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ABSTRACT

In the present dissertation, we investigate two different nonparametric models; empirical Bayes model

and functional deconvolution model.

In the case of the nonparametric empirical Bayes estimation, we carried out a complete minimax study.

In particular, we derive minimax lower bounds for the risk of the nonparametric empirical Bayes estimator

for a general conditional distribution. This result has never been obtained previously. In order to attain

optimal convergence rates, we use a wavelet series based empirical Bayes estimator constructed in Pensky

and Alotaibi (2005). We propose an adaptive version of this estimator using Lepski’s method and show that

the estimator attains optimal convergence rates. The theory is supplemented by numerous examples.

Our study of the functional deconvolution model expands results of Pensky and Sapatinas (2009, 2010,

2011) to the case of estimating an (r+ 1)-dimensional function or dependent errors. In both cases, we derive

minimax lower bounds for the integrated square risk over a wide set of Besov balls and construct adaptive

wavelet estimators that attain those optimal convergence rates.

In particular, in the case of estimating a periodic (r+ 1)-dimensional function, we show that by choosing

Besov balls of mixed smoothness, we can avoid the ”curse of dimensionality” and, hence, obtain higher than

usual convergence rates when r is large. The study of deconvolution of a multivariate function is motivated

by seismic inversion which can be reduced to solution of noisy two-dimensional convolution equations that

allow to draw inference on underground layer structures along the chosen profiles. The common practice in

seismology is to recover layer structures separately for each profile and then to combine the derived estimates

into a two-dimensional function. By studying the two-dimensional version of the model, we demonstrate that

this strategy usually leads to estimators which are less accurate than the ones obtained as two-dimensional

functional deconvolutions.

Finally, we consider a multichannel deconvolution model with long-range dependent Gaussian errors.

We do not limit our consideration to a specific type of long-range dependence, rather we assume that the

eigenvalues of the covariance matrix of the errors are bounded above and below. We show that convergence

rates of the estimators depend on a balance between the smoothness parameters of the response function, the
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smoothness of the blurring function, the long memory parameters of the errors, and how the total number

of observations is distributed among the channels.
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CHAPTER 1: INTRODUCTION

In this dissertation, we investigate two different topics in nonparametric estimation: empirical Bayes

EB methods and functional deconvolution models. For the EB estimation, we propose an adaptive wavelet-

based EB estimator using Lepski’s method. For the functional deconvolution model, we study two different

problems: the problem of estimating an anisotropic multivariate periodic function, and the problem of

estimating a periodic function under Long-Range dependent (LRD) errors assumption.

Empirical Bayes methods EB are estimation techniques in which the prior distribution, in the standard

Bayesian sense, is estimated from the data. They are powerful tools, in particular, when data are generated

by repeated execution of the same type of experiment. The EB are directly related to the standard Bayes

models but there is difference in perspective between the two: in the standard Bayesian approach, the prior

distribution, say g(θ), is assumed to be fixed before any data are observed, whereas in the EB setting the

prior distribution, in some way or another, is estimated from the observed data.

In a typical EB set up, observed data X = {X1, X2, X3, · · · , Xn} are assumed to be generated from an

unobserved set of parameters {θ1, θ2, · · · , θn} according to a probability density function (pdf), q(x | θ).

Here, θ is also a random variable but not enough information about its distribution, g(θ), is available. The

idea is the following: an observation X is made characterized by a parameter θ, a realization of Θ, and X

is to be used in making a decision about θ. At the time of making that particular observation, denote it by

Xn+1, there are other observations available, {X1, X2, X3, · · · , Xn} associated with independent realizations

{θ1, θ2, · · · , θn} of Θ. In such a setting, every xi is a realization of Xi and the X ′is are mutually independent.

The goal is to estimate θn+1, the parameter associated with xn+1, based on the data at hand.

In particular, one has the following setting. One observes independent two-dimensional random vectors

(X1, θ1) , · · · , (Xn, θn), where each θi is distributed according to some unknown prior pdf g and, given θi = θ

the observation Xi has the known conditional density function q(x | θ). In each pair the first component is

observable, but the second is not. After the (n+ 1)-th observation y ≡ Xn+1 is taken, the goal is to estimate

t ≡ θn+1.
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The main contributions of this dissertation to the EB estimation methods are in two ways. The first one

is to derive lower bounds for the posterior risk of a nonparametric empirical Bayes estimator. The second

one is to provide an adaptive version of the wavelet EB estimator developed in Pensky and Alotaibi (2005),

and to construct, in parallel to the minimax lower bounds for the posterior risk, the corresponding upper

bounds for the posterior risk of the suggested estimator, in order to justify the asymptotic optimality of such

estimator. In particular, we preserve the structure of the linear structure of the estimator. However, since

expansion over scaling functions at the resolution level m leads to excessive variance when resolution level m

is too high and disproportionately large bias when m is too small, we choose the resolution level using Lepski

method introduced in Lepski (1991) and further developed in Lepski, Mammen and Spokony (1997). The

resulting estimator is adaptive and attains optimal convergence rates (within a logarithmic factor of n). In

addition, it has an advantage of computational efficiency since it is based on the solution of low-dimensional

sparse system of linear equations the matrix of which tends to a scalar multiple of an identity matrix as the

scale m grows. The theory is supplemented by numerous examples that demonstrate how the estimator can

be implemented for various types of distribution families.

Functional deconvolution model deals with the estimation of an unknown function based on observations

from its noisy convolution. It has a multitude of applications, in particular, it can be used in a number of

inverse problems in mathematical physics where one needs to recover initial or boundary conditions on the

basis of observations from a noisy solution of a partial differential equation. For instance, the problem of

recovering the initial condition for parabolic equations based on observations in a fixed-time trip was first

investigated in Lattes and Lions (1967), and the problem of recovering the boundary condition for elliptic

equations based on observations in an interval domain was studied in Golubev and Khasminski (1999) and

Golubev (2004).

In this sense, the study is related to a multitude of papers which offered wavelet solutions to deconvolution

problems (see, e.g., Donoho (1995), Abramovich and Silverman (1998), Pensky and Vidakovic (1999), Walter

and Shen (1999), Fan and Koo (2002), Kalifa and Mallat (2003), Johnstone, Kerkyacharian, Picard and

Raimondo (2004), Donoho and Raimondo (2004), Johnstone and Raimondo (2004), Neelamani, Choi and

Baraniuk (2004) and Kerkyacharian, Picard and Raimondo (2007)).

A special case of the functional deconvolution model is the standard deconvolution model. In this sense,

the study is related to a multitude of papers which offered wavelet solutions to deconvolution problems (see,

e.g., Donoho (1995), Abramovich and Silverman (1998), Pensky and Vidakovic (1999), Walter and Shen
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(1999), Fan and Koo (2002), Kalifa and Mallat (2003), Johnstone, Kerkyacharian, Picard and Raimondo

(2004), Donoho and Raimondo (2004), Johnstone and Raimondo (2004), Neelamani, Choi and Baraniuk

(2004) and Kerkyacharian, Picard and Raimondo (2007)).

The main contribution of this dissertation to the analysis the functional deconvolution model is in two

different ways. In particular, we consider two problems. The first problem considers the estimation of

a periodic (r + 1)-dimensional function f based on observations from its noisy convolution. An adaptive

wavelet-based estimator is constructed here also, and minimax lower bounds for the L2-risk are derived when

f belongs to a Besov ball of mixed smoothness. Furthermore, our estimator proves to be asymptotically

near-optimal, in the minimax sense, within a logarithmic factor, in a wide range of Besov balls. We prove in

particular that choosing this type of mixed smoothness leads to convergence rates that are free of dimension.

Models of these types are very useful, for example, in geophysical explorations, in particular, the ones which

rely on inversions of seismic signals. The problem studied in the dissertation is related to seismic inversion

which can be reduced to solution of noisy convolution equations which deliver underground layer structures

along the chosen profiles. The common practice in seismology is to recover the layer’s structure separately for

each profile and then to combine them together using interpolation techniques. This, however, is usually not

the best strategy and leads to estimators which are inferior to the ones obtained as two-dimensional functional

deconvolutions. Indeed, as it is shown in the two-dimensional case, unless function f is very smooth in the

direction of the profiles, very spatially inhomogeneous along another dimension and the number of profiles

is very limited, functional deconvolution solution has precision superior to combination of M solutions of

separate convolution equations.

The second problem looks considers the multichannel deconvolution model from a minimax point of

view in the case when errors are not independent but exhibit long-range dependence (LRD). We do not

limit our consideration to a specific type of long-range dependence; rather we assume that the errors satisfy

a general assumption in terms of the smallest and largest eigenvalues of their covariance matrices. We

derive minimax lower bounds for the L2-risk in the proposed multichannel deconvolution model when the

response function is assumed to belong to a Besov ball and the blurring function is assumed to possess

some smoothness properties, including both regular-smooth and super-smooth convolutions. Furthermore,

we propose an adaptive wavelet estimator of the response function that is asymptotically optimal (in the

minimax sense), or near-optimal within a logarithmic factor, in a wide range of Besov balls. It is shown that

the optimal convergence rates depend on the balance between the smoothness parameter of the response

function, the kernel parameters of the blurring function, the long memory parameters of the errors, and how

3



the total number of observations is distributed among the total number of channels. Some examples of inverse

problems in mathematical physics where one needs to recover initial or boundary conditions on the basis of

observations from a noisy solution of a partial differential equation are used to illustrate the application of

the theory we developed. The optimal convergence rates and the adaptive estimators we consider extend

the ones studied by Pensky and Sapatinas (2009, 2010) for independent and identically distributed Gaussian

errors to the case of long-range dependent Gaussian errors.

The rest of the dissertation is organized as follows. In Chapter 2 we go over some background information

regarding EB estimation as well as some wavelet theory. In Chapter 3 we present our construction of an

adaptive wavelet-based EB estimator, discuss the asymptotic optimality of the proposed methodology, and

then illustrate the theory with some examples from different families of distributions. Chapter 4 is devoted to

our first contribution in functional deconvolution model, in particular, the problem of estimating a periodic

(r + 1)-dimensional function f based on observations from its noisy convolution. We will also discuss in

this chapter its application to geophysical exploration, and provide the argument when the proposed model

outperforms old practices in geophysics. Chapter 5 studies our last contribution which deals with another

type of functional deconvolution model, multichannel deconvolution model, with the long-range dependent

LRD errors. The theory is supplemented by examples of inverse problems in mathematical physics where

one needs to recover initial or boundary conditions on the basis of observations from a noisy solution of a

partial differential equation to illustrate the application of the theory we developed, before we conclude with

a discussion. Finally, in Chapter 6 we give a discussion of our contributions and describe possible future

work.
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CHAPTER 2: BACKGROUND INFORMATION

2.1 Empirical Bayes Estimation

Empirical Bayes methods (EBM) are estimation techniques in which the prior distribution, in the standard

Bayesian sense, is estimated from the data. They are powerful tools in particular when data are generated

by repeated execution of the same type of experiment. The EBM are directly related to the standard Bayes

models but there is difference in perspective between the two in the sense that in the standard Bayesian

approach the prior distribution, say g(θ), is assumed to be fixed before any data are observed, whereas in

the EB setting the prior distribution is, in some way or another, estimated from the observed data.

In a typical EB set up, observed data X = (X1, X2, X3, · · · , Xn) are assumed to be generated from an

unobserved set of parameters {θ1, θ2, · · · , θn} according to a probability density function (pdf), q(x | θ).

Here, θ is also a random variable but not enough information about its distribution, g(θ), is available. The

idea is the following: an observation X is made characterized by a parameter θ, a realization of Θ, and X

is to be used in making a decision about θ. At the time of making that particular observation, denote it by

Xn+1, there are other observations available, {X1, X2, X3, · · · , Xn} associated with independent realizations

{θ1, θ2, · · · , θn} of Θ. In such a setting, every Xi is a realization of xi and the x′is are mutually independent.

The goal is to estimate θn+1, the parameter associated with Xn+1, based on the data at hand.

2.1.1 Prior Distribution and Identifiability

In the standard Bayesian approach, the conditional expectation of θ given the observed data is given by

E(θ | x) = t(x) =

∫∞
−∞ θq(x | θ)g(θ)dθ

p(x)
, where p(x) =

∫ ∞
−∞

q(x | θ)g(θ)dθ. (2.1.1)

5



Depending on our assumptions about the prior g(θ), it could be known to belong to a particular family

of distributions but no information about its parameters is available or it could be completely unknown

for us(unparametrized). This distinction leads to two different types of EBM ; Parametric empirical Bayes

methods and nonparametric empirical Bayes methods. Parametric EB methods use information available

about the prior distribution at hand and collected data to estimate the values of the population parameters

associated with that particular prior by implementing empirical techniques such as the maximum likelihood

method and the method of moments. In practice, it is rarely the case that information about the prior

distribution would be available for the experimenter; nonparametric EB methods are constructed in such a

way that the only thing one has to provide is the sampling distribution, q(x | θ), based on one’s own belief,

which would depend on the particular experiment at hand.

The possibility of obtaining an estimate of an unparametrized prior g arises from the last expression of

the marginal,

p(x) =

∫ ∞
−∞

q(x | θ)g(θ)dθ (2.1.2)

in the sense that the left hand side can be estimated empirically using the observations, and q(x | θ) is

known. In terms of distribution functions, the empirical cumulative distribution function obtained from the

data, say Pn(x), is an estimate of P (x), the cumulative distribution function associated with p(x), such that

Pn(x) −→ P (x)(P ), as n −→∞. This leads to

Pn(x) ≈
∫ ∞
−∞

F (x | θ)g(θ)dθ, (2.1.3)

where F (x | θ) is cdf of q(x | θ). Robbins (1955) was the first to investigate the possibility of solving for g,

his paper is discussed later.

The question is to whether solutions exist, or even unique solution exists. The answer would depend

on the nature of q(x | θ), that is, if its corresponding parameter θ is identifiable. In other words, if the

sampling distribution, q(x | θ), has the property that different values of its parameters must generate

distinct probability distributions. The next couple of examples will clarify the concept of identifiability.

Example 1. Consider an example of the family of normal distributions:

P =

{
fθ(x) =

1√
2πσ

e−
1

2σ2 (x−µ)2

| θ = (µ, σ) : µ ∈ R, σ > 0

}

6



Then

fθ1 = fθ2

=⇒ 1√
2πσ1

e
− 1

2σ2
1

(x−µ1)2

=
1√

2πσ2

e
− 1

2σ2
2

(x−µ2)2

=⇒ 1

σ2
1

(x− µ2
1)2 + log σ2

1 =
1

σ2
2

(x− µ2
2)2 + log σ2

2

which implies

x2

(
1

σ2
1

− 1

σ2
1

)
− 2x

(
µ1

σ2
1

− µ2

σ2
2

)
+

(
µ2

1

σ2
1

− µ2
2

σ2
2

+ log σ2
1 − log σ2

2

)
= 0

In fact, in order for the above expression to be equal to zero for almost all values of x we must have

1
σ2

1
− 1

σ2
2

= 0, µ1

σ2
1
− µ2

σ2
2

= 0 and
µ2

1

σ2
1
− µ2

2

σ2
2

+ log σ2
1 − log σ2

2 = 0. Consequently, since σ > 0, we must have

σ1 = σ2 and µ1 = µ2. Hence fθ1 = fθ2 if and only if θ1 = θ2, and therefore the parameters of the normal

distribution are identifiable.

Example 2. Another interesting example is the standard linear regression model. Indeed

y = β′x+ ε, E[ε | x] = 0

Then

yβ1
= yβ2

β′1x+ ε = β′2x+ η

=⇒ (β′1 − β′2)x+ (ε− η) = 0

Now right multiply both sides by x′ and take expectation we obtain

E[(β′1 − β′2)xx′] + E[(ε− η)x′] = 0

(β′1 − β′2)E[xx′] + 0 = 0

This implies that in this case the parameter β is identifiable if and only if E[xx′] is invertible.

Indeed, going back to our previous discussion P (x) is estimated using the data and g(θ) is approximated
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by , say ĝ(θ), the solution of the above integral equation. Another interesting question would be whether

such approximation also holds the property that ĝ(θ) −→ g(θ)(P ), as n −→∞. After an estimate of g(θ) is

found we plug it back in the original formula of the posterior mean, this will result in an empirical Bayes

decision rule

t̂(x) =

∫∞
−∞ θq(x | θ)ĝ(θ)dθ∫∞
−∞ q(x | θ)ĝ(θ)dθ

. (2.1.4)

Later we will find out that solving the integral equation with P (x) replaced by Pn(x) will not be an easy

task, in particular when F (x | θ) is a continuous cdf in the sense that Pn(x) can only be a step function, so

solving the integral equation would be impossible. However, provided that some conditions on F (x | θ) are

met, it is possible then to solve the integral equation by replacing Pn(x) itself by some P ∗n(x).

