(0; p) < 0 and ϕn(∞; p) < 0}; (3.84)

E3 = {p |ϕn(0; p) < 0 and ϕn(∞; p) > 0}. (3.85)

Note that from (3.79), for any fixed p, ϕn(γ; p) only has jumps at Ui’s. Thus, for p ∈ E1,

as shown in Figure 3.4, all line segments lie above the γ-axis and |ϕn(U1; p)| < |ϕn(Ui; p)|

for all 2 ≤ i ≤ N . Similarly, for p ∈ E2, as shown in Figure 3.4, all line segments lie

below the γ-axis and |ϕn(UN ; p)| < |ϕn(Ui; p)| for all 1 ≤ i ≤ N − 1. For p ∈ E3, there

are three scenarios as shown in Figures 3.5−3.7, where the use of γ′, γ
L

, and γ
U

are as in

Figures 3.1−3.3. Thus, we define T (p) in (3.69) as follows: Denoting

γ
L

= inf
{
γ
∣∣ ϕn(γ; p) = ϕn(γ′−; p)

}
, γ

U
= sup

{
γ
∣∣ ϕn(γ; p) = ϕn(γ′; p)

}
, (3.86)
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we have

T (p) ≡



U1 if p ∈ E1

UN if p ∈ E2 or p ∈ E3 with γ′ = UN

γ̃ if p ∈ E3 with γ′ < UN ,

(3.87)

where

γ̃ =



γ
L

+ γ′

2
if |ϕn(γ

L
; p)| < |ϕn(γ′; p)|

γ′ + γ
U

2
if |ϕn(γ

L
; p)| > |ϕn(γ′; p)|

γ
L

+ γ
U

2
if |ϕn(γ

L
; p)| = |ϕn(γ′; p)|.

(3.88)

Figure 3.4: Scenarios for ϕ(γ; p) for fixed p ∈ E1 ∪ E2
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Figure 3.5: Scenarios for ϕ(γ; p) for fixed p ∈ E3: ϕ(U1; p) < 0 ϕ(UN−1; p) > 0

Figure 3.6: Scenarios for ϕ(γ; p) for fixed p ∈ E3: ϕ(U1; p) > 0
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Figure 3.7: Scenarios for ϕ(γ; p) for fixed p ∈ E3: ϕ(UN−1; p) < 0

3.3.2.2 Continuity of T (·):

To show that T (p) is continuous, letting p(k) → p(0) as k →∞ we need to show that

T (p(k)) → T (p(0)), as k →∞. (3.89)

As follows, we establish (3.89) for p(0) ∈ Ei, for i = 1, 2, 3, respectively.

For p(0) ∈ E1, by (3.87) we have T (p(0)) = U1. From (3.79) and (3.81), for any p and

any 0 < γ
1
< U1, we have

ϕn(γ
1
; p) = h(p) +

N∑
i=1

∆i(p)I{Ui ≤ γ
1
} = h(p) = ϕn(0; p). (3.90)

From (3.80), we know that h(p) is a continuous function in p, thus by (3.79) and (3.83) we

have

lim
k→∞

ϕn(γ
1
; p(k)) = lim

k→∞
h(p(k)) = h(p(0)) = ϕn(0; p(0)) > 0, (3.91)
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which implies that there exists K1 such that ϕn(γ
1
; p(k)) = ϕn(0; p(k)) > 0 for k ≥ K1.

Hence, by (3.83), we have p(k) ∈ E1 for all k ≥ K1 which gives

lim
k→∞

T (p(k)) = U1 = T (p(0)). (3.92)

For p(0) ∈ E2, by (3.87) we have T (p(0)) = UN . From (3.79) and (3.82), for any p and

any UN < γ
2
<∞, we have

ϕn(γ
2
; p) = h(p) +

N∑
i=1

∆i(p)I{Ui ≤ γ
2
} = h(p) +

N∑
i=1

∆i(p) = ϕn(∞; p). (3.93)

From (3.78), we know that ϕn(∞; p) is a continuous function in p, thus by (3.84) we have

lim
k→∞

ϕn(γ
2
; p(k)) = lim

k→∞
ϕn(∞; p(k)) = ϕn(∞; p(0)) < 0, (3.94)

which implies that there exists K2 such that ϕn(γ
2
; p(k)) = ϕn(∞; p(k)) < 0 for k ≥ K2.

Thus, by (3.84), we have p(k) ∈ E2 for all k ≥ K2 which gives

lim
k→∞

T (p(k)) = UN = T (p(0)). (3.95)

For p(0) ∈ E3, from Figure 3.3 we need to consider two cases: (i) γ′
0

= UN ; (ii) γ′
0
< UN ,

where γ′
0

is γ′ in Figure 3.3 which corresponds to p(0).

Case (i): For γ′ = UN , by (3.87) we have T (p(0)) = UN , and from Figure 3.3 (c) we

know that γ
L

= UN−1 with

ϕn(UN−1; p(0)) < 0 and ϕn(UN ; p(0)) > 0. (3.96)

From (3.78), we know that for any fixed γ, ϕn(γ; p) is continuous in p. Thus, (3.96) implies

lim
k→∞

ϕn(UN−1; p(k)) = ϕn(UN−1; p(0)) < 0

lim
k→∞

ϕn(UN ; p(k)) = ϕn(UN ; p(0)) > 0.

(3.97)
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From (3.97), there exists K such that for any k ≥ K, we have ϕn(UN−1; p(k)) < 0 and

ϕn(UN ; p(k)) > 0 for all k ≥ K. Thus, we have T (p(k)) ≡ UN for all k ≥ K, which implies

limk→∞ T (p(k)) = T (p(0)) = UN .

Case (ii): For γ′ < UN , by (3.87) we have T (p(0)) = γ̃
0

where γ̃
0

corresponds to γ(0)

L

and γ′
0

for p(0) in Figure 3.3 (a)(b). Thus, we have

ϕn(γ(0)

L
; p(0)) < 0 and ϕn(γ′

0
; p(0)) > 0 (3.98)

which implies

lim
k→∞

ϕn(γ(0)

L
; p(k)) = ϕn(γ(0)

L
; p(0)) < 0

lim
k→∞

ϕn(γ′
0
; p(k)) = ϕn(γ′

0
; p(0)) > 0.

(3.99)

The proof follows from the arguments line-by-line after (3.97) for Case (i).

The following two lemmas establish properties of S in (3.76) and establish a relationship

between S and R0 in (3.71).

Lemma 3.5. S is an interval that satisfies S = [WL,WU ] where

WL = min
p∈Ec

T (p) and WU = max
p∈Ec

T (p). (3.100)

Proof First, we let y ∈ S in (3.76), which implies that y = T (p) for some p′ ∈ Ec in

(3.77), that is, from (3.69)−(3.70) y is a solution of 2
∑m

i=1 Ĝ(W y
i )p′i = 1 for some p′ ∈ Ec.

Then, we have

WL = min
p∈EC

T (p) ≤ y ≤ max
p∈EC

T (p) = WU ⇒ y ∈ [WL,WU ].
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Now, we let y ∈ [WL,WU ]. Since function T (p) is continuous on Ec, T (p) attains its

minimum and maximum on Ec. Hence, we have WL = T (pL) and WU = T (pU) for some

pL, pU ∈ Ec, which gives

T (pL) = WL ≤ y ≤ WU = T (pU).

Now, it suffices to show that y = T (p′) for some p′ ∈ Ec. Consider

h(λ) = T
(
(1− λ)pL + λpU

)
, 0 ≤ λ ≤ 1.

Then, we have h(0) = T (pL) ≤ y ≤ T (pU) = h(1). Note that h(λ) is a continuous function

since T is continuous. Then, by the Intermediate Value Theorem, we have that there exists

a λ′ ∈ [0, 1] such that h(0) ≤ y = h(λ′) ≤ h(1), which implies that

T (pL) ≤ y = T (p′) =
m∑
i=1

p′iŴi ≤ T (pU), where p′ = (1− λ′)pL + λ′pU . (3.101)

We complete the proof by showing p′ ∈ Ec.

Since 0 ≤ pLi ≤ 1 and 0 ≤ pUi ≤ 1, 1 ≤ i ≤ m, we have

0 ≤ p′i = (1− λ′)pLi + λ′pUi ≤ (1− λ∗) + λ′ = 1, i = 1, . . . ,m

and since
∑m

i=1 p
L
i = 1 and

∑m
i=1 p

U
i = 1, we have

m∑
i=1

p′i =
m∑
i=1

[
(1− λ′)pLi + λ′pUi

]
= (1− λ′)

m∑
i=1

pLi + λ′
m∑
i=1

pUi = (1− λ′) + λ′ = 1.

It only remains to show that
(
T (p′)
γ̂

)n0∏m
i=1

(
p′
i
wi

)nwi
≥ c. To show this we need to show

that D(p) =
(
T (p)
γ̂

)n0∏m
i=1

(
p
i
wi

)nwi
is a convex function. For this we need to check that

∇2
p(D) ≥ 0.

Lemma 3.6. We have WL ≤ γ
00
≤ WU if and only if R0 ≥ c.
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Proof Suppose WL ≤ γ
00
≤ WU . Then, we have that γ

00
= T (F ), that is, γ

00
is a solution

to 2
∑m

i=1 Ĝ(Wi)p
′
i

= 1 for some p′ ∈ Ec. Since p′ ∈ Ec, we have

(
γ

00

γ̂

)n0 m∏
i=1

(
p′
i

wi

)nwi
≥ c,

m∑
i=1

p′
i

= 1, 0 ≤ p′
i
≤ 1, for i = 1, . . . ,m.

Then, for F in (3.63), from (3.68) we have

c ≤
(
γ

00

γ̂

)n0 m∏
i=1

(
p′
i

wi

)nwi
≤ sup

p∈Fc

(
γ

00

γ̂

)n0 m∏
i=1

(
p
i

wi

)nwi
= R0.

Now suppose R0 ≥ c. To show that WL ≤ γ
00
≤ WU , we first show that

maxp∈F
(γ00
γ̂

)n0
∏m

i=1

( p
i
wi

)nwi is attained on the set F . To do so, we denote the closure of F

as:

F ′ =

{
p

∣∣∣∣ 0 ≤ p
i
≤ 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1; 2
m∑
i=1

Ĝ(Wi)pi = 1

}
, (3.102)

Note that F ′ is a subset of Rm and is bounded because of the constraint 0 ≤ p
i
≤ 1,

i = 1, . . . ,m. Also note that if p(k) → p(0), as k →∞ for a sequence p(k) ∈ Fc, we have

2
m∑
i=1

Ĝ(Wi)p
(k)

i
= 1,

m∑
i=1

p(k)

i
= 1, 0 ≤ p(k)

i
≤ 1, for i = 1, . . . ,m, (3.103)

and we have

1 = lim
k→∞

2
m∑
i=1

Ĝ(Wi)p
(k)

i
= 2

m∑
i=1

Ĝ(Wi) lim
k→∞

p(k)

i
= 2

m∑
i=1

Ĝ(Wi)p
(0)

i

1 = lim
k→∞

m∑
i=1

p(k)

i
=

m∑
i=1

lim
k→∞

p(k)

i
=

m∑
i=1

p(0)

i

0 ≤ lim
k→∞

p(k)

i
= p(0)

i
≤ 1, i = 1, . . . ,m,

which implies that p(0) ∈ F ′. Thus, F ′ is closed; in turn, we know that F ′ is compact.

Since function f(p) =
(γ00
γ̂

)n0
∏m

i=1

( p
i
wi

)nwi is continuous on F ′, f(p) attains its maximum
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for some p′ on F ′. Recall by the argument in (3.33)−(3.34), we cannot have p
i

= 0 or p
i

= 1

for any i = 1, . . . ,m. Hence, we must have that f(p) attains its maximum for some p′ on F

and we have:

c ≤ R0 = max
p∈F

m∏
i=1

(
γ

00

γ̂

)n0
(
p
i

wi

)nwi
=

(
γ

00

γ̂

)n0 m∏
i=1

(
p′
i

wi

)nwi
.

Since p′ ∈ F , we have

(
γ

00

γ̂

)n0 m∏
i=1

(
p′
i

wi

)nwi
≥ c, 2

m∑
i=1

Ĝ(Wi)p
′
i

= 1,
m∑
i=1

p′
i

= 1, 0 ≤ p′
i
≤ 1, for i = 1, . . . ,m.

Hence, γ
00

is a solution of 2
∑m

i=1 Ĝ(Wi)p
′
i

= 1 with p′ ∈ Ec; in turn, γ
00
∈ {T (F ) | p ∈ Ec},

which implies that γ
00
∈ [WL,WU ] .

