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ABSTRACT 
 

 

 

 

Regular graphs are graphs in which all vertices have the same degree.  Many properties 

of these graphs are known.  Such graphs play an important role in modeling network 

configurations where equipment limitations impose a restriction on the maximum number of 

links emanating from a node.  These limitations do not enforce strict regularity, and it becomes 

interesting to investigate nonregular graphs that are in some sense close to regular.  This 

dissertation explores a particular class of almost regular graphs in detail and defines 

generalizations on this class.  A linear-time algorithm for the creation of arbitrarily large graphs 

of the discussed class is provided, and a polynomial-time algorithm for recognizing graphs in the 

class is given.  Several invariants for the class are discussed. 

 

 The edge-face chromatic number χef of a plane graph G is the minimum number of colors 

that must be assigned to the edges and faces of G such that no edge or face of G receives the 

same color as an edge or face with which it is incident or adjacent.  A well-known result for the 

upper bound of χef exists for graphs with maximum degree Δ ≥ 10.  We present a tight upper 

bound for plane graphs with Δ = 9. 
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CHAPTER 1 INTRODUCTION AND LITERATURE REVIEW 
 

Notation 

 

Graphs are mathematical objects which are useful in modeling problems from a range of 

disciplines, including computer network design.  Some of the many areas where the use of 

graphs has found application are engineering, computer science, chemistry, and sociology.  We 

review the aspects of graph theory that are pertinent to this dissertation. 

A graph G(V,E) is comprised of a set V(G) of vertices and a set E(G) of edges between 

pairs of vertices in V(G).  The order of a graph G is the number of vertices in G, while the size 

of G is the number of edges in G.  Two vertices are adjacent if they are connected by an edge.  

For the majority of this study, we will assume simple graphs in which no edge joins a vertex to 

itself and at most one edge joins two vertices.  In the graph in Figure 1-1, vertex A is adjacent to 

B and C, but not adjacent to D or E.  The neighborhood of a vertex v, denoted N(v), is the set of 

vertices that are adjacent to v.  In the graph in Figure 1-1, vertices B and C are in the 

neighborhood of A, but neither D nor E is in N(A).  The degree of a vertex is the number of 

edges connected to that vertex.  The degree set of a graph G, denoted DG, is the set of all the 

different degrees of vertices in G.  The minimum degree of any vertex in a graph G is denoted 

δ(G), and the maximum degree is denoted Δ(G).  In the graph G in Figure 1, vertices B and E 

have degree 3; vertices A, C, and D have degree 2; DG = {2, 3}; δ(G) = 2; and Δ(G) = 3. 
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Figure 1: A Simple Graph 

 

A path is a connected sequence of edges in a graph and the length of the path is the 

number of edges traversed.  A path of n vertices is denoted Pn.  Figure 1-2 shows paths of 

various lengths.  If u and v are vertices, the distance from u to v, written d(u,v), is the minimum 

length of any path from u to v.  In Figure 1 above, d(A,C) = 1 while d(A,D) = 2.  A graph is 

connected if there exists a path between any pair of vertices in the graph. 

 

 

 

 

 

 

Figure 2: Paths 

 

 Two graphs G and H are isomorphic if there exists a one-to-one correspondence between 

their vertex sets which preserves adjacency.  For example, G and H in Figure 3 are isomorphic 

under the correspondence vi  ui. 

 

 

A 

B C 

D E 

P1 P2 P3 P4 
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Figure 3: Isomorphic Graphs 

 

 

 A numerical invariant of a graph G is a number associated with G which as the same 

value for any graph isomorphic to G.  For example, the number of vertices in a graph is an 

invariant.  An extremal graph is one which has a certain prescribed property and for which an 

invariant has a maximum or minimum possible value. 

 A subgraph of a graph G is a graph having all of its vertices and edges in G. Figure 4 

shows a graph G and two of its subgraphs, G1 and G2.  A spanning subgraph of a graph G is a 

subgraph containing all the vertices in G.  In Figure 4, G1 is a spanning subgraph of G while G2 

is not.  A factor of a graph G is a spanning subgraph of G which is not totally disconnected.  For 

any set S of vertices in G, the induced subgraph <S> is the subgraph of G with vertex set S and 

whose edge set contains all edges in G between the vertices in S.   

 

 

 

 

 

 

 

 
Figure 4: A graph and two subgraphs 

 

v1 v2 

v3 v4 

v5 v6 

u1 u2 

u3 u4 

u5 u6 

G: H: 

G: G1: G2: 
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 A complete graph with n vertices (denoted Kn) is a graph in which each vertex is 

connected to all of the others.  Figure 5 shows the first five complete graphs.  Note that each 

vertex in Kn has degree n-1. 

 

 

 

 

 

 
Figure 5: The first five complete graphs 

 

 A regular graph is a graph in which all vertices have the same degree. If all vertices in a 

regular graph G have degree r, then G is said to be r-regular.  The graphs in Figure 6 are 2-

regular and 3-regular, each with six vertices. 

 

 

 

 

Figure 6: 2-regular and 3-regular graphs on six vertices 

 

K3 K4 K1 K2 K5 



5 

 

Almost Regular Graphs – Literature Review 

 

The literature sometimes refers to graphs we would designate almost regular by the 

names “nearly regular” or “irregular”.  One of the earliest appearances was in 1983 in a paper by 

Alon, Friendland, and Kalai [3] which considered graphs in which all vertex degrees are either t 

or t+1 and at least one vertex has each degree.  Figure 7 illustrates examples of two such graphs.  

It was shown that graphs of this type for which t ≥ 2q – 2 and q is a prime power contain a q-

regular subgraph and also an r-regular subgraph for all r < q where r ≡ q mod 2.  It is also proved 

that every graph with maximal degree δ ≥ 2q – 2 and average degree (mathematical mean of the 

degrees of all vertices in the graph) d > [(2q – 2)/(2q – 1)](δ + 1), where q is a prime power, 

contains a q-regular subgraph (and also an r-regular subgraph for all r < q where r ≡ q mod 2).  

This paper also briefly examines regular subgraphs contained in graphs in which every vertex 

has degree t, t+1, or t+2.  Note that in both types of graphs discussed in this paper (those whose 

vertices have degree t or t+1, and those whose vertices have degree t, t+1, or t+2) each vertex 

differs in degree from each of its neighbors by at most 1 for the former type and at most 2 for the 

latter type.  However, there is no restriction on the number of neighbors a vertex of a certain 

degree can have.   

 

 

 

 

Figure 7: Graphs in which every vertex has degree t or t+1 

t = 2 t = 3 
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 In 1988 Chartrand, Lesniak, Mynhardt, and Ollerman [6] defined an n-degree uniform 

graph as one which contains exactly n vertices of each degree that appears in a graph.  For 

example, Figure 8(a) is a 2-degree uniform graph with degrees 1, 2 and 3, and Figure 1-8(b) is a 

4-degree uniform graph with vertex degrees 2 and 4.  The authors show that for every graph H, 

not necessarily connected, there exists a degree uniform graph G such that H is an induced 

subgraph of G and that DG = DH.  They present a stronger version of this result for connected 

graphs.  Assume H is a connected graph with degree set DH = {d1, d2, …, dk}, k >= 2, where d1 < 

d2 < … < dk, such that H contains pi vertices of degree di (1 ≤ i ≤ k).  Then there exists a 

connected, degree uniform graph G containing H as an induced subgraph with DG = DH unless 

one of the following conditions hold: DH = {1, 2} and p1 < p2; DH = {1, 3} and p1 < p3; or DH = 

{1, 2, 3} and p1 < p2.    

 

 

 

 

 

 

 

 

 Yet another definition of almost regularity appears in a 1991 paper by Joentgen and 

Volkmann [14].  A graph G is said to be locally r-almost regular if, for every pair of vertices v 

and w in G, |d(v) – d(w)| ≤ r where d(v) and d(w) are the degrees of v and w, respectively.    The 

(a) (b) 

Figure 8: Degree uniform graphs 
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paper discusses two concepts – the factors of r-almost regular graphs and the classification of 

spanning subgraphs for r-almost regular graphs.  Note that this class of graphs is a weak 

restriction on the degrees in an almost regular graph in that the difference of degrees between 

adjacent vertices is bounded by some number rather than restricted to a particular value as in 

previous definitions of almost regularity. 

 Some of the most extensive work done on almost regular graphs appears in a 1993 

preprint by Linda Lawson [17].  In it, four classes of almost regular graphs, summarized in Table 

1-1, are defined.    In a graph in any of the four classes, every vertex has the same fixed degree d 

except for a prescribed number of vertices.  The classes are defined by the way in which the 

number and degrees of these special vertices differ from the vertices of degree d. 

Table 1: Almost Regular Classes 

 

 

CLASS 

Each vertex has degree d 

except… 

The degrees of those t 

vertices differ from d 

by… 

Almost Regular Class 1 exactly t vertices exactly ε 

Almost Regular Class 2 exactly t vertices at most ε 

Almost Regular Class 3 at most t vertices exactly ε 

Almost Regular Class 4 at most k vertices at most ε 

 

 

 Note that we will use these basic definitions to define the classes of almost-regular graphs 

discussed in this dissertation.   

 Lawson discusses the construction of all four classes of graphs.  She proves that the 

complement of an Almost Regular Class 4 graph is also Almost Regular Class 4 and that every 

graph is an induced subgraph of some Almost Regular Class 1 graph.  In addition, she discusses 

the possible applications of almost regular graphs in the computer networking environment.  
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Some of the ideas she presents are expanded upon by Haynes, Lawson and Boland [12].  In this 

paper, a locally (k-ε) almost regular graph G is defined as a graph in which every vertex v in G 

is adjacent to all but at most k vertices of degree d(v) and those k differ in degree from v by at 

most ε.  This definition permits the same range of degrees as found in Almost Regular Class 1.  

However, Almost Regular Class 1 graphs have strict properties in that exactly k vertices which 

differ in degree from v must differ by exactly ε.  An example of a locally (1-1) almost regular 

graph which is not Almost Regular Class 1 is given in Figure 9.  Vertices a and b demonstrate 

one reason why this graph is not Almost Regular Class 1 since they are adjacent only to vertices 

of degree three. 

 

  

 

 

 

 

 

In contrast to graphs that are near to being regular, there are graphs that are very much 

not regular.  The earliest references to such graphs date back to the late 1980’s.  These papers 

focus on graphs in which all vertices are adjacent to vertices with distinct degrees.  It is not 

possible for all vertices of a graph to be distinct.  To see this, suppose conversely that all vertices 

have different degrees, that is DG = {0, 1, 2, …, n-1).  Then the vertex with degree n-1 must be 

adjacent to all other vertices in the graph, including the vertex of degree 0.  But this is 

a 

b 

Figure 9: Locally (k-ε) almost regular graph 
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impossible.  Therefore, at least two vertices must have the same degree [1].  However, same 

degree vertices need not be adjacent to one another.  Graphs in which all neighbors of a vertex 

have distinct degrees are called highly irregular.  Figure 10 shows two highly irregular graphs. 

 

 

 

 

 

 

 In a 1987 paper by Alavi, Chartrand, Chung, Erdos, Graham and Oellerman [1], many 

interesting properties of highly irregular graphs are discussed.  Some that follow directly from 

the definition of highly irregular graphs include: if v is a vertex of maximum degree  in a highly 

irregular graph H, then v is adjacent to only one degree t vertex for 1 ≤ t ≤ ; a highly irregular 

graph H with maximum degree  has at least 2 vertices; there are no highly irregular graphs of 

order 3 or 5; for n ≠ 3, 5, or 7 there is a highly irregular graph of order n; the size of a highly 

irregular graph of order n is at most 
8

)2( nn
, with equality possible for n even.  The paper also 

examines highly irregular graphs containing a given graph as an induced subgraph.  The main 

theorem presented on this topic shows that every graph of order n ≥ 2 is an induced subgraph of 

a highly irregular graph of order 4n – 4.   

 In 1988 Chartrand, Erdös, and Oellerman [6], in another paper on irregular graphs, refer 

to graphs that may be deemed almost regular.  Particularly, they discuss the notions of distance-t-

Figure 10: Highly irregular graphs 
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regular and locally irregular graphs.  In a distance-t-regular graph G, every vertex v has the 

same number of vertices at distance t from it.  Figure 11 shows a distance-2-regular graph that is 

not regular.  The idea of distance-t-regularity differs from other ideas of irregularity in that the 

degrees of the vertices play only a minor role in the classification of these graphs.  The paper 

also defines a locally irregular graph H to be a graph in which every vertex v in H has the 

property that all of its neighbors have distinct degrees.  This is identical to the definition of 

highly irregular in [1]. 

 

 

 

 

 

 

 

 The authors of this paper discuss another alternative class of irregular graphs.  The 

concept of the degree of a vertex is generalized as follows:  Given a graph F, the F-degree of a 

vertex v in G is the number of subgraphs of G, isomorphic to F, to which v belongs.  A graph is 

F-regular of degree r if every vertex of G has F-degree r.  Note that the ordinary degree of a 

vertex v is the K2-degree of v.  Figure 12 illustrates a K3-regular graph of degree 3 that is not 

regular. 

 

 

Figure 11: Distance-2-regular graph 
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 The concept of F-regularity suggests another type of irregularity.  For a graph F, a graph 

G is F-irregular if every vertex in G has a distinct F-degree.  For example, the graph in Figure 

13 is P3-irregular.  The numbers next to the vertices represent the P3-degree of each vertex. 

 

 

 

 

 

 

 

 

 A more recent (1997) paper by Albertson [2] defines a concept of irregularity in terms of 

the edges of a graph.  The imbalance of an edge (x, y) is defined as |deg(x) – deg(y)|.   The 

irregularity of the graph is then the sum of all edge imbalances.  The paper shows that, given 

any graph G with n vertices: the irregularity is O(n
3
); the irregularity of G is even; if G is 

bipartite, its irregularity is strictly bounded from above by 
36

3n
; if G is triangle-free, its 

Figure 12: K3-regular graph of degree 3 

Figure 13: P3-irregular graph 

6 3 1 

2 

5 

4 
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irregularity is bounded above by 
9

3n
.  While unrelated to most other concepts of irregularity, this 

does give insight to qualities that separate a graph from regular graphs. 

 

Edge-Face Coloring – Literature Review 

 

The idea of coloring the vertices of a graph in such a way that no two adjacent vertices 

receive the same color is not new.  Its origins may be traced by to 1852 when Hamilton received 

a letter from his friend de Morgan which stated that one of his students had observed that when 

coloring the counties on a map of England, only four colors were necessary to ensure that 

adjacent counties were given different colors.  This letter led to the more formally posed 

problem: “What is the least possible number of colors needed to fill any map (real or invented) 

on the plane?”  Although it was generally believed at that time that four colors would be 

sufficient to color any planar graph, this conjecture was not proved until 1976 with the help of 

computers.  The number of colors needed to color the vertices of a graph G is referred to as the 

chromatic number of G and is denoted χ(G) [16].  Figure 14 depicts a graph with eight vertices 

that has been colored with two colors. 

