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ABSTRACT

In this dissertation, we generalize the work of Bender and co-workers to derive new partially-integrable
hierarchies of various P7T -symmetric, nonlinear partial differential equations. The possible integrable mem-
bers are identified employing the Painlevé Test, a necessary but not sufficient integrability condition, and
are indexed by the integer n, corresponding to the negative of the order of the dominant pole in the singular
part of the Painlevé expansion for the solution.

For the PT-symmetric Korteweg-de Vries (KdV) equation, as with some other hierarchies, the first or
n = 1 equation fails the test, the n = 2 member corresponds to the regular KdV equation, while the
remainder form an entirely new, possibly integrable hierarchy. Integrability properties of the n = 3 and
n = 4 members, typical of partially-integrable systems, including B&acklund Transformations, a 'near-Lax
Pair’, and analytic solutions are derived. The solutions, or solitary waves, prove to be algebraic in form, and
the extended homogeneous balance technique appears to be the most efficient in exposing the near-Lax Pair.

The PT-symmetric Burgers’ equation fails the Painlevé Test for its n = 2 case, but special solutions
are nonetheless obtained. Also, P7T-Symmetric hierarchies of 2+1 Burgers’ and Kadomtsev-Petviashvili
equations, which may prove useful in applications are analyzed. Extensions of the Painlevé Test and Invariant
Painlevé analysis to 2+1 dimensions are utilized, and BTs and special solutions are found for those cases

that pass the Painlevé Test.
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CHAPTER 1: INTRODUCTION

Although not yet fully proven, the Painlevé tests [1] seem to provide extremely useful necessary conditions
for identifying the completely integrable cases of a wide variety of families of nonlinear ordinary and partial
differential equations, as well as integrodifferential equations. Originally, Ablowitz et al. [2] conjectured
that a nonlinear partial differential equation is integrable if all its exact reductions to ordinary differential
equations have the Painlevé property. This approach poses the obvious operational difficulty of finding all
exact reductions. This difficulty was circumvented by Weiss et al. [3] by postulating that a partial differential
equation has the Painlevé property if its solutions are single-valued about a movable singular manifold. In
this paper, we follow this latter approach to perform the Painlevé analysis of several nonlinear evolution
equations.

There is now a compelling body of evidence that if an equation possesses the Painlevé property it is likely
to be integrable, i.e., the Painlevé test is a necessary test for integrability. In the cases where the criteria for
the Painlevé test are met, the analysis may have failed to detect an essential singularity and further analysis

would be needed to rigorously prove integrability by:

(a) constructing the full set of integrals of the motion [4], or

(b) linearizing the equations, e.g., by the inverse scattering transform [5], or
(¢) reducing them to one of Painlevé transcendental equations [1, 6, 7].

The usefulness of the Painlevé approach is not limited to integrability prediction, and use of the gener-
alized Weiss algorithm [6, 8] yields auto-Béacklund transformations and Lax pairs for the integrable cases.
Painlevé analysis also yields a systematic procedure for obtaining special solutions when the equation pos-
sesses only the conditional Painlevé property [9]-[14], when the compatibility conditions of the Painlevé
analysis result in constraint equations for the movable singular manifold which is no longer completely
arbitrary.

Weiss’ original technique [3, 8] was extensively developed by others (see [15, 16] for instance). This



approach, which will be briefly reviewed in this chapter, involves the Weiss strategy of truncating the Painlevé
singularity expansion for the solution of the system of NLPDEs at the constant term, thereby imposing a
specific choice of singular manifold function and the truncated (singular part) of the Painlevé expansion are
then used to semi-algorithmically derive an auto-Béacklund transformation between two different solutions
of the NLPDE(s), and also to derive the associated linear scattering problem or Lax Pair. The latter step
is not completely algorithmic since it involves linearizing the overdetermined system of PDEs connecting
various derivatives of the singularity manifold by employing a "Weiss substitution’ which may often involve
prior, extraneous knowledge about the NLPDE(s) under consideration. References [15] and [16] also discuss
the connections between Painlevé analysis and other properties of, and approaches to, integrable systems
such as Lie symmetries and Hirota’s method. However, the original semi-algorithmic character of the Weiss
SMM persists.

A second recent approach, which has opened up a whole new sub-field, involves making the entire process
of singularity analysis invariant under the homographic or Mébius transformation [17, 18]. This significantly
simplifies the testing for integrability [18], the derivation of Lax Pairs [19, 20], as well as the derivation of
special families of analytic solutions (see [21]-[24] for instance). Some of these special families of analytic
solutions have also been employed in tandem with Melnikov theory to analytically investigate the breakdown
of coherent structure solutions and the onset of chaos in NLPDEs under forcing. Note that the invariant
analysis yields a fully algorithmic procedure for finding Lax pairs, but none for auto-BTs, tau functions, and
multisoliton solutions.

A third approach [25, 26] involves significant extensions of the original Weiss procedure to derive the
"Weiss substitution’ and the Lax Pair completely algorithmically. In addition, this technique algorithmi-
cally derives many other important features of integrable systems such as Miura Transformations, Darboux
Transformations, multisoliton solutions, and Hirota’s tau function. Much of this work is motivated by the
connections sought to be made between the various properties of integrable systems in [15, 16]. Earlier work
along these lines includes [27]. We shall develop this approach systematically.

There has also been other activity in the area in recent years, including investigations of why the Painlevé
test works, and on higher-order truncations and so on. We do not refer to these at all here since they do not
directly impact the topic of this dissertation. In this paper, we use the above method to find the integrable
members of various recently-derived hierarchies of PT-symmetric nonlinear wave equations [28, 29)].

Many papers have been written in the past 15 years extending Hermitian quantum mechanics to non-

Hermitian, but physically-meaningful, P7-symmetric Hamiltonians [30]. In [28], Carl Bender and his co-



workers attempted to extend the ideas of PT-symmetry to the first integrable NLPDE, the Korteweg-de
Vries equation. Fring [28] subsequently derived another P7-symmetric hierarchy.

In [28], some preliminary analysis on solitary waves and conservation laws of these PT-symmetric hier-
archies appeared to indicate that these new complex KdV hierarchies were in fact, non-integrable. In [31],
Fan extended these PT-symmetric ideas to various other nonlinear evolution equations, deriving two new
hierarchies of Burgers’, two families of (2 + 1) Burgers’, and four families of KP equations, among others.

We use a different approach to these equations here. In particular, the integrable members of each
hierarchy are identified via the Painlevé Test, and correspond to a rational-valued, discrete, but infinite,
subset of the continuous parameter that characterizes each of the original P7-symmetric equations [28, 31].
Each integrable set thus forms a new P7-symmetric sub-hierarchy within the original hierarchy.

In Chapter 2, the possible integrable members of the KdV hierarchy are identified employing the Painlevé
Test, and are indexed by the integer n, corresponding to the negative of the order of the dominant pole in
the singular part of the Painlevé expansion for the solution. As with some other hierarchies, the first or
n = 1 equation proves non-integrable, the n = 2 member corresponds to the regular KdV equation, while
the remainder form an entirely new hierarchy. Integrability properties of the n = 3 and n = 4 members,
including auto-Béacklund Transformations, near-Lax Pairs, and soliton solutions are derived. The solitons
prove to be algebraic in form, and the extended homogeneous balance technique appears to be the most
efficient in exposing the near-Lax Pair.

Chapter 3 considers one family of P7T-symmetric Burgers’ equations in an analogous manner. While the
possible integrable cases end up requiring a compatibility condition to be satisfied, and thus fail the Painlevé
Test, some special solutions are obtained.

We proceed to a 2+1 case of the PT-symmetric Burgers’ equation in Chapter 4, utilizing regular and
Invariant Painlevé Analysis, extended to three variables. The n = 2,3 cases pass the Painlevé test, and are
further analyzed for auto-Backlund Transformations and soliton solutions.

Also in 2+1, one of the Kadomtsev-Petviashvili (KP) equations is analyzed in Chapter 5. While the
n = 2 case passes the Painlevé test, the n = 3 requires a compatibility condition, and thus fails. Solutions
are obtained for the n = 2 case.

Finally, in Chapter 6, the results are summarized and potential future investigation and analysis are
briefly discussed. In particular, similarity and variational methods may be worth consideration, as is the

case for other partially-integrable systems similar to those considered here.



CHAPTER 2: PT-SYMMETRIC KDV HIERARCHY

2.1 Painlevé Test and Analysis

Unlike linear differential equations that exhibit fixed singularities, nonlinear equations can have movable
singularities whose location depend on initial conditions. Further, the singularities of NLPDEs are defined by
movable singular manifolds. The form of the exact solutions for the differential equations admit the nature
of their movable singularities, though solutions are typically not easily found, if at all. For a nonlinear
differential equation to have the Painlevé Property, all movable singularities exhibited by the solution (in
the complex time domain) must be ordinary poles. For a NLPDE in z1, ..., z,, this concept can be extended,;

for singular manifolds defined by

d(z1,. .-, 2n) =0, (2.1.1)

we require the analytic function ¢(z1,...,z,) to only exhibit negative integer powers in the solution for the
equation to have the Painlevé Property.[6]

For the complex PT-Symmetric KdV equation [29],

0? _ _
Uy + )\'U/LLI — ’LW (’Lum)E = u; + )\'U/U,g; + Z'E(E — ].) (Zuz)e 2 uiz +e (Z’LLI)E 1 Uy = 07 (212)
X

we wish to find integrable cases, that is, values of € such that (2.1.2) is integrable. The Painlevé Property

provides a necessary test for integrability [32].

2.1.1 Leading Order Analysis

Since exact solutions are typically not obtainable, we must determine the nature of the movable singular
manifolds by examining the local behavior of solutions around them. This is accomplished by using a leading

order analysis; we make the ansatz

u(z,t) = uge”, (2.1.3)



where a € R, ug(z,t) are to be determined, and ¢(z,t) = 0 is the location of the singular manifold. Using

this in (2.1.2), we have

O(¢*™1) + Mugo™ [augd® ¢, + O(¢%)]
+ie(e — 1) [iaugd*1é, + 0(6*)] " [ala — Dugd* 6% + O(6° )]

+ € [iougd® Lo + O(¢)] " [ala — 1)(a — 2)ugp® 2% + O(p°2)] = 0. (2.1.4)

2

The most singular terms in this expression must balance at the singularity. The smallest powers of ¢ in the
last two lines are (o — 1)(e — 2) + 2(a — 2) and (o — 1)(e — 1) + (o — 3), which both simplify to e(a — 1) — 2.

Thus, to balance the powers of all most singular terms, we require

2a—1=¢la—1) -2,
 2a+1

= € .
a—1

(2.1.5)

As a necessary condition for the Painlevé Property, we further impose the restriction & = —n, where
n € N; the equivalent of requiring singularities to be ordinary poles. Thus, the values of € that we can

consider for integrability are
_2n-—1

= — =1,2,... 2.1.6
n+1’ " ( )

9 )

Now equating the corresponding coefficients of the most singular terms in (2.1.4), we require

A, + ie(e — 1) [iauoda] ™ @ (o — 1)*ugd} + € fiaugd,]) ™" ala — 1) (o — 2)uge} = 0, (2.1.7)

= A+ e(a— 1)) ug gt [(e — 1)(a — 1) + (a = 2)] =0,

-3

n— Sn_
= A+ 2n(2n — 1)(—in) " u]  gatt =0,

3n

3 n—
=l = —2n(2n — DAY (—in) g2, (2.1.8)

where we have used & = —n and (2.1.6). This expression for ug does not give immediately useful information,
however it will be used to simplify subsequent calculations.

The leading order analysis only gives us the behavior of the solution at the singular manifold. Therefore,
we will need to construct a local expansion. For solutions whose singularities are ordinary poles, the expansion

will be a simple Laurent series; for singular manifolds, a generalized Laurent series can be used. That is, a



local expansion of the solution in the neighborhood of a singular manifold is given by
u(z,t) = uj(x,t)¢~". (2.1.9)

Jj=0

The expansion (2.1.9) is only valid if there is a full set of arbitrary functions for the order of the NLPDE.[6]
Equation (2.1.2) is of order three, thus we need two arbitrary functions in addition to the arbitrariness of
the movable singular manifold. These are admitted by arbitrary u,(z,t) (r to be determined) in the Laurent

expansion; the number and location of which are found by a resonance analysis.

2.1.2 Resonance Analysis

We wish to find the values of r that make w,.(x,t) in (2.1.9) arbitrary. To that end, we let
u(z,t) = ugp™" +pp~ ", (2.1.10)

and impose conditions on 7 to ensure the arbitrariness of p(x,t). With the exception of —1 (which indicates
the arbitrariness of ¢), we further require the resonances to be positive integers so as to correspond to
locations in the Laurent expansion of the solution. If a full set of arbitrary coefficient functions is found, the

NLPDE is said to have the Painlevé Property, indicating integrability. Using (2.1.10) in (2.1.2), we have

O(p~" 1) +0(¢7" )

+ A [uod™" + pd ™" ] [=nugd ™" T gy + (—n A 1)pd T T gy + O(07T) + O(¢7")]

o [Z ; ﬂ im0+ (s o, + 067 + 0167 |
- [uon(n + 1)¢™" 22 + p(—n + r — 1)(—n + 1)~ 262 + 06+ 1) + O(¢"1)]”
2: + 11 [i [~nu06 ™" 60 + (—n+)pd ™, + O(67" ) + O(67)] | o
[ruon(n + 1) (n+2)¢ " 3¢3 + O(¢™ "2 + O(¢7"2)
tp(-ntr = 2)(—n+r = 1(=n )] =0. (2.1.11)



Neglecting the higher-order terms, and using binomial expansions (about ¢ = 0), we then obtain

A uod™ +pd™ "] [=nuod™" gy + (=04 r)pd T g, ]

m22n—1[n—2 P 1 -3 (=n+r)
nFl — _ n—1 nF [ ] .
1 ol |:n+ 1:| [ nuo(b (bw} |: + ntl g

Ly + 06

[ugn®(n+1)%6 7265 + 2ugpn(n + 1) (=n + 7 = D)(=n+ )¢~ g0 + O(¢~ 22

n—22n—1 e n—2 n—2 (—n+r)
T _ n—1 ntl ] .
1 nrl [ nu0¢ ¢z] |: + ntl g

o+ 0(¢”>]

[Fuon(n + 1) (n+2)¢" " P¢2 + p(—n+r —2)(—n+r —1)(—n+7)¢ "] = 0. (2.1.12)

We note that O(¢~2"~1) terms are constant in p, and by virtue of (2.1.7), sum to zero. Turning our attention

to O(¢~2"*7~1) terms, which are linear in p, we have the following after some simplification

n—2 4n41

(—n+7)2n—r)Cn—r—1) (—n) Tl ¢ | p=0.  (2.1.13)

n-22n
=20 + r)ugpy + i+t o}

Now, to admit an arbitrary p, we equate the bracketed expression to zero; the values of r for which this is

true will yield the resonances. Making use of (2.1.8), we find

n—22n—1 n—2 n=2 4ntl
AM=2n 4+ r)ugdy +in71 ) (—n+7)2n—7r)2n—r—=1)(—n)" T uf ™ ¢ =0,
n
n-22n—1 n—2 =3  3n_ |
= Ugdy | AN (=20 + 1) + i ) (—n+7r)2n—r)2n—r—1)(—n)"FT ug™ ¢z | =0,
n
= ugpy | N(=2n +71) + ! (—n+7)(2 )(2 1)_)‘-—0
UoPx nrn+1nrnrnr 2n__’
(—n+7r)2n—r—1)]
= —A = (2n — 1 =0,
tods(2n —r) |1+ 2n(n +1) ]
7)‘u0¢m
—(r—2 -3 1) =0.
2n(n + 1) (r=2n)r = 3n)r + 1)
Thus, values of r that admit an arbitrary p are r = —1,2n,3n; the (positive) resonances r = 2n,3n are

integers for any positive integer n, as they should be to correspond to positions in the Laurent series (2.1.9).
In addition to the movable singular manifold, this gives three arbitrary functions in the Laurent expansion
(2.1.9). The case n = 2 of (2.1.2) yields the basic KdV equation u; + Auu, + ug, = 0; the resonances are
known to be r = —1,4, 6 which is consistent with our findings. The basic KdV equation has been thoroughly
analyzed in other literature, and will not be discussed further here. The cases n = 1, 3,4 are discussed in

subsequent chapters.



It should be noted that for some PDEs, additional conditions may be necessary to secure the arbitrariness
of the resonance coeflicients. This can be verified by direct substitution of the Laurent expansion; after finding
a recursion relation for the u;, coeflicients are evaluated at sequential values of j up through the resonances
[6]. Due to our generalized n, deriving the recursion relation is not feasible in general, and so verification

will be done only for specific n cases; the cases n = 3,4 will be verified after reformulation in Chapter 2.2.

2.2 Reformulation into System

Given the form of (2.1.6), the original equation (2.1.2) will have branch points. In light of this, we make
the substitution

v = (fug) T = v = ju,. (2.2.1)

To allow for the above substitution, we take an x partial derivative of (2.1.2), multiply through by ¢, and

use (2.1.6), giving us
93

iUy + 0N (Ulgy + u3) + 33 (itg) "7t = 0. (2.2.2)
Now using the substitution (2.2.1), we obtain
3
("), + Au(e™ ), — ide? T2 4 %v%*l =0. (2.2.3)
x
Thus, the NLPDE (2.1.2) becomes the system
83
(n + 1)v™v; + Mn + Duv"v, — ido?" T2 4 ﬁv%_l =0, (2.2.4a)
" — iy, = 0. (2.2.4b)

Since we needed to take a derivative of our original equation, (2.2.4) is only a derivative system of (2.1.2),
rather than a direct one; solutions of the reformulated system may require additional conditions in order to
satisfy the original NLPDE.

To determine the behavior of v(x,t) at the singular manifold ¢ = 0, we let v = vy¢®. Now, since

u = ugp ™ at the singular manifold, (2.2.4b) implies
v P = —inugg " g, + O(¢7T). (2:2.5)

Equating the leading order powers of ¢, we have S(n+ 1) = —n — 1. Thus, for any n, 8 = —1; we note that



similar leading order powers from (2.2.4a) yield the same § value. This gives us

v =vg¢ L. (2.2.6)
Further, equating leading coefficients we have
7/',U’r7,+1
vg"’l = —inugpy <= ug = —>—. (2.2.7)
o

Comparing this to the expression found for ug in (2.1.8), we then obtain

T iv6l+1 ﬁ 1 n—2 3n_
ntl | 220 = —2M2n — DN (—in)n+tt ;H—l,
" { nés } n(2n — DA™ (=in) "7 ¢
US n—2 3n_
= ﬁ = 72”(271 — I)Afl(fin) o) ¢£,+1,
(—in)=1 g™
= ’Ug = 22n2(2n _ 1))\71 i, (228)

which gives us an expression for vy for any n; we obtain this same expression for vy when equating leading
order coefficients in (2.2.4a) and comparing to (2.2.7). Expanding solutions u, v of (2.2.3) in a Laurent series,

we seek solutions of the form

u(a,t) = ujp ", (2.2.9a)
=0

v(w,t) =Y vV, (2.2.9)
j=0

where wug, vg are given by (2.2.7), (2.2.8) respectively.

2.3 Resonance Analysis for Reformulated System

Following an analogous procedure as in Chapter 2.1.2 for systems, we let

u(z,t) = upd™ " +pp~ """, (2.3.1a)

v(w,t) = vep L+ qp 1T (2.3.1b)



We want to find the values of r that make either p or g arbitrary. Since our system (2.2.4) is fourth-order,
we require three arbitrary functions in addition to the arbitrary singular manifold location. Substituting
(2.3.1) into (2.2.4), we balance the most singular r-powered terms from each equation, which correspond to
terms linear in p and ¢; these are the O(¢~2"~2%") and O(¢~""1*") terms respectively, and they yield the

set of equations

[—A(n+ Doy ¢ p+ [An+ 1) (—n — 1+ r)vguods — iA(2n + 2)vg"
+@2n—1)(=2n+1+7r)(=2n+7)(-2n—1+7)vg" ¢3¢ =0, (2.3.2a)

[—i(=n+7)de]p+ [(n+ 1)vi]g=0. (2.3.2b)

For p or g to be arbitrary, we require the determinant of the above system in p, g to be zero. This gives the

equation

—A(n+ 1)211(2)”“@5 +idx(—n+7r)(n+1)(—n—1+4 r)uovg%bi + A(—n+7r)(2n+ 2)1}3”“@5

+i(—n+7r)(2n — 1) (=20 + 1+ 7)(=2n +7)(—2n — 1+ r)og" 2¢2 = 0. (2.3.3)
Making use of (2.2.7) and (2.2.8), we obtain

2 n 4+ 1) [ inuoal?a
Vo

Fi(—n+7)(n+1)(—n — 1+ r)uo[~inuod,]¢; + (—n +1)(2n + 2)[~inuods]* b,

+H(=n+7r)(=2n+1+7)(=2n+7)(=2n — 1 +7)[~inup.]*ds - in—1)é, ;31)¢2 =0,
0 J

Auges ¢ o 2 2
= —2[n*n+1)°+n(-n+r)(n+1)(-n—1+7r)—n*(-n+7)(2n+2)

Vo
—1(—n +r)(=2n+1+r)(-2n+7r)(-2n—1+7r)- w =0,
2 Avy
Aug by 2 2 2
v 2n*(n+1)*+2n(-n+r)(n+1)(-n—1+7) —4n*(—n+7r)(n+ 1)
—(—n+r)(—2n+1+7)(—2n+r)(—2n—1+7)] =0,
Mgy

5 [r* = Tnr® + (160 — 2n — 1)r® + (—=12n° 4+ 10n” + 5n)r + (—12n° — 6n°)] = 0,
Vo

Mg
21)0

(r+1)(r—2n)r—3n)(r—2n—-1)=0. (2.3.4)

10



Thus, the values r = —1,2n,2n + 1, 3n should make p or ¢ arbitrary. This gives us three positive integer
resonance values for n > 2, and therefore should yield three arbitrary coefficient functions in the Laurent
series expansions of the solutions u, v.

For the n = 1 case, the positive resonances are r = 2,3, giving us only two arbitrary function locations
instead of three. Hence, we do not have the full set of arbitrary coefficients and the Laurent expansion (2.2.9)
is not valid. Thus, (2.2.4) fails the Painlevé test for n = 1.

As previously stated, the n = 2 case gives the regular KdV equation, so we turn our attention to the

n = 3 case.

2.3.1 Verification of Resonances for n = 3
For n = 3, our system (2.2.4) becomes

. 93
4v3vp + dduvdo, —idv® + %W =0, (2.3.5a)

vt —iu, = 0. (2.3.5b)

The positive resonances from (2.3.4) are given by r = 6,7,9. Thus, we wish to show u; or v; in (2.2.9) are

arbitrary for j = 6,7,9. Substituting the truncated expansions

9
u(z,t) = ujp=*t, (2.3.6a)
=0
’ 9
vz, t) = v, (2.3.6b)

=0

into (2.4.10), we balance coefficients in ¢. The O(¢~%) term from (2.3.5a) and the O(¢~*) term from (2.3.5b)

yield a system of equations in wug, vg. Upon solving this system, we obtain

i35/3104/3¢3
Ug = Wx’ (2373)
i32/3101/3¢m
V=TT (2.3.7b)

Using these expressions for ug, vy, the systems of equations for 7 = 1 — 5 are sequentially obtained from the
O(¢p~ ") — O(¢~?) terms of (2.3.5a) and the O(¢~2) — O(¢!) terms from (2.3.5b), respectively. Solving these

systems by recursively replacing expressions found for the u;, v;, the coefficient functions for j =1 —5 are

11



given in (A.1). At the next order terms, O(¢~2) and O(¢?), we obtain the dependent set of equations for

Ug, Ve

304/3
[W] folus, ve, #) =0, (2.3.8)
1
{_16-31/3)\4/%2] fo(us, vo, @) =0, (2.3.8b)

where fg is given in (A.1k). Thus, we may choose ug to be our arbitrary coefficient, verifying the resonance
r = 6. The coefficient vg in terms of the arbitrary ug is given in (A.1).
Using this expression for vg, the next order terms, O(¢~!) and O(¢?), give the linearly dependent

equations in w7, vy

54/332/3
{‘ S BN } frlur,vr,9) =0, (2.3.99)
i
[ 144 - 22/3/\4/3(?10} fr(uz,v7,¢) =0, (2.3.9b)

where f7 is given in (A.1n). Again, we may choose u7 as our arbitrary coefficient, which verifies the resonance
r = 7. The coefficient v7, along with ug, vg from subsequently solving the O(¢°) and O(¢?) term equations,
are given in (A.1).

Using these expressions, the O(¢!) and O(¢°) terms give the linearly dependent equations in ug, vg

31/351/3
[_ 1621/3,\/3¢>0] Jolus, v9, #) =0, (2.3.10a)
1
{ 960 - 31/322/3>\4/3¢9104] fo(ug,vg,¢) =0, (2.3.10b)

where fy is given in (A.1ls). Thus, we may choose ug to be arbitrary, which verifies the resonance r = 9; vg
is given in (A.1). We have therefore verified all resonances; the coefficients at the 5 = 6,7,9 positions are

indeed arbitrary, giving us a full set of arbitrary functions for our system with n = 3.

12



2.3.2 Verification of Resonances for n =4
For n = 4, our system (2.2.4) becomes

93
5vtvy + 5 uvtu, — i v'® 4 Fzﬂ =0, (2.3.11a)
x

v® — iug = 0. (2.3.11b)

The positive resonances from (2.3.4) are given by r = 8,9,12; we wish to show wu; or v; in (2.2.9) are

arbitrary for j = 8,9,12. Following the same procedure as for the n = 1, 3 cases, we substitute the truncated

expansions
12
u(w,t) = u;¢~ I, (2.3.12a)
j=0
12
v(w,t) =Y v, (2.3.12b)
§=0

into (2.3.11), and balance coefficients in ¢. After recursively solving for and using the w;,v; for j =0 -7,
the O(¢~2) term from (2.3.11a) and O(¢?) term from (2.3.11b) yield a linearly dependent set of equations
in ug,vs. Likewise, at the next order terms, O(¢~1) and O(¢?) respectively, yield a linearly dependent
set of equations in ug,vg. Choosing ug,ug as the arbitrary functions, we solve for vg, vg, and the resulting
expressions for the j = 10, 11 coefficients are found from subsequent ordered terms. Finally, the respective
O(¢?) and O(¢7) terms yield a linearly dependent set of equations in w12, v12, and we may choose u13 to be
arbitrary. All of the resonances j = 8,9,12 are verified, giving us a full set of arbitrary parameters for our

n = 4 system (2.3.11).

