
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2010 

Detection And Approximation Of Function Of Two Variables In Detection And Approximation Of Function Of Two Variables In 

High Dimensions High Dimensions 

Minzhe Pan 
University of Central Florida 

 Part of the Mathematics Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for 

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Pan, Minzhe, "Detection And Approximation Of Function Of Two Variables In High Dimensions" (2010). 
Electronic Theses and Dissertations, 2004-2019. 1655. 
https://stars.library.ucf.edu/etd/1655 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/174?utm_source=stars.library.ucf.edu%2Fetd%2F1655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1655?utm_source=stars.library.ucf.edu%2Fetd%2F1655&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


 

 

DETECTION AND APPROXIMATION OF FUNCTION OF TWO 

VARIABLES IN HIGH DIMENSIONS 

 

 

 

 

 
 

by 

 

 

 

MINZHE PAN 

B.S. National University of Defense Technology, China, 2002 

 

 

 

 

 

 

A thesis submitted in partial fulfillment of the requirements 

for the degree of Master of Science 

in the Department of Mathematics 

in the College of Science 

at the University of Central Florida 

Orlando, Florida 

 

 

 

 

Fall Term 

2010 

 

 

 

 

Major Professor: XIN LI 
 

  



ii 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2010  Minzhe Pan 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ABSTRACT 

 

 

This thesis originates from the deterministic algorithm of DeVore, Petrova, and Wojtaszcsyk for 

the detection and approximation of functions of one variable in high dimensions. We propose a 

deterministic algorithm for the detection and approximation of function of two variables in high 

dimensions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

 

 

 

 

 

 

 

 

I dedicate my dissertation work to my family and many friends. A special feeling of 

gratitude to my wife, Qiling Shi, for being incredibly understanding and supportive. 

 

 

 

 

 

 

 

 

 



v 
 

ACKNOWLEDGMENTS 

 

 

I wish to thank all my committee members Dr. Deguang Han and Dr. Qiyu Sun who were more 

than generous with their expertise and precious time. A special thanks to Dr. Xin Li, my 

committee chairman and advisor for his patience throughout the entire process. I would like to 

thank all the people who helped me throughout my life. 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

TABLE OF CONTENTS 

CHAPTER ONE: MOTIVATION ................................................................................................................... 1 

1.1 Background .................................................................................................................................... 1 

1.2 Candes-Romberg-Tao Theorem ...................................................................................................... 4 

CHAPTER TWO: THE CASE OF ONE INDEPANDENT VARIBALE ................................................................... 7 

2.1 Sampling Points of DeVore, Petrova, and Wojtaszczyk ................................................................... 7 

2.2 Algorithm 1.1 of DeVore, Petriova, and Wojtaszczyk ...................................................................... 8 

2.3 Approximation Theorem .............................................................................................................. 15 

CHAPTER THREE: THE CASE OF TWO INDEPENDNET VARIABLE .............................................................. 18 

3.1 Analysis on one variable case ....................................................................................................... 18 

3.2 Two independent variables case .................................................................................................. 23 

3.3 Conclusions and Future Research ................................................................................................. 34 

APPENDIX A: ALGORITHM 2.1 ................................................................................................................ 35 

APPENDIX B: ALGORITHM 3.1 ................................................................................................................ 40 

LIST OF REFERENCES .............................................................................................................................. 49 



1 
 

CHAPTER ONE: MOTIVATION 

1.1 Background 

Many solutions of scientific problems can be reformulated as the approximation of a function 𝑓, 

defined on a domain in ℝ𝑁 , with 𝑁 large. In many cases, considering all the parameters is either 

not necessary or not feasible. In the real world applications, we always just consider a few most 

important parameters and develop the function 𝑓 depending on only a few parameters. For 

example, in the insurance industry, the insurance companies collect a lot of data from many 

different dimensions. Then analyzing this data set will find that the function 𝑓 depends only on 

one or two correlations or patterns among many fields. Then we may use this data with very 

few variables to build a model to calculate the premium for the subscription. 

 DeVore, Petrova, and Wojtaszczyk recently ([1]) pointed out that many existing classical 

numerical methods cannot be used for the approximation of function of 𝑁 variables when 𝑁 is 

very large, due to the phenomenon called the curse of dimensionality. They observed that in 

many cases the function 𝑓 can be approximated well by a function of very few variables. Based 

on this observation, they formulated a version of variable reduction in high dimension as 

follows (and for simplicity of reference, we will refer to this problem as DeVore’s reduction 

problem in this thesis):  

DeVore’s Variable Reduction Problem: Assume that 𝑓 is a continuous function defined on 

[0,1]𝑁 but it depends on just 𝑙 of the N coordinates, i.e., 𝑓 𝑥1, 𝑥2, … , 𝑥𝑁 = 𝑔(𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑙), 

where 𝑖1, 𝑖2, … , 𝑖𝑙  are not known. The question DeVore, Petrova, and Wojtasszczyk ([1]) 



2 
 

proposed is: What is the smallest number of evaluations of 𝑓 so that we can detect the 

coordinates 𝑖1 , 𝑖2 , … , 𝑖𝑙  and recover 𝑓 based on these evaluations?  

Note that we are free at selecting the points of the evaluations. Indeed, we should be 

very careful in selecting these points for the function evaluations. In view of sampling theory, 

we can restate the problem as: Select sampling points to detect the independent variables and 

recover the function with the minimum number of samples of the function. Assuming that we 

can do exact evaluation of functions, DeVore, Petrova, and Wojtaszcsyk in [1] gave several 

algorithms and proved that (c.f., Theorem 4.2 and discussion in the last part of the paper) in an 

order of 𝐿𝑙(𝑙𝑜𝑔2𝑁) number of sampling, we can detect the variables and recover the function 

in uniform norm to the accuracy 𝐿−1 when g is in Lip 1. Their algorithm for 𝑙 = 1 is a 

constructive and deterministic one while their solution to 𝑙 > 1 is more of a probabilistic nature 

(i.e., with very high probability, the algorithm will work). See also [8] and [9] for the latest 

development.  

 Motivated by the results of DeVore, Petrova, and Wojtaszcsyk, we want to study the 

case when 𝑙 = 2 and we will propose a deterministic algorithm that can detect and 

approximate the function within the same order and accuracy as given by the random 

algorithm (c.f. Theorem 4.2 in [1]) of DeVore, Petrova, and Wojtaszcsyk. 

 Before we embark our construction of the algorithm, we want to show how the problem 

can be solved in the case when the function 𝑓 is a linear function.  

 Consider a linear function of 𝑁 variables 

𝑓 𝑥1, 𝑥2, … , 𝑥𝑁 = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯+ 𝑎𝑁𝑥𝑁 



3 
 

  

If we know that 𝑓 really depends only on 𝑙 variables 𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑙 , then we must have 

    𝑎𝑖1 ≠ 0, 𝑎𝑖2 ≠ 0,… , 𝑎𝑖𝑙
≠ 0     and 

          𝑎𝑖 = 0  𝑓𝑜𝑟 𝑖 ≠ 𝑖1 , 𝑖2 , … , 𝑖𝑙  

Now, DeVore’s variable reduction problem becomes: How to sample 𝑓 so that we can solve for 

the nonzero coefficients. Suppose that we select the following 𝑚 sample points: 

 𝑥11 , 𝑥12 , … , 𝑥1𝑁 , 

𝑥21 , 𝑥22 , … , 𝑥2𝑁 , 

… 

𝑥𝑚1, 𝑥𝑚2, … , 𝑥𝑚𝑁 , 

and we evaluate 𝑓 at these sampling points so that we have the values 

𝑦1 = 𝑓 𝑥11 , 𝑥12 , … , 𝑥1𝑁 = 𝑎1𝑥11 + 𝑎2𝑥12 + ⋯+ 𝑎𝑁𝑥1𝑁  

𝑦2 = 𝑓 𝑥21 , 𝑥22 , … , 𝑥2𝑁 = 𝑎1𝑥21 + 𝑎2𝑥22 + ⋯+ 𝑎𝑁𝑥2𝑁  

… 

𝑦𝑚 = 𝑓 𝑥𝑚1, 𝑥𝑚2, … , 𝑥𝑚𝑁  = 𝑎1𝑥𝑚1 + 𝑎2𝑥𝑚2 + ⋯ + 𝑎𝑁𝑥𝑚𝑁  

Then, in matrix notation, we have  

𝑦 = 𝐴𝑥 

where 𝑦 =  𝑦1 , 𝑦2 , … , 𝑦𝑚  𝑇 , 𝐴 =  𝑥𝑖𝑗  𝑖=1:𝑚 ;𝑗=1:𝑁
, and  𝑥 =  𝑎1, 𝑎2 , … , 𝑎𝑁 

𝑇  . Thus, DeVore’s 

variable reduction problem for linear functions can be re-stated as: If 𝑥 has only very few 

nonzero components, say 𝑙, then what is the smallest 𝑚 and what kind of matrix 𝐴 to choose so 

that we can solve for 𝑥 given 𝑦? This is indeed the Compressive Sensing or Compressive 



4 
 

Sampling problem currently under intensive investigation by many researchers (see, for 

example, [2], [3], [5]). Here we will mention one of the most significant results obtained by 

Candes, Romberg, and Tao in [2]. 