 

 

 

Figure 14: A graph with chromatic number 2 
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The problem of edge-coloring a graph arose in an 1889 paper by Tait who proved that the 

four-color problem is equivalent with the problem of edge-coloring every planar 3-connected 

cubic graph with three colors.  The number of colors needed to color the edges of a graph G is 

called the chromatic index of G and is denoted χ’(G).  Many properties of the chromatic index 

of graphs have been proved since that time.  The most famous of these is Vizing’s theorem, 

which states that a graph can be edge-colored in either Δ or Δ+1 colors, where Δ is the maximum 

degree of the graph [21].  Figure 15 shows a graph with Δ = 3 and chromatic index 3. 

 

 

 

Figure 15: A graph with chromatic index 3 

 

In the twentieth century, various coloring problems were considered involving some 

combination of vertices, edges, and faces of plane graphs.  In 1968, Ringel studied the problem 

of coloring the vertices and faces of plane graphs [22].  In 1973, Kronk and Mitchem colored the 

vertices, edges, and faces of plane graphs [15].   

Melnikov is credited as being the first to formally consider the problem of coloring the 

edges and faces of plane graphs.  At the Graph Theory Symposium hold in Prague in June 1974, 

he conjectured that the edges and faces of any plane graph G can be colored with Δ(G)+3 colors 

in such a way that any two adjacent or incident edges or faces would receive different colors, 

where Δ(G) is the maximum degree of G.  Note that the minimum number of colors required to 

edge-face color a graph is referred to as the graph’s edge-face chromatic number and is denoted 

χef. 
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In 1992, Hu and Zhang considered the problem of coloring the edges and faces of a plane 

graph, and showed Melnikov’s conjecture to be true for outerplanar graphs [13]. Borodin [4], in 

1994, used Kotzig’s Theorem on the minimal weight of edges in plane graphs to show that for 

graphs with maximum degree 10 or higher,  χef  ≤ Δ + 1, and that this bound is tight.   Lin, Hu, 

and Zhang proved in 1995 that Melnikiv’s conjecture is true for any plane graph G with Δ(G) ≤ 3 

[21]. This result was improved by Sanders and Zhao [24] and Waller [28] independently in 1997, 

when Melnikov’s conjecture was proved to be true in general via proofs that made use of the 

Four-Color Theorem. In fact, it was proved in Sanders and Zhao’s paper that for every plane 

graph G with Δ(G) ≥ 8, G is (Δ(G) + 2)-edge-face colorable, and again in 2000 in a note that 

shows that for a plane graph G with maximum degree three, the edges and faces can be 

simultaneously colored with five colors (Δ(G) + 2 colors) [25].  A 2001 paper, also by Sanders 

and Zhao [26], improved the results by proving Melnikov’s conjecture with a more direct 

approach, and in the process also showing that for maximum degree Δ ≤ 5, the theorem extends 

to multigraphs, and for Δ ≥ 7, a graph can be edge-face colored with Δ + 2 colors. In 2002, Wang 

and Lih [29] presented a new proof of Melnikov’s conjecture that was independent of the Four-

Color Theorem, and conjectured that in fact for any plane graph G with Δ(G) ≥ 3, χef (G) ≤ Δ(G) 

+ 2.  Figure 16 shows a plane graph with Δ(G) = 4 edge-face colored with 6 colors. 
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Figure 16: A graph with Δ(G) = 4 edge-face colored with 6 colors 

 

In recent years, studies have been conducted involving the edge-face chromatic number 

for particular classes of graphs.  In 2005, Luo and Zhang [19] showed that for any 2-connected 

simple plane graph G with Δ(G) ≥ 24, χef  = χe= Δ(G).  In 2007, Wang [30] proved several results 

for graphs embedded on surfaces of characteristic zero – specifically, that for a graph G with this 

property,  χef(G) ≤ Δ +1 if Δ ≥ 13, χef(G) ≤ Δ +2 if Δ ≥ 12, χef(G) ≤ Δ +3 if Δ ≥ 4, and χef(G) ≤ 7 if 

Δ ≤ 3.  Many classes of graphs and their extensions have yet to be studied with a focus on edge-

face coloring, and many open problems remain in this area. 
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CHAPTER 2 AMOST REGULAR GRAPHS 
 

 

Motivation 

 

A computer network is comprised of a set of computers linked by a communication 

media such as copper cable or fiber-optic cable for the purpose of sharing information and/or 

resources.  Figure 17 shows two examples of pictorial representation for computer networks.   

 

 

 

 

 
 

 

Figure 17: Graphical Representations of Computer Networks 

 

In these representations, computers are represented by circles and the communications 

paths between them are represented by lines.  Various network configurations are utilized to 

achieve different purposes.  Some configurations emphasize speed and reliability by including as 

many communication paths as possible, while others are designed to minimize cost by providing 

the minimum number of paths needed to make the network function.  The network shown in 

Figure 17 (a) emphasizes speed and reliability.  Since each node is directly connected to every 

other node, the communication path between any arbitrary pair of nodes is as short as possible.  

With so many connections, this network also has the property that failure of a single line would 

not destroy communication between any arbitrary pair of nodes.  On the other hand, the network 

(a) (b) 
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shown in Figure 17 (b) may require a longer communication path between any arbitrary pair of 

nodes, and failure of a single line may prevent communication between a pair of nodes.  

However, without any such removal, this network does provide for communication between any 

pair of nodes, while maintaining a lower cost in terms of the number of connections between 

nodes. 

It is essential in practice to maintain sufficient performance and reliability in computer 

networks while minimizing cost.  Rather than haphazardly constructing a network of nodes with 

no particular form, it is important to design networks for which connectivity properties are well 

understood such that performance and cost can easily be determined.  Graphs are mathematical 

objects that can be used to model and study computer networks.   Each vertex in a graph can be 

used to represent either a single computer on the network or an entire sub-network, while each 

edge in the graph can be used to represent a communication path.  We examine a particular class 

of graphs that could possibly be used to model networks and examine the connectivity properties 

of these graphs. 

 

Objective 

 

A regular graph is a graph in which all vertices have the same degree, i.e., each vertex is 

connected to the same number of vertices.  If all vertices in a regular graph G have degree r, then 

G is said to be r-regular.  The graphs in Figure 18 are 2-regular and 3-regular, each with six 

vertices. 
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   Figure 18: 2-regular and 3-regular graphs on six vertices    

 

Regular graphs have many interesting connectivity properties that are well known.  These 

properties are useful in light of the requirements of computer networks.  However, often a 

regular graph contains more edges than are necessary for network applications, leading to 

unnecessarily high costs.  It therefore becomes interesting to study graphs which are not quite 

regular, but differ from regular graphs in some well-defined manner.  Graphs of this nature are 

referred to as “almost regular” or “nearly regular” graphs.  Various “classes” of almost regular 

graphs have been devised, and their definitions can be divided into “global” forms which restrict 

variations throughout the entire graph and “local” forms which place limitations on the 

neighborhoods of vertices.  Wide area networks are often restricted by local limitations, and, in 

light of this fact, we will be concerned with the latter type of definition.  Consideration is 

restriction to connected graphs. 

Each class is delineated by the number of vertices that keep the graph from being regular, 

the amount by which these vertices differ in degree from the rest of the vertices in the local 

subgraph, and whether or not these restrictions are strong or weak.  We will concentrate our 

study on one of the classes of almost regular graphs known as strongly k-ε almost regular graphs.   

Table 2 outlines the four classes of graphs considered to be almost regular. 
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Table 2: Classes of k-ε Almost Regular Graphs 

 

 

Name of Class 

Each vertex has a degree 

different from this 

quantity of its neighbors: 

Each vertex differs in 

degree from the defined 

number of neighbors by: 

Strongly k-ε Almost Regular exactly k exactly ε 

Semi-Strong k-ε Almost Regular exactly k at most ε 

Semi-Weak k-ε Almost Regular at most k exactly ε 

Weakly k-ε Almost Regular at most k at most ε 

 

 

Varying the integers k and ε yields a wide variety of graphs in each class.  Figure 19 

depicts three strongly k-ε almost regular graphs. 

 

 

 

 

 

 

 

                                                        

 
Figure 19: Strongly k-ε almost regular graphs 

 

Figure 19 (a) shows a strongly 1-1 almost regular graph with minimum degree δ = 1 and 

maximum degree Δ = 2.  Note that every vertex v has the same degree as each of its neighbors 

except for exactly k = 1, and v differs from this one vertex by exactly ε = 1.  Figure 19 (b) depicts 

a strongly 1-2 almost regular graph with minimum degree δ = 1 and maximum degree Δ = 5.  

Note that every vertex in the graph has odd degree.  Indeed, it is a property of strongly k-ε almost 

  (a)                                      (b)                                       (c) 
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regular graphs that all vertices have the same degree parity when ε is even.  Figure 19 (c) shows 

a strongly 2-1 almost regular graph with minimum degree δ = 2 and maximum degree Δ = 5.   

 

Outline 

 

Section 4 of this chapter focuses on previous results concerning the order of strongly k-ε 

almost regular graphs and invariant values for some extremal graphs in this class.  In section 5, 

the results for this class are extended to compute the size of extremal graphs in this class.   

Section 6 presents algorithms for constructing and recognizing graphs in the strongly k-ε almost 

regular class.  These algorithms have been implemented using JavaScript and code listings with 

output samples are presented in the Appendices.   

 

 

 

Strongly k–ε Almost Regular Graphs: Previous Results 

 

Definitions and Preliminaries 

 An extremal strongly k-ε almost regular graph in ),( 
kG  is a strongly k-ε almost 

regular graph with minimum degree δ and maximum degree Δ which contains the smallest 

possible number of vertices.  The extremal strongly k-ε almost regular graph for a particular 

choice of k, ε, δ, and Δ is not unique in that there may be more than one configuration of vertices 

that gives the minimum number.   
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When considering any strongly k-ε almost regular graph, we can group the vertices by 

degrees.  For example, in the 1-2 almost regular graph shown in Figure 20, there is one vertex of 

degree 1, six vertices of degree 3, and five vertices of degree 5.   

                                                                   

                                                                  

 

 

 

 

 

 
Figure 20: Strongly 1-2 almost regular graph with vertices grouped by degrees 

 

If we consider the subgraph induced by the vertices of degree i, we see that it is (i–k)-

regular since each vertex of degree i must be adjacent to exactly i–k vertices of degree i.  For 

example, in Figure 20, the six vertices of degree 3 form a subgraph that is 2-regular. 

The vertices of degree i are said to be at position i in the graph.  For example, in Figure 

20, the vertex of degree 1 is at position 1 in the graph, while the vertices of degree 3 are at 

position 3.  We now give the following definitions to facilitate the discussion of strongly k-ε 

almost regular graphs. 

 

Definition:   The symbol j

iR  represents any regular subgraph on i vertices with degree j, 

1 ji , where i is even if j is odd. 
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Definition:  The symbol  i

ki

nii qRpS
i

,,   represents the structure at position i in the graph.  If 

1 kini , we can replace ki

ni
R   with 1kiK .  The letters ip  and iq  represent positive integers 

such that iii knqp   and refer to the number of edges between ki

ni
R   and 







ki

ni
R  and between 

ki

ni
R   and 







ki

ni
R , respectively.  Note that j

iR  is not unique for a particular i and j.  For our 

purposes any graph of the form j

iR , for fixed i and j, will suffice. 

 

Using these new symbols, we can represent a strongly k-ε almost regular graph as 

follows: 

 

 

 

The circles represent the subgraphs at each position and each line encapsulates all of the edges 

between the structures to which it is attached.  The numbers above the lines represent the total 

number of edges between successive structures.  Because there are nδ vertices of degree δ, each 

of which must be adjacent to k vertices in subgraph at position δ+ε, there are knδ edges leaving 

the structure at position δ and entering the structure at position δ+ε.  Since there are nδ+ε vertices 

at position δ+ε, each of which is adjacent to k vertices in other structures, there must be knδ+ε 

edges leaving the structure at position δ+ε.  Because knδ edges are incident on the structure at 

position δ+ε from position δ, there must be k(nδ+ε–nδ) edges leaving the structure at position δ+ε 

for vertices in the structure at position δ+2ε.  The parameters for the rest are found by continuing 

this reasoning. 

k

nR 


 k

nR 






 

k(nδ+ε–nδ) knδ 1





nR  1

nR  
knΔ k(nΔ–ε–nΔ) 

• • • 
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In order for a subgraph of vertices all of degree r at a particular position to exist, it is 

necessary that either r is even or the number of vertices of degree r is even.  This is because the 

number of vertices of odd degree in a graph must be even.  Since vertices at position i are regular 

with degree i–k, ni must be even if i–k is odd. 

Since every vertex of degree i must have i–k neighbors of degree i, at least i–k+1 vertices 

must exist at position i.  The excess ei at position i is defined by ei = ni – (i–k+1), the number of 

vertices at that position beyond the minimum number i–k=1 required. 

 

The Order of Extremal Strongly k-ε Almost Regular Graphs 

 

Fischer presents five fundamental lemmas that lead to the development of formulae for the 

number of vertices in an extremal strongly k-ε almost regular graph with minimum degree δ and 

maximum degree Δ [8].  We restate these lemmas and the resulting theorem without proof. 

 

Lemma 2.1 (Reduction Lemma)  Suppose a strongly k-ε almost regular graph contains adjacent 

structures  qRpS ki

ni i
,,   and  rRqS ki

ni i
,, 

 



 
  for which there is an even integer x such that 

kx < q, ei ≥ x, and ei+ε ≥ x.  Then there is a smaller strongly k-ε almost regular graph identical to 

the first in all positions except i and i+ε whose structures are replaced by  kxqRpS ki

xni i
 

 ,,  

and  rRkxqS ki

xni i
,, 

 



 
 . 

 

Lemma 2.2 For any minimum strongly k-ε almost regular graph in ),( 
kG , 

    ,,1 1kKkkS  
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if k and Δ have opposite parity, and  

   

 ,,2 2

k

kRkkS   or      ,,1 1kKkkS  

if k and Δ have the same parity. 

 

Lemma 2.3 (Push Lemma)  Suppose a strongly k-ε almost regular graph G contains structures 

 qRpS ki

ni i
,,  ,  rRqS ki

ni i
,, 

 



 
 , and  sRrS ki

ni i
,, 2

2 2


 



 
 , and also suppose that there is a 

positive integer x such that q > kx, ei ≥ x, and x is even if i–k is odd.  Then there is a different 

strongly k-ε almost regular graph having the same number of vertices as G and which is identical 

to G in all positions except i, i+ε, and i+2ε.  These three positions now have the structures 

 kxqRpS ki

xni i
 

 ,, ,  kxrRkxqS ki

ni i
 

 
,, 

 
, and  sRkxrS ki

xni i
,, 2

2 2


 



 
 . 

 

Lemma 2.4  Any not necessarily minimum strongly k-ε almost regular graph can be converted to 

one having the same number of vertices and for which  

 ikiii qKpS ,,     for i = δ, δ+ε, ..., δ–2ε, 

 
  



 
 qRpS k

n ,, , and 

  

 
,, k

nRpS  

where pδ is undefined and 

 

 

 

















 








 

 

2

22

2





 ik
k

i
k

qp ii  

if 


i
 is even 

if 


i
 is odd 
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for i = δ + ε, ..., Δ – 2ε. 