2.4  Singular Manifold Method

2.4.1 Case A=1;n=1

Letting A =1 and n =1 in (2.2.4), we will be analyzing and finding solutions to the system

2004 + 2uvv, — vt 4 vgy = 0, (2.4.1a)

v? —iu, = 0. (2.4.1b)
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Following the original procedure of Weiss [8], we truncate the Laurent expansion of the solution at the

constant term O(¢"); that is, we assume the solutions take the form of (2.2.9), truncated at j =n = 1,

u=2 4 uq, (2.4.2a)
¢
v="2 4y, (2.4.2b)
¢
The expressions (2.2.7) and (2.2.8) become
_)292/3 42
wo = (—i) : o — 223 (2.4.3a)
_'Ld)ac
vo = (20)Y3¢, = —i2' /3¢, (2.4.3b)
Therefore, (2.4.2) is now
_'22/3 -
u= % + uq, (2443,)
_'21/3 .
v = % + . (2.4.4D)

Substituting these into (2.4.1), we equate powers of ¢; the coefficient equations are given in (A.2) and (A.3).
We note the equations (A.2d), (A.3b) are simply (2.4.1) in uy, v1. Thus, (2.4.4) gives an auto-Bécklund
Transformation connecting two solutions (u1,v;) and (u,v) of (2.4.1); if (u1,v1) is a solution, and ¢ satisfies

(A.2a)-(A.2c) and (A.3a), then (u,v) given in (2.4.4) yields a new solution.

2.4.1.1 A t-Independent Solution

It is clear the vacuum solution (u,v) = (0, 0) solves (2.4.1); thus, we let uy = v; = 01in (2.4.4), (A.2), and

(A.3). We further require ¢, # 0, as this leads once again to the vacuum solution. The coefficient equations

14



(A.2a)-(A.2¢) and (A.3a) now become

O(¢™%): ¢ 2%, — 4i¢>m} -0, (2.4.5a)

O6): = 2P%ubuu b 3%y + 2 = (2.4.5b)

O™t 123 brawn =0, (2.4.5¢)
and

O(0™") 1 ¢uz =0, (2.4.5d)

Using (2.4.5d), (2.4.5a) yields ¢ = 0; (2.4.5b) and (2.4.5¢) are subsequently satisfied. We have then ¢, =
¢ = 0, giving us
¢ =ax+Db, (2.4.6)

where a, b are constants, with a % 0. This yields

—ai2?/3 223
- - 2.4.7
YT rb Ty b/a’ ( a)
_ '21/3 _ '21/3
I — (2.4.7b)

ar+b xz+bja’

It can be verified that (2.4.7) satisfies our system (2.4.1).
Going back to our original equation (2.1.2), with n = A = 1, after plugging in the solution u(x) of (2.4.7)

(via Mathematica), we find
24/342 (a +a(b/a+ x)\/(b/a+ :c)*Q)
(b + ax)?

= 0. (2.4.8)

Thus, we further require b/a + x < 0 for identity. With this new restriction, we find that
b

x4+ — <0, (2.4.9)
a

is a solution of (2.1.2). However, (2.4.7) is time-independent, and therefore not of much interest. To obtain

a t-dependent solution, we require the use of an alternate analysis, to be covered in Chapter 2.5.
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2.4.2 Case A=1;n=3
Letting A = 1 in our n = 3 system (2.3.5), we will be analyzing and finding solutions to the system

93
4udvg + duvv, — iv® + ﬁlﬁ =0, (2.4.10a)

vt —du, = 0. (2.4.10b)

Following the original procedure of Weiss [8], we truncate the Laurent expansion of the solution at the
constant term O(¢?); that is, we assume the solutions take the form of series (2.2.9), truncated at j = n = 3

in (2.2.9a) and j =1 in (2.2.9b), or

vz, t) = %} + oy (2.4.11D)

Plugging these into (2.4.10), we equate terms order by order in ¢. Solving O(¢~%) term from (2.4.10a) and
the O(¢~*) term from (2.4.10b) yield

ug = i3°/310%/3¢2, (2.4.12a)

vy = —i32/3103¢,. (2.4.12b)

Using these expressions, (2.4.11) becomes

i3°/31043¢2  w  up
u(z,t) = — 5 + = + 5 + us, (2.4.13a)
i32/3101/3
vl t) = ,W (2.4.13b)

The remaining coefficient equations are given in (A.4) and (A.5). We note that (A.4h), (A.5d) are simply
(2.4.10) in ug, v1. Thus, (2.4.13) gives an auto-Bécklund Transformation from a known solution (us,v;) to

a new solution (u,v), where uy,us, ¢ satisfy (A.4) and (A.5).
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2.4.2.1 A t-independent Solution

Using the vacuum solution of (2.4.10), we set (us,vi) = (0,0) in (A.4) and (A.5); the equations in

(A.4e)-(A.4h) and (A.5d) are therefore satisfied. The remaining equations become

31/3¢$u1 + 315i101/3¢i¢m =0, (2.4.14a)
4-33¢3uy — 433, ¢apur — 112501039202, — 240i10'/3¢3 65, = 0, (2.4.14b)

433,68 — 433626, us + 18001036, 67,

+180i10"3¢2 Py 30 + 151107242 g = 0, (2.4.14c)
Gubar =0, (2.4.14d)

idpur +45 - 322101342 ¢ = 0, (2.4.14¢)

dpus — (1) =0, (2.4.14f)

(u2)s = 0. (2.4.14g)

Further requiring ¢, # 0, the equations (2.4.14a) and (2.4.14e) are incompatible, and thus require u; =
¢zz = 0. Using these, (2.4.14b) and (2.4.14f) imply us = 0, which in turn yields ¢; = 0 from (2.4.14c).
Then (2.4.14d) and (2.4.14g) are subsequently satisfied. Combining our conditions on ¢, we obtain ¢(x,t) =

ax + b,a # 0. Therefore, our new solution by (2.4.13) is

i3°/310%/3
=2 2.4.15
u(x,t) (@ 1 bja)? ( a)
i32/3101/3

which is verified by Mathematica to solve (2.4.10).

2.4.3 Case A\=1;n=4
Letting A = 1 in our n = 4 system (2.3.11), we will be analyzing and finding solutions to the system

3

0
5vtvy 4+ suvtu, — ivl® 4 Flﬁ =0, (2.4.16a)
x

v® — du, = 0. (2.4.16b)
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We assume the solutions take the form of the truncated series

ug ul us us
vz, t) = %0 + oy (2.4.17D)

Plugging this into (2.4.16), the most singular terms of each equation yield

uo = 448 - 2137232 (2.4.18a)

vy = —2i2%/37 3¢, (2.4.18b)

and the O(¢°) terms from both (2.4.16a) and (2.4.16b) yield the same equations in w4, v1, thus giving us the

auto-BT
219/375/348 4wy ug
wz,t) = ——F—+ = + 5 + — +ug, 2.4.19a
()= St ot (24.19)
'25/371/3 .
w(a,t) = — 2T (2.4.19b)

¢

The remaining ¢—coefficient equations yield conditions on uy, us, us, ¢ and their derivatives.

2.4.3.1 A t-Independent Solution

Letting (u4,v1) = (0,0) in (2.4.19) and the ¢p—coefficient equations, we obtain

5731, 4 59584 - 21393 po = 0, (2.4.20a)

5T V30 hypuy + 57624 - 2136562 + 8624 - 21/3¢% g, — 5 - TV 3uy8% = 0, (2.4.20b)

5-7TY3u3¢3 — 5 - 7Y 3%Us¢0bre + 11760 - 213,03 + 7056 - 232 drpdse + 392 - 21303 pan = 0, (2.4.20c)
G102 — Usbppar = 0, (2.4.20d)

Guor =0, (2.4.20e)

1792 - 2 372303 % — Bui g, = 0, (2.4.20f)

2uzdy — (u1), =0, (2.4.20g)

uzPy — (u2)z =0, (2.4.20h)

(us)e = 0. (2.4.20i)
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Similar to the n = 3 case, these equations imply u; = us = ug = ¢ = ¢ = 0, so ¢(z,t) = ax + b,a # 0.

Then (2.4.19) gives the new solution to (2.4.16),

u(z,t) = M (2.4.21a)
(@ b/a)t B
i25/371/3

which is verified by Mathematica.

2.5 Invariant Painlevé Analysis

All solutions thus far obtained have been time-independent and of little interest. In an attempt to find
t-dependent solutions, we consider another method for analyzing the NLPDE, by way of a Ricatti-type

analysis, or Invariant Painlevé formulation [34]. Here, we look at expansions of the form

oo

u(x,t) = ujx ", (2.5.1)

Jj=0

where x must vanish with the singular manifold ¢ — ¢g, and « is determined by a leading order analysis. If

we choose the form of y to be

Y ( br  u > -
=—= — , 2.5.2a
AT 7y (25:20)
¢ — o
P = 7 (2.5.2b)
then y satisfies the Ricatti equations
Looo
Xe =14 55%7, (2.5.3a)
1
xt =—-C+Crpx — 3 (CS + Cyz) X2, (2.5.3b)
and 1) satisfies the linear equations
1
Yz = —551/), (254&)
1
Py = §Cx¢ — Cy. (2.5.4b)
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The quantities S(x,t) and C(x,t) are defined by

_ ¢31 3 ¢a::r ?
Olx,t) = f%, (2.5.5b)

and are often referred to as the Schwarzian derivative and celerity (dimension of velocity), respectively. Both

quantities (2.5.5) are invariant under the Mobius transformation

ap+b
—bc=1 2.5.
¢_>c¢+d’ ad — be , (2.5.6)
and are related under the cross-derivative condition ¢z, = @3, by
S+ Cs, +2C, S+ CS, =0. (2.5.7)

The solution method consists of using (2.5.1) (usually truncated) in the NLPDE to be solved, recursively
replacing x derivatives using (2.5.3), and equating terms order by order in x. Conditions on u;, S, C, may
be found, and therefore (2.5.3) or (2.5.4) may be used to solve for x. Then (2.5.1) with u;, x, will give a
solution to the NLPDE. [34]

The above Invariant Painlevé formulation can be generalized to systems by using expansions similar to

(2.5.1) for each dependent variable. For the system (2.2.4), the analysis dictates the use of the expansions

u(zx,t) = Zujx_”+j7 (2.5.8a)
3=0

v(x,t) = Zva_Hj. (2.5.8b)
§=0

2.5.1 Application to n =1 Case

We proceed for (2.4.1) by truncating the expansions (2.5.8), with n = 1, at the constant term. Substituting

u(z,t) = % +u, (2.5.9a)
v(z,t) = U;O + vy, (2.5.9b)
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into (2.4.1), we recursively replace derivatives of x using (2.5.3) and equate coefficients order by order in

X- The coefficient equations are given in (A.6) and (A.7). Solving the leading order coefficient equations,

(A.6a) and (A.7a), for ug, vy, we obtain

ug = —i2%/3,

vy = —i21/3.
Making use of (2.5.10), the coefficient equations (A.6b) and (A.7b) yield

ulzC,

v = 0.
The remaining coefficient equations, with use of (2.5.10) and (2.5.11), become

Ox7%: iS+2Y3%¢, =0,
d
-1\. Y I 1/3 _
o) 5 [25—|—2 Cw} 0,
0% : 82+ Spp =0,
oK) : iS+2Y3C, =0,

which further reduces to the system (in S, C;),

S? 4+ 8., =0,

iS +2'3¢C, =0.
One solution of (2.5.13) is given by

§=—(-1)*%6"3p {(*6)_1/3 (x4 g1(t)); OaQQ(t):| )

C, = —i(—1)2/331/3@ [(—6)71/3 (iE + gl(t)) ;0792(15)} y
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where @ is the Weierstrass elliptic p-function, and g1, g2 are arbitrary functions of ¢t. Given the complexity

of this intermediate result, we instead turn to the more obvious trivial solution of system (2.5.13)

S =0, (2.5.15a)

Co=0=C=f(t), (2.5.15Db)

where f(t) is an arbitrary function. This implies from (2.5.3)

Xe =1, (2.5.16a)
xe = —f(t), (2.5.16b)
=x=x— F(t), (2.5.16¢)

where F'(t) is an antiderivative of f(¢). We may then write u; = C' = f(t) = F’'(t). Combining our results,
(2.5.9) becomes

—i2%/3 ,
—i2!/3
v(x,t) = T F® (2.5.17Db)

It is verified by Mathematica that (2.5.17) solves (2.4.1).
To determine if (2.5.17a) also solves the original NLPDE (2.1.2), with n = A = 1, from which the system

(2.4.1) was derived, we substitute the expression for u in the original equation to obtain

P <|x - ;<t>|3 e 1F<t>J3> rro=e e

Thus, we require z— F(t) < 0 and F”(t) = 0 for identity. This implies F'(t) = at+b, where a, b are constants,

which yields
—i2%/3

(@) = r—at—>b

+a, x <at+b, (2.5.19)

as a solution of (2.1.2) with n = 1, verified by Mathematica. Choosing the values a = 1, b =0 in (2.5.19),

we note Re(u(z,t)) = 1; a plot of Im(u(x,t)) is given in Figure 1.
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Figure 1: Im(u(x,t)) of (2.5.19) witha =1, b=0

2.5.2 Application to n = 3 Case

Using (2.5.8) truncated at the constant term, with n = 3, we substitute

u(z,t) = % + 8T, (2.5.20a)
(2.5.20b)

v(z,t) = % + vy,
X

into (2.4.10) and recursively replace derivatives of x using (2.5.3). The O(x~%) and O(x~*) terms from

(2.4.10a) and (2.4.10b), respectively, yield
uy = —30(—1)%/632/3101/3, (2.5.21a)
v = (—1)*/°3*/%10"/%, (2.5.21b)

Likewise, O(x~7) and O(x~?) terms yield u; = v; = 0. The remaining y—coefficient equations using these

values give, from (2.4.10a),

O %) : 255 10135 _ 2(71)1/631/?)”2 —0, (2.5.22a)
O(x?): 4(=1)Y83/3C — 105 -101/3S, — 4(—1)/63/3y; = 0, (2.5.22D)
O(x ™) : 465-10"/38% — 4(—1)/631/35u, — 8(—1)1/631/3C,, + 15 101/38,, =0, (2.5.22¢)
O(x~ %) : 2(=1)Y03Y3C8 4 2(—1)/931/3¢C,, — 2(—1)"/03/35u; — 45 - 101355, = 0, (2.5.22d)
oD S0, (2.5.22¢)
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and from (2.4.10b),

O(x72): iug + 45(—10)1/33%/35 = 0, (2.5.23a)
O(x™ 1) (u2)e =0, (2.5.23b)
Ox"): Sug —2(us), = 0. (2.5.23¢)

By (2.5.22¢), (2.5.22a) and (2.5.23a), we have us = S = 0. Then (2.5.22b) gives uz = C, which in turn implies
(u3)y = Cp = 0 from (2.5.23¢). Thus, we have C = f(¢) and S = 0 as in the n = 1 case. Referring to our
similar results in (2.5.16), we have x(z,t) = x — F(t), where F'(t) is an arbitrary function and F'(t) = f(t).

Combining our results, (2.5.20) gives us the solution,

30(—1)%/63%/3101/3

u(z,t) = — —FQOF F'(t), (2.5.24a)
_ (_1)5/632/3101/3
v(z,t) = = F(D) , (2.5.24D)

which is verified by Mathematica to solve (2.4.10). Again, this is the solution to the associated system of

the original NLPDE. We check our solution for u in (2.1.2) with n = 3, A = 1, giving us the equation

4050i3'210*3 (i +V3) ( a=F(O) \ | Ly
e — F (1)) < e F(t)|> +F(t) =0, (2.5.25)

which is satisfied provided z — F(¢t) < 0 and F”(¢) = 0. Thus, as it was for the n = 1 case, we have
F(t) = at + b, which gives
30(_1)5/632/3101/3

u(z,t) = — 3 +a, r <at+b, (2.5.26)
[x — at — b)

as a solution to (2.1.2) with n = 3, verified by Mathematica. Choosing the values a = 1, b =0 in (2.5.26),

we note Re(u(z,t)) = 1; a plot of Im(u(x,t)) is given in Figure 2.
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Figure 2: Im(u(x,t)) of (2.5.26) witha =1, b=0

2.5.3 Application to n =4 Case

Following the same procedure as for the n = 1,3 cases, we truncate (2.5.8) at the constant term with

n =4,

wz,t) = —+ —+— + — + ug, (2.5.27a)
X X

vz, t) = % + oy (2.5.27h)

We substitute (2.5.27) into (2.4.16) and use (2.5.3) to replace derivatives of y. The O(x~!°) term from

(2.4.16a) and the O(x~°) term from (2.4.16b) gives

uy = 448(—7)%/321/3, (2.5.28a)

vy = 2(—1)>/622/371/3, (2.5.28b)
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Similarly, the O(x~?) and O(x~*) terms yield u; = v; = 0. The remaining y—coefficient equations become,

from (2.4.16a)

O(x %) 5096(—1)*/#2'/35 — 7'/3uy = 0, (2.5.29a)
O(x7 7). 733 4 784(—1)2/321/35, =0, (2.5.29b)
O(x7 %) : 10-7Y3C +25088(—1)%/321/38% 4 392(—1)%/321/38,, — 5. 7 /3Suy — 10 - 7/3uy = 0, (2.5.29¢)
O(x %) : 5-73Suz 4+ 10 - 7V/3C, + 3528(—1)%/32/355, =0, (2.5.29d)

O(x™4): 7TY3CS +588(—1)¥/321/383 4 71/3¢,, — 7Y/38uy = 0, (2.5.29¢)

and from (2.4.16b),

O(x7%): 448(=7)¥32Y38 4 uy = 0, (2.5.30a)
O(x?): ug—(ug)y =0, (2.5.30b)
O(x™'): Sug — (uz)s =0, (2.5.30c)

O(x"): Suz —2(us), = 0. (2.5.30d)

The equations (2.5.29a) and (2.5.30a) yield ug = S = 0, which gives ug = 0 from (2.5.29b). Then (2.5.29¢)
implies uy = C, and (2.5.29d) yields C, = (u4), = 0. Thus, similar to the n = 1,3 cases, we have C = f(t)
and x =z — F(t), where F'(t) = f(¢). From (2.5.27), we obtain the solution
448(—7)2/321/3
)= ——F—~— + F'(t
we = T T PO,

2(_1)5/622/371/3
z — F(¢) ’

(2.5.31a)

(2.5.31b)

which is verified by Mathematica to solve (2.4.16). Again, this is the solution to the associated system of
the original NLPDE; we proceed to check our solution for w in (2.1.2) with n = 4, A\ = 1, which yields
the conditions z — F'(t) < 0 and F"(t) = 0 for identity. Thus, as it was for the n = 1,3 cases, we have

F(t) = at + b, which gives

448(—7)%/321/3

u(x,t) — +a, x <at+b, (2.5.32)
[ — at — b
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as a solution to (2.1.2) with n = 4, verified by Mathematica. Choosing the values a = 1, b = 0 in (2.5.32),

we note Re(u(z,t)) = 1; a plot of Im(u(x,t)) is given in Figure 3.

1000

Figure 3: Im(u(x,t)) of (2.5.32) witha=1, b=0

2.6 Homogeneous Balance Method

For the Homogeneous Balance method, Wang [33] proposed a special solution u(z,t) of a NLPDE in z,t,
could be expanded as a linear combination of various mixed derivatives of a function f(¢), where ¢ = ¢(z,t)
is called a quasisolution if such an expansion exists. En-Gui et al. [31] generalized this method to investigate
Béacklund transformations and Lax Pairs, among other topics. They used only the highest order mixed
derivative of f(¢) in the solution u, and collected all lower order derivative terms as a single function u; (z,t)
to be determined. Here, we apply this technique to our NLPDE system in u, v.

Similar to a leading order analysis, to find the highest order mixed derivative term in the expansion, we

assume

_ oM f(é(x, 1))

u(e,t) = ot = fUGT + 067 ) + 0679, (2.6.1a)
+
o(a,y) = LEIXDD) _ v gpgg 1 067~ 0) + 06k, (26.10)

Substitution into the NLPDE system, the highest nonlinear terms are balanced in terms of the largest powers
of ¢ and ¢, in each equation, which give a system of equations in m, n, p, g to be solved. Using these values
and balancing the corresponding coefficients, we also get a system of nonlinear ODEs to be solved for f, g,

most often resulting in logarithm functions. These solutions are used to eliminate the highest nonlinear
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terms, however the remaining f,g and their derivatives are kept in symbolic form; otherwise, we would
obtain an equivalent expression for u,v as we did for the regular Painlevé analysis. The nonlinear terms in
f,g and their various derivatives can be replaced with higher-order derivative (linear) terms as a result of
their logarithmic forms. Equating each coefficient of the now linear derivatives of f, g to zero, we obtain a
system of equations in ¢ and its partial derivatives that must be satisfied, which we attempt to linearize into

a Lax Pair.

2.6.1 Lax-Type Equations for n =1 Case

Even though the n = 1 case of our PT-symmetric KdV, (2.4.1), failed the Painlevé Test for integrability,
we apply the homogeneous balance method to attempt to find a (linear) Lax Pair for the system. For this

purpose, we use generalized form (2.2.4), with n = 1 and arbitrary A

200 + 2 uvvy — it + vy = 0, (2.6.2a)

v? —iu, = 0. (2.6.2b)

Following the homogeneous balance method, we substitute the expressions

m—+n
v W = Ul + 067 o) + O(e" 0, (2.6.32)
opta -
N # = g Vro% + O(o7 ' 9h) + O(d] o8 (2.6.3b)

into (2.6.2). From (2.6.2a), this gives

2|97 f + 097 o) + O(oFet™)] |97 T8 9 + O(oFeh) + O ot )]
20 [ FO e 4+ O] T o) + 0oy er )| |9 ob el + O(er o) + O(éh o)
g IgRortt + 0(eh 91t + 0ok o]

—ix [ 06761 + 067 ot) + O]
+ g gert 4 0(e7 61 + O(eh et | =0,

=07 R0 + 2Af T g0 gD IR G 4 O PTG R + O(g7 )

4 4 4p—1 4

—ix [gH9] 616l + 0677 91 + O(67 )

+ gL + O(6f T 1) + O(ef ¢4 ) = 0. (2.6.4)
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From (2.3.5b), we obtain

(07496701 + 06y 101) + O(ebe )] — i [V gprartt + 0o ert) + 067 67)] = 0

2
= [+ 9] 6262 + O(671620) + OGP 61) = it g gt 4 067 gt ) + 06 6%) = 0.

(2.6.5)

Next, we balance the powers of ¢y, ¢, respectively, from the highest-order nonlinear terms. That is,

those with combined powers in ¢, ¢, of m+n+2p+2g+ 1, 4p + 4q, and p + ¢ + 3 from (2.6.4); 2p + 2¢

and m 4+ n + 1 from (2.6.5). We require

m+2p=4p=p,

n+2q+1=49=q+3,

2p = m,
2g=n+1.
Thus, m =p =0 and n = ¢ = 1. Then (2.6.3) becomes
x
0 x,t
)2 O)
x

(2.6.6a)
(2.6.6b)
(2.6.6¢)

(2.6.6d)

(2.6.7a)

(2.6.7b)

Further, using the values of m,n,p,q (or substitution of (2.6.20) back into the NLPDE system), we

equate coefficients of the highest-order ¢-derivative terms: ¢+ from (2.6.4) and ¢2 from (2.6.5). We obtain

a system of nonlinear ODEs in f, g to be solved

2/\f/g/g// o i/\[g’]4 + g(4) =0,

(o' —if® =0,

Assuming f, g are of logarithmic form, we substitute

(@) = foln o,
9(¢) = goln g,
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(2.6.8b)

(2.6.9a)
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into (2.6.8), obtaining

9o [2Xfogo — irgy — 6] ™4 =0, (2.6.10a)

96 +ifo] 67> =0. (2.6.10b)

Solving this, now algebraic, system for fq, go yields

42/3
fo= BZ] : (2.6.11a)
41/3
go = BZ] . (2.6.11b)
Thus,
2i12/3
flo) = {)\} In ¢, (2.6.12a)
2;71/3
g(¢) = [A} In ¢. (2.6.12b)
We note that g = (\/2i)"/3f, and so we may write
V13
9™ (¢) = [%] F*(9), keN, (2.6.13)
Now, we use the full expansion of the solutions
u = W +ui(z,t) = fop +ui(m,t), (2.6.14a)
0 t ATYV3
v = % +vi(x,t) = [21} I o+ vi(x,t). (2.6.14Db)

We note that using the form of f = fj In ¢, the expression for u would yield f'¢, +uy = fodz/P~+u1, which is
a similar expansion to (2.4.4) used in the regular Painlevé analysis; we keep f (%) symbolically throughout, so
to obtain a different collection of linearly independent terms. Substitution of (2.6.14) in (2.6.2), and making
use of (2.6.8) with (2.6.13) to remove the ¢4 and ¢2 terms that arise from (2.6.2a) and (2.6.2b) respectively,
we obtain the equations given in (A.8) and (A.9).

Now, given the form of f = fyln ¢, we can replace the nonlinear f-derivative terms with linear higher-

order derivatives of f. The nonlinear derivative terms from (A.8) are (f’)2, f'f”, and (f)3. These can be

30



written as follows (keeping fy for brevity and generality),

2 _
(f)? = % =—fo- (7‘? =—fof", (2.6.15a)
ppr=do ho_ Jo 2 Jope (2.6.15b)

T 2 ¢ 2

na fo 18 2f 13 Lm
(f"? *—*'*——?f3~

=Rl (2.6.15¢)

Using these substitutions and our known value of fj from (2.6.11a), the equations (A.8) and (A.9), become
(A.10) and (A.11), respectively, which are linear in f-derivatives.