From Lemma 3.6, we have

P{WL ≤ γ
00
≤ WU} = P{−2 logR0 ≤ −2 log c}. (3.104)

In turn, the constant c in (3.76) is determined by the limiting distribution of −2 logR0,

which, as mentioned in Section 3.3.1, is to be studied in the future and is expected to be a

scaled χ2 distribution.
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3.3.2.3 Computation of [WL,WU ]:

From (3.100), WL and WU can be obtained by solving the following optimization problems,

respectively:

Minimize / Maximize T (p)

subject to: 0 < p
i
< 1, 1 ≤ i ≤ m;

∑m
i=1 pi = 1;(

T (p)

γ̂

)n0 m∏
i=1

(
p
i

wi

)nwi
≥ c.

(3.105)

The solution to the above optimization problem is to be studied in the future.
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CHAPTER 4
ESTIMATION AND TESTS ON TREATMENT MEAN

In this chapter, we construct hypothesis tests and estimators for the mean µX of the

treatment distribution FX in Two-Sample Accelerated Life Model (1.5) based on estima-

tor γ̂
E

in (3.2), estimator γ̂
R

in (3.28) and the Weighted Empirical Likelihood Method,

respectively. The methods developed in this chapter are applicable in a unified way to those

different types of censored data described in Section 1.3. The organization of this chapter

is as follows. Section 4.1 gives point estimators µ̂E and µ̂R for µX based on γ̂
E

and γ̂
R

,

respectively. Section 4.2 constructs tests and confidence intervals for µX based on estima-

tors µ̂E and µ̂R, respectively. Section 4.3 constructs Weighted Empirical Likelihood Ratio

based tests and confidence intervals for µX . Comparison of the estimators in this chapter by

simulation studies is given in Chapter 5.

4.1 Point Estimators

Since Ĝ given in (2.2) is an estimator for FX , a natural point estimator µ̂X for µX is given

by

µ̂X =

∫
x dĜ(x) =

m1∑
i=1

p̂X
i
WX
i . (4.1)

But such an estimator is only based on the first sample in (2.1), thus it is less efficient. Since

F̂n( · ; η̂) in (2.21) is an estimator for FX that is calculated using both samples in (2.1), a
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more efficient point estimator for µX is naturally given by

µ̂(η̂) ≡
∫
x dF̂n(x; η̂) =

∫
x d
(
ρ

1
Ĝ(x) + ρ

0
Ĥ(x/η̂)

)
= ρ

1

∫
x dĜ(x) + ρ

0

∫
x dĤ(x/η̂)

= ρ
1
µ̂X + ρ

0
η̂

∫
x/η̂ dĤ(x/η̂) = ρ

1
µ̂X + ρ

0
η̂µ̂Y ,

(4.2)

where the notation µ̂(η̂) indicates the dependance on a consistent estimator η̂ for γ
0
. Recall

from Chapter 3 that estimators γ̂
E

and γ̂
R

given by (3.2) and (3.28), respectively, are con-

sistent estimators for γ
0
. Hence, we have two point estimators for µX by plugging γ̂

E
and

γ̂
R

, respectively, into (4.2) as follows:

µ̂E ≡ µ̂X = µ̂(γ̂
E

) = ρ
1
µ̂X + ρ

0
(µ̂X/µ̂Y ) µ̂Y = (ρ

1
+ ρ

0
)µ̂X , (4.3)

µ̂R ≡ µ̂(γ̂
R

) = ρ
0
µ̂X + γ̂

R
ρ

1
µ̂Y . (4.4)

Also note that µ̂R in (4.4) is a more efficient estimator than µ̂E since it uses both samples

in (2.1). The following theorem establishes some asymptotic properties of point estimator

µ̂R under assumptions (AS5)−(AS6) in Theorem 3.1, which, by Remark 3.1, hold for all

types of censored data considered in this dissertation.

Theorem 4.1. Assume that (AS5)−(AS6) from Theorem 3.1 hold. Then,

√
n (µ̂R − µX)

D→ N(0, σ2
µR

), as n→∞. (4.5)
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Proof From (4.4), we have:

√
n(µ̂R − µX) =

√
n
(
ρ1µ̂X + ρ0γ̂Rµ̂Y − µX

)
=
√
n
(
ρ

1
µ̂X + ρ

0
γ̂
R
µ̂Y − ρ0

γ̂
R
µY + ρ

0
γ̂
R
µY − ρ0

µX − ρ1
µX
)

= ρ1

√
n
(
µ̂X − µX) + ρ0γ̂R

√
n
(
µ̂Y − µY

)
+ ρ0

√
n
(
γ̂
R
µY − µX

)
D→ N(0, σ2

µR
),

by (AS5)−(AS6).

4.2 Normal-Approximation Based Tests and Confidence Intervals

In this section, we construct tests and confidence intervals for µX based on a point estimator

µ̂ for µX which satisfies:

√
n (µ̂− µX)

D→ N(0, σ2), as n→∞. (4.6)

Note that from (AS5) in Theorem 3.1 and (4.5), we know that both estimators µ̂E and µ̂R

in (4.3)−(4.4) satisfy the assumption in (4.6). Thus, all procedures in this section apply to

both of these estimators. In turn, the procedures are also applicable to the various types of

censored data considered in this dissertation.
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4.2.1 Hypothesis Tests

We consider the following hypothesis test on the mean of the treatment group:

H0 : µX = µ0 vs. H1 : µX 6= µ0. (4.7)

Based on point estimator µ̂, in practice we reject H0 in (4.7) if |µ̂ − µ0| > c for some

predetermined c > 0. For level of significance 0 < α < 1, we may determine c in practice via

(4.6) as follows:

α = P{Type I Error} = P{reject H0 | H0 is true}

= P {|µ̂− µ0| > c | µX = µ0} = P

{∣∣∣∣ µ̂− µXσ/
√
n

∣∣∣∣ > c

σ/
√
n

∣∣∣∣ µX = µ0

}
≈ P

{
|Z| > c

σ/
√
n

}
= 2P

{
Z >

c

σ/
√
n

}
,

(4.8)

which gives

c

σ/
√
n

= zα/2 ⇒ c =
σ√
n
zα/2. (4.9)

To estimate σ in (4.9) in practice for point estimators µ̂E and µ̂R, we may use the following

bootstrap procedures [12], respectively, which are valid for all of the types of censored data

considered in this dissertation because of (4.6).
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Estimation of σµE
:

Step 1. Generate bootstrap sample OX∗
1 , . . . ,OX∗

n1
as in the first sample in (2.26).

Step 2. Compute Ĝ∗ based on (2.2) using the first bootstrap sample in (2.26).

Step 3. Compute µ̂∗E =
∫
x dĜ∗(x).

Step 4. Repeat Steps 1 − 3 B times to obtain µ̂∗E(b), b = 1, . . . B, where B is usually

chosen to be 1000. The bootstrap estimate for standard error σµE is given by

ŝeµ̂
E

=

 B∑
b=1

(
µ̂∗E(b)− 1

B

∑B
i=1 µ̂

∗
E(i)

)2

B − 1


1/2

. (4.10)

Estimation of σµR
:

Step 1. Generate bootstrap samples OX∗
1 , . . . ,OX∗

n1
and OY ∗

1 , . . . ,OY ∗
n0

as in (2.26).

Step 2. Compute Ĝ∗ and Ĥ∗ as in (2.2) using the bootstrap samples (2.26).

Step 3. Compute µ̂∗X =
∫
x dĜ∗(x) and µ̂∗Y =

∫
x dĤ∗(x) as in (3.3).

Step 4. Compute γ̂∗
R

, which is the solution of g(γ; Ĝ∗, Ĥ∗) ≡̇ 0.

Step 5. Compute µ̂∗R as in (4.4).

Step 6. Repeat Steps 1 − 5 B times to obtain µ̂∗R(b), b = 1, . . . B, where B is usually

chosen to be 1000. The bootstrap estimate for standard error σµR in Theorem 4.1

is given by

ŝeµ̂
R

=

 B∑
b=1

(
µ̂∗R(b)− 1

B

∑B
i=1 µ̂

∗
R(i)

)2

B − 1


1/2

. (4.11)
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4.2.2 Confidence Intervals

A (1−α)100% confidence interval for µX based on point estimator µ̂ is constructed as follows.

From (4.6), we have

1− α = P
{
|Z| ≤ zα/2

}
≈ P

{
−zα/2 ≤

µ̂− µX
σ/
√
n
≤ zα/2

}
= P

{
µ̂− σ√

n
zα/2 ≤ µX ≤ µ̂+

σ√
n
zα/2

}
.

Thus, an approximated (1− α)100% confidence interval for µX based on µ̂ is given by

µ̂± σ̂√
n
zα/2, (4.12)

where σ̂ is an estimator for σ, e.g., possible estimators for σµE and σµR are given in the

above bootstrap procedures (4.10)−(4.11), respectively. Some simulation results on this are

presented in Chapter 5.

4.3 Weighted Empirical Likelihood Ratio Tests and Confidence Intervals

Recall that the weighted empirical likelihood function L(γ, F ) for (γ
0
, FX) is given by (2.6).

Since γ̂ = γ̂
R

in (3.39) is the WELMLE for γ
0

and is a consistent estimator for γ
0
, which,

by Remark 3.2, is applicable for all types of censored data considered in this dissertation,

we consider the following likelihood function:

L(γ̂, F ) = γ̂n0

m∏
i=1

pnwi
i
, (4.13)
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where, as in (2.5) and (2.7) we have:
(Ŵ1, . . . , Ŵm) = (W γ̂

1 , . . . ,W
γ̂
m)

F (x) =
∑m

i=1 piI{Ŵi ≤ x}, with p
i

= F (Ŵi)− F (Ŵi−), 1 ≤ i ≤ m.

(4.14)

In the next two subsections, via likelihood function L(γ̂, F ) in (4.13) we construct Weighted

Empirical Likelihood Ratio based tests and confidence intervals for µX with some simulation

results presented in Chapter 5.

4.3.1 Hypothesis Tests

Under Two-Sample Accelerated Life Model (1.5), consider hypothesis test (4.7). For like-

lihood function L(γ̂, F ) in (4.13), the weighted empirical likelihood ratio function is given

by

R(F ; γ̂) =
L(γ̂, F )

L(γ̂, F̂n)
=
γ̂n0
∏m

i=1 p
nwi
i

γ̂n0
∏m

i=1w
nwi
i

=
m∏
i=1

(
p
i

wi

)nwi
, (4.15)

where F̂n is given in (3.39) and wi’s are given in (2.5). Thus, the weighted empirical likelihood

ratio test statistic for (4.7) analogous to (1.34) is given by:

R0 = R(On) = sup
F∈H0

R(F ; γ̂) = sup
T (F )=µ0

m∏
i=1

(
p
i

wi

)nwi
(4.16)

where On is given by (3.37), F is given by (4.14) and

T (F ) =

∫
xdF (x) =

m∑
i=1

p
i
Ŵi. (4.17)
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To obtain an expression for R0 in (4.16), note that from (4.13)−(4.14) and (4.16)−(4.17)

we need to solve the following optimization problem
Maximize

m∏
i=1

(
p
i

wi

)nwi
subject to: 0 ≤ p

i
≤ 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1;
m∑
i=1

p
i
Ŵi = µ0.

(4.18)

By the same argument used in (2.8)−(2.9), we know that for F given in (4.14), optimization

problem (4.18) is equivalent to:
Maximize

m∏
i=1

(
p
i

wi

)nwi
subject to: 0 < p

i
< 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1;
m∑
i=1

p
i
Ŵi = µ0.

(4.19)

The following lemma gives the solution to optimization problem (4.19).

Lemma 4.2. Under Two-Sample Accelerated Life Model (1.5), assume

(AS7) ‖F̂n(·; γ̂)− FX‖
P→ 0, as n→∞.