 

Lemma 2.5  In any minimum graph in ),( 
kG  obtained by the procedure in Lemma 2.4 where 

k and Δ have the same parity, 

    ,,1 1kKkkS  if 

 1) ε is even 

 2) ε is odd, δ is of opposite parity to k and Δ, and 

  a) Δ – δ ≡ 1 mod 4 and 








2


 is odd, or 

  b) Δ – δ ≡ 3 mod 4 and 








2


 is even 

 3) ε is odd, k, δ and Δ have the same parity and Δ – δ ≡ 2 mod 4 

and    

 ,,2 2

k

kRkkS  if 

 1) ε is odd, k, δ and Δ have the same parity and Δ – δ ≡ 0 mod 4 

 2) ε is odd, δ is of opposite parity to k and Δ, and 

  a) Δ – δ ≡ 1 mod 4 and 








2


 is even, or 

  b) Δ – δ ≡ 3 mod 4 and 








2


 is odd 

 

Theorem 2.1. (The Order of Extremal Strongly k-ε Almost Regular Graphs)  

In an extremal strongly k-ε almost regular graph with minimum degree δ and maximum degree 

Δ, the number of vertices is: 
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I.  




2

)(2)(2)(2222  kk
  if 

 1) ε is odd, k and δ have the same parity, and Δ has the opposite parity 

 2) ε is odd, δ has the opposite parity to k and Δ, and either 

  a) Δ – δ ≡ 1 mod 4 and 








2


 is odd, or 

  b) Δ – δ ≡ 3 mod 4 and 








2


 is even 

 3) ε is even, k has the same parity as δ and Δ, and 


 
 is even 

 4) ε is even, k has the opposite parity to δ and Δ, and 


 
 is even 

II.  




2

)2(2)(2)2(222  kk
 if 

 1) ε is odd, k, δ, and Δ have the same parity, and Δ – δ ≡ 2 mod 4 

 2) ε is odd, δ and Δ have the same parity and k has the opposite parity 

 3)  ε is even, k has the same parity as δ and Δ, and 


 
 is odd 

 4) ε is even, k has the opposite parity to δ and Δ, and 


 
 is odd 

III.  




2

)3(2)(2)(2222  kk
 if 

ε is odd, δ has the opposite parity to k and Δ, and either 

 a) Δ – δ ≡ 1 mod 4 and 








2


 is even, or 
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 b) Δ – δ ≡ 3 mod 4 and 








2


 is odd 

IV.  




2

)4(2)(2)2(222  kk
 if 

ε is odd, k, δ, and Δ have the same parity, and Δ – δ ≡ 0 mod 4 

 

Invariants of Extremal Strongly k-ε Almost Regular Graphs 

 In general, the computation of invariant values for extremal strongly k-ε almost regular 

graphs is difficult for general k and .  However, graphs in which  and  differ by exactly  will 

be most useful as network models and several results are known for graphs of this type.  Figure 

21 depicts a strongly 3-3 almost regular graph with  = 4 and  = 7.  Note that every vertex in 

the graph has either degree 4 () or degree 7 ( =  + ).   

 

 

 

 

 

 

Figure 21: Strongly k-ε Almost Regular Graph with  =  +  
 

  

Because the focus is on graphs which may be useful network topologies, the most 

important invariants to examine may be those related to routing properties, specifically, vertex 

connectivity   and edge connectivity 1.  The vertex connectivity of a graph G is the minimum 
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number of vertices whose removal results in a disconnected graph or the trivial graph (K1).  

Similarly, the edge connectivity of G is the minimum number of edges whose removal results in 

a disconnected graph.  Due to the difficulty of evaluating these invariants in general for graphs in 

),( 
kG , previous results were partial in nature and assumed a large connectivity, consistent 

with the goal that large connectivity in networks is desirable in order to minimize disruptions 

when a component fails.  The following result, stated without proof, gives sufficient conditions 

for a maximal value of  equal to .   

 

Theorem 2.2  Let positive integers k, , , and  be given such that  =  + ,   k is even, and 

  k – 1.  Then there is an extremal strongly k- almost regular graph G having minimum degree 

 and maximum degree  and such that (G) = . 

 

A similar statement can be made for edge connectivity.  Note that this theorem follows 

immediately from Theorem 1.2 since it is known that   1  .   

 

Theorem 2.3  Let positive integers k, , , and  be given such that  =  + ,   k is even, and 

  k – 1.  Then there is an extremal strongly k- almost regular graph G having minimum degree 

 and maximum degree  and such that 1 (G) = . 

 

The diameter d of a graph G is the maximum distance between any two vertices of G.   

Computer network applications favor graph models having small diameter so messages between 
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machines can be distributed throughout the network quickly.  The next theorem, stated without 

proof, shows that the diameter is small for the graphs under consideration. 

 

Theorem 2.4  In an extremal strongly k- almost regular graph G with  =  + , d  3 if 

1 kn  and d  4 if 2 kn . 

 

The radius r of a graph G is defined as 








),(maxmin

)()(
vud

GVuGVv
 .  Like the diameter, the radius is 

important for network considerations.  The following theorem gives upper bounds for the radius 

of the graphs under consideration. 

 

Theorem 2.5  In an extremal strongly k- almost regular graph G with  =  + , r  2 if 

1 kn .  If 2 kn , then r  2 if k  2 and r  3 if k = 1. 

 A clique is a complete subgraph.  The maximum clique size  of a graph G is the number 

of vertices making up the largest clique in G and in a network topology refers to the largest 

concentration of components all of which directly interconnect.  The following theorem presents 

bounds for the maximum clique size of the graphs under consideration. 

 

Theorem 2.6  Assume G is a strongly k- almost regular graph with  =  + .  If 1 kn , 

then 11  k  if   < k and 1 k  if   k.  If 2 kn , then 

1
2

2





k
 if  <  + k and 

2

2


k
  if    + k. 
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The Size of Extremal Strongly k-ε Almost Regular Graphs 

 

 From the previous work reviewed in Section 4 of this chapter, we can determine the 

number of vertices in the extremal graphs.  A related topic is the calculation of the number of 

edges required by these graphs.  This is a straight-forward calculation based on the material from 

the previous chapter, but also a useful one if these graphs were applied to networks since the 

number of connections between various parts of the network could be crucial due to a network’s 

requirements. 

 We will use the definitions, representations, lemmas and the theorem presented in Section 

4 in the course of the proof that is the main focus of this chapter. 

Consider any minimum graph in ),( 
kG .  Using the technique described in Lemma 2.4, 

convert the graph to one with the properties described in the Lemma.   Denote the converted 

graph G.  The number of edges in G can be calculated as the number of edges in the individual 

regular subgraphs of G, added to the number of edges between regular subgraphs of G.  The 

number of edges within a regular subgraph j

iR  can be found easily, given that we know the 

number of vertices in this subgraph.  The number of edges between adjacent regular subgraphs in 

G is also found using the order of each regular subgraph j

iR .  Using the results of Lemmas 2.4 

and 2.5, we present the following trio of fundamental lemmas that will lead to the development 

of the formulae needed to calculate number of edges in an extremal strongly k-ε almost regular 

graph with minimum degree δ and maximum degree Δ. 
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Lemma 2.6  In the converted graph G, the number of edges between regular subgraphs is: 

I.  




4

))(2)(2)(2( 222  kkk
  if 

1) ε is odd, k and δ have the same parity, and Δ has the opposite parity 

2) ε is odd, δ has the opposite parity to k and Δ, and either  

a) Δ – δ ≡ 1 mod 4 and 








2


 is odd, or 

b) Δ – δ ≡ 3 mod 4 and 








2


 is even 

3) ε is even, k has the same parity as δ and Δ, and 


 
 is even 

4) ε is even, k has the opposite parity to δ and Δ, and 


 
 is even 

 

II.  




4

))2(2)(2)2(2( 22  kkk
  if 

1) ε is odd, k, δ, and Δ have the same parity, and Δ – δ ≡ 2 mod 4 

2) ε is odd, δ and Δ have the same parity and k has the opposite parity 

3) ε is even, k has the same parity as δ and Δ, and 


 
 is odd 

4) ε is even, k has the opposite parity to δ and Δ, and 


 
 is odd 

 

III.  




4

))3(2)(2)(2( 222  kkk
  if 

ε is odd, δ has the opposite parity to k and Δ, and either  
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a) Δ – δ ≡ 1 mod 4 and 








2


 is even, or 

b) Δ – δ ≡ 3 mod 4 and 








2


 is odd 

 

IV.  




4

))4(2)(2)2(2( 22  kkk
  if 

ε is odd, k, δ, and Δ have the same parity, and Δ – δ ≡ 0 mod 4 

 

 

Proof.  In the converted graph G, there are k edges connecting pairs of vertices between regular 

subgraphs.  Therefore, the number of edges joining regular subgraphs in the G will be one-half 

the order of the graph multiplied by k.  

 

 

Lemma 2.7  The number of edges in regular subgraphs in G from position δ up through position 

Δ–2ε, inclusive, is  

       2222 6762165232326
6

1



 kk  

 

Proof.  The number of vertices in a graph of order n that is regular with degree r is
2

nr
 .   

Therefore, the number of edges in the regular subgraphs in positions δ, δ+ε, δ+2ε, … Δ–3ε, Δ–2ε 

is  
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
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
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=        2222 6762165232326
6

1



 kk  

 
 

 

 

Lemma 2.8  The number of edges in the subgraphs in positions Δ–ε and Δ is: 

       44394254
4

1 22  kk   if 

1) ε is odd, k and δ have the same parity, and Δ has the opposite parity 

2) ε is odd, δ has the opposite parity to k and Δ, and either  

c) Δ – δ ≡ 1 mod 4 and 








2


 is odd, or 

d) Δ – δ ≡ 3 mod 4 and 








2


 is even 

3) ε is even, k has the same parity as δ and Δ, and 


 
 is even 

4) ε is even, k has the opposite parity to δ and Δ, and 


 
 is even 

 

 

    2344)1)((2
4

1
 kkkk   if 
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1) ε is odd, k, δ, and Δ have the same parity, and Δ – δ ≡ 2 mod 4 

2) ε is odd, δ and Δ have the same parity and k has the opposite parity 

3) ε is even, k has the same parity as δ and Δ, and 


 
 is odd 

4) ε is even, k has the opposite parity to δ and Δ, and 


 
 is odd 

 

 

     324)2)((2
4

1
kkkk   if 

ε is odd, δ has the opposite parity to k and Δ, and either  

a) Δ – δ ≡ 1 mod 4 and 








2


 is even, or 

b) Δ – δ ≡ 3 mod 4 and 








2


 is odd 

 

    2346)2)((2
4

1
 kkkk   if 

ε is odd, k, δ, and Δ have the same parity, and Δ – δ ≡ 0 mod 4 

 

 

Proof.  We examine each case separately: 

Case 1 

Position Δ has Δ–k+1 vertices regular with degree Δ–k by Lemma 2.5.  Therefore, the subgraph 

in that position contains 
2

))(1( kk 
 edges. 
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Position Δ–ε has 
2

1
 

 k  vertices regular with degree Δ–k–ε by Lemmas 2.4 and 2.5.  

Therefore, the subgraph in that position contains 






 







 

22

2243  kk
 edges. 

 

 

Therefore, positions Δ and Δ–ε together contain 

 

2

))(1( kk 
 + 







 







 

22

2243  kk
 

 

=        44394254
4

1 22  kk   edges. 

 

 

 

Case 2 

 

Position Δ has Δ–k+1 vertices regular with degree Δ–k by Lemma 2.5.  Therefore, the subgraph 

in that position contains 
2

))(1( kk 
 edges. 

Position Δ–ε has 
2

222
1




 k
k  vertices regular with degree Δ–k–ε by Lemmas 

2.4 and 2.5.  Therefore, the subgraph in that position contains 






 







 

22

4243  kk
 

edges. 

 

 

Therefore, positions Δ and Δ–ε together contain 

2

))(1( kk 
 + 







 







 

22

4243  kk
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=     2344)1)((2
4

1
 kkkk   edges. 

 

Case 3 

Position Δ has Δ–k+2 vertices regular with degree Δ–k by Lemma 2.5.  Therefore, the subgraph 

in that position contains 
2

))(2( kk 
 edges. 

 

Position Δ–ε has 
2

2
 

 k  vertices regular with degree Δ–k–ε by Lemmas 2.4 and 

2.5.  Therefore, the subgraph in that position contains 






 







 

22

423  kk
 edges. 

 

 

Therefore, positions Δ and Δ–ε together contain 

 

2

))(2( kk 
 + 







 







 

22

423  kk
 

=      324)2)((2
4

1
kkkk   edges. 

 

 

Case 4 

 

Position Δ has Δ–k+2 vertices regular with degree Δ–k by Lemma 2.5.  Therefore, the subgraph 

in that position contains 
2

))(2( kk 
 edges. 
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Position Δ–ε has 
2

222
2




 k
k  vertices regular with degree Δ–k–ε by Lemmas 

2.4 and 2.5.  Therefore, the subgraph in that position contains 






 







 

22

6243  kk
 

edges. 

 

 

Therefore, positions Δ and Δ–ε together contain 

 

2

))(2( kk 
 + 







 







 

22

6243  kk
 

 

=     2346)2)((2
4

1
 kkkk   edges.   

 

 

 

Theorem 2.7  (The Size of Extremal Strongly k-ε Almost Regular Graphs) 

In an extremal k-ε almost regular graph with minimum degree δ and maximum degree Δ, the 

number of edges is: 

I.  
12

1
    kk 22)(3(  

       2222 67621652323262
1




 kk  

  ))44()394(2543 22   kk    if 

1) ε is odd, k and δ have the same parity, and Δ has the opposite parity 

2) ε is odd, δ has the opposite parity to k and Δ, and either  

e) Δ – δ ≡ 1 mod 4 and 








2


 is odd, or 
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f) Δ – δ ≡ 3 mod 4 and 








2


 is even 

3) ε is even, k has the same parity as δ and Δ, and 


 
 is even 

4) ε is even, k has the opposite parity to δ and Δ, and 


 
 is even 

 

II.  
12

1
   )2(223(  kk  

       2222 67621652323262
1




 kk  

      )2344123   kkkk   if 

1) ε is odd, k, δ, and Δ have the same parity, and Δ – δ ≡ 2 mod 4 

2) ε is odd, δ and Δ have the same parity and k has the opposite parity 

3) ε is even, k has the same parity as δ and Δ, and 


 
 is odd 

4) ε is even, k has the opposite parity to δ and Δ, and 


 
 is odd 

III.  
12

1
       22226123 22(  kkkk  

       2222 67621652323262
1




 kk  

      )324223   kkkk   if 

ε is odd, δ has the opposite parity to k and Δ, and either  
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a) Δ – δ ≡ 1 mod 4 and 








2


 is even, or 

b) Δ – δ ≡ 3 mod 4 and 








2


 is odd 

 

IV.  
12

1
        kkkk 1224123 22(  

       2222 67621652323262
1




 kk  

      )2346223   kkkk   if 

ε is odd, k, δ, and Δ have the same parity, and Δ – δ ≡ 0 mod 4 

 

Proof.  Add the results from Lemmas 2.6, 2.7 and 2.8 for each case.  Simplification leads to the 

results shown for the number of edges in the graph G. Since Lemma 2.4 shows that the 

conversion process does not alter the number of edges and vertices in the minimum graph, the 

minimum graph has the same number of edges as G.    