When we do compressive sampling, we can view the media files (such as image, video, sound) 

as the 𝑁-dimensional vectors  

x1

x2

⋮
xN

 , where 𝑁 is a very large number, e.g., 𝑁 ~ 106 .  When 

most of the 𝑥𝑖 ’s are extremely small, we can ignore them. In this way we will get a sparse vector 

and this vector depends only on 𝑙  𝑙 ≪ 𝑁  coordinate 

variables 𝑓 x1, x2 , … , xN = 𝑔(𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖l  ). If we know m but do not know the coordinates 

𝑖1, 𝑖2, … , 𝑖𝑙  , we can use Candes-Romberg-Tao Theorem to recover them.  

1.2 Candes-Romberg-Tao Theorem 

We know review one of the fundamental results in compressive sensing and show how it can 

help us to solve DeVore’s variable reduction problem in the case when f is a linear function. In 

doing so, we will also show that the order estimate in the main result of DeVore et al ([1]) is 

sharp in terms of its dependence on 𝑁. 

Candes-Romberg-Tao Theorem:  Assume that 𝑚 ≪  𝑁 and 𝐴 is an 𝑚 × 𝑁 matrix. Let 

y = A𝑥0 + ϱ 

be given with  𝜚 2  ≤  𝜀 and unknown 𝑥0 whose support 𝑇0 = {𝑖 ∶ 𝑥0 𝑖 ≠ 0} has cardinality no 

more than 𝑆 ≤ 𝑚. If 

𝛿3𝑆 + 3𝛿4𝑆 < 2 



5 
 

and if 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈ ℝ𝑁 𝑥 1 subject to  𝑦 − 𝐴𝑥0 2 ≤ 𝜀 

then  

 𝑥∗ − 𝑥0 2 ≤ 𝐶𝑠𝜀  

 

 The statement above used the quantity 𝛿𝑘  referred to as the constant of restrictive 

isometry defined by Candes, Romberg, and Tao as follows: it is the smallest positive constant 

𝛿 such that   

 1 − 𝛿  𝑥 2 ≤  𝐴𝑥 2 ≤  1 + 𝛿  𝑥 2 

for all 𝑥 ∈ 𝑅𝑁  with support no more than 𝑘. 

Using the Candes-Romberg-Tao Theorem, we see that we need to select 𝑚 large enough 

so that the condition in the theorem (𝛿3𝑆 + 3𝛿4𝑆 < 2) is satisfied. Then we can recover the 

nonzero coefficients 𝑎𝑖1 , 𝑎𝑖2 , … , 𝑎𝑖𝑚 .  

 Using the probabilistic argument, it is shown (cf. [5]) that the condition in the theorem 

can be satisfied for randomly selected matrix 𝐴 (of Gauss distribution) when 𝑚~ 𝑙(𝑙𝑜𝑔 𝑁). So, 

in the case when the function is linear, we can recover the independent variables (and recover 

the function at the same time) by using as little as 𝑙 log2 𝑁  samples of the function at 

randomly choosing (Gaussian) points. This order is consistent with the one given for the general 

case as mentioned above in the paper of DeVore, Petrova, and Wojtaszcsyk [1]. So, we have 

just verified the sharpness of the order of [1] (at least for its dependence on 𝑁). 



6 
 

 Note that, again, even in the case of linear functions, the algorithm depends on 

randomly generated sampling points. Deterministic constructions in this linear case are still 

under intensive study. For example, Howard, Applebaum, Searle, and Calderbank ([4]) have 

proposed the use of deterministic compressive sensing measurement matrices comprised of 

certain families of frequency modulated sinusoids or second-order Reed-Muller sequences. 

These matrices come with a very fast reconstruction algorithm whose complexity depends only 

on the number of measurements m and not on the signal length N. See also [6] and [7] for 

other recent work on the deterministic construction of the measurement matrices. Our main 

result of this thesis is the construction of a deterministic algorithm for detecting two variables 

in the general (nonlinear) case. 

 

  



7 
 

CHAPTER TWO: THE CASE OF ONE INDEPANDENT VARIBALE 

2.1 Sampling Points of DeVore, Petrova, and Wojtaszczyk 

We first consider the simplest case in which we just need to detect one variable at each time. 

Thus, 𝑓 𝑥1, 𝑥2, … , 𝑥𝑁 = 𝑔 𝑥𝑖1  for some unknown index 𝑖1. 

The set of sampling points where we will ask for the values of 𝑓 is the union of two sets 

of points. The first set of points consists of the base points: 𝒫 ≔ {𝑃𝑖 ≔ 𝐿−1 𝑖, 𝑖, 𝑖, … , 𝑖 , 𝑖 =

0,1,… , 𝐿}.  The second set of points consists of the padding points (to be introduced later). The 

base points are selected so that its projection onto any single variable will give us a set of 

uniformly distributed points in that variable. The padding points are used to detect the variable 

that the function 𝑓 depends on. Padding points are associated to a pair of points: Let 𝑃, 𝑃′ ∈  𝒫, 

𝑛: =    log2 𝑁   − 1. Define the point [𝑃, 𝑃′ ]𝑘    (𝑘 ∈  0,1, … , 𝑛 ) whose 𝑗-th coordinate is 𝑃(𝑗) if  

𝑏𝑘(𝑗) = 0 or it is 𝑃′(𝑗) if  𝑏𝑘(𝑗) = 1, where 𝑏𝑘(𝑗) is the 𝑘-th bit of the binary representation of 

𝑗 − 1:  

𝑗 = 1 +  𝑏𝑘 𝑗 2𝑘 .

𝑛

𝑘=0

 

We now prove two lemmas on the properties of the padding points. 

Lemma 1. Assume that f depends on only one variable and assume that 𝑓(𝑃) ≠  𝑓(𝑃′). For any 

𝑘 = 1,2,… , 𝑛, 𝑓([𝑃, 𝑃′]𝑘) is either 𝑓 𝑃  or𝑓(𝑃′).  

Proof. By the definition of the padding points, we know that [𝑃, 𝑃′]𝑘(𝑗) is either 𝑃(𝑗)  or𝑃′(𝑗) 

for 𝑗 = 1,2, … , 𝑁. Assume that 𝑓 depends on variable 𝑥𝑖1 . Then, 



8 
 

 𝑓  𝑃, 𝑃′ 𝑘 = 𝑓  𝑃, 𝑃′ 𝑘 1 ,  𝑃, 𝑃′ 𝑘 2 ,… ,  𝑃, 𝑃′ 𝑘 𝑁  = 𝑔( 𝑃, 𝑃′ 𝑘 𝑖1 )  

which is either 𝑔 𝑃(𝑖1)  or 𝑔 𝑃′(𝑖1) , which, in turn, can be written as either 𝑓(𝑃) or 𝑓(𝑃′). To 

summarize, we have proved that 𝑓([𝑃, 𝑃′]𝑘) is either 𝑓 𝑃  or𝑓(𝑃′). QED 

 

Lemma 2. Assume that f depends on only variable 𝑥𝑖1  and assume that 𝑓(𝑃) ≠  𝑓(𝑃′). For each 

𝑘 = 0,1,… , 𝑛, 𝑓([𝑃, 𝑃′]𝑘) is 𝑓 𝑃  if and only if 𝑏𝑘(𝑖1) = 0 and  𝑓([𝑃, 𝑃′]𝑘) is 𝑓 𝑃′  if and only if 

𝑏𝑘(𝑖1) = 1. 

Proof. From the proof of Lemma 1, we see that  𝑓([𝑃, 𝑃′]𝑘) is 𝑓 𝑃  if and only if  𝑃, 𝑃′ 𝑘(𝑖1) =

𝑃(𝑖1). But  𝑃, 𝑃′  𝑘 𝑖1 = 𝑃(𝑖1) if and only if 𝑏𝑘(𝑖1) = 0. This proves the first half of the 

statement in this Lemma. The proof of the second half of the Lemma is similar. QED 

 

We will see how Lemma 2 is used to detect 𝑖1 from the values (indeed, the differences in values) 

of the function 𝑓 in next Section. 

 

2.2 Algorithm 1.1 of DeVore, Petriova, and Wojtaszczyk 

We consider an algorithm given by DeVore, Petrova, and Wojtaszcsyk in [1] for the case when 

the function 𝑓 depends on only one coordinate variable. Recall that we can rewrite function 𝑓 

as  𝑓 x1, x2 , … , xN = 𝑔 xi1
  where 𝑖1 is unknown to us. We first evaluate our function 𝑓 at all 

the sampling/query points in advance:   

The base points set:    𝒫 ≔ {𝑃𝑖 : =  
𝑖

𝐿
,
𝑖

𝐿
,
𝑖

𝐿
, … ,

𝑖

𝐿
,
𝑖

𝐿
 | 𝑖 = 0,1,2,… , 𝑁} 



9 
 

The padding points set: 𝒬: =  [𝑝0 , 𝑝1]𝑘 , [𝑝1, 𝑝2]𝑘 , [𝑝2, 𝑝3]𝑘 , … , [𝑝𝐿−1, 𝑝𝐿]𝑘   𝑘=0,…,𝑛 . 