Then, the solution to (4.19) is given by:

p̃
i

=
wi

1 + λ0(Ŵi − µ0)
, 1 ≤ i ≤ m, (4.20)

where λ0 is the unique solution to equation

m∑
i=1

wi(Ŵi − µ0)

1 + λ(Ŵi − µ0)
= 0 (4.21)

on the interval

J =
( −1

Ŵ(m) − µ0

,
−1

Ŵ(1) − µ0

)
, (4.22)

where

Ŵ(1) = min{Ŵ1, . . . , Ŵm} and Ŵ(m) = max{Ŵ1, . . . , Ŵm}. (4.23)
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Remark 4.1. We discuss (AS7) in Lemma 4.2 as follows. As reviewed in Section 1.3,

under certain regularity conditions we have ||Ĝ−FX ||
a.s.→ 0, as n1 →∞ and ||Ĥ−FY ||

a.s.→ 0,

as n0 → ∞ for right censored data (1.16) [40], doubly censored data (1.17) [6] and [17],

interval censored Case 1 or Case 2 data (1.18)−(1.19) [15], and partly interval censored data

(1.21)−(1.22) [18], which implies that

‖Ĝ− FX‖
P−→ 0, as n1 →∞ and ‖Ĥ − FY ‖

P−→ 0, as n0 →∞ (4.24)

for the aforementioned types of censored data. Then, under Two-Sample Accelerated Life

Model (1.5), from (2.21), (4.24), and the fact that γ̂ is a consistent estimator for γ
0
, we have:

‖F̂n(·; γ̂)− FX‖ = sup
x
|ρ

1
Ĝ(x) + ρ

0
Ĥ(x/γ̂)− FX(x)|

= sup
x
|ρ

1
Ĝ(x)− ρ

1
FX(x) + ρ

0
Ĥ(x/γ̂)− ρ

0
FX(x)|

≤ ρ
1

sup
x
|Ĝ(x)− FX(x)|+ ρ

0
sup
x
|Ĥ(x/γ̂)− FX(x)|

= ρ
1
‖Ĝ− FX‖+ ρ

0
sup
x
|Ĥ(x/γ̂)− FY (x/γ

0
)|

= ρ
1
‖Ĝ− FX‖+ ρ

0
sup
x
|Ĥ(x/γ̂)− FY (x/γ

0
)|

≤ ρ
1
‖Ĝ− FX‖+ ρ

0
sup
x
|Ĥ(x/γ̂)− FY (x/γ̂)|+ ρ

0
sup
x
|FY (x/γ̂)− FY (x/γ

0
)|

≤ ρ
1
‖Ĝ− FX‖+ ρ

0
‖Ĥ − FY ‖+ ρ

0
sup
x
|FY (x/γ̂)− FY (x/γ

0
)|

P→ 0, as n→∞,

provided that d.f. FY is uniformly continuous.

Proof To solve optimization problem (4.19), we note that for all 1 ≤ i ≤ m, we have

log
m∏
i=1

(
p
i

wi

)nwi
= n

m∑
i=1

wi log p
i
− n

m∑
i=1

wi logwi, (4.25)
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Thus, to find a candidate for the solution using the Lagrange Multipliers, we denote

H (p, β, λ) =
∑

=

log
i

+ β

[
−
∑

=
i

]
+ λ

[
µ −

∑
=

i
Ŵ

]
, (4.26)

then, we have for 1 ≤ i ≤ m,

0 =
∂H

∂p
i

=
nwi
p
i

− β − nλŴi ⇒ p
i

=
nwi

β + nλŴi

. (4.27)

From (2.3), (2.5) and the last two constraints in (4.19), we have

βp
i

= nwi − nλpiŴi ⇒ β
m∑
i=1

p
i

= nλ

m∑
i=1

p
i
Ŵi

⇒ β = n− nλµ0 ⇒ β = n(1− λµ0).

(4.28)

Plugging β in (4.28) into (4.27), we have

p
i

=
nwi

n− nλµ0 + nλŴi

=
wi

1 + λ(Ŵi − µ0)
, 1 ≤ i ≤ m. (4.29)

From the constraints in (4.19) and p
i

in (4.29), we have

1 =
m∑
i=1

p
i

=
m∑
i=1

wi

1 + λ(Ŵi − µ0)
(4.30)

and

µ0 =
m∑
i=1

p
i
Ŵi =

m∑
i=1

wiŴi

1 + λ(Ŵi − µ0)
(4.31)

which give

0 =
m∑
i=1

wiŴi

1 + λ(Ŵi − µ0)
− µ0

m∑
i=1

wi

1 + λ(Ŵi − µ0)
=

m∑
i=1

wi(Ŵi − µ0)

1 + λ(Ŵi − µ0)
≡ g(λ). (4.32)

Thus, from (4.29) and (4.32) a candidate for the solution of (4.19) is given by

p
i

=
nwi

n− nλ0µ0 + nλ0Ŵi

=
wi

1 + λ0(Ŵi − µ0)
. (4.33)
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with λ0 as a solution of equation (4.32).

Next, we show that equation (4.80) has a unique solution λ = λ0 in the interval

J =
( −1

Ŵ(m) − µ0

,
−1

Ŵ(1) − µ0

)
. (4.34)

First, we note that since F̂n is non-degenerate, (AS7) implies that as n→∞,

Ŵ(1) < µ0 < Ŵ(m), in probability. (4.35)

which implies that, in probability, we have Ŵ(1) − µ0 < 0 and Ŵ(m) − µ0 > 0 and we have

Ŵ(1) − µ0 ≤ Ŵi − µ0 ⇔ −(Ŵ(1) − µ0) ≥ −(Ŵi − µ0) ⇔ − 1

Ŵi − µ0

≥ −1

Ŵ(1) − µ0

,

and for Ŵi − µ0 > 0, we have

Ŵ(m) − µ0 ≥ Ŵi − µ0 ⇔ −(Ŵ(m) − µ0) ≤ −(Ŵi − µ0) ⇔ − 1

Ŵi − µ0

≤ −1

Ŵ(m) − µ0

.

Then, from (4.29), wi > 0, and requirement p
i
> 0 for all 1 ≤ i ≤ m, we require for all

1 ≤ i ≤ m,

1 + λ(Ŵi − µ0) > 0 ⇔ λ(Ŵi − µ0) > −1

⇔ max
1≤i≤m
Ŵi−µ0>0

−1

Ŵi − µ0

< λ < min
1≤i≤m
Ŵi−µ0<0

−1

Ŵi − µ0

⇔ −1

Ŵ(m) − µ0

< λ <
−1

Ŵ(1) − µ0

.

Thus, to have all p
i
> 0 in (4.29), we are only interested in a solution of (4.19) on interval

J . From (4.21), we denote

g(λ) =
m∑
i=1

wi(Ŵi − µ0)

1 + λ(Ŵi − µ0)
= 0 (4.36)
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Now, from (4.19), wi > 0 for 1 ≤ i ≤ m, and (4.35), we have that for any λ ∈ J ,

g′(λ) = −
m∑
i=1

wi(Ŵi − µ0)2[
1 + λ(Ŵi − µ0)

]2 < 0, (4.37)

which implies that g(λ) is strictly decreasing on J . Letting λ1 = −1

Ŵ(m)−µ0
and λ2 = −1

Ŵ(1)−µ0
,

we have

lim
λ→λ+1

g(λ) = lim
λ→λ+1

m∑
i=1

wi(Ŵi − µ0)

1 + λ(Ŵi − µ0)
= lim

λ→λ+1

∑
Ŵi 6=µ0

wi
λ+ 1

Ŵi−µ0

=
∑

Ŵi 6=µ0,Ŵi=Ŵ(m)

lim
λ→λ+1

wi
λ+ 1

Ŵ(m)−µ0

+
∑

Ŵi 6=µ0,Ŵi 6=Ŵ(m)

lim
λ→λ+1

wi
λ+ 1

Ŵi−µ0

= ∞+ C2 =∞,

and

lim
λ→λ−2

g(λ) = lim
λ→λ−2

m∑
i=1

wi(Ŵi − µ0)

1 + λ(Ŵi − µ0)
= lim

λ→λ−2

∑
Ŵi 6=µ0

wi
λ+ 1

Ŵi−µ0

=
∑

Ŵi 6=µ0,Ŵi=Ŵ(1)

lim
λ→λ−2

wi
λ+ 1

Ŵ(1)−µ0

+
∑

Ŵi 6=µ0,Ŵi 6=Ŵ(1)

lim
λ→λ−2

wi
λ+ 1

Ŵi−µ0

= −∞+ C3 = −∞,

where C2 and C3 are finite constants. Thus, (4.80) has a unique solution on J .

We prove that p̂ = (p̂1, . . . , p̂m), given by

p̂i =
wi

1 + λ0(Ŵi − µ0)
, 1 ≤ i ≤ m, (4.38)

is the unique solution to (4.19) by verifying the KKT conditions in Theorem 4.3.8 of Bazarra,

Sherali, and Shetty (page 164) as follows. Let

h(p) = γn0

m∏
i=1

pnwi
i
, (4.39)
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and let

F̃c =

{
p

∣∣∣∣ 0 < p
i
< 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1; 2
m∑
i=1

Ĝ(Wi)pi = 1

}
. (4.40)

The Hessian matrix (Bazarra, Sherali, and Shetty, 1993; page 90) of h(p), given in (4.39),

exists on set Fc and is given by

∂2h(p)

∂p
i
∂pj

=


−nwi
p2
i

if i = j

0 if i 6= j.

=⇒ Hh = diag

{
−nw1

p2
1

, . . . ,−nwm
p2
m

}
. (4.41)

Since Hh is a diagonal matrix with diagonal elements −nwi
p2
i
< 0, 1 ≤ i ≤ m, for p ∈ F̃c,

Hh is negative definite on F̃c. Note that F̃c is a convex set because for any p, q ∈ F̃c and

r = λp + (1− λ)q with any λ ∈ (0, 1) we have

0 < ri = λp
i

+ (1− λ)qi < λ+ (1− λ) = 1, 1 ≤ i ≤ m

m∑
i=1

riŴi = λ
m∑
i=1

p
i
Ŵi + (1− λ)

m∑
i=1

qiŴi = λµ0 + (1− λ)µ0 = µ0

m∑
i=1

ri = λ
m∑
i=1

p
i

+ (1− λ)
m∑
i=1

qi = λ+ (1− λ) = 1.

(4.42)

Thus, function h(p) is strictly concave on F̃c by Theorem 3.3.8 of Bazarra, Sherali, and

Shetty (1993; pages 93 and 79) [1]. To verify the conditions in Theorem 4.3.8 of Bazarra,

Sherali, and Shetty (1993; page 164) [1], note that Xp = {p | 0 < p
i
< 1 , 1 ≤ i ≤ m} is a

nonempty open set in Rm, and that h(p), h1(p) = 1−
∑m

i=1 pi , and h2(p) = µ0−
∑m

i=1 piŴi

are each from Rm → R. Since p̂ ∈ Xp satisfies constraints h1(p) = 0 and h2(p) = 0, p̂ is a

feasible solution for (4.19) (Bazarra, Sherali, and Shetty, 1993; page 99) [1]. Also, note that
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with v1 = n(1− λ0µ0) and v2 = nλ0, the KKT conditions are satisfied because

∇h(p̂) + v1∇h1(p̂) + v2∇h2(p̂)

=


nw1/p̂1

...

nwm/p̂m

+ n(1− λ0µ0)


−1

...

−1

+ nλ0


−Ŵ1

...

−Ŵm



=


n+ nλ0Ŵ1 − nλ0µ0

...

n+ nλ0Ŵm − nλ0µ0

+


−n+ nλ0µ0 − nλ0Ŵ1

...

−n+ nλ0µ0 − nλ0Ŵm

 = 0.

Since h(p̂) is concave and differentiable on F̃c, h(p̂) is psuedoconcave on F̃c (Bazarra, Sherali,

and Shetty, 1993; page 116). [1] Note that both h1 and h2 are linear functions, which means

that both h1 and h2 are quasiconvex and quasiconcave on F̃c (Bazarra, Sherali, and Shetty,

1993; pages 116 and 118). [1] Thus, by Theorems 3.4.2 and 4.3.8 of Bazarra, Sherali, and

Shetty (1993; pages 101 and 164), [1] p̂ is the unique optimal solution to (4.19), which

complets the proof.

From (4.20) in Lemma 4.2, R0 in (4.16) can be rewritten as

R0 = R(On) =
m∏
i=1

(
p̃
i

wi

)nwi
=

m∏
i=1

(
1

1 + λ0(Ŵi − µ0
)

)nwi

(4.43)

and the rejection region for (4.7) analogous to (1.35) is given by

{On | R(On) ≤ c} =

{
On

∣∣∣∣ m∏
i=1

(
p̃
i

wi

)nwi
≤ c

}

=

{
On

∣∣∣∣ m∏
i=1

(
1

1 + λ0(Ŵi − µ0
)

)nwi

≤ c

}
,

(4.44)
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for some predetermined 0 < c < 1. For level of significance 0 < α < 1, we have:

α = P {reject H0 | H0 true} = P {R0 ≤ c | H0} = P{−2 logR0 ≥ −2 log c | H0}. (4.45)

The following theorem establishes the limiting distribution of −2 logR0 under H0 in (4.7).