 

Strongly k-ε Almost Regular Graph Algorithms 

 

A Linear-Time Algorithm for Creation 

The structure of a minimum strongly k-ε almost regular graph with minimum degree δ 

and maximum degree Δ after conversion using the fundamental lemmas from Section 4 leads to 

the development of an linear-time algorithm to create such a graph for given k, ε, δ, and Δ. 
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Algorithm 2.1  (Creation of extremal strongly k-ε almost regular graphs with given k, ε, δ, and 

Δ) 

 

Input:  Integers k, ε, δ and Δ. 

 

Idea:  Set positions i = δ through i = Δ–2ε to the structure Si=Ki-k+1.  Determine whether position 

Δ has the structure SΔ=KΔ–k+1 or SΔ=KΔ–k+2.  Determine the structure at position  

i = Δ – ε based on the structures at positions i = Δ–2ε and i = Δ.   

 

Initialization:  Create three arrays to store the number of vertices at each position i (v), the 

number of edges from each position adjacent to vertices at position i – ε (p) and the number of 

edges from each position adjacent to vertices at position i + ε (q).  Note that p[δ] and q[Δ] are 

zero. 

 

Process: 

1. Set positions i = δ through i = Δ – 2ε to the structure Si=Ki-k+1.   

2. Assume that SΔ=Ki-k+1.  Examine the parity p1 of v[Δ] =  Δ – k + 1 + q[Δ – 2ε]/k, which 

represents the number of vertices that must be at position i = Δ – ε under the assumption.  

Examine the parity p2 of Δ – k – ε, which represents the degree of the regular subgraph at 

position i = Δ – ε.  If both p1and p2 are odd, add one vertex at position Δ so that SΔ=Ki-

k+2, since we cannot have a regular subgraph on an odd number of vertices of odd degree. 

3. Set   SΔ–ε=Kq[Δ–2ε]+p[Δ]. 
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4. Return v, p and q. 

 

Analysis:  This algorithm is linear in the number of positions in the graph, 1





.  At most 

five operations are performed for each position in the graph. 

 

 An implementation of this algorithm in JavaScript with sample output for various 

parameter values  is given in Appendix I.  This program is available on the Web at 

http://web.valencia.cc.fl.us/cpa/lmacon/ARke.html. 

 

A Polynomial-Time Algorithm for Recognition 

 Recognition of strongly k-ε almost regular graphs, including the recognition of the values 

for k, ε, δ, and Δ in a particular graph, depends in part on the representation of the graphs within 

the program.  Noting that these graphs, if used as network topology models, can be very large in 

general, we avoid storing the adjacency matrix and instead store arbitrary graphs using an 

adjacency list stored as an XML (eXtensible Markup Language) document. 

 Developed in 1996 and released in 1998 by the World Wide Web Consortium, XML is a 

markup language designed to store information for use by Web applications.  Like Hypertext 

Markup Language (HTML) documents, XML documents consist of tags (elements) that enclose 

content (data).  Unlike HTML, there is no fixed set of tags.  Rather, the developer defines tags 

suitable to the application.   

http://web.valencia.cc.fl.us/cpa/lmacon/ARke.html


42 

 

XML is particularly suited for adjacency list storage, as an XML document itself is stored 

in RAM after being loaded as a node tree.  We can use arbitrary tag names to identify elements 

within the document and thus store only information about adjacencies, providing the means to 

store dense graphs, yet there is no need to store more information than necessary about sparse 

graphs. 

As an example, consider the graph shown in Figure 22.  This graph is a                      

strongly 1-2 almost regular graph.  Each vertex has been assigned a label for identification. 

Note that the labeling begins at zero.  This is simply to accommodate the looping mechanisms of 

most high-level languages. 

                       

 

 

 

Figure 22: Strongly 1-2 almost regular graph 

 

This graph can be represented in XML using the code shown in Figure 23, where the 

element <graph> stores the top-level element for the document and the element <vertex> 

stores data about each vertex.  The order attribute, used within the <graph> tag, provides the 

number of vertices for the graphs.  This attribute is used for looping purposes within the code.  

The label attribute, used within the <vertex> tag, delineates the vertex that is currently 

being described.   The <neighbor> element, located within the <vertex> element, stores 

adjacency information for each neighbor.  Note that these choices for element and attribute 

names are arbitrary and can be changed easily. 

9 
0 1 
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<graph order="12"> 

 <vertex label="0"> 

  <neighbor label="1"/> 

 </vertex> 

 <vertex label="1"> 

  <neighbor label="0"/> 

  <neighbor label="2"/> 

  <neighbor label="6"/> 

 </vertex> 

 <vertex label="2"> 

  <neighbor label="1"/> 

  <neighbor label="3"/> 

  <neighbor label="7"/> 

 </vertex> 

 <vertex label="3"> 

  <neighbor label="2"/> 

  <neighbor label="4"/> 

  <neighbor label="8"/> 

 </vertex> 

 <vertex label="4"> 

  <neighbor label="3"/> 

  <neighbor label="5"/> 

  <neighbor label="9"/> 

 </vertex> 

 <vertex label="5"> 

  <neighbor label="4"/> 

  <neighbor label="6"/> 

  <neighbor label="10"/> 

 </vertex> 

 <vertex label="6"> 

  <neighbor label="1"/> 

  <neighbor label="5"/> 

  <neighbor label="11"/> 

 </vertex> 

<vertex label="7"> 

  <neighbor label="2"/> 

  <neighbor label="8"/> 

  <neighbor label="9"/> 

  <neighbor label="10"/> 

  <neighbor label="11"/> 

 </vertex> 

<vertex label="8"> 

  <neighbor label="3"/> 

  <neighbor label="7"/> 

  <neighbor label="9"/> 

  <neighbor label="10"/> 

  <neighbor label="11"/> 

 </vertex> 

<vertex label="9"> 

  <neighbor label="4"/> 

  <neighbor label="7"/> 

  <neighbor label="8"/> 

  <neighbor label="10"/> 

  <neighbor label="11"/> 
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 </vertex> 

<vertex label="10"> 

  <neighbor label="5"/> 

  <neighbor label="7"/> 

  <neighbor label="8"/> 

  <neighbor label="9"/> 

  <neighbor label="11"/> 

 </vertex> 

<vertex label="11"> 

  <neighbor label="6"/> 

  <neighbor label="7"/> 

  <neighbor label="8"/> 

  <neighbor label="9"/> 

  <neighbor label="10"/> 

 </vertex> 

</graph>  

 

Figure 23: XML Representation of a Strongly 1-2 Almost Regular Graph 

 

 

 Given a graph represented using the XML scheme shown in Figure 23, the following 

algorithm will check the graph for the properties representative of strongly k-ε almost regular 

graphs.  If the graph satisfies the properties for any k and ε, this information will be reported, 

along with the values for the parameters.  If the graph does not satisfy the properties, this will be 

indicated on output. 

 

Algorithm 2.2  (Recognition of extremal strongly k-ε almost regular graphs for any k and ε) 

 

Input:  XML representation of a simple, connected graph G. 

 

Idea:  Choose one vertex v0 in the graph.  Compare degrees of adjacent vertices.  Count the 

number with different degrees (k) and the amount by which the degrees differ from the degree of 

v0 – verify that this is the same in absolute value for all neighbors (this value is ε).  We can do 

this because k and ε must be the same for all vertices by definition. 
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Examine degrees of adjacent vertices for each vertex in the graph.  If each vertex v has exactly k 

neighbors whose degrees differ from the degree of v by exactly ε, and all other neighbors of v 

have the same degree as v, the graph is k-ε almost regular. 

 

Initialization:  Create an array s to store the number of adjacent vertices with the same degree 

for each vertex v and an array d to store the number of vertices with degrees differing from the 

degree of v by exactly ε.  Initialize all elements of both arrays to zero. 

Create an array to store the degrees of each vertex in the graph and compute these degrees for 

each vertex based on the adjacency matrix. 

 

Iteration:  For each vertex v 

 

1. Verify that k neighbors differ in degree from v. 

2. Examine the degree of each vertex w adjacent to v.  If the degree of w is the same as the 

degree of v, then s[v]=s[v]+1.  If the degree of w is degree(v) – ε or degree(v) + ε, then 

d[v]=d[v]+1.  Otherwise, break – the graph is not k-ε almost regular. 

3. If d[v] is not equal to k, break.  Otherwise, continue. 

 

Return true if break does not occur after all vertices have been examined. 

 

Analysis:  This algorithm is polynomial in the order of the graph G.  It takes at most O(p2) 

iterations to examine the neighbors of each vertex in the graph for a graph of order p. 
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An implementation of this algorithm in JavaScript with sample output for various 

parameter values is given in Appendix II.  This program is available on the Web at 

http://web.valencia.cc.fl.us/cpa/lmacon/recognize2xml.html.  The appendix includes the XML 

document representations for various graphs.  Images are provided for each represented graph. 

Note that if it is desirable to recognize the strongly k-ε almost regular graph properties in 

a graph for particular values of k and ε, the algorithm is a simplification of Algorithm 2.2.  A 

polynomial time algorithm with short-circuiting is given below. 

 

Algorithm 2.3  (Recognition of strongly k-ε almost regular graph properties for given values of k 

and ε) 

 

Input:  Integers k and ε, and a simple, connected graph G. 

Idea:  Examine degrees of adjacent vertices for each vertex in the graph.  If each vertex v has 

exactly k neighbors whose degrees differ from the degree of v by exactly ε, and all other 

neighbors of v have the same degree as v, the graph is k-ε almost regular. 

 

Initialization:  Create an array s to store the number of adjacent vertices with the same degree 

for each vertex v and an array d to store the number of vertices with degrees differing from the 

degree of v by exactly ε.  Initialize all elements of both arrays to zero. 

Create an array to store the degrees of each vertex in the graph and compute these degrees for 

each vertex based on the adjacency matrix. 

 

http://web.valencia.cc.fl.us/cpa/lmacon/recognize2xml.html
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Iteration:  For each vertex v 

 

1. Examine the degree of each vertex w adjacent to v.  If the degree of w is the same as the 

degree of v, then s[v] = s[v] + 1.  If the degree of w is degree(v) – ε or degree(v) + ε, then 

d[v] = d[v] + 1.  Otherwise, break – the graph is not k- ε almost regular. 

2. If d[v] is not equal to k, break.  Otherwise, continue. 

 

Return true if break does not occur after all vertices have been examined. 

 

Analysis:  This algorithm is polynomial in the order of the graph G.   
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CHAPTER 3 EDGE-FACE COLORINGS OF PLANE GRAPHS 
 

 

Motivation and Notation 

 

In 1994, Borodin [4] proved that for any plane graph G with Δ(G) ≥ 10, χef ≤ Δ + 1 and 

this bound is sharp.  In the same paper, Borodin posed the problem of finding a precise upper 

bound for plane graphs G with Δ(G) ≤ 9.  

The word pseudograph is used in this study to allow loops and multiple edges, while the 

word graph serves to prohibit them.  Let G = (V(G), E(G), F(G)) be a plane pseudograph where 

V(G), E(G) and F(G) are the vertex set, edge set and face set of G respectively.  Let x, y  V(G) 

 E(G)  F(G).  For convenience, we say that x and y are adjacent if x and y are either adjacent 

or incident in a conventional sense.  An edge-face coloring of a plane pseudograph G is a 

function f: E(G)  F(G) → {1, …, k} such that f(x) ≠ f(y) if x and y are adjacent.  When needed, 

we allow loops and self-adjacent faces, and ignore the contact of a color to itself in this 

exceptional case.  A plane pseudograph is edge-face k-colorable if there is an edge-face coloring 

of the graph with colors from {1, …, k}.  We use χef(G), Δ(G), and δ(G) to denote the edge-face 

chromatic number, maximum degree and minimum degree of G, respectively.   

Objective 

 

It is not difficult to see that if G is a plane graph with Δ(G) = 2, then χef(G) ≤ 5 and this 

bound is sharp.  Sanders and Zhao [25] showed in 1998 that if G is a plane graph with Δ(G) = 3, 
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then χef(G) ≤ 5, and this bound is sharp as well.  We now turn our attention to the case where 

Δ(G) = 9 and show that for graphs with this property, χef(G) ≤ 10, and that this bound is sharp.   

Outline 

 

To show that if G is a plane graph with Δ(G) = 9 then χef(G) ≤ 10, we consider plane 

pseudographs instead of plane graphs and prove that for a graph G in this category with Δ(G) = 9 

and minimum degree δ(G) ≥ 2, if  G has no ≤ 2-faces (loops or multiple edges), then χef(G) ≤ 10. 

When that theorem is applied to plane graphs, the main result is proved. 

 

A Precise Upper Bound for the Edge-Face Chromatic Number of Plane Graphs with 

Δ = 9 

 

Theorem 3.1.  Let G be a plane pseudograph with Δ(G) = 9 and δ(G) ≥ 2.  If G has no ≤ 2-faces, 

then χef(G) ≤ 10. 

 

Before this theorem is proved, we will introduce further notation.  A plane pseudograph G is 

called a minimal pseudograph if G is a counterexample to our theorem with a minimal number of 

edges.  Let an i-j edge be an edge that is adjacent to an i-vertex and a j-vertex.  Let e  E(G) and 

let f  be a face adjacent to e.  Then, the other face adjacent to e is denoted by fe, noting that it is 

possible that fe = f.  Furthermore, for e  E(G), let G/e denote the graph that is obtained by 

contracting e in G.  A k-vertex, ≥ k-vertex or ≤ k-vertex is a vertex of degree k, at least k, or at 

most k.  Similarly, we can define a k-face, ≥ k-face or ≤ k-face. For x  V(G)  F(G), d(x) shall 

denote the degree of x if x  V(G) or the length of the facial walk of x if x  F(G).  Let x be a 



50 

 

vertex of G.  We denote the number of i-faces adjacent to x by fi(x).  Similarly, we can define 

f≥i(x).  A partial edge-face coloring of a plane pseudograph G is a coloring of a subset of E(G)  

F(G) such that distinct, adjacent, colored elements of E(G)  F(G) have different colors. 

  

 The following lemmas prove useful properties of minimal pseudographs. 

 

Lemma 3.1.  Let G be a minimal pseudograph.  The G satisfies the following properties: 

(1) G contains no i-j edge e if i + j ≤ 9 and e is adjacent to a ≤ 5-face.  Moreover, G 

contains no 2-j edge e if j ≤ 7. 

(2) G contains no i-j edge if i + j = 10 and e is adjacent to a ≤ 4-face.  Moreover, G 

contains no 2-j edge e if j ≤ 8 and e is adjacent to a ≤ 5-face.   

(3) G contains no i-j edge e if i + j = 11 and e is adjacent to a ≤ 4-face and a ≤ 5-face.  

Moreover, G contains no 2-j edge e if e is adjacent to two ≤ 5-faces. 

Proof.   