The coefficients of each f(*) in (A.10) and (A.11), equated to zero, give the following Lax-type equations
for ¢,

—2. 2213213 \4/3y3 — j92/352/3 \13 (4y), — 0223323 X3y (1) + 2001 (01)2

i22/3i2/3)\1/3”1¢xt i22/3i2/3)\4/3U1U1¢3¢x Z',L'2/3A1/3¢4x

. o - —gig, 0, (2.6.16a)
2/3;1/3\1/3

—92/3;1/3 \4/34, vy + 61’)\11% _ W —92. 21/31'1/3)\2/3(”1)36 _ 2;5“

2€Muidgy  2- 23N By g, BiM/ENBg2 2. 22313\ 3¢,
2\ GNP 01 30 Py _ ! P30 _ g, (2.6.16h)

bz o 21/3¢2 o
1 — 34)22/3;2/3)1/3

—Auy — (14 20)21/31/3)\2/3y, — % L1230 0; A0, (2.6.16¢)
_92/3j1/3)\1/3, _ “(Zﬂ =0. (2.6.16d)

We note that the terms independent of f-derivatives of (A.10) and (A.11) is simply our original n = 1
system (2.6.2) in uq,v1. Thus, (2.6.14) gives an auto-BT for (2.6.2), where ¢ satisfies the Lax-type equations
(2.6.16). However, since the n = 1 system did not pass the Painlevé Test, we do not expect these equations
to behave like a Lax Pair. Indeed, attempts to reduce (2.6.16) and recover our original system have not been

successful.
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2.6.2 Near-Lax Pair for n = 3 Case

For the purposes of searching for a Lax Pair, we use the (2.3.5) form of the n = 3 case, with an arbitrary

A. Following the homogeneous balance method, we substitute (2.6.3) into (2.3.5). From (2.3.5a), this gives

1[g D 6hgt + 061 ot) + 0ot )] [TV e + O(opel) + Oy o1 )]
FAN[FOI g 1 0o ) + 0o [0 ket + 0(6r ) + O(epe ]
TRt + 06 95t + 06t |
—ix[gP e + 06 o) + O]
+ T [ gpet + 0 o0 + 0] =0,
S OGP §9) 4 4\ flmt) [g(mq)} ’ gPat g gn gL | o gman—l gntdgty
Oty —ix [gr 0] 6Pt + 06516 + O(ef )

2 3 3 4
+ [60 {g(p-i-q)} {g(p-l-q-l-l)} + 60 |:g(P+Q):| g(p+q+1)g(p+q+2) +5 [g(p-i-q)} g(p+q+3)] ¢§P¢iq+3

+ 0671 73) + O 937?) = 0. (2.6.17)
From (2.3.5b), we obtain

[0+ 06808 + 067~ 03) + O(hor )]
[ g+ O(apont) + O] =0,
= [o0) girots + 01617 g + 061711

—if DGR 4+ O T gt + O(¢" ) = 0. (2.6.18)

Next, we balance the powers of ¢y, ¢,, respectively, from the highest-order nonlinear terms. That is,

those with combined powers in ¢, ¢, of m +n +4p + 4q + 1, 8p + 8¢, and 5p + 5g + 3 from (2.6.17), and
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4p 4+ 4qg and m + n + 1 from (2.6.18). We obtain the conditions

m +4p = 8p = 5p,
n+4¢+1=8¢g=>5q¢+3,
4p = m,

4q9=n+ 1.

Thus, m =p=0,n =3 and ¢ = 1. Then (2.6.3) becomes

3
_ PO _ 145 4 576,60 + F b,

“ ox3
Y 3g(¢(>9(;:,t)) e

(2.6.19a)
(2.6.19b)
(2.6.19¢)

(2.6.19d)

(2.6.20a)

(2.6.20b)

Further, using the values of m,n,p,q (or substitution of (2.6.20) back into the NLPDE system), we

equate coefficients of the highest-order ¢-derivative terms: ¢S from (2.6.17) and ¢2 from (2.6.18). We obtain

a system of nonlinear ODEs in f, g to be solved

g [4x\f @ g'g" —ixlg']° +60[g"])> +60g'g" g +5[¢')° 9(4)} =0,

91" —ir® =o.
Assuming f, g are of logarithmic form, we substitute

f(9) = foln o,
9(¢) = goln g,

into (2.6.21), obtaining

9o [8Mfo +iAgy +210g0] 6% =0,

(g6 +6ifo] p~* = 0.
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(2.6.21a)

(2.6.21D)

(2.6.22a)

(2.6.22D)

(2.6.23a)

(2.6.23b)



Solving this, now algebraic, system for fq, go yields

15i32/3101/3
0= —am (2.6.24a)
Z’32/3101/3
Thus,
15i32/3101/3
2'32/3101/3
We note that g = —(A/15) f, and so we may write
A
9" (9) =~z 1M (9), keN, (2:6.26)
Now, we use the full expansion of the solutions
ok Jt
‘T % +ur(t) = DL + 31" budun + ['d30 + wa(2,1), (2.6.27a)
0 t A
v= % +vi(z,t) = —Ef’qﬁw + vy (x,t). (2.6.27D)

Substitution of these in (2.3.5), and making use of (2.6.21) with (2.6.26) to remove the ¢8 and ¢ terms that
arise from (2.3.5a) and (2.3.5b) respectively, we obtain the equations given in (A.12) and (A.13).

Now, given the form of f = fyIn ¢, we can replace the nonlinear f-derivative terms with linear higher-
order derivatives of f, as we did for the n = 1 case. A few of the nonlinear derivative terms from (A.12) are
()2, f'f", and (f')3, which are rewritten in (2.6.15). Other nonlinear f-derivative terms can be rewritten
in a similar manner. Using these substitutions and our known value of fy from (2.6.24a), the equations
(A.12) and (A.13) become (A.14) and (A.15), respectively, which are linear in f-derivatives.

The coefficients of each f(*) in (A.14) and (A.15), equated to zero, give Lax-type equations for ¢ defined
in (A.16). We note that the terms independent of f-derivatives of (A.14) and (A.15) is simply our original
n = 3 system (2.3.5) in uy,v;. Thus, (2.6.27) gives an auto-BT for (2.3.5), where f is given by (2.6.25a) and
¢ satisfies the Lax-type equations (A.16), which we will attempt to linearize into a Lax Pair. We note that

(A.16g) and (A.16j) are redundant, and so future analysis will include only one of these.
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2.6.2.1 Reduction of Lax-Type Equation

Given the forms of the ¢-derivative terms in the Lax-type equations (A.16), we set

bt = P16z, (2.6.28a)
Put = Podu, (2.6.28Db)
bzz = B3¢, (2.6.28c¢)
P32 = B1¢a, (2.6.28d)
Paz = P59z, (2.6.28¢)
2 = B, (2.6.28f)
S0 = Brdl. (2.6.28g)

While we will ultimately require the compatibility conditions

(¢ea)’ = 7 = Be = /33, (2.6.29a)
(022)’ = 03, = Br = B3, (2.6.29b)
(P22)e = P32 = (B3)a + B3 = Bu, (2.6.29¢)
(030)e = 2w = (Ba)a + BaBa = Bs, (2.6.29d)

(1) =bat = (B1)z+ B1Bs = Bo, (2.6.29¢)

for the purpose of rewriting the Lax-type equations, we will begin by using the distinct 8;’s. Making the
substitution (2.6.28) into (A.16), the Lax-type equations become (A.17), now without explicit ¢-dependence.

Solving (A.17g) for 5 and (A.17h) for 5, we obtain

1'22/3)\1/31}1
/83 — 32/351/3 , (2.6.303)
4
Bs = Bmf. (2.6.30b)
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Using these, we may then solve (A.17a) for B2, and (A.17f), (A.17i) for B4, Bs, giving us

i22/3/\4/3u1v1 5 3(’[)1),5 . 3)\11,1(1}1)@

J— p— y 4 —
62 N 32/351/3 + 32)\1)1 U1 (%
a/3702/3v1/30 vz 30w s am13
+ 3i3/°10%° N2 (vy)5 — — +1377°10%° N P01 (V1) g
1
45 xT xTrxr
- %1@1) — 5(01) 30, (2.6.31a)
TAZ/302 i3Y/3N3 (01,

b= 13m0 T 41013 (2.6.:315)
5UBN2/3p2 A3 (),

Bs = T3.92/331/3 T 33/3101/3 (2.6.31c)

Next, we solve (A.17d), (A.17e) for 1, B7, which yields our final 3;’s
By — s — 115Y/302/3¢3 3i32/310Y3(vy),  3i32/310Y/3 X230y (v1) 4
L= L 5 92/331/3 AL/3y2 e
151343523 X3, (vy) 4 N 90(v;)?2 N 30i32/310/3 (v1)3
21/3 v >\1/3Ui’>
45i3%/310Y 3 (0)) o (V1) ee . 1532353 (1) 3,
— 15(v1) 20 + N33 WDV (2.6.32a)
B = 22 s — () Aui(v)e  XPoi(v1)e
TT180 N B2 5v2 31/3102/3
32BN 0); 20007 3(W)e(v)es  (V1)3a (2.6.32b)
51/304 v} v? dvy e

The remaining two equations, (A.17b) and (A.17c), become identically the first field equation from our

original system, (2.3.5a) in uq, vy, after utilizing the appropriate 3;’s. That is,

z

4vy (v1)g + v (V1) — IM0S + 072 [vf]S =0, (2.6.33)

We now return to our compatibility conditions (2.6.29). To simplify some of the following calculations,

we solve (2.6.33) for u; to get

v — v} G 15(v1)3 _ B(w)es 51)1(1]1)3'”. (2.6.34)

4(v1)z  Mv1)a Avy A 4A(v1)a
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Making use of the 3;’s previously found, the first compatibility condition (2.6.29a) yields

i3Y3X2/302 43101303 (vy), = 0,

iNY/ 302

= ('Ul)x =

Thus, we have an additional requirement that will need to accompany the near-Lax Pair. We note that
solving the above PDE for v; and letting A = 1, we obtain

’i32/3101/3

T (2.6.36)

v =

which is the algebraic form similar to the solution for v obtained during Invariant Painlevé analysis, (2.5.24).
Making use of the expression for (v1),, and the expression for u; (2.6.34), the second compatibility condition
(2.6.29b) is satisfied. Further substitution of (v1), (and (v1).) also satisfies the third and fourth equations
(2.6.29¢),(2.6.29d). The final compatibility equation, upon substitution of w; and recursive applications of
(v1), yields

v —i(ur)e =0, (2.6.37)

which is our second field equation of the original system (2.3.5b) in uy,v;. Thus, we have recovered our

original system from our Lax-type Equations. Using (v1)s, the 3;’s become

5 = % o — 2. 10;/13/22/31@ N 3i32/i19;;;(v1)t’ (2.6.382)
By = % = % - gm;‘ - 3(;1)2 (2.6.38b)
Bz = (Z” = —%, (2.6.38¢)
Ba= Q;g: B _%’ (2.6.38d)
Bs = fb“: = %mf, (2.6.38¢)
Be = jg = —W (2.6.38f)
= Goe NP Lo - e, (2.6.38g)

T g3 T 53231013 ' 45 502

Specifically, we consider S = ¢,1/P, to see if it can be integrated. Upon further substitution of the
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expression for up, and subsequently (v;),, we obtain the equation

@ _ 2(’01)t
(o U1 ’
0 0
= g In(¢,) = a2ln(vl)
= ¢ = a(t)vf, (2.6.39)

where «(t) is an arbitrary function. Combining this with our expression for ¢; = 51, from (2.6.38a) and

removing the subscripts on u, v, our preliminary near-Lax Pair to consider is

be = at)v?, (2.6.40a)
2. 10Y/302/3¢3  3132/3101/30,
by = |2 u — 3173 PNV - (2.6.40b)
with
i)\1/3’02

Now checking the cross-derivative condition (¢;): = (¢¢)., we obtain

10 - 1013723 (t)vto,
V2 (t) — da(t)vvy — 2 a(t)v?uy, — 4 (t)uvv, + YVE ®) =0, (2.6.41)

where we have also utilized v,; from taking the t—partial derivative of (2.6.40c). For the above condition
to yield our original system, we further require o/(¢t) = 0, thus a(¢) = a. Now, the remaining terms can be
algebraically manipulated to expose both field equations as compatibility conditions, although this requires
some prior knowledge of the types of terms that appear in the NLPDE system. The terms are identically

zero when u, v satisfy the original system (2.3.5), and after further use of v,. Therefore, we obtain

¢p = a0, (2.6.42a)

2-101/3)2/3¢3  3432/310%/34,

$r = |22 — 31/3 N1/3,2 @)

(2.6.42D)

as a near-Lax Pair with spectral parameter «. That is, it generates our original system, but only with the
additional condition on v, given in (2.6.40c), as well as some prior knowledge about our NLPDE system. For
partially-integrable systems, i.e. systems admitting some degree of integration on analytic solutions, these

'near-Lax Pairs’ have been briefly discussed for some nearly-integrable ODE and PDE systems in [35].
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CHAPTER 3: PT-SYMMETRIC BURGERS EQUATION

We now apply the methods of the previous chapter to the PT-symmetric Burgers [29] equation
up +uMuy — tug, = 0. (3.0.1)
Here, we want to find values of m for which the equation is integrable.

3.1 Leading Order and Resonance Analysis

Starting with a leading order analysis to determine the behavior of the solution at the singular manifold,

we make the ansatz
u(x,t) = ugd™", (3.1.1)
where we require n € N; n and ug(z,t) are to be determined, and ¢(x,t) = 0 is the location of the singular

manifold. Using this in (3.0.1), we have

O 1) + [uop™"]"™ [~nuod™" " du + O(¢~")] =i [(=n)(=n — Duop™"2¢7 + O(¢~" )] = 0. (3.1.2)

Balancing the powers of ¢ in the most singular terms, we require —mn —n — 1 = —n — 2. Thus, the values

of m we can consider for integrability are

m =

. neN, (3.1.3)

1
n

Now balancing the coefficients using this value for m, we also require

—nu(l)/nﬂqbl. = —in(n + Dud?,
= ut/™ = —i(n + 1)¢s. (3.1.4)
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Constructing a local expansion around the singular manifold, we assume the solution to (3.0.1) takes the

form of a Laurent series
o0

u(z,t) = uj(x,t)¢~". (3.1.5)
j=0
As before, we require a full set of arbitrary coefficient functions for this expansion to be valid. The P7T-
symmetric Burgers equation is second-order, thus we need two arbitrary functions; one should be the singular
manifold itself, and the other should appear as an arbitrary u,; coefficient in (3.1.5).
Using a resonance analysis, we want to find the values of r that make w,(z,t) in (3.1.5) arbitrary. To

that end, we let
u(x,t) = ugp™ "™ +pp~ "1, (3.1.6)

and impose conditions on r to ensure the arbitrariness of p(z,t). Using (3.1.6) in (3.0.1), we obtain

O(p™" 1) + 07"
+ [Uoé_" +p¢—7l+7'} % [—nuo¢_n_1¢m 4 (_n T T)p¢—n+r—1¢x + O(¢—n+r> + O(¢—n)]

— i [n(n+ Dugg " 2¢2 + p(—n+71—1)(—n+7)¢ " 22 + O(¢p T + 0(¢p "] = 0. (3.1.7)
Neglecting the higher-order terms, and using binomial expansions (about ¢ = 0), we then obtain

u "7 |1t g 06| [nugd ™ b - (ot r)pg 0]

—in(n+ Dugp " 2¢2 +ip(—n +r —1)(—n + )¢ """ "2¢2 = 0. (3.1.8)

We note that O(¢~"~2) terms are constant in p, and by virtue of (3.1.4), sum to zero. Turning our attention

to O(¢~"*"=2) terms, which are linear in p, we have
(—n+ T)ué/ngi)x - ué/nd)x —i(-n+r)(-n+r— l)qﬁﬂ p=0. (3.1.9)

For p to be arbitrary, we reqire the above expression in brackets to be identically zero. Making use of (3.1.4),

this gives

(=n+r—=D[=i(n+1)sl¢s —i(—n+7r)(—n+r—1)¢7 =0,

= —igZ(r—n—1)(r+1) =0. (3.1.10)
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Thus, the resonance values r = —1, n+1 will yield an arbitrary p. The value r = —1 indicates the arbitrariness
of ¢ and the value » = n + 1 is a positive integer for any n € N, as needed to correspond to a location in
the Laurent series expansion (3.1.5). Verification of the arbitrariness of the wu, 11 coefficient will be done in
specific n cases after the reformulation in the next section.

The case n = 1, in (3.0.1), yields the complex Burgers equation w; + uu, — iu,, = 0, which has been

analyzed in [29], as well as others, and will not be discussed further here. The case n = 2 yields the equation
wp + ut Uy — gy = 0, (3.1.11)

which will be discussed in subsequent sections.

3.2 Reformulation into System

Given the rational form of the m = 1/n, we make the substitution

1/n

v=u'" <= v" =u, (3.2.1)

which converts the equation (3.0.1) to the second-order system

Up + VUy — gy = 0, (3.2.2a)

" —u=0. (3.2.2b)

To determine the behavior of v(x,t) at the singular manifold ¢ = 0, we let v = vo¢~?. Now, since

u=upp " at the singular manifold, (3.2.2b) implies

Vi = ugp™". (3.2.3)

Balancing the powers of ¢ gives 8 = 1, so at leading order, v = vg¢~! . Further equating coefficients, we

require v = ug. Then using (3.1.4), we obtain

vo = up!™ = —i(n + 1)¢,. (3.2.4)
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Now expanding solutions u, v of (3.2.2) about the singular manifold, we seek solutions of the form

u(z,t) = Zujgzﬁ*"*j, (3.2.5a)
j=0

v(w,t) =Y v, (3.2.5b)
j=0

where ug,vg are given in (3.2.4). Again, for these expansions to be valid, we require a full complement of
arbitrary coefficient functions. Our system (3.2.2) is second order, so we only need one of u; or v;, for some
7 € N, to be arbitrary in addition to the singular manifold location.

Performing a resonance analysis on the reformulated system to determine the values of r such that u, or

v in (3.2.5) is arbitrary, we substitute the expressions

u(z,t) = uod™" +po~ """, (3.2.6a)

v(w,t) = v~ + g7, (3.2.6b)

into (3.2.2) and require p, g be arbitrary. We equate the most singular r-powered terms from each equation,
O(¢p~727") and O(¢~""") terms respectively, which correspond to terms linear in p and ¢. This yields the

system of equations

[(=n 4+ r)vogs —i(—n+7r)(—n+ 1 —1)¢2] p — nugdsq = 0, (3.2.7a)

—p+nvy g =0. (3.2.7b)

For p or g to be arbitrary, we require the determinant of the above system in p, g to be zero. Making use of

(3.2.4), we find

nvg " [(—=n 4 1)vods —i(—n+ 1) (—n+r — 1)¢2] — nugd, = 0,

20 ' 2—i(-=n+r)(-n+r—1)¢2] — nugp, =
i"[w] [—i(=n+r)(n+1)¢7 —i(-n+7)(=n+7r - 1)¢;] - nuods =0,

= [m] nugPy — NPy = 0,
= [7‘2 —nr—(n+1)] (Zuiqbf) =0,
NU Pz

= (r+1)(r—(n+1)) =0. (3.2.8)

(n+1)
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Thus, the values of r that make p,q arbitrary are r = —1,n + 1, which give the same resonance value as

previously (3.1.10).

3.2.1 Verification of Resonances for n = 2

Letting n = 2 in (3.2.2), we will be further analyzing the system

U + VUg — TUgze = 0,

v°—u=0.
To verify the positive resonance »r = n + 1 = 3, we use the truncated expansions

3
—o4j _ Uo U1
u(x,t):Zuqu 2+]=?+E+U2+U:ﬂ¢,

U
vz, t) =Y v = ;? + U1 + V20 + V397,
=0

(3.2.9a)

(3.2.9h)

(3.2.10a)

(3.2.10b)

in (3.2.9) and want to show either uz or vg is arbitrary. Making this substitution, the O(¢~*) term from

(3.2.92) and the O(¢~?) term from (3.2.9b), each set equal to zero, gives

U = _9¢ia

Vo = _3Z¢ZL’7

(3.2.11a)

(3.2.11D)

as expected from (3.2.4) with n = 2. Using these expressions for ug, vg, we solve the equations obtained from

setting the O(¢3) and O(¢~1) terms, from (3.2.9a) and (3.2.9b) respectively, to zero, which yields

Uy = gz (th - 27f¢mr) )
_ 3 (¢t B 22¢wm)

V="

40y

Using these, now the next ordered terms O(¢~2) and O(¢°) respectively give

15¢7  9igu | Yidrden | 992,  3P3a
Uy = — + + — R

1607 2¢, 497 463 o
ZQS% + 3¢3¢t _ 3¢t¢xw + 31@%3: _ i¢3x

T 1603 | 492 4¢3 4¢3 202

V2
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Finally, the O(¢~1) and O(¢!) terms set equal to zero, is the system of equations

2
3ig2 | f(us,vs) + % — 3¢(;f“ + 3‘? (Zi“ =0, (3.2.14a)

fa(us,v3) =0, (3.2.14b)

where f3 is given by

f3(us,v3) = —uz — 6ivzg, — 3200 808 1651
9Z¢It¢1‘1 27Z¢t 2 9¢3 3Z¢t¢3x 3¢mw¢3m
— e _ re . .2.14
T g oL Aot | dgp | 248 (3:2140)

In order for one of us,vs to be arbitrary, we require (3.2.14) to be a linearly dependent set of equations in
usz,v3. This is only true if the other terms besides f5 in the bracket of (3.2.14a) is zero. Equivalently, we

require the compatibility condition

to insure the arbitrariness of either ug or vs. Thus, ¢ is not arbitrary, making the implication of r = —1
corresponding to the arbitrariness of ¢ invalid, so the Laurent expansion (3.2.5) is not valid for the n = 2

case of (3.2.2), and this system thus fails the Painlevé Test.

3.3 Special Solutions via Singular Manifold Method for n = 2 Case

While the n = 2 case of (3.2.2), given by (3.2.9), did not satisfy the Painlevé test for integrability, we can
still find special solutions by using a truncated series expansion about the singular manifold. That is, we

assume solutions of the form

u(z,t) = % + % + ua, (3.3.1a)
oz, t) = %0 + . (3.3.1b)
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Substituting these expressions into (3.2.9a), we obtain the coefficient equations

06+ — 2uguogs — Giuggs =0,
O(¢_3) : - 2u0¢t - u1U0¢z - 2u0vl¢x - 2’LU1¢2 + UO(UO);E + 4Z¢$(UO)LE + 27fu0¢xac = Oa
0072+ —urdy + (uo) — U110 + V1 (o) + Vo(U1)s + 20y (u1)e + iU1Pze — i(U0)ze = 0,

O ")+ (ur)e +v1(ur)s + vo(us)z — i(ur)ge =0,

O(¢”) : (u2) + v1(ug)e — i(ug)ze = 0,

and from (3.2.9b),

O(67%): —uo+(v0)* =0,
O(¢_1) : —u1 + 21)0’[]1 = 0,

O@):  —uy + (v1)*=0.

(3.3.2a)
(3.3.2b)
(3.3.2¢)
(3.3.2d)

(3.3.2¢)

(3.3.3a)
(3.3.3b)

(3.3.3¢)

We note that the O(¢°) terms are simply (3.2.9) in ug, v1, so (3.3.1) gives an auto-BT from a known solution

(u2,v1) to a new solution (u,v), where wug, u1, vg, ¢ satisfy the above coefficient equations (3.3.2), (3.3.3).

3.3.1 First Iteration from Vacuum Solution

Starting from the vacuum solution (u,v) = (0,0) of (3.2.9), we let us = v; = 0 in (3.3.1), (3.3.2), and

(3.3.3). Solving (3.3.2a), (3.3.3a) for ug = —9¢2 and vy = —3id, (or from previously solved, (3.2.11)), the

remaining coefficient equations become

iur§3 + 18012 — 36id2 e = 0,
—u1¢y — ithe (U1)x — 182 ut + ity Bo + 90 (202, + 20:¢3,) = 0,
(u1)r — i(u1)ze = 0,

and

—Uyp = 0.
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These further reduce to the system of equations

(b — 2icpaa] ¢ =0, (3.3.5a)

(92, + i0sh30 — Godar = 0. (3.3.5b)

Assuming ¢, # 0 (otherwise we would get the trivial solution u = v = 0), we then require ¢; = 2i¢ ;.
Differentiating once with respect to x, we obtain ¢,; = 2i¢3,. The second equation above then becomes

2, — Gub3. = 0, which has the solution

¢z, t) = g1 (t)e™ ") + gs(t), (3.3.6)

where g1, 92,93 are arbitrary functions of ¢. Returning to the equation ¢; = 2i¢,,, we substitute our

expression for ¢, yielding the equation

g1e"92 + g1 ghe™ 92 + gh = 2igy gae”I?, (3.3.7)

which further imposes the restrictions

g3 =0, (3.3.8a)
9195 =0, (3.3.8b)
91 = 2ig163. (3.3.8¢)

Since we have already required ¢, # 0, then g1 # 0, leaving us with the solutions

g1(t) = cre2iest, (3.3.9a)
92(t) = c2, (3.3.9b)
g3(t) = cs, (3.3.9¢)

where ¢y, co, c3 are constants. Thus, we obtain

oz, t) = cre™e et 4 oo (3.3.10)
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Now, combining our results, (3.3.1) gives us

-9 [qcze“ﬁmgtr

u(zx,t) = , 3.3.11a

( bl ) [clex02+2ic%t+cg}2 ( )
—3 |:Clc2ex02+2ic§tj|

[Clex02+21c§t+cg] .

v(x,t) = (3.3.11b)

These can be rewritten in terms of two arbitrary constants instead of three to correspond to the second order

PDE system, and further, into the forms

1 2
u(z,t) = %k% {tanh {2 (k1z + 2kt + kg)] + 1} : (3.3.12a)

j 1
v(x,t) = —%kl {tanh {2 (k1 + 2ikit + kQ)] + 1} , (3.3.12Db)

where ki, ko are the arbitrary constants. These can be uniquely determined by imposing two appropriate
initial/boundary conditions on u,v. It is verified by Mathematica that (3.3.12) solves (3.2.9). Next, the
solution for u is checked in our original equation (3.0.1) with n = 2 (m = 1/2). We further require

k1 =1ib, ko = a, a,b € R for identity. We arrive at the solution
9, 1 o 2
u(z,t) = Zb itan 3 (bx —2b°t +ia)| + 1] , (3.3.13)

as a solution to (3.0.1) with m = 1/2, verified by Mathematica. Choosing the values a = 0, b = 1 in
(3.3.13), plots of Re(u(x,t)) and Im(u(z,t)) are given in Figure 4. We note that when a = 0, the solution
has singularities for bz —2b°t = (2j+ 1), j € Z. Although a t-dependent solution has been obtained for the
PT-symmetric Burgers, an Invariant Analysis of the system was attempted to possibly find other solutions.

However, only trivial solutions were found.
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Figure 4: Solution u(z,t)-(3.3.13) with a =0
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CHAPTER 4: PT-SYMMETRIC (24+1) BURGERS EQUATION

For the complex PT-Symmetric (24+1) Burgers equation,

2

0= ugs + (uug), + 902

(iug)" + Uy, (4.0.1)

= Uyt + U2 4 uu, + ic (iu$)671 ugy — €(e—1) (iugu)ef2 uZ, + gy,

with u = u(z,y,t), we wish to the values of € such that (4.0.1) is integrable, and find special solutions.