2.1.2 Parametric Empirical Bayes Methods (PEBM)

If both the likelihood, q(x | θ), and its prior are assumed to belong to some specified parametric pdf ’s

, that is g(θ | ψ), such as the case of a one or two-dimensional likelihood functions with simple conjugate

priors, then the empirical Bayes problem reduces to estimating the marginal, say p(x | ψ) and the parameter

ψ using empirical methods in the sense that in this parametric set-up the marginal is

p(x) =

∫ ∞
−∞

q(x | θ)g(θ | ψ)dθ = p(x | ψ). (2.1.5)

For instance, one approach is to approximate the marginal, p(x | ψ), by replacing ψ by its empirical coun-

terpart using one of the classical methods of estimation such as the method of maximum likelihood, or the

method of moments. This also allows one to replace parameters associated with the prior (population mean

and/or variance) by empirical quantities. Keep in mind that whether or not a conjugate family is the right

choice for a particular problem is the experimenter’s own responsibility, it is a very subjective matter.

There is a great deal of PEBM which includes; the Poisson-Gamma model, Beta-Binomial model, the

Gaussian-Gaussian model, the Bayesian linear regression model and the Bayesian multivariate linear regres-

sion model. More sophisticated models include hierarchical Bayes models and the Bayesian mixture models.

The following example illustrate how this works.

Example 3. Consider the Poisson-Gamma model, where the likelihood function, q(x | θ) is Poisson(θ) and

the prior is Gamma(θ | α, β). Suppose we had only one observation x, then the posterior would also be
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Gamma(x+ α, , β
β+1 ). In addition, the marginal is

p(x) =

∫ ∞
0

θxe−θ

x!

θα−1e−
θ
β

βαΓ(α)
dθ,

=
1

x!

1

Γ(α)

∫ ∞
0

θx+α−1

βx+α

e−θ(
1+β
β )(1 + β)1+α

Γ(x+ α)
dθ

βx

(1 + β)x+α
Γ(x+ α),

=
Γ(x+ α)

Γ(α)Γ(x+ 1)

(
β

1 + β

)x(
1

1 + β

)α
,

= p(x | α, β). (2.1.6)

Therefore, the marginal distribution of XG would be a negative binomial(α, β). An empirical Bayes will be

carried out as follows: Estimate the parameters, α and β, of the marginal using one of the empirical methods,

either the method of maximum likelihood or the method of moments. In fact we use whichever is easier by

hand, that is, since the ML method will require optimizing with respect to two parameters; differentiating

with respect to β will lead to α̂β = X̄, but differentiating with respect to α is much more complicated and

it can be solved only numerically, we prefer then to use the method of moments which relies on matching

the first two moments with their empirical counterparts. Consequently,

αβ = X̄, (2.1.7)

αβ(1 + β) + α2β
2

=
1

n

n∑
i=1

X2
i (2.1.8)

Then, replacing αβ by its estimate X̄ in (2.1.8), we obtain

αβ(1 + β) + X̄2 =
1

n

n∑
i=1

X2
i

=⇒ αβ(1 + β) = S2,

X̄(1 + β) = S2. (2.1.9)

where S2 = 1
n

n∑
i=1

(Xi − X̄)2. Which leads to the straightforward method of moments estimates of the

9



parameters α and β,

β̂ =
S2

X̄
− 1, (2.1.10)

α̂ =
X̄

β̂
. (2.1.11)

The method of moments estimates of the parameters of the marginal turn out to be just what we needed to

estimate the prior, g(θ | α, β). The second step is to approximate the posterior mean, indeed, using the n

data points, the posterior mean in this case,

E(θ/x) = t(x) =
nβX̄

1 + nβ
+

αβ

1 + nβ
, (2.1.12)

can be replaced by the empirical quantity

t̂(x) =
nX̄β̂

1 + nβ̂
+

α̂β̂

1 + nβ̂
, (2.1.13)

or more precisely,

t̂(x) =
nX̄(S2 − X̄) + X̄2

X̄ + n(S2 − X̄)
. (2.1.14)

Notice that in this example the prior g(θ | α, β) was the conjugate of the likelihood function q(x | θ).

The empirical reasoning can be carried out the same way in the presence of other conjugate distributions;

find the marginal of xG based on one observation, it should take the form p(x | ψ), compute the empirical

values of ψ, based on the n data points we have, and then use them to determine the empirical posterior

mean and/or variance.

2.1.3 Non-Parametric Empirical Bayes Methods (NPEBM)

In general, information about the prior distribution will not be available but data may be used to obtain

approximations to the Bayesian decision rule, t(x). Robbins, who was the first to use the term empirical

Bayes estimation (EBE), looked into finding an estimator using a squared error loss function of the value

of θ, a realization of the random variable Θ, associated with X whose pdf is q(x | θ), known, but the prior

of Θ is unknown. Working with several families of discrete probability density functions, Robbins was able

to conclude that provided that the available observations are iid having an unconditional distribution p(x),

the empirical Bayes estimator according to the data X = (X1, X2, X3, · · · , Xn) at hand can be found and

10



converges with probability 1 to the Bayes estimator as n −→∞, for any prior distribution of Θ.

In a non-parametric EB setting we use data available to approximate the decision rule t(x) without

requiring the knowledge that the prior distribution takes on any specific parametric form. EB decision rule

can be constructed according to two main approaches; either by solving the integral equation

p(x) =

∫ ∞
−∞

q(x | θ)g(θ)dθ, (2.1.15)

or by noticing that the predictive

θ(Xn+1) = t(Xn+1) =

∫∞
−∞Xn+1q(x | θ)g(θ)dθ

p(Xn+1)
, (2.1.16)

can be manipulated a bit. In fact, denote Xn+1 by y, then

θ(y) = t(y) =

∫
Xn+1q(x | θ)g(θ)dθ

p(Xn+1)
,

=

∫
yP (θ | y)dθ,

=
Ψ(y)

p(y)
. (2.1.17)

One approach is to estimate Ψ(y) and p(y) separately and then compute the ratio. For the other approach,

notice that in the case when q(x | θ) is continuous the expression for the marginal p(x) becomes a Fredholm

integral equation of type I. As mentioned above the marginal density p(x) can be estimated empirically; so

if the integral equation admits a unique solution, then that solution is used to find the EB estimator by

plugging the solution in the original formula.

2.1.4 Empirical Bayes Estimators in a Closed Form

One of the first attempts in this regard and due to Robbins (1955). Note that in some cases the Bayes

decision rule takes a very closed form in that expressions involving

∫ ∞
−∞

θq(x | θ)g(θ)dθ (2.1.18)

can be rewritten merely in terms of the marginal of XG and some functions of x; this is the case when

some particular family of pdf ′s is involved. The next couple of examples illustrate the situation.
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Example 4. Suppose that q(x | θ) is a Poisson(θ). Then the posterior mean becomes

t(x) = E(θ | x) =

∫∞
−∞

θe−θθxg(θ)
x! dθ∫∞

−∞
e−θθxg(θ)

x! dθ
,

=
(x+ 1)

∫∞
−∞

θx+1e−θ

(x+1)! g(θ)dθ∫∞
−∞

e−θθxg(θ)
x! dθ

,

=
(x+ 1)p(x+ 1)

p(x)
. (2.1.19)

Example 5. If the pdf is geometric, q(x | θ) = (1− θ)θx. then the same calculations lead to

t(x) =
p(x+ 1)

p(x)
(2.1.20)

In the above examples we were able to express tn(x) in terms of the marginal probabilities of the random

variable XG, that is,

t(x) = C(x)
p(x+ 1)

p(x)
(2.1.21)

The catch is to take advantage of this property and use it in the EB estimation without having to deal with

g(θ). It turns out that this property is unique to the members of discrete exponential family of distributions.

In the case of the continuous exponential family, it is more appropriate to use differentiation rather than

differencing(discrete). The next couple of examples will illustrate this situation.

Example 6. Suppose that q(x | θ) = 1
σ
√

2π
exp{ −1

2σ2 (x− θ)2}. Then take a log and differentiate with respect

of x to obtain

d ln q(x | θ)
dx

= 0− (x− θ)
σ2

,

1

q(x | θ)
dq(x | θ)
dx

= − (x− θ)
σ2

,

Which leads to

θ = x+
σ2

q(x | θ)
dq(x | θ)
dx

. (2.1.22)

Now replace the last expression in the definition of t(x) we obtain

t(x) = x+ σ2 p
′(x)

p(x)
. (2.1.23)
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Example 7. Consider q(x | θ) = θe−θx, for x ≥ 0, θ > 0. Then the posterior mean becomes

t(x) =

∫∞
−∞ θ.θe−θxg(θ)dθ∫∞
−∞ θe−θxg(θ)dθ

,

=

∫∞
−∞

{
−dθe

−θx

dx

}
g(θ)dθ∫∞

−∞ θe−θxg(θ)dθ
,

=
−d

∫∞
−∞ θe−θxg(θ)dθ

dx∫∞
−∞ θe−θxg(θ)dθ

,

= −p
′(x)

p(x)
. (2.1.24)

provided that conditions that allow interchanging integration and differentiation are met. In the last two

examples the Bayes decision rule is expressed in terms of the marginal probability density function of XG

and its derivative.

This interesting property which characterizes the exponential family of distributions was first explored

by Robbins (1955), the father of the EBM. Robbins was able to device an innovative approach in estimating

t(x). Robbins, studying a number of discrete probability mass functions of the exponential family, suggested

estimating the marginal frequencies empirically.

Consider the case of compound sampling, where the probability of xi given θi is Poisson distribution,

while the prior on θ, g(θ), is not specified but θi are assumed to be i.i.d. Compound sampling comes into

play as a modeling tool in a great array of problems, such as accident rates and clinical trials. The goal is

to find point prediction θi given all xi, t(xi) = E(θi | xi), but without having to deal with estimating g(θ).

He did the following: derive the posterior mean in a closed form, since q(xi | θi) is Poisson(θi), the posterior

mean takes the form

t(xi) = (xi + 1)
p(xi + 1)

p(xi)
(2.1.25)

then replace the right hand side by

E(θi | xi) ≈ (xi + 1)
N(Xj = xi + 1)

N(Xj = xi)
= t̂(xi) (2.1.26)

where xi takes on the values xi = 0, 1, 2, 3, · · · , and N(Xj = xi) is the number of observations in the sample

which take the particular value xi. Robbins concluded that regardless of the unknown prior g we have for
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any fixed x

t̂(x) −→ t(x)(P ), as n −→∞ (2.1.27)

However, Robbins did not attempt to investigate the question to whether W (t̂(x)) −→W (t(x))(P ), as n −→

∞, where W (t(x)) is the Bayesian risk, nor even whether his approach represents the best possible choice

amongst other approaches.

In his paper, Robbins also looked into the problem of approximating some functional of the unknown

prior g, in particular g itself. He considered the general case in which X is not restricted to discrete values

but has a distribution function

F (x | θ) = Pr(X ≤ x | Θ = θ) (2.1.28)

The marginal, unconditional, distribution function of XG is then given by

P (x) =

∫
F (x | θ)g(θ)dθ (2.1.29)

Now let the infinite sequence {x1, x2, x3, · · · } be iid random variables with common marginal distribution

function P (x). Robbins argued that the empirical marginal distribution function defined by

Pn(x) =
number of Xi in the sample {X1, X2, X3, · · ·Xn} ≤ x

n
(2.1.30)

converges uniformly to P (x) with probability 1 as n −→∞.

The question is whether one can find, based on Pn(x), a distribution function Gn(θ) such that Gn(θ) −→

G(θ), as n −→ ∞. Let G denote some class of distribution functions the unknown G is assumed to belong

to. Then ∫
F (x | θ)g(θ)dθ (2.1.31)

maps G onto some class of distribution functions, say F . Assume that F (x | θ) is such that the above

mentioned mapping is one-to-one. Therefore since P (x) is estimated by Pn(x), then solving

Pn(x) =

∫
F (x | θ)g(θ)dθ (2.1.32)
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would make a lot of sense. However, there is no guarantee that Pn(x) will belong to the class F . For instance,

in the case of a continuous F (x | θ) all the elements of F will be continuous, whereas Pn(x) can only be a

step function. To get by this problem, Robbins suggested replacing Pn(x) by some P ∗n(x) ∈ F such that the

distance between P ∗n and Pn is within εn, with εn −→ 0 as n −→ ∞, of the minimum distance of Pn from

F . Thus, if Gn is the solution of

P ∗n(x) =

∫
F (x | θ)g(θ)dθ (2.1.33)

then P ∗n −→ P in the maximum difference metric, and under suitable conditions on F (x/θ), we get

Gn(θ) −→ G(θ).

2.1.5 Linear Empirical Bayes Estimation

Another interesting nonparametric approach, called the linear EB estimator, is also due to Robbins (1983).

Consider, within the typical empirical Bayes framework, that we seek to estimate the parameter θ by some

function t = t(x), linear in x. Such linear Bayes estimator is constructed as follows:

Take

t(w0, w1, x) = w0 + w1x, (2.1.34)

Then the goal is to find w0, w1 which minimize the Bayes risk (mean squared error)

W (t(w0, w1, x)) =

∫ ∫
(w0 + w1x− θ)2q(x/θ)dxg(θ)dθ, (2.1.35)

Indeed, the first order necessary condition of finding a minimum is

∂W

∂w0
= 2

∫ ∫
(w0 + w1x− θ)q(x/θ)dxg(θ)dθ = 0, (2.1.36)

∂W

∂w1
= 2

∫ ∫
x(w0 + w1x− θ)q(x/θ)dxg(θ)dθ = 0, (2.1.37)

Which reduces to the two conditions

w0 + w1 E(x) =

∫
θg(θ)dθ, (2.1.38)

w0 E(x) + w1 E(x2) =

∫
θ E(x/θ)g(θ)dθ. (2.1.39)
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Consequently, multiplying the first equation by E(x) and subtracting from the second we obtain

w1

(
E(x2)−E2(x)

)
= E(θx)−E(θ)E(x), (2.1.40)

w0 + w1 E(x) = E(θ). (2.1.41)

this implies that

w0 = E(θ)− Cov(θ, x)

Var(x)
E(x), (2.1.42)

and

w1 =
Cov(θ, x)

Var(x)
, (2.1.43)

One advantage to working with linear empirical Bayes over the general approach(not linear), as described

by Robbins, is that we only have to deal with the quantities E(x), V ar(x), E(θ) and Cov(θ, x), which for

some families of f(x | θ) are easy to estimate using the data. An example will illustrate this procedure.

Example 8. Let x be exponential with mean θ. Then E(x | θ) = θ and E(x2 | θ) = 2θ2. Thus, using the

system of equations above we obtain the solution w0 and w1

w1 =
Var(θ)

Var(θ) + E(θ2)
, and w0 =

E(θ)E(θ2)

Var(θ) + E(θ2)
. (2.1.44)

The linear Bayes estimators are of great importance because, besides being computationally efficient and

easy to maneuver, they can also be useful in finding estimates for the first two moments of the random

variable Θ, which are certainly needed to estimate w0 and w1. Just take a look at the integral

∫
E(x | θ)g(θ)dθ (2.1.45)

taken from the system of equations above; it is equal to the expectation over the marginal distribution of

xG, or in general we have

E(xrG) =

∫
E(xr | θ)g(θ)dθ, r = 1, 2 (2.1.46)

Here again, E(xrG) can be estimated using the data. Thus, empirical estimation of the first two moments

will be carried out in the following way: First, estimate the first two moments of the marginal density using

data, this will give us X and X2 = 1
n

n∑
i=1

X2
i , then the first two empirical moments of the distribution of Θ
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are found by matching. That is, using results from Example 8 we obtain

∫
E(x2 | θ)g(θ)dθ =

1

n

n∑
i=1

X2
i = X2, (2.1.47)∫

E(x | θ)g(θ)dθ = X, (2.1.48)

or

∫
2θ2g(θ)dθ =

1

n

n∑
i=1

X2
i = X2, (2.1.49)∫

θg(θ)dθ = X. (2.1.50)

which leads to the empirical first two moments of the distribution of Θ

∫
θ2g(θ)dθ =

1

2
X2 = Ê(θ2), (2.1.51)∫

θg(θ)dθ = X = Ê(θ). (2.1.52)

The second step is to replace w0 and w1 by ŵ0 and ŵ1 to obtain an empirical quantity for t(w0, w1, x).