(1) For the first part of (1), suppose to the contrary that G contains an i-j edge e that is 

adjacent to an i-vertex v, a j-vertex u and a ≤ 5-face f.  Let G0 = G – e and Gi be obtained from Gi 

– 1 by deleting a 1-vertex of Gi – 1 if such a vertex exists.  Clearly, there is an integer  k ≥ 0 such 

that either k = 0, δ(G0) ≥ 2 or k ≥ 1, δ(Gk) ≥ 2, but δ(Gk - 1) = 1.  By the minimality of G, Gk has 

an edge-face 10-coloring.  This induces a partial edge-face 10-coloring of G, where fe inherits the 

color of the face of Gk not in G, and only edges in E(G) – E(Gk) and f are uncolored.  Since each 

of the uncolored edge and f are adjacent to at most nine elements in E(G)  F(G) – (E(G) – 

E(Gk)), we can color f first, then color these uncolored edges one by one.  Hence G is edge-face 
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10-colorable, a contradiction.  Thus the first part of (1) is true.  For the second part of (1), 

suppose to the contrary that G contains a 2-j edge e with j ≤ 7.  By the first part of (1), e is not 

adjacent to any ≤ 5-faces.  Consider G/e.  Since G is minimal, G/e is edge-face 10-colorable.  An 

edge-face 10-coloring of G/e induces a partial edge-face 10-coloring of G with only e uncolored.  

Since e is adjacent to at most nine elements in E(G)  F(G), it is clear that we can color e.  Thus 

G is edge-face 10-colorable, another contradiction.   

(2) and (3)  Suppose that G contains an i-j edge e that is adjacent to an i-vertex v, a j-vertex u 

and a ≤ 4-face f.  Moreover, d(fe) ≤ 5.  Using the technique used in (1), we obtain Gk.  By the 

minimality of G, Gk has an edge-face 10-coloring.  This induces a partial edge-face 10-coloring 

of G, where fe inherits the color of the face of Gk not in G, and only edges in E(G) – E(Gk) and f 

are uncolored.  In (2), since each of the uncolored edges and f are adjacent to at most nine 

colored elements, we can color these uncolored edges one by one, and then f.  In (3), remove the 

color from fe.  Since each of the uncolored edges, fe and f are adjacent to at most nine colored 

elements, we can first color those uncolored edges one by one, then fe, and then f.  Hence G has 

an edge-face 10-coloring, a contradiction.  Thus, the first parts of (2) and (3) are true.  For the 

second parts of (2) and (3), suppose to the contrary that G contains a 2-j edge e.  Let f be a 5-face 

adjacent to e in (2), and f and g be ≤ 5-faces adjacent to e in (3).  By the above proof, f and g are 

5-faces.  Consider G/e.  Since G is minimal, G/e is edge-face 10-colorable.  An edge-face 10-

coloring of G/e induces a partial edge-face 10-coloring of G with e uncolored.  Remove the 

colors from f in (2) , and f and g in (3).  In (2), we color e first followed by f, and in (3) we color 

e first followed by f and g.  Thus G is edge-face 10-colorable, a contradiction.   
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Lemma 3.2.  Let G be a minimal pseudograph.  The G does not contain any of the 

configurations in Figure 24. 

 

 

 

  

 

 

 

 

Figure 24: Forbidden subgraphs of a minimal pseudograph 

 

Proof.  Suppose that G contains at least one of (a), (b), or (c) in Figure 24. We consider the 

following two cases. 

Case 1.  fuw = fvw. 

Since fuw = fvw, w is a cut vertex.  Let G1 and G2 be the connected subgraphs of G such that  

V(G) = V(G1)  V(G2), 

E(G) = E(G1)  E(G2), 

V(G1)  V(G2) = {w}, and 

E(G1)  E(G2) = . 

Assume that u, v  V(G1).  Suppose that G2 has no ≤ 2-face.  By the minimality of G, G1 and G2 

are edge-face 10 colorable.  Without loss of generality, we assume that uv, vw, f and fuv of G1 are 

v 

u, v, w, x, y are vertices and f is a face 

 

Each hollow circle represents a 2-vertex 
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colored with 1, 2, 3, and 4.  Since the degree of w in G2 is at most seven, we can always permute 

colors of edges and faces in G2 in such a way that we can combine edge-face 10-colorings of G1 

and G2 to obtain an edge-face 10-coloring of G.  

 Suppose that G2 has one ≤ 2-face f.  Construct a graph H from G2 by adding vertices ,  

 V(G) and edges w, w and  in f.  Then H has no ≤ 2-face and satisfies δ(H) ≥ 2.  Since | 

E(H) | < | E(G) |, by the minimality of G, H is edge-face 10-colorable.  Thus G2 is edge-face 10-

colorable.  By the earlier result shown in the proof of this lemma, G is edge-face 10-colorable, a 

contradiction. 

 

Case 2.  fuw  fvw. 

First, assume G contains (a) in Figure 24.  Let wi {u, v}, vi {u, w} for i = 1, …, 7 be the 

vertices adjacent to w and v, respectively.  Consider G – u.  By the minimality of G, G – u has an 

edge-face 10-coloring.  This induces a partial edge-face 10-coloring of G, where fuw inherits the 

color of the face of G – u not in G, and only uw, uv, and f are uncolored. Since uv is adjacent to 

at most nine colored elements, we can color uv.  Without loss of generality, we assume that vw is 

colored with 1, wwi for i = 1, …, 7 is colored with i + 1, uv is colored with 9 and fuw is colored 

with 10.  If we can recolor uv with a color from {2, …, 8}, then we can color uw with 9.  Hence 

G is edge-face 10-colorable, a contradiction.  Thus, vvi for i = 1, …, 7 is colored with a color 

from {2, …, 8}.  Since the partial edge-face 10-coloring of G is induced from the edge-face 10-

coloring of G – u and since fuw  fvw, fvw is not colored with 10.  Hence we can recolor vw with 

10, color uw with 1 and finally color f.  Thus G is edge-face 10-colorable, a contradiction.  We 

can treat the cases where G contains either (b) or (c) in Figure 3-1 similarly.   
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Lemma 3.3.  Let G be a minimal pseudograph.  If G contains (a) in Figure 25, then either d(fuv) 

≥ 6 or d(fvw) ≥ 6 and if G contains (b), then d(fuw) ≥ 6. 

 

 

 

 

 

 

 

 

Figure 25: Subgraphs referenced in Lemma 3.3 

 

Proof.  Suppose that G contains the configuration (a) in Figure 25 with d(fuv) ≤ 5 and d(fvw) ≤ 5.  

Consider G  vw.  By the minimality of G, G  vw has an edge-face 10-coloring.  This induces a 

partial edge-face 10-coloring of G, where fvw inherits the color of the face of G  vw not in G and 

only vw and f are uncolored.  Remove the colors from fuv and fvw.  Let ui  {v, w} for i = 1, …, 7 

be a vertex adjacent to u.  Similarly, define wi  {u, v} for i = 1, …, 7, and xi  {v} for i = 1, …, 

8.  Since G is minimal, without loss of generality, we may assume that uw is colored with 1, wwi 

for i = 1, …, 7 is colored with i + 1, and uv and vx are colored with 9 and 10, respectively.   

Suppose that we can recolor uv with a color from {2, …, 8}.  Then, we can color vw with 9.  

Since d(fuv) ≤ 5,  d(fvw) ≤ 5 and f is uncolored, we can color fuv and fvw first, followed by f.  Hence 

G is edge-face 10 colorable, a contradiction.  Thus uui for i = 1, …, 7 is colored with a color 
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from {2, …, 8}.  Similarly, we can show that xxi for i = 1, …, 8 is colored with a color from {1, 

…, 8}.  Now we can either recolor uw with 10 or swap the colors of uv and vx and recolor uw 

with 9, and then color vw with 1.  Since d(fuv) ≤ 5, d(fvw) ≤ 5 and f is uncolored, we can color we 

can color fuv and fvw first, followed by f.  Hence G is edge-face 10 colorable, a contradiction.   

 Now, suppose that G contains the configuration (b) in Figure 25 with d(fuw) ≤ 5.  

Consider G  vw.  By the minimality of G, G  vw has an edge-face 10-coloring.  This induces a 

partial edge-face 10-coloring of G, where fvw inherits the color of the face of G  vw not in G, 

and only vw and f are uncolored.  Remove the colors from fuw and fvw.  Let ui  {v, w} for i = 1, 

…, 6 be a vertex adjacent to u.  Similarly, we define wi  {u, v} for i = 1, …, 6.  Since G is 

minimal, without loss of generality we assume that uw is colored with 1, wwi for i = 1, …, 6 is 

colored with i + 1, and wx, uv, and vx are colored with 8, 9, and 10 respectively.  The recoloring 

argument used in the previous paragraph can be used to show that uui for i = 1, …, 6 is colored 

with a color from {2, …, 8}.  Now we can recolor uw with 10 and color vw with 1.   Since d(fuw) 

≤ 5 and f is uncolored, we can color fuw first, and then f and fvw.  Hence G is edge-face 10-

colorable, a contradiction.   

 

Lemma 3.4.  Let G be a minimal pseudograph and v be a 3-vertex of G that is adjacent to 

vertices u, w, and x such that u, v, and w are adjacent to a ≤ 4-face and d(w) = 8. Then d(x) ≥ 7.   

Proof.  Suppose that G contains a 3-vertex v that is adjacent to vertices u, w and x such that u, v 

and w are adjacent to a ≤ 4-face f, and d(w) ≤ 8.  Suppose d(x) ≤ 6 and consider G – vw.  By the 

minimality of G, G – vw has an edge-face 10-coloring.  This induces a partial edge-face 10-

coloring of G, where fvw inherits the color of the face of G – vw not in G, and only vw and f are 
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uncolored.  Let wi  {v, w} for i = 1, …, 7 be a vertex adjacent to w.  Similarly, we define xi  

{v} for i = 1, …, 6.  Since G is minimal, without loss of generality we assume that wwi for i = 1, 

…, 7 is colored with i, while uv and vx are colored with 8 and 9 respectively, and fvw is colored 

with 10.  Since d(x) ≤ 6, we can recolor vx with a color from {1, …, 7}.  Then we color vw with 

9, and color f.  Hence G is edge-face 10-colorable, a contradiction.   

 

The discharging method is a technique used to prove theorems and lemmas in structural 

graph theory.  The technique is used to prove that every graph in a specifically defined class 

contains at least one subgraph from a prescribed list.    The presence of the subgraph is then used 

to prove some result. Application of the technique begins by assigning a charge to each vertex 

and face in the graph.  Assignment of the charges provides that the sum of all charges is a small 

positive number.  During the discharging phase, charges may be redistributed to nearby vertices 

and faces, according to a defined set of discharging rules.  Each rule must maintain the sum of 

the charges.  Design of the rules will lead to the positive charge lying in one of the desired 

subgraphs after the discharging phase.  Since the sum of the charges is positive, at least one 

vertex or face in the graph must have a positive charge, so the desired subgraph must be present.  

Successful application of this technique depends on the creative design of the discharging rules. 

 

We use the discharging method to prove our main result, and we now present the 

discharging rules that will be integral to the proof.   
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Let G be a plane pseudograph.  By Euler’s Formula |V(G)|  |E(G)| + |F(G)| = 2, 

 


)()(
8))(4(

GFGVx
xd  

We call M(x) = 4 – d(x) the initial charge of x.  We will reassign a new charge denoted by M’(x) 

to each x  V(G)  F(G) according to the discharging rules defined below. 

 

Discharging Rules: 

First we redistribute charges of 3-faces to vertices of G. 

R1.  Let x be a 3-face.  Then x sends 



1

3
 to each vertex adjacent to it. 

After we redistribute charges of 3-faces to vertices, we redistribute charges of the vertices of G. 

Let x be a 2-vertex.  We redistribute the charge of x as follows: 

 R2.1. x sends 



1

6
 to each adjacent vertex v via each face adjacent to xv. 

 R2.2. x sends 



2

3
 to each ≥ 6-face adjacent to it. 

 R2.3. x sends 



1

3
 to each 5-face adjacent to it. 

After the first three steps, if the charge a of x is still positive, then we take the fourth step. 

 R2.4. x sends 



a

2
 directly to each vertex y adjacent to it along each xy edge. 

Let x be a k-vertex with 3 ≤ k ≤ 5 with a positive charge.  We redistribute the charge of x as 

follows: 

 R3.1. x sends 



1

3
 to each ≥ 5-face adjacent to it. 
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After the first step, if the charge of x is still positive, we take the second step. 

 R3.2. x sends 



1

6
 to each ≥ 6-vertex v adjacent to it via each ≥ 4-face adjacent to xv. 

After the first two steps, if the charge a of x is still positive, then we take the third step. 

 R3.3. x sends 
j

a
 directly to each ≥ 7-vertex y along each xy edge, where j is the number 

of edges that join x to ≥ 7-vertices. 

 

We are now well equipped to prove the theorem presented earlier in this chapter. 

 

Proof of Theorem 3.1.  Let G be a minimal pseudograph with Δ(G) = 9 and δ(G) ≥ 2.  According 

to the discharging rules defined previously, we redistribute M(x) for each x  V(G)  F(G).  

Then we check M(x) and show that M(x) ≤ 0 for each x  V(G)  F(G).  Hence we obtain a 

contradiction. 

 Let x be a 3-face.  By R1, clearly M(x) = M(x) – 3  



1

3
 = 0. 

 Let x be a 4-face.  By our discharging rules, M(x) = M(x) = 0. 

Let x be a 5-face.  Then M(x) = 1. By Lemma 3.1, x is not adjacent to vertices u or v 

such that uv is adjacent to x and d(u) + d(v) ≤ 9.  If x is adjacent to two 5-vertices u and v such 

that uv is adjacent to x, then by Lemma 3.1, uv is adjacent to two ≥ 5-faces.  Hence by our 

discharging rules, each of u and v receives at most 1 from the adjacent 3-faces and sends nothing 

to x.  Since x receives at most 



1

3
 from each ≤ 5-vertex adjacent to it and since there are no 
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vertices u and v such that uv is adjacent to x and both u and v send positive charges to x, we have 

M(x) ≤ 0. 

Let x be a k-face with k ≥ 6.  Then M(x) = 4 – k.  By our discharging rules, x receives at 

most 



1

3
 from each j-vertex adjacent to it where 3 ≤ j ≤ 5 and receives 



2

3
 from each            2-

vertex adjacent to it.  Since each 2-vertex v adjacent to x is adjacent to two ≥ 8-vertices, we can 

think of v sending half of this 



2

3
 directly to x and half of the remaining 



1

3
 via each vertex 

adjacent to it. Thus each vertex adjacent to x sends at most 



1

3
 to x.  Hence we have 

.0
3

)6(2

3
)()( 




kk
xMxM    

Let x be a 2 vertex.  By R2.4, M(x) ≤ 0. 

Let x be a k-vertex with 3 ≤ k ≤ 5.  Then M(x) = 4 – k.  By Lemma 3.1, x is not adjacent 

to any 2-vertex.  If x is adjacent to a ≥ 7-vertex, by R3.3, M(x) = 0.  Hence x is not adjacent to 

any ≥ 7-vertex. Assume k = 3.  By Lemma 3.1, x is not adjacent to any ≤ 5-face.  Hence, x 

receives no charge by R1.  By R3.1, x sends out 1 to the faces adjacent to it and thus M(x) = 0.  

Assume k = 4.  By Lemma 3.1, x is not adjacent to any ≤ 4-face.  Hence, x receives no charge by 

R1, and thus M(x) = 0. Assume k = 5.  By Lemma 3.1, x is adjacent to at most two ≤ 4-faces.  

Hence, x receives at most 



2

3
 by R1, and thus M(x) < 0. 
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Let x be a 6-vertex.  Then M(x) = 2.  By Lemma 3.1, x is not adjacent to any 2-vertex.  