Let

0 < µX =

∫
xdFX(x) <∞, 0 < σ2 =

∫
(x− µX)2dFX(x) <∞ (4.46)

µ̂ =

∫
xdF̂n(x), σ2

n =

∫
(x− µ̂)2dF̂n(x) =

m∑
i=1

wi(Ŵi − µ̂)2 (4.47)

Theorem 4.3. Assume H0 in hypothesis test (4.7) holds and assume:

(AS8) E|V X |3 <∞ and E|V Y |3 <∞;

(AS9)
√
n
∫
xd(F̂n(x; γ̂)− FX(x))

D→ N(0, τ 2), as n→∞;

(AS10)
∫
x3dF̂n(x; γ̂)

P→
∫
x3dFX(x), as n→∞.

Then, we have:

− 2 logR0
D→ τ 2/σ2χ2

(1), as n→∞, (4.48)

where χ2
(1) represents a chi-squared random variable with 1 degree of freedom.

Remark 4.2. Note that (AS9) and (AS10) may be expected based on the asymptotic

normality of estimator γ̂ and the uniform consistency of F̂n. For assumption (AS8), we

introduce the notation V X and V Y , as follows. For right censored data, doubly censored

data, interval censored data Case 1 and partly-interval censored case 1 data given by (1.16)-

(1.18) and (1.21), we have OX
i = (V X

i , δi), where V X
i = min{Xi, C

X
i } for right censored data;

V X
i = max{min{Xi, C

X
i }, DX

i } for doubly censored data; V X
i = CX

i for interval censored
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data Case 1 ; and V X
i = Xi∆i+C

X
i (1−∆i) with P{∆i = 1} = ρX0 > 0, P{∆i = 0} = ρX1 > 0,

and ρX0 + ρX1 = 1 for partly-interval censored data Case 1. Since for these types of censored

data (Xi, C
X
i ) or (Xi, C

X
i , D

X
i ), or CX

i or (Xi, C
X
i ,∆i) are i.i.d., we know that V X

i are i.i.d.

random variables. In the case of interval censored data Case 2 given by (1.19), we have

OX
i = (VX

i , δi) with VX
i = (CX

i , D
X
i ) and we denote

|V X
i |3 ≡ |CX

i |3 + |DX
i |3, (4.49)

where CX
i and DX

i are i.i.d., respectively.

Before proving Theorem 4.3, we state and prove the following lemma.

Lemma 4.4. We have

max
1≤i≤m

|Ŵi − µ0| = Op(n
1/3). (4.50)

Proof To establish (4.50) for all types of censored data, we note that

max
1≤i≤m

|Ŵi − µ0| ≤ max
1≤i≤m

|Ŵi|+ |µ0| ≤ max
1≤i≤m1

|WX
i |+ |γ̂| max

1≤i≤m0

|W Y
i |+ |µ0|. (4.51)

For brevity, we discuss OX
i ’s because OY

j ’s can be handled similarly. With notation V X
i

defined in Remark 4.1, note that

V X
1 , . . . , V X

n1
are i.i.d. with E|V X |3 <∞ ⇒ max

1≤i≤n1

|V X
i | = Op(n

1/3
1 ) (4.52)
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because

P{ max
1≤i≤n1

|V X
i | > n

1/3
1 } = 1−

[
P{|V X

i | ≤ n
1/3
1 }

]n1

=
(
1 + [P{|V X

i | ≤ n1}]2 + . . .+ [P{|V X
i | ≤ n1}]n1−1

) (
1− P{|V X

i | ≤ n
1/3
1 }

)
≤ n1[1− P{|V X

i | ≤ n
1/3
1 }] = n1[P{|V X

i | > n
1/3
1 }] ≤ n1

∫
|v|3>n1

1dFX
V (v)

≤ n1

∫
|v|3>n1

|v|3

n1

dFX
V (v) =

∫
|v|3I{|v|3 > n1} =

n1→∞−→ 0.

Then, for all the types of censored data aforementioned, from (4.52), assumption (AS9) in

Theorem 4.3 and the fact

{WX
1 , . . . ,W

X
m1
} ⊂ {V X

1 , . . . , V X
n1
} or {CX

1 , D
X
1 , . . . , C

X
n1
, DX

n1
}, (4.53)

we have

max
1≤i≤m1

|WX
i | ≤ max

1≤i≤n1

|V X
i | = Op(n

1/3
1 ) (4.54)

or

max
1≤i≤m1

|WX
i | ≤ max

1≤i≤n1

|CX
i |+ max

1≤i≤n1

|DX
i | = Op(n

1/3
1 ). (4.55)

Similarly, for all the types of censored data aforementioned, from (4.3)

max
1≤i≤m0

|W Y
i | = Op(n

1/3
0 ). (4.56)

Since γ̂
P→ γ

0
⇒ γ̂ = Op(1), we know that (4.50) follows from (4.51), (4.54), (4.55), and

(4.56), which completes the proof.
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Proof of Theorem 4.3 From (4.43) and (4.20) we can write an expression for logR0 as

follows

logR0 = log
m∏
i=1

(
p̃i
wi

)nwi
= n

m∑
i=1

wi log

[
wi

1 + λ0(Ŵi − µ0)

]
− n

m∑
i=1

wi logwi

= −n
m∑
i=1

wi log(1 + λ0(Ŵi − µ0)).

(4.57)

To determine the asymptotic behavior of−2 logR0, we need to study the asymptotic behavior

of λ0. First, we note that from (4.14), µ̂ and σ2
n in (4.47) can be written as follows:

µ̂ =

∫
xdF̂n(x) = ρ0µ̂X + γ̂ρ1µ̂Y = ρ0

m0∑
i=1

p̂Xi W
X
i + ρ1

m1∑
i=1

p̂Yi (γ̂W Y
i ) =

m∑
i=1

wiŴi (4.58)

and

σ2
n =

∫
(x− µ̂)2dF̂n(x) =

m∑
i=1

wi(Ŵi − µ̂)2. (4.59)

Denote S2 =
∫

(x− µ0)2dF̂n(x). Then,

S2 =
m∑
i=1

wi(Ŵi − µ0)2 =
m∑
i=1

wi(Ŵi − µ̂+ µ̂− µ0)2

=
m∑
i=1

wi(Ŵi − µ̂)2 + 2
m∑
i=1

wi(Ŵi − µ̂)(µ̂− µ0) +
m∑
i=1

wi(µ̂− µ0)2

(4.58)
====

m∑
i=1

wi(Ŵi − µ̂)2 + (µ̂− µ0)2 = σ2
n +Op(n

−1).

(4.60)

Since

σ2
n =

∫
(x− µ̂)2dF̂n(x)

P→ σ2 =

∫
(x− µX)dF (x) (4.61)

due to |F̂n(x)− F (x)| a.s.→ 0 and Theorem 4.1 we have

S2 P→ σ2, as n→∞, (4.62)

which implies S2 > 0 in probability, as n→∞.
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Now we show that for any 1/3 < q < 1/2, we have

λ0 = Op(n
−q). (4.63)

From (4.50) we have in probability

1 + n−q(Ŵi − µ0) ≤ 1 + n−q|Ŵi − µ0| ≤ 1 + n−q+1/3

and in (4.80), we have

g(n−q) =
m∑
i=1

wi(Ŵi − µ0)

1 + n−q(Ŵi − µ0)

=
m∑
i=1

wi(Ŵi − µ0)[1 + n−q(Ŵi − µ0)]− n−qwi(Ŵi − µ0)2

1 + n−q(Ŵi − µ0)

=
m∑
i=1

wi(Ŵi − µ0)− n−q
m∑
i=1

wi(Ŵi − µ0)2

1 + n−q(Ŵi − µ0)

= µ̂− µ0 − n−q
m∑
i=1

wi(Ŵi − µ0)2

1 + n−q(Ŵi − µ0)

≤ µ̂− µ0 − n−q
m∑
i=1

wi(Ŵi − µ0)2

1 + n−q+1/3
= µ̂− µ0 −

n−qS2

1 + n−q+1/3

= µ̂− µ0 −
S2

nq + n1/3
.

In turn, by assumption (AS9) and (4.62), we have

P{g(n−q) ≥ 0} = P{n1/2g(n−q) ≥ 0} ≤ P
{
n1/2(µ̂− µ0)− n1/2S2

nq + n1/3
≥ 0
}

= P
{
Op(1)− n1/2S2

nq + n1/3
≥ 0
}

n→∞−→ 0

because − n1/2S2

nq+n1/3

P→ −∞, as n → ∞. Thus, we have that g(n−q) < 0 in probability.

Similarly, we can show g(−n−q) > 0 in probability. Since g(λ) is strictly decreasing on J ,

(4.63) follows because

g(n−q) < 0 < g(−n−q) ⇒ g(n−q) < g(λ0) < g(−n−q)

⇒ −n−q < λ0 < n−q ⇒ |λ0| < n−q.
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To get an asymptotic expression for λ0, we let h = g−1 and note that h(0) = λ0 and

h(µ̂ − µ0) = 0 because g(λ0) = 0 and g(0) = µ̂ − µ0 (by (4.58)), respectively. From the

Taylor Expansion of h, we obtain

λ0 = h(0) = h(µ̂− µ0) + (0− (µ̂− µ0))h′(ξ) = −(µ̂− µ0)h′(ξ), (4.64)

where |ξ| ≤ |µ̂− µ0|. Thus, λ0 can be written as

λ0 =
−(µ̂− µ0)

g′(η)
=

−(µ̂− µ0)

−
∑m

i=1
wi(Ŵi−µ0)2

(1+η(Ŵi−µ0))2

·
∑m

i=1wi(Ŵi − µ0)2

S2

=
(µ̂− µ0)

S2
·
∑m

i=1wi(Ŵi − µ0)2∑m
i=1

wi(Ŵi−µ0)2

(1+η(Ŵi−µ0))2

=
(µ̂− µ0)

S2
· r0,

(4.65)

where η = g−1(ξ) with |η| ≤ |λ0| and

r0 =

∑m
i=1wi(Ŵi − µ0)2∑m
i=1

wi(Ŵi−µ0)2

(1+η(Ŵi−µ0))2

. (4.66)

To examine the asymptotic property of r0, we note that from (4.63) and |η| ≤ |λ0|, we have

η = Op(n
−q), in turn, (4.50) gives

|η| max
1≤i≤m

|Ŵi − µ0| = Op(n
−q)Op(n

1/3) = Op(n
−q+1/3) = op(1). (4.67)

Thus, we have

r0
P−→ 1, (4.68)
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because

|r0 − 1| =

∣∣∣∣∣
∑m

i=1 wi(Ŵi − µ0)2∑m
i=1

wi(Ŵi−µ0)2

[1+η(Ŵi−µ0)]2

− 1

∣∣∣∣∣ =

∣∣∣∣∣
∑m

i=1 wi(Ŵi − µ0)2 −
∑m

i=1
wi(Ŵi−µ0)2

[1+η(Ŵi−µ0)]2∑m
i=1

wi(Ŵi−µ0)2

[1+η(Ŵi−µ0)]2

∣∣∣∣∣
=

∣∣∣∣∣
∑m

i=1
wi(Ŵi−µ0)2[1+η(Ŵi−µ0)]2−wi(Ŵi−µ0)2

[1+η(Ŵi−µ0)]2∑m
i=1

wi(Ŵi−µ0)2

[1+η(Ŵi−µ0)]2

∣∣∣∣∣ =

∣∣∣∣∣
∑m

i=1
η2wi(Ŵi−µ0)4+2ηwi(Ŵi−µ0)3

[1+η(Ŵi−µ0)]2∑m
i=1

wi(Ŵi−µ0)2

[1+η(Ŵi−µ0)]2

∣∣∣∣∣
≤

∣∣∣∣∣
∑m

i=1
|η|wi(Ŵi−µ0)2[max1≤i≤m |Ŵi−µ0|][2+|η|max1≤i≤m |Ŵi−µ0|]

[1+η(Ŵi−µ0)]2∑m
i=1

wi(Ŵi−µ0)2

[1+η(Ŵi−µ0)]2

∣∣∣∣∣
=

[
|η| max

1≤i≤m

∣∣Ŵi − µ0

∣∣] [2 + |η| max
1≤i≤m

∣∣Ŵi − µ0

∣∣]
(4.67)
==== op(1)

(
2 + op(1)

)
P−→ 0.