Indeed,

t̂(w0, w1, x) = ŵ0 + ŵ1x, (2.1.53)

with

ŵ0 =
X X2

2(X2 −X2
)

=
X(S2 +X

2
)

2S2
, (2.1.54)

ŵ1 =
X2 − 2X

2

2(X2 −X2
)

=
S2 −X2

2S2
. (2.1.55)

where S2 = X2 −X2
.

Linear EB estimators are simple to implement, and can be very efficient computationally, but they may

not do a good job approximating the Bayesian estimator. The comprehensive list of references as well as

numerous examples of applications of EB techniques can be found in Carlin and Louis (2000) or Maritz and

Lwin (1989).
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2.1.6 Measuring Precision of the EB Procedures

When the Bayes decision rule is estimated from the data its corresponding Bayes risk W (t) will also be

empirical. So the goodness of the empirical Bayes estimator could be evaluated by W (t̂). However, this

latter is itself a random variable since it is derived from the data. Thus to be able to evaluate the overall

quality of the EBE often we need to investigate the distribution of W (t̂). In this case a better measurement

of the performance of an EB method would be the sample average of W (t̂), EnW (t̂). Whether W (t̂) or

EnW (t̂) is the better choice depends on the situation, and it is left to experimenter’s own belief. In my first

research paper we propose an adaptive nonparametric Bayes estimation using wavelet series, and since the

wavelets expansion allows us to better represent local behavior of a function we feel that working with a

local measure of risk, W (t̂), would make more sense. If the EB estimator is powerful enough then it is said

to be asymptotically optimal. That would happen if

EnW (t̂) −→W (t)(E), (2.1.56)

as n −→∞ (convergence in mean). This does not mean that EnW (t̂) is very close to the Bayes risk W (t);

it could be even greater than the risk, in the mean squared error sense, of some non-Bayesian (classical)

estimators. Asymptotic optimality can also be measured by convergence in probability, that is,

W (t̂) −→W (t)(P ), (2.1.57)

as n −→ ∞. There is another measurement of the performance that can be very powerful in deciding

between an EB procedure and a classical technique. Indeed, an EB estimator would also be asymptotically

optimal if

Pn
(
W (t̂) < W (Tn)

)
> 1− ε (2.1.58)

for n large enough, where Tn is some classical estimator.

2.2 Wavelets Theory

2.2.1 Wavelets

Consider the space L2(R) of square integrable functions(sometimes, for theoretical reasons, and to satisfy

some analytical requirements the space of measurable functions that are absolutely and square integrable is
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preferred). Hence functions must decay rapidly to zero.

The idea is to consider dilations and translations of a wavelet function, say ψ, in order to cover R entirely.

That is, we consider the functions ψj,k(x), where

ψj,k(x) = ψ(2jx− k), j, k ∈ Z. (2.2.1)

The functions {ψj,k(x), j, k ∈ Z} form a basis that is not necessarily orthogonal. However, there is need to

work with orthogonal bases in that they have the property of allowing the perfect reconstruction of a signal

from the coefficients of the transform.

The possibility of obtaining orthogonal bases allows us to expand any function f ∈ L2(R) as a wavelet series.

Therefore, consider an orthonormal basis

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z, (2.2.2)

Then the wavelet series expansion of a function f ∈ L2(R) is given by

f(x) =

∞∑
j,k=−∞

cj,kψj,k(x) (2.2.3)

where cj,k =
∫∞
−∞ f(x)ψj,k(x)dx, which is convergent in norm.

2.2.2 Properties of the Wavelet ψ

In order for ψ to be a wavelet for continuous wavelet transform, it must satisfy what is called admissibility

condition so that we obtain a stably invertible transform. The properties of the wavelet functions are

i.
∫∞
−∞ ψ(x) dx = 0 (Admissibility condition)

This condition is equivalent to ψ̂(0) = 0 where ψ̂(ω) is the Fourier transform since ψ̂(0) =
∫∞
−∞ ψ(x) dx.

This is also equivalent to

Cψ =

∫ ∞
−∞

|ψ̂(ω)|2

|ω|
dω <∞. (2.2.4)

Remark. If ψ̂(0) = 0 and ψ̂(ω) is continuously differentiable, then the admissibility condition holds. In

addition, a sufficient time decay guarantees that ψ̂(ω) is continuously differentiable. Namely, the condition
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∫∞
−∞(1 + |x|) |ψ(x)| dx < ∞ is a sufficient condition to guarantee continuous differentiability of ψ̂(ω), and

thus the admissibility of ψ(x).

For wavelet functions from the space L1(R)
⋂
L2(R) one can also restrict ψ to satisfy the condition

∫ ∞
−∞
|ψ(x)|2 dx = 1. (2.2.5)

ii. The first r − 1 moments of ψ vanish.

Sometimes it is useful to restrict ψ to be a continuous function with a higher number, r− 1, of vanishing

moments. that is,

∫ ∞
−∞

xjψ(x) dx = 0 for j = 0, 1, · · · , r − 1, (2.2.6)

where r ≥ 1. Also

∫ ∞
−∞
|xrψ(x)| dx <∞. (2.2.7)

Note that the level of r is an indicator of how smooth ψ is: the larger r is, the smoother is ψ.

For the discrete wavelet transform, we need at least the condition that the wavelet series is a representation

of the identity in L2(R). Generally, multi-resolution analysis is utilized to construct such transforms.

2.2.3 Properties of the Scaling Function ϕ

Wavelets are characterized by the wavelet function ψ and a scaling function ϕ. ψ is a band-pass filter

and at each level of scales its band-width is halved. This leads to the problem that it would take an infinite

number of levels to be able to cover the entire spectrum. Here when the scaling function comes in to play;

it filters the lowest level of the transform and ensures that all the spectrum is covered.

The scaling function, ϕ, can be obtained from the mother wavelet, ψ, by the relation

|ϕ̂(ω)|2 =

∫ ∞
ω

∣∣∣ψ̂(r)
∣∣∣2

r
dr. (2.2.8)
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This function generates an orthonormal family of L2(R),

ϕj,k(x) = 2j/2ϕ(2jx− k) j, k ∈ Z. (2.2.9)

Now consider the orthonormal system

{ψj,k(x), ϕj,k(x), j, k ∈ Z}j≥j0,k, (2.2.10)

Then the wavelet series for f ∈ L2(R) becomes

f(x) =

∞∑
k=−∞

cj0,kϕj0,k(x) +

∞∑
j≥j0

∞∑
k=−∞

dj,kψj,k(x), (2.2.11)

where cj0,k =
∫∞
−∞ f(x)ϕj0,k(x)dx, and dj,k =

∫∞
−∞ f(x)ψj,k(x)dx.

2.2.4 Multi-resolution Analysis

We can construct wavelets ψ such that the family

{ψj,k(x) = 2−j/2ψ(2−jx− k)}(j,k)∈Z (2.2.12)

forms an orthonormal basis of L2(R). A sequence {Vj}j∈Z of closed subspaces of L2(R) is said to be a

multiresolution approximation if the following properties are met:

a. f(t) ∈ Vj ↔ f(t− 2jk) ∈ Vj , for all (j, k) ∈ Z.

b. For all j ∈ Z, Vj+1 ⊂ Vj .

c. f(t) ∈ Vj ↔ f(t/2) ∈ Vj+1, for all j ∈ Z.

d.
⋂
j Vj = {0}

e. L2(R) =
⋃
j Vj

f. There exists υ such that {υ(t− n)}n∈Z is a Riesz basis of V0.

In fact, such a sequence {Vj}j∈Z satisfies certain self-similarity relation in time and scale, as well as

completeness and regularity relations. Self-similarity in time requires that each subspace Vk is invariant to

any shifts proportional to the scale 2k, this is represented by property a. Self-similarity in scale requires that

all subspaces Vl ⊂ Vk, where k < l, are time-scaled versions of each other in the sense that for each f ∈ Vk,

there is a g ∈ Vl with x ∈ R such that g(x) = f(2k−lx), this is represented by property c. Property b can
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be thought of as a causality property in that approximations at a resolution 2−j provide whatever necessary

information we need to compute approximations at a resolution 2−j−1. Properties d and e summarize the

concept of completeness, which requires that those nested subspaces fill in the whole L2(R) space in the

sense that their union should be dense in L2(R) and their intersection should only contain the zero element.

Finally, the existence of a Riesz basis {υ(t − n)}n∈Z is important to guarantee that signal expansions over

{υ(t− n)}n∈Z are stable.

2.2.5 The Wavelet Transform

Theorem 1. For any f ∈ L2(R), the continuous wavelet transform (CWT ) with respect to ψ is defined by:

Wf(a, b) =
1√
|a|

∫ ∞
−∞

f(t)ψ∗
(
t− b
a

)
dt, for a, b ∈ R and a 6= 0, (2.2.13)

and its inverse transform is

f(t) =
1

Cψ

∫ ∞
−∞

Wf(a, b)
1√
|a|

ψ

(
t− a
a

)
db

da

a2
, (2.2.14)

where Cψ =
∫∞
−∞
|ψ̂(w)|2
|w| dw.

In addition

∫ ∞
−∞
|f(t)|2 dt =

1

Cψ

∫ ∞
−∞

∫ ∞
−∞
|Wf(a, b)|2 db da

a2
. (2.2.15)

Before we proceed to the proof let us first state a couple of powerful results from Fourier transform theory.

Lemma 1. If f and h are functions in L1(R)
⋂
L2(R), then

∫ ∞
−∞

f(t)h∗(t)dt =
1

2π

∫ ∞
−∞

f̂(ω)ĥ∗(ω)dω, (Parseval relation) (2.2.16)

In the particular case when h = f the above relation becomes

∫ ∞
−∞
|f(t)|2 dt =

1

2π

∫ ∞
−∞

∣∣∣f̂(ω)
∣∣∣2 dω, (Plancherel relation) (2.2.17)
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Proof of Theorem 1. Recall that

Wf(a, b) =
1√
|a|

∫ ∞
−∞

f(t)ψ∗
(
t− b
a

)
dt,

=

∫ ∞
−∞

f(t)
1√
|a|
ψ∗
(
−
[
b− t
a

])
dt. (2.2.18)

Note that this transform can be viewed as a convolution. That is, if we denote ψa(t) = 1√
|a|
ψ∗(− t

a ), then

Wf(a, b) = f ∗ ψa(b). Now to verify the inversion formula we denote the right-hand side by

g(t) =
1

Cψ

∫ ∞
−∞

Wf(a, b)
1√
|a|
ψ

(
t− a
a

)
db
da

a2
, (2.2.19)

which can be rewritten in terms of convolution as

g(t) =
1

Cψ

∫ ∞
−∞

(f ∗ ψa) ∗ ψa(t)
da

a2
,

=
1

Cψ

∫ ∞
−∞

f ∗ ψa ∗ ψa(t)
da

a2
. (2.2.20)

To prove that f(t) = g(t), it suffices to show that their corresponding Fourier transforms are equal. Conse-

quently, taking the Fourier transform of both sides we get

ĝ(ω) =
1

Cψ

∫ ∞
−∞

f̂(ω)ψ̂a(ω)ψ̂a(ω)
da

a2
. (2.2.21)

Now recall that ψa(t) = 1√
|a|
ψ∗(− t

a ), so taking the Fourier transform we obtain

ψ̂a(ω) =
√
|a|ψ̂∗(aω), (2.2.22)

and

ψ̂a(ω) =
√
|a|ψ̂(aω). (2.2.23)
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Consequently

ĝ(ω) =
1

Cψ

∫ ∞
−∞

f̂(ω)
√
|a|ψ̂∗(aω)

√
|a|ψ̂(aω)

da

a2
,

=
1

Cψ

∫ ∞
−∞

f̂(ω)ψ̂∗(aω)ψ̂(aω)
da

|a|
,

=
f̂(ω)

Cψ

∫ ∞
−∞

∣∣∣ψ̂(aω)
∣∣∣2 da

|a|
. (2.2.24)

Now, make the substitution u = aω to obtain

ĝ(ω) = f̂(ω). (2.2.25)

For the second relation we apply the Parseval theorem to the right-hand side. Consequently,

1

Cψ

∫ ∞
−∞

∫ ∞
−∞
|Wf(a, b)|2 db da

a2
=

1

Cψ

∫ ∞
−∞

1

2π

∫ ∞
−∞

∣∣∣f̂(ω)ψ̂a(ω)
∣∣∣2 dω da

a2
,

=
1

Cψ

1

2π

∫ ∞
−∞

∫ ∞
−∞

∣∣∣f̂(ω)
∣∣∣2 ∣∣∣√|a|ψ̂(aω)

∣∣∣2 dω da
a2
. (2.2.26)

Now we interchange the order of integration, and make the substitution u = aω, to get

1

Cψ

1

2π

∫ ∞
−∞

∫ ∞
−∞

∣∣∣f̂(ω)
∣∣∣2 ∣∣∣√|a|ψ̂(aω)

∣∣∣2 dω da
a2

=
1

Cψ

1

2π

∫ ∞
−∞

∣∣∣f̂(ω)
∣∣∣2 ∫ ∞
−∞

∣∣∣ψ̂(u)
∣∣∣2

|u|
du dω,

=
1

2π

∫ ∞
−∞

∣∣∣f̂(ω)
∣∣∣2 dω. (2.2.27)

Applying the Parseval theorem one more time yields the left-hand side of the formula,
∫∞
−∞ |f(t)|2 dt.

Remark 1. When Wf(a, b) is only known for some a < a0, in order then to invert the transform one needs

to include the scaling function, ϕ to be able to cover the part where a > a0. In such a situation the inversion

formula becomes

f(t) =
1

Cψ

∫ a0

−∞
Wf(., a) ∗ ψa(t)

da

a2
+

1

Cψ

1

|a0|
Lf(., a0) ∗ φa0

(t). (2.2.28)

where Lf(., a) = 〈f(t), 1√
|a|
φ( t−ba )〉.

Let us now prove this version of the inversion formula. In the same fashion, denote the right-hand side
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of the formula by g(t), then it suffices to show that the corresponding Fourier transforms are equal. Indeed,

ĝ(ω) =
1

Cψ

∫ a0

−∞
f̂(ω)ψ̂a(ω)ψ̂a(ω)

da

a2
+

1

Cψ

1

|a0|
f̂(ω)|a0|φ̂a0

(ω)φ̂a0(ω),

=
1

Cψ

∫ a0

−∞
f̂(ω)ψ̂∗(aω)ψ̂(aω)

da

|a|
+

1

Cψ

1

|a0|
f̂(ω)|a0|

∣∣∣φ̂(a0ω)
∣∣∣2 ,

=
f̂(ω)

Cψ

∫ a0

−∞

∣∣∣ψ̂(aω)
∣∣∣2 da

|a|
+
f̂(ω)

Cψ

∣∣∣φ̂(a0ω)
∣∣∣2 . (2.2.29)

Finally, recalling the formula

∣∣∣φ̂(ω)
∣∣∣2 =

∫ ∞
ω

∣∣∣ψ̂(r)
∣∣∣2

r
dr, (2.2.30)

yields

ĝ(ω) =
f̂(ω)

Cψ

∫ a0ω

−∞

∣∣∣ψ̂(r)
∣∣∣2 dr

|r|
+
f̂(ω)

Cψ

∣∣∣φ̂(a0ω)
∣∣∣2 ,

= f̂(ω). (2.2.31)

2.2.6 Discrete Wavelet Transform

Suppose that we have observations X = (x0, x1, x2, · · · , xN−1) that may be i.i.d., and take N = 2M .

Then the discrete wavelet transform of x with respect to ψ is

d
(ψ)
j,k =

N−1∑
t=0

xtψj,k(t) (2.2.32)

This transform is computed for j = 0, 1, 2, · · · ,M−1 and k = 0, 1, 2, · · · , 2j−1. Since we have N observations

and only N − 1 coefficients we need one more, denote it d−1,0.

The data X may be associated to a function f on the interval [0, 1) such that

f(t) =

N−1∑
k=0

xk1{ k

2M
≤t< k+1

2M
} (2.2.33)

So the discrete wavelet expansion of f is given by

f(t) = d−1,0ϕ(t) +

M−1∑
j=0

2j−1∑
k=0

dj,kψj,k(t), (2.2.34)
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In practice we do not consider all the resolution levels, M , but a number J , which corresponds to the coarsest

scale, 2−J , or the smooth part of the data. Thus, the the discrete wavelet expansion of f becomes

f(t) =

2J−1∑
k=0

cJ,kϕJ,k(t) +

M−1∑
j=J

2j−1∑
k=0

dj,kψj,k(t), (2.2.35)

Notice that cJ,k capture the low frequency oscillations, whereas dj,k capture high frequency. In addition the

coefficients dM−1,k represent fine scale, details, and cJ,k, dJ,k correspond to the coarsest scale, or smoothness.