4.1 Leading Order Analysis

We begin as before to determine the leading order behavior. We make the ansatz

u(z, y,t) =uod™", (4.1.1)

where we require n € N; n and ug(x,y,t) are to be determined, and ¢(z,y,t) = 0 is the location of the

singular manifold. Using this in (4.0.1), we have

O(¢™ ") + [—nugd™ " "¢ + O((b_n)}z +ugp ™" [-n(—n — Dugp "¢ + O(¢™" )]
e [~inugd ™" oy + O(6™] T [(=n)(=n— 1)(=n — 2Juos "6 + 067 )]

—ie(e — 1) [—inugd " gp + O(6™)] T2 [(=n) (=1 — Dues ™" 242 + O(¢ "]  =0.  (4.1.2)

Balancing the powers of ¢ in the most singular terms, we require —2n —2 = (—n—1)(e—1)+ (-n —3) =
(—n —1)(e — 2) + 2(—n — 2), or equivalently —2n — 2 = —ne — e — 2. Thus, the values of € we can consider

for integrability are

2n
n+1’

neN. (4.1.3)
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Now balancing the coefficients using this value for €, we also require

nu2¢? + n(n + Dule? —ien(n + 1)(n + 2)ued> (—inugde) "
— e(e — D)n’(n + 1)*ugy (—inuog,)”* =0,
= n2u3¢i +n(n+ 1)ug¢>i — 2in2(n + 2)u0¢i (—inuoqsz)n%*l
—2(n — Dn*udl (~inugd,) T =0,

2n

= (2n + Dud +2(2n + 1) (—inugd,) "1 =0,

_2 2n
- u61+1 = —2(—ing,) "+ . (4.1.4)
We will use this expression for ug to simplify subsequent calculations.

4.2 Reformulation into System

Given the rational form of the ¢ = 2n/(n + 1), we promptly reformulate our original equation into an

equivalent system before performing a resonance analysis. We make the substitution
: M n+1 -
v = (ug) ™D = V" = juy, (4.2.1)
which converts the equation (4.0.1) to the third-order system

(n+ 1)v"ve + (uv"“)z +i (vzn)m + duyy =0, (4.2.2a)

"t —ju, = 0. (4.2.2b)

To determine the behavior of v(z,y,t) at the singular manifold ¢ = 0, we let v = vo¢?. Now, since

u = upep " at the singular manifold, (4.2.2b) implies
vp A = i [—nuge ™" 1o, + O(¢7™)] . (4.2.3)

Balancing the powers of ¢ gives 3 = 1, so once again at leading order, v = v9¢~!. Further, equating leading

coefficients we have
- n+1
v

ne,

n+1l _ . _
vy = —inUgPy = Ug =

(4.2.4)
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. Comparing this to the expression found for uy in (4.1.4), we then obtain

2 Z,Un+1 n+1 om
= [T = o inen

nds
= vy = 2n¢2, (4.2.5)

which gives us an expression for vy for any n; we obtain this same expression for vg when equating leading
order coefficients in (4.2.2a) and utilizing (4.2.4).

Now expanding solutions u,v of (4.2.2) about the singular manifold, we seek solutions of the form

u(a,y,t Zu ¢, (4.2.6a)

v(z,y,t) Zv ¢, (4.2.6b)

with u; = u;j(z,y,t), where ug, vy are given in (4.2.4) and (4.2.5). For these expansions to be valid, we
require a full complement of arbitrary coefficient functions. Our system (4.2.2) is third order, so we need

two of u; or vy, j € N, to be arbitrary in addition to the singular manifold location.

4.3 Resonance Analysis

We perform a resonance analysis on the reformulated system to determine the values of r such that wu, or

vy in (4.2.6) is arbitrary; substituting the expressions

u(z, y,t) = ugp™ " +pp~ "7, (4.3.1a)

v(@,y,t) = vop ' + g, (4.3.1b)

into (4.2.2), we equate the coefficients of the most singular r-powered terms from each equation, O(¢~2"~2+")
and O(¢~"*"~1) terms respectively. These correspond to terms linear in p and ¢, and yields the system of

equations

(=2n+7r—Dog™p+ (—2n+7r—1) [(n+ 1uo + 2in(—2n + r)vg~ lqiL} vyqg =0, (4.3.2a)

—i(=n+7)¢.p+ (n + 1)vyq = 0. (4.3.2b)
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For p or ¢ to be arbitrary, we require the determinant of the above system in p, g to be zero. Making use of

(4.2.4) and (4.2.5), we find

(=2n+7r—1)(n+Dug" T +i(—n+r)(=2n+7r—1) [(n + Dug + 2in(—2n + r)vy " ¢,] d,vf = 0,

Z"Un+1 ,Uﬂ+1 7
= (2n+7r—1) [(n + Dot +i(=n+r) {(n +1) ( n‘; > + 2in(—2n + 1) ‘;2 %] b:| =0,
x 0 |
= (—2n+r—1) {n +1+(—n+r) [_(Z(;;l) —2n(—2n + T)Qn;ﬁ%] ¢z_ =0,
:>(—2n+r—1)[n+1+(—n+r)n_;_1 =0,

= (-2n+r—-1)2n—-r)(1+r)=0. (4.3.3)

Thus, the values of r that make p, q arbitrary are r = —1,2n,2n + 1. With the exception of r = —1, these
are positive integer values for all n, and thus correspond to locations in the Laurent expansion. We verify

these resonances for specific values of n in the sections that follow.

4.3.1 Verification of Resonances for n =1

Letting n = 1 in (4.2.2), we will be further analyzing the system

200y + (uv?) g + (V) gz + ity = 0, (4.3.4a)

v? — iuy = 0. (4.3.4b)

which has the positive resonances r = 2, 3. To verify these, we use the truncated expansions

3
. U
u(w,y,t) =Y u;p~ ' = EO + g+ ugd + uzd?, (4.3.52)
7=0
3 -
v(z,y,t) =Y v = 50 + 01 + 02 + V367, (4.3.5b)
3=0

in (4.3.4) and want to show either us or ve, and uz or vs is arbitrary. Making this substitution, the O(¢—%)

term from (4.3.4a) and the O(¢~2) term from (4.3.4b), each set equal to zero, gives

Uy = 2idy, (4.3.6a)

vy = V20, (4.3.6b)
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as expected from (4.2.4) and (4.2.5) with n = 1. Using these expressions for ug, vg, we solve the equations
obtained from setting the O(¢~3) and O(¢~!) terms, from (4.3.4a) and (4.3.4b) respectively, to zero, which

yields

¢g24 + ¢t¢m + l¢m¢zx
_ (ﬁi ,
_ ¢$EZ

V26,

(4.3.7a)

1=

v = (4.3.7b)

Using these, now the next ordered terms O(¢~2) and O(¢°) respectively give the system of equations

f2(7.t2, V2, ¢) + 2¢yy¢7m = 07 (438&)

202

=0 4.3.8b
o : ( )

Ja(uz, v20) + 4¢yday —

where

folug, va, ) = —2uz¢> — 4iV 20903 + 2¢,¢

20 baa

5 — 3003, + 2id, P30

- 2¢t¢:pz -

In order for one of ug,vs to be arbitrary, we require (4.3.8) to be a linearly dependent set of equations in
ug,v2. This is only true if the other terms besides fo in (4.3.8) are equal. Equivalently, we require the
compatibility condition

¢g2g¢’yy — 2020y ay + ¢§¢M =0, (4.3.9)

to insure the arbitrariness of either uy or ve. Thus, ¢ is not arbitrary, making the implication of r = —1
corresponding to the arbitrariness of ¢ invalid, so the Laurent expansion (4.2.6) is not valid for the n = 1

case of (4.2.2), and this system thus fails the Painlevé Test.

4.3.2 Verification of Resonances for n = 2

Letting n = 2 in (4.2.2), we will be verifying the resonances for the system

3070y + (uv?) g + i (V") gy + duyy = 0, (4.3.10a)

v —iu, = 0. (4.3.10b)
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which has the positive resonances r = 4,5. To verify these, we use the truncated expansions

5
u(z,y,t) = uj¢ >, (4.3.11a)
§=0
5 .
v(z,y,t) = vi¢ ', (4.3.11b)
j=0

in (4.3.10) and want to show either u4 or v4, and us or vs is arbitrary. Making this substitution, the O(¢~9)

term from (4.3.10a) and the O(¢~2) term from (4.3.10b), each set equal to zero, gives

uy = 8iv/2¢2, (4.3.12a)

vo = 2V26,, (4.3.12b)

as expected from (4.2.4) and (4.2.5) with n = 2. Using these expressions for ug, vg, we solve the equations
obtained from setting the O(¢~°) and O(¢~2) terms, from (4.3.10a) and (4.3.10b) respectively, to zero,

which yields

U = —8iV 204z, (4.3.13a)
v = — ‘/i(b"”. (4.3.13b)

Using these, we balance the next ordered terms O(¢~*) and O(¢~!), and obtain

=4 _ = _ 4.3.14
B R T X (43140)
2 V2¢3
=== z, 4.3.14b
VTR 7 (4:3440)
We subsequently set the O(¢~3) and O(¢°) to zero, which gives
5 2 o . 3 . .
uz = 3¢yy + @ + ¢y¢wy . ¢y¢ _ ¢t¢wz . 22\/§¢xg; + 8Zﬁ¢zw¢3x . 22\/§¢4a:’ (43153.)
407 03 243 4¢3 o3 oz 363 303
. . -2 3 .
vy = By 10ybuy Wyfrz _ Opy | Guabie O (4.3.15b)

C32¢3 1601 0 3200 V2¢5 1 V26%  6v2¢3
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Now, the next order terms, O(¢~2) and O(¢!) respectively, give a linearly dependent system of equations in

uyg and vy. Choosing vg as our arbitrary function, we solve for uy

2 2 42
- _12 R vy vy yPry . y
B 7 7 S T 801
_ 3¢t 325;5 - 1074\@¢ix _ ¢T’I‘t _ ¢y¢mvy + 5¢32/¢3I + ¢t¢3m + 141\/§¢§3§¢3’I‘
265 o 263 403 83 263 o3
_ 2Zﬁ¢§x _ 31\/§¢a¢x¢4a¢ + i\/§¢5x’ (4316&)
o o 303
vy arbitrary. (4.3.16b)

Using this expression for u4, the next order terms, O(¢~1) and O(¢?), also give us a linearly dependent

system of equations in us and vs. Once again, we choose vs as our arbitrary function, and we obtain

us = —81v50, + 4i(vy)s + 6 466 28 + 16(;5{96 + 2¢gm
+ 53¢y¢my¢§gg _ 93¢72/ ix _ 5¢t¢gz _ 412¢2x _ ¢wz¢xwt + ¢wy¢xmy
87 1643 261 V248 s 4¢3
_ 5¢y¢xw¢xa¢y + d)aﬁxyy _ ¢yy¢3x _ 2¢xt¢3x _ 3¢y¢xy¢3x + 73¢§¢xw¢3x
465 8¢5 243 363 248 24¢7
308 307 965 603 1293
_ 50yPur Pidax  53ig7, ¢4 4 3iv/2¢3: ¢4 n iV2¢ratse Z\[(iG , (4.3.17a)
2468 66 3v2¢8 993, 33 9oz
vs arbitrary. (4.3.17b)

Thus, our resonances are verified; we have two arbitrary coefficient functions v4 and vs, corresponding to the

resonances r = 4,5. The Laurent expansion (4.2.6) is valid, and (4.2.2) passes the Painlevé test for n = 2

4.3.3 Verification of Resonances for n =3

Letting n = 3 in (4.2.2), we will be verifying the resonances for the system

43y + () + (V) g + iy, = 0, (4.3.18a)

vt —du, = 0. (4.3.18b)
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which has the positive resonances r = 6, 7. To verify these, we use the truncated expansions

7
u(xayvt) = Zuj¢73+ja (43193,)
j=0
7 .
v(z,y,t) = vi¢ ', (4.3.19b)
=0

in (4.3.18) and want to show either ug or vg, and uy or vy is arbitrary. Making this substitution, the O(¢~%)

term from (4.3.18a) and the O(¢~*) term from (4.3.18b), each set equal to zero, gives

ug = 108i¢3, (4.3.20a)

vy = 3v2¢,, (4.3.20b)

as expected from (4.2.4) and (4.2.5) with n = 3. Using these expressions for ug, vg, we solve the equations
obtained from setting the O(¢~7) and O(¢~3) terms, from (4.3.18a) and (4.3.18b) respectively, to zero,

which yields

uy = —162i;¢py, (4.3.21a)
30
V20,

v =

(4.3.21b)

Continuing in this manner, we pair the O(¢=%) — O(¢~3) and O(¢p~2) — O(¢!) coefficient equations,
respectively, to solve for uj,v;,7 = 2,3,4,5. These are given in (A.18). Now, the next order terms, O(¢~2)
and O(¢?) respectively, give a linearly dependent system of equations in ug, vs. Choosing vg as our arbitrary
function, we solve for ug, given in (A.18i). Similarly, the next ordered terms O(¢~3) and O(¢$?) respectively,
give a linearly dependent system in ur,vr7; choosing v; as the arbitrary function, the expression for u; is
given in (A.18k). Thus, our resonances are verified; we have two arbitrary coefficient functions vg and vz,
corresponding to the resonances r = 6,7. The Laurent expansion (4.2.6) is valid, and (4.2.2) passes the

Painlevé test for n = 3.
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4.4 Singular Manifold Method

4.4.1 Casen=2

We begin by analyzing the system (4.3.10). We truncate the Laurent expansion of the solution at the
constant term O(¢°); that is, we assume the solutions take the form of series (4.2.6), truncated at j =n = 2

in (4.2.6a) and j =1 in (4.2.6b), or

Ug | Ul

Vo
v=—+v. (4.4.1b)
¢
As found previously, we have
uo = 8iv/2¢2, (4.4.2a)
vo = 2v2¢,, (4.4.2D)
U = —8iV 204z, (4.4.2¢)

from intermediate results during verification of the resonances. Substituting (4.4.1) into (4.3.10), the order

O(¢°) terms from both subequations yield

3(v1)?(v1)e 4 i (ug)yy + (01)*(U2)a + 3uz(v1)* (V1) + 12i(v1)?(v1)2 + 4i(01)* (V1) 2z = 0, (4.4.3a)

(1) —i(ug)z = 0, (4.4.3b)

which is our original system (4.3.10) in wug,v1. Thus, (4.4.1) gives an auto-Bécklund Transformation con-
necting two solutions (us,v1) and (u,v) of (4.3.10), provided ¢ satisfies the remaining coefficient equations.
These Painlevé-Bécklund equations are given in (A.19).

Attempts were made to derive a new solution from the vacuum solution us = v; = 0 using the auto-BT

(4.4.1), however only trivial results were found. We apply an invariant Painlevé analysis in a later section.

4.4.2 Casen=3

We now analyze the system (4.3.18). We truncate the Laurent expansion of the solution at the constant

term O(¢°); that is, we assume the solutions take the form of series (4.2.6), truncated at j = n = 3 in
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(4.2.6a) and j =1 in (4.2.6b), or

(27} (5% u
v="2 4. (4.4.4b)
¢
As found previously, we have
up = 108i¢3, (4.4.5a)
vo = 3V2¢,, (4.4.5b)
up = —162i0, Py, (4.4.5¢)
24i¢p?
uy = 2 f” —162is,, (4.4.50)

from intermediate results during verification of the resonances. Substituting (4.4.4) into (4.3.18), the order

0O(¢°) terms from both sub-equations yield

4u (1) + i(us)yy + 01 (us)e + duzvi (v1)z + 30601 (v1)2 + 6807 (V1) e = 0, (4.4.6a)

v} —i(uz), =0, (4.4.6b)

which is our original system (4.3.18) in ug,v1. Thus, (4.4.4) gives an auto-Bécklund Transformation con-
necting two solutions (uz,v1) and (u,v) of (4.3.18), provided ¢ satisfies the remaining coefficient equations.
These Painlevé-Béacklund equations are given in (A.20).

Attempts were made to derive a new solution from the vacuum solution uz = v; = 0 using the auto-BT

(4.4.4), however only trivial results were found. We apply an invariant Painlevé analysis in the next section.
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4.5 Invariant Painlevé Analysis 241

Similar to the analysis performed on the KdV equation in Section 2.5, we apply the 2+1 formulation of

Invariant Painlevé analysis to our 241 Burgers equation[36]. That is, we look at expansions of the form

o0

u(z,y,t) = Zujx_o‘+j, (4.5.1)
Jj=0

where y must vanish with the singular manifold ¢ — ¢g, and « is determined by a leading order analysis.

Similar to the 1 + 1 case, if we choose the form of x to be

Y < 0 bu > o
Y _ _ : 4.5.2a
AT i (45:20)
¢—¢
Y="—7H (4.5.2b)
then y satisfies the Ricatti equations
Lo o
Xo =1+ §S’X ) (4.5.3a)
1
Xy = —K + Kyx — 5(KS+KM)>8, (4.5.3b)
1
M:fc+awf§ws+@gﬁ, (4.5.3¢)
and v satisfies the linear equations
1
Yz = —§S¢, (4.5.4a)
1
Py = §KI¢ — Ky, (4.5.4b)
1
Yy = 5011/1 — Cy. (4.5.4c)

The quantities S(z,y,t), K(x,y,t) and C(x,y,t) are defined by

b3 3 (Gw)
K@%ﬂ:—%, (4.5.5b)
C(z,y,t) = —%, (4.5.5¢)
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and are invariant under the Mobius transformation

ap+b

¢_>c¢+d’

ad —bc=1. (4.5.6)

They are linked by the cross-derivative condition ¢3,¢ = @3, by

S; + Cs, +2C, S +CS, =0, (4.5.7a)
Sy + K3, +2K,S + KS, =0, (4.5.7b)
Cy,— K+ C,K—-CK, =0. (4.5.7¢)

Similar to the 141 case, the solution method consists of using a truncated (4.5.1) in the NLPDE to be
solved, recursively replacing x derivatives using (4.5.3), and equating terms order by order in x. Conditions
on uj, S, K, C, may be found, and therefore (4.5.3) or (4.5.4) may be used to solve for x. Then the expansion
(4.5.1) with u;, x, will give a solution to the NLPDE. [36]

The above Invariant Painlevé formulation can be generalized to systems by using expansions similar to

(4.5.1) for each dependent variable. For the system (4.2.2), the analysis dictates the use of the expansions

u(@,y, ) =y u;x ", (4.5.8a)
7=0

v(z,y,t) = qujxflﬂ. (4.5.8b)
7=0

4.5.1 Application to n =2 Case

We proceed for the n = 2 case of (4.3.10) by truncating the expansions (4.5.8) at the constant term.

Substituting

() U7
u(z,y,t) = — + — + us, (4.5.9a)
X X

’U(l‘,yﬂf) = U;O + vy, (459b)

into (4.3.10), we recursively replace derivatives of x using (4.5.3) and equate coefficients order by order in

X- The coefficient equations are given in (A.21) and (A.22). Solving the leading order coeflicient equations,
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(A.21a) and (A.22a), for ug, vy, we obtain

ug = —8iv/2, (4.5.10a)

vo = —2V/2. (4.5.10b)

Making use of (4.5.10), the next order coefficient equations (A.21b) and (A.22b) imply

u; =0, (4.5.11a)

vy = 0. (4.5.11D)

With use of (4.5.10) and (4.5.11), the coefficient equations (A.22c) and (A.22d) yield S = 0 and (u2), = 0.

The remaining equations from (A.21) then become

Ox™: uy=C-K?, (4.5.12a)
Ox®: K,+3C,—-5KK, =0, (4.5.12b)
O(x™?): 4K2+4KK,; — 2K,y —3Cy, =0, (4.5.12¢)
O ) 3KyKyp — Kuay =0, (4.5.12d)
OX°): (u2)yy +4ivV2K2, =0, (4.5.12¢)
with  (u2), = 0. (4.5.12f)

To solve the nonlinear system of PDEs above, we make a further assumption that K(z,y,t) = F(¢)
[36], which immediately satisfies (4.5.12d). Then using (4.5.12b) yields C, = 0, subsequently satisfying
(4.5.12c). Further, the third cross-derivative condition of (4.5.7) is reduced to Cy, — K; = 0, which gives us
C = F'(t)y + g(t), where we assume g(t) is an integrable function. Then using us = C' — K?, the remaining

equations are satisfied. Thus, from the x-derivatives (4.5.3), we have

Xo =1, (4.5.13a)
Xy = —F(t), (4.5.13b)
xe = —F'(t)y — g(t), (4.5.13c)
=x = F(t)y - G(t) (4.5.13d)
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where G(t) is an antiderivative of G(t). Combining our results, (4.5.9) becomes

L 8iv/2 , b ) N
u(z,y,t) = T F)y - GO + F'(t)yy + G'(t) — F(t)?, (4.5.14a)
v(z,y,t) = 2v2 (4.5.14D)

7x—F(t)y—G(t)'

It is verified by Mathematica that (4.5.14) solves the n = 2 system (4.3.10). We further check our solution
for w in the original NLPDE (4.0.1) with n = 2; this requires only the condition x — F(t)y — G(¢t) < 0 for
identity. Thus, the solution to (4.0.1) is

8iv/2
r— F(t)y — G(t)]

u(z,y,t) = — i s+ F'(t)y+G'(t) — F(t)?, x < F(t)y + G(t), (4.5.15)

(4.5.16)

which is verified by Mathematica. Several combinations of F, G were used in the solution; many of those
with F'(t), G'(t) # 0 gave a similar type of behavior, as illustrated in Figure ??. The solution Im(u(z,y,t))
of (4.5.15) is plotted with F(t) = t*, G(t) = €' for t = 0.5, 1.0, 1.5, 2.0.

4.5.2 Application to n =3 Case

We proceed for the n = 3 case of (4.3.18) by truncating the expansions (4.5.8) at the constant term.

Substituting
Ug U1 u
u(@,y,t) = —<+ —5+— Fus, 4.5.17a
(x,y,1) crety ( )
v(z,y,t) = % + vy, (4.5.17Db)

into (4.3.18), we recursively replace derivatives of x using (4.5.3) and equate coefficients order by order in
X- The coefficient equations are given in (A.23) and (A.24). Solving the leading order coefficient equations,
(A.23a) and (A.24a), for ug, vg, we obtain

up = 108, (4.5.18a)

vo = 3v/2. (4.5.18b)
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(b) Im(u(z,y,t)) at t = 1.0

(a) Im(u(z,y,t)) at t = 0.5

(d) Im(u(z,y,t)) at t = 2.0

(c) Im(u(z,y,t)) at t =1.5

(z,y,t)) of (4.5.15) with F(t) =2, G(t) = ¢

u

(

Figure 5: Solution Im
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Making use of (4.5.18), the next order coefficient equations (A.23b) and (A.24b) imply

u; =0, (4.5.19a)

vy = 0. (4.5.19D)

Subsequently, we solve the next order equations (A.23c) and (A.24c) obtaining

S =0, (4.5.20a)

Uy =0, (4.5.20b)

We also find (u3), = 0 from (A.24e). The remaining equations from (A.23) then become

O(x®): uz=C—-K? (4.5.21a)
Oox™*: K,+4C, 7KK, =0, (4.5.21b)
O(x %) : 3K2+3KK,y — Kyy — 20, =0, (4.5.21c)
O(x?): 5K,Kup — Kyuy =0, (4.5.21d)
Ox™"): Kux=0, (4.5.21e)
O(X°) : (ug)yy =0, (4.5.21f)
with  (u3), = 0. (4.5.21g)

To solve the nonlinear system of PDEs above, we make a further assumption that K(z,y,t) = F(t) as
before, which immediately satisfies (4.5.21d) and (4.5.21e). Then we can obtain C;, = 0 from (4.5.21b),
therefore also satisfying (4.5.21c). Further, the third cross-derivative condition of (4.5.7) is reduced to
Cy — K; =0, which gives us C = F'(t)y + ¢(t), where we assume g(¢) is an integrable function. Then using

ug = C — K2, the remaining equations are satisfied. Thus, from the y-derivatives (4.5.3), we have

Xo =1, (4.5.22a)
Xy = —F (), (4.5.22b)
xe = —F'(t)y — g(t), (4.5.22¢)
=x=z—F(t)y—G(t) (4.5.22d)
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where G(t) is an antiderivative of g(¢). Combining our results, (4.5.17) becomes

108¢
T F(yy — )
3v2
x—F(t)y—G(t)

um%ﬂ:[ -+ Pty + G'(t) — F(t)?, (4.5.23a)

v(z,y,t) = (4.5.23D)

It is verified by Mathematica that (4.5.23) solves (4.3.18). We further check our solution for « in the original
NLPDE (4.0.1) with n = 3; this requires only the condition z — F'(¢t)y — G(t) < 0 for identity. Thus, the

solution to (4.0.1) is

108i
z— F(t)y - G)]

M%%ﬂ=[ =+ F'(tyy+G'(t) — F(t)?, r < F(t)y + G(t), (4.5.24)

which is verified by Mathematica. We note that plots of the solution for various F, G mimic those obtained
for the n = 2 case over the restricted domain = < F'(t)y + G(t) included in Figure 5, and so will not be

repeated here.
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CHAPTER 5: PT-SYMMETRIC KPII EQUATION

We now consider one of the the complex PT-symmetric Kadomtsev-Petviashvili (KPII) equations
93
0= gt + (uwtiy)y — zﬁ(zuw)E + Uy, (5.0.1)
= Uyt + (uty)y — (e — 1)(e — 2) (iuy)2ul, + 3iele — 1) (i) *Upptizy + €(itg) gy + uyy,

and will determine the values of € for which (5.0.1) is integrable, in addition to special solutions.

5.1  Leading Order Analysis

We start with the leading order analysis; we make the ansatz

U(l’,y,t) :u0¢_n7 (511)

where we require n € N; n and ug(x,y,t) are to be determined, and ¢(z,y,t) = 0 is the location of the

singular manifold. Using this in (5.0.1), we have

O(¢™" %) + [=nugd " 6u + 0(6")]" + ugd™" [=n(—n — Dugd ™" 267 + 06" )]
— (e —1)(e — 2) [—inugd " ', + O(¢™™)] " [~n(—n — Vues " 2¢% + O(¢~"2)]°
+ 3ie(e — 1) [~inuod™" g, + O(¢™™)] 7 [~n(—n — Dugd™""2¢% + O(¢7" )]
[=n(=n = 1)(=n = 2uop ™" 3¢5 + O(¢7" )]

+ € [—inugd " dy + (’)((b_")]g*l [—n(—n —1)(=n — 2)(—n — 3)ued™ " "*¢3] = 0. (5.1.2)
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Balancing the powers of ¢ in the most singular terms, we require

—2n—2=(—n—-1)(e—3)+3(—n —2),
=(-n-1)(e=2)+(—n—-2)+(—n—-3),

=(n=D(e-1)+(-n—4),

or equivalently, —2n — 2 = —ne — € — 3. Thus, the values of € we can consider for integrability are
2n—1
-2 neN,
n+1

Now balancing the coefficients using this value for €, we also require

n*udd} +n(n + 1)uggl — e(e — 1)(e — 2)n° (n + 1)%ug@l (—inuod.) ™
— 3ie(e — D)n*(n +1)*(n + 2)ug el (—inuod,) "
+en(n+ 1)(n +2)(n + 3)ugg? (—inugd,) ' =0,
—n(2n + Dude? +3(2n — 1)(n — 2)n’ude’ (—inuge,) 77 >
—3i(2n — 1)(n — 2)n%(n + 2)ude> (—inugey) *71 2

-1

+(2n — Dn(n +2)(n + 3)uods (—inuo(bl.)27?74:11 =0,

=n(2n + Dude? +i2n(2n + 1)(2n — 1) (—inugds) "1 = 0,

_3 2n—1
=ug™ = =2i(2n — 1)@, (—ing,) " .
We will use this expression for ug to simplify subsequent calculations.