Recall that    

[𝑝𝑖 , 𝑝𝑖+1]𝑘(𝑗) =  
𝑝𝑖 𝑗 ,     𝑖𝑓 𝑏𝑘 𝑗 = 0 

𝑝𝑖+1 𝑗 , 𝑖𝑓 𝑏𝑘 𝑗 = 1
   

where 

𝑗 = 1 +  𝑏𝑘 𝑗 2𝑘

𝑛

𝑘=0

 

and  

𝑛 =  𝑙𝑜𝑔2𝑁 − 1 

It is clear that the set of base points contains 𝐿 +  1 points. The important property of 

this set is when we project it into any coordinate axis, we will get a set of 𝐿 +  1 equally spaced 

points. So, the set of base points is good for the construction of an approximation of 𝑓 when we 

know which variable it depends on.  

If 𝑓 is constant on 𝒫, then we just use a constant function to approximate f and we do 

not need to know the independent coordinate 𝑖1 since the constant can be used to constant an 

approximate to 𝑓 with error =  𝑂 𝐿−1  when g is assumed to be of Lip 1. If 𝑓 is not constant on 

𝒫, then we will use the padding points to find the coordinate 𝑖1 as follows:  Let 𝑖 be the smallest 

index such that 𝑓 𝑃𝑖 ≠ 𝑓 𝑃𝑖+1 .  Now, we examine the values of 𝑓  𝑃𝑖 , 𝑃𝑖+1 𝑘 :  By lemmas 1 

and 2, for each 𝑘, 𝑓  𝑃𝑖 , 𝑃𝑖+1 𝑘  is equal to exactly one of 𝑓(𝑃𝑖) or 𝑓(𝑃𝑖+1) and, furthermore, it 

equals 𝑓(𝑃𝑖) is and only if 𝑏𝑘(𝑖1) = 0; it equals 𝑓(𝑃𝑖+1) is and only if 𝑏𝑘(𝑖1) = 1. Thus, we will 

have the values of the follow finite sequence (by checking if 𝑓( 𝑃𝑖 , 𝑃𝑖+1 𝑘) = 𝑓(𝑃𝑖) or not): 

𝑏0 𝑖1 , 𝑏1 𝑖1 , …  , 𝑏𝑛(𝑖1) 



10 
 

Note that  

𝑖1 = 1 +  𝑏𝑘 𝑖1 2𝑘

𝑛

𝑘=0

 . 

So, we can recover the bits of 𝑖1 in its binary representation. Hence we have found the index of 

the independent variable the function 𝑓 depends on. 

Next, we use a numerical example to demonstrate the definitions and algorithm described 

above. 

Example 1. (Padding Points: N=4) 

For N=4 and take L=3.  

Consider two base points:  𝑝 =  
1

3
,

1

3
,

1

3
,

1

3
   and   𝑝′ = (

2

3
,

2

3
,

2

3
,

2

3
) 

We can write down all binary representations of 1,2,3, and 4 (=N): 

𝐵𝑖𝑛𝑎𝑟𝑦 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
𝑗 = 1:        𝑗 − 1 = 0 0      0
𝑗 = 2:         𝑗 − 1 = 1 0      1
𝑗 = 3:         𝑗 − 1 = 2 1      0
𝑗 = 4:         𝑗 − 1 = 3 1      1

 

For  k=1,  we have the corresponding column consisting of the digits sequence  0011 

For  k=0,  we have the corresponding column consisting of the digits sequence   0101 

So, the padding points are:  

[𝑝, 𝑝′ ]1 =  
1

3
,
1

3
,
2

3
,
2

3
  

[𝑝, 𝑝′ ]0 =  
1

3
,
2

3
,
1

3
,
2

3
  

 



11 
 

Example 2. (Padding Points, N=8) 

Consider 𝑁 = 8 and 𝐿 = 8. 

Consider two base points :                 𝑝 = (
1

8
,

1

8
,

1

8
,

1

8
,

1

8
,

1

8
,

1

8
,

1

8
) 

                                                                 𝑝′ = (
2

8
,

2

8
,

2

8
,

2

8
,

2

8
,

2

8
,

2

8
,

2

8
)  

Write down all the binary representations for 𝑗 = 1,2, … ,8: 

𝑗 = 1:     𝑗 − 1 = 0 =      000 

𝑗 = 2:     𝑗 − 1 = 1 =      001 

𝑗 = 3:     𝑗 − 1 = 2 =      010 

𝑗 = 4:     𝑗 − 1 = 3 =      011 

𝑗 = 5:     𝑗 − 1 = 4 =      100 

𝑗 = 6:     𝑗 − 1 = 5 =      101 

𝑗 = 7:     𝑗 − 1 = 6 =      110 

𝑗 = 8:     𝑗 − 1 = 7 =      111 

So, we obtain the columns: 

𝑘 = 2       00001111 

𝑘 = 1       00110011 

𝑘 = 0       01010101 

The padding points for 𝑘 = 0,1,2 are:  

[𝑝, 𝑝′ ]0 =  
1

8
,
2

8
,
1

8
,
2

8
,
1

8
,
2

8
,
1

8
,
2

8
  

[𝑝, 𝑝′]1 =  
1

8
,
1

8
,
2

8
,
2

8
,
1

8
,
1

8
,
2

8
,
2

8
  



12 
 

[𝑝, 𝑝′ ]2 =  
1

8
,
1

8
,
1

8
,
1

8
,
2

8
,
2

8
,
2

8
,
2

8
  

 

Example 3. (Numerical Experiments of the Algorithm) 

Assume  𝑓 𝑥1, 𝑥2, … , 𝑥𝑁 = 𝑔(𝑥3) = sin(𝑥3 ∗ 16𝜋). We will take N=9 in our experiments. So, 

 𝑛 =  𝑙𝑜𝑔2𝑁 − 1 = 3. The base points set is:  𝒫 ≔ {𝑃𝑖 = (
𝑖

𝐿
,
𝑖

𝐿
,
𝑖

𝐿
, … ,

𝑖

𝐿
,
𝑖

𝐿
)| 𝑖 = 0,1,2,… , 𝐿} 

and there are 4 padding points for each pair  𝑃𝑖 , 𝑃𝑖+1 𝑘 : Let 𝑎𝑖 =
𝑖

𝐿
, 𝑎𝑖+1 =  

𝑖+1

𝐿
, then 

 𝑃𝑖 , 𝑃𝑖+1 3 = {𝑎𝑖 𝑎𝑖 𝑎𝑖 𝑎𝑖 𝑎𝑖 𝑎𝑖 𝑎𝑖 𝑎𝑖 𝑎𝑖+1} 

 𝑃𝑖 , 𝑃𝑖+1 2 = {𝑎𝑖 𝑎𝑖 𝑎𝑖 𝑎𝑖 𝑎𝑖+1 𝑎𝑖+1 𝑎𝑖+1 𝑎𝑖+1 𝑎𝑖} 

 𝑃𝑖 , 𝑃𝑖+1 1 =  𝑎𝑖 𝑎𝑖 𝑎𝑖+1 𝑎𝑖+1 𝑎𝑖 𝑎𝑖 𝑎𝑖+1 𝑎𝑖+1 𝑎𝑖  

 𝑃𝑖 , 𝑃𝑖+1 0 = {𝑎𝑖 𝑎𝑖+1 𝑎𝑖 𝑎𝑖+1 𝑎𝑖 𝑎𝑖+1 𝑎𝑖 𝑎𝑖+1 𝑎𝑖} 

Numerically, we have 

a)  L=4 

The function values at the base points:  

L=4 i=0 i=1 i=2 i=3 i=4 
𝑖

𝐿
 

0 0.2500 0.5000 0.7500 1.0000 

𝑓 𝑃𝑖 = 1.0e-014 *  0    -0.0490    -0.0980    -0.1470    -0.1959 

 

The function values at the padding points: 𝑓 = 1.0𝑒 − 014 ∗ 

 
𝑓( 𝑃𝑖 , 𝑃𝑖+1 𝑘) 

k=3 k=2 k=1 k=0 Independent 
variable 
coordinate 

i=0 0 0 -0.0490         0 3 

i=1 -0.0490    -0.0490    -0.0980    -0.0490 3 

i=2 -0.0980    -0.0980    -0.1470    -0.0980 3 

i=3 -0.1470    -0.1470    -0.1959    -0.1470 3 



13 
 

 

The algorithm needs to take 21 function evaluations. 

b) L=8 

The function values at the base points: 

L=4 i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 
𝑖

𝐿
 

0 0.1250     
 

0.2500     0.3750     0.5000     0.6250     0.7500     0.8750     1.00 

𝑓 𝑃𝑖 = 
1.0e-014 *   

0    -0.0245    -0.0490    -0.0735    -0.098    -0.1225    -0.147    -0.1715    -0.1959 