2.2.7 Wavelet Series Versus Fourier Series

The wavelet series are often compared to the Fourier series. Historically, there was need to device a better

tool than Fourier series representation in the sense that it takes an infinite number of terms to represent a

function but for a practical matter we can only use a finite number of terms. This Fourier series must then

be truncated, and this truncation will produce an error. Thus we must try to balance between the number

of terms to keep and how much error we are willing to tolerate. In order to achieve satisfactory results

(accuracy) a greater number of terms is needed, and this will require more computer time and storage space.

Another disadvantage with the Fourier series is that although it represents the frequency of a function well,

it does a poor job preserving that function’s localized properties. Mathematicians along with physicists had

to wait until the 1980’s to see their prayer answered when a new type of series called wavelet series was

invented. The main difference between wavelets and Fourier series is that wavelets are localized in both time

and frequency, whereas the standard Fourier transform is only localized in frequency. This can be explained

by the fact that while the Fourier series depend on a single basis (sine/cosine) which represents frequencies

well but whose support is not localized, wavelet series give us an infinite number of bases to choose from so we

can pick the best basis for a particular function. As a result wavelets often give a better signal representation

thanks to multiresolution analysis, with balanced resolution at any time and frequency. The closest type

of Fourier series to the wavelet series is what is called the short time Fourier series, in the sense that it is

localized in time as well. Another advantage of wavelet over Fourier series is their computational efficiency,

taking only O(N) compared to O(N logN) with the Fourier series, where N is the size of the signal.

26



CHAPTER 3: ADAPTIVE NONPARAMETRIC EMPIRICAL BAYES

ESTIMATION VIA WAVELETS SERIES

3.1 Formulation of the Problem

Consider the following setting, one observes independent two-dimensional random vectors (X1, θ1), · · · ,

(Xn, θn), where each θi is distributed according to some unknown prior pdf g and, given θi = θ the observation

Xi has the known conditional density function q(x | θ), so that each pair (Xi, θi) has an absolutely continuous

distribution with the density function q(x | θ)g(θ). In each pair the first component is observable, but the

second is not. After the (n+ 1)-th observation y ≡ Xn+1 is taken, the goal is to estimate t ≡ θn+1.

If the prior density g(θ) were known, then the standard Bayes estimator of θn+1 would be given by the

following equation

t(y) =

∫∞
−∞ θq(y | θ)g(θ)dθ∫∞
−∞ q(y | θ)g(θ)dθ

(3.1.1)

Since the prior density is unknown, an EB estimator t̂(y;X1, X2, X3, · · · , Xn) is to be used.

Denote

p(y) =

∫ ∞
−∞

q(y | θ)g(θ)dθ, (3.1.2)

Ψ(y) =

∫ ∞
−∞

θq(y | θ)g(θ)dθ. (3.1.3)

Hence t(y) can be rewritten as

t(y) = Ψ(y)
/
p(y). (3.1.4)

There is a variety of methods which allow to estimate t(y) on the basis of observations y;X1, · · · , Xn.

After Robbins (1955, 1964) formulated EB estimation approach, many statisticians have been working on

developing EB methods. The comprehensive list of references as well as numerous examples of applications
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of EB techniques can be found in Carlin and Louis (2000) or Maritz and Lwin (1989).

As stated in Chapter 2, in nonparametric EB estimation, prior distribution is completely unspecified.

One of the approaches to nonparametric EB estimation is based on estimation of the numerator and the

denominator in the ratio in (3.1.4). This approach was introduced by Robbins (1955, 1964) himself and

later developed by a number of authors (see, e.g., Brown and Greenshtein (2009), Datta (1991, 2000), Ma

and Balakrishnan (2000), Nogami (1988), Pensky (1997a,b), Raykar and Zhao (2011), Singh (1976, 1979)

and Walter and Hamedani (1991) among others). The method provides estimators with good convergence

rates, however, it requires relatively tedious three-step procedure: estimation of the top and the bottom of

the fraction and then the fraction itself.

Wavelets provide an opportunity to construct adaptive wavelet–based EB estimators with better com-

putational properties in this framework (see, e.g., Huang (1997) and Pensky (1998, 2000, 2002)) but the

necessity of estimation of the ratio in (3.1.4) remains. Another nonparametric approach developed in Jiang

and Zhang (2009), is based on application of nonparametric MLE technique which is computationally ex-

tremely demanding.

In 1983, Robbins introduced a much more simple, local nonparametric EB method, linear EB estima-

tion. Robbins (1983) suggested to approximate Bayes estimator t(y) locally by a linear function of y and to

determine the coefficients of t(y) by minimizing the expected squared difference between t(y) and θ, with

subsequent estimation of the coefficients on the basis of observations {X1, · · · , Xn}. The technique is ex-

tremely efficient computationally and was immediately put to practical use, for instance, for prediction of

the finite population mean (see, e.g., Ghosh and Meeden (1986), Ghosh and Lahiri (1987) and Karunamuni

and Zhang (2003)).

However, a linear EB estimator has a large bias since, due to its very simple form, it has a limited

ability to approximate the Bayes estimator t(y). For this reason, linear EB estimators are optimal only in

the class of estimators linear in y. To overcome this defect, Pensky and Ni (2000) extended approach of

Robbins (1983) to approximation of t(y) by algebraic polynomials. However, although the polynomial-based

EB estimation provides significant improvement in the convergence rates in comparison with the linear EB

estimator, the system of linear equations resulting from the method is badly conditioned which leads to

computational difficulties and loss of precision.

To overcome those difficulties, Pensky and Alotaibi (2005) proposed to replace polynomial approximation

of the Bayes estimator t(y) by its approximation via wavelets, in particular, by expansion over scaling

functions at the resolution level m. The method exploits de-correlating property of wavelets and leads
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to a low-dimensional well-posed sparse system of linear equations. The paper also treated the issue of

local asymptotic optimality as n → ∞: if the resolution level is selected correctly, in accordance with the

smoothness of the Bayes estimator, then the suggested EB estimator attains optimal convergence rates.

However, smoothness of the Bayes estimator t(y) is hard to assess. For this reason, the EB estimator of

Pensky and Alotaibi (2005) is non-adaptive. One of the possible ways of achieving adaptivity would be to

replace the linear scaling function based approximation by a traditional wavelet expansion with subsequent

thresholding of wavelet coefficients. The deficiency of this approach, however, is that it yields the system of

equations which is much less sparse and is growing in size with the number of observations n.

The present chapter has two main objectives. The first one is to derive lower bounds for the postrior risk of

a nonparametric empirical Bayes estimator. In spite of a fifty years long history of empirical Bayes methods,

general lower bounds for the risk of an empirical Bayes estimators have not been derived so far. In particular,

Penskaya (1995) obtain lower bounds for the posterior risk of nonparametric empirical Bayes estimators of

a location parameter. Li, Gupta and Liese (2005) obtained lower bounds for the risk of empirical Bayes

estimators in the exponential families. However, since their lower bound is of the form C/n, practically

no estimator can attain this lower bound. Construction of the lower bounds was attempted also in the

empirical Bayes linear loss two-action problem in the case of continuous one-parameter exponential family.

Karunamuni (1996) published the paper on the subject but his results were proved to be inaccurate, at least

in the case of the normal distirbution, when Liang (2000) constructed an estimator with the convergence

rates below the lower bound for the risk. Pensky (2003) derived lower bounds for the loss in the empirical

Bayes two-action problem involving normal means. However, no general theory has ever been attempted

so far. In what follows, we construct lower bounds for the risk of an empirical Bayes estimator under a

general assumption that the marginal density p(x) given by formula (3.1.2) is continuously differentiable in

the neighborhood of y.

The second purpose of this chapter is to provide an adaptive version of the wavelet EB estimator de-

veloped in Pensky and Alotaibi (2005). In particular, we preserve the structure of the linear structure of

the estimator. However, since expansion over scaling functions at the resolution level m leads to excessive

variance when resolution level m is too high and disproportionately large bias when m is too small, we choose

the resolution level using Lepski method introduced in Lepski (1991) and further developed in Lepski, Mam-

men and Spokony (1997). The resulting estimator is adaptive and attains optimal convergence rates (within

a logarithmic factor of n). In addition, it has an advantage of computational efficiency since it is based

on the solution of low-dimensional sparse system of linear equations the matrix of which tends to a scalar
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multiple of an identity matrix as the scale m grows. The theory is supplemented by numerous examples that

demonstrate how the estimator can be implemented for various types of distribution families.

3.2 EB estimation algorithm

In order to construct an estimator of t(y) defined in (3.1.4), choose twice continuously differentiable scaling

function ϕ with bounded support and s vanishing moments, so that

supp ϕ ∈ [M1,M2]. (3.2.1)∫ ∞
−∞

xℵ
∑
k∈Z

ϕ(x− k)ϕ(z − k)dx = zℵ, 0 ≤ ℵ ≤ s− 1, (3.2.2)

(see e.g., Walter and Shen (2001)).

Approximate t(y) by a wavelet series, or some fixed m ≥ 0,

tm(y) =
∑
k∈Z

am,k ϕm,k(y) (3.2.3)

where ϕm,k(y) = 2m/2ϕ(2my − k), and estimate coefficients of t(y) by minimizing the global mean squared

difference

min
am,k


∫ ∞
−∞

∫ ∞
−∞

[∑
k∈Z

am,kϕm,k(y)− z

]2

q(y|z)g(z)dz dy

 . (3.2.4)

Taking derivatives of the last expression with respect to am,j and equating them to zero, we obtain the

system of linear equations

Bmam = cm (3.2.5)

with

(Bm)j,k = Bj,k =

∫ ∞
−∞

ϕm,k(x)ϕm,j(x)p(x)dx = E [ϕm,k(X)ϕm,j(X)] , (3.2.6)

cj = =

∫ ∞
−∞

ϕm,j(x)Ψ(x)dx. (3.2.7)

Here and in what follows we use the symbol E for expectation over the distribution of X1, X2, · · · , Xn. The

expectations over any other distributions are represented in integral forms. Also, we supress index m in

notations of matrix Bm = B and vector cm = c unless this leads to a confusion.
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System (3.2.5) is an infinite system of equations. However, since we are interested in estimating t(x)

locally at x = y, we shall keep only indices k, j ∈ Km,y where

Km,y = {k ∈ Z : 2my −M2 − s(M2 −M1) ≤ k ≤ 2my −M1 + s(M2 −M1)} (3.2.8)

where r will be determined later. Observe that really expansion (3.2.3) contains just coefficients am,k with

2my −M2 ≤ k ≤ 2my −M1, however, for evaluation of these coefficients we need to keep more terms in the

system of equations (3.2.5) ( see Lemma A.3 in Pensky and Alotaibi (2005) for more detail).

The entries (3.2.6) of the matrix B are unknown and can be estimated by sample means

b̂j,k = n−1
n∑
l=1

[ϕm,k(Xl)ϕm,j(Xl)] . (3.2.9)

In order to estimate cj , find functions um,j(x) such that for any θ

∫ ∞
−∞

q(x | θ)um,j(x)dx =

∫ ∞
−∞

θq(x | θ)ϕm,j(x)dx. (3.2.10)

Then, multiplying both sides of (4.1.5) by g(θ) and integrating over θ, we obtain

Eumj(X) =

∫ ∞
−∞

umj(x)p(x)dx =

∫ ∞
−∞

ϕm,j(x)Ψ(x)dx = cj . (3.2.11)

Note that functions um,j(x) are the same functions which appear in the wavelet estimator of the numerator

Ψ(y) of the EB estimator (3.1.4), therefore, the estimator considered herein can be constructed whenever

wavelet EB estimation is possible (see e.g. Pensky (1997, 1998)). Solutions of equation (4.1.5) can be easily

obtained, for example, when q(x | θ) is a location parameter family, scale parameter family, one-parameter

exponential family or a family of uniform distributions (see Pensky (1998, 2002)). Later in this discussion

we consider in detail the case when θ is a location parameter.

Once functions um,j(x) are derived, coefficients cj can be estimated by

ĉj = n−1
n∑
l=1

um,j(Xl) (3.2.12)

and system (3.2.5) replaced by B̂â = ĉ. However, though estimators B̂ and ĉ converge in mean squared sense

to B and c, respectively, the estimator â = B̂−1ĉ may not even have finite expectation. To understand this
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fact, note that both B̂ and ĉ are asymptotically normal. In one dimensional case, the ratio of two normal

random variables has Cauchy distribution and hence does not have finite mean. In multivariate case the

difficulty remains. To ensure that the estimator of a has finite expectation, we choose δ = δm > 0 and

construct an estimator of a of the form

âδ = (B̂ + δI)−1ĉ (3.2.13)

where I is the identity matrix. Observe that matrix B̂ is nonnegative definite, so that B̂ + δI is a positive

definite matrix and, hence, is nonsingular. Solution âδ is used for construction of the EB estimator

t̂(y) =
∑

k∈Km,y

(âδ)m,k ϕm,k(y). (3.2.14)

3.3 The Prior and the Posterior Risks

An EB estimator t̂(y) may be characterized by the posterior risk

R(y; t̂) = (p(y))−1E

∫ ∞
−∞

(t̂(y)− θ)2q(y|θ)g(θ)dθ (3.3.1)

which can be partitioned into two components. The first component of this sum is

R(y; t(y)) = inf
f
R(y; f(y)) = (p(y))−1

∫ ∞
−∞

(t(y)− θ)2q(y|θ)g(θ)dθ, (3.3.2)

which is independent of t̂(y) and represents the posterior risk of the Bayes estimator (3.1.1). Thus we shall

judge EB estimator by the second component

R̂n(y) = E(t̂(y)− t(y))2. (3.3.3)

It must be noted that often the quality of the EB estimator is described by

ER̂n(y) =

∫ ∞
−∞

R̂n(y)p(y)dy, (3.3.4)

which is the difference between the prior risk

E

∫ ∞
−∞

R(y; t̂(y))p(y)dy (3.3.5)
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of the EB estimator t̂(y) and the prior risk

∫ ∞
−∞

R(y; t(y))p(y)dy = inf
f

∫ ∞
−∞

R(y; f(y))p(y)dy (3.3.6)

of the orresponding Bayes estimator t(y). However, the risk function (3.3.3) has several advantages compared

with ER̂n(y).

First, R̂n(y) enables one to calculate the mean squared error for the given observation y which is the

quantity of interest. Note that the wavelet series (3.2.14) is local in a sense that coefficients (âδ)m,k change

whenever y changes, hence, working with a local measure of the risk makes much more sense. Using the

prior risk for the estimator which is local in nature prevents one from seeing advantages of this estimator.

Second, by using the risk function (3.3.3) we eliminate the influence on the risk function of the observations

having very low probabilities. So, the use of R̂n(y) provides a way of getting EB estimators with better

convergence rates. Third, posterior risk allows one to assess optimality of EB estimators for majority

of familiar distribution families via comparison of the convergence rate of the estimator with the lower

bounds for the risk derived in Pensky (1997). Finally, one can pursue evaluation of the prior risk for the

estimator (3.2.14). The derivation will require assumptions similar to the ones in Pensky (1998) and can be

accomplished by standard methods.

The error (3.3.3) is dominated by the sum of two components

Rn(y) ≤ 2(R1(y) +R2(y)) (3.3.7)

where the first component R1 = R1(y) is due to replacement of the Bayes estimator t(y) by its wavelet

representation (3.2.3), while R2 = R2(y) is due to replacement of vector a = B−1c by âδ given by (3.2.13):

R1(y) = (tm(y)− t(y))2, (3.3.8)

R2(y) = E

 ∑
k∈Km,y

((âδ)m,k − am,k)ϕm,k(y)

2

. (3.3.9)

We shall refer to R1 and R2 as the systematic and the random error components, respectively. Since we are

using the posterior risk, from now on we treat y as a fixed quantity throughout this chapter.
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3.4 Minimax Lower Bounds

Our goal in this section is to construct a lower bound for the minimax risk on (Gr, d) where Gr is a class of

r times continuously differentiable functions in the neighborhood Ωy of y, and where d is a distance between

f and g in Gr at the fixed point y:

d(f, g) = |f(y)− g(y)| . (3.4.1)

In order to construct minimax lower bounds for (3.3.3) we follow procedure developed in Tsybakov (2008),

in particular, we use Theorem 2.7 which we reformulate here for the case of squared risk.