5.2 Reformulation into System

(5.1.3)

(5.1.4)

Given the rational form of the e = (2n—1)/(n+1), we reformulate our original equation into an equivalent

system before performing a resonance analysis. We make the substitution

v = (iu )<"il> " =y
- x - T
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which converts the equation (5.0.1) to the fourth-order system

(n 4 D)o"v; + (™) + (V") +iuy, =0, (5.2.2a)

x

V", = 0. (5.2.2b)

As in previous cases with the same substitution, a leading order analysis yields v = vg¢~'. Further,

leading coefficients gives us

’U6L+1 = —inugd, < ug = iv(’fﬂ. (5.2.3)
Nz
Comparing this to the expression found for ug in (5.1.4), we then obtain
8 vyt G 2n_1
G =[] = 2t 0. (inn) ¥
= vg = 2in*(2n — 1)¢3, (5.2.4)

which gives us an expression for vy for any n; we obtain this same expression for vg when equating leading
order coefficients in (5.2.2a) and utilizing (5.2.3).

Now expanding solutions u,v of (5.2.2) about the singular manifold, we seek solutions of the form

ulw, o) = 3 w6, (5.2.50)
=0

o,y t) = 3 vio 1, (5.2.5b)
j=0

where ug, vy are given in (5.2.3) and (5.2.4). For these expansions to be valid, we require a full complement
of arbitrary coefficient functions. Our system (5.2.2) is fourth order, so we need three of u; or vj, j € N, to

be arbitrary in addition to the singular manifold location.

5.3 Resonance Analysis

We perform a resonance analysis on the reformulated system to determine the values of r such that w,. or

v in (5.2.5) is arbitrary; substituting the expressions

u(z, y,t) = uod™ " +pp~ "7, (5.3.1a)

v(z,y,t) =ved "+ qo~ ', (5.3.1b)
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into (5.2.2), we equate the coefficients of the most singular r-powered terms from each equation, O(¢~2"~2+")
and O(¢~"*"~1) terms respectively. These correspond to terms linear in p and ¢, and yields the system of

equations

(=2n 47— )og dap
+(=2n+7—1) [(n+ Duovi ¢ + (2n — 1)(=2n + 7+ 1)(2n + r)vg" ?¢3] ¢ = 0, (5.3.2a)

—i(—n+7)p.p + (n+ 1)vgq = 0. (5.3.2b)

Setting the determinant of the above system to zero to impose the arbitrariness of p, ¢, and making use of

(5.2.3) and (5.2.4), we find

(=2n+r —1)(n + 1)v3"+*
+i(—n+r)(—2n+7r —1) [(n + Dugvgds + (2n — 1)(—2n+r + 1)(—2n + r)og"2¢2] =0,

= (—2n+7r—1) {(n + Doyt +i(-n+7) {(n +1) <wg+1> b

Ny
+2n—1)(=2n+7+1)(=2n+7) U‘z; qsi” =0,
= (—2n47—1) {n+1+(n+r) {_(n; D, (_2n+r)(2;3n+r+1)” =0,

= (-2n+r—-1)2n—r)Bn—r)(1+7r)=0. (5.3.3)

Thus, the values of r that make p,q arbitrary are r = —1,2n,2n + 1,3n. With the exception of r = —1,
these are positive integer values for all n, and thus correspond to locations in the Laurent expansion. Note
that for n = 1, the resonance values 2n + 1, 3n are redundant, and we are reduced to only two values instead
of the required three positive resonances. Therefore, the KPII system does not pass the Painlevé test for the

n = 1 case; we verify the resonances forn = 2,3 in the next section.

5.3.1 Verification of Resonances for n = 2

Letting n = 2 in (5.2.2), we will be verifying the resonances for the system

30?0y + (uv?®)y + (v¥)34 + duy, =0, (5.3.4a)

v® —iu, = 0. (5.3.4b)
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which has the positive resonances r = 4,5,6. To verify these, we use the truncated expansions

6
U(xayvt) = Zuj¢72+ja (5353,)
j=0
6 .
v(z,y,t) =Y viem ', (5.3.5b)
j=0

in (5.3.4) and want to show either uy or vy, us or vs, and ug or vg is arbitrary. Making this substitution,

the O(¢~%) term from (5.3.4a) and the O(¢~3) term from (5.3.4b), each set equal to zero, gives

ug = —12¢2, (5.3.6a)

vo = —2i33¢,, (5.3.6b)

as expected from (5.2.3) and (5.2.4) with n = 2. Using these expressions for ug, vg, we solve the equations
obtained from setting the O(¢~5) and O(¢~?) terms, from (5.3.4a) and (5.3.4b) respectively, to zero, which

yields

uy = 12¢44, (5.3.7a)
01/3
"= Z?’gbﬂ. (5.3.7b)

Using these, we balance the next ordered terms O(¢~%) and O(¢~1), and obtain

¢y b 302,  Ads

up= Dy O 30 Ads 5.3.8a
TR b 2 b (538
3342, P32

=g~ mr (5.3.8)

We subsequently set the O(¢~3) and O(¢°) to zero, which gives

¢yy (bxt ¢32;¢m? ¢t¢xz 3¢§¢ 4¢zx¢31 ¢4;c
BT te T Ta @ et e @ (5:3.90)
Ve = — Z¢yy + Z¢y¢zy _ Z¢Z¢ww + i31/3¢i$ _ i31/3¢ww¢3w + i¢41 (5 3 gb)
TTU12.38¢8 T 63281 1232347 T 248 20} 4-32/3¢3 ~

Now, the next order terms, O(¢~2) and O(¢!) respectively, give a linearly dependent system of equations

in ug and vg. Choosing v4 as our arbitrary function, we solve for uy in terms of vy; given in (A.25a). Using
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this expression for u4, the next order terms, O(¢~!) and O(¢?), also give us a linearly dependent system of
equations in us and vs. Once again, we choose vs as our arbitrary function, and we obtain the expression
for us given in (A.25c). Finally, using the expression for us, the O(¢%) and O(¢?) terms yield a linearly
dependent system in ug, vg, and upon solving for ug with vg arbitrary, we obtain (A.25e).

Thus, our resonances are verified; we have three arbitrary coeflicient functions vy, vs5, and vg, correspond-
ing to the resonances r = 4,5,6. The Laurent expansion (5.2.5) is valid, and (5.2.2) passes the Painlevé test

for n = 2.

5.3.2 Verification of Resonances for n = 3

Letting n = 3 in (5.2.2), we will be verifying the resonances for the system

4oy + (uv?) + (V%30 + duy, =0, (5.3.10a)

vt —du, = 0. (5.3.10b)

which has the positive resonances r = 6,7,9. To verify these, we use the truncated expansions

9
u(@,y,t) =Y ¢, (5.3.11a)
j=0
9 .
v(@,y,t) =Y v, (5.3.11b)
7=0

in (5.3.10) and want to show either ug or vg, uy or vz, and ug or vg is arbitrary. Making this substitution,

the O(¢~®) term from (5.3.10a) and the O(¢~*) term from (5.3.10b), each set equal to zero, gives

uy = 307 - 3%/3101/3¢3 (5.3.12a)

vy = —i3%/310Y3¢,, (5.3.12b)

as expected from (5.2.3) and (5.2.4) with n = 3. Using these expressions for ug, vg, we solve the equations

obtained from setting the O(¢~7) and O(¢~?) terms, from (5.3.10a) and (5.3.10b) respectively, to zero,
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which yields

wp = —45i - 323103 ¢y, (5.3.13a)
i32/351/3¢xm

Continuing in this manner, we solve each subsequent ordered set of equations, O(¢~%) — O(¢~3) and
O(¢™2) — O(¢"), respectively, for u;,v;, j = 2,3,4,5. These are given in (A.26). Now, the next order terms,
O(¢~2) and O(¢?) respectively, give a linearly dependent system of equations in ug and vs. Choosing vg as
our arbitrary function, we solve for ug in terms of vg; given in (A.261). Using this expression for ug, the next
order terms, O(¢~1) and O(¢?), also give us a linearly dependent system of equations in u; and v;. Once
again, we choose v7 as our arbitrary function, and we obtain the expression for uy given in (A.26k). Now,
the next ordered terms O(¢?) and O(¢*) give the prescribed ug, vs given in (A.26). Finally, the O(¢!) and

O(¢°) terms yield a system in ug, vg of the form

flug, v9, ) + g1(¢) = 0, (5.3.14a)

f(ug,v9, ) + g2(¢) =0, (5.3.14b)

where f, g1, g2 are functions of ¢ and its various mixed derivatives. Therefore, for the arbitrariness of ug, vy,

we require g1 — g2 = 0, which gives us the condition

Gay 85 — A3y @) buy + 126y, 3502, — 240y 0305, — 64y @) bryy + 240y s Gay bayy
— 4y B3 busy + 30y Oy bun + Ady by By bua — 360y byy P by bur + 2050265, bua
— 180265 Puyybua + 180, dyy G20, — 6065 00dayd?, + 150,02, + 1200y, 05 buny
— 360,03 Pay Dy + 240507 aabuay + 665Gy uayy — 605 byy s dsa + 166507 drydse

Thus, ¢ is not arbitrary, making the implication of r = —1 corresponding to the arbitrariness of ¢ invalid,

so the Laurent expansion (5.2.5) is not valid, and the n = 3 case of (5.2.2) fails the Painlevé Test.
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5.4  Singular Manifold Method for n =2 Case

We will be analyzing and finding solutions to the system (5.3.4). We truncate the Laurent expansion of

the solution at the constant term O(¢?); that is, we assume the solutions take the form of series (5.2.5) ,

truncated at j =n =2 in (5.2.5a) and j = 1 in (5.2.5b), or

UO+U1+
U= —-= - Uz,
o

Vo
’U:fﬁ*’l)l.

¢

As previously found during verification of resonances, we have

ug = —12¢2,
vy = —2i3Y3¢,,

Substituting this into (5.3.4), the order O(¢°) terms from both subequations yield

3(01)2(1)1),5 +i(u2)yy + (1)1)3(1@)m + 3u2(v1)2(fu1)m + 122‘(1}1)2(1)1)3 + 4i(v1)3(vl)m =0,

(Ul)s — ’L(UQ)JU = O,

(5.4.1a)

(5.4.1b)

(5.4.2a)
(5.4.2b)

(5.4.2¢)

(5.4.3a)

(5.4.3b)

which is our original equation (5.3.4) in us,v;. Thus, (5.4.1) gives an auto-Bécklund Transformation con-

necting two solutions (ug,v1) and (u,v) of (5.3.4), provided ¢ satisfies the remaining coefficient equations.

These Painlevé-Béacklund equations are given in (A.27).

Attempts were made to derive a new solution from the vacuum solution us = v; = 0 using the auto-BT

(4.4.1), however only trivial results were found. We apply an invariant Painlevé analysis in the next section.
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5.5 Invariant Painlevé Analysis for n = 2 Case

We proceed with the 241 invariant Painlevé analysis discussed in Section 4.5 for the system (5.3.4) by

truncating the expansions (4.5.8) at the constant term. Substituting

Ug (5%
u(z,y,t) = — + — + ug, 5.5.1a
2% ( )

o(@,y, 1) = v;o + o1, (5.5.1b)

into (5.3.4), we recursively replace derivatives of x using (4.5.3) and equate coefficients order by order in
X- The coefficient equations are given in (A.28) and (A.29). Solving the leading order coefficient equations,

(A.28a) and (A.29a), for ug, vg, we obtain

ug = —12, (5.5.2a)

vy = —2i3Y/3, (5.5.2b)
Making use of (5.5.2), the next order coefficient equations (A.21b) and (A.22b) imply

u; =0, (5.5.3a)

vy = 0. (5.5.3b)

With use of (5.5.2) and (5.5.3), the coefficients of O(x~!) and O(x") from the second system equation,(A.22c)
and (A.22d), yield S = 0 and (u3), = 0. The remaining coefficients from the first system equation, (A.21),

then become

Ox™: uy=C—-K?, (5.5.4a)
O(x®): K,+3C,—-5KK, =0, (5.5.4b)
O(x™?): 4K2+4KK,p — 2K,y — 3Cy, =0, (5.5.4c)
Ox™): 3K,Kuyw — Kypy =0, (5.5.4d)
O(X%) 1 (u2)yy — 6K2, =0, (5.5.4¢)
with  (ug), = 0. (5.5.4f)
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With the exception of the K2, term, these conditions are the same as for the 2+1 Burgers Equation, (4.5.12).

The further assumption that K(z,y,t) = F(t) as before, yields an equivalent y-solution

Yo = 1, (5.5.5a)
xy = —F(1), (5.5.5b)
xt = —F'(t)y — g(t), (5.5.5¢)
=x=x—F(t)y— G(t) (5.5.5d)

where G(t) is an antiderivative of G(t). Combining our results, (5.5.1) becomes

12
z—F(t)y — G(t)]
2i31/3
x—F(t)y — G(t)

u(z,y,t) = — [ s+ F'(t)y + G'(t) — F(t)?, (5.5.6a)

v(z,y,t) = — (5.5.6b)

It is verified by Mathematica that (5.5.6) solves the n = 2 system (5.3.4). We further check our solution for

w in the original NLPDE (5.0.1) with n = 2, which is also identically satisfied with no further conditions.
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK

Generalizing the work of Bender and co-workers, as well as others, we utilized the Painlevé Test, Sin-
gular Manifold Method, Invariant Painlevé Analysis, and the Homogeneous Balance Method to analyze
several hierarchies of PT-symmetric NLPDEs. Due to the nature of the P7T-symmetric equations and their
possible integrable cases, all except the (14+1) Burgers’ equation were reformulated into a system with a
transformation of the form v™ = u, prior to applying other analyses.

In Chapter 2, we discussed the (1+1) PT-symmetric KdV equation (2.1.2). A leading order analysis
gave the sub-hierarchy of possibly integrable members, prescribed by e = (2n —1)/(n + 1), with n € N
corresponding to the order of the singular manifold. After transforming the original NLPDE into a system
in u,v, we found the positive resonances to be r = 2n,2n + 1,3n, thus indicating a full set of arbitrary
coefficient functions for n > 2. Though the n = 1 case did not pass the Painlevé test, the auto-Béacklund
Transformations for the n = 1,3,4 cases are found, though these yielded only ¢t—independent solutions
from the vacuum solution. Then utilizing Invariant Painlevé analysis, we derived algebraic (solitary wave)
solutions the form u = ugx — at — b]™™ 4+ a for n = 1,3,4. Finally, we applied the Homogeneous Balance
method to the n = 1,3 cases, and derived a near-Lax Pair for the n = 3 case.

We briefly analyzed the (1+1) PT-symmetric Burgers’ equation (3.0.1) in Chapter 3. Leading order
analysis prescribed the values m = 1/n as possible integrable cases. After reformulating the NLPDE into a
system, the positive resonance was found to be r = n + 1. However, the n = 2 case required a compatibility
condition, and so failed the Painlevé Test. An auto-BT was found and used to derive a special solution from
the vacuum solution.

Extending our analysis to (2+1) dimensions, we analyzed the (241) PT-symmetric Burgers’ equation
(4.0.1). A leading order analysis yielded the possible integrable members ¢ = 2n/(n + 1), and the equation
was subsequently transformed into an equivalent system. Resonance analysis gave the positive resonances
r = 2n,2n + 1, however, the n = 1 case required a compatibility condition, and thus failed the Painlevé

Test. Auto-BTs were derived for the n = 2,3 cases, but did not yield any new solutions from the vacuum
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solution. Algebraic solutions of the form u = uglx — F(t)y — G(t)]™" + F'(t)y + G'(t) — F(t)? were found
through Invariant Painlevé analysis.

Finally, in Chapter 5, we studied the P7T-symmetric KPII equation (5.0.1). Similar to the (1+1) KdV
equation, a leading order analysis gave € = (2n — 1)/(n + 1) as possible integrable members. After reformu-
lation into a system, we found the positive resonances r = 2n,2n + 1, 3n, thus requiring n > 2 for distinct
resonances. While the n = 2 case passed the Painlevé Test, the n = 3 case required a compatibility condition,
and thus failed the test. For the n = 2 case, an auto-BT was derived, however did not yield any new solutions.
Invariant Painlevé Analysis yielded a similar algebraic solution u = ug[z—ky—F(t)] "+ F'(t)y+G'(t)— F(t)?
to the KPII system.

As far as future work, there is still the Homogeneous Balance Method to extend and apply to the 2+1 sys-
tems and subsequently, linearization of the Lax-type equations obtained; other near-Lax Pairs could possibly
be found. In addition, Yan [29] presented many other PT-Symmetric systems, including transformations of
the KP equation other than the one considered here.

A natural area of extension would be to symmetry analysis [37, 38], which usually yields additional results
and insights. Also, derivations of Lagrangian and Hamiltonian formulations for the traveling wave equations
[39, 40] is likely to be worthwhile to investigate other solutions and features of the PT-symmetric NLPDEs

considered here.
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APPENDIX: COEFFICIENT FUNCTIONS AND EQUATION
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Using (2.3.6) in (2.4.10) and equating coefficients of ¢, the u;,v; are found to be

45i32/310Y3 ¢y b
Uy = — 2\4/3 )
i32/351/3¢x9§
U1 = ma
15i32/3101/3 ¢3,,
Uz = T Al
i3*/951 27, i5'/ ¢34
V2T 9T 2/mN1/348 T 22/331/3)\1/3¢2
by 15i32/351/3¢3  15i32/351 /3¢, s, 15i32/351/3¢,,
U TN, 2 22/307348 R2/BN/3g2 2. 22/3)if3g,
3235133 i3%35 3¢, 30 i5' 34,
V3 = —

T 2.22/3)\1/3¢5 2.22/3)\1/3p4 4.922/331/3)1/3¢3°
_ Gm G A5IB50GL, | 45i3E51565, b,
YN T g 4-22/3)\1/345 + 2. 22/3)\1/341
5i32/351/3¢2  15i3%/35Y3¢, up 3032351/ 3 s,

22/3)\4/3¢2 - 2. 22/3)\4/3¢?;: 2. 22/3)\4/3(;5% ’
B i i L P i512¢3,
4 8. 22/3)\1/3¢97c 2 ,22/331/3)\1/3¢g 3. 22/331/3)\1/3¢£;
7;51/3¢a:a:¢4a: Z¢5x

+ 2. 22/331/3)\1/3¢§£) - 4. 31/3102/3)\1/3(1);13’
_ 3utbur  30i92,  135i3%/3513¢00  uur | Proze

Us = - - +
222 2002 8. 22/3)\4/3¢7 2093 2M¢3
7513251 008 dae  15i37/%51 Su, 08, 45i3*/051/367, s
2.22/3)\4/3¢6 22/3\4/3 45 4223345
15i32/351/3¢3m¢4x 9i32/351/3¢zm¢5z i32/351/3¢6m
4. 22/3)\4/3(253 4 . 22/3)\4/3(;% - 4. 22/3)\4/3(;5?;’
b 7i3%/351/3¢5 5153 ¢uad3, 15" Puratse 5i32/351/3¢2 ¢y
5= 8. 22/3>\1/3¢2 4,22/331/3)\1/3(1); 8. 22/331/3)\1/3¢g 16'22/3)\1/3¢Z
57;51/3¢3x¢4m . 35251/3¢§:m¢3x + 7’¢6x

- 2 . 22/331/3)\1/3¢g 8. 22/331/3)\1/3(7252 24 . 31/3102/3/\1/3(;52 )
fo(ue, ve, @) = [48i31/3 X439 — [5760i31/3 X131 wg
— 8i3' N3 (156400302, — 15040205, — 460300 + d3ar b
100t b0 h3203 — 6Puabrat s — Grd1:05)
—10"/3 [13230¢%, — 27405¢, ¢300%, — 67005 — 7600385,
+639007 0%, G + 127800247, 65, — 342003 Prx P32 Paa
—1026¢50 0502, + 21663005005 + 108¢20d6: ¢y + 1356567, ] |
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(A.1la)

(A.1b)

(A.1c)

(A.1d)
(A.le)

(A.1f)

(A.1h)

(A.1i)

(A.1k)



ug arbitrary (A.11)

A Ue — ¢"ct¢§:x + ¢t ig) 49132/351/5(252@ + ¢T’E¢I%t + ¢.’Et¢3fc _ ¢t¢rz¢31
12002 ° 48¢3 | 48¢9 | 32.22/3\1/3p11 T 12047 ' 18047 7268

| 203855V 5¢5 6, TUS5'PGR, 48, 195VPS, daw | didw
64 - 22/3/\1/3(;53160 16 - 22/331/3)\1/3¢§)J 72 . 22/331/3)\1/3¢§C 720(25?; 720¢37£
71i51/3¢ix¢4x _ 19i51/3¢xm¢3x¢4m i32/351/3¢ix _ 19232/3¢ix¢5x
32. 22/331/3)\1/3¢2 16 - 22/331/3)\1/3¢§ 64 - 22/3)\1/3(;5370 32 . 102/3)\1/3¢§
i32/3¢3w¢5x i32/3¢xm¢6x _ i(b?ac
8- 102/3\1/3¢7 © 16 102/3\1/3¢7 96 - 31/3102/3\1/3¢6
falur,vr,8) = [576 - 222X |y — [51840 - 223N12613] wr + 72 222 \368 (26, g + 9]

+108-225N2G2 6, [~ 15000003, + 150103, + 607 duabuat + 405 Pat b3
106102 Purx 3 — O3 b0t + P10 Pac]
+ 3033513 [380704], — 87255¢,¢5, dsx + 501006%03,3, — 572045 bar s,
+1980067 ¢, G — 142206502, 0 Par + 720565, Pax
67505 Gra 0, — 31146505, 050 + 10800300 has dse
—3665 GazPse + 3240562, G6x — 2465 P30 P60 — 1865 barbrz] (A.1n)
uy arbitrary (A.1o)

90527+ 36007 0 T s0ga e 32¢>10 "ol T 61 22PN T 8069

¢wt¢ww¢3w ¢t¢mx¢3$ 19397’51/3¢wx¢3w 835251/3¢§;z¢§m 143251/3¢w$¢gw

+ 120¢2 N 48(259160 - 128 . 22/331/3)‘1/3¢9152 + 96 - 22/331/3/\1/3¢3101 - 144 - 22/331/3)\1/3(;%0

¢wz¢3wt ¢t¢ww¢4w 55251/3¢ix¢4m 79251/3¢ix¢3x¢41 l51/3¢£2%a:¢4x
- 48048 + 48062 16 - 22/331/3)\1/3p11 T 39. 22/331/3\1/3 10 + 8- 22/331/3)\1/3¢9

5132/351/3¢1x¢iw 173Z¢§z¢5w i32/351/3¢$w¢3x¢5x i¢4x¢51
128 - 22/3)\1/3¢9 64 - 31/3102/3\1/310 16-22/3)\1/3¢9  32.31/3102/3)\1/3¢8

30320 G0ubee  ifseber  ibeabre (A1p)
32. 102/3)\1/3¢2 48 - 31/3102/3>\1/3¢§ 64 - 31/3102/3)\1/3¢§ AP

Ve —

(A.1m)

U7 =
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ug =

vg =

B e 7 I R R 7 YR v

34335i3%/°51 /368, 2193 duar 10500192, ¢30 | 1479403, 030

64 - 22/3)\4/3p13 2209 4N2 4110
60375i32/351 /3¢5 b3y 15¢ruBratBse  190md3,  320i0u.03,  32125i32/351/3¢1 42

32 22/3)\4/3 512 2008 * 6AGS  3X\@2 16 22/3)\4/3pl1

9851101 /3¢2 ¢3,. 1145i5'/3¢3 2302, 30t 11030030t | 40utPrePun

31/3)\4/3p10 12 - 22/331/3)\4/3¢9 8Ag8 12\¢7 A8
| 55u@2,Pue  2235i3%/°5Y/300 dus  BhuatPre | BPisedua | T255i3%/°51/33 dsudun

8AGY 4.22/3)\1/3411 ArT 3AGE 8- 22/3)\4/310
104513235130, 83, bas 1425032351362 82 12515005083, duabaat

4. 22/3/\4/3(;52 16 - 22/3/\4/3(;52 2. 22/331/3/\4/3(;52 2)\¢J75

Bhuttse | AdiBuudse | I8TiIBYEBV3¢L b5, 1125i3%/351/3¢2 $3,¢5,
TTINGT T BAGS 8. 22aBg0 8- 22/304/3¢9

1975362 ¢s, 1183231013 ¢, G0 b5 17i32/3¢2, Gset Drbox

+4~22/331/3/\4/3¢§ /3¢S T A-1028X36T T 20008 20A07
16782351 36% ider | 1735 Pundaite  1Ti5P0uide. | 43i3%/35' 392 or,

8. 22/3)\4/3¢2 4 . 22/331/3)\4/3¢§ 4 . 22/331/3)\4/3¢; 16 - 22/3/\4/3¢§

19i51/3¢3x¢7x i32/351/3¢xx¢8x i51/3¢9x Al
T 8. 22/331/3)\A/3gT 4. 922/3\4/3¢7 + 24 22/331/3)\4/3¢6° (A-1lq)
5043 U7 ~ 9041 %7 Taag (Uo)e ~ Gogm (Uo)e + {120(;5?5 90g3 | 10T Ta8g12

136105, _ 539i32751%65,  6165,6mm _ 410udi,dse | 150165,050
48¢L3 128 22/3)\1/3p15 480¢11 120411 32¢12

859i51/3¢S 3, GrabratPse  89buidd,  6loddundd, 62955361 H2,

16 - 22/331/3)\1/314 10910 216010 432611 96 - 22/331/3)\1/3p13
565151/3(2592“6926%96 515151/3@%;,; 53¢ix¢3xt 13¢3x¢3$t + ¢xt¢zx¢4t