Hence, from (4.62), (4.3), (4.68) and Slutsky’s Theorem part (ii) (Serfling, 1980; page 19),

we have that as n→∞

√
nλ0 = r0

√
n(µ̂− µ0)

S2

D→ N

(
0,
τ 2

σ4

)
⇒ λ0 = Op(n

−1/2). (4.69)

Note that from assumption (AS10), we have:

µ̂3n =

∫
(x− µ̂)3dF̂n(x) =

m∑
i=1

wi(Ŵi − µ̂)3 and µ3 ≡
∫

(x− µ0)3dFX(x), (4.70)

and we introduce the following notation:

µ̃3n

∫
(x− µ0)3dF̂n(x) =

m∑
i=1

wi(Ŵi − µ0)3 =
m∑
i=1

wi(Ŵi − µ̂+ µ̂− µ0)3

=
m∑
i=1

wi

[
(Ŵi − µ̂)3 + (µ̂− µ0)3

]
+ 3

m∑
i=1

wi

[
(Ŵi − µ̂)2(µ̂− µ0) + (Ŵi − µ̂)(µ̂− µ0)2

]
(4.58)
==== µ̂3n + 3(µ̂− µ0)σ̂2

n + (µ̂− µ0)3 = µ̂3n + 3(µ̂− µ0)
[
σ̂2
n + (µ̂− µ0)2

]
(AS10)
===== µ̂3n +Op(n

−1/2). (4.71)
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To study the asymptotic behavior of R0, from (4.57), (4.58), (4.60), (4.71) and the Taylor

Expansion of log(1 + x), we write −2 logR0 as follows:

−2 logR0 = 2n
m∑
i=1

wi log
[
1 + λ0(Ŵi − µ0)

]

= 2n
m∑
i=1

wi

λ0(Ŵi − µ0)− 1

2

[
λ0(Ŵi − µ0)

]2

+
1

3

[
λ0(Ŵi − µ0)

]3

−

[
λ0(Ŵi − µ0)

]4

4(1 + ξi)4


= 2nλ0

m∑
i=1

wi(Ŵi − µ0)− nλ2
0

m∑
i=1

wi(Ŵi − µ0)2 +
2nλ3

0

3

m∑
i=1

wi(Ŵi − µ0)3

−nλ
4
0

2

m∑
i=1

wi(Ŵi − µ0)4

(1 + ξi)4

= 2nλ0(µ̂− µ0)− nλ2
0S

2 +
2nλ3

0

3
µ̃3n −

nλ4
0

2

m∑
i=1

wi(Ŵi − µ0)4

(1 + ξi)4
, (4.72)

where ξi is between 0 and λ0(Ŵi − µ0). Note that |ξi| ≤ |λ0(Ŵi − µ0)| for 1 ≤ i ≤ m, and

from (4.50) and (4.69),

max
1≤i≤m

|λ0(Ŵi − µ0)| = Op(n
−1/2)Op(n

1/3) = op(1).

Thus, from (4.50), (4.60), and (4.69), we have that in probability

λ4
0

m∑
i=1

wi(Ŵi − µ0)4

(1 + ξi)4
≤ λ4

0

m∑
i=1

wi(Ŵi − µ0)4

(1/2)4
= 16λ4

0

m∑
i=1

wi(Ŵi − µ0)4

≤ 16λ4
0 max

1≤i≤m
(Ŵi − µ0)2

m∑
i=1

wi(Ŵi − µ0)2

= 16 Op(n
−2)Op(n

2/3)S2 = Op(n
−4/3).

Hence, equation (4.72) can be written as

− 2 logR0 = 2nλ0(µ̂− µ0)− nλ2
0S

2 +
2nλ3

0

3
µ̃3n + op(1). (4.73)
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From (4.3) and (4.71), we have µ̃3n = Op(1). From (4.62), we have S2 = Op(1). From (4.3),

we have µ̂ − µ0 = Op(n
−1/2). From (4.68), we have 2r0 − r2

0
P−→ 1. Thus, from (4.65), we

have in (4.73),

−2 logR0 = 2n
(µ̂− µ0)2

S2
r0 − n

(µ̂− µ0)2

S2
r2

0 +
2nµ̃3n

3

(µ̂− µ0)3

S6
r3

0 + op(1)

=

[√
n(µ̂− µ0)

S

]2 [
2r0 − r2

0 +
2r3

0µ̃3n(µ̂− µ0)

3S4

]
+ op(1)

=

[√
n(µ̂− µ0)

S

]2 (
1 + op(1) +Op(n

−1/2)
)

+ op(1). (4.74)

From (4.3), (4.62), and Slutsky’s Theorem part (ii) [38]*page 19, we have

−2 logR0 =

(√
n(µ̂− µ0)

τ

)2
τ 2

S2

(
1 + op(1)

)
+ op(1)

D−→ τ 2

σ2
χ2

(1), as n→∞,

which completes the proof.

From Theorem 4.3, in (4.45) we have

α = P {−2 logR0 ≥ −2 log c | H0} ≈ P
{
χ2

(1) ≥ −2 log c(σ2/τ 2)
}
,

where σ2/τ 2 is a constant that needs to be estimated. One possible approach is to use the

following bootstrap procedure:

Bootstrap procedure for estimating σ2/τ 2 :

Step 1. Compute ŝ2 and µ̂3n.

Step 2. Generate bootstrap samples OX∗
1 , . . . ,OX∗

n1
and OY ∗

1 , . . . ,OY ∗
n0

as in (2.26).

Step 3. Compute Ĝ∗ and Ĥ∗ as in (2.2).

Step 4. Compute F̂ ∗n( · ; η̂) as in (2.20).

Step 5. Estimate −2 logR0.
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Then, from the chi-squared distribution table, constant c is calibrated by

− 2 log c/Ĉ1 = χ2
(1),α ⇒ c = e−Ĉ1χ2

(1),α
/2, (4.75)

where χ2
(1),α is defined as the value satisfying P{χ2

(1) > χ2
(1),α} = α. With c determined in

(4.75), the rejection region for test (4.7) is given in (4.44).

4.3.2 Confidence Intervals

From (4.14) and R0 in (4.16), the weighted empirical likelihood ratio confidence region

analogous to (1.40) for µX ≡ µ0 is given by:

S =

{∫
xdF (x)

∣∣∣∣ R(F ; γ̂) ≥ c, F � Fn

}
=

{
m∑
i=1

p
i
Ŵi

∣∣∣∣ p ∈ Ẽc

}
, (4.76)

where

Ẽc =

{
p

∣∣∣∣ 0 ≤ p
i
≤ 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1;
m∏
i=1

(
p
i

wi

)nwi
≥ c

}
. (4.77)

The following two lemmas establish properties of S in (4.76) and establish a relationship

between S and R0 in (4.16).

Lemma 4.5. S is an interval that satisfies S = [XL, XU ] , where

XL = inf
p∈Ẽc

m∑
i=1

p
i
Ŵi and XU = sup

p∈Ẽc

m∑
i=1

p
i
Ŵi. (4.78)

Proof First, we let y ∈ S, which implies that y =
∑m

i=1 p
∗
i Ŵi for some p∗ ∈ Ec. Then, we

have

XL = inf
p∈Ec

m∑
i=1

piŴi ≤ y ≤ sup
p∈Ec

m∑
i=1

piŴi = XU ⇒ y ∈ [XL, XU ].
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Now, we let y ∈ [XL, XU ]. To show that y ∈ S, we first show that minp∈Ec
∑m

i=1 piŴi

and maxp∈Ec
∑m

i=1 piŴi are attained on the set Ec. Note that Ec is a subset of Rm and is

bounded because of the constraint 0 ≤ pi ≤ 1, i = 1, . . . ,m. Also note that if p(k) → p0, as

k →∞, for a sequence p(k) ∈ Ec, we have

m∏
i=1

(
p

(k)
i

wi

)nwi

≥ c,
m∑
i=1

p
(k)
i = 1, 0 ≤ p

(k)
i ≤ 1, for i = 1, . . . ,m,

and we have

c ≤ lim
k→∞

m∏
i=1

(
p

(k)
i

wi

)nwi

=
m∏
i=1

(
limk→∞ p

(k)
i

wi

)nwi

=
m∏
i=1

(
p0
i

wi

)nwi
1 = lim

k→∞

m∑
i=1

p
(k)
i =

m∑
i=1

lim
k→∞

p
(k)
i =

m∑
i=1

p0
i

0 ≤ lim
k→∞

p
(k)
i = p0

i ≤ 1, i = 1, . . . ,m,

which implies that p0 ∈ Ec. Thus, Ec is closed; in turn, we know that Ec is compact. Since

function f(p) =
∑m

i=1 piŴi is linear and continuous on Ec, f(p) attains its minimum and

maximum on Ec. Hence, we have XL =
∑m

i=1 p
L
i and XU =

∑m
i=1 p

U
i for some pL, pU ∈ Ec,

which gives

f(pL) = XL ≤ y ≤ XU = f(pU).

Now, it suffices to show that y =
∑m

i=1 p
∗
i Ŵi for some p∗ ∈ Ec. Consider

h(λ) = f((1− λ)pL + λpU), 0 ≤ λ ≤ 1.

Then, we have h(0) = f(pL) ≤ y ≤ f(pU) = h(1), and we know that h(λ) is continuous and

differentiable for 0 ≤ λ ≤ 1 because

h(λ) =
m∑
i=1

[
(1− λ)pLi + λpUi

]
Ŵi = (1− λ)

m∑
i=1

pLi Ŵi + λ

m∑
i=1

pUi Ŵi
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is a linear function of λ. From the Mean-Value Theorem in Calculus we know that there exists

a λ∗ ∈ [0, 1] such that h(0) ≤ y = h(λ∗) ≤ h(1) ⇒ f(pL) ≤ y = f(p∗) =
∑m

i=1 p
∗
i Ŵi ≤

f(pU), where p∗ = (1− λ∗)pL + λ∗pU . We complete the proof by showing p∗ ∈ Ec.

Since 0 ≤ pLi ≤ 1 and 0 ≤ pUi ≤ 1, 1 ≤ i ≤ m, we have

0 ≤ p∗i = (1− λ∗)pLi + λ∗pUi ≤ (1− λ∗) + λ∗ = 1, i = 1, . . . ,m

and since
∑m

i=1 p
L
i = 1 and

∑m
i=1 p

U
i = 1, we have

m∑
i=1

p∗i =
m∑
i=1

[
(1− λ∗)pLi + λ∗pUi

]
= (1− λ∗)

m∑
i=1

pLi + λ∗
m∑
i=1

pUi = (1− λ∗) + λ∗ = 1.

To show that
∏m

i=1(
p∗i
wi

)nwi ≥ c, we consider

g1(p) = log
m∏
i=1

(
pi
wi

)nwi
= n

m∑
i=1

wi log pi − n
m∑
i=1

wi logwi.

Then, for any p ∈ S = {p | pi > 0}, the gradient vector and Hessian matrix (Bazarra,

Sherali, and Shetty, page 90) [1] of g1 exist and are given by, respectively,

∇g1(p) =

(
nw1

p1

, . . . ,
nwm
pm

)

and, with hij the component in the ith row and jth column of the Hessian matrix,

hij =
∂2g1(p)

∂pi∂pj
=


−nwi
p2
i

if i = j

0 if i 6= j.

=⇒ Hg1 = diag

{
−nw1

p2
1

, . . . ,−nwm
p2
m

}
.

Since Hg1 is a diagonal matrix with diagonal elements −nwi
p2i

< 0, 1 ≤ i ≤ m for pi > 0, Hg1

is negative definite on S. Note that S is a convex set (Bazarra, Sherali, and Shetty, 1993,

page 34) [1] and thus, function g1(p) is strictly concave on S by Theorem 3.3.8 of (Bazarra,
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Sherali, and Shetty, 1993, page 92). [1] Also note that wi > 0 and pL,pU ∈ Ec, imply

pL,pU ∈ S because
∏m

i=1

(
pLi
wi

)nwi
≥ c > 0 ⇒ pLi > 0, 1 ≤ i ≤ m. Since g1 is a strictly

concave function on S, from g1(pL) = log
[∏m

i=1

(
pLi
wi

)nwi]
≥ log(c) and g1(pU) ≥ log(c), we

have

log

[
m∏
i=1

(
p∗i
wi

)nwi]
= g1(p∗) = g1((1− λ∗)pL + λ∗pU)

≥ (1− λ∗)g1(pL) + λ∗g1(pU)

≥ (1− λ∗) log(c) + λ∗ log(c) = log(c),

which implies that
∏m

i=1

(
p∗i
wi

)nwi
≥ c, which completes the proof.