 

The function values at the padding points: 

𝑓 = 1.0𝑒 − 014 ∗ 

 
𝑓( 𝑃𝑖 , 𝑃𝑖+1 𝑘) 

k=3 k=2 k=1 k=0 Independent 
variable 
coordinate 

i=0 0 0 -0.0490         0 3 

i=1 -0.0245   -0.0245   -0.0490   -0.0245 3 

i=2 -0.0490   -0.0490   -0.0735   -0.0490 3 

i=3 -0.0735   -0.0735   -0.0980   -0.0735 3 

i=4 -0.0980   -0.0980   -0.1225   -0.0980 3 

i=5 -0.1225   -0.1225   -0.1470   -0.1225 3 

i=6 -0.1470   -0.1470   -0.1715   -0.1470 3 

i=7 -0.1715   -0.1715   -0.1959   -0.1715 3 

 

It needs to ask for 𝑓’s values for 41 times. 

c) L=12 

The function values at the base points:  

 i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12 
𝑖

𝐿
  

0    0.0833    0.1667    0.2500    0.3333    0.4167    0.5000    0.5833    0.6667    0.7500    0.8333    0.9167 1.0000 

𝑓 0   -0.8660    0.8660   -0.0000   -0.8660    0.8660   -0.0000   -0.8660    0.8660   -0.0000   -0.8660    0.8660 -0.0000 

 



14 
 

The function values at the padding points: 

 
𝑓( 𝑃𝑖 , 𝑃𝑖+1 𝑘) 

 
k=3 

 
k=2 

 
k=1 

 
k=0 

Independent 
variable 
coordinate 

i=0 0         0   -0.8660         0 3 

i=1 -0.8660   -0.8660    0.8660   -0.8660 3 

i=2 0.8660    0.8660   -0.0000    0.8660 3 

i=3 -0.0000   -0.0000   -0.8660   -0.0000 3 

i=4 -0.8660   -0.8660    0.8660   -0.8660 3 

i=5 0.8660    0.8660   -0.0000    0.8660 3 

i=6 -0.0000   -0.0000   -0.8660   -0.0000 3 

i=7 -0.8660   -0.8660    0.8660   -0.8660 3 

i=8 0.8660    0.8660   -0.0000    0.8660 3 

i=9 -0.0000   -0.0000   -0.8660   -0.0000 3 

i=10 -0.8660   -0.8660    0.8660   -0.8660 3 

i=11 0.8660    0.8660   -0.0000    0.8660 3 

 

It needs to ask for 𝑓’s values for 61 times. 

d) L=5。 The function value at the base points: 

𝑓 = 1.0𝑒 − 014 ∗ 

L=4 i=0 i=1 i=2 i=3 i=4 i=5 
𝑖

𝐿
 

0    0.2000    0.4000    0.6000    0.8000    1.0000 

𝑓(𝑃𝑖)  0   -0.5878    0.9511   -0.9511    0.5878   -0.0000 

 

The padding points value: 

𝑓 = 1.0𝑒 − 014 ∗ 

 
𝑓( 𝑃𝑖 , 𝑃𝑖+1 𝑘) 

k=3 k=2 k=1 k=0 Independent 
variable 
coordinate 

i=1 0         0   -0.5878         0 3 

i=2 -0.5878   -0.5878    0.9511   -0.5878 3 

i=3 0.9511    0.9511   -0.9511    0.9511 3 

i=4 -0.9511   -0.9511    0.5878   -0.9511 3 

i=5 0.5878    0.5878   -0.0000    0.5878 3 

 



15 
 

It needs to ask for the values of 𝑓 for 26 times. 

Finally, let us try to run the program on a function of two variables (and we know it will fail). 

e) L=5 and assume 𝑓 𝑥1, 𝑥2, … , 𝑥9 = 𝑔(𝑥3, 𝑥5) = sin 𝑥3 ∗ 16𝜋 + 3 ∗ sin(𝑥5 ∗ 8𝜋) 

The function values at the base points:    

L=4 i=0 i=1 i=2 i=3 i=4 i=5 
𝑖

𝐿
 

0    0.2000    0.4000    0.6000    0.8000    1.0000 

𝑓(𝑃𝑖)  0   -3.4410   -0.8123    0.8123    3.4410 -0.0000 

 

The padding points value: 

 
𝑓( 𝑃𝑖 , 𝑃𝑖+1 𝑘) 

 
k=3 

 
k=2 

 
k=1 

 
k=0 

Independent 
variable 
coordinate 

i=1 0   -2.8532   -0.5878         0 7 

i=2 -3.4410   -2.3511   -1.9021   -3.4410 16 

i=3 -0.8123    2.7144   -2.7144   -0.8123 16 

i=4 0.8123    1.9021    2.3511    0.8123 16 

i=5 3.4410    0.5878    2.8532    3.4410 16 

 

After evaluating the function 26 times, we get the independent variables’ coordinate. But for 

different base point pairs, the detected position is changed. This signals the possibility that the 

function is not of one independent variable. 

 

 

2.3 Approximation Theorem 

Once the variable of the function is detected, we can use any standard approximation method 

to construct an approximation 𝑓  of the function 𝑓 from its values at the base points. There are 



16 
 

many ways to construct good approximations to a given function. We will assume that there 

will be enough samples of our functions available to us at the uniformly distributed points and 

we will also assume that the functions we want to approximate are of Lip 1 class (or whose 

derivatives of order 𝑠 are in Lip 1, denoted by Д𝑠). Then as in [1], DeVore, Petrova, and 

Wojtaszcsyk quoted the following result from approximation theory. Let 𝑕 = 1/𝐿 and let X be 

the discrete points obtained by uniformly partition the interval [0,1]. Let 𝐴𝑕(𝑔) be the 

approximation to g from the space Д𝑠  based on the values of g at the uniformly distributed 

points such that (i) 𝐴𝑕(𝑔) = 𝑔 if 𝑔 is constant; (ii)  𝐴𝑕(𝑔) ≤ 𝐶0 max𝑥∈𝑋 |𝑔(𝑥)|  for all 𝑕.  

When f depends only on one variable 𝑓 𝑥1, 𝑥2, … , 𝑥𝑁 = 𝑔 𝑥𝑗 , we define 𝑓  =  𝐴𝑕(𝑔). 

 

Theorem ( Theorem 2.1 in [1]). If 𝑓 𝑥1, 𝑥2, … , 𝑥𝑁 = 𝑔 𝑥𝑗  𝑤𝑖𝑡𝑕 𝑔 ∈  Д𝑠 , then the function 𝑓  

defined above satisfies 

 𝑓 − 𝑓  
𝑐(𝛺)

≤  𝑔 Д𝑠𝑕𝑠 

This algorithm uses at most   𝐿 + 1 + 𝐿 𝑙𝑜𝑔2𝑁  evaluations of 𝑓. 

Proof. We have  

𝑓 𝑥1, 𝑥2, … , 𝑥𝑁 − 𝑓  𝑥1, 𝑥2, … , 𝑥𝑁 = 𝑔 𝑥𝑗 − 𝐴𝑕 𝑔 (𝑥𝑗 ) 

and, for 𝑔 ∈  Д𝑠 ,                           

                                                                𝑔 − 𝐴𝑕 𝑔  𝑐(𝛺) ≤ 𝐶𝑕𝑠 . 

Recall that 

 𝑔 Д𝑠: = 𝑠𝑢𝑝𝑕{𝑕−𝑠 𝑔 − 𝐴𝑕 𝑔  𝑐 𝛺 } 

So,  



17 
 

 𝑓 𝑥1, 𝑥2, … , 𝑥𝑁 − 𝑓  𝑥1, 𝑥2, … , 𝑥𝑁  =  𝑔 𝑥𝑗 − 𝐴𝑕 𝑔 (𝑥𝑗 )  ≤  𝑔 Д𝑠𝑕𝑠. 

QED 

We have a similar result for two variables and we will just assume that once we can detect the 

variables, we use the above procedure to approximate our function (of lower dimension) at the 

uniformly distributed points with step length of 𝑕 = 1/𝐿 in each dimension. 

  



18 
 

CHAPTER THREE: THE CASE OF TWO INDEPENDNET VARIABLE 

3.1 Analysis on one variable case 

 

Now we consider the case that function 𝑓 depends on two coordinate variables: 

                                                           𝑓 x1, x2, … , xN = 𝑔(𝑥i , 𝑥j)  

where 𝑖, 𝑗 are unknown to us. 

To motivate the algorithm of detecting the two unknown variables, we now reformulate 

the algorithm of DeVore, Petrova, and Wojtaszcsyk in a different but equivalent way. 