24 22/331/3)\1/3¢12  432.22/331/3)\1/3411 1440910 108092 18910
_ 133¢t¢§x¢4x 571151/3¢ix¢4x ¢9c:ct¢4ac 97¢t¢3x¢4x 6215251/3¢ix¢3$¢4$

1440011 32.22/331/3)\1/3¢13 9642 T 1320010 192 - 22/331/3)\1/3p12

955i5' 3093, 0an  T3i3%/353¢2 4, 949i5' 33,3, Grataxt  Duitse

N 96 - 22/331/3)\1/3¢;1 64 - 22/3)\1/3¢9101 1152 - 22/331/3)\1/3¢;0 144(;53 240¢g

| ibubse 55156565, L0Tid%, duadss 185i5/3¢3, 5o
90(;5%0 128 - 22/331/3)‘1/3¢9102 4 - 31/3102/3)\1/3¢;1 288 . 22/331/3)\1/3¢;O

851530 burtse 167i¢3, L e $iPer _ 25lidg, 06
96 - 22/331/3X1/3410 960 - 31/3102/3X1/3¢9 ~ 144045 144092 64 - 31/3102/3X1/3411

4130 G0 P30 P61 167ipas P 103i¢2, ¢7e

144 - 31/3102/3/\1/3(#%0 576 - 31/3102/3)\1/3¢99C 192 . 31/3102/3)\1/3¢;0

_ 23i¢3x¢7x _ i51/3¢xm¢8x i51/3¢9x
144 - 31/3102/3)\1/3¢9 96 - 22/331/3)\1/3¢9 ' 1728 - 22/331/3)\1/3¢8

(A.1r)
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Folug, vo, ) = 5760~22/331/3A4/3¢;5} g — [345600 : 22/331/3/\1/%;7} Yo

+ 120 - 22/3313\Y399 [ 862 (ur)py — 5662 dua (ur)s — (169202, + 3205 h3z) ur
—465 (u6)3z — 3462 bra (U6)ze — (2002 b3 + 426202,) (ug)w
+ (6363, — 72000032 — d2dus) Ug]
+4- 22331 BNB Q2 [ 255150, 62005, + 255156165, + 117900265, Gaxt + 4506002 bat 65, 30
—56850¢1 0 Oy, G50 — 160200507, Pawt b3 — 1638003 Gt Pra by,
+324000: 92 63, 63, + 256005 Prar 03, — 2560016503, — 32850365, Psar
+32800 Gua 30 P30t — 865503 bt 0y Paa + 119400, 0307, baa
+276003 Puz Gawt Paz + 294003 Gt P32 Gaz — 89806103 s 3z P
— 41503 b0t 01z + 41501507, + 6300507, Gart — 34007 P30 bast
11160} Gat oo dsa — 1746616502, ¢50 — 25205 PaatP5e
+592¢ 3 b0 P50 — 10265 Grabsar — 8405 Gurder + 186016 barPou
+12¢8 b6t — 126400 7]
+i5/3 [13565475¢, — 5127007550, ¢s. + 65551500025, 63, — 3167700042 63, 65,
+41880000; ¢ra 93, + 141561000565, dar — 301938756365, P30 Pac
+1584450003 42, 03, hax — 11534000065, das + 32564250307, 05,
—21463500, b P30 04,, + 618756065, — 29592000567, s + 505908003 67, P30 bsa
— 165444007 @12 93, 050 — 98991003 6%, Paz b5 + 2833200 h30 P12 Pse
+63324¢0 hu0 02, + 4919400361, dox — 63420000 62, 30 P6e + 8976065 03, beq
+10536008 do bz P60 — 90480 P50 Poe — 665106265, d70 + 5712008 Guz b3 70

—645007 G145 P75 + T38085 42, ds — 300007 h3, b5 — 66007 drudor + 4005 d104] |
(A.1s)
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ug arbitrary (A.1t)
A A Ao A2, A A 1A

= 5062~ 36001 7)o T 3G0gn (UT)e [180¢2 90¢g} U 73005 ()3 T Tip0g0
AP, | APas AP, Auetze  Aus 1899105, 1896495,

; [480@70 144¢g} () [32o¢§g 4097 2880¢2] U6 T Th40018 640615

6699i3%/351/3¢9 1312, buwt  T510ui@l,b30  3TIDdE P30 A3,

(u6)’1"1'

Vg

512 - 22/3)\1/317 960¢13 1440613 576011 135012

25319i32/3513¢7 d3r 8902, 0ra103:  NPutdratdd, | 30102,03, | Abzntd,
C512-22BN1/3¢16 480412 480912 8pL3 * 135¢11

72835i5'/2 65, 63, 52795i5' /33,93, 1745i5' 3¢, 3, 73055 P3at

384 . 22/331/3)\1/3@1':5 a 576 - 22/331/3)\1/3¢i4 144 - 22/331/3)\1/3@163 1920(%2

1080611 5760012 1440413 128 - 22/331/3)\1/3¢15 720911
49¢11 P30010 44901 00p P30 ey 13419515308 s, da, 1760551302, 3, dus
1440911 4320912 1536-22/33L/3)\1/3p14 T 384.22/331/3)1/3p13
 BT67i5'%¢3 due 83P3uiPua N 836143, N 14473i5Y/3¢3 2, +7¢im¢4zt
1728 - 22/331/3)\1/3¢12 17280910 = 1728011 = 1536 - 22/331/3\1/3p13 960011
14309652 ¢ ¢30 63, 275i5' ¢, 17030040 | 31dutPuadse
2304 22/331/3)1/3¢12 T 1536 - 22/331/3)\1/3p11 4320410 240011

13735363, b5 Thuai®se  3TD1 P3P0 14053i¢3 ¢34 P50 17h 0z b5t

16 22/331/3)\1/3914 2400610 5400911 T 192-31/3102/3)X1/3413 14400410

576 - 31/3102/301/3¢12 768 - 31/3102/3)\1/3¢12 ~ 192 . 31/3102/3)\1/3¢L1 7200010
1759i¢20 83, 3161 0aaPos 91Lic, Pos 105735167, d30 P
1920 - 31/3102/3)\1/3 11 14400¢L1 128 - 31/3102/3)\1/3¢13 576 . 22/331/3)1/312
187i¢3, P6x 439i¢srPaades 37Tid50 Poa Yot
144 - 31/3102/3)\1/3¢L1 ~ 288 - 31/3102/3\1/3¢11 2880 - 31/3102/3)\1/3¢10 ~ 720002
739i3, d7a 119igrapzadre  43i5Y3Guudprs
o 768 - 31/3102/3/\1/3¢)3102 144 - 31/3102/3/\1/3¢3151 2304 - 22/331/3/\1/3@100
R A41i¢? , dso _ 1i¢zzPox
576 - 22/331L/3)\1/3¢10 7200910 © 384 - 31/3102/3\1/3¢p11 1152 - 31/3102/3)\1/310
; 2
19100 979195 P5a (A.1u)

T 728 3UP102N569 4300012

Using (2.4.4) in (2.4.1a) under the Singular Manifold Method, the coefficients in powers of ¢ are

O(¢73) : @2 2230, + 22 U1, + 6010, — 402 3¢y, | =0, (A.2a)
O(¢72) : iv1Gidn + iugv1d2 + 31230202 — 22362 (vy),
936,600 — 2 Bubre — P 010000s + S0, + 2dnse =0, (A2D)
O(p™) 1 i, + 2i(v1)edy + 26w (V1) 2P
+ 202301 (V1) o b + 2001 Gt + 20101 Bo + iGzgze = 0, (A.2¢)
O(¢%) = 2v1(v1)¢ + 2wy (v1)s — iv] + (v1)32 = 0. (A.2d)
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And from (2.4.1Db),

O(d)il) : 2ivl¢m + 21/3¢mm = 0, (A3a)
O@): 2 —i(ur)s = 0. (A.3b)

Using (2.4.13) in (2.4.10a), we obtain the ¢-coeflicient equations

OB~ 3Y3¢,u; —120- 33930, + 3151032 ¢, = 0, (A.4a)
O(¢~%) 1 —12ip2uyvy —4- 32310343 uy + 2280i¢2 v? + 180 - 327310292 (v1),
+ 4323103y prpur + 1140 - 323101343 ¢, 01 + 1125131310232 92
+240i3'/210*3¢3 p3,, = 0, (A.4b)
O(¢%) s —2-3"310*¢2urvf + 60igiusvy + 20 - 3%/10'/ 3,45 + 20 - 3%/210" /3 g

+820 - 31/310%/3 ¢ 03 — 2002 Uy (v1)2 — 1800i¢2v1 (v1)z — 60idyPaptir vy

—20-3*210"%¢2 by uy — 540065 bupvf + 2700 - 32210265 b (01

+ 4800 - 32310392 ¢2 vy 4 900i3'/310%/ 2,43 + 300 - 327310 /3¢ (v1) 2

+ 1300 - 322101343 pg,01 + 900i3Y/210%/3 2 b p b3 + 75i3Y/310%/3¢2 s = 0, (A.4c)
O(p~4) : 2i32/310Y3¢2ur0? + 18 - 313102393 ugv? — 540idy > v1 — 540id uswy

— 3135i32/310Y3 ¢t vt — 18- 31310232 uy 01 (v1) 4 + 180i¢3ug(v1)

— 270 - 3173103202 (1), — 8100i% (v1)2 + 180 - 32/3101/3¢2 g

— 18- 3210%/3 ¢ pypur v? + 540i¢% Papivy + 180 - 323101303 ppug

— 630 - 3Y310% 30362 e — 56700i¢3 01 (V1) s + 900 - 32310133 by 01

+ 8100 - 32/310Y3¢2¢2_(v1)s + 5400 - 322103 ¢, 03 vy — 8100i¢ vy (v1) 2z

+ 2700 - 3%/310Y3¢3 ¢ (01 ) 2w — 135000053 h3,0? + 2700 - 323107343 3, (v1)

+ 8100 - 32210302 ¢ pzpvr + 225 - 323101362 (v1) 3, — 36450002 2, 02 = 0, (A.4d)
O(¢~3) 3231032 usv$ + 9 - 31/310%3 0202 + 9 - 313102343 uz0? + 12604307

+90i(v1):¢5 — 3i3*/210" 2 ppurv? (v1)0 — 9 - 3'/210%/2$2uguy (v1) 2 + 90igSus(v1)a

+270 - 313102343 vy (v1)? + 27002 prvr — 13231013 g v3

— 9321026, ¢paugv + 270002 draugvr — 15i3%/210" 242 v}

+ 675 - 3131023620 (01) G + 405002 P (v1)2 + 180 - 31/310%/3 .42 03

+ 8100i,v1 (v1)2d2, + 135003 02 4 135 - 317310234302 (01)

+ 1350002 (v1) 2 (V1) 2 + 405002 Pz v1 (V1) 2w + 105 - 312102392 g0

+ 4050i¢2v1 (V1) 2 P32 + 40500, P P3207 + 45003 v1 (v1)35 + 675ip2 Parvi = 0, (A.4e)
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O(¢p™2) . 4i32/210Y3¢,0,03 + 40323103 p2 usv? + 840331023208 + duy v (v1),
— 4i3%/310Y3 prpugv} + 180i3%210Y 3,03 (01) wbaw + 6032310130203 (1) v
+ 200323103 ¢y paz vt — 180 - 3131022 ppp h30? — 60 - 3121023 ¢, pupv?
— 36 - 313102320, (v1); — 12i3%210Y3ppuv? (v1)w — 36 - 31/310%/3 P2 uzvy (v1) 4
+ 180i3%/310'/3 g2 02 (v1)2 — 180 - 3/3102/3¢2 (v1)2 — 36 - 31/310%/3 ¢y g v?
— 36 - 31/310%/3 ¢ drpusv? — 1080 - 3/310%/3 ¢ dpprr (v1)2 — 540 - 313102302 02 (v1),
— 540 - 3310220201 (1) 2 (1) 2z — 15i32/3101/3¢2 v} — 540 - 3121023 9 22 0? (V1) 22
— 540 - 3/310%3 ¢, p3,0% (01) 2 — 90 - 312102730202 (v1)3, = 0, (A.4f)
O(pY) : 8-3%210"3¢,07 4+ 12i3%/310' 3 02 (1) — dugv? (v1)e + 1203221013 ppusv? (v1),
+ 120i3%/310Y3 g0y (v1)3 + 403273103 v} + 403231013 pppusv?
+ 18003273103 g0 v? (v1)? + 180i3%/210Y3 hv? (v1) 2 (V1 ) 2 + 5i3%/ 210" 3 Ppypv?
+ 600323103 1003 (01 ) g + 60032731013 h3 03 (v1) 5 + 20032310 3 p v (v1)5, = 0, (A.4g)
O(¢%) 1 — ] 4+ 4vi(v1)s + 4usvi(vy)e + 60v1 (v1)2 + 6007 (V1) 2 (V1) 2 + 503 (V1)35 = 0. (A.4h)
And from (2.4.10b)
O(¢p™3) : iyur + 180ig3 vy + 45 - 32310132 ¢, = 0, (A.5a)
O(¢72): dpus + 1833102392 0? — (uy), = 0, (A.5D)
O 4-37°10"%g,07 + (uz), =0, (A.5c)
O(¢°) : v —i(ug)e = 0. (A.5d)
Under the Invariant Painlevé Analysis, (2.4.1a) gives the x-coefficient equations
O(x™): wo(—6i — 2iugug +v5) = 0, (A.6a)
O(x™3): Cv — 2ivdvy + 3(vo)s + uovo(vo)s — u1vi — ueuovy = 0, (A.6b)
O(x™2): 2Cwv1 — 6ivdv? 4 209 (vo)s + 2u1v0(vo )z + 2uev1 (V)2 (V1)
+ 2ugug — 4Sv — Suevi — 2uivevy — 205C, — 3(vo)zx = 0, (A.6¢)
O(x™1) 1 CSvE 4 2v1(vo)s + 2u1v1 (Vo) + 2ugv1 (v1)s — 4ivevs + 200(v1)s + VoS,
+ 20011 (V1) + V2 Clp + (V0)32 — 20001 C — SurvE — Sugvovy + 35 (vg). = 0, (A.6d)
O(x°) : Sy — 20 Svvy + 2Suqvgvy + 2iv} + 35, (v0) s + V0Sze
+ 35(v0) za — 4v1(v1)r — duqvi(v1)e — 20901 Cry — 2(v1)3, = 0, (A.6e)
and (2.4.1b) gives
O(x™ %) : dug+v3 =0, (A.7a)
O(x™ Y : 2wvy —i(ug)s =0, (A.7b)
O : iSug + 20 — 2i(uy), =0, (A.7c)
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Under the homogeneous balance method, using (2.6.14) in (2.6.2a) gives

_ 'LA'U% 4 2'111('1)1)t _9. 22/32.2/3)\4/3'0%]0,(,251 _ i22/3i2/3>\1/3v1f//¢t¢m _ 2‘22/3i2/3)\1/3f/(v1)t¢z
—3. 21/321/3)\5/3U%f/2¢i _ i22/3’i2/3)\4/3U11}1fﬁ¢i _ i21/3i1/3)\2/3f/f//¢t¢i
_ 2>\2U1(f/)3¢i o i21/3i1/3>\5/3u1f/f1/¢i o i22/3i2/3)\4/3vlf/f//¢i + 2)\’1,&1’1)1('111)1
— 2'22/37;2/3)\4/3111 f/(bw ('Ul)m + 2)\1]1]“(%; (1}1)1 — i22/3i2/3)\4/3f/2¢i (’Ul)m + (1}1)330
_ i22/3i2/3>\1/3v1f/¢mt _ i21/3il/3>\2/3(f/)2¢x¢mt _ i22/31’2/3)\4/3u1,u1f/¢mz
_ i21/3i1/3)\5/3u1(fl)2¢$¢a:;r _ i22/3i2/3A4/31}1(fl)2¢$¢$I _ i21/3i1/3A5/3(f/)3¢2¢w1

3i1/3)‘1/3f//¢3m i1/3>\1/3fl¢4m

o 3122/322/3)\1/3f(3)¢i¢m1 21/3 o 2i22/3i2/3A1/3f//¢z¢3m o 21/3 =0 (Ag)

and (2.6.2b) yields
'U% - 22/3i1/3)\1/37f1f/¢x - Z(Ul)x - Zf,¢xx =0 (AQ)
After substitution of (2.6.15) and similar f-derivative terms, (A.8) becomes

2111(’01)25 + 2)\U1’01 (Ul)a: — ’L)\’Uzl1 + (’01)3:3
+ f/ |:_2 . 22/37;2/3)\4/3”?@536 _ ’L'22/3'L'2/3>\1/3(’Ul)t¢x _ i22/3i2/3)\4/31t1¢x(”1)x

i1/3>\1/3¢4z
+2M01 05 (V1) g — 122223 N By gy — 122323 A B ug 01 g — 21/3]
+ f {—122/32'2/3%/%1@% — 0223213\ Y3y 0102 + Gidvdp?
-2 21/3i1/3)\2/3¢2(vl)m - 2¢z¢mt - 2>\ul¢z¢rx
. RTATE) WA -
9 o/B/3N2/3y 6 Tiﬂ(b _ 2222/322/3)\1/3%%4

+ f® [—qstgbi — Mg d® — (14 20)21/31 /3 )23y, 63 4 (1 — 31')22/%2/3»/%3.%4 =0 (A.10)
and since (A.9) is already linear in f-derivatives, it is simply regrouped as

v = i)y + |22 g, — iy, ] (A.11)
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Under the homogeneous balance method, using (2.6.27) in (2.3.5a) gives

— iS4 v (v1); + —z)\z T b — 7}\ S b — g)\?}%f'(vl)t% 225 )\3 ()2l

—f)\qu f”¢ +7)\2,U 1 ¢2+7)\2v (f’)z(v )¢2+562/\4 1(f) (/53 7)\3 2f/f”¢3
15 ! R Vi 3375 R @
e W ) (P 1 o {0 g1
1125 3375 10125 1125 37t e
4)\4(f/)3f//¢t¢4 56i/\6vf(f’)5¢5 4/\5U1 (f/)Sf//¢5 4 ) 28i/\7v2(f/)6¢6
T T T —A 31 p(4) 45 1 T
+ 50625 + 759375 + 50625 + 45 v S0 11390625

_ i/\3 Q(f”) ¢6 )\3 2(f ) f(4)¢2 + 8i/\81}1(f’)7¢; + 8/\4U1f/(f//)3¢; + 4/\4U1(f/)3f(4)¢97:

225 170859375 3375 10125
4 AN ur (f1)3 93 (v1)a

7)\3 N2 12 v — x X

75 ()0 (v) 3375

40 £N\2( £11\2 46
F NP 0n)e — N (0 e+ DTSR g g0z

1125
N0y f 73 (v1)2 — N ()22 (v1)d

+ 4 ug v (V1) — 5/\2u111%f/¢z(“1)z +

NP2 64 (00)2 + 6002 (01)2 — 8Mwy Fha(01)? + 2 A

15
4N3 Ul(f) (Zsiébmt 4>\4(f) ¢§:¢rt 4 .,
1125 T 50625 T
i 3 N2 . 4)\4U1U1(f/)3¢,2m¢xz . 4 £(3) 42 4/\5u1(f/)4¢i¢zz
75>\ u1v1(f) ¢x¢xw 1125 2)‘1}1]0 ¢x¢xx + 50625

S ®) _4 " 4 N2 ¢(3) 8N (f)*(f")* 2 baa
>\2 A AR XS ORI 75)\3 ()2 f P bpden + 1195

8 () F DG b 4/\5(f) (F")2950e _ 225N f V5000 . 8 12 200 o
* 3375 B 16875 B 50625 /\ 111 62 (v1)aban

16 3 N2 gl 13 8)‘4(f/)3f/,¢i(vl)m¢x$
- %A (f) f ¢T(v1)z¢mc+ 1125

8 4 4
+ g)‘ Ul(f/)2¢x(vl)i¢mm - %AB(fI)3¢i(vl)i¢xz - )‘vzllf” 21 + 175)‘27):1))]0/]0“(1% nzmc

2 28)\41} (f/)Bf//¢3 2 13)\5(f/)4f’/¢4 2
23022 £ 2 2 1 e Prx P rx
a5 ) 0n b £ 3375 50625

4)\4(fl)4¢2 ('Ul)

75
N Bt N (Y bubt —
157 1 TR s vy

- IQAU%f,(Ul)iﬁbmr

+ %A?v%(f’)%vo .,

8 2y 8\ oy (f)4e
_7>\3 . 2 T x ZL’CD_7>\32 N3 13 1 T xa:

- % - 4)‘vzl))f//¢92c(vl)xm + g)‘2v%flfﬂ¢i(”1)m - 775)‘3 (f,)2fn¢i(vl)xr
RN 'ig;fi(“”” 6007 (02)2 (01) e — 12002 G0 (00)a(02)a + SN ()22 01) e (1)
4

- T%A3(fl)3¢i(vl)z(vl)zz - 4)\Uz13f/¢mm(vl)xm + é)\Q’U%(f/)2¢r¢xm(Ul)xz - %)\Uilf/%m

5
- *)\3 (f/)3¢i¢mm(vl)mw +

4)\4(f/)4¢§:¢ww(vl>wi
7 3375
o 16\ 01 (f) [ $d3e AN (f) " 05030
- 2725>‘3 2(f )2f ¢i¢3m + 10125 - 151875 + 5’0411(@1)330
M) e (01)se

2 4
EAQU%(JN)Q(??@(W)B:E - ﬁ)\gvl(]ﬂ)g(bi("}l)&r + 0195
AN ()2 0ae N (f) s 0an

4 16
- g)‘véllf”(bm(b&r + E)‘szff/f//¢i¢31

— *)\U:ff/%(vl)?m +

45 225 10125 151875
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and (2.3.5b) yields

4)\3,0 (f/)3¢3
= 3 2 N2 2 N2 .2 1 x -
- 6Zf(3)¢a:¢wz - 3Zf”¢?::c —4if" pr3e —if paz =0, (A.13)
After substitution of (2.6.15) and similar f-derivative terms, (A.12) becomes
403 (v1)s + AAur v (v1) 2 — iMT + 6003 (v1)2 + 6003 (V1) 2 (V1) 2w + 5V (V1) 32

4 4 4 1
+ f |: )‘2 ¢m - g)‘vf(vl)tﬁbm - gAzulv%(bz(Ul)m - 8>\v1¢z(vl)i - EAU%QbIt - §>\véll¢3z

4
—B)\Qulvl Doz — 12)‘”%(1}1)5(25%32 - 12/\U%¢x(vl)x(vl)xa¢ - 4/\1}:13@59590(”1):830 - §>\U§¢x(vl)3x

4 [_145>\U§¢t¢x _ %/\Zul 342 _ 28 - 2311//3322//10?%25 B 4i21/332/35/\22//;vl(vl)t¢92c
_4i21/332/3/\;gj;‘1”1¢92c(vl) 1200202 (11)? 4232/3101/3)\2/3(252 (01)% — *>\U1¢x¢3x
*4i21/332/35§/2;30%¢m% - 4i21/332/3/;52//33u1v1¢z¢“ 24i32/310Y3)2/30, 6, (01)2 b
—Mig2, —12i3%/310' 302302 (01) 402, — AT B2 (V1) e — 120322101302/ 301 02 (1) (V1) 2
1203231013 02/302 s (01 ) — 2i32/310Y3NZ30262 (013 — 47:101/3)\321//33U%¢m¢3r

20213323 N33 ¢y 2 2i2'/3323 N Buswiel  28i31/322/ 3\ 30p g3
N 52/3 N 52/3 N 51/3
9. 31/322/3)\1/3(U1)t¢;&£ 9. 31/322/3)\4/3,“1@5%(”1)1
51/3 + 51/3
6 - 31/322/3)\1/3U1¢g25¢mt 6 - 31/322/3)\4/3U17}1¢i¢zx
51/3 + 51/3
+18 - 3131073 AY302 (01)2 e — 2032310302303 2, + 36 - 3121023\ 3016, (v1) 2 02,
+6 - 3131023\ 30203 — 61322101 3N 302¢3 (01) e + 6 - 3131023363 (01) 2 (1) 2

8i101/3)\2/3U3 2 .
18- 31/3102/3 30, 626 (01 ) e — - 10eP32 2001 02 P

+ f(3)

— 12i32/310/3)2/3 9, 63 (v1)2

—12i32/310Y3 X302 2 (1) » O

+2-3310%5N B0y 93 (01)30 + 3 - 31/3102/3)\1/3Uf¢i¢34

2. 31/322/3\1/3y, ¢, 3 N 2. 31/322/3)\4/3u1v1¢4 209

51/3 51/3 Moidy — 2i3P 102N Pui o (v1),

=+ f(4)

8 101/3)\2/3 343 -
63310 00)2 + g + ik By — 000

+24 - 3131023 X301 03 (01) ppae + 9 - 33102 PAY30262 92 + 18002 (v1) 202,
+1207,’U1¢m + 6 - 31/3102/3>\1/31}1¢4 (Ul)mm + GOZCbg (ZSCEZE (vl)mm
43131023 7\30268 ba 4 Bigt (v1)30 + 2owl¢x¢3x}
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‘ ‘ 41310/3\2/3p3 5
+ £ {Wtfbi +iAug @2 + o i

+9 . 31/352/3)\1/3v%¢i¢mr

+ 331310301 3y,60 (v1),

+ 90062 (11) 2 G + 1051016262,

91/3
_15-3Y 3;?/13/ 02l 1506 1)+ 20000 65 — 22,/25/1;1?%3%}
+ 1@ [_1931/32;1//331/%%5 906 (01)s + 3060180000 — o 23 2/2325;/;?2 - 32/31(;11//33@31]
50 [aing] - ZEG TR g (A1)
and (A.13) becomes
vi —i(ur)e + f (ém?m - z‘%) + [ <2i32/32512/ /?2/3”%5 = 307, — 4z'¢x¢>3m>
4 (2.31/32:21/%1@ ~ 62.(;53%) o (A.15)