Lemma 4.6. XL ≤ µ
0
≤ XU if and only if R0 ≥ c.

Proof Suppose XL ≤ µ0 ≤ XU . Then, we have µ0 =
∑m

i=1 p
∗
i Ŵi for some p∗ ∈ Ec. Since

p∗ ∈ Ec, we have

m∏
i=1

(
p∗i
wi

)nwi
≥ c,

m∑
i=1

p∗i = 1, 0 ≤ p∗i ≤ 1, for i = 1, . . . ,m.

Then, p∗ ∈ Fc and we have

c ≤
m∏
i=1

(
p∗i
wi

)nwi
≤ sup

p∈Fc

m∏
i=1

(
pi
wi

)nwi
= R0.

Now supposeR0 ≥ c. To show thatXL ≤ µ0 ≤ XU , we first show that maxp∈Fc
∏m

i=1

(
pi
wi

)nwi
is attained on the set Fc. Note that Fc is a subset of Rm and is bounded because of the con-

straint 0 ≤ pi ≤ 1, i = 1, . . . ,m. Also note that if p(k) → p0, as k → ∞ for a sequence
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p(k) ∈ Fc, we have

m∑
i=1

p
(k)
i Ŵi = µ0,

m∑
i=1

p
(k)
i = 1, 0 ≤ p

(k)
i ≤ 1, for i = 1, . . . ,m,

and we have

µ0 = lim
k→∞

m∑
i=1

p
(k)
i Ŵi =

m∑
i=1

lim
k→∞

p
(k)
i Ŵi =

m∑
i=1

p0
i Ŵi

1 = lim
k→∞

m∑
i=1

p
(k)
i =

m∑
i=1

lim
k→∞

p
(k)
i =

m∑
i=1

p0
i

0 ≤ lim
k→∞

p
(k)
i = p0

i ≤ 1, i = 1, . . . ,m,

which implies that p0 ∈ Fc. Thus, Fc is closed; in turn, we know that Fc is compact. Since

function f(p) =
∏m

i=1( pi
wi

)nwi is continuous on Fc, f(p) attains its maximum for some p∗ on

Fc. Hence, we have

c ≤ R0 = sup
p∈Fc

m∏
i=1

(
pi
wi

)nwi
= max

p∈Fc

m∏
i=1

(
pi
wi

)nwi
=

m∏
i=1

(
p∗i
wi

)nwi
.

Since p∗ ∈ Fc, we have

m∏
i=1

(
p∗i
wi

)nwi
≥ c,

m∑
i=1

p∗i Ŵi = µ0,
m∑
i=1

p∗i = 1, 0 ≤ p∗i ≤ 1, for i = 1, . . . ,m,

Hence, µ0 =
∑m

i=1 p
∗
i Ŵi with p∗ ∈ Ec which implies that µ0 ∈

{∑m
i=1 piŴi

∣∣ p ∈ Ec
}

; in

turn, µ0 ∈ [XL, XU ] , which completes the proof.

From Theorem 4.3 and Lemma 4.6, we have

P
{
XL ≤ µ

0
≤ XU

}
= P {−2 logR0 ≤ −2 log c} ≈ P

{
χ2

(1) ≤
−2 log c

Ĉ1

}
= 1− α,

where c is determined by (4.75). The procedure for obtaining Ĉ1 is provided in Chapter 5

where we present the estimation algorithm.
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4.3.3 Computation of Confidence Intervals

In this section, we discuss computation of XL and XU in (4.78). From (4.78), XL and XU

are obtained, respectively, by solving
Minimize/Maximize f(p) =

m∑
i=1

p
i
Ŵi

subject to: 0 < p
i
< 1, 1 ≤ i ≤ m;

m∑
i=1

p
i

= 1;
m∏
i=1

(
p
i

wi

)nwi
≥ c.

(4.79)

To find a candidate for a solution to (4.79) using the Lagrange multipliers, we denote

G(p, β, λ) =
m∑
i=1

p
i
Ŵi + β

[
log c− n

m∑
i=1

wi log

(
p
i

wi

)]
+ λ

[
1−

m∑
i=1

p
i

]
(4.80)

then we have for 1 ≤ i ≤ m

0 =
∂G

∂p
i

= Ŵi −
nβwi
p
i

− λ ⇒ p
i

=
nβwi

Ŵi − λ
. (4.81)

Note that nwi > 0 for 1 ≤ i ≤ m and to ensure that the denominator in (4.81) is not equal

to 0, we need either λ < Ŵ(1) or λ > Ŵ(m), for which we have

when λ < Ŵ(1), we need β > 0 in (4.81);

when λ > Ŵ(m), we need β < 0 in (4.81).

(4.82)

111



From (2.3), (4.14), (4.81), and the second constraint in (4.79), we have

0 = p
i
Ŵi − piλ− nβwi ⇒ 0 =

m∑
i=1

[
p
i
Ŵi − nβwi

]
− λ

⇒ 0 =
m∑
i=1

[
nβwi

Ŵi − λ
Ŵi − nβwi

]
− λ

⇒ 0 = nβ

m∑
i=1

[
wiŴi

Ŵi − λ
− wi

]
− λ

⇒ λ = nβ

m∑
i=1

λwi

Ŵi − λ

⇒ β =
1

n
∑m

i=1
wi

Ŵi−λ
. (4.83)

From (4.82) and (4.83), we have

when λ < Ŵ(1), we have β > 0 in (4.83); (4.84)

when λ > Ŵ(m), we have β < 0 in (4.83). (4.85)

Substituting (4.83) into (4.81), we obtain for λ < Ŵ(1) or λ > Ŵ(m),

p
i

=
wi

(Ŵi − λ)
∑m

j=1
wj

Ŵj−λ

, 1 ≤ i ≤ m. (4.86)

From equation (4.80) we have for λ < Ŵ(1) or λ > Ŵ(m),

0 =
∂G

∂β
= log c− n

m∑
i=1

wi log

(
p
i

wi

)

= log c− n
m∑
i=1

wi log

 wi

wi

[(
Ŵi − λ

)∑m
j=1

wj

Ŵj−λ

]


= log c+ n
m∑
i=1

wi log

[(
Ŵi − λ

) m∑
j=1

wj

Ŵj − λ

]
≡ g(λ),

(4.87)

where g(λ) is well-defined on (−∞, Ŵ(1)) and (Ŵ(m),∞).
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The following lemma provides expressions for the solutions of optimization problem

(4.79).

Lemma 4.7. XL and XU given by

XL =

(
m∑
j=1

wj

Ŵj − λL

)−1 m∑
i=1

(
wiŴi

Ŵi − λL

)
(4.88)

with λL as the unique solution of g(λ) on (−∞, Ŵ(1)) and

XU =

(
m∑
j=1

wj

Ŵj − λU

)−1 m∑
i=1

(
wiŴi

Ŵi − λU

)
(4.89)

with λL as the unique solution of g(λ) on (Ŵ(m),∞) are the unique minimum and maximum

solutions for (4.79), respectively.

Proof We first note that in the proof of Lemma 4.6 it is shown that the minimum p̂Li ’s and

maximum p̂Ui ’s for XL and XU , respectively, are attained on the set Ec. Note that nwi > 0,

1 ≤ i ≤ m implies p̂Li > 0, 1 ≤ i ≤ m and similarly p̂Ui > 0, 1 ≤ i ≤ m. Also, note that

p̂Lj = 1 for some 1 ≤ j ≤ m implies that p̂Li = 0 for all i 6= j because of
∑m

i=1 p̂
L
i = 1

and similarly, p̂Uj = 1 for some 1 ≤ j ≤ m implies that p̂Ui = 0 for all i 6= j because of∑m
i=1 p̂

U
i = 1. Thus, the minimum and maximum solutions of (4.79) are attained on the set

E∗c where

E∗c =

{
p

∣∣∣∣ 0 < pi < 1, 1 ≤ i ≤ m;
m∏
i=1

(
pi
wi

)nwi
≥ c;

m∑
i=1

pi = 1

}
. (4.90)
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Then, optimization problem (4.79) is equivalent to the following optimization problem:

Minimize/Maximize f(p) =
m∑
i=1

piŴi

subject to: g1(p) = log c− n
m∑
i=1

wi log

(
pi
wi

)
≤ 0

h1(p) = 1−
m∑
i=1

pi = 0

0 < pi < 1, 1 ≤ i ≤ m.

(4.91)

First, based on (4.86), we define the notation p̂L = (p̂L1 , . . . , p̂
L
m) where

p̂Li =
wi

(Ŵi − λL)
∑m

j=1
wj

Ŵj−λL

, 1 ≤ i ≤ m, (4.92)

and p̂U = (p̂U1 , . . . , p̂
U
m) where

p̂Ui =
wi

(Ŵi − λU)
∑m

j=1
wj

Ŵj−λU

, 1 ≤ i ≤ m. (4.93)

Next, for optimization problem (4.91) we verify the KKT conditions in Theorem 4.3.8 of

Bazarra, Sherali, and Shetty (1993, page 164). [1] Note that X = {p | 0 < pi < 1 , 1 ≤ i ≤ m}

is a nonempty open set in Rm, and that f(p), g1(p), and h1(p) in (4.91) are each from

Rm → R. Since p̂L, p̂U ∈ X satisfy constraints g1(p) = 0 and h1(p) = 0, p̂L and p̂U are

both feasible solutions for optimization problem (4.91) (Bazarra, Sherali, and Shetty, 1993,

page 99). [1]

Since f(p) is a linear function, and thus differentiable on E∗c , it is both psuedoconvex and

psuedoconcave on E∗c (Bazarra, Sherali, and Shetty, 1993, page 116 and 118). [1] Similarly,

since h1(p) is a linear function, and thus differentiable on E∗c , it is both quasiconvex and
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quasiconcave on E∗c ((Bazarra, Sherali, and Shetty, 1993, page 116 and 118). [1] Also note

that g1(p) is both quasiconvex and quasiconcave on E∗c .

Next, we consider the sign of the Lagrange multiplier β, given in (4.83). When β > 0,

the feasible solution p̂L is a candidate for the solution of the minimization problem in (4.91).

Note that the KKT conditions are satisfied for p̂L because

∇f(p̂L) + β∇g1(p̂L) + λL∇h1(p̂L) =


Ŵ1

...

Ŵm

+
1

n
∑m

i=1
wi

Ŵi−λL


−nw1

p̂L1

...

−nwm
p̂Lm

+ λL


−1

...

−1



=


Ŵ1

...

Ŵm

+
1

n
∑m

i=1
wi

Ŵi−λL


−n(Ŵ1 − λL)

∑m
i=1

wi
Ŵi−λL

...

−n(Ŵm − λL)
∑m

i=1
wi

Ŵi−λL

+


−λL

...

−λL



=


Ŵ1

...

Ŵm

+


−(Ŵ1 − λL)

...

−(Ŵm − λL)

+


−λL

...

−λL

 = 0.

Thus, by Theorems 3.4.2 and 4.3.8 of (Bazarra, Sherali, and Shetty, 1993, pages 101 and

164), [1] p̂L is the unique solution to the minimization problem in (4.91).

Similarly, when β < 0, the feasible solution p̂U is a candidate for the solution of the

maximization problem in (4.91). Note that the KKT conditions are satisfied for p̂U because
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∇f(p̂U) + β∇g1(p̂U) + λU∇h1(p̂U) =


Ŵ1

...

Ŵm

+
1

n
∑m

i=1
wi

Ŵi−λU


−nw1

p̂U1

...

−nwm
p̂Um

+ λU


−1

...

−1



=


Ŵ1

...

Ŵm

+
1

n
∑m

i=1
wi

Ŵi−λU


−n(Ŵ1 − λU)

∑m
i=1

wi
Ŵi−λU

...

−n(Ŵm − λU)
∑m

i=1
wi

Ŵi−λU

+


−λU

...

−λU



=


Ŵ1

...

Ŵm

+


−(Ŵ1 − λU)

...

−(Ŵm − λU)

+


−λU

...

−λU

 = 0.

Thus, by Theorems 3.4.2 and 4.3.8 of (Bazarra, Sherali, and Shetty, 1993, pages 101 and

164), [1] p̂U is the unique solution to the maximization problem in (4.91).
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CHAPTER 5
SIMULATION STUDIES

In this chapter we discuss some relevant bootstrap procedures and provide simulation results

for the estimators for γ
0

and µX , given in Chapters 3−4, respectively. The organization of

this chapter is as follows. Section 5.1 reviews the Bootstrap Percentile Confidence Interval.