Since x does not receive any charge directly from vertices adjacent to it and since each face 

adjacent to x sends at most 



1

3
 to x, we have M(x) ≤ M(x) + 6  



1

3
 = 0. 

Let x be a 7-vertex.  Then M(x) = 3.  By our discharging rules, each face adjacent to x 

sends at most 



1

3
 to x.  Now we estimate how much charge each vertex u can send to x directly 

along each ux edge. 

By Lemma 3.1, x is not adjacent to any 2-vertex. 

If x is adjacent to a 3-vertex u, by Lemma 3.1, ux is not adjacent to any ≤ 4-face.  Hence 

u is adjacent to at most one 3-face.  According to whether u is adjacent to a 3-face or not, u either 

sends nothing to x or sends nothing directly to x.  Thus no 3-vertex sends any charge directly to 

x. 

If x is adjacent to a 4-vertex u, then ux is adjacent to at least one ≥ 5-face.  If u is adjacent 

to a ≤ 6-vertex, then by Lemma 3.1, u is adjacent to at least two ≥ 5-faces.  Thus, by our 

discharging rules, u sends nothing directly to x.  If u is not adjacent to any ≤ 6-vertex, then u is 

adjacent to four ≥ 7-vertices and at most three 3-faces.  Hence by R1 and R3.1-3.3, u sends at 

most 



1

4
  (



3

3
 – 



2

3
) = 



1

12
 directly to x. 

If x is adjacent to a 5-vertex u that is adjacent to a ≤ 6-vertex, then u is adjacent to at least 

one ≥ 5-face.  By R1, R3.1, and R3.3, u sends nothing directly to x.  If u is adjacent to five 3-

faces, then by R1 and R3.1-3.3, u sends at most 



1

5
  (



5

3
 – 1) = 



2

15
 directly to x. 
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Now we estimate M(x).  Clearly, if x is not adjacent to any 5-vertex, then M(x) ≤ M(x) + 



7

3
+ 



7

12
 < 0.  Thus, we assume that x is adjacent to a 5-vertex u that sends 



2

15
 directly to x.  Let v 

and w be vertices adjacent to both x and u. Then d(v), d(w) ≥ 7.  If we think of u sending half of 

this 



2

15
 directly to x, and sending half of the remaining 



1

15
 via each of v and w, then each vertex 

adjacent to x sends at most 



1

12
 directly to x.  Thus M(x) ≤ M(x) + 



7

3
 + 



7

12
 < 0. 

Let x be an 8-vertex.  Then M(x) = 4.  We estimate how much each charge each vertex u 

can send to x along each ux edge. 

If x is adjacent to a 2-vertex u, by Lemma 3.1, ux is not adjacent to any ≤ 5-face.  By 

R2.1-2.4, x receives nothing directly from u. 

If x is adjacent to a 3-vertex u, by Lemma 3.1, ux is adjacent to at least one ≥ 5-face.  If u 

is adjacent to a ≤ 6-vertex, then u is not adjacent to any ≤ 4-face by Lemmas 3.1 and 3.4.  Hence, 

u sends nothing directly to x. Assume that u is not adjacent to any ≤ 6-vertex.  If u is adjacent to 

a 7-vertex, then u is adjacent to at least two ≥ 5-faces.  Thus by R1 and R3.1-3.3, u sends nothing 

directly to x.  If u is not adjacent to any ≤ 7-vertex, then by Lemma 3.3, u is adjacent to at most 

two 3-faces.  Thus by R1 and R3.1-3.3, u sends either 



1

3
 or at most 



1

9
 or nothing directly to x 

according to whether f3(u) = 2 or f3(u) = 1 or f3(u) = 0. 

If x is adjacent to a 4-vertex u that is adjacent to a ≤ 6-vertex, then by Lemma 3.1, u is 

adjacent to at least two ≥ 5-faces.  Since M(u) = 0, by R1 and R3.1-3.3, u sends nothing to x.  
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Assume that u is not adjacent to any ≤ 6-vertex.  Hence, by R1 and R3.1-3.3, u sends either 



1

3
 or 

at most 
6

1
 or nothing directly to x according to whether f3(u) = 4 or f3(u) = 3 or f3(u) = 2. 

If x is adjacent to a 5-vertex u that is adjacent to a ≤ 6-vertex, then by Lemma 3.1, u is 

adjacent to at least one ≥ 5-face.  Since M(u) = 1, by R1 and R3.1-3.3, u sends nothing to x.  

Assume that u is not adjacent to any ≤ 6-vertex.  Hence, by R1 and R3.1-3.3, u sends either 
15

2
 

or nothing directly to x according to whether f3(u) = 5 or f3(u) ≤ 4. 

Now we estimate M(x).  Each 3-vertex u that sends 



1

3
 directly to x is adjacent to a 3-face 

f which is adjacent to a ≥ 8-vertex v such that by Lemma 3.3, d(fvx) ≥ 6.  Hence, one can think of 

u sending half of this 



1

3
 directly to x and sending the remaining 



1

6
 via v to x.  Each 4-vertex w 

that sends 



1

3
 directly to x is adjacent to two 3-faces that are adjacent to x and two ≥ 7-vertices y 

and z.  Thus, one can think of w as sending half of this 



1

3
 directly to x and sending half of the 

remaining 



1

6
 via each of y and z to x.  Since each vertex adjacent to x sends x at most 



1

6
, we have 

M(x) ≤ M(x) + 



8

3
 + 8  



1

6
 = 0. 

Let x be a 9-vertex.  Then M(x) =  5.  We estimate how much charge each vertex u can 

send to x along each ux edge. 

If x is adjacent to a 2-vertex u, then by Lemmas 3.1 and 3.2, u is not adjacent to any ≤ 7-

vertex or any 3-face.  If u is not adjacent to any ≤ k-face with 4 ≤ k ≤ 5, then by R2.1-2.4, u sends 
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nothing directly to x.  Otherwise, u sends either 



1

3
 or 



1

6
 directly to x according to whether f4(u) = 

1 or f5(u)= 1. 

If x is adjacent to a 3-vertex u that is adjacent to a ≤ 6-vertex, then by Lemma 3.1, u is 

adjacent to at least two ≥ 6-faces.  By R1 and R3.1-3.3, according to whether u is adjacent to a 3-

face or not, u sends either at most 



1

6
 or nothing to x.  Assume that u is not adjacent to any ≤ 6-

vertex.  Since each 3-face adjacent to u sends 



1

3
 to u and since u sends out 



1

3
 via each ≥ 4-face 

adjacent to it and 



1

3
 to each ≥ 5-face adjacent to it, we have that u sends at most 

3

1
0,

3

)(2

3

)(

3

)(
1

3

1 543 
















  ufufuf

Max  directly to x, where 0 ≤ f3(u) ≤ 2, and if f3(u)  0, 

then by Lemma 3.3, f≥6(u) ≥ 1, and if f3(u) = 2, then u is not adjacent to any ≤ 7-vertex. 

If x is adjacent to a 4-vertex u that is adjacent to a ≤ 6-vertex, then by Lemma 3.1, u is 

adjacent to at least two ≥ 5-faces.  Since M(u) = 0, by R1 and R3.1-3.3, u sends nothing to x.  

Assume that u is not adjacent to any ≤ 6-vertex.  Then u sends at most 

3

1
0,

3

)(2

3

)(

3

)(

4

1 543 
















  ufufuf

Max  directly to x, and if f3(u) = 4, then u is not adjacent to 

any ≤ 7-vertex.   

If x is adjacent to a 5-vertex u that is adjacent to a ≤ 6-vertex, then by Lemma 3.1, u is 

adjacent to at least one ≥ 5-face.  Since M(u) = 1, by R1 and R3.1-3.3, u sends nothing to x.  
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Assume that u is not adjacent to any ≤ 6-vertex.  Then u sends at most 

15

2
0,

3

)(2

3

)(
1

3

)(

5

1 543 
















  ufufuf

Max  directly to x. 

Now we estimate M’(x).  Since each 3-vertex u that sends 



1

3
 directly to x is adjacent to a 

3-face f which is adjacent to ux and a ≥ 8-vertex v, we can think of u sending two-thirds of this 



1

3
 

directly to x and sending the remaining 



1

9
 via v to x.  Since each 4-vertex u that sends 



1

3
 directly 

to x is adjacent to two 3-faces f and g such that f is adjacent to ux and a ≥ 8-vertex v, and g is 

adjacent to ux and a ≥ 8-vertex w, we can think of u sending two-thirds of this 



1

3
 directly to x and 

sending 



1

18
 to x via each of v and w.  Let u b a 2-vertex that is adjacent to x. If u sends 



1

3
 directly 

to x, then u is adjacent to a 4-face f. Let v be a vertex that is adjacent to x and f.  By Lemma 3.2, 

d(v) ≥ 3.  If v is a 4-vertex, then v sends at most 



1

6
 or nothing directly to x according to whether 

f3(v) = 3 or f3(v) ≤ 2.  If v is a 3-vertex, then v sends at most 



1

9
 or nothing directly to x according 

to f3(v) = 1 or f3(v) = 0.  In the case of d(v) = 4, one can think of u as sending two-thirds of this 



1

3
 

directly to x and sending the remaining 



1

9
 temporarily to v.  For v, one can think of v as sending 

two-thirds of this 



1

3
 > 



1

6
 + 



1

9
 directly to x and sending the remaining 



1

9
 to x via the ≥ 8-vertex w 

adjacent to both v and x. Hence, the eventual charge that each of u, v, and w sends to x is no more 
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than 



2

9
.  In the case of d(v) = 3, one can think of u as sending two-thirds of this 



1

3
 directly to x 

and sending the remaining 



1

9
 via v to x.  Let w be the vertex adjacent to both x and fvx.  If d(fvx) = 

3 or d(fvx) ≥ 6, w sends nothing via v to x.  If 4 ≤ d(fvx) ≤ 5, then by Lemma 3.3, f3(v) = 0 and v 

sends nothing directly to x.  Hence v sends no more than 



2

9
 to x in the case of d(v) = 3.  Since 

each vertex sends at most 



2

9
 directly to x, we have M’(x) ≤ M(x) + 



9

3
 + 9  



2

9
 = 0. 

Hence we have  

 



8  M(x)  M'(x)  0
xV (G )F(G)


xV (G)F(G )

 , 

a contradiction.   

 

We now conclude with the proof of our main result. 

 

Theorem 3.2.  If G is a plane graph with (G) = 9, then ef(G) ≤ 10. 

 

Proof.  Since isolated vertices do not affect edge-face colorings, we assume that G has no 

isolated vertices.  Let G0 = G and Gi be obtained from Gi – 1 by deleting a 1-vertex if such a 

vertex exists.  Clearly, there is an integer k ≥ 0 such that either k = 0, (G0) ≥ 2 or k ≥ 1, (Gk) ≥ 

2, but (Gk - 1) = 1.  By Theorem 3.1, Gk is edge-face 10-colorable.  By our construction of Gk, 

clearly, we can color all these uncolored edges in E(G) – E(Gk) one by one.  Thus G is edge-face 

10-colorable.    
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CHAPTER 4 SUGGESTIONS FOR FUTURE WORK 
 

Almost Regular Graphs 

 

Future work in the study of Almost Regular graphs could proceed along at least two 

paths: (1) research into the graphical properties other than those previously examined, and (2) 

studies regarding the use of these graphs for network topologies.  Here we will emphasize the 

latter. 

Considering the importance of regular graphs in network design, it would be interesting 

to determine measures for evaluating the difference between a k-ε almost regular graph and a 

regular graph.  For example, one could ask for the smallest regular graph containing an almost 

regular graph.  “Smallest” could be determined by the number of added edges and/or vertices.  

Conversely, if would be interesting to determine when it would be possible to remove edges 

from a regular graph to form a k-ε almost regular graph and to develop an efficient algorithm for 

doing so.  The ability to accomplish this could have application in employing k-ε almost regular 

graphs in network topologies where the cost of the robust connectivity of a regular graph could 

be reduced using a k-ε almost regular graph.  

Following a slightly different idea, it may be instructional to examine how one might 

sequentially expand k-ε almost regular graphs in such a manner as to ensure that at each step one 

maintains the k-ε almost regular property.  Any network topology based on a k-ε almost regular 

model might at some future time require such an expansion.  Applying this idea to the ordinary 

processes involved when maintaining a computer network, it would be meaningful to investigate 
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the effects of vertex (workstation) removal, edge (network connection) removal, and vertex and 

edge additions in these graphs [17].  

In any evaluation of the usefulness of the k-ε almost regular graph model as a network 

topology, it would be necessary to determine the routing properties of these graphs.  These 

include the number of vertex disjoint paths between two vertices, the ease of algorithmically 

determining them, and the ease of rerouting when a component failure occurs [17].  All of this is 

connected to the graph’s connectivity properties. 

This dissertation presents a linear-time algorithm for creating k-ε almost regular graphs.  

This algorithm may be improved slightly, and modifications could be made to produce graphs 

with desirable connectivity properties. 

 

Edge-Face Colorings of Plane Graphs 

 

Sharp bounds are well known for the edge-face chromatic number of plane graphs for 

small Δ and values of Δ greater than or equal to 9.  Specifically, if G is a plane graph with Δ(G) 

= 2, then χef(G) ≤ 5 and this bound is sharp, and the same sharp bound of 5 holds for plane 

graphs with Δ(G) = 3 [25].  In this dissertation, we focused on the case where Δ(G) = 9 and 

showed that for graphs with this property, χef(G) ≤ 10, and that this bound is sharp.  What is left 

at this point is to find sharp upper bounds for χef(G) for the cases Δ(G) = 4, 5, 6, 7, and 8.   