The coefficients of the f-derivative terms give the Lax-type Equations

8 4 4 8(v1)f  Aviger  Auivigee  12(01)3Pre
—i\ 5_ = — - T _ _ T
15— 5o — gAu ) v 15¢, 15¢, o
— 12(0) (o) — AP 2 ), - B0 g, (A 168)
B i)\2u1v3 28 21/BNB/B0 4q2! 332N By, (1), Adviy  4i32/321 BN Bug vy (v1),
15 ! 31/352/3 52/3 156, 52/3
4i32/321/3)\2/3v2¢ 4@'32/321/3)\5/3,“ 1}2¢
_ 2 2 _ 4:92/3101/312/3 3 _ 1Pzt 1Y1 Pz
12002 (v1)2 — 4i32/3101/3X2/3(v)3 75, 754
 24i3*310V BN B0y (1) e Al 12i32/31013N B0 (01). 92,
o ox o3
12'32/3101/3)\2/3 2 . .
—'4AU§(U1)II —*12i32/3101/3%2/3v1(v1)x(v1)xz _lat 5 V7 P (V1)
4\vi p3e 52/3101/312/3,2 4i101/3)\2/3vz1)’¢4x .
— W — 213 ].0 )\ vl (v1)3x - 31/3¢x - O, (A.16b)
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2i21/332/3)\5/3y 0} 28i31/322/3\V/3p0 2. 31/392/3\1/3(yy),  2432/321/30/303 g,
- 52/3 - 51/3 * 51/3 ; 52/3¢,

6-31/3223 )\ 3016y 200 P

2. 31/322/3 )\ 3y, (vy) )
T 109:92/3101/312/3 2 .
S 12i3%/°10%° X% P (v1)5 + Ve 5

6 - 31/322/3 )\ By vy e 1203273103 XN2/302 (v1) 2 P N 33131023\ 303y,

51/3¢, o P
N 18- 3131023013 (01)2 e 2i3%/31013N2B0i 2, N 36 - 31/3102/3\130; (v1) 02,

o o b3
6 - 31/3102/3\/30p2 3
* &2
18 - 3131023 A 301 @y (V1) 2w 8i10Y/3N2 303655,
- . T 31,
2. 1/322/3)\4/3 ) 2. 1/322/3)\1/3
3 UV1 +ﬂ)\’u?+ 3 V1
51/3 3 51/3¢,
didps 4idurdee  Si10Y3NP03d,, 2000 Py

6’31/3102/3)\1/3 2 -
- (et = T, 31750, os

— 6032310132302 (1)) o + 6 - 32102203 (01) 1 (v1)

+2- 31/3102/3’)\1/3’01 ('Ul)Bx = O7

— 2i32/310Y3\¥302 (v)),

T

N 24 - 31/3102/3 X301 (1) p P N 9-31/3102/3\1 /30202 N 180i(v1)2 02,  120iv1¢3,

Pz o3 b3 o3
60ipzz (V1) L4 31/3102/3\1/302 g,
o bu
9. 31/352/3)\1/3v2¢
; kAR SIS . . 2l1/3102/3y1/3 1Pz
1 uy + 3173 + . + 3372107 A Pug(v1) e + 27,
902(Ul)m¢zz 105“}1¢im _ 15 - 32/3101/3¢§m 207/U1¢3:r _ 5- 32/351/3¢4m
T, T &# NG g, 2.0,
19 31/322/3)\1/3y2 + Gifwy), + V1des 39 3235182 32310134y,
51/3 1)z b 9. 22/3)\1/3%26 )\1/3¢x
9. 32/3101/3¢zm
Al/—% = U,
Z'(béla:
— =\ —
57 ¢,
2i3%321 N30 Big2,  digse
52/3 o3 b
9. 31/322/3)\1/3,01 B 6Z¢zz
51/3 P

+6- 331023 X301 (01) g +

+ 5i(v1)3m = O,

413103 X2/3v3 iy

+ 156(v1) g

:07

— 4iUl —

4

:0,

:07

=0.
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(A.16¢)

(A.16d)

(A.16¢)
(A.16f)

(A.16g)
(A.16h)
(A.161)

(A.16§)



Making the §;-form substitutions (2.6.28), the above Lax-type equations become

ANBov? + 4N? Baurv? + 5ABsv] — 8iX2uT 4 1200% (v1); + 120%u103 (1)

+ 1803303 (v1)2 4 12001 (v1)2 + 60AB303 (V1) pe + 180AV? (V1) 2 (V1) 2 + 2003 (v1)3, = 0, (A.17a)
12i3%/310Y3 A3 Byv? 4- 1203210V 2043 Bugv? + 4NY2 5103 + 2003221013 \V/3 8507 4 4N By, v

+ 2003840t + 1503 Bgut + 28 - 3273101304308 1+ 12i3%/3101 3\ 30 (01,

+ 120323103 XY Bus vy (v1) 4 1800323101323 Bgv? (01 + 36003273101/ 3A1/3 B3v; (v1)?

+ 18002302 (v1)2 + 60i3%/310Y3\Y3 (v1)3 4 180i32/310/3AY/3 B30 (1)

+ 607203 (1) 22 + 180i3%/310 3 A 301 (01) o (01 ) 2w + 30i3%/210Y3X302 (v1) 3, = 0, (A.17b)
18 - 31/310%/3 A3 Byuy + 18 - 31/310%/3AY/3 Byuq vy — 6i3%/3101/3A%/3 8102 + 45 - 31/3102/3\1/3 8502

490 - 3131023 AY/3 8,02 — 6132731013 A5 3up0? + 90 - 3131023 X3 (01) 2 (1) 2

— 30032731013 X273 B50? — 30AB3v? — 84i31/310%/3 XY/ 30% + 6 - 31/310%/37\/3 (vy),

+ 6 - 331023 X430y (v1) + 540 - 3131023 \Y3 Bgvy (v1) — 180032731013 X273 8302 (v1) 4

+ 270 - 3131023 \Y/3 B3 (v1)2 — 1800323103 X230, (v1)2 + 270 - 3131023 X3 B30y (v1) 2

—90i3%210Y3 X232 (1) 4o + 30 - 3121023 )\ 30, (v1)3, — 40i3%/210Y 323 8,03 = 0, (A.17¢)
) ) 2'31/322/3/\1/3 v ) ) 2.31/322/3/\4/3,“ v
4ify + 4iNBsuy + 7 P10 L 90iBsuy + 120ifr0; + S
8i10'/3\2/33303 209
43131023 71/38,02 4 9. 31/3102/3\1/3 Bgp? — 131—/353”1 + 5ol
+ 18086 (v1)x 4 24 - 3/310%3 A3 B30y (1) — 2032731020230 (vy),
+ 6 - 3131023013 (01)2 + 60iB3(v1)ae + 6 - 3131023 X 301 (v1) 2 + 5i(v1)32 = 0, (A.17d)
9.31/352/3)\1/3 2 41'101/3)\2/3 3
iB1 + iduy + 2008401 + 105 Bsv1 + — Pavy | Ali L 90iBs(v1),
21/ 31/
) 5'32/351/3ﬁ5 15.32/3101/3ﬁ7
+3- 331023030, (v1) 4 + 150(v1) e — RO NG =0, (A.17¢)
32/3101/354 39'32/351/3/86 19.31/322/3/\1/31}2 ) )
i T o mas t =173 L —30if301 — 9i(v1), = 0, (A.17f)
‘ 2-32/3101/3
4’&’1)1 -+ Tﬁg = U, (Al?g)
1585 — 4idv? = 0, (A.17h)
2084 + 1566 + 2 - 32/3101/302/32 = 0. (A.171)
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The coefficient equations from the resonance analysis of the n = 3 KPII system (5.3.10) gives

() :54i¢3xa
vy =— ot :
2v2¢3 V242
v e 2TigS,  2Tiguutas  2Tidas

BETR T, T 2 T @ 2
Ve = — 3¢§ZCE 4 3¢1$¢31 . ¢4x
T ovaen | 2V2gh 4298

S 502 92 B¢l 5% o3
Sligh, | 8lig2 s 9idd,  2Miduetuc | 2Midse

463 20} 3 263 1042
iGyy iybey | i0yPes 1501, 502,050 83, Guebus | Osa

Vg = - + -

TRIOV20E | 270v203 | 5I0V200  SV26T | 24208 3v20i  2v208 | 207208

Ur = — i _ 2¢a:yy + 3¢yy¢wz + 3¢xt¢wx + 11¢y¢my¢wz _ 13¢§ :?cz

503 5¢3 565 263 565 569
. 3¢t iz - 2437’¢im N ¢zxt B ¢y¢)zzy + 3¢§¢SJL’ + ¢t¢dx
265 87 263 505 5¢3 263
268 03 403 403 2043 2003

T2T0v2¢8  540V265 | 216v265  60V26T | 120v3268  8v260 | 270/2¢5
i0y0s  3505,0s0 _ 50ualy 1505010 | 50010 | Puebse e

C540V207 | 8v/2¢8 4207 16V2¢7 244245 8v2¢5  120v/2¢5°
2 2 2 2
ug = — 72iV/ 20502 — PayPee _ 2fwyyboa + 30uyPas | SOutPuy | 360yPuyPus

508 53 | 108 | 208 50
_ 61¢z2/ 2x _ 5¢t¢§x _ 1323Z¢2x _ ¢xw¢x:ct + ¢xy¢xxy _ 7¢y¢xac¢xmy
104% 267 499 o3 565 549
+ 2¢mxyy . 2¢yy¢3z o 2¢zt¢3w _ 19¢y¢my¢3x + 3¢12/¢zw¢3z + 5¢t¢wx¢31
15¢3 15¢3 3¢5 1548 o 3¢S
SA8Liok, Gu,  639i0%,03, | 1908, | Gt | Oyduny  Oi0se  Gudus , Bidm,
8¢ 267 (o3 603  15¢7 5¢8 692 20932
639093, ba0 | 1TliduePsedae  2TidF, 51302, ¢50  2Tidsedse  2Tidwaden
447 268 83 2049 5% 1047

vg arbitrary,
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(A.18a)

(A.18b)

(A.18¢)

(A.18d)

(A.18e)

(A.18f)

(A.18g)

(A.18h)

(A.18i)

(A.18])



392,07, 2 2 3
w7 = — 540V 20702 + 18iV2¢, (v6) e + 117iV 206000 — PryPua _ 23Puyybis 4 Touy@es

1098 4097 1698
L 350ubly | 6270y6uy 05, T4y 0n, 35005,  T20i0%, 1565, 6un
8% 4093 80¢;° 869 o3t 867
+ 13¢wy¢xm¢wwy - 39¢U¢3)w¢1$y o :%wy + 7¢$w¢wzyy 23¢iy¢3$ ¢zyy¢3ax
1097 1048 2098 3098 3097 1298
667, 261 2% 4097 8¢%
15809063, 000 | S6smidna | 230y0urybre  A30R  5ondd, 21090863,
863" 129 3007 5% 12¢7 207
4411¢zz¢§x 5¢xw¢3xt _ ¢xy¢3$y + 13¢y¢xm¢3xy _ ¢3xyy + ¢yy¢4x + 5¢act¢4x
248 1268 15¢8 3007 3095 4849 2449
12097 16¢3 861 449 1668
_ 339i63,010 _ 2251000y _ Gant _ Gybiay | Oydse | didse | 315i65,65
847 847 2497 6009 2007 2448 495
o 869 8047 4¢3 4093 8003’

vy arbitrary.
The Painlevé-Bécklund equations from substitution of (4.4.1) into (4.3.10) are

G2bw + G107 + U2 + 4ig] (v1)s = 0,
—3v104¢% — Bugv16h — 12i0163 (v1)0 + V20yy 02 + V202 (u2)2 + 3V202 0t + V20. n
FAV20y hu ey + 3V 2U202 bra + 1217202 (01) 0 bae + 4V 265 (1) e = 0,
3V2(01)2¢i b + 3V 2us(v1)° @) — 12(v1):85 — 12062 (v1)4 + 120V2(v1)* G2 (v1)2 + 8297,
—48i2 (v1)2 + 8V 200 hayy + AV 20y bra + 8V 20y Gawy — 120162 (u2)2
2401 Gyt — 24201 Gy P — 96701 Dy (V1) b — 4810102 (V1) = O,
6v1 (V1) + 3(v1)2 P (U2) + 6UuzVI Pz (V1) 0 + 24101 ¢y (v1)2 + 3(v1) 2Pt

+3u2(vl)2¢xm + 127;(”1)2(7}1)93(1):61 + 12i(vl)2¢z(v1)zx + 4¢xmyy = 07
and

Ul(bi + \/§¢L¢z1 =0,
3(v1)¢x — 4¢ss = 0.
The Painlevé-Bécklund equations from substitution of (4.4.4) into (4.3.18) are

V20102 + 3¢,¢.s = 0,
20(v1)%¢3 — 18V2¢3 (v1)x — 3V20182 0w — 3156,02, + 12642 ¢35, = 0,
20007 + 20185 + 2usdy — 12iV2(01) ¢} + 84iv1 9 (v1) 2 + T2i(v1)* 5 Pra
—36iV/202 (v1)2as + 4680V 2010207, — 486i0: 65, — 9iV26] (V1) e
—207iV/201 3 p3, + 8Ligh3 par = 0,
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(A.18k)

(A.181)

(A.19a)

(A.19b)

(A.19¢)

(A.19d)

(A.19¢)
(A.191)

(A.20a)
(A.20b)

(A.20c)



—2V201 013 + ByydS — 2V 2uzv1 L + 4i(v1) dd + B2 (u3)e — 48iV2(01) 20k (V1)

30007 (v1)2 + 465 but + 66y D2 bay + 305 brPan + W3] Paw — 36iV2(v1)3¢3 bar

+132i0103 (01) 2 baw — 306i(01)* G203, + 2160V 207 (v1), 05, + 4320V 2016, 65,

+30iv1 03 (V1) aw + 1683 (01) P2 d30 — 1080V 265 (1) P30 + 108iV 20167 huw o

—108iv/201 ¢ az

—6(v1)? B2 — 6uz(v1)?dh + iV2(v1)°¢2 + 6v2(v1):102 + 6v201¢3 (us).

+6vV 21303 (1) — 108i(v1)3¢3 (v1) 4 + 180iv/20163 (v1)2 + 18V201 2 s

—186,02, — 962 Puyy — Iy budus + 18V2u30102 by — 57i(v1) ¢2 Pra

189262,
¢

+378i\/§(®1)2¢i (vl)z¢mm - 18¢y¢zy¢xm - - 1442\/5(01)3¢$¢iz

—18¢ybu Py + 19440010, (v1)2 0%, + 972i(01)* 0, + 90iV2(v1)* B (v1) s
+9¢2hs + 144iV/2(v1) 92 b3y — 97200102 (V1) P30

+972i(v1)? by PPz — 4860 (v1)? P2 P

—2v2(v1)2 e — 2v2u3(v1)?¢3 + 3601 (v1): 65 + 18(01) 3 (us)a
+36u301 93 (v1)2 — 30iV2(01)" 03 (v1) + 540i(v1)? G5 (1) + 36(v1)* G2 bt

2
_ 1089y 0uydas + 36us(v1)202Pue — 9V 2(01)° P2 Pue + 612i(v1)3P2 (V1) 2Oz

xT

x

2700 Payy Baw + 5Abyy &2, + 9i(v1)* Gpd2, + 1944iv/2(v1) 2y (V1) 202,
+180i(v1) 63 (V1) s + 54G2bayPray + 2160y PusPany + 2705wy
—270yyPsP3s + 90 (v1)* 9230 — 972i\/§(@1)2¢i (V1) 2932
+972iV/2(01) GuPraPae — 540y Gudaey — 324iV2(01) P2 bua
6v2(v1)* (v1)103 + 2v2(v1)?03 (us)x + 6v/2us(01)2¢3 (v1)o + 60iv2(01)¢5 (v1)2
— 1080202, + 2V 2us(v1)2 02 bus + 30iV2(v1)* G2 (V1) o aa + 2167 (v1)>Pr (V1) B2,
F2V2(01)3 62 bt + Dby @2, — 54i(01)* 6%, + 15iv2(v1)* % (v1) aa

10842, ¢2

_1087;(7}1)3(;%(”1)1@1)31 + 108i(vl)4¢x¢mz¢3m + 27¢i¢3myy - 27i(v1)4¢2¢4z = 07

and

V20182 + 363 Ger = 0,
2(1}1)2(1)@ - g(biz = 07

5493,

2v2(vy )02 — %

94

+ 108¢xa¢¢3x - 27¢x¢4x =0.

(A.20d)

(A.20e)

(A.20f)

(A.20g)

(A.20h)
(A.20i)

(A.20)



The substitution of (4.5.9) to the 2+1 Burgers Equation (4.3.10a) yields the coefficient equations

O(x™ %) : wpvg — 4iv3 =0, (A.21a)
O(x™):  —dugvd — 12ugvivy + 48ivivy + v (uo) s + 3uevs (vo)z — 32iv5 (vg)z = 0, (A.21b)
O(x™ ) : 12iK%ug + 6Cv3 — 5Sugvy — 6ugvy + 32iSvy — 18usviv; — 18ugugv;

+ 7260303 + 6vav1 (to)x + 208 (u1)z + 6u1v3 (Vo) + 12uguov1 (Vo)

— 144031 (vg) 2 + 24103 (v0)2 + 6ugvs (v1)z — 48ivy (V1) s + 8ivs (V0 )zz = 0, (A.21¢)
O(x™?): 2iK?%uy + 6CvEv; + 8ivgv} + 303 (vo)s + 2iug Ky, + 4iK (ug), — 10iKug K,

— 20038, + 33 (o) + 3vEv1 (u1)e + v (uz)e + 3usvi (V) e + 6u1vev1 (Vo)

+ 3uov? (vo) s — 48ivev3 (Vo) + 24ivov1 (v0)2 + 3uvE (v1) e + 6ugvov: (V1)

— 48iva vy (V1) + 24103 (Vo) (V1) + 1200301 (V0) we + 4105 (V1) 20 — 2Suq v

— 6Suguavy — 6ugvivy + 36iSvgvy — 6uvevi — 2uevi — 3v3C, — 16iSv3(vo), =0, (A.21d)
O(x™%): 4iK?*Sug + gC’SUS + 3iS%vg + 3Cvov? + 24iSvavi + 6vgvr (vo)e + 3v3 (v1)s + iur K,

+ 20K (u1)y + () yy — 3iKu1 Ky — 4i(ug)y Ky + 4iug K2 — 6ivgv1 S, + 03 (u) e — upvf

+ 3v0v%(u1)x + 31}81}1 (u2)z + 6uzvov1 (Vo) s — 36iSv801(vo)w + 3u1vf(vo)w — 82'11:1)’(1)0):E

+ 12003 (v0)2 + 3uzvd (1) — 12iSv3 (V1) + 6uveVy (V1)z + 3uev? (v1)e — 241007 (V1)4

x

. ) ) 3 . .
+ 48ivgu1 (V)2 (v1)z + 1221}3(1}1)2 — 2iug Ky + 51}8’03” + 4i Kug Ky + 1260903 (00) 2a

+ 12iv§vl(vl)m - gSUQ'US) — gSulvgm - gSuovovf — Bupugv? — Gvgvlc’x =0, (A.21e)
O(x7 1Y) : iK?Su; + 3051}81}1 - 3Su2v§vl + 62’5203@1 — 3Su1v9v? — Sugvs 4 4iSvv?

+ 3v3 (vo)¢ + 6vgvy (v1): + iSug Ky + iKugSy + 21K S (ug)y + i(u1)yy — 3vgviCy

— 3iK SugK, — 2i(uy)y Ky + iuy K2 — 6iv3v3 S, + v3 (u1) s + 3vovi (ua) e

+ 3ugvi (vo) s — 24iSvovi (Vo) + 6usvoV1 (V1) — 24iSviv1 (v1)e + 3urvi(v1)s

+ 241'11%(1)0)93(@1)1; + 24ivovl(vl)i —iur Ky + 3vgvlCm + i Ku1 Ky

+ 2i(u0)y Kua — 31t Ky Ko + 4103 (v0) za + 120003 (V1) gz + 10 Ky = 0, (A.21f)

O(X%) 1 iK*S%ug + 3CSvovi — 3Sugugvi + 6iS*vivi — Suivi + 6v3(v1); + iSur K,

+iKu Sy + 20K S(u1)y + 2i(u2)yy — iKSui K, — 4ivgv Sy + 203 (u2),

— 8iS (o) + 6uzv? (V1) — 24iSvovi (v1)s + 24103 (v1)2 + 3v9v]Cry

+ 20 K Sug Ky + 2i(uy )y Ky — iy Ky Koy + iug K2, 4 8603 (01) gy + iu1 Ky = 0, (A21g)

and from (4.3.10b), we have

O(x™*): 2iug +vj =0, (A.22a)
O(x™?): iur +3vgvr —i(ug)e =0, (A.22D)
O(x™1): iSug + 3vov} — i(u1)s = 0, (A.22c)

O(x") : iSuy + 203 — 2i(uz), = 0. (A.22d)
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The substitution of (4.5.17) to the 2+1 Burgers Equation (4.3.18a) yields the coefficient equations

Oo(x™):

O(x*):

ugv — 6i(v)® = 0, (A.23a)

— 6uy (vg)? — 24uguovy + 180i(vo)>v1 + (v0)? (ug)e + 4ugvo(vo)e — 72i(vo)* (Vo). = 0, (A.23b)
— TSug(vo)® — 10uz(vo)® + 72iS(vo)® — 40uy (vo)?v1 — 60U (v1)? + 600i(ve)> (v1)?

+ 8(0)?v1 (o) 2 + 2(v0)> (u1) 4 4 8u1 (vo)* (Vo) + 24uvov1 (vg)e — 600i(vo)3v1 (v0) 2

+ 60i(v0)®(v0)2 + 8uo(vo)? (v1)x — 120i(vo)* (v1)z + 12i(vo)* (Vo) 2z = 0, (A.23¢)
120 K ug 4 4C (vo)* — 3Suy (vo)* — 4us(vo)? — 12Sug(vo)3v1 — 16us(vg)3v,

+ 15008 (vg) w1 — 24uy (vo)*(v1)? — 16uguo(v1)? 4 240i(vg)3 (v1)? — 3i(v0)® S,

+ 6(v0)%(v1)? (ug) 2 + 4(v0)2v1 (u1) e + (v0)* (u2)s + 4usz(v0)® (Vo) e — 36iS(v0)® (Vo) e

+ 12u1 (v0)?v1 (V0 )2 + 12uovo(v1)? (Vo) — 480i(vg)? (v1)? (Vo) + 120i(vg)>vy (vo)2

+ 4wy (v9)3 (V1) + 12ug(v)?v1 (V1) — 240i(vg)*v1 (V1) e + 60i(v0)* (Vo) 2 (V1)

+ 30i(vo)*v1 (Vo) war + 6i(v0)® (V1) = 0, (A.23d)
120 K2 uq + 1552 (00)8 + 24C (vg)3v1 — 24us(vo)>v1 — 36ua(vg)?(v1)? — 24uivg(v1)?

— 6ug(v1)* + 180i(vg)? (v1)* + 8(v0)®(vo)s + Giug K, + 12i K (ug), — 8(vo)*Cy

— 42i Kug K, — 30i(vo)°v1.Ss + 8vo(v1)? (10) 2 + 12(v0)2 (v1)% (1) + 8(v0)>v1 (u2)s

+ 2(v0)* (u3)e + 8us(v0)® (v0)x + 24us(v0)?v1 (v0)e + 24u1v0(v1)? (v0)e + Buo(v1)? (vo)e

— 720i(v0)?(v1)* (v0) 2 + 360i(v0)? (v1)? (v0)2 + 8ua(vo)® (V1) + 24us (vo)?v1 (v1)a

+ 24ugv(v1)2(v1) 2 — 7200 (o) (v1)2 (v1)2 + 480i(vo)>v1 (Vo) (V1) + 60i(vg)* (v1)?

+ 120i(U0)3(U1)2(”0)mm + 60i(”0)4vl (V1)ea — 5SU2(U0)4 — 205w (Uo)gvl

— 30Swug(vo)? (v1)? + 480iS (vo)* (v1)? — 30045 (vp)*v1 (V) — 60iS(v0) (V1) = 0, (A.23e)
9i K2 Sug + 21K uy + 205 (v)* 4 30i5% (v)®v1 + 12C (vo)? (v1)? + 180iS(vg)? (v1)?

+ 124vg(v1)® + 12(vo)2v1 (vo )i + 4(vo)> (v1)s + 2iur Ky + 4iK (u1),, + i(uo)yy

—10i Kuy K, — 6i(ug )y Ky + 9iug K2 — 30i(vo)* (v1)%Se + (v1)* (w0)z + 4vo(v1)* (1)

+ 6(v0)2 (v1)? (u2)z + 4(v0)3v1 (u3) s + 12us3(v0)?v1 (V)2 + 12u2v0(v1)* (Vo) s

— 24008 (v0)?(v1)? (v0) 2 + 4u1 (v1)? (Vo) w — 120400 (v1)* (Vo) e + 1204v0(v1)? (v0)?2

+ 4us(v9)3 (v1)z + 12us(v)?v1 (V1) — 12088 (vo) vy (V1) + 12urvo(v1)? (V1) 2

+ 4ug(v1)3 (v1)2 — 240i(v0)? (v1)* (V1) + 3604 (vo)? (v1)? (Vo) (V1) + 1204 (vo)> vy (v1)2

— Biug Ky + 2(v0)* Crye + 9iKug K e + 603 (v9)? (v1)* (v0) 2 + 60i(v0)> (v1)2 (V1) 2

— 2Su3(vg)* — 8Sug(vo)>v1 — 1281 (v9)?(v1)? — 12us(vo)?(v1)? — 8Sugvg(v1)?

— Sugwp(v1)® — 2uy (v1)* — 12(vp)3v1Cy = 0, (A.23f)
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O(x™%): 8iK?Suy +12CS(vg)3v; — 12Sus(vo)>vy — 18Susa(vg)?(v1)? + 9005 (vo)* (v1)?

+ 8Cwg(v1)® — 12Suqv9(v1)? — Suzve(v1)® — 3Sug(v1)? — 2uz(v1)* + 120iS (vo)? (v1)*

+ 24w (v1)% (Vo) ¢ + 24(vo)?v1 (v1)¢ + 3iSuo Ky + 2ius Ky + 3iKuoS, + 6iK.S(ug),

+ 4i K (u2)y + 2i(u1)yy — 24(v0)? (v1)*C — 151 K Sug K, — 6iKus K, — 8i(uy)y K,

+ 8iug K2 — 60i(vg)® (v1)* S, 4 2(v1)* (1) 2 + 8vo(v1)? (u2)x + 12(v0)* (v1)? (u3)

+ 24u3v0(v1)2(v0 )z + Suz(v1)? (Vo) e — 360iS(v9)?(v1)> (Vo) e — 24i(v1)? (Vo) e,

+ 60i(v1)* (v0)2 + 24us(vo)?v1 (v1) e + 24usvg(v1)?(v1)e — 36005 (vo)3 (v1)2 (V1)

+ 8uy (v1)? (V1) — 120ivg(v1)* (V1) + 480ivg (v1)? (v0)z (V1) + 360i(vo)? (v1)? (v1)2

— diuy Ky + 12(00)*v1 O + 81K u1 Ky + 6i(u0)y K — 1500 Ky Ky

+ 60700 (V1) (V0) vz + 120i(v0) (v1)* (V1) az + 3110 Ky = 0, (A.23g)
O(x™Y): 3iK?S%ug + 2iK2Suy + 12CS(vo)? (v1)? — 12Su3(vo)? (v1)? — 8Sugvg(v1)?