Section 5.2 gives simulation results on estimators for the scale parameter γ0, discussed in

Chapter 3. Section 5.3 gives simulation results on estimators for µX , discussed in Chapter 4.

Section 5.4 gives simulation results on the treatment distribution estimator for FX .

5.1 Review of Bootstrap Percentile Confidence Intervals

In this section, we discuss ideas of the bootstrap method and in particular, we outline the

main ideas of the bootstrap percentile confidence interval [12]. Let

X1, . . . , Xn
i.i.d.∼ F0, (5.1)

where F0 is an unknown distribution function. Consider a parameter of interest given by

θ = T (X;F ), where X = (X1, . . . , Xn). Once a random sample is observed, we can obtain

an estimate θ̂ for θ using the plug-in principle as follows:

θ̂ = T (X; F̂n), (5.2)
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where F̂n is the empirical distribution function that is calculated from the observed sample.

A bootstrap sample is a sample of size n drawn with replacement from the population of n

objects (X1, . . . , Xn) and is denoted as X∗ = (X∗1 , . . . , X
∗
n).

The Bootstrap Percentile Confidence Interval can be computed as follows.

Bootstrap Percentile Confidence Interval Algorithm:

Step 1. Generate a bootstrap sample X∗1 . . . , X
∗
n from the sample in (5.1).

Step 2. Calculate θ̂∗(X∗).

Step 3. Repeat Steps 1−3 B times to obtain θ̂∗(b), b = 1, . . . B, where B is usually chosen

to be 1000.

Step 4. Arrange the θ̂∗(i)′s in ascending order: θ̂∗(1) ≤ · · · ≤ θ̂∗(B)

Step 5. Let θ̂
∗(α)
B be the 100 · αth percentile.

Then, a (1− α) · 100% Bootstrap Percentile Confidence Interval is given by:

(
θ̂
∗(α/2)
B , θ̂

∗(1−α/2)
B

)
. (5.3)

5.2 Point and Interval Estimators of a Scale Parameter

In this section, we provide simulation results on point estimates and interval estimates for

scale parameter γ
0

in Two-Sample Accelerated Life Model (1.5). While only a few selected

results are included in this dissertation, additional simulations yielded similar results. For
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the simulations in this dissertation, we denote Exp(µ) as the exponential distribution with

the mean µ.

5.2.1 Point Estimators for the Scale Parameter

For this section, we present simulation results for the point estimate γ̂
E

in (3.2) and the

point estimate γ̂
R

as described in Steps 1-3 of the bootstrap procedure at the end of Sub-

section 3.2.3.

In Table 5.1, 10,000 right censored samples (1.16) of sizes 25, 50, and 100 are taken

from X ∼ Exp(1) and Y ∼ Exp(2) with censoring distribution C ∼ Exp(4). Note that

the censoring percentages for the X’s and Y ’s are given in Table 5.1. In addition, for each

method we provide the estimate, standard error (SE), error, and relative error.

From Tables 5.1 and 5.2, we see that rank based estimator γ̂
R

has smaller relative errors

for each of the sample sizes examined and thus, γ̂
R

provides a better estimate for the true

parameter γ
0

than the naive estimator γ̂
E

.

We also note that it appears that the rank based estimator γ̂
R

tends to underestimate

γ
0

while naive estimator γ̂
E

tends to overestimate γ
0
. This is something to be explored in

future research.
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Table 5.1: Point Estimators for the scale parameter γ
0

X ∼ Exp(2), Y ∼ Exp(1), C ∼ Exp(4), γ0 = 0.5

Sample Size Censoring % Method Estimate SE Error Relative Error

nX = nY = 25 X: 20.10 γ̂
E

0.5493 0.1882 +0.0493 +0.0987

Y: 33.38 γ̂
R

0.4853 0.1758 −0.0147 −0.0293

nX = nY = 50 X: 20.02 γ̂
E

0.5260 0.1256 +0.0260 +0.0519

Y: 33.35 γ̂
R

0.4909 0.1225 −0.0091 −0.0182

nX = nY = 100 X: 20.01 γ̂
E

0.5146 0.0885 +0.0146 +0.0292

Y: 33.34 γ̂
R

0.4939 0.0866 −0.0061 −0.0123

Table 5.2: Point Estimators for the scale parameter γ
0

X ∼ Exp(2), Y ∼ Exp(5), C ∼ Exp(8), γ0 = 0.4

Sample Size Censoring % Method Estimate SE Error Relative Error

nX = nY = 25 X: 20.10 γ̂
E

0.4488 0.1563 +0.0488 +0.1220

Y: 38.48 γ̂
R

0.3909 0.1433 −0.0091 −0.0226

nX = nY = 50 X: 20.03 γ̂
E

0.4270 0.1045 +0.0270 +0.0675

Y: 38.46 γ̂
R

0.3943 0.1001 −0.0057 −0.0142

nX = nY = 100 X: 20.01 γ̂
E

0.4157 0.0738 +0.0157 +0.0393

Y: 38.49 γ̂
R

0.3955 0.0701 −0.0045 −0.0113
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Table 5.3: 90% C.I. for the scale parameter γ
0

with right censored exponential data

X ∼ Exp(1), Y ∼ Exp(2), C ∼ Exp(4), γ0 = 0.5

Censoring % for X: 20.07% Censoring % for Y: 33.48%

nX = nY = 25 Coverage Mean Length of C.I. s.d. Length of C.I.

Normal C.I. (γ̂
E

) (3.12) 0.882 0.5811 0.2287

Normal C.I. (γ̂
R

) (3.20) 0.825 0.5482 0.2146

Bootstrap Percentile C.I. (γ̂
E

) 0.866 0.5614 0.2200

Bootstrap Percentile C.I. (γ̂
R

) 0.838 0.5250 0.2064

5.2.2 Interval Estimators for the Scale Parameter

In Tables 5.3−5.8 we present the results for the interval estimates (3.12) and (3.20) respec-

tively along with bootstrap percentile confidence intervals. For Tables 5.3, 5.4, and 5.5, 1,000

right censored samples (1.16) of sizes 25, 50, and 100 are generated from X ∼ Exp(1) and

Y ∼ Exp(2) with censoring distribution C ∼ Exp(4). For Tables 5.6, 5.7, and 5.8, 1,000

right censored samples (1.16) of sizes 25, 50, and 100 are generated from X ∼ Exp(1) and

Y ∼ Exp(2) with censoring distribution C ∼ Exp(4). For each tables, the interval estimates

(3.12) and (3.20) are calculated. In addition, for each of the 1,000 simulation loops, we

take 400 nested bootstrap samples and compute the bootstrap percentile confidence inter-

vals for γ
0

based on γ̂
E

and γ̂
R

, respectively as described in (5.3). Note that the censoring

percentages for X and Y , respectively, are given as well.
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Table 5.4: 90% C.I. for the scale parameter γ
0

with right censored exponential data

X ∼ Exp(1), Y ∼ Exp(2), C ∼ Exp(4), γ0 = 0.5

Censoring % for X: 19.97% Censoring % for Y: 33.33%

nX = nY = 50 Coverage Mean Length of C.I. s.d. Length of C.I.

Normal C.I. (γ̂
E

) (3.12) 0.901 0.4008 0.1133

Normal C.I. (γ̂
R

) (3.20) 0.871 0.3979 0.1077

Bootstrap Percentile C.I. (γ̂
E

) 0.881 0.3940 0.1117

Bootstrap Percentile C.I. (γ̂
R

) 0.885 0.3986 0.1051

Table 5.5: 90% C.I. for the scale parameter γ
0

with right censored exponential data

X ∼ Exp(1), Y ∼ Exp(2), C ∼ Exp(4), γ0 = 0.5

Censoring % for X: 19.87% Censoring % for Y: 33.33%

nX = nY = 100 Coverage Mean Length of C.I. s.d. Length of C.I.

Normal C.I. (γ̂
E

) (3.12) 0.872 0.2821 0.0589

Normal C.I. (γ̂
R

) (3.20) 0.868 0.2839 0.0571

Bootstrap Percentile C.I. (γ̂
E

) 0.850 0.2839 0.0571

Bootstrap Percentile C.I. (γ̂
R

) 0.866 0.2807 0.0567
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Table 5.6: 90% C.I. for the scale parameter γ
0

with right censored exponential data

X ∼ Exp(2), Y ∼ Exp(5), C ∼ Exp(8), γ0 = 0.4

Censoring % for X: 20.07% Censoring % for Y: 38.80%

nX = nY = 25 Coverage Mean Length of C.I. s.d. Length of C.I.

Normal C.I. (γ̂
E

) (3.12) 0.896 0.4812 0.1907

Normal C.I. (γ̂
R

) (3.20) 0.826 0.4469 0.1753

Bootstrap Percentile C.I. (γ̂
E

) 0.853 0.4642 0.1831

Bootstrap Percentile C.I. (γ̂
R

) 0.836 0.4276 0.1695

Table 5.7: 90% C.I. for the scale parameter γ
0

with right censored exponential data

X ∼ Exp(2), Y ∼ Exp(5), C ∼ Exp(8), γ0 = 0.4

Censoring % for X: 19.97% Censoring % for Y: 38.25%

nX = nY = 50 Coverage Mean Length of C.I. s.d. Length of C.I.

Normal C.I. (γ̂
E

) (3.12) 0.904 0.3308 0.0922

Normal C.I. (γ̂
R

) (3.20) 0.883 0.3231 0.0872

Bootstrap Percentile C.I. (γ̂
E

) 0.874 0.3248 0.0907

Bootstrap Percentile C.I. (γ̂
R

) 0.886 0.3161 0.0850
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Table 5.8: 90% C.I. for the scale parameter γ
0

with right censored exponential data

X ∼ Exp(2), Y ∼ Exp(5), C ∼ Exp(8), γ0 = 0.4

Censoring % for X: 19.87% Censoring % for Y: 38.28%

nX = nY = 100 Coverage Mean Length of C.I. s.d. Length of C.I.

Normal C.I. (γ̂
E

) (3.12) 0.868 0.2328 0.0494

Normal C.I. (γ̂
R

) (3.20) 0.863 0.2307 0.0465

Bootstrap Percentile C.I. (γ̂
E

) 0.846 0.2301 0.0489

Bootstrap Percentile C.I. (γ̂
R

) 0.865 0.2281 0.0462

The Normal confidence interval (3.12) based on γ̂
E

has the best coverage level. We notice

that the mean length of the Normal confidence intervals (3.12) based on γ̂
E

are longer than

the others for sample sizes n = 25 and n = 50. Future research can be done to study this

further.

5.3 Point and Interval Estimators of the Treatment Mean

In this section, we provide simulation results on point estimates and interval estimates for

the treatment mean µX . While only a few selected results are included in this dissertation,

additional simulations yielded similar results. As in the previous section, we denote Exp(µ)

as the exponential distribution with mean µ.
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Table 5.9: Point Estimators for the treatment mean µX

X ∼ Exp(1), Y ∼ Exp(2), C ∼ Exp(4), µX = 1

Sample Size Censoring % Method Estimate SE Error Relative Error

nX = nY = 25 X: 20.1 µ̂E 0.9876 0.2246 −0.0124 −0.0124

Y: 33.4 µ̂R 0.9319 0.1625 −0.0292 −0.0292

nX = nY = 50 X: 20.0 µ̂E 0.9919 0.1587 −0.0081 −0.0081

Y: 33.3 µ̂R 0.9608 0.1592 −0.0392 −0.0392

nX = nY = 100 X: 20.0 µ̂E 0.9952 0.1141 −0.0048 −0.0048

Y: 33.3 µ̂R 0.9766 0.1158 −0.0234 −0.0234

5.3.1 Point Estimators for the Treatment Mean

For this section, we present simulation results for the point estimate µ̂E in (4.3) and the

point estimate µ̂R in (4.4). For µ̂R, we use the results from the previous section to estimate

γ̂
R

.