Lemma 2. [ Tsybakov (2007), Theorem 2.7] Assume that Ξ contains elements ξ0, ξ1, · · · , ξΥ, Υ ≥ 1, such

that

(i) d(ξι, ξζ) ≥ 2χ, for 0 ≤ ι < ζ ≤ Υ;

(ii) the Kullback divergences K(Pι, P0) between the measures Pι and P0, with Pι << P0, for ι = 1, . . . ,Υ,

satisfy the inequality

K(Pι, P0) ≤ CΥ (3.4.2)

with CΥ is a positive constant. Then, for some absolute positive constant C3, one has

inf
ξ̂

sup
ξ∈ Ξ

Eξ

[
d2(ξ̂, ξ)

]
≥ C3χ

2. (3.4.3)

Let y be a fixed point. Consider an r-times continuously differentiable pdf p0(x), and an r-times contin-

uously differentiable kernel k(·) with supp k = (−1, 1) and such that
∫
k(z)dz = 0. Let p0(·) and k(·) satisfy

the following assumptions:

Assumption A1: There exists g0(θ) such that for any x

p0(x)

∫
q(x | θ)g0(θ)dθ (3.4.4)

Assumption A2: There exists a function ψh,y(θ) such that for any x, y and h > 0

k

(
x− y
h

)
=

∫
q(x | θ)ψh,y(θ)dθ. (3.4.5)
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Assumption A3: Density p0(x) is such that for any x and y such that |x− y| ≤ h and any 0 < ζ ≤ ζ0

p0(x) > 2ζ ||k||∞ . (3.4.6)

Denote

Ψ0(x) =

∫
θq(x | θ)g0(θ)dθ, wh,y(x) =

∫
θq(x | θ)ψh,y(θ)dθ, (3.4.7)

ρr(h) =

[
max

1≤j≤r

∣∣∣∣ djdxj [wh,y(x)]

∣∣∣∣
x=y

]−1

, (3.4.8)

and consider

p1(x) = p0(x) + ζk

(
x− y
h

)
(3.4.9)

Ψ1(x) = Ψ0(x) + ζwh,y(x) (3.4.10)

Now, consider equations (3.4.9) and (3.4.10) and let the Assumptions 1− 3 hold. Choose ζ such that p1(x)

and Ψ1(x) ∈ Gr. That is, the r − th derivatives of p1(x) and Ψ1(x) are bounded above. This is achieved by

taking ζ = ζ0 min{hr, ρr(h)} for ζ0 some constant independent of j, where ρr(h) is defined in (3.4.8). Then,

calculating the distance d(t1, t0) at the fixed point y and and since p1(y) ≥ p0(y)/2, we obtain

d(t1, t0) =

∣∣∣∣Ψ0(y) + ζwj,k(y)

p0(y) + ζk(0)
− Ψ0(y)

p0(y)

∣∣∣∣
= ζ

∣∣∣∣wj,k(y)p0(y)−Ψ0(y)k(0)

p0(y)[p0(y) + ζk(0)]

∣∣∣∣
≥ ζ/2

∣∣∣∣wj,k(y)p0(y)−Ψ0(y)k(0)

p2
0(y)

∣∣∣∣ (3.4.11)

Hence,

d(t1, t0) ≥

 Cζ, if |wh,y(y)| ≤ C0,

Cζ|wh,y(y)|, if limh→0 |wh,y(y)| =∞.
(3.4.12)

Therefore,

2χ =

 Cζ, if |wh,y(y)| ≤ C0,

Cζ|wh,y(y)|, if limh→0 |wh,y(y)| =∞.
(3.4.13)
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In order to apply Lemma 14 , one needs to verify condition (ii). Observe that

p0(x1, · · · , xn) =

n∏
i=1

p0(xi) (3.4.14)

p1(x1, · · · , xn) =

n∏
i=1

[
p0(xi) + ζk

(
xi − y
h

)]
(3.4.15)

Then, recalling the fact that for x > −1, log(1 +x) ≤ x the Kullback divergences between p1 and p0 is given

by

K(p1, p0) =

∫
· · ·
∫

log

{
n∏
i=1

p1(xi)/p0(xi)

}
n∏
i=1

p1(xi)dxi

=
n∑
i=1

∫
log

{
p0(x) + ζk

(
x−y
h

)
p0(x)

}{
p0(x) + ζk

(
x− y
h

)}
dx

≤
n∑
i=1

∫
hj
k
(
x−y
h

)
p0(x)

{
p0(x) + ζk

(
x− y
h

)}
dx

= nζ2

∫
k2
(
x−y
h

)
p0(x)

dx (3.4.16)

Apply Lemma 14 with ζ and h such that

nζ2h ≤ C6, (3.4.17)

Now, assume that

ρr(h) ≤ Chr1 , |wh,y(x)| ≤ C0h
−r2 (3.4.18)

Then,

h � n
1

2 max{r,r1}+1

obtain

χ2 = Cn
− 2 max{r,r1}−2r2

2 max{r,r1}+1 (3.4.19)

Hence, the lower bounds of the (3.3.3) is summarized in the following Theorem.

Theorem 2. Let functions p(x) and Ψ(x) be r ∈ [1/2, s − 1] times continuously differentiable in the

neighborhood Ωy of y such that Ωm,y ⊆ Ωy where Ωm,y is defined in (3.6.11). Let Assumptions A1-A3 hold
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and assume, for some r1 ≥ 0 and r2 ≥ 0,

ρr(h) ≤ Chr1 , |wh,y(x)| ≤ C0h
−r2 (3.4.20)

Then, for any y such that p(y) > 0, as n→∞,

Rn(y) = inf
t̂

sup
g∈Gr

E(t̂m(y)− t(y))2 ≥ Cn−
2 max{r,r1}−2r2
2 max{r,r1}+1 , (3.4.21)

where C is an absolute constant independent of n. In particular, if r1 ≤ r and r2 = 0, then

Rn(y) = E(t̂m(y)− t(y))2 ≥ Cn−
2r

2r+1 , m, n→∞, (3.4.22)

Remark 2. If r1 ≤ r and r2 = 0, then convergence rates are defined by behavior of p(x) in the neighborhood

of y. Otherwise, the rates are defined by behavior of Ψ(x) in the neighborhood of y.

3.5 Supplementary Lemmas

In future, we shall need the following supplementary results.

Lemma 3. Let B̂, B, ĉ and c be defined as in (3.2.9), (3.2.6), (3.2.12) and (3.2.7), respectively. Then,

E
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2l = O

(
n−l2ml

)
, l = 1, 2, 4, (3.5.1)

Also

E ||ĉ− c||2 = O
(
n−1γ2

m

)
, (3.5.2)

E ||ĉ− c||4 = O

(
n−3

∣∣∣∣∣∣γ(2)(m)
∣∣∣∣∣∣2 + n−2γ4

m

)
, (3.5.3)

and

E ||ĉ− c||8 = O

(
n−7

∣∣∣∣∣∣γ(4)(m)
∣∣∣∣∣∣2 + n−6

∣∣∣∣∣∣γ(2)(m)
∣∣∣∣∣∣4 + n−6γ2

m

∣∣∣∣∣∣γ(3)(m)
∣∣∣∣∣∣2)

+ O

(
n−5γ4

m

∣∣∣∣∣∣γ(2)(m)
∣∣∣∣∣∣2 + n−4γ8

m

)
. (3.5.4)

where γ2
m is defined in (3.8.2).
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Proof of Lemma 3. Recall that b̂j,k − bj,k = 1
n

n∑
t=1

ηt where ηt = ϕm,k(Xt)ϕm,j(Xt), t = 1, · · · , n.

Indeed taking the second moment we obtain

E

[
1

n

n∑
t=1

ηt

]2

=
E[η2

t ]

n
, (3.5.5)

which implies that

E
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2 ≤ M2n−1E[η2

t ] ≤ n−1M2
[
2 ||p||∞ ||ϕ||

2
∞ 2m

]
= O

(
n−12m

)
. (3.5.6)

For l = 2, we take the fourth moment and apply Jensen’s inequality

E

[
1

n

n∑
t=1

ηt

]4

=
nE[η4

t ] + n(n− 1)E2[η2
t ]

n4
≤ 2

n2E[η4
t ]

n4
(3.5.7)

Consequently,

E
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣4 ≤ 2M2 E[η4

t ]

n2
≤ 4M2

[
||p||∞ ||ϕ||

4
∞ 22m

n2

]
= O

(
n−222m

)
. (3.5.8)

For l = 4, taking the eighth moments and applying Jensen’s inequality we obtain

E

[
1

n

n∑
t=1

ηt

]8

= n−8

[
nE[η8

t ] +

(
n

2

)(
E[η2

t ]E[η6
t ] + E[η4

t ]2
)

+

(
n

3

)
E[η4

t ]E[η2
t ]2 +

(
n

4

)
E[η2

t ]4
]

≤ n−8

[
nE[η8

t ] +

(
n

2

)
2E[η8

t ] +

(
n

3

)
E[η8

t ] +

(
n

4

)
E[η8

t ]

]
≤ 5

E[η8
t ]

n4
(3.5.9)

which yields

E
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣8 ≤ 5M2 E[η8

t ]

n4
≤ 10M2

[
||p||∞ ||ϕ||

8
∞ 24m

n4

]
= O

(
n−424m

)
. (3.5.10)
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For l = 8, taking the sixteenth moment and applying the Jensen’s inequality several times yields

E

[
1

n

n∑
t=1

ηt

]16

= n−16

[
nE[η16

t ] +

(
n

2

)(
E[η6

t ]E[η10
t ] + E2[η8

t ]2 + E[η4
t ]E[η12

t ] + E[η2
t ]E[η14

t ]
)]

+ n−16

(
n

3

)(
E[η4

t ]E2[η6
t ] + E2[η4

t ]E[η8
t ] + E[η12

t ]E2[η2
t ] + E[η4

t ]E[η2
t ]E[η10

t ]
)

+ n−16

(
n

3

)
E[η6

t ]E[η2
t ]E[η8

t ]

+ n−16

(
n

4

)(
E4[η4

t ] + E3[η2
t ]E[η10

t ] + E[η2
t ]E[η6

t ]E2[η4
t ] + E2[η2

t ]E[η8
t ]E2[η4

t ]
)

+ n−16

(
n

4

)
E2[η6

t ]E2[η2
t ]

+ n−16

(
n

5

)(
E4[η2

t ]E[η8
t ] + E3[η4

t ]E2[η2
t ] + E3[η2

t ]E[η6
t ]E[η4

t ]
)

+ n−16

[(
n

6

)(
E5[η2

t ]E[η6
t ] + E2[η4

t ]E4[η2
t ]
)

+

(
n

7

)(
E6[η2

t ]E[η4
t ]
)]

+ n−16

(
n

8

)
E8[η2

t ] ≤ 22
n8E[η16

t ]

n16
(3.5.11)

This leads to

E
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣16

≤ 22M2n
8E[η16

t ]

n16
≤ 44M2

[
||p||∞ ||ϕ||

16
∞ 28m

n8

]
≤ O

(
n−828m

)
. (3.5.12)

Now to prove (3.5.2)–(3.5.4), recall ĉk − ck = 1
n

n∑
t=1

ξt where ξt = umj(Xt), t = 1, ·, n. Thus, taking the

second moment, we derive

E

[
1

n

n∑
t=1

ξt

]2

=
E[ξ2

t ]

n
(3.5.13)

Consequently, using (3.8.1) and (3.8.2), we obtain

E ||ĉ− c||2 ≤ M
E[ξ2

t ]

n
≤M

[
2 ||p||∞ γ2

m

n

]
≤ O

(
n−1γ2

m

)
(3.5.14)

which proves (3.5.2). Now, taking the fourth moment and using Jensen’s inequality we obtain

E

[
1

n

n∑
t=1

ξt

]4

=
nE[ξ4

t ] + n(n− 1)E2[ξ2
t ]

n4
≤ 2

E[ξ4
t ]

n2
. (3.5.15)
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Thus, using (3.8.1) and (3.8.2), yields

E ||ĉ− c||4 ≤ 2M
E[ξ4

t ]

n2
≤M

[
2 ||p||∞

∣∣∣∣γ(2)(m)
∣∣∣∣2

n2

]
= O

(
n−2

∣∣∣∣∣∣γ(2)(m)
∣∣∣∣∣∣2) . (3.5.16)

Finally, taking the eighth moment and using the Jensen’s inequality yields

E

[
1

n

n∑
t=1

ξt

]8

= n−8

[
nE[ξ8

t ] +

(
n

2

)(
E[ξ2

t ]E[ξ6
t ] + E[ξ4

t ]2
)

+

(
n

3

)
E[ξ4

t ]E[ξ2
t ]2 +

(
n

4

)
E[ξ2

t ]4
]

≤ 5
E[ξ8

t ]

n4
(3.5.17)

which yields

E ||ĉ− c||8 ≤ 5M
E[ξ8

t ]

n4
≤M

[
2 ||p||∞

∣∣∣∣γ(4)(m)
∣∣∣∣2

n4

]
= O

(
n−4

∣∣∣∣∣∣γ(4)(m)
∣∣∣∣∣∣2) (3.5.18)

and completes the proof of Lemma 3.

Lemma 4. Let a and âδ be defined by (3.2.5) and (3.2.13) respectively, and

ΩB =
{
ω :
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > 0.5

∣∣∣∣B−1
∣∣∣∣−1

}
(3.5.19)

Then

||âδ − a|| ≤ (2M + 4δM2) ||ĉ− c||+ 2

δ
||c||1 (ΩB)

+ 8M ||ĉ− c||
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣+

2

δ
||ĉ− c||1 (ΩB)

+ 4δM2 ||c||+ 8M2 ||c||
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ (3.5.20)

Proof of Lemma 4. Recall that a = B−1c and âδ = (B̂ + δI)−1ĉ. Then by the properties of the norm

||âδ − a|| ≤
∣∣∣∣B−1

∣∣∣∣ ||ĉ− c||+ ∣∣∣∣∣∣B̂−1
δ −B

−1
∣∣∣∣∣∣ ||c||+ ∣∣∣∣∣∣B̂−1

δ −B
−1
∣∣∣∣∣∣ ||ĉ− c|| (3.5.21)

Also ∣∣∣∣∣∣B̂−1
δ −B

−1
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣B̂−1

δ −B
−1
δ

∣∣∣∣∣∣+
∣∣∣∣B−1

δ −B
−1
∣∣∣∣ (3.5.22)
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In addition, B−1 = I + 2−mV1 + o(2−m), therefore taking the norm we obtain

∣∣∣∣B−1
∣∣∣∣ =

∣∣∣∣p−1(y)I + 2−mV1 + · · ·
∣∣∣∣

≤
∣∣∣∣p−1(y)I

∣∣∣∣+
∣∣∣∣2−mV1

∣∣∣∣
≤ M(p−1(y) +O(2−m))

≤ 2Mp−1(y) (3.5.23)

or

∣∣∣∣B−1
∣∣∣∣ ≤ 2Mp−1(y) (3.5.24)

Now, for the first part of the right hand side in (3.5.22) we have

∣∣∣∣∣∣B̂−1
δ −B

−1
δ

∣∣∣∣∣∣ ≤ 2
∣∣∣∣B−1

∣∣∣∣2 ∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣1(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ < 1

2

∣∣∣∣B−1
∣∣∣∣−1

)
+

∣∣∣∣∣∣B̂−1
δ −B

−1
δ

∣∣∣∣∣∣1(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > 1

2

∣∣∣∣B−1
∣∣∣∣−1

)
≤ 2

∣∣∣∣B−1
∣∣∣∣2 ∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣+

2

δ
1

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > 1

2

∣∣∣∣B−1
∣∣∣∣−1

)
(3.5.25)

Consequently,

∣∣∣∣∣∣B̂−1
δ −B

−1
δ

∣∣∣∣∣∣ ≤ 8M2[p−1(y)]2
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣+

2

δ
1

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > 1

2

∣∣∣∣B−1
∣∣∣∣−1

)
(3.5.26)

For the second part of (3.5.22), and using (3.5.24) we obtain

∣∣∣∣B−1
δ −B

−1
∣∣∣∣ ≤ δ ∣∣∣∣B−1

∣∣∣∣2 ≤ 4δM2[p−1(y)]2 (3.5.27)
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Finally, using results (3.5.27), and (3.5.26) in (3.5.21) we derive

||âδ − a|| ≤
∣∣∣∣B−1

∣∣∣∣ ||ĉ− c||
+ ||c||

(
8M2[p−1(y)]2

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣+
2

δ
1

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > 1

2

∣∣∣∣B−1
∣∣∣∣−1

)
+ 4δM2

)
+ ||ĉ− c||

(
8M2

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣+
2

δ
1

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > 1

2

∣∣∣∣B−1
∣∣∣∣−1

)
+ 4δM2[p−1(y)]2

)
≤ 2Mp−1(y) ||ĉ− c||+ 8M2[p−1(y)]2 ||c||

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣+
2

δ
||c||1

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > p(y)

4M

)
+ 8M2[p−1(y)]2 ||ĉ− c||

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣
+

2

δ
||ĉ− c||1

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > p(y)

4M

)
+ 4δM2[p−1(y)]2 ||c||

+ 4δM2[p−1(y)]2 ||ĉ− c|| (3.5.28)

which completes the proof of lemma 4.