First we write down the unique binary representations for all 𝑗’s. 

a)  𝑁 = 4 

0 0
0 1
1 0
1 1

 

 

b)  𝑁 = 7 

 

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0

 

c)  𝑁 = 15 



19 
 

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0

 

Then we spell out the query points. We will examine the query points in each case. We can see 

that padding points are constructed by changing about half of the coordinates, in a uniform 

way. Please refer to the colored blocks to see the pattern. The 0’s and 1’s tell us when to use 

the first or the second point in forming the coordinates of the padding points from the two 

given points: 0 means the use of the first point’s coordinate and 1 means the use of the second 

point’s coordinate.  

a) 𝑁 = 4, 𝐿 = 3 

Assume that 𝑓(𝑝) ≠ 𝑓(𝑝’) with the base points: 

𝑝 =  
1

3
,
1

3
,
1

3
,
1

3
  

𝑝′ = (
2

3
,
2

3
,
2

3
,
2

3
) 

 The related padding points for us to use in order to detect the independent variable are: 

[𝑝, 𝑝′ ]1 =  
1

3
,
1

3
,
2

3
,
2

3
  



20 
 

[𝑝, 𝑝′ ]0 =  
1

3
,
2

3
,
1

3
,
2

3
  

The value of 𝑓 at the first padding point will tell us whether the independent variable is in the 

first half of the coordinates or the second half; the value of 𝑓 at the second padding point will 

inform us exactly which location the independent variable is: 1 or 2 in the case it lies in the first 

half or 3 or 4 if it lies in the second half. 

b) 𝑁 = 7, 𝐿 = 8 

 Assume that 𝑓(𝑝) ≠ 𝑓(𝑝’) with the base points: 

𝑝 =  
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
  

𝑝′ = (
2

8
,
2

8
,
2

8
,
2

8
,
2

8
,
2

8
,
2

8
) 

 The related padding points for us to use in order to detect the independent variable are: 

[𝑝, 𝑝′ ]2 =  
1

8
,
1

8
,
1

8
,
1

8
,
2

8
,
2

8
,
2

8
  

[𝑝, 𝑝′ ]1 =  
1

8
,
1

8
,
2

8
,
2

8
,
1

8
,
1

8
,
2

8
  

[𝑝, 𝑝′ ]0 =  
1

8
,
2

8
,
1

8
,
2

8
,
1

8
,
2

8
,
1

8
  

The value of 𝑓 at the first point will tell us whether the independent variable is in the first half 

of the coordinates or the second half; the value of 𝑓 at the second padding point will inform us 

which quarter the independent variable lies; and the value of 𝑓 at the third padding point tells 

us exactly which location the independent variable is: 1 or 2 in the case it lies in the first quarter,  

3 or 4 if it lies in the second quarter, 5 or 6 if it lies in the third quarter, and, finally, 7 or 8 if it 



21 
 

lies in the last quarter. Note that once we know which quarter the independent variable lies, 

we will not be concerned about the coordinates in all other quarters. In particular, we can allow 

the padding point be changed in its three quarters locations without interfering our detection 

of the independent variable.  

c)  𝑁 = 15, 𝐿 = 16 

Assume that 𝑓(𝑝) ≠ 𝑓(𝑝’) with the base points: 

𝑝 =  
1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
  

𝑝′ = (
2

16
,

2

16
,

2

16
,

2

16
,

2

16
,

2

16
,

2

16
,

2

16
,

2

16
,

2

16
,

2

16
,

2

16
,

2

16
,

2

16
,

2

16
) 

 The related padding points for us to use in order to detect the independent variable are: 

[𝑝, 𝑝′ ]3 =  
1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

1

16
,

2

16
,

2

16
,

2

16
,

2

16
,

2

16
,

2

16
,

2

16
  

[𝑝, 𝑝′ ]2 =  
1

16
,

1

16
,

1

16
,

1

16
,

2

16
,

2

16
,

2

16
,

2

16
,

1

16
,

1

16
,

1

16
,

1

16
,

2

16
,

2

16
,

2

16
  

[𝑝, 𝑝′ ]1 =  
1

16
,

1

16
,

2

16
,

2

16
,

1

16
,

1

16
,

2

16
,

2

16
,

1

16
,

1

16
,

2

16
,

2

16
,

1

16
,

1

16
,

2

16
  

[𝑝, 𝑝′ ]0 =  
1

16
,

2

16
,

1

16
,

2

16
,

1

16
,

2

16
,

1

16
,

2

16
,

1

16
,

2

16
,

1

16
,

2

16
,

1

16
,

2

16
,

1

16
  

Just like in the first two cases discussed above, the value of 𝑓 at the first padding point will tell 

us whether the independent variable is in the first half of the coordinates or the second half; 

the value of 𝑓 at the second padding point will inform us which quarter the independent 

variable lies; the value of 𝑓 at the third padding point tells which one-eighth the independent 

variable lies, and the value of 𝑓 at the forth padding point gives us the us exact location. Note 



22 
 

that in the last two examples (the cases in b) and c) above), the dimension is not a power of 2 

and can be handled in the algorithm by checking if the index is beyond the dimension. 

We can summarize the essentiality of finding one change variable algorithm as follows.  

1) Choose an integer 𝐿 and build the base points set 𝒫. 𝒫 ≔ {𝑃𝑖 ≔
1

𝐿
(𝑖, 𝑖, 𝑖, … , 𝑖)}𝑖=0

𝐿  

2) Ask for the values at the base points. 

3) Build the padding points set recursively: 

a) For each pair of points from the base points set. 𝑃, 𝑃′ ∈  𝒫 

b) Let 𝑛 =  𝑙𝑜𝑔2𝑁 − 1   

c) Let the 1st to 2𝑛th components of the padding point  𝑃, 𝑃’ 𝑛   to be the same as the 

first base point 𝑃, and the next  2𝑛 + 1 th to 2 × 2𝑛th components of the second 

point 𝑃’. Now recursively define the next 2𝑛  components to be the same as the first 

base point 𝑃 and defined the next 2𝑛  components to be the same as the coordinate 

of the second base point 𝑃’,…, 

until the coordinate exceeds 𝑁. 

d) 𝑛 = 𝑛 − 1  Continue the step c) to construct next padding point.  

e) Stop when 𝑛 < 0. 

4) If 𝑓(𝑃) ≠ 𝑓(𝑃’), ask for the values for the padding points. For =  log2 𝑁 − 1: −1: 0 , 

check to see if 𝑓( 𝑃, 𝑃′]𝑘 = 𝑓 𝑃 ,  then we know which half, which quarter, …, etc., the 

independent variable lies (i.e., we know the 𝑘th bit of 𝑗: 𝑏𝑘 𝑗 = 0 if 𝑓( 𝑃, 𝑃′ ]𝑘 =

𝑓 𝑃 ,  and we know 𝑏𝑘 𝑗 = 1 if the value 𝑓( 𝑃, 𝑃′ ]𝑘 = 𝑓 𝑃′ ). 

5) We know all the bits of 𝑗 and hence we know 𝑗. 



23 
 

 

This algorithm needs 𝐿 + 1 + 𝐿 𝑙𝑜𝑔2𝑁   evaluations of 𝑓. 

Once the independent variable is detected, the 𝐿 + 1 values of 𝑓 at the base points can 

all be used to construct a good approximation. Hence, the total evaluations needed for the 

detection and approximation is 𝐿 + 1 + 𝐿 𝑙𝑜𝑔2𝑁 . 

 

3.2 Two independent variables case  

Now we consider the two independent variables case. 

                                                    𝑓 𝑥1, 𝑥2, … , 𝑥N = 𝑔(𝑥i , 𝑥j) 

We propose the follow algorithm to find out the two independent variables’ position. 

1) Choose an integer 𝐿 and build the base points set. 𝒫. 𝒫 ≔ {𝑃𝑖 ≔
1

𝐿
(𝑖, 𝑖, 𝑖, … , 𝑖)}𝑖=0

𝐿  

2) Evaluate the function at the base points. Choose a pair of base points  𝑃, 𝑃’:  

       𝑃 =  
𝑖

𝐿
,
𝑖

𝐿
, … ,

𝑖

𝐿
,
𝑖

𝐿
     𝑃’ =  

𝑗

𝐿
,
𝑗

𝐿
, … ,

𝑗

𝐿
,
𝑗

𝐿
  

such that if we denote the values of the function 𝑓 at these base points 𝑃, 𝑃’ by 𝑞1 and 

𝑞2  then 

               𝑓 𝑃 = 𝑞1 ≠ 𝑞2 = 𝑓 𝑃′ .           

3) Build the basic base points set recursively: 

a) For each pair of points from the base points set.  𝑃, 𝑃’ ∈  𝒫 

b) Let 𝑛 =  𝑙𝑜𝑔2𝐿 − 1   



24 
 

c) Let the 1st to 2𝑛th components of the padding point  𝑃, 𝑃’ 𝑛   be the same as 

those of the first base point 𝑃, and the next  2𝑛 + 1 th to 2 × 2𝑛th 

components be the same as those of the second base point 𝑃’. Now 

alternatively define the next 2𝑛  components to be the same as the first base 

point 𝑃 and defined the next 2𝑛  components to be the same as the 

coordinate of the second base point 𝑃’,…, 

             until the coordinate exceeds 𝑁. 

d) 𝑛 = 𝑛 − 1 and continue the step c) to construct next basic padding point.  

e) Stop when 𝑛 < 0. 