In Tables 5.9 10,000 right censored samples (1.16) of sizes 25, 50, and 100 are generated

from X ∼ Exp(1) and Y ∼ Exp(2) with censoring distribution C ∼ Exp(4). Similarly, in

Table 5.10, 10,000 right censored samples (1.16) of sizes 25, 50, and 100 are generated from

X ∼ Exp(1) and Y ∼ Exp(2) with censoring distribution C ∼ Exp(4). For each sample

size, the point estimate is given along with the censoring percentages for the X’s and Y ’s,

standard error (SE), error, and relative error.
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Table 5.10: Point Estimators for the treatment mean µX

X ∼ Exp(2), Y ∼ Exp(5), C ∼ Exp(8), µX = 2

Sample Size Censoring % Method Estimate SE Error Relative Error

nX = nY = 25 X: 20.1 µ̂E 1.9751 0.4493 −0.0249 −0.0124

Y: 38.5 µ̂R 1.8517 0.4257 −0.1483 −0.0741

nX = nY = 50 X: 20.0 µ̂E 1.9838 0.3174 −0.0162 −0.0081

Y: 38.5 µ̂R 1.9123 0.3171 −0.0877 −0.0439

nX = nY = 100 X: 20.0 µ̂E 1.9903 0.2283 −0.0097 −0.0048

Y: 38.5 µ̂R 1.9456 0.2314 −0.0544 −0.0272

From Tables 5.9 and 5.10, we see that estimator µ̂E has smaller relative errors and thus

provides a better estimate for the true mean µX . We note that while estimator µ̂R may not

be the best choice, this estimator still provides results which are comparable to µ̂E. Future

research can be done to study this further.

5.3.2 Interval Estimators for the Treatment Mean

In this section we present simulation results for the interval estimates for µX . We compute

two normal-based confidence intervals described in (4.12) based on µ̂E and µ̂R, respectively.

In addition, we compute the bootstrap percentile confidence interval for µX using the boot-

strap estimates µ̂∗R. For each of the 1,000 simulation loops, we take 400 nested bootstrap
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samples and compute the bootstrap percentile confidence interval for µX based on µ̂R as de-

scribed in (5.3). Finally, we compute the Weighted Empirical Likelihood Ratio Confidence

Interval (WELRCI) for µ0 by (4.88)−(4.89).

For Tables 5.11, 5.12, and 5.13 1,000 right censored samples (1.16) of sizes 25, 50, and 100

are generated from X ∼ Exp(1) and Y ∼ Exp(2) with censoring distribution C ∼ Exp(4)

and the interval estimates are calculated. Similarly, Tables 5.14, 5.15, and 5.16, 1,000 right

censored samples (1.16) of sizes 25, 50, and 100 are taken from X ∼ Exp(2) and Y ∼ Exp(5)

with censoring distribution C ∼ Exp(8) and the interval estimates are calculated.
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Table 5.11: 90% C.I. for the treatment mean µ0 with right censored exponential data.

X ∼ Exp(1), Y ∼ Exp(2), C ∼ Exp(4), µ0 = 1

Censoring % for X: 20.07% Censoring % for Y: 33.48%

nX = nY = 25 Coverage Mean Length of C.I. s.d. Length of C.I.

WELRCI 0.838 0.6466 0.1832

Normal C.I. (µ̂E) (4.12) 0.828 0.6510 0.2476

Normal C.I. (µ̂E) (3.20) 0.797 0.6289 0.1774

Bootstrap Percentile C.I. (γ̂
R

) 0.787 0.6223 0.1745

From Tables 5.11−5.14 we see that the WELRCI has the best coverage level. In Ta-

bles 5.15 and 5.16 the results are comparable. In all cases, the coverage level is insufficient.

Further research can be done to examine why we obtain these results.

5.4 Simulations for the Treatment Distribution Function

In this section, we provide simulation results comparing the different estimators that we have

for the treatment distribution function. We use the uniform norm to calculate the distance

between Ĝ(x) and FX(x). Note that Ĝ(x) is a discrete distribution function and FX(x) is a

continuous distribution function. In particular, we have:

Ĝ(x) =
m∑
i=1

p̂X
i
I{WX

i ≤ x} and FX(x) = 1− e−x/µX
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Table 5.12: 90% C.I. for the treatment mean µ0 with right censored exponential data.

X ∼ Exp(1), Y ∼ Exp(2), C ∼ Exp(4), µ0 = 1

Censoring % for X: 19.97% Censoring % for Y: 33.33%

nX = nY = 50 Coverage Mean Length of C.I. s.d. Length of C.I.

WELRCI 0.863 0.4974 0.1066

Normal C.I. (µ̂E) (4.12) 0.862 0.4868 0.1374

Normal C.I. (µ̂E) (3.20) 0.843 0.4862 0.1016

Bootstrap Percentile C.I. (γ̂
R

) 0.830 0.4827 0.1006

Table 5.13: 90% C.I. for the treatment mean µ0 with right censored exponential data

X ∼ Exp(1), Y ∼ Exp(2), C ∼ Exp(4), µ0 = 1

Censoring % for X: 19.87% Censoring % for Y: 33.33%

nX = nY = 100 Coverage Mean Length of C.I. s.d. Length of C.I.

WELRCI 0.863 0.3670 0.0595

Normal C.I. (µ̂E) (4.12) 0.853 0.3555 0.0763

Normal C.I. (µ̂E) (3.20) 0.842 0.3618 0.0575

Bootstrap Percentile C.I. (γ̂
R

) 0.828 0.3599 0.0578
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Table 5.14: 90% C.I. for the treatment mean µ0 with right censored exponential data

X ∼ Exp(2), Y ∼ Exp(5), C ∼ Exp(8), µ0 = 2

Censoring % for X: 20.07% Censoring % for Y: 38.80%

nX = nY = 25 Coverage Mean Length of C.I. s.d. Length of C.I.

WELRCI 0.835 1.2870 0.3688

Normal C.I. (µ̂E) (4.12) 0.828 1.3019 0.4952

Normal C.I. (µ̂E) (3.20) 0.794 1.2499 0.3552

Bootstrap Percentile C.I. (γ̂
R

) 0.774 0.9477 0.2925

Table 5.15: 90% C.I. for the treatment mean µ0 with right censored exponential data

X ∼ Exp(2), Y ∼ Exp(5), C ∼ Exp(8), µ0 = 2

Censoring % for X: 19.97% Censoring % for Y: 38.25%

nX = nY = 50 Coverage Mean Length of C.I. s.d. Length of C.I.

WELRCI 0.848 0.9892 0.2143

Normal C.I. (µ̂E) (4.12) 0.862 0.9735 0.2748

Normal C.I. (µ̂E) (3.20) 0.830 0.9653 0.2033

Bootstrap Percentile C.I. (γ̂
R

) 0.823 0.9583 0.2020
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Table 5.16: 90% C.I. for the treatment mean µ0 with right censored exponential data

X ∼ Exp(2), Y ∼ Exp(5), C ∼ Exp(8), µ0 = 2

X ∼ Exp(2), Y ∼ Exp(5), C ∼ Exp(8), µ0 = 2

Censoring % for X: 19.87% Censoring % for Y: 38.28%

nX = nY = 100 Coverage Mean Length of C.I. s.d. Length of C.I.

WELRCI 0.845 0.7322 0.1217

Normal C.I. (µ̂E) (4.12) 0.853 0.7109 0.1525

Normal C.I. (µ̂E) (3.20) 0.831 0.7207 0.1163

Bootstrap Percentile C.I. (γ̂
R

) 0.828 0.7170 0.1174

To compare the two functions, we compute the values of each function at the jump points

of Ĝ(x). In particular, we compute

x Ĝ(x) FX(x)

WX
1 Ĝ

(
WX

1

)
FX
(
WX

1

)
WX

2 Ĝ
(
WX

2

)
FX
(
WX

2

)
...

...
...

WX
m0−1 Ĝ

(
WX
m0−1

)
FX
(
WX
m0−1

)
WX
m0

Ĝ
(
WX
m0

)
FX
(
WX
m0

)
Then, we have

d1 =
∥∥∥Ĝ(WX

i )− FX(WX
i )
∥∥∥ = max

1≤i≤m0

∣∣∣Ĝ(WX
i )− FX(WX

i )
∣∣∣
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Similarly, we use the uniform norm to calculate the distance between F̂n(x) and FX(x).

Note that F̂n(x) is a discrete distribution function and FX(x) is a continuous distribution

function. In particular, we have:

F̂n(x) =
m∑
i=1

ŵiI{Ŵi ≤ x} and FX(x) = 1− e−x/µX

To compare the two functions, we compute the values of each function at the jump points

of Ĝ(x). In particular, we compute

x F̂n(x) FX(x)

WX
1 F̂n

(
WX

1

)
FX
(
WX

1

)
WX

2 F̂n
(
WX

2

)
FX
(
WX

2

)
...

...
...

WX
m0−1 F̂n

(
WX
m0−1

)
FX
(
WX
m0−1

)
WX
m0

F̂n
(
WX
m0

)
FX
(
WX
m0

)
γ̂W Y

1 F̂n
(
γ̂W Y

1

)
FX
(
γ̂W Y

1

)
γ̂W Y

2 F̂n
(
γ̂W Y

2

)
FX
(
γ̂W Y

2

)
...

...
...

γ̂W Y
m1−1 F̂n

(
γ̂W Y

m1−1

)
FX
(
γ̂W Y

m1−1

)
γ̂W Y

m1
F̂n
(
γ̂W Y

m1

)
FX
(
γ̂W Y

m1

)
Then, we have

d2 =
∥∥∥F̂n(WX

i )− FX(WX
i )
∥∥∥ = max {∆1,∆2}
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Table 5.17: Estimators for Treatment Distribution: d1 = ‖Ĝ− FX‖ d2 = ‖F̂n − FX‖

X ∼ Exp(1), Y ∼ Exp(2), C ∼ Exp(4)

Sample Size Cens. % Distance Mean SE

nX = nY = 25 X: 20.07 d1 0.1585 0.0530

Y: 33.48 d2 0.1481 0.0529

nX = nY = 50 X: 19.97 d1 0.1168 0.0386

Y: 33.33 d2 0.1100 0.0362

nX = nY = 100 X: 19.87 d1 0.0874 0.0286

Y: 33.33 d2 0.0961 0.0287

where

∆1 = max
1≤i≤m0

∣∣∣F̂n(WX
i )− FX(WX

i )
∣∣∣

and

∆2 = max
1≤i≤m1

∣∣∣F̂n(γ̂W Y
i )− FX(γ̂W Y

i )
∣∣∣.
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Table 5.18: Estimators for Treatment Distribution: d1 = ‖Ĝ− FX‖ d2 = ‖F̂n − FX‖

X ∼ Exp(2), Y ∼ Exp(5), C ∼ Exp(8)

Sample Size Cens. % Distance Mean SE

nX = nY = 25 X: 20.07 d1 0.1585 0.0530

Y: 38.80 d2 0.1534 0.0545

nX = nY = 50 X: 19.97 d1 0.1168 0.0386

Y: 38.25 d2 0.1179 0.0361

nX = nY = 100 X: 19.87 d1 0.0874 0.0286

Y: 38.28 d2 0.1123 0.0314

From Tables 5.17 and 5.18 we see the average distance between F̂n and FX is smaller than

the distance between Ĝ and FX for some cases. In other cases, the results are comparable.

5.5 Summary of Simulation Results

From the simulation results in Section 5.2 we see that the rank-based point estimator for

the scale paramater performs better than the naive estimator. The interval estimators for

the scale parameter are comparable, with the more conservative Normal C.I. based on γ̂
E

having a slightly better coverage level.

From the simulation results in Section 5.3 we see that naive point estimator, µ̂E, for

the mean, µ0, of the treatment group performs better than the rank-based point estimator.

134



However, these results are comparable. For the interval estimators for µ0, we see that

the Weight Empirical Likelihood Based Confidence Interval (WELCI) performs the best

in several cases and is comparable in the other cases. In all cases, the coverage level in

insufficient. Further research can be done to examine why we obtain these results.

The simulations in this dissertation consider only right censored data. More investigation

is necessary for other types of censored data. Simulations confirm that the rank-based

estimator is superior to the naive estimator for point parameter estimation of the scale

parameter. However, they do not show superiority of the rank-based estimator for interval

estimates in the case of right censored data.
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CHAPTER 6
CONCLUDING REMARKS

In the present dissertation we use the Weighted Empirical Likelihood approach to study the

Accelerated Life Model Life Model for complicated types of censored data sets, such as doubly

censored data, interval censored data, and partly interval censored data. In particular, we

construct tests, confidence intervals, and goodness-of-fit tests for the Accelerated Life Model

in a unified way for various types of censored data. The theory can be generalized to the

case of less stringent assumptions. In particular, all of the results in this dissertation can

possibly be repeated with assumption that ρ
0

= limn→∞ n0/n and ρ
1

= limn→∞ n1/n instead

of ρ
0

= n0/n and ρ
1

= n1/n.

Simulation studies provide comparison between the standard point estimation technique

(naive estimator) and the rank-based estimator suggested in the dissertation. Although both

types of estimators are theoretically sound, they deliver somewhat different performance in

practice. Results of the simulations are summarized in Section 5.5.
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