Furthermore, recall ΩB =
{
ω :
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > 0.5

∣∣∣∣B−1
∣∣∣∣−1

}
from Lemma 4, then, squaring (3.5.20), taking

expectation and applying the Cauchy-Schwartz inequality leads to the following corollary.

Corollary 1. Let a and âδ be defined by (3.2.5) and (3.2.13) respectively. Then,

E ||âδ − a||2 ≤ 32M2[p−1(y)]2E ||ĉ− c||2 + 32δ2M4[p−1(y)]4 ||c||2

+ 128M4[p−1(y)]4 ||c||2 E
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2 + 128M4[p−1(y)]4

√
|||ĉ− c||4 E

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣4
+

8

δ2
||c||2 Pr (ΩB)

+
8

δ2

√
||ĉ− c||4 Pr (ΩB) (3.5.29)

In addition, taking the fourth power, taking the expectation and applying the Cauchy-Schwartz inequality

leads to a second corollary

Corollary 2.

E ||âδ − a||4 ≤ 1024M4[p−1(y)]4E ||ĉ− c||4 + 4096M8[p−1(y)]8 ||c||4 E
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣4

+ 4096M8[p−1(y)]8
√

E ||ĉ− c||8 E
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣8 + 256δ4M8[p−1(y)]8 ||c||4

+
64

δ4
||c||4 Pr (ΩB)

+
64

δ4

√
||ĉ− c||8 Pr (ΩB) (3.5.30)
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3.6 The systematic error component.

For evaluation of the systematic error component R1, let us introduce matrices Uh and U∗h and vectors

Dh and D∗h with components

(Uh)k,l =

∫ ∞
−∞

zhϕ(z + 2my − k)ϕ(z + 2my − l)dz, (3.6.1)

(U∗h)k,l =

∫ ∞
−∞

zhϕ(z + 2my − k)ϕ(z + 2my − l)Rp,h(z)dz, (3.6.2)

(Dh)k =

∫ ∞
−∞

zhϕ(z + 2my − k)dz. (3.6.3)

(D∗h)k =

∫ ∞
−∞

zhϕ(z + 2my − k)RΨ,h(z)dz, (3.6.4)

where Rp,h and RΨ,h are respectively the remainders in the Taylor series expansions of p(y + 2−mz) and

Ψ(y + 2−mz).

Lemma 5. Let the matrices Uh and U∗h and vectors Dh and D∗h be defined as in (3.6.1)- (3.6.4) respectively.

Then

lim
m−→∞

|U∗r (m)− Ur(m)| = 0, (3.6.5)

Also

lim
m−→∞

|D∗r(m)−Dr(m)| = 0. (3.6.6)

Proof of Lemma 5 Recall that (Uh)k,l =
∫∞
−∞ zhϕ(z + 2my − k)ϕ(z + 2my − l)dz and (U∗h)k,l =∫∞

−∞ zhϕ(z + 2my − k)ϕ(z + 2my − l)Rp,r(z)dz, with Rp,r being the remainder in the Taylor expansion of

P (y + z
2m ). That is, Rp,r = 1

(r−1)! (
1

2m )r( 1
2m )r−1

∫ z
0

(z − ξ)r−1p(r)(y + ξ
2m )dξ. Indeed,

|(U∗h)k,l − (Uh)k,l| =

∣∣∣∣∫ ∞
−∞

zhϕ(z + 2my − k)ϕ(z + 2my − l)(Rp,r−1 − 1)dz

∣∣∣∣
≤

∫ ∞
−∞

∣∣zhϕ(z + 2my − k)
∣∣ |ϕ(z + 2my − l)| |(Rp,r−1 − 1)| dz

≤
∫ ∞
−∞

∣∣zhφ(z + 2my − k)
∣∣ |ϕ(z + 2my − l)| dz

≤ max
z
|ϕ(z + 2my − l)|

∫ ∞
−∞

∣∣zhϕ(z + 2my − k)
∣∣ dz (3.6.7)
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Notice that when m −→ ∞,
∣∣zhϕ(z + 2my − k)

∣∣ −→ 0. So the dominated convergence theorem applies to∣∣zhϕ(z + 2my − k)
∣∣, and therefore

lim
m−→∞

|(U∗h)k,l − (Uh)k,l| ≤ max
z
|ϕ(z + 2my − l)| lim

m−→∞

∫ ∞
−∞

∣∣zhϕ(z + 2my − k)
∣∣ dz

= 0 (3.6.8)

which completes the proof of (3.6.5) of lemma 5.

For the second part of the lemma recall (Dh)k =
∫∞
−∞ zhϕ(z + 2my − k)dz and (D∗h)k =

∫∞
−∞ zhϕ(z +

2my − k)RΨ,r(z)dz, where RΨ,r(z) =
∫ z

0
(z−ξ)r−1

(r−1)! 2−(2r−1)mΨ(r)(y + ξ
2m )dξ. So

|(D∗h)k − (Dh)k| =

∣∣∣∣∫ ∞
−∞

zhϕ(z + 2my − k)(RΨ,r − 1)dz

∣∣∣∣
≤

∫ ∞
−∞

∣∣zhϕ(z + 2my − k)
∣∣ |(RΨ,r − 1)| dz

≤ max
z
|(RΨ,r − 1)|

∫ ∞
−∞

∣∣zhϕ(z + 2my − k)
∣∣ dz (3.6.9)

Since
∣∣zhϕ(z + 2my − k)

∣∣ −→ 0 asm −→∞ the dominated convergence theorem applies to
∣∣zhϕ(z + 2my − k)

∣∣.
Concequently

lim
m−→∞

|(D∗h)k,l − (Dh)k,l| ≤ max
z
|(RΨ,r − 1)| lim

m−→∞

∫ ∞
−∞

∣∣zhϕ(z + 2my − k)
∣∣ dz

= 0 (3.6.10)

Which completes the proof of (3.6.6) and Lemma 5.

Observe that Uh and Dh are independent of unknown functions p(x) and Ψ(x), and that U0 = I where

I is the identity matrix. Denote

Ωm,y =
{
x : |x− y| ≤ 2−ms(M2 −M1)

}
. (3.6.11)
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Then

Bj,k = 2m
∫ ∞
−∞

ϕ(2mx− k)ϕ(2mx− j)p(x)dx

=

∫ ∞
−∞

ϕ(z + 2my − k)ϕ(z + 2my − j)p(y + 2−mz)dz

=

r∑
h=0

2−mh(h!)−1p(h)(y)Uh + o(2−mr), (3.6.12)

where U0 = I, the identity matrix. Deriving a similar representation for ck, we obtain an asymptotic

expansions of matrix B and vector c via matrices Uh and vectors Dh, respectively, as m→∞

B = p(y)I +

r∑
h=1

2−mh(h!)−1p(h)(y)Uh + o(2−mr), (3.6.13)

c = 2−m/2
r∑
l=0

2−ml(l!)−1Ψ(l)(y)Dl + o(2−mr), (3.6.14)

where I is the identity matrix. Formula (3.6.13) establishes that, for large m, matrix B is close to p(y)I, so the

system (3.2.5) is well-conditioned. Furthermore, if m→∞, vector a in (3.2.3) tends to 2−m/2[Ψ(y)/p(y)]D0

where 2−m/2
∑
k(D0)kϕm,k(y) = 1 for any y. The latter implies that the systematic error goes to zero as

m→∞. at a rate O (2−mr) and has the following asymptotic upper bound.

In order to prove this fact, we shall need the following statement.

Lemma 6. Matrix B−1 can be represented as

B−1 =

r∑
h=0

2−mhVh + o(2−mr) (3.6.15)

with Vj =
∑
αk1,k2,··· ,klUk1Uk2 · · ·Ukl . Here, l ≤ j and coefficients αk1,k2,··· ,kl are polynomial functions of

the derivatives p(kh)(y) with
∑l
h=1 kh = j divided by powers of p(y).

Proof of Lemma 6. Write B−1 in the form (3.6.15) and find Vh, 0 ≤ h ≤ r, and V ∗r such that

BB−1 = I + O (2−mr). Multiplying (3.6.13) and (3.6.15), introducing a new parameter i = l + h and

eliminating O(2−mr) terms, we obtain equation

2r∑
i=0

2−mi
min(i,r)∑

h=max(0,i−r)

p(i−h)(y)

(i− h)!
Ui−hVh = I. (3.6.16)
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Equating matrix coefficients for various powers of 2−m, we derive a system of linear equations

i∑
h=0

Ui−hp
(i−h)(y)[(i− h)!]−1Vh = I(i = 0)I, i = 0, · · · , r, (3.6.17)

where I(·) is the indicator function. Formula (3.6.17) suggests a recursive procedure to calculate Vh, 0 ≤

h ≤ r.

It is straightforward to see that V0 = [p(y)]−1I which verifies (3.6.15) for r = 0. Let us use mathematical

induction to prove Lemma 6. Assuming that Lemma 6 is valid for j, we shall show that it remains valid for

j + 1. Since we can keep any number of terms in representation (3.6.15), we only need to prove that Vr can

be represented in the form stated by Lemma 6. From (3.6.17) and induction assumption it follows that

Vj+1 = − 1

p(y)

j∑
h=0

p(j+1−h)(y)

(j + 1− h)!
Vh Uj+1−h

= − 1

p(y)

j∑
h=0

p(j+1−h)(y)

(j + 1− h)!
Vh Uj+1−h

= − 1

p(y)

j∑
h=0

p(j+1−h)(y)

(j + 1− h)!
Uj+1−h

∑
k1,··· ,kl

αk1,k2,··· ,klUk1
Uk2
· · ·Ukl

=

j∑
h=0

∑
k1,··· ,kl

αk1,k2,··· ,kl

[
−p(j+1−h)(y)

]
p(y)(j + 1− h)!

Uk1
Uk2
· · ·UklUj+1−h. (3.6.18)

Here k1 + · · ·+ kl = h and k1 + · · ·+ kl + (j + 1− h) = j + 1 which completes the proof.

Now, we can prove that the systematic error tends to zero as m→∞.

Lemma 7. Let functions p(x) and Ψ(x) be r ≤ s− 1 times continuously differentiable in the neighborhood

Ωy of y and let Ωm,y ⊆ Ωy, with Ωm,y defined in (3.6.11). Then, for R1 defined in (3.3.8), as m→∞,

R1(y) = (tm(y)− t(y))2 = o(2−2mr). (3.6.19)

Proof of Lemma 7. Let Q(x, z) =
∑
k∈Z ϕ(x − k)ϕ(z − k). Recall that, by Theorem 3.2 in Walter

and Shen (2001), one has

∫ ∞
−∞

zjQ(2my + x, 2my + z)dz = xj , 0 ≤ j ≤ s− 1. (3.6.20)
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Now, let us show that for 1 ≤ v ≤ s− 1, 0 ≤ li ≤ s− 1, l1 + · · ·+ lt = h where t ≤ s− 1, one has

S =
∑

k∈Km,y

(Ul1Ul2 · · ·UltDv−h)k ϕ(2my − k) = 0. (3.6.21)

Indeed,

S =

∫
· · ·
∫ ∑

k1,··· ,kt,k∈Km,y

zl11 ϕ(2my + z1 − k)ϕ(2my + z1 − k1) · · · zltt ϕ(2my + zt − kt−1)

× ϕ(2my + zt − kt)× zv−hϕ(2my + z − kt)ϕ(2my − k)dz1 · · · dztdz. (3.6.22)

Now, note that the set Km,y is chosen so that all the sums over k1 6∈ Km,y, · · · , kt 6∈ Km,y, k 6∈ Km,y vanish.

Hence, we can replace Km,y by the set of all integers Z in the summations. Using the definition of Q(x, z)

and (3.6.20), we derive

S =

∫
zv−h−l1+···+lt

1 Q(2my, 2my + z1)dz1 = 0, v ≤ r. (3.6.23)

Therefore, by formulae (3.6.13) and (3.6.14), one has

a = B−1c = 2−
m
2

(
r∑

h=0

2−mh

h!
p(h)(y)Uh + o(2−mr)

)(
r∑
l=0

2−ml

l!
Ψ(l)(y)Dl + o(2−mr)

)

= 2−m/2
2r∑
v=0

2−mv
min(v,r)∑

h=max(0,v−r)

[(v − h)!]−1Ψ(v−h)(y)VhDv−h + o(2−mr). (3.6.24)

where the last relation is obtained by introducing a new parameter v = l + h, re-arranging the sums and

combining the terms O(2−mr). Recall that V0 = [p(y)]−1I and all the sums are finite, so that

tm,y =
∑

k∈Km,y

2−m/2
r∑
v=0

v∑
h=0

2−mv[(v − h)!]−1Ψ(v−h)(y) (VhDv−h)k ϕ(2my − k) + o(2−mr) (3.6.25)

= 2−m/2
r∑
v=0

2−mv
v∑
h=0

Ψ(v−h)(y)

(v − h)!

∑
k1,··· ,kt∑
ki=h

αk1,k2,··· ,kt

∑
k∈Km,y

(Uk1 · · ·UktDv−h)k ϕ(2my − k)

︸ ︷︷ ︸
=0 if v 6=0

+ o(2−mr) = Ψ(y)
∑

k∈Km,y

(V0D0)k2−m/2ϕ(2my − k) + o(2−mr) = t(y) + o(2−mr) (3.6.26)

as m→∞.
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3.7 Large Deviation Results

Application of Lepski method requires the use of the so called, large deviation results, which we prove in

this section. The matrix norm used throughout this discussion is the spectral norm.

Lemma 8. Let B̂, B, ĉ and c be defined as in (3.2.9), (3.2.6), (3.2.12) and (3.2.7), respectively. Then,

provided that m is such that 2m(γ2
m + 1) ≤ n

log(n)2 , we have the following

Pr

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2 ≥ M2τ22m

n
log n

)
≤ 2M2n−

τ2

D0 , (3.7.1)

where

D0 = 8 ||ϕ||2∞ ||p||∞. (3.7.2)

In addition, provided that ||um,k||∞ ≤ 2
m
2 γm, then

Pr

(
||ĉ− c||2 ≥ Mτ2γ2

m

n
log n

)
≤ 2Mn−

τ2

D1 , (3.7.3)

where

D1 = 8 ||p||∞. (3.7.4)

Recall that B̂j,k defined by (3.2.9) are the unbiased estimators of Bj,k defined in (3.2.6). Denote ηt =

ϕmj(Xt)ϕmk(Xt)−Bj,k, thus B̂j,k −Bj,k = 1
n

n∑
t=1

ηt, where ηt are iid.

Consequently, taking expectation we get, E
(
B̂j,k −Bj,k

)
= E (ηt) = 0. Whereas for the variance, we have

σ2
B = E

(
η2
t

)
≤ 2

∫
ϕ2
mj(x)ϕ2

mk(x)p(x) dx ≤ 2 ||p||∞ ||ϕ||
2
∞ 2m (3.7.5)

Also, ||ηt||∞ = 2.2m ||ϕ||2∞.

Since ηt, with t = 1, 2, 3, . . . , n are i.i.d with E (ηt) = 0, E
(
η2
t

)
= σ2 and ||η||∞ <∞, Bernstein inequality
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applies. Thus, taking z = τ2
m
2
√

logn√
n

and using the Bernstein inequality we obtain

Pr

(∣∣∣∣∣ 1n
n∑
t=1

ηt

∣∣∣∣∣ > τ2
m
2

√
log n√
n

)
≤ 2 exp

 −nτ
2.2m logn
n

2
(

2.2m ||p||∞ ||ϕ||
2
∞ + 2.2m ||ϕ||2∞

2
m
2 τ
√

logn
3
√
n

)


= 2 exp

 −τ2 log n

4 ||ϕ||2∞
(
||p||∞ + 2

m
2
τ
√

logn
3
√
n

)


≤ 2 exp

 −τ2 log n

4 ||ϕ||2∞

(
||p||∞ + τ

3γm
√

log(n)

)


≤ 2 exp

(
−τ2 log n

8 ||ϕ||2∞ ||p||∞

)
(3.7.6)

Thus,

Pr

(∣∣∣B̂j,k −Bj,k∣∣∣ ≥ τ2
m
2

√
log n√
n

)
≤ 2n−

τ2

C0 . (3.7.7)

This is equivalent to

Pr

∑
j,k

∣∣∣B̂j,k −Bj,k∣∣∣2 ≥ τ2M22m log n

n

 ≤ 2M2n−
τ2

C0 , (3.7.8)

Hence, (3.7.1) is valid.