4) Initialize the considered range bounds as 𝑏𝑢𝑝 = 1 and  𝑏𝑑𝑜𝑤𝑛 = 𝑁. 

5) Recall that 𝑃 and 𝑃’ are chosen as in step 2). So, we know that 𝑔 𝑃’(1), 𝑃’(1) ≠

𝑔 𝑃(1), 𝑃(1) . Assume that 

𝑔 𝑃’ 1 , 𝑃’ 1  ≠ 𝑔 𝑃 1 , 𝑃’ 1     𝑔 𝑃 1 , 𝑃 1  ≠ 𝑔 𝑃 1 , 𝑃’ 1  .  

Evaluate the function 𝑓 at all the padding point   𝑃, 𝑃′  𝑘 = 𝑃𝑃𝑘   

      The function’s value at the padding point 𝑃𝑃𝑘  is denoted by 𝑤1 = 𝑓 𝑃𝑃𝑘   . Then there 

are three cases. 

      Case 1:  𝑤1 = 𝑞1,  Case 2:  𝑤1 = 𝑞2 ,  and Case 3: 𝑤1 ≠ 𝑞1 𝑎𝑛𝑑 𝑤1 ≠ 𝑞2  .  

We need to consider the three cases separately.  

 

For 𝑘 =   𝑙𝑜𝑔2𝑁 :−1: 1 

      Case 1:    𝑤1 = 𝑞1  



25 
 

In this case we know two independent variables are in the first half of the 

coordinates in the range [𝑏𝑢𝑝 , 𝑏𝑑𝑜𝑤𝑛 ].  

I.e., we know the 𝑘th bits of both indices 𝑏𝑘 𝑣1 = 0  and 𝑏𝑘 𝑣2 = 0. 

Then we narrow the considered range. Reset the boundary by letting 

  𝑏𝑑𝑜𝑤𝑛 = 𝑏𝑢𝑝 + 2𝑘−1 − 1.  

Reset the padding points to sub-padding points: Let the components of padding 

point whose coordinates are not in the considered range be the same as the 

components of the first base point  𝑃 . 

Case 2:   𝑤1 = 𝑞2  

In this case, the two independent variables are in the second half of considered 

range, i.e., we know the 𝑘th bits 𝑏𝑘 𝑣1 = 1  and 𝑏𝑘 𝑣2 = 1. 

Then we narrow the considered range. Reset the boundary by letting 

    𝑏𝑢𝑝 = 𝑏𝑢𝑝 + 2𝑘 − 1 

Reset the basic padding points to sub-padding points as follows: Let the components 

of each padding point whose coordinates are not in the considered range be the 

same the components of the first point  𝑃 . 

Case 3: 𝑤1 ≠ 𝑞1  𝑎𝑛𝑑 𝑤1 ≠ 𝑞2   

In this case the two independent variables are separate into two halves of the 

considered range. In this case, in each half, we use one variable algorithm to find the 

single variable in that half. 

 



26 
 

Step 1: Detect the variable position in the first half of consider range.        

We know the 𝑘th bit 𝑏𝑘 𝑣1  = 0.  

Then we narrow the considered range: Reset the boundary by letting 

   𝑏𝑏𝑑𝑜𝑤𝑛 = 𝑏𝑢𝑝 + 2𝑘 − 1,   𝑏𝑏𝑢𝑝 = 𝑏𝑢𝑝  

Copy the remaining padding points set to set A. Reset the padding points in A to sub-

padding points as follows: Let the components of each padding point in A whose 

coordinates are not in the considered range [𝑏𝑏𝑢𝑝 , 𝑏𝑏𝑑𝑜𝑤𝑛 ] be the same as those of 

the first point 𝑃. 

Use the one independent variable algorithm and padding points set A, we can find 

the independent variable in the range [𝑏𝑏𝑢𝑝 , 𝑏𝑏𝑑𝑜𝑤𝑛 ]. 

 

Step 2:  Detect the variable position in the second half of consider range. 

We know the 𝑘th bit 𝑏𝑘 𝑣2 = 1.  

Then we narrow the considered range: Reset the boundary by letting 

   𝑏𝑏𝑢𝑝 = 𝑏𝑢𝑝 + 2𝑘 − 1,   𝑏𝑏𝑑𝑜𝑤𝑛 = 𝑏𝑑𝑜𝑤𝑛   

Copy the padding points set to padding points set B. Reset the padding points in set 

B to sub-padding point as follows: Let the value of padding point, which coordinate 

is not in the considered range [𝑏𝑏𝑢𝑝 , 𝑏𝑏𝑑𝑜𝑤𝑛 ] be the same component as the first 

point  𝑃 . 

Use the one independent variable algorithm and padding points set B, we can find 

the independent variable in the range [𝑏𝑏𝑢𝑝 , 𝑏𝑏𝑑𝑜𝑤𝑛 ]. 



27 
 

 

6) We know all the bits of 𝑏𝑘(𝑣1) and 𝑏𝑘(𝑣2) and hence we know the coordinates 𝑣1 and 

𝑣2 of two independent variables. 

 

            This algorithm uses at most 𝐿 + 1 + 2𝐿 𝑙𝑜𝑔2𝑁  

 

Once the independent variable is detected, the 𝐿 + 1 values of 𝑓 at the base points can 

all be used to construct a good approximation. Hence, the total evaluations needed for 

the detection and approximation is 𝐿 + 1 + 2𝐿 𝑙𝑜𝑔2𝑁 . 

 

Example 1.  

Take N=11.  

Choose a pair of base points (a,a,a,a,a,a,a,a,a,a,a) and (b,b,b,b,b,b,b,b,b,b,b) on which the 

values of 𝑓 are not the same: 𝑓(a,a,a,a,a,a,a,a,a,a,a) ≠ 𝑓(b,b,b,b,b,b,b,b,b,b,b) 

We can write the binary presentation for the number 0 to 10:  

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

 



28 
 

Putting them in rows (by taking transpose), we obtain a natural set of partitions of the 

coordinates (in four different ways): 

0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1 0 0 0
0 0 1 1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1 0 1 0

 

Then we get the corresponding four padding points: 

𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑏 𝑏 𝑏
𝑎 𝑎 𝑎 𝑎 𝑏 𝑏 𝑏 𝑏 𝑎 𝑎 𝑎
𝑎 𝑎 𝑏 𝑏 𝑎 𝑎 𝑏 𝑏 𝑎 𝑎 𝑏
𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎

 

Assuming independent variables have coordinates at 2 and 3. We want to show how our 

algorithm can lead us to finding these coordinates. 

We consider the first padding point  (a,a,a,a,a,a,a,a,b,b,b).  

Ask for the first padding point value 𝑓 a, 𝐚, 𝐚, a, a, a, a, a, b, b, b . We find:   

                    𝑓 a, 𝐚, 𝐚, a, a, a, a, a, b, b, b = 𝑓 a, 𝐚, 𝐚, a, a, a, a, a, a, a, a  

This means the two independent variables are in the same half. We know both variables are in 

the first half, hence we don’t need to consider the second half. We can simply let the second 

half components to be assigned the same value, a, as the component of first base point. We use 

0 to present the first base point component.  

We also get 𝑏3 𝑣1 = 0, 𝑏3 𝑣2 = 0. Now, we reset the padding points to sub-padding points 

by replacing the coordinates outside the range to take the same value as the first base point 

and focus on the current range (the first half, colored in red below): 



29 
 

0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1 0 0 0
0 0 1 1 0 0 1 1 0 0 0
0 1 0 1 0 1 0 1 0 0 0

 

Then we calculate the value of function at the second (sub-)padding point  

                                                             𝑓 a, 𝐚, 𝐚, a, b, b, b, b, a, a, a . 

We find 𝑓 a, 𝐚, 𝐚, a, b, b, b, b, a, a, a = 𝑓 a, 𝐚, 𝐚, a, a, a, a, a, a, a, a . 

This tells us that the two independent variables are in the first half part of the 

considered range and we do not need to consider the second half. We will reset the padding 

points by letting the second half of the considered range components to the same as the first 

base point component value. 

We have 𝑏2 𝑣1 = 0, 𝑏2 𝑣2 = 0. As above, we will focus on the active range (colored red 

below) and reset the padding points: 

0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0

 

We calculate the value of the function at the third (sub-)padding point 

                                                        𝑓 a, 𝐚, 𝐛, b, a, a, a, a, a, a, a . 

This time, we find 

                           𝑓 a, 𝐚, 𝐛, b, a, a, a, a, a, a, a ≠ 𝑓 a, 𝐚, 𝐚, a, a, a, a, a, a, a, a  

                          𝑓 a, 𝐚, 𝐛, b, a, a, a, a, a, a, a ≠ 𝑓 b, 𝐛, 𝐛, b, b, b, b, b, b, b, b  

From this, we know that the two independent variables are separated into two halves of the 

considered range.  One independent variable is in the range [1,2] and another in the other 



30 
 

range [3,4]. We have 𝑏1 𝑣1 = 0, 𝑏1 𝑣2 = 1. Next, we will use the one independent variable 

algorithm in each half (in two steps) to find their exact position. 