Although work has been done to generate algorithms for coloring the vertices or edges of 

plane graphs with various properties, no work has of yet been published to introduce an 

algorithm for coloring the edges and faces of plane graphs.  A polynomial-time algorithm for this 
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should be achievable, although finding an optimal algorithm would potentially be quite 

challenging. 
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APPENDIX A: CONSTRUCTION ALGORITHM IMPLEMENTATION 

AND EXAMPLES 
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ARke.html 

 
<html> 

<head> 

<title>Extremal k-epsilon Almost Regular Graphs</title> 

 

<style type="text/css"> 

em {color: #aa3333} 

body  {background-color: lightgray; color: black} 

strong  {font-weight: extra-bold; color:navy} 

.grsty  {color:navy} 

.edsty {color:red} 

</style> 

 

<script language="JavaScript"> 

 

function validate_existence() 

{ 

 smdelta = parseInt(Params.smdel.value); 

 lgdelta = parseInt(Params.lgdel.value); 

 k = parseInt(Params.thek.value); 

 epsilon = parseInt(Params.eps.value); 

 

 if (lgdelta <= smdelta) 

  { 

  alert ("The maximum degree must be larger than the 

minimum degree!"); 

  return 0; 

  } 

 if ((lgdelta-smdelta) % epsilon != 0)  

   { 

  alert ("The difference between the minimum and maximum 

degrees must be a multiple of epsilon!"); 

  return 0;  

  } 

 if (smdelta < k) 

  {  

  alert ("The minimum degree must be at least k!"); 

  return 0; 

  } 

 return 1; 

} 
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function displaygraph(sdel,ldel,k,epsilon,v,p,q) 

{ 

 outputString="<font color=red size=+1><b>"; 

 

 for (j=sdel; j <=ldel; j+=epsilon) 

 { 

  if (j == sdel) 

   { 

   outputString += "<font color=navy>[R("; 

   outputString += v[j]+","+(j-k)+")]</font>--"; 

   outputString += q[j]+"--"; 

   } 

  else  

  { 

   if (j == ldel) 

    { 

    outputString += "<font color=navy>[R("; 

    outputString += v[j]+","+(j-

k)+")]</font></b></font>"; 

    } 

   else 

    { 

    outputString += "<font color=navy>[R("; 

    outputString += v[j]+","+(j-k)+")]</font>--

"+q[j]+"--"; 

    } 

  } 

 } 

 outputString += "<br /><br /><em>Note the structure 

<strong>R(a,b)</strong> represents a regular"; 

 outputString += " subgraph of degree <strong>b</strong> on 

<strong>a</strong>"; 

 outputString += " vertices.</em><br /><br />"; 

 outputString += "<em>So <strong>R(k,k-1)</strong> would be 

the complete graph on <strong>k</strong>"; 

 outputString += " vertices.</em>"; 

 graphArea.innerHTML=outputString; 

} 

 

 

 

function drawgraph() 

{ 

 smdelta = parseInt(Params.smdel.value); 

 lgdelta = parseInt(Params.lgdel.value); 
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 k = parseInt(Params.thek.value); 

 epsilon = parseInt(Params.eps.value); 

 

 if (validate_existence() == 0) 

  alert ("The graph does not exist!"); 

 else 

     // Create the graph 

     {  

  // Create and initialize arrays 

  v = new Array (lgdelta+1); 

  p = new Array (lgdelta+1); 

  q = new Array (lgdelta+1); 

  for (n = smdelta; n <= lgdelta; n++) 

  { 

   v[n] = n; 

   p[n] = n; 

   q[n] = n; 

  } 

   

  // Set position smdelta 

 

  v[smdelta] = smdelta-k+1; 

  q[smdelta] = (smdelta-k+1)*k; 

 

  // Determine positions smdelta+epsilon through 

lgdelta-2*epsilon 

  for (j = smdelta+epsilon; j <= lgdelta-2*epsilon; 

j+=epsilon) 

  { 

   v[j] = j-k+1; 

   p[j] = q[j-epsilon]; 

   q[j] = v[j]*k - p[j]; 

  } 

  // Determine structure at position lgdelta 

  if (((((lgdelta-k+1)*k + q[lgdelta-2*epsilon])/k) % 2 

!= 0) && ((lgdelta-k-epsilon) % 2 != 0)) 

  { 

   v[lgdelta] = lgdelta-k+2;  

   p[lgdelta] = (lgdelta-k+2)*k; 

  } 

  else 

  { 

   v[lgdelta] = lgdelta-k+1;  

   p[lgdelta] = (lgdelta-k+1)*k; 

  } 
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  // Determine structure at position lgdelta-epsilon 

  if ((lgdelta-epsilon) == smdelta) 

  { 

   v[lgdelta-epsilon]= v[lgdelta]; 

   p[lgdelta-epsilon]= 0; 

   q[lgdelta-epsilon] = p[lgdelta]; 

  } 

  else 

  { 

   v[lgdelta-epsilon] = (p[lgdelta] + q[lgdelta-

2*epsilon])/k; 

   p[lgdelta-epsilon] = q[lgdelta-2*epsilon]; 

   q[lgdelta-epsilon] = p[lgdelta]; 

  } 

  displaygraph(smdelta,lgdelta,k,epsilon,v,p,q); 

     }  

return false; 

} 

</script> 

 

</head> 

 

<body> 

<h2 align="center">Extremal <em>k</em>-<em>epsilon</em> Almost 

Regular Graphs</h2> 

<form name="Params"> 

<table cellpadding="15" cellspacing="0" width="740" border="6" 

align="center"> 

<tr> 

<td colspan="4"> 

A <em>k</em>-<em>epsilon</em> Almost Regular graph is a graph in 

which each vertex <strong>v</strong> has the  

same degree as all but <em>k</em> of its neighbors, and 

<strong>v</strong> differs in degree 

from these neighbors by exactly <em>epsilon</em>.  Enter values 

below for the minimum 

and maximum degrees, <em>k</em> and <em>epsilon</em>, and an 

extremal graph will be outlined for you. 

<br /><br /> 

<em>Note that the difference between the maximum and minimum 

degrees must be an exact 

multiple of epsilon and that the minimum degree must be at least 

k!</em> 

</td> 

</tr> 
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<tr> 

<td> 

Input minimum degree for the graph: 

</td> 

<td>  

<input name="smdel" size="4"> 

</td> 

<td> 

Input maximum degree for the graph: 

</td>  

<td> 

<input name="lgdel" size="4"> 

</td> 

<tr> 

<td> 

Input <em>k</em> for the graph: 

</td>  

<td> 

<input name="thek" size="4"> 

</td> 

<td> 

Input <em>epsilon</em> for the graph: 

</td>  

<td> 

<input name="eps" size="4"> 

</td> 

</tr> 

<tr> 

<td colspan="4" align="center"> 

<input type="button" name="subbut" value="Draw Graph" 

onclick="drawgraph();"> 

</td> 

</table> 

</form> 

 

<br /><br /> 

<p id="graphArea">&nbsp</p> 

</body> 

</html> 
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SAMPLE OUTPUT 
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Extremal k-epsilon Almost Regular Graphs 

A k-epsilon Almost Regular graph is a graph in which each vertex v has the same degree as all but k of its 

neighbors, and v differs in degree from these neighbors by exactly epsilon. Enter values below for the 

minimum and maximum degrees, k and epsilon, and an extremal graph will be outlined for you.  

 

Note that the difference between the maximum and minimum degrees must be an exact multiple of epsilon and 

that the minimum degree must be at least k!  

Input minimum degree for the 

graph:  
4

 
Input maximum degree for the 

graph:  
18

 

Input k for the graph:  3
 Input epsilon for the graph:  2

 

 

 

 

 

[R(2,1)]--6--[R(4,3)]--6--[R(6,5)]--12--[R(8,7)]--12--[R(10,9)]--18--[R(12,11)]--18--

[R(22,13)]--48--[R(16,15)] 
 

Note the structure R(a,b) represents a regular subgraph of degree b on a vertices. 

 

So R(k,k-1) would be the complete graph on k vertices. 
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Extremal k-epsilon Almost Regular Graphs 
 

A k-epsilon Almost Regular graph is a graph in which each vertex v has the same degree as all but k of its 

neighbors, and v differs in degree from these neighbors by exactly epsilon. Enter values below for the 

minimum and maximum degrees, k and epsilon, and an extremal graph will be outlined for you.  

 

Note that the difference between the maximum and minimum degrees must be an exact multiple of epsilon and 

that the minimum degree must be at least k!  

Input minimum degree for the 

graph:  
10

 
Input maximum degree for the 

graph:  
15

 

Input k for the graph:  1
 Input epsilon for the graph:  5

 

 

 

 

 

[R(16,9)]--16--[R(16,14)] 
 

Note the structure R(a,b) represents a regular subgraph of degree b on a vertices. 

 

So R(k,k-1) would be the complete graph on k vertices. 

 



78 

 

Extremal k-epsilon Almost Regular Graphs 

A k-epsilon Almost Regular graph is a graph in which each vertex v has the same degree as all but k of its 

neighbors, and v differs in degree from these neighbors by exactly epsilon. Enter values below for the 

minimum and maximum degrees, k and epsilon, and an extremal graph will be outlined for you.  

 

Note that the difference between the maximum and minimum degrees must be an exact multiple of epsilon and 

that the minimum degree must be at least k!  

Input minimum degree for the 

graph:  
2

 
Input maximum degree for the 

graph:  
18

 

Input k for the graph:  3
 Input epsilon for the graph:  2

 

 

 

 
 

 

 

 

Microsoft Internet Explorer 

! 
The minimum degree must be at least k! 

           The graph does not exist! 

OK 
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Extremal k-epsilon Almost Regular Graphs 

A k-epsilon Almost Regular graph is a graph in which each vertex v has the same degree as all but k of its 

neighbors, and v differs in degree from these neighbors by exactly epsilon. Enter values below for the 

minimum and maximum degrees, k and epsilon, and an extremal graph will be outlined for you.  

 

Note that the difference between the maximum and minimum degrees must be an exact multiple of epsilon and 

that the minimum degree must be at least k!  

Input minimum degree for the 

graph:  
1

 
Input maximum degree for the 

graph:  
18

 

Input k for the graph:  3
 Input epsilon for the graph:  2

 

 

 

 
 
 

 
 
 

 
 
 

 
 
 

 

 

Microsoft Internet Explorer 

! 
The difference between the minimum and maximum degrees must be a multiple of epsilon! 
                                                          The graph does not exist! 

OK 
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APPENDIX B:  RECOGNITION ALGORITHM IMPLEMENTATION AND 

EXAMPLES 
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recognize2xml.html 

 
<html> 

<head> 

<title>k-epsilon Almost Regular Graphs</title> 

 

<style type="text/css"> 

em {color: #aa3333} 

body  {background-color: lightgray; color: black} 

strong  {font-weight: extra-bold} 

</style> 

 

<script language="JavaScript"> 

 

function checkgraph() 

{ 

        var outputstring=""; 

 

 // Load adjacency matrix from XML document 

 

 var gDoc = new ActiveXObject("MSXML2.DOMDocument");   // 

Create XML doc object 

 gDoc.async = false;                                  // 

Stop program while file is read 

 

 gDoc.load(Params.matrixpath.value);        // Load 

graph from XML document provided 

 

 var graph = gDoc.documentElement;   // graph is 

the root object 

 var graphSize = eval(graph.getAttribute ("order")); 

 // graphSize is the value of the order attribute for 

element graph 

 

 // Create arrays to count number of neighbors with same or 

epsilon-different degrees 

 // Also create array to store degree of each vertex.  

Initialize all arrays to zero. 

 

 s = new Array(graphSize); 

        d = new Array(graphSize); 

        degree=new Array(graphSize); 

 for (i = 0;i < graphSize; i++) { 

  s[i]=0; 
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  d[i]=0; 

  degree[i]=0; 

 } 

 

 am = new Array (graphSize);   // create array of 

vertices 

 for (i = 0; i < graphSize; i++) 

  am[i] = new Array(graphSize);  // for each vertex, 

create an array for adjacency information 

 for (i = 0; i < graphSize; i++) 

  for (j = 0; j < graphSize; j++) 

   am[i][j] = 0;   // Initialize all 

adjacencies to zero 

 

 // Iterate through the vertices, and then through the 

neighbors, to assign 1's in the matrix for all adjacencies 

 

 for (i = 0; i < graph.childNodes.length; i++) { 

  var vLabel = 

eval(graph.childNodes.item(i).getAttribute("label")); 

  for (j = 0; j < 

graph.childNodes.item(i).childNodes.length; j++) { 

   var nbr = 

eval(graph.childNodes.item(i).childNodes.item(j).getAttribute("l

abel")); 

   am[vLabel][nbr]=1; 

  } 

 } 

  

outputstring += "The adjacency matrix is:<br/><br/>" 

for (i = 0; i < graphSize; i++) { 

   for (j = 0; j < graphSize; j++) { 

      outputstring += " " + am[i][j];  

   } 

   outputstring += "<br/>"; 

} 

 

graphArea.innerHTML=outputstring; 

 

// Compute degrees for each vertex 

 

for (i = 0; i < graphSize; i++)  

   for (j = 0; j < graphSize; j++)  

 degree[i]+=am[i][j]; 

var k = 0; 
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var epsilon = 0; 

flag = 0; 

 

// Check first vertex against all others to fix k and epsilon. 

// These values have to be the same for all vertices! 

// Note that if the difference in degrees between vertex 0 and 

ANY two other vertices is DIFFERENT, the graph can't 

//                       be k-epsilon almost regular! 

 

for (j = 1; j < graphSize; j++) { 

 if (am[0][j] == 1) { 

  if (degree[0]==degree[j]) 

   s[0]++; 

  else { 

   d[0]++; 

   tempeps = Math.abs(degree[0]-degree[j]); 

   if (tempeps != epsilon) 

    if (epsilon == 0) 

     epsilon = tempeps; 

    else       

     flag = 1; 

  } 

         } 

} 

 

if (flag == 1) 

 alert ("This graph cannot be k-epsilon almost regular"); 

else  

 k=d[0]; 

 

flag = 0; 

for (i = 1; i < graphSize; i++) { 

   for (j = 0; j < graphSize; j++) { 

     if (am[i][j] == 1) { 

 if ((i!=j) && (degree[i]==degree[j])) 

  s[i]++; 

 else if ((i != j) && ((degree[i] == degree[j]-epsilon) || 

(degree[i] == degree[j]+epsilon))) 

                d[i]++;  

 else if (i != j) { 

  flag = 1; 

  break; 

 } 

     } 

   } 
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} 

 

for (i = 0; i < graphSize; i++) { 

 if (d[i] != k) 

  flag = 1; 

} 

if (flag == 1) 

 alert ("The graph is not k-epsilon almost regular"); 

else  

 alert ("The graph is "+k+"-"+epsilon+" almost regular"); 

 

} 

 

function setFocus() { 

Params.matrixpath.focus(); 

} 

 

</script> 

 

</head> 

 

<body onLoad="setFocus();"> 

<h2 align="center"><em>k</em>-<em>epsilon</em> Almost Regular 

Graphs</h2> 

<form name="Params"> 

<table cellpadding="15" cellspacing="0" width="740" border="6" 

align="center"> 

<tr> 

<td colspan="2"> 

A <em>k</em>-<em>epsilon</em> Almost Regular graph is a graph in 

which each vertex <strong>v</strong> has the  

same degree as all but <em>k</em> of its neighbors, and 

<strong>v</strong> differs in degree 

from these neighbors by exactly <em>epsilon</em>.  Enter the 

pathname for XML file that stores the graph data,  

and we will tell you whether your graph is <em>k</em>-

<em>epsilon</em> Almost Regular for some value of <em>k</em> and 

<em>epsilon</em>. 

<br /><br /> 

</td> 

</tr> 

 

<tr> 

<td width = "420">Enter pathname for XML file:<br/></td> 

<td> 
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<input size="50" name=matrixpath> 

</td> 

</tr> 

<tr> 

<td colspan="2" align="center"> 

<input type="button" name="subbut" value="Recognize" 

onclick="checkgraph();"> 

</td> 

</table> 

</form> 

 

<br /><br /> 

<p id="graphArea">&nbsp</p> 

</body> 

</html> 
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SAMPLE OUTPUT 
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k-epsilon Almost Regular Graphs 
 

A k-epsilon Almost Regular graph is a graph in which each vertex v has the same degree as all but k of its 

neighbors, and v differs in degree from these neighbors by exactly epsilon. Enter the pathname for XML file 

that stores the graph data, and we will tell you whether your graph is k-epsilon Almost Regular for some value 

of k and epsilon.  