Now, in order to prove (3.7.3), recall that ck =
∫∞
−∞ um,k(x)p(x)dx has an unbiased estimator

ĉk =
1

n

n∑
t=1

um,k(Xt). (3.7.9)

Denote ĉk − ck = 1
n

n∑
t=1

ξt, where ξt are i.i.d. Thus taking the expectation we get, E (ĉk − ck) = E (ξt) = 0.

Also, for the variance one has

σ2
c = E

(
ξ2
t

)
≤ 2

∫ ∞
−∞

u2
m,k(x)p(x) dx ≤ 2 ||p||∞ γ2

m. (3.7.10)

In addition,

||ξt||∞ ≤ 2 ||um,k||∞ ≤ 2γm2
m
2 . (3.7.11)
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where γ2
m is defined in (3.8.2). Thus, taking z = τγm√

n

√
log n and applying the Bernstein inequality we obtain

Pr

(∣∣∣∣∣ 1n
n∑
t=1

ξt

∣∣∣∣∣ > τγm
√

log n√
n

)
≤ 2 exp

 −τ2γ2
m log n

2(2 ||p||∞ γ2
m + 2γm2

m
2
γmτ
√

logn
3
√
n

)


≤ 2 exp

 −τ2 log n

2(2 ||p||∞ + 2 2
m
2 τ
√

logn
3
√
n

)


≤ 2 exp

(
−τ2 log n

4(||p||∞ + τ
3γm
√

logn
)

)

≤ 2 exp

(
−τ2 log n

8 ||p||∞

)
(3.7.12)

Consequently,

Pr

(∣∣∣∣∣ 1n
n∑
t=1

ξt

∣∣∣∣∣ > τγm
√

log n√
n

)
≤ 2n−

τ2

D1 (3.7.13)

This is equivalent to

Pr

(
|ĉk − ck| >

τγm
√

log n√
n

)
≤ 2n−

τ2

D1 , (3.7.14)

or

Pr

(∑
k

|ĉk − ck|2 >
Mτ2γ2

mlog n

n

)
≤ 2Mn−

τ2

D1 . (3.7.15)

Hence,

Pr

(
||ĉ− c|| >

√
Mτγm

√
log n√

n

)
≤ 2Mn−

τ2

D1 . (3.7.16)

Lemma 9. Let the resolution level m be such that m1 ≤ m ≤ mn, where m1 and mn is such that 2m1 = log n

and 2mn(γ2
mn + 1) � n

log2 n
. Denote,

ρ2
mn = 2mn−1(1 + γ2

m) log(n) (3.7.17)
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where γ2
m is defined in (3.8.2). Then

Pr (||âδ − a|| > λ ρmn) = O(n−
λ2

D2 ) (3.7.18)

where

D2 = 32
√

2M
√
||p||∞max{

√
M,M2 ||ϕ||∞ ||Ψ(y)||∞ ||D0||} (3.7.19)

Proof of Lemma We seek λ that makes the probability

Pr (||âδ − a|| > λρmn) = O(n−1) (3.7.20)

Thus, recall (3.5.20), then using the properties of the probability we obtain for α+ β + ν + ρ+ ε = 1,

Pr (||âδ − a|| > λρmn) ≤ Pr
(
(2M + 4δM2) ||ĉ− c|| > αλρmn

)
+ Pr

(
(
2

δ
||ĉ− c||+ 2

δ
||c||1

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > 1

4M

)
) > βλρmn

)
+ Pr

(
8M2 ||ĉ− c||

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > νλρmn

)
+ Pr

(
8M2 ||c||

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > ρλρmn

)
+ Pr

(
4δM2 ||c|| > (1− α− β − ν − ρ)λρmn

)
≤ Pr

(
(2M + 4δM2) ||ĉ− c|| > αλρmn

)
+ Pr

(
(||ĉ− c||+ ||c||)2 >

δ

2
βλρmn

)
Pr

(
12(
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > 1

4M
) >

δ

2
βλρmn

)
+ Pr

(
||ĉ− c||

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > ν

8M2
λρmn

)
+ Pr

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > ρ

8M2 ||c||
λρmn

)
(3.7.21)

Now as n −→∞, δ −→ 0 and therefore this probability becomes

Pr (||âδ − a|| > λρmn) ≤ Pr
(
||ĉ− c|| > α

4M
λρmn

)
+ Pr

(
(||ĉ− c||+ ||c||)2 >

δ

2
βλρmn

)
Pr

(
12(
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > 1

4M
) > 0

)
+ Pr

(
||ĉ− c||2 > ν

8M2
λρmn

)
+ Pr

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2 > ν

8M2
λρmn

)
+ Pr

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > ρ

8M2 ||c||
λρmn

)
(3.7.22)

The application of the large deviation results to Pr
(
12(
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > 1

4
√
M

) > 0
)

) leads to an infinites-
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imally small probability, so it makes sense to only evaluate the other parts of the right hand side. Now,

before we go any further let us evaluate ||c||. Indeed, recall that the vector c can be asymptotically expanded

according to (3.6.14). Therefore it can be written as

c = 2−
m
2 Ψ(y)D0 + o(2−

m
2 ) (3.7.23)

Consequently, taking the norm yields

||c|| ≤ 2−
m
2 ||Ψ(y)||∞ ||D0|| (3.7.24)

Therefore, it is of order O(2−
m
2 ). Thus, using large deviation results, we have

Pr

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > ρ

8M2 ||c||
λρmn

)
≤ Pr

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2 > ( ρ

8M2 ||c||

)2

λ2 γ
2
m + 1

n
log(n)

)

≤ Pr

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2 > ( ρλ

8M22−
m
2 ||Ψ(y)||∞ ||D0||

)2
1

n
log(n)

)

≤ Pr

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2 > ( ρλ

8M2 ||Ψ(y)||∞ ||D0||

)2
2m

n
log(n)

)

≤ 2M2n
− 1

8||p||∞||ϕ||2∞

(
ρλ

8M3||Ψ(y)||∞||D0||

)2

(3.7.25)

Also

Pr
(
||ĉ− c|| > α

4M
λρmn

)
≤ Pr

(
||ĉ− c||2 >

( α

4M

)2

λ2 γ
2
m + 1

n
log(n)

)
≤ Pr

(
||ĉ− c||2 >

(
αλ

4M

)2
γ2
m

n
log(n)

)

≤ 2Mn
− 1

8||p||∞

(
αλ

4
√
M3

)2

(3.7.26)

Now, for the remaining term in (3.7.22), it can be shown that

Pr
(
||ĉ− c||2 > ν

8M
λρmn

)
≤ 2M exp

(
−

νλ
√
n log(n)

64M2γm ||p||∞

)
(3.7.27)
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and

Pr

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2 > ν

8M
λρmn

)
≤ 2M2 exp

(
−

νλ
√
n log(n)

64M32
m
2 ||ϕ||2∞ ||p||∞

)
(3.7.28)

which are infinitesimally small probabilities, so it make more sense not to consider them in the derivation of

λ. The idea now is to balance the former two probabilities so that Pr (||âδ − a|| > λρmn) = O(n−1). Thus,

we need to choose λ such that

Pr (||âδ − a|| > λρmn) = O(n−1) (3.7.29)

Indeed, we choose λ such that

ρ2 λ2

512M6 ||p||∞ ||ϕ||
2
∞ ||Ψ(y)||2∞ ||D0||2

= 1 (3.7.30)

or

α2 λ2

128M3 ||p||∞
= 1 (3.7.31)

Now take α = 1
4 and ρ = 1

2 and solving for λ we obtain

λ = 32
√

2M3
√
||p||∞ ||ϕ||∞ ||Ψ(y)||∞ ||D0|| (3.7.32)

or

λ = 32
√

2
√
M3

√
||p||∞ (3.7.33)

The final step is to choose the larger of the two quantities so that the larger of the probabilities is of order

O(n−1). That is,

D2 = 32
√

2M
√
||p||∞max{

√
M,M2 ||ϕ||∞ ||Ψ(y)||∞ ||D0||} (3.7.34)
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3.8 The Random Error Component

In order to calculate R2, introduce vectors γ(j)(m), j = 1, 2, with components

γ
(%)
k (m) =

[∫ ∞
−∞

u2%
m,k(x)dx

]1/2

, k ∈ Km,y, % = 1, 2, 3, 4. (3.8.1)

where um,k(x) are defined in (4.1.5). Denote

γm =
∣∣∣∣∣∣γ(1)(m)

∣∣∣∣∣∣ . (3.8.2)

The following expression provides an asymptotic expression for the random error component as m,n→∞.

Lemma 10. Let δ2 ∼ n−12m. Then, under the assumptions of Lemma 7, as m,n → ∞, the random error

component R2 defined in (3.3.9) is such that

R2 = O
(
2mn−1γ2

m + 2mn−1
)
, m, n→∞, (3.8.3)

provided m is such that 2mn−1 → 0 and
∣∣∣∣γ(2)(m)

∣∣∣∣2 22m = o(n3) as n → ∞. Here, ||z|| is the Eucledean

norm of the vector z.

Proof of Lemma 10. Recall equation (4.17), then we have

R2 = E

 ∑
k∈Km,y

((âδ)m,k − am,k)ϕm,k(y)

2

≤ C2mE ||âδ − a||2 (3.8.4)

Corollary 1 provides us with an upper bound for E ||âδ − a||2. In addition, large deviation results can be

applied to Pr
(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > 1

4M

)
in (3.5.29). Indeed, using (3.7.1) yields

Pr

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ > 1

4M

)
= o(n−α) (3.8.5)

for any α > 0, which implies that this probability decays faster than any power of n as n→∞. Consequently,
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(3.5.29) reduces to

E ||âδ − a||2 ≤ 32M2E ||ĉ− c||2 + 32δ2M4 ||c||2

+ 128M4 ||c||2 E
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2 + 128M4

√
E ||ĉ− c||4 E

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣4 (3.8.6)

Finally, using the assumptions of Lemma 10, and for δ2 ∼ n−12m we conclude that

E ||âδ − a||2 = O

(
γ2
m

n
+

1

n

)
(3.8.7)

The result of (3.8.3) follows directly by using equation (3.8.4) as n→∞.

Observe that the values of γ
(%)
k (m) are independent of the unknown density g(θ) and can be calculated

explicitly. Later in this chapter, we shall bring examples of construction of functions um,k(x) as well as

the asymptotic expressions for γ
(%)
k (m), % = 1, 2, for some common special cases (location parameter family,

scale parameter family, one-parameter exponential family). In vast majority of situations, γ2
m is bounded

above by the following expression

γ2
m ≤ Cγ2αm exp

(
b2βm

)
, b, β ≥ 0, Cγ > 0, α ∈ R, (3.8.8)

where α, b, β and Cγ are the absolute constant independent of m.

Lemma 7 shows that systematic error goes to zero at an optimal rate of O
(
2−2mr

)
. Lemma 10 asserts

that the random error component of the EB estimator is proportional to γ2
m. In order to balance both errors

choose

m0 = arg min
(
n−12m[γ2

m + 1] + 2−2mr
)
. (3.8.9)

In particular, under assumption (3.8.8), as n→∞, m0 is such that

2m0 �

 Cmn
1

2r+max(1,α) , if b = 0,

((2b)−1 log n)1/β , if b > 0.
(3.8.10)

Here, an � bn for two sequences, {an} and {bn}, n = 1, 2, · · · , of positive real numbers if there exist C1

and C2 independent of n such that 0 < C1 < C2 <∞ and C1 ≤ αn/βn ≤ C2.

Then combining results of Lemmas 7 and 10 with results in (3.8.10), the following statement is true.

Theorem 3. Let twice continuously differentiable scaling function ϕ satify (3.2.1) and (3.2.2). Let functions
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p(x) and Ψ(x) be r times continuously differentiable in the neighborhood Ωy of y such that Ωm,y ⊆ Ωy, where

Ωm,y is defined in (3.6.11). Let r ∈ [1/2, s− 1]. Choose m0 according to (3.8.9) and let in (3.2.13) be such

that δ ∼ n−12m0 . If wavelets possesses s vanishing moments, s ≥ r + 1, then, for any y such that p(y) > 0,

as n→∞, Rn(y) defined in (3.3.3) satisfies the following asymptotic relation

Rn(y) = E(t̂m(y)− t(y))2 = O
(
2−2m0r

)
, m→∞, (3.8.11)

provided 2mn−1 → 0 and
∣∣∣∣γ(2)(m0)

∣∣∣∣2 22m0 = o(n3) as n → ∞. In particular, if assumption (3.8.8) holds,

then, as n→∞, one has

Rn(y) =

 O
(
n−

2r
2r+max(1,α)

)
, if b = 0,

((2b)−1 log n)−
2r
β , if b > 0.

(3.8.12)

Note that when b > 0, the optimal resolution level m0 is determined by the values of b and β which are

completely known, so that the resulting EB estimator is adaptive, i.e. it attains the optimal convergence rate.

However, if b = 0, the value of m0 depends on the unknown smoothness of the functions p(x) and Ψ(x). In

order to construct an adaptive estimator in this case, we shall apply Lepski method (see e.g., Lepski (1991)

and Lepski et al. (1997)) for the optimal selection of the resolution level.

3.9 Adaptive choice of the resolution level using Lepski method

In order to construct an adaptive estimator, we apply Lepski method (see e.g., Lepski (1991) and Lepski

et al. (1997)) for the optimal selection of the resolution level. The method suggests to choose

m̂ = min{m ≤ mn :
∣∣t̂m(y)− t̂j(y)

∣∣2 ≤ λ2

[∣∣∣∣∣∣B̂−1
δm

∣∣∣∣∣∣2 +
∣∣∣∣∣∣B̂−1

δj

∣∣∣∣∣∣2]2

n−12j(1 + γ2
j ) log n for any j ≥ m},

(3.9.1)

where, mn = {m > 1 : 2m(γ2
m + 1) ≤ n

log2(n)
}, γj is defined in (3.8.1) and (3.8.2), and λ is a constant

independent of m. Recall that m1 and mn are defined such that

2m1 = log n, 2mn(γ2
mn + 1) � (log n)−2n. (3.9.2)

Also, observe that under assumption (3.8.8) with b = 0, mn is such that

2mn =

(
n

(Cγ + 1) log2 n

) 1
1+max(α,0)

, (3.9.3)
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so that, for m0 given by (3.8.10), one has mn/m0 →∞ as n→∞.

In order to see how the method works, note that the error can be decomposed according to the sets of

the resolution levels as

∆ = E
∣∣t̂m̂(y)− t(y)

∣∣2 = ∆1 + ∆2 (3.9.4)

where m0 is the optimal resolution level defined in formula (3.8.9) and

∆1 = E[
∣∣t̂m̂(y)− t(y)

∣∣2 1(m̂ ≤ m0)], (3.9.5)

∆2 = E[
∣∣t̂m̂(y)− t(y)

∣∣2 1(m̂ > m0)]. (3.9.6)

If m̂ ≤ m0, then, by definition of m̂, one has

∣∣t̂m̂(y)− t̂m0

∣∣2 ≤ λ2ρ2
mn

[∣∣∣∣∣∣B̂−1
δm

∣∣∣∣∣∣2 +
∣∣∣∣∣∣B̂−1

δj

∣∣∣∣∣∣2]2

= O(ρ2
m0n), (3.9.7)

so that

∆1 ≤ 2
[
E
[∣∣t̂m̂(y)− t̂m0

∣∣2 1(m̂ ≤ m0)
]

+ E
∣∣t̂m0

(y)− t(y)
∣∣2] . (3.9.8)

Here,

E
∣∣t̂m0

(y)− t(y)
∣∣2 = O

(
ρ2
m0n

)
(3.9.9)

so that

∆1 ≤ 2
[
E
∣∣t̂m̂(y)− t̂m0

(y)
∣∣2 + E

∣∣t̂m0
(y)− t(y)

∣∣2] = O
(
ρ2
m0n

)
. (3.9.10)

by equation (3.8.9). For the other term in (4.4.34), observe that in norms we have

∣∣∣∣∣∣B̂−1
δm

∣∣∣∣∣∣ =
∣∣∣∣∣∣B̂−1

δm −B
−1
δm

∣∣∣∣∣∣+
∣∣∣∣B−1

δm

∣∣∣∣
≤ 2

∣∣∣∣B−1
∣∣∣∣2 ∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣+ 2δ−11(ΩB) +

∣∣∣∣B−1
∣∣∣∣ (3.9.11)
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consequently, for any m, we have

E
∣∣∣∣∣∣B̂−1

δm

∣∣∣∣∣∣4 = O

(
E
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣4 + δ−4 Pr (ΩB) +

∣∣∣∣B−1
∣∣∣∣4)

= O(1) (3.9.12)

and thus,

E
[∣∣t̂m̂(y)− t̂m0

(y)
∣∣2 1(m̂ ≤ m0)

]
=

m0∑
m=m1

E
[∣∣t̂m̂(y)− t̂m0

(y)
∣∣2 | m̂ = m

]
Pr(m̂ = m) (3.9.13)

Finally, taking the expectation both sides of (3.9.7), using the results (3.9.12) and (3.9.9), and applying it

to (3.9.8) we obtain (3.9.10).