+ 60052 (v0)?(v1)? — 2Su1 (v1)* + 12iSv(v1)® + 8(v1)3 (vo)s + 24vo(v1)? (v1);

+ 2iSu1 Ky + 2iKu1 Sy + 41K S(u1)y + 2(u2)yy — 8vo(v1)*Cy — 61K Sup K,

— di(ug)y Ky + 2iua K2 — 30i(vg)* (v1)*Ss + 2(v1)* (ug) 2 + Svo(v1)? (us).

+ 8us(v1)3 (v0)z — 120iSvo(v1)* (v0)x + 24usvo(v1)? (V1) 4 + Sua(v1)? (v1)s

—240iS(v9)? (v1)3 (v1) 2 + 1208 (v1)* (v0) 2 (V1) + 24009 (v1)? (v1)2 — 2ius Koy,

+12(v9)?(v1)*Car + 61K Sug Ky + 20 Kua Ky + 4i(u1 )y Koy — 6y K Ky

+ 3iug K2, + 12i(v1)® (v0) 2z + 60ivg(v1)* (V1) za + 201 Ky = 0, (A.23h)

OxY): iK25%u; 4+ 4CSvy(v1)? — 4Suzvo(v1)® — Sua(v1)? + 15152 (v0)? (v1)* 4 8(v1)3 (v1)s

+iSu Ky + iKusSy + 20K.S(u2)y + 2i(ug)yy — 1K Sus Ky — 6ivo(v1)° Sy + 2(v1)* (us) e

—12iS(v1)(v0) 2 + 8uz(v1)3(v1)e — 60iSvo(v1)* (v1)e + 60i(v1)* (v1)2 + 4vo(v1)3Cra

+ 20K Suy Ky + 20(u2)y Kpw — ius Ky Koy + iun K2, + 12i(v1)° (01) 2z + iU Koy = 0, (A.231)

and from (4.3.18b), we have

O(x™): Biug + (vo)* =0, (A.24a)
O(x™%): 2iu1 + 4(vo)*v1 — i(ug)s = 0, (A.24D)
O(x™2): 3iSug + 2iug + 12(v)*(v1)? — 2i(u1)x = 0, (A.24c)
O(x™1): iSuy +4vg(v1)? —i(uz)e =0, (A.24d)

O(x°) : iSug +2(v1)* — 2i(uz), = 0. (A.24e)

Solving the linearly dependent systems for u;, v; to verify the resonances of the n = 2 KPII equation
(5.3.4), we obtain

(bmyy + ¢yy¢zz + 3¢zt¢xz 2¢y¢my¢xz _ 5¢72; im _ 3¢t ;251

_ @;22/3 _
B Y 205 203
+ 15(1)11 N ¢mzt + ¢724¢3$ + ¢t¢3m _ 21(253;192531: + 3¢§z + 9¢xz¢4x B ¢5:c (A 25&)
o 203 295 203 o5 ok 201 203" '
vy arbitrary, (A.25Db)
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603 P04bee 200,000 20wyyben | Thy0h, | DOmidd,

Us = 4i32/305¢z - 2132/3 (U4)x - - + +

b 308 303 12¢§ 265
Blgyduydl, 610303,  5ougd, L 12305, buabunt _ 20y00ctery | Duayy
607, 1248 267 495 o5 3¢5 663
. ¢yy¢3a: . 2¢azt¢3m . 11¢y¢my¢3w + 47¢12/¢II¢3I 5¢t¢waz¢3m . 115¢im¢3x
18¢3 3¢5 998 1847 365 2¢7,
(b 6¢3z + ¢3 4t _ ¢y¢§ _ ¢t¢§ + ¢xz6¢4 _ ¢3 5¢4 _ ¢ 5¢5 + ¢64 7 (A25C)
395 603 699 693 495 692 o3 695
vs arbitrary, (A.25d)
2 242 2 .
: : y | De%ay | BybyyPen  4i3*Pvs¢as
_ Py 313236, — 132/ .- Py Pyy Py y Py y Py _ zw
U0 = gy T e —i8 s )e = T 2 Tog8 T L4dgs S
3i32/3(7}4>1¢$w _ ¢2¢wy¢m + d); 92090 _ 9@.32/37}4(/5?@ _ 55¢;%1/ ia: _ 47¢ZE’£}’L]¢§$
26 207 28800 44} 2405 4867
136y,03, | 350uibh, | 2810,0m02, _ A910)0n, _ 356:0%, 196505,
1665 863 2409 i8¢ 8¢9 | 32610
2¢, 87 207 24¢% 368
5i32/3”4¢3w 17¢3y¢3$ + 13¢1yy¢3£ _ 5¢yy¢1¢¢31 _ 5¢7;t¢z7;¢31
202 3607, 72¢8 1867 267
963 14499 863 109 1265
3607 Ty 1201 T ses 9o T 1268
+ ¢y¢xm¢3zy . ¢3z2y i ¢yy¢4z + 5¢zt¢4m + 31¢y¢xy¢4z B 133¢g2;¢mc¢4m
607 2405 14498 | 24¢8 7267 14468
o 5¢t¢xﬂc¢4x 551(;%;5@6490 - 43¢xw¢3x¢4x + 95¢ip o ¢4xt + ¢12/¢5$ + ¢t¢5x
867 1605 207 0600 2495 | 2407 | 240
93¢2 ¢5w 35¢3m¢5x 2¢xx¢6x ¢7w
_ rxr — A.25
1667 2468 308 2407 (A.25¢)
vg arbitrary. (A.25f)
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The coefficient equations from the resonance analysis of the n = 3 KPII system (5.3.10) gives

uy =15i3%/310"3 ¢s,, (A.26a)
i32/351/3¢32vm i51/3¢3$

v2 = 2.22/3p3 - 31/392/342° (A.26b)
2 :02/311/3 13 02/3-1/3 02/3-1/3
1 1 1
wy = Gy _ 90 15885 O3, | 15032°51/56,,65, _ 15i37/%5 ¢4m’ (A.260)
b 222343 22/3¢2 2-22/3¢,
'32/351/3 3 '32/351/3 vz P '51/3 o
v3 :Z (bww _ ? ¢ ¢3 1 ¢4 7 (A26d)
2. 22/3(252 2. 22/3¢§ 4 . 31/322/3¢2
vy = 120w | Got | 260460y 380i0ne  bidun 45377506,
2507 &% 25¢7 25¢3 o3 4-22/3¢%
451321351360 d,  5i3*/351/3¢5,  15i3°/351/30, ¢, 3i3%/351 3¢, A96
2. 22/3 % T 9Bgs 2. 22/33 2.22/342 (A.26e)
V4 = ¢yy _ ¢y¢wy + ¢12/¢” 5i32/351/3¢ix
75001 375¢5 | 75046 8- 22/347
55002, 6 5108, | 5 0uadus i¢5a A6t
©2.31/322/3¢6 T 3.31/322/3¢5 | 2.31/322/3¢5 4. 31/3102/341° (A.26f)
Us = — 920y _ 12¢wyy + 18¢yy¢ww + 3¢wt¢ww + 41¢y¢azy¢ww _ 58¢12; gze:z _ 3¢t¢im _ ¢’th
TT25¢% 250% | 25¢% 293 2503 255 207 263
1858705 P00, Gybany | 1300050 s | THBYI5O0 6, 030516,
8- 22/3¢7 25¢; 2543 203 2 22/348 4-22/3¢3
15i32/35 3¢, 02, 45i32/35Y3¢2 ¢4, 15i32/35 3¢5, b 932351/ 3¢5, A26
e A A
v — B ey L Swber 3000 | TiB50G5,
375¢5 75095 ' 30048 25007 8- 22/3¢9
L 30000 Bybeay  OPse  35i5V000,05 | 5I5P0uadd,
50008 37548 T504T  8-31/322/3¢8 ' 4.31/322/347
5i32/351/3¢2¢m¢4$ 5251/3¢31¢4w i51/3¢wz¢5z Zd)ﬁw A.26h
16-22/3T 243122738 8- 31/322/3¢8 | 24. 313102733 (4.26h)
g =12005? — 213,020 12¢myyGua n 9oyyD2a n 502t Pra n 161¢y¢uyd2, 1436700,
‘ 25¢% 25¢3 25¢ 209 25¢] 25¢3
_ 5bg, _ T35IBESNOGS,  Gunbunt | Srybrey _ 210yPunbury | APrayy
201 4-22/34% o3 25¢7, 2564 25¢5
N 4¢yy¢3x . 2¢zt¢3m . 79¢y¢zy¢31 + 41¢g24¢m:¢3x + 5¢t¢zz¢31 _ ¢t¢4x
2503 303 7564 15¢7 308 663
3045i3%/351/3¢% 3, 355i3%/351/3¢2 43, N 95i51/3¢3 | Sast | Sydany
8- 22/3¢8 2.22/3¢7 3.31/322/3¢6 " 6L T T5p0
130%0us  355i3%/951 308 pue | 9503235136 dmetne 15137351303,
75¢8 4-22/3¢7 2. 22/3¢8 8- 22/3¢5
LA I P L S Y R e S o R A6
4-22/348 - 92/3 %5 T 292 T 31/322/344” (A.261)
vg arbitrary, (A.26j)
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32300y 690my 02y | 2104y, | 350mdls
10098 10097 4098 8¢8
3540y day 0, 2291000k,  35¢ugl,  405i3%/35Y3¢7 1502, duar
2569 20091 8¢9 22/3¢11 847

5007 10093 10098 2508 T5¢7 1095

o ¢yy¢wx¢3z _ 5¢zt¢xw¢3x _ 203¢y¢$y¢ww¢3w + 703¢72J gi(b?’m + 35¢t¢§x¢3$
507 297 3005 7507 8¢%
8505132/351/3¢21¢3z + 5¢wzt¢3x + 49¢y¢:czy¢3w . 223¢§¢§1 _ 5¢t¢§z + ¢t¢5$
8- 22/3410 12¢6 7597 30003 1207 ' 2440
_ 1505132751565, ¢, 245i8%°51 56,065, | 5burbaet _ PuyPsry | 43y Pariry
2. 22/349 2.22/3¢8 12¢6 75¢8 15047
. ¢3myy + ¢yy¢4m + 5¢a:t¢4:1: + 19¢y¢zy¢4z _ 23¢§¢zm¢4z _ 5¢t¢zz¢4z + 13¢§¢51
2505 | 4008 | 2448 5067 2448 847 30007
101582351365 64, 395518551567 fuefar 565151 08,000 bam  Pyasy
4227349 16 - 22/3¢8 8.3L/322/347  24¢3 30098
125i3°/35" S by ¢7, | 175i3%/951 0% dse | 115V Guars | 5i3*/351 P06,
o 8- 22/3¢7 4-22/3¢8 8- 31/322/3¢6 4-22/3¢6
25i3%/35 3¢ 1 bau sy 15i3%/35 3¢, ¢5,  8Ti3%/351/3¢2 g, i5'3 s, A.26k
_ 22/3¢; + 3. 22/3¢2 - 16 - 22/3915;; - 16 - 31/322/3(1527 ( . )
vy arbitrary, (A.26])

- 1609i¢2,, O 26i2*3¢y65, 1302236, 1302273 ¢y, ot
28125 - 32/3101/3¢7 1125 - 32/351/3¢T 1125 32/351/3¢6 ' 1125 - 32/351/347
5168i2%/ 30y dyyduy | 26022 3Gyidny  52i22/3¢ydrity T118i22/3¢2¢2,
28125 - 32/351/3¢8 ' 1125-32/351/3¢7  1125-32/351/3¢8 28125 - 32/351/3¢9
26023,62, 261223y fuyr | 2602700000y 1312236,y
1125 - 32/351/3¢8 © 1125 - 32/351/3¢7 © 375.32/351/3¢8 1125 - 32/351/3¢7
 3559i2° ¢y du 2602230y dyiden 13122 3¢idyydue  135(v6)rbra 006, (v1)
28125 - 32/351/3¢9 1125 - 32/351/3¢8 1125 - 32/351/3¢8 bs v
1302234} s e N 9068022/ 63 by G | 2602240y buyb0n 5509602,
375 32/351/3¢9 28125 32/351/3¢10 © 375.32/351/3¢9 28125 - 32/3101/3¢11

131223040202,  180vep2, ~ 19902,03,  159b.,, 63, L 1260y, dh, | 630uids,

ur =9007¢7 — 300 (v6)a — 19506 Pz —

ug =

375 32/351/3410 2 2510 406 2510 810
41y ey @t 110205,  63¢,0°  111645i32/351/3¢8
— ¢y¢ y¢mm — ¢y — ¢t¢zaj ‘ ¢xx — 30(7)6)19: - 360’07¢zz
dgl! 4912 8! 64 - 22/3¢13
12250 T8 bem 2602200000y 26222010y 000y  T0LGay$2, buay
1125 - 32/351/3¢8 209 375 - 32/351/3¢9 1125 - 32/351/348 10092
199,03, Guny | 26000030y | 2702, bnayy | 2612°°¢505, N 13i22/3 9,2 s,
25¢10 25¢8 2008 1125 - 32/351/3¢10 © 1125 . 32/351/3¢9
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vy —

+ ]-5'06(15390 109¢iy¢mm¢3m 107¢zyy¢)mm¢3m N 923¢yy¢gz¢3m N 7¢zt¢iz¢3m

o 25¢9 5095 20069 9
2746, Guy @30 050 260505, 030 | 21403, dsa  10395i3%/351/3¢8 ¢,
25¢10 25011 2919 222342

+ 7¢xw¢xact¢3x + 3¢3:y¢:c:cy¢3:c _ 109¢y¢xw¢acmy¢3x _ 3¢xwyy¢3x + 11¢yy¢§x

468 203 2594 1097 25¢5

L T0ni03,  916)60y08, | 340,0m08,  T6i6uu08, | 3T065i3/°51 65, 63,

12¢8 7597 75930 3¢9 8- 22/3¢11
9. 31/322/310 4.31/322/349 8¢8 - 607 + 7548
_ 701¢y g;w(b?my _ 7¢Imy¢3wy + ¢y¢3w¢3wy . 6¢ww¢3wyy + 41¢iy¢)4x _ 29¢Iyy¢4;v
30002 3097 2¢8 25¢7 15048 20067
25¢% 8¢ 30042 100¢3° 497
9975132/351/3¢iz¢4z B ¢mzt¢4z 41¢y¢mxy¢4m B 19¢3¢3I¢4I 7¢t¢3x¢4x
8. 22/3¢pl1 8p7 15008 20002 2408
3325i3%/351 /308 d3phan | 4655153 hrp ¢, Pan | 401537351302 61 Guudant
— 2. 22/3410 4.31/322/349 32.22/3¢9 - 8¢I
o 185132/351/3¢31¢iz o 7¢zy¢4ry + 26¢y¢xm¢4xy + ¢)4m2y B 29¢yy¢5m + 7¢t¢rm¢51
8- 22/3¢8 6007 7548 5008 100067 408
_ Gubse | 280yduydse 1070 0mbse  441i3Y751560 650 ar  ThyDsuy
2047 37548 300092 2. 22/3¢10 12008 30047
3233i3%/551 200 supse  149i3%/951 208, dso  187i3%5 P duadarse  rde
16 - 22/3¢9 8- 22/3¢8 8. 22/3¢8 12047
13i3%/32, | dydee | 465i32/3513¢% dor  BTTi5hradsater | 13155 pus e
4-102/3¢7 30098 16 - 22/3¢9 8- 31/322/3¢48 4.31/322/347
45i3/351 892 dre 53235 Psudr, | 3i8YP5 Suuds, 05"/ ¢,
16 - 22/3¢8 8. 22/3¢7 16 - 22/3¢7 48 - 31/322/396”
1009i¢2,, _ 13igys, 13i¢y1 (e 11165,05,
1265625 - 32/3101/3¢9 20250 - 32/3101/349 40500 - 32/3101/3¢8 ¢, 50012
137;¢yy¢xt 12947i¢y¢yy¢my 13i¢yt¢my . 81¢xyy¢ix
40500 - 32/3101/3¢9 ~ 2531250 - 32/3101/3¢10 ~ 20250 - 32/3101/3¢2 2000911
 13igyderdey 8911idy 07, B 13id: 03, 59¢yy Oy
10125 - 32/3101/3¢10 1265625 - 32/3101/3p11 20250 - 32/3101/3410 1000612
20250 - 32/3101/3¢9 ~ 6750 - 32/3101/3¢10 ~ 40500 - 32/3101/3¢9 500013
 891Ligdyydae  13igybyibee  13ididyyber  3076ma
2531250 - 32/3101/3411 20250 - 32/3101/3¢10 40500 - 32/3101/3¢10 2
_ 5(06)aBus 1302 Gt Paa N 22697i¢% haybaa 131 by by D
203 13500 - 32/3101/3p11 ~ 2531250 - 32/3101/3¢12 ~ 6750 - 32/3101/3¢11

2531250 - 32/3101/3¢13 13500 - 32/3101/3¢12 204 100014 2¢2
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4677i3%/351/3¢8

13062 bt

128 - 22/3¢15

10500 32310173610 6750 - 32/3101/3¢1 1000410

20250 - 32/3101/3 10 1000611 500612 6000510
13Z¢3¢3x 13'L¢t¢§¢3m . 5’06(,2531 83¢iy¢m:c¢3x + 3¢myy¢mm¢3m
20250 - 32/3101/3412 ' 40500 - 32/3101 /3611 643 75011 125¢10
| 3430y 02,030 | 1430y buy @i, 3. 1753i3%/35 3¢5 dg i$ox
6000611 300912 16 - 22/3¢14 432 - 31/3102/3¢8
43¢my¢zmy¢3m B 83¢y¢mz¢mmy¢3x B 7¢rmyy¢3m + 17¢yy¢§x 13i¢4z¢6x
1500610 750411 225009 3000010 ' 36 - 31/3102/3¢
11303 duadl,  4T05i5'/3¢3, 63,  5713i5'/3¢2 43, 667i5'/3¢3, 92 b6
1500612 16-31/322/3¢13  72.31/322/3¢912 ' 216 - 31/322/3¢11 " 6000610
17¢my¢zx¢3@y _ 47¢y iz¢3xy _ ¢zxy¢3my + 43¢y¢3x¢3zy _ ¢xm¢31yy + 7¢92cy¢4x
750610 1000411 30009 4500910 50042 1000610
60000 6000610 3000611 1500612 8 - 31/322/313
L Toyuryin 14907 a0 dae 515315303 daodas | 19952 9u0tBubie  SyPsay
1000610 18000411 48 - 31/322/3¢12 8 - 31/322/311 300099
16 -31/322/3¢11 144 31/322/3$10 60049 3000410 600063 3000062
| 30yBeydsn 1210 Guobse  2279i0% 050 2093i¢2, 630050 853ip3, P50
1250510 3000001 32.31/3102/3¢12 ' 32.31/3102/3¢11 144 . 31/3102/3410
©24.31/31023¢10 T 60-31/3102/349  32-102/3¢lL 144 - 31/3102/3410

96 - 31/3102/3¢10

144 - 31/3102/3¢9

16-31/3102/3¢9 25411 375413
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The Painlevé-Béicklund equations from substitution of (5.4.1) into (5.3.4) are

3230192 — Bidpdas = 0, (A.27a)
—2i¢2pp — iy 2 — 2iung — 5i31/ 3 (v1)?¢3 — 2 323 ¢3 (v1),

110 - 3230142 by — 30ighn 0, — 12i¢2 B3, = 0, (A.27b)
323019102 + iy d2 + 32 Puguidd + (v1)202 + 103 (ug)w + 31330163 (V1) 4 + 312 P
iy by buy + 10200z + 3iuzd? dun + 121373 (01)202 buw + 9 - 37362 (V1) s Pua

1603, + 3 - 3303 (01) e + 330102930 + 18idydre 3 + 3id2Pay = 0, (A.27c)
4 - 32 3Ug01 Grun + 6(11)> ubue + 633010 (V1) P + 91353 (01)2 02, + 12 - 323 (v1) 02,
—i3'3(01)2prby — i3V Pug(v1)2 92 + 2 - 323 (01)02 + 2 - 32B0102 (us) s + 2 - 3 Puag? (V1)
+6(v1)?¢% (01)0 — 61332 (v1)2 + 4 - 32301 9p oy + 4id3, + 4idePuyy + 2idyy Pua
—6i3" 30102 (V1) 0w + 12+ 3%3 0200 (V1) 0w + iy Py + 833 (01) P Bso

+12- 3230, (01) 2 b3 + 12 - 37301 dpudsy + 2 - 32302 (01)30 + 4 - 373016504, = 0, (A.27d)
—2i3Y30; (v1) i — 1313 (01)2 b (u2)w — 203" 3ugv1 (V1) 2 — 133 (V1) % Pus — 132Uz (V1) Prs
+6(v1)% (V1) ez — 63'/3(v1)2 00 — 63" 24 (01)2 (V1) 20 — 613201 Gae (V1) e

+2iPnnyy + 2(01)% P30 — 6i3Y 301 (V1) 230 — 2033016, (v1)30 — 13 (v1)%Par = 0, (A.27¢)
and

3230162 — Bidydae =0, (A.27)

313(01)2 ¢y + 2¢3, = 0. (A.27g)

Substituting (5.5.1) into (5.3.4) and replacing x-derivatives by (4.5.3), the coefficient equations are

O(x™ %) : 12vg + ugvy = 0, (A.28a)
O(x7%) : 4ugvd + T2uov1 + 12ugvovy — v (ug)z — 108vg(vg) s — Suguo(vo)e = 0, (A.28b)
O(x ) : 12iK%ug + 6Cv3 — 114Sv3 — 5Sugvy — 6ugvi — 18uyvivy — 36vpv}

— 18ugugvi + 6v3v1 (o) e + 205 (u1) 2 + 6u1v5 (v0) 2 + 216v9v1 (Vo)

+ 12ugvovy (Vo) — 108v0(vo)2 + 10803 (v1) 4 + 6uevE (v1)s — 5402 (V0)ze = 0, (A.28c¢)
O(x™3): 2iK%uy + 6CvEvy + 303 (vo)s + 2iug K, + 4iK (ug)y — 10i Kug K, + 1203 S,

+ 300v? (10) 2 + 3vav1 (U1) 2 + Vi (Us) e + 3uavd (Vo) s + 6u1veV1 (V0)z + 1803 (v0)s

+ 3o (vo) s + 6(v0)2 + 3uivE (v1)x + 36v0v1 (v1)z + 6ueUEVL (V1) + 1800 (Vo) (V0) 2

+ 303 (v0)32 — 2Su1vs — 60SVEVL — 6SuUgVUaYL — BusviY] — buiVEVT — 2ugvi — 3VEC,

+ 81502 (vg) e — 3601 (v0)2 — 7200 (Vo) (V1)2 — 36V0v1 (V0)zz — 1802 (v1)2e =0,  (A.28d)
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and

(’)(X_Q) : 8iK2%Sug + 305’118’ + 6Cvovf + 12090y (Vo) + GUg(vl)t + 2iu1 Ky + 41K (u1)y + 2i(uo)yy

— 6iKu1 K — 8i(ug)y Ky + SiUOKE + 301}81}15} + 2U%(UQ)3¢ + 6v0vf(u1)m
+ 144Sv9v1 (vo) s + 12uzv9v1 (Vo) + 6u1v%(v0)w + 725’1}8(’01)30 + 6u2v8(vl)w

+ 12ugvgv1 (1) + 6uovf(v1)z + 36(1}0)3(1)1):,3 — diug Ky + 3US’CM + 8iKugK

+ 3601 (v0) 2 (V0) 2z + 3600 (V1) (V0) 2z + 36V0(v0) (V1) za + 120001 (v0) 32 + 65 (V1) 32

— 30521)8’ — 3Suzvg’ — 9Su10801 — 245’1)01)% — 9Su0v0vf — 6u2vovf + 2u1v:1)’

— 1203v1Cy — 27038, (v0) 2 — 5480 (v0)2 — 7201 (Vo) (V1)2 — 36v0(v1)2 — 3V3 Sz

T

— 27502 (V0) we — 1802 (V0) ze — 36001 (V1) ze + 6v2V1 (u2), = 0,
O(x™ ) : iK2Suy +3CSv3vy + 3vi(vo)e + 6vovy (v1)s + iSugK, + iKugS, + 21K S(up),

9
+i(u1)yy — I Sug Ky — 2i(ur)y Ky + iug K2 4 551}8’5, + 3vv3 Sy 4+ 3 (ug),

+ 3ugv (ug)s + %S%g(vo)x + 9502 (1) + 3uv?(vg) e + 18Svgvy (V1) s

+ 6ugvov1 (V1) 2 + 3urvi(v1)e + 18(vg)z (v1)2 — w1 Ky + 3001 Crp + i Kuy Ky

+ 2i(u0)y Kpo — 3itg Ky Koy + 1801 (1) (v0) e + 1801 (v0) 2 (V1) 3

+ iug K ppy + 302 (v0)3e + 6v0v1 (V1)30 — 12521)81)1 - 3Su2v(2)vl — 3Suyvv?

— 30pviCy — 18vgu1 S4(v0) s — 18Sv1(v0)2 — 9035, (V1) e — 3650 (v0) 2 (V1) 2

— 30201 Spe — 1850001 (V) 2w — 9SVE (V1) 2z + 1800(v1) s (V1) we — Suev? = 0,
OKx"): 2iK2S%ug + 6CSvvi — 6S5%vgvs — 6Sugvovy — 2Surv; + 1207 (v1); + 2iSu1 K,

+ 2iKuy Sy + 4iK S (u1)y + 4i(ug)yy — 20K Suy K, + 18Sv5v1S, + 403 (u2),

+ 36520001 (v0) e — 18038, (Vo) + 185202 (1) + 12u9v? (V1) — 360001 Sz (V1)

— 72501 (v0) (V1) 2 — 36Svo(v1)2 + 24(v1)2 + 6vgViCry + 4iK SugK sy

— 2iu1 Ky Ky + 2iu0 K2, — 60007 Spw — 18507 (v0) 2w — 3650001 (V1) 0

+ 7201 (v1) 2 (V1) 2 + 201 Ky + 1207 (1)30 — 38205 + 4i(u1)y Ky = 0,

O(x™3): 2iug +vd =0,

O(x™?): duy +3vgvy —i(ug)z = 0,

O(x™ 1Y) : iSug + 3vgv? —i(u1)s = 0,
O(x%) : iSuy + 203 — 2i(uy), = 0.
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