Step 1: Finding the independent variable in the first half. 

We only consider the first half, so use the first base point component to replace the others part 

of the remaining components of the padding point(s). 

Now the sub-padding points set A corresponds to: 

0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0

 

We calculate the value of the function at the (sub-)padding point 𝑓 a, 𝐛, 𝐚, a, a, a, a, a, a, a, a  

and we find 

                              𝑓 a, 𝐛, 𝐚, a, a, a, a, a, a, a, a ≠ 𝑓 a, 𝐚, 𝐚, a, a, a, a, a, a, a, a  

                             𝑓 a, 𝐛, 𝐚, a, a, a, a, a, a, a, a ≠ 𝑓 b, 𝐛, 𝐛, b, b, b, b, b, b, b, b  

So, we get 𝑏0 𝑣1 = 1  

Hence the first independent variable coordinate is 𝑣1 = 1 + 𝑏0 𝑣1 + 𝑏1 𝑣1 2 + 𝑏2 𝑣1 22 +

𝑏3 𝑣1 23 = 1 + 1 + 0 ∗ 2 + 0 ∗ 22 + 0 ∗ 23 = 2. 

Step 2:  Finding the second independent variable: 

We only consider the second part, so use the first base point component to replace the others 

part of the remaining components of the padding points. 

Now the sub-padding points set A is: 



31 
 

0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0

 

We calculate the padding point 𝑓 a, 𝐚, 𝐚, b, a, a, a, a, a, a, a  and we find           

                               𝑓 a, 𝐚, 𝐚, b, a, a, a, a, a, a, a = 𝑓 a, 𝐚, 𝐚, a, a, a, a, a, a, a, a  

We get 𝑏0 𝑣2 = 0  

Hence the second independent variable coordinate is 𝑣2 = 1 + 𝑏0 𝑣2 + 𝑏1 𝑣2 2 +

𝑏2 𝑣2 22 + 𝑏3 𝑣2 23 = 1 + 0 + 1 ∗ 2 + 0 ∗ 22 + 0 ∗ 23 = 3. 

 

Example 2  

Take N=9 and assume 𝑓 x1 , x2 , … , xN = g(x3, x5) = sin x3 ∗ 16π + 3 ∗ sin(x5 ∗ 8π) 

a) L=4  

The base points value: 

1.0e-014 *         

L=4 i=0 i=1 i=2 i=3 i=4 
𝑖

𝐿
 

0 0.2500 0.5000 0.7500 1.0000 

Base points value 
(1.0e-014 *        ) 

 0    -0.1225   -0.2449   -0.3674   -0.4899 

 

The padding points value: 

f =1.0e-014 * 

 K=3 K=2 K=1 K=0 Independent 
variable 
position 

i=0 0   -0.0735   -0.0490         0 3 

0         0 5 

i=1 -0.1225   -0.1959   -0.1715   -0.1225 3 



32 
 

-0.1225   -0.1225 5 

i=2 -0.2449   -0.3184   -0.2939   -0.2449 3 

-0.2449   -0.2449 5 

i=3 -0.3674   -0.4409   -0.4164   -0.3674 3 

-0.3674   -0.3674 5 

 

The algorithm needs to ask value for 37 times. 

b)L=8 

The base points value: 

L=4 i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 
𝑖

𝐿
 

0 0.1250     
 

0.2500     0.3750     0.5000     0.6250     0.7500     0.8750     1.00 

Base points 
value  
1.0e-014 *   

0    0.0122   -0.1225    0.0367 
  

-0.2449    0.0612 
  

-0.3674    0.0857   -0.4899 

 

The padding points value: 

f =1.0e-014 * 

 K=3 K=2 K=1 K=0 Independent 
variable 
position 

i=0 0    0.0367   -0.0245         0 3 

0         0 5 

i=1 0.0122   -0.0980   -0.0122    0.0122 3 

0.0122    0.0122 5 

i=2 -0.1225    0.0612   -0.1470   -0.1225 3 

-0.1225   -0.1225 5 

i=3 0.0367   -0.2204    0.0122    0.0367 3 

0.0367    0.0367 5 

i=4 -0.2449    0.0857   -0.2694   -0.2449 3 

-0.2449   -0.2449 5 

i=5 0.0612   -0.3429    0.0367    0.0612 3 

0.0612    0.0612 5 

i=6 -0.3674    0.1102   -0.3919   -0.3674 3 

-0.3674   -0.3674 5 

i=7 0.0857   -0.4654    0.0612    0.0857 3 

0.0857    0.0857 5 



33 
 

 

It needs to ask for f’s value for 73 times. 

c) L=12 

The base points value:  

 i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12 
𝑖

𝐿
  

0    0.0833    0.1667    0.2500    0.3333    0.4167    0.5000    0.5833    0.6667    0.7500    0.8333    0.9167 1.0000 

 0   1.7321   -1.7321   -0.0000    1.7321   -1.7321   -0.0000    1.7321   -1.7321   -0.0000    1.7321   -1.7321 -0.0000 

The padding points value: 

 K=3 K=2 K=1 K=0 Change 
variable 
position 

i=0 0    2.5981   -0.8660         0 3 

0         0 5 

i=1 1.7321   -3.4641    3.4641    1.7321 3 

1.7321    1.7321 5 

i=2 -1.7321    0.8660   -2.5981   -1.7321 3 

-1.7321   -1.7321 5 

i=3 -0.0000    2.5981   -0.8660   -0.0000 3 

-0.0000   -0.0000 5 

i=4 1.7321   -3.4641    3.4641    1.7321 3 

1.7321    1.7321 5 

i=5 -1.7321    0.8660   -2.5981   -1.7321 3 

-1.7321   -1.7321 5 

i=6 -0.0000    2.5981   -0.8660   -0.0000 3 

-0.0000   -0.0000 5 

i=7 1.7321   -3.4641    3.4641    1.7321 3 

1.7321    1.7321 5 

i=8 -1.7321    0.8660   -2.5981   -1.7321 3 

-1.7321   -1.7321 5 

i=9 -0.0000    2.5981   -0.8660   -0.0000 3 

-0.0000   -0.0000 5 

i=10 1.7321   -3.4641    3.4641    1.7321 3 

1.7321    1.7321 5 

i=11 -1.7321    0.8660   -2.5981   -1.7321 3 

-1.7321   -1.7321 5 

 

It need ask for f’s value for 109 times. 



34 
 

3.3 Conclusions and Future Research  

We have described a deterministic algorithm for the detection of two independent variables of 

a function given in a high dimensional space based on the algorithm of DeVore, Petrova, and 

Wojtaszcsyk for the case of the detection of one variable. Our numerical experiments show that 

our algorithm can detect the two independent variables very fast. We have focused on the 

detection step and rely on the standard approximation procedure to recover the function once 

we find the two independent variables. The complexity of our algorithm is in the order of 

L+1+[log N] evaluations and 2*[log N] comparisons.  

 We assume that all evaluations are exact and we have used the fact that there is at least 

one 𝑖 such that 𝑔(𝑖/𝐿, 𝑗/𝐿) is different from both 𝑔(𝑖/𝐿, 𝑖/𝐿) and 𝑔(𝑗/𝐿, 𝑗/𝐿) for some large 

value of 𝐿. The fact we have used can be verified if we know that the function 𝑔 is monotonic in 

both variables locally.  

 One immediate future research problem is to extend the algorithm to larger numbers of 

independent variables. Another problem is to address sufficient condition for the local 

monotonicity in higher dimensional space. Finally, we mention the problem of modifying our 

algorithm for inexact evaluation and to the sampling and recovery the functions that can be 

approximated by functions of few variables. 

  



35 
 

APPENDIX A: ALGORITHM 2.1 

  



36 
 

function fff=findchange1(N,NN,fj) 

% -----------------------------------------    

%       N is L 

%       NN is the number of variables  

%       fj is the coorinate point where the change variable 

%       a1,a2 are the base point 

%------------------------------------------ 

iV=NN; 

a=N; 

fj=fj; 

iN=0; 

%b is the ceil function of log2(a) 

b=ceil(log2(NN)); 

% the base points set 

% f1 is the value when base point value equals to a1.  f(a1,a1,a1,...,a1) 

% f2 is the value when base point value equals to a2.  f(a2,a2,a2,...,a2) 

basepoints(1)=0; 

for i=1:N 

     basepoints(i+1)=i/N; 

end 

 

for i=1:N+1 

    basepointvalue(i)=fvalue(basepoints(i)); 



37 
 

    iN=iN+1; 

end 

for iii=1:N 

a1=basepoints(iii); 

a2=basepoints(iii+1); 

f1=fvalue(a1); 

f2=fvalue(a2); 

% the follow matrix is used to create the padding points set. 