Enter pathname for XML file: graph.xml
 

 

 

 

 

The adjacency matrix is: 

 

0 1 0 0 

1 0 1 0 

0 1 0 1 

0 0 1 0 

Microsoft Internet Explorer 

! 
The graph is 1-1 almost regular 

            

OK 
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graph.xml 

<graph order="4"> 

 <vertex label="0"> 

  <neighbor label="1"/> 

 </vertex> 

 <vertex label="1"> 

  <neighbor label="0"/> 

  <neighbor label="2"/> 

 </vertex> 

 <vertex label="2"> 

  <neighbor label="1"/> 

  <neighbor label="3"/> 

 </vertex> 

 <vertex label="3"> 

  <neighbor label="2"/> 

 </vertex> 

</graph> 

 

 

 

 

 

0 

1 2 

3 



89 

 

k-epsilon Almost Regular Graphs 

A k-epsilon Almost Regular graph is a graph in which each vertex v has the same degree as all but k of its 

neighbors, and v differs in degree from these neighbors by exactly epsilon. Enter the pathname for XML file 

that stores the graph data, and we will tell you whether your graph is k-epsilon Almost Regular for some value 

of k and epsilon.  

Enter pathname for XML file: graph2.xml
 

 

 

 

 

The adjacency matrix is: 

 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 

graph2.xml 

Microsoft Internet Explorer 

! 
The graph is 1-1 almost regular 

            

OK 
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<graph order="24"> 

 <vertex label="0"> 

  <neighbor label="1"/> 

  <neighbor label="2"/> 

 </vertex> 

 <vertex label="1"> 

  <neighbor label="0"/> 

  <neighbor label="3"/> 

 </vertex> 

 <vertex label="2"> 

  <neighbor label="0"/> 

  <neighbor label="3"/> 

  <neighbor label="4"/> 

 </vertex> 

 <vertex label="3"> 

  <neighbor label="1"/> 

  <neighbor label="2"/> 

  <neighbor label="4"/> 

 </vertex> 

 <vertex label="4"> 

  <neighbor label="2"/> 

  <neighbor label="3"/> 

  <neighbor label="5"/> 

 </vertex>  

 <vertex label="5"> 

  <neighbor label="4"/> 

  <neighbor label="6"/> 

  <neighbor label="7"/> 

  <neighbor label="8"/> 

 </vertex>  

 <vertex label="6"> 

  <neighbor label="5"/> 

  <neighbor label="7"/> 

  <neighbor label="8"/> 

  <neighbor label="9"/> 

 </vertex>  

 <vertex label="7"> 

  <neighbor label="5"/> 

  <neighbor label="6"/> 

  <neighbor label="8"/> 

  <neighbor label="11"/> 

 </vertex>  

 <vertex label="8"> 

  <neighbor label="5"/> 

1 

0 

2 

3 4 

5 

6 7 

8 

9 

10 
11 

12 

13 

14 

15 
16 

17 

18 

19 

20 21 

22 

23 
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  <neighbor label="6"/> 

  <neighbor label="7"/> 

  <neighbor label="10"/> 

 </vertex>  

 <vertex label="9"> 

  <neighbor label="6"/> 

  <neighbor label="10"/> 

  <neighbor label="11"/> 

  <neighbor label="12"/> 

  <neighbor label="13"/> 

 </vertex>  

 <vertex label="10"> 

  <neighbor label="8"/> 

  <neighbor label="9"/> 

  <neighbor label="11"/> 

  <neighbor label="12"/> 

  <neighbor label="17"/> 

 </vertex>  

 <vertex label="11"> 

  <neighbor label="7"/> 

  <neighbor label="9"/> 

  <neighbor label="10"/> 

  <neighbor label="16"/> 

  <neighbor label="17"/> 

 </vertex>  

 <vertex label="12"> 

  <neighbor label="9"/> 

  <neighbor label="10"/> 

  <neighbor label="13"/> 

  <neighbor label="14"/> 

  <neighbor label="18"/> 

 </vertex>  

 <vertex label="13"> 

  <neighbor label="9"/> 

  <neighbor label="12"/> 

  <neighbor label="14"/> 

  <neighbor label="15"/> 

  <neighbor label="19"/> 

 </vertex>  

 <vertex label="14"> 

  <neighbor label="12"/> 

  <neighbor label="13"/> 

  <neighbor label="15"/> 

  <neighbor label="16"/> 

  <neighbor label="20"/> 
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 </vertex>  

 <vertex label="15"> 

  <neighbor label="13"/> 

  <neighbor label="14"/> 

  <neighbor label="16"/> 

  <neighbor label="17"/> 

  <neighbor label="21"/> 

 </vertex>  

 <vertex label="16"> 

  <neighbor label="11"/> 

  <neighbor label="14"/> 

  <neighbor label="15"/> 

  <neighbor label="17"/> 

  <neighbor label="22"/> 

 </vertex>  

 <vertex label="17"> 

  <neighbor label="10"/> 

  <neighbor label="11"/> 

  <neighbor label="15"/> 

  <neighbor label="16"/> 

  <neighbor label="23"/> 

 </vertex> 

 <vertex label="18"> 

  <neighbor label="12"/> 

  <neighbor label="19"/> 

  <neighbor label="20"/> 

  <neighbor label="21"/> 

  <neighbor label="22"/> 

  <neighbor label="23"/> 

 </vertex> 

 <vertex label="19"> 

  <neighbor label="13"/> 

  <neighbor label="18"/> 

  <neighbor label="20"/> 

  <neighbor label="21"/> 

  <neighbor label="22"/> 

  <neighbor label="23"/> 

 </vertex> 

 <vertex label="20"> 

  <neighbor label="14"/> 

  <neighbor label="18"/> 

  <neighbor label="19"/> 

  <neighbor label="21"/> 

  <neighbor label="22"/> 

  <neighbor label="23"/> 
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 </vertex> 

 <vertex label="21"> 

  <neighbor label="15"/> 

  <neighbor label="18"/> 

  <neighbor label="19"/> 

  <neighbor label="20"/> 

  <neighbor label="22"/> 

  <neighbor label="23"/> 

 </vertex> 

 <vertex label="22"> 

  <neighbor label="16"/> 

  <neighbor label="18"/> 

  <neighbor label="19"/> 

  <neighbor label="20"/> 

  <neighbor label="21"/> 

  <neighbor label="23"/> 

 </vertex> 

 <vertex label="23"> 

  <neighbor label="17"/> 

  <neighbor label="18"/> 

  <neighbor label="19"/> 

  <neighbor label="20"/> 

  <neighbor label="21"/> 

  <neighbor label="22"/> 

 </vertex> 

</graph>  
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k-epsilon Almost Regular Graphs 

A k-epsilon Almost Regular graph is a graph in which each vertex v has the same degree as all but k of its 

neighbors, and v differs in degree from these neighbors by exactly epsilon. Enter the pathname for XML file 

that stores the graph data, and we will tell you whether your graph is k-epsilon Almost Regular for some value 

of k and epsilon.  

Enter pathname for XML file: graph3.xml
 

 

 

 

 

The adjacency matrix is: 

 
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 

graph3.xml 

Microsoft Internet Explorer 

! 
The graph is not k-epsilon almost regular 

            

OK 
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<graph order="24"> 

 <vertex label="0"> 

  <neighbor label="1"/> 

  <neighbor label="2"/> 

 </vertex> 

 <vertex label="1"> 

  <neighbor label="0"/> 

  <neighbor label="3"/> 

 </vertex> 

 <vertex label="2"> 

  <neighbor label="0"/> 

  <neighbor label="3"/> 

  <neighbor label="4"/> 

 </vertex> 

 <vertex label="3"> 

  <neighbor label="1"/> 

  <neighbor label="2"/> 

  <neighbor label="4"/> 

 </vertex> 

 <vertex label="4"> 

  <neighbor label="2"/> 

  <neighbor label="3"/> 

  <neighbor label="5"/> 

 </vertex>  

 <vertex label="5"> 

  <neighbor label="4"/> 

  <neighbor label="6"/> 

  <neighbor label="7"/> 

  <neighbor label="8"/> 

 </vertex>  

 <vertex label="6"> 

  <neighbor label="5"/> 

  <neighbor label="7"/> 

  <neighbor label="8"/> 

  <neighbor label="9"/> 

 </vertex>  

 <vertex label="7"> 

  <neighbor label="5"/> 

  <neighbor label="6"/> 

  <neighbor label="8"/> 

  <neighbor label="11"/> 

 </vertex>  

 <vertex label="8"> 

  <neighbor label="5"/> 
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  <neighbor label="6"/> 

  <neighbor label="7"/> 

  <neighbor label="10"/> 

 </vertex>  

 <vertex label="9"> 

  <neighbor label="6"/> 

  <neighbor label="10"/> 

  <neighbor label="11"/> 

  <neighbor label="12"/> 

  <neighbor label="13"/> 

 </vertex>  

 <vertex label="10"> 

  <neighbor label="8"/> 

  <neighbor label="9"/> 

  <neighbor label="11"/> 

  <neighbor label="12"/> 

  <neighbor label="17"/> 

 </vertex>  

 <vertex label="11"> 

  <neighbor label="7"/> 

  <neighbor label="9"/> 

  <neighbor label="10"/> 

  <neighbor label="16"/> 

  <neighbor label="17"/> 

 </vertex>  

 <vertex label="12"> 

  <neighbor label="9"/> 

  <neighbor label="10"/> 

  <neighbor label="13"/> 

  <neighbor label="14"/> 

  <neighbor label="18"/> 

 </vertex>  

 <vertex label="13"> 

  <neighbor label="9"/> 

  <neighbor label="12"/> 

  <neighbor label="14"/> 

  <neighbor label="15"/> 

  <neighbor label="19"/> 

 </vertex>  

 <vertex label="14"> 

  <neighbor label="12"/> 

  <neighbor label="13"/> 

  <neighbor label="15"/> 

  <neighbor label="16"/> 

  <neighbor label="20"/> 
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 </vertex>  

 <vertex label="15"> 

  <neighbor label="13"/> 

  <neighbor label="14"/> 

  <neighbor label="16"/> 

  <neighbor label="17"/> 

  <neighbor label="21"/> 

 </vertex>  

 <vertex label="16"> 

  <neighbor label="11"/> 

  <neighbor label="14"/> 

  <neighbor label="15"/> 

  <neighbor label="17"/> 

  <neighbor label="22"/> 

 </vertex>  

 <vertex label="17"> 

  <neighbor label="10"/> 

  <neighbor label="11"/> 

  <neighbor label="15"/> 

  <neighbor label="16"/> 

  <neighbor label="23"/> 

 </vertex> 

 <vertex label="18"> 

  <neighbor label="12"/> 

  <neighbor label="19"/> 

  <neighbor label="20"/> 

  <neighbor label="21"/> 

  <neighbor label="22"/> 

  <neighbor label="23"/> 

 </vertex> 

 <vertex label="19"> 

  <neighbor label="13"/> 

  <neighbor label="18"/> 

  <neighbor label="20"/> 

  <neighbor label="21"/> 

  <neighbor label="22"/> 

  <neighbor label="23"/> 

 </vertex> 

 <vertex label="20"> 

  <neighbor label="14"/> 

  <neighbor label="18"/> 

  <neighbor label="19"/> 

  <neighbor label="21"/> 

  <neighbor label="22"/> 

  <neighbor label="23"/> 
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 </vertex> 

 <vertex label="21"> 

  <neighbor label="15"/> 

  <neighbor label="18"/> 

  <neighbor label="19"/> 

  <neighbor label="20"/> 

  <neighbor label="22"/> 

  <neighbor label="23"/> 

 </vertex> 

 <vertex label="22"> 

  <neighbor label="16"/> 

  <neighbor label="18"/> 

  <neighbor label="19"/> 

  <neighbor label="20"/> 

  <neighbor label="21"/> 

 </vertex> 

 <vertex label="23"> 

  <neighbor label="17"/> 

  <neighbor label="18"/> 

  <neighbor label="19"/> 

  <neighbor label="20"/> 

  <neighbor label="21"/> 

 </vertex> 

</graph>  
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k-epsilon Almost Regular Graphs 

A k-epsilon Almost Regular graph is a graph in which each vertex v has the same degree as all but k of its 

neighbors, and v differs in degree from these neighbors by exactly epsilon. Enter the pathname for XML file 

that stores the graph data, and we will tell you whether your graph is k-epsilon Almost Regular for some value 

of k and epsilon.  

Enter pathname for XML file: graph4.xml
 

 

 

 

 

The adjacency matrix is: 

 

0 1 0 0 0 0 0 0 0 0 0 0 

1 0 1 0 0 0 1 0 0 0 0 0 

0 1 0 1 0 0 0 1 0 0 0 0 

0 0 1 0 1 0 0 0 1 0 0 0 

0 0 0 1 0 1 0 0 0 1 0 0 

0 0 0 0 1 0 1 0 0 0 1 0 

0 1 0 0 0 1 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 1 1 1 1 

0 0 0 1 0 0 0 1 0 1 1 1 

0 0 0 0 1 0 0 1 1 0 1 1 

0 0 0 0 0 1 0 1 1 1 0 1 

0 0 0 0 0 0 1 1 1 1 1 0 

Microsoft Internet Explorer 

! 
The graph is 1-2 almost regular 

            

OK 



100 

 

graph4.xml 
 

<graph order="12"> 

 <vertex label="0"> 

  <neighbor label="1"/> 

 </vertex> 

 <vertex label="1"> 

  <neighbor label="0"/> 

  <neighbor label="2"/> 

  <neighbor label="6"/> 

 </vertex> 

 <vertex label="2"> 

  <neighbor label="1"/> 

  <neighbor label="3"/> 

  <neighbor label="7"/> 

 </vertex> 

 <vertex label="3"> 

  <neighbor label="2"/> 

  <neighbor label="4"/> 

  <neighbor label="8"/> 

 </vertex> 

 <vertex label="4"> 

  <neighbor label="3"/> 

  <neighbor label="5"/> 

  <neighbor label="9"/> 

 </vertex> 

 <vertex label="5"> 

  <neighbor label="4"/> 

  <neighbor label="6"/> 

  <neighbor label="10"/> 

 </vertex> 

 <vertex label="6"> 

  <neighbor label="1"/> 

  <neighbor label="5"/> 

  <neighbor label="11"/> 

 </vertex> 

 <vertex label="7"> 

  <neighbor label="2"/> 

  <neighbor label="8"/> 

  <neighbor label="9"/> 

  <neighbor label="10"/> 

  <neighbor label="11"/> 

 </vertex> 

 <vertex label="8"> 

0 1 

2 

3 

4 

5 

6 

7 

8 

10 

11 
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  <neighbor label="3"/> 

  <neighbor label="7"/> 

  <neighbor label="9"/> 

  <neighbor label="10"/> 

  <neighbor label="11"/> 

 </vertex> 

 <vertex label="9"> 

  <neighbor label="4"/> 

  <neighbor label="7"/> 

  <neighbor label="8"/> 

  <neighbor label="10"/> 

  <neighbor label="11"/> 

 </vertex> 

 <vertex label="10"> 

  <neighbor label="5"/> 

  <neighbor label="7"/> 

  <neighbor label="8"/> 

  <neighbor label="9"/> 

  <neighbor label="11"/> 

 </vertex> 

 <vertex label="11"> 

  <neighbor label="6"/> 

  <neighbor label="7"/> 

  <neighbor label="8"/> 

  <neighbor label="9"/> 

  <neighbor label="10"/> 

 </vertex> 

</graph> 
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