% when c(i,j)==0 then the padding point value is a1, otherwise c(i,j)=1 the 

% padding point value is a2. 

 for i=1:iV 

     d=i-1; 

     for j=1:b 

        e=mod(d,2); 

        c(j,i)=e; 

        d=(d-e)/2; 

     end 

 end 

%fj is the position of the change variable.  

% we use z to save the change variable's position. 

 

 for j=b:-1:1 

   if (c(j,fj)==0)  



38 
 

     aa=a1; 

   else 

     aa=a2; 

   end 

     f(iii,b-j+1)=fvalue(aa); 

     iN=iN+1; 

   if (f(iii,b-j+1)==f1) 

     z(b+1-j)=0; 

   else 

     z(b+1-j)=1; 

   end 

 end 

 % caculate the output value (the position of change value) 

 ccc= 0;  

 for j=1:b 

     ccc=ccc*2+z(j); 

 end  

 fff=ccc+1; 

 ff(iii)=fff; 

end 

 basepoints 

 basepointvalue 

 f 



39 
 

 iN 

 ff 

 c 

end 

 

function yy=fvalue(xx) 

  yy=sin (xx*16*pi); 

end 

 

 

  



40 
 

APPENDIX B: ALGORITHM 3.1 

  



41 
 

 

function [fff,lll]=findchange2(N,NN,fj11,fj22) 

% -----------------------------------------       

%            N is L 

%       NN is the number of variables  

%       fj1,fj2 is the coorinate where the change variable 

%       a1,a2 are the base points 

%------------------------------------------ 

iV=NN; 

a=N; 

fj1=fj11; 

fj2=fj22; 

iN=0; 

% b is the number  

b=ceil(log2(iV)); 

% the base points set 

% f1 is the value when base point value equals to a1.  f(a1,a1,a1,...,a1) 

% f2 is the value when base point value equals to a2.  f(a2,a2,a2,...,a2) 

basepoints(1)=0; 

 

for i=1:N 



42 
 

     basepoints(i+1)=i/N; 

end 

for i=1:N+1 

    basepointvalue(i)=fvalue2(basepoints(i),basepoints(i)); 

    iN=iN+1; 

end 

for iii=1:N 

a1=basepoints(iii); 

a2=basepoints(iii+1); 

f1=fvalue2(a1,a1); 

f2=fvalue2(a2,a2); 

  iN=iN+2; 

% the follow matrix is used to create the padding points set. 

% when c(i,j)==0 then the padding point value is a1, otherwise c(i,j)=1 the 

% padding point value is a2. 

 for i=1:iV 

     d=i-1; 

     for j=1:b 

        e=mod(d,2); 

        c(j,i)=e; 

        d=(d-e)/2; 



43 
 

     end 

 end 

%use bb1 and bb2 as the bound of the change variables.  

% we use z,l to save the change variable's position. 

  bb1=1; 

  bb2=iV; 

 for j=b:-1:1 

   % If the variable aa1 aa2 are not in (bb1,bb2),we set it to a1 

   if (c(j,fj1)==1)&&(bb1<=fj1)&&(fj1<=bb2) 

     aa1=a2; 

   else 

     aa1=a1; 

   end 

   if (c(j,fj2)==1)&&(bb1<=fj2)&&(fj2<=bb2) 

     aa2=a2; 

   else 

     aa2=a1; 

   end 

   f=fvalue2(aa1,aa2); 

   ff1(iii,b-j+1)=f; 

   ff2(iii,b-j+1)=f; 



44 
 

     iN=iN+1; 

   if (f==f1) 

    % when f=f1 this means the two varible are in the up area.   

     if (bb2>bb1+2^(j-1)-1)&&(bb2-bb1>2) 

       bb2 = bb1+2^(j-1)-1; 

     end 

     z(b+1-j)=0; 

     l(b+1-j)=0; 

   elseif (f==f2) 

     % when f=f2 this means the two variable are in the down area.     

       bb1 = bb1+2^(j-1); 

       z(b+1-j)=1; 

       l(b+1-j)=1; 

   else 

     % In this case, one of the variable is in the up area and the other one is in the down area. 

     % we set one varible to a1 and use the find one variable method to 

     % find it. 

       if (j==1) 

         z(b+1-j)=0; 

         l(b+1-j)=1; 

       else 



45 
 

          bb3=bb1+2^(j-1)-1; 

          bb4=bb1+2^(j-1); 

          z(b+1-j)=0;  

          l(b+1-j)=1;  

          j1=j-1; 

          % the up area 

          for j=j1:-1:1 

             if (c(j,fj1)==1)&&(bb1<=fj1)&&(fj1<=bb3) 

               aa1=a2; 

             else 

               aa1=a1; 

             end 

             if (c(j,fj2)==1)&&(bb1<=fj2)&&(fj2<=bb3) 

               aa2=a2; 

             else 

               aa2=a1; 

             end 

             f=fvalue2(aa1,aa2); 

               ff1(iii,b-j+1)=f; 

               iN=iN+1; 

             if (f==f1) 



46 
 

               z(b+1-j)=0; 

             else 

               z(b+1-j)=1; 

             end 

          end 

        % the down area  

          for j=j1:-1:1 

            if (c(j,fj1)==1)&&(bb4<=fj1)&&(fj1<=bb2) 

               aa1=a2; 

            else 

               aa1=a1; 

            end 

            if (c(j,fj2)==1)&&(bb4<=fj2)&&(fj2<=bb2) 

               aa2=a2; 

            else 

               aa2=a1; 

            end         

            f=fvalue2(aa1,aa2); 

             ff2(iii,b-j+1)=f; 

            iN=iN+1; 

            if (f==f1) 



47 
 

              l(b+1-j)=0; 

            else 

              l(b+1-j)=1; 

            end 

          end      

          % break the for loop. 

          break; 

       end   %end  if (j==1) 

   end  % end if ((f==f1)) 

 end   % end j=b:-1:1 

 % caculate the output value (the position of change value) 

 ccc= 0;  

 for j=1:b 

     ccc=ccc*2+z(j); 

 end  

 fff=ccc+1; 

 fff1(iii)=fff; 

 ccc= 0;  

 for j=1:b 

     ccc=ccc*2+l(j); 

 end  



48 
 

 lll=ccc+1;  

 fff2(iii)=lll; 

end 

 basepoints 

 basepointvalue 

 ff1 

 ff2 

 iN 

 fff1 

 fff2 

end 

 

function yy2=fvalue2(x1,x2) 

  yy2=sin(x1*16*pi)+3*sin(x2*8*pi); 

end 

 

 

  



49 
 

LIST OF REFERENCES 

 

[1] Ronald DeVore, Guergana Petrova, Przemyslaw Wojtaszczyk, “Approximation of Functions 
of Few Variables in High Dimensions”, Constructive Approximation, to appear (2010). 
 
[2] E. Candes, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal 
Reconstruction from Highly Incomplete Frequency Information”, IEEE Transactions on 
Information Theory, 52(2) pp. 489 - 509, Feb. 2006. 
 
[3] E. Candes and T .Tao, “Near Optimal Signal Recovery From Random Projections: Universal 
Encoding Strategies?”, IEEE Trans. on Information Theory, 52(12) pp. 5406 - 5425, Dec. 2006. 
 
[4] M. Capalbo, O. Reingold, S. Vadhan, A. Wigderson, “Randomness Conductors and Constant-
Degree Expansion Beyond the Degree/2 Barrier”, Proc. of the 34th STOC, pp. 659-668, 2002. 
 
[5] D. Donoho, “Compressed Sensing”, IEEE Transactions on Information Theory, 52(4), pp. 1289 
- 1306, April 2006 
 
[6] R.A. DeVore, “Deterministic Constructions of Compressed Sensing Matrices”, Preprint, 2007. 
 
[7] P. Indyk, “Explicit constructions for compressed sensing of sparse signals”, in 19th 
Symposium on Discrete Algorithms, 2008. 
 
[8] A. Cohen, I. Daubechies, R. DeVore, G. Kerkyacharian, and D. Picard, “Capturing Ridge 
Functions in High Dimensions from Point Queries”, preprint, 2010. 
 
[9] P. Wojtaszczyk, “Complexity of Approximation of Functions of Few Variables in High 
Dimensions”, preprint, 2010. 
 


	Detection And Approximation Of Function Of Two Variables In High Dimensions
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	CHAPTER ONE: MOTIVATION
	1.1 Background
	1.2 Candes-Romberg-Tao Theorem

	CHAPTER TWO: THE CASE OF ONE INDEPANDENT VARIBALE
	2.1 Sampling Points of DeVore, Petrova, and Wojtaszczyk
	2.2 Algorithm 1.1 of DeVore, Petriova, and Wojtaszczyk
	2.3 Approximation Theorem

	CHAPTER THREE: THE CASE OF TWO INDEPENDNET VARIABLE
	3.1 Analysis on one variable case
	3.2 Two independent variables case
	3.3 Conclusions and Future Research

	APPENDIX A: ALGORITHM 2.1
	APPENDIX B: ALGORITHM 3.1
	LIST OF REFERENCES