Now, in the case when m̂ > m0, by (3.9.1), there exists an l such that l > m0 and such that

|t̂l(y)− t̂m0(y)|2 ≥ λ2ρ2
ln

[∣∣∣∣∣∣B̂−1
δj

∣∣∣∣∣∣2 +
∣∣∣∣∣∣B̂−1

δm0

∣∣∣∣∣∣2]2

. (3.9.14)

where ρmn is defined in (3.7.17). Define, for some positive constant λ, the set

Θl,m,λ =

{
Θ : |t̂l(y)− t̂m(y)|2 ≥ λ2ρ2

ln

[∣∣∣∣∣∣B̂−1
δj

∣∣∣∣∣∣2 +
∣∣∣∣∣∣B̂−1

δm

∣∣∣∣∣∣2]2
}
. (3.9.15)

It turns out that probability of such an event is very low.

Indeed,

∆2 = E[
∣∣t̂m̂(y)− t(y)

∣∣2 1(m̂ > m0)]

≤
mn∑

l=m0+1

√
E
∣∣t̂m̂(y)− t(y)

∣∣4 Pr(Θl,m0,λ)

≤
mn∑

l=m0+1

√
E
∣∣t̂m(y)− t(y)

∣∣4 1 (m0 < m̂ = m ≤ mn) Pr(Θl,m0,λ)

≤
mn∑

l=m0+1

√
E
∣∣t̂m(y)− t(y)

∣∣4 Pr(Θl,m0,λ) (3.9.16)

In order to evaluate ∆2 we need to look into E
∣∣t̂m̂(y)− t(y)

∣∣4 and Pr (Θl,m0,λ) separately. The next couple

of lemmas provide upper bounds for these two quantities.

Lemma 11. Let conditions of Theorem 4 hold. If resolution level m is such that m0 < m ≤ mn, then, as
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n→∞,

P (Θl,m0,λ) = O
(
n−2

)
. (3.9.17)

where ρ2
mn = 2m(1 + γ2

m)n−1 log n, and Θl,m,λ is defined in (3.9.15).

Proof of Lemma 11. Denote R2
mn =

[∣∣∣∣∣∣|B̂−1
δm

∣∣∣∣∣∣2 +
∣∣∣∣∣∣|B̂−1

δm0

∣∣∣∣∣∣2]2

ρ2
mn and observe that

P(|t̂m(y)− t̂m0(y)| ≥ λRmn) ≤ P(|t̂m(y)− tm(y)|+ |tm(y)− t(y)| ≥ 0.5λRmn)

+ P(|t̂m0(y)− tm0(y)|+ |tm0(y)− t(y)| ≥ 0.5λRmn). (3.9.18)

Since m > m0 and Rmn is an increasing function of m, one has |tm(y) − t(y)| = o(2−mr) as m → ∞ and

Rmn > Rm0n. Therefore, it is sufficient to show that

P
(
|t̂m(y)− tm(y)| ≥ 0.5 λRmn − o(2−mr)

)
= O(n−2) (3.9.19)

for any m ≥ m0. Taking into account that |t̂m(y) − tm(y)| ≤ 2m/2Cϕ ||âm − a|| and 2−mr/Rmn → 0 as

m,n→∞, it is sufficient to show that

P
(
||âm − a|| ≥ 2−m/2(λ− 1)Rmn/(2Cϕ)

)
= O(n−2), n→∞. (3.9.20)

Recall that B̂−1
δ −B−1 = B̂−1

δ (B − B̂δ)B−1, so that, for any δ > 0, one has

∣∣∣∣∣∣B̂−1
δ −B

−1
∣∣∣∣∣∣ ≤ ∣∣∣∣B−1

δ

∣∣∣∣2 (∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣+ δm

)
+ 2

∣∣∣∣∣∣B̂−1
δ

∣∣∣∣∣∣2 ∣∣∣∣B−1
∣∣∣∣ [∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2 + δ2

m

]
. (3.9.21)

and, also,

||âδ − a|| ≤
∣∣∣∣∣∣B̂−1

δ

∣∣∣∣∣∣ ||ĉ− c||+ ∣∣∣∣∣∣B̂−1
δ −B

−1
∣∣∣∣∣∣ ||c|| . (3.9.22)

Consequently, probability in (3.9.20) can be partition into three terms:

P
(
||âm − a|| ≥ 2−m/2(λ− 1)Rmn/(2Cϕ)

)
≤ P1 + P2 + P3 (3.9.23)
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where

P1 = P
(∣∣∣∣∣∣B̂−1

δ

∣∣∣∣∣∣ ||ĉ− c|| ≥ α1Rmn(λ− 1)

2m/22Cϕ

)
(3.9.24)

P2 = P

(
|||c|| [

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣+ δm] ≥
α2

√
1 + γ2

m

√
log n(λ− 1)

2
√
nCϕ

)
(3.9.25)

P3 = P

(∣∣∣∣B−1
∣∣∣∣ [∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2 + δ2

m] ≥
α3

√
1 + γ2

m

√
log n(λ− 1)

4
√
nCϕ ||c||

)
(3.9.26)

and α1, α2 and α3 are positive constants such that α1 + α2 + α3 = 1.

Applying (3.7.3) and taking into account that
∣∣∣∣∣∣B̂δ∣∣∣∣∣∣ ≤ 2 ||p||∞, obtain

P1 ≤ P

(
||ĉ− c||2 ≥ α1

√
1 + γ2

m

√
log n(λ− 1)

4 ||p||∞
√
nCϕ

)
≤ 2Mn−τ1 (3.9.27)

where τ1 = (128MC2
ϕ ||p||

3
∞M)−1 α2

1(λ− 1)2. Recalling that ||c|| ≤ 2M ||Ψ||∞ 2−m/2, using formula (3.7.1)

and taking into account that 1 − 4M ||Ψ||∞ Cϕ/(α2(λ − 1) > 1 − ν1 for any small positive constant ν1 as

n→∞, we derive

P2 ≤ P

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ ≥ (α2λ− 1)2m/2
√

1 + γ2
m

√
log n

4M ||Ψ||∞ Cϕ
√
n

− 2m/2√
n

)

≤ P
(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣ ≥ M2m/2

√
log n√

n

α2(λ− 1)
√

1− ν1

4M2

)
≤ 2M2n−τ2 (3.9.28)

where τ2 = (128M4C2
ϕ ||Ψ||

2
∞ ||ϕ||

2
∞ ||p||∞)−1 α2

2(1− δ1)(1− λ)2.

In order to find an upper bound for P3, recall that
∣∣∣∣B−1

∣∣∣∣ ≤ 2M/p(y) and ||c|| ≤ 2M ||Ψ||∞ 2−m/2. Also,

note that p(y) ≥ (log n)−1/2, for any fixed y, as n→∞. Therefore, applying (3.7.1) and taking into account

that, due to (3.9.2) and m ≤ mn, one has (2−m/2
√
n− 1)/ log n > 1− ν2 for any small positive constant ν2

as n→∞, derive

P3 ≤ P

(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2 ≥ α3(λ− 1)
√

1 + γ2
m

√
log n

2
√
nCϕ ||B−1|| ||c||

− 2mn−1

)

≤ P
(∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣2 ≤ 2mM2 log n

n

α3(λ− 1)

16CϕM3 ||Ψ||∞

)
≤ 2M2n−τ3 (3.9.29)

where τ3 = (128M3Cϕ ||Ψ||∞ ||ϕ||
2
∞ ||p||

2
∞)−1 α3(λ− 1)(1− ν2).

Now, in order to complete the proof, combine (3.9.23) – (3.9.29) and choose αi, i = 1, 2, 3, such that
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τi ≥ 2 for i = 1, 2, 3, and P1 + P2 + P3 takes minimal value. This is achieved by choosing λ such that

λ = 16Cϕ ||p||1/2∞
√
MD + 1 (3.9.30)

where D is defined by

D = ||p||∞ + ||Ψ||∞ ||ϕ||∞M
√
M [1− ν1]−1/2 + 16 ||Ψ||∞ ||ϕ||

2
∞ ||p||

3/2
∞ M3

√
M [1− ν2]−1 (3.9.31)

with ν1 and ν2 are small positive values, ν1 + ν2 < 1, M is the size of vector c and matrix B and Cϕ =∑
k

|ϕ(z − k)|.

Lemma 12. Let δ2 ∼ n−12m and assumptions (3.8.8) hold.. Then, under the assumptions of Lemma 10

E
∣∣t̂m(y)− t(y)

∣∣4 = O
(
n−222m(γ2

m + 1)2 + 2−4mr
)
. (3.9.32)

as n→∞, provided that

||um,k||∞ ≤ 2
m
2 γm (3.9.33)

Proof of Lemma 12.

E
∣∣t̂m(y)− t(y)

∣∣4 = E
∣∣t̂m(y)− tm(y) + tm(y)− t(y)

∣∣4
≤ 8E

∣∣t̂m(y)− tm(y)
∣∣4 + 8 |tm(y)− t(y)|4 (3.9.34)

Thus, by lemma 7 the second part of the right hand side is equal to o(2−4mr), and therefore it is of order

o(2−4m0r) since m̂ > m0 . For the other term, recall (3.5.30), then using results of lemma 3 we obtain

E ||âδ − a||4 ≤ 1024M4O

(
n−3

∣∣∣∣∣∣γ(2)(m)
∣∣∣∣∣∣2 +

(
γ2
mn
−1
)2)

+ O(2−2m)O
(
22mn−2

)
+ 4096M8

√
E ||ĉ− c||8 E

∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣8 +O(22mn−2)O(2−2m) (3.9.35)
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For the remaining term in the right hand side recall from lemma 7 that

E ||ĉ− c||8 E
∣∣∣∣∣∣B̂ −B∣∣∣∣∣∣8 = O

(
24mn−4

)
O

(
γ4
m

∣∣∣∣γ(2)(m)
∣∣∣∣2

n5
+
γ8
m

n4

)

+ O
(
24mn−4

)
O

(∣∣∣∣γ(4)(m)
∣∣∣∣2

n7
+

∣∣∣∣γ(2)(m)
∣∣∣∣4 + γ2

m

∣∣∣∣γ(3)(m)
∣∣∣∣2

n6

)

= O
(
24mn−4

)
O

((
γ2
mn
−1
)2 ∣∣∣∣γ(2)(m)

∣∣∣∣2
n3

+
(
γ2
mn
−1
)4)

+ O
(
24mn−4

)
O

(∣∣∣∣γ(4)(m)
∣∣∣∣2

n7
+

∣∣∣∣γ(2)(m)
∣∣∣∣4 + γ2

m

∣∣∣∣γ(3)(m)
∣∣∣∣2

n6

)

= O
(
n−4

)
O

((
2mγ2

mn
−1
)2 22m

∣∣∣∣γ(2)(m)
∣∣∣∣2

n3
+
(
2mγ2

mn
−1
)4)

+ O
(
n−4

)
O

(
24m

∣∣∣∣γ(4)(m)
∣∣∣∣2

n7
+

24m
∣∣∣∣γ(2)(m)

∣∣∣∣4 +
(
2mγ2

m

)
23m

∣∣∣∣γ(3)(m)
∣∣∣∣2

n6

)
(3.9.36)

Therefore using the condition ||um,k||∞ ≤ 2
m
2 γm , (3.9.35) reduces to

E ||âδ − a||4 = O
((
γ2
m + 1

)2
n−2

)
(3.9.37)

which completes the proof of (3.9.32). It remains now to evaluate the probability term in (3.9.16).

The last two lemmas lead to the following result about ∆2.

Lemma 13. Let ∆2 be defined as in (3.9.16). Then

∆2 = O
(
n−1

)
(3.9.38)

Proof of Lemma 13. First, let us show that E

[∣∣∣∣∣∣B̂−1
δm

∣∣∣∣∣∣2 +
∣∣∣∣∣∣B̂−1

δm0

∣∣∣∣∣∣2]2

= O(1) as m,n →∞, so that

asymptotic relation (4.4.34) holds. Indeed, for m1 ≤ m ≤ m0 and any fixed y, one has

∣∣∣∣∣∣B̂−1
δm

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣B̂−1
δm −B

−1
δm

∣∣∣∣∣∣+
∣∣∣∣B−1

δm

∣∣∣∣
≤ 2

∣∣∣∣B−1
δm

∣∣∣∣2 ∣∣∣∣∣∣B̂δm −Bδm∣∣∣∣∣∣+ 2δ−1
m 1(Ωm) +

∣∣∣∣B−1
m

∣∣∣∣ (3.9.39)
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where Ωm is defined in Lemma 4. Then,

E
∣∣∣∣∣∣B̂−1

δm

∣∣∣∣∣∣4 = O

(
E
∣∣∣∣∣∣B̂δm −Bδm∣∣∣∣∣∣4 + δ−4

m P(Ωm) +
∣∣∣∣B−1

m

∣∣∣∣4) = O(1), (3.9.40)

so that both (3.9.7) and (4.4.34) are valid.

Recall (3.9.16), then using Lemmas 12 and 11, we have

∆2 ≤
mn∑

l=m0+1

√
E
∣∣t̂m(y)− t(y)

∣∣4 Pr(Θl,m0,λ)

≤ (mn − (m0 + 1))

√
E
∣∣t̂m(y)− t(y)

∣∣4 max
m>m0

Pr(Θm,m0,λ) (3.9.41)

where Θl,m,λ is defined in (3.9.15). Now recall that mn is of order O(log n), therefore ∆2 becomes

∆2 ≤ (mn − (m0 + 1))
√
O (n−222m(γ2

m + 1)2 + 2−4mr)O (n−2)

= O
(
n−1 log n

√
O (n−222m(γ2

m + 1)2 + 2−4mr)
)

(3.9.42)

so that ∆2 = O(n−1) = o
(
ρ2
m0n

)
as n→∞. Which completes the proof of Lemma 13.

Therefore, the following statement is true.

Theorem 4. Let twice continuously differentiable scaling function ϕ satisfy (3.2.1) and (3.2.2). Let functions

p(x) and Ψ(x) be r ≥ 1/2 times continuously differentiable in the neighborhood Ωy of y and let Ωm,y ⊆ Ωy

where Ωm,y is defined in (3.6.11). Let γm satisfy inequality (3.8.8) with b = 0. Construct EB estimator of

the form (3.2.14) and choose m̂ according to (3.9.1) with λ defined in (3.9.30) where D given by (3.9.31). If,

for any k ∈ Km,y,

||um,k||∞ ≤ Cu2
m
2 γm, (3.9.43)

then

E
∣∣t̂m̂(y)− t(y)

∣∣2 = O
(
n−

2r
2r+1+max(α,0) log n

)
. (3.9.44)
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3.10 Examples

3.10.1 Location Parameter Family

In the case of the location parameter family of distributions the sampling distribution takes the form

q(x/θ) = q(x− θ), EB estimator t(y) in (3.1.1) is of the form

t(y) = y −
∫∞
−∞(y − θ)q(y/θ)g(θ)dθ∫∞
−∞ q(y/θ)g(θ)dθ

(3.10.1)

Indeed, replacing this latter in equation (4.1.5) we obtain

∫ ∞
−∞

q(x− θ)um,j(x)dx =

∫ ∞
−∞

(x− θ)q(x− θ)ϕm,j(x)dx (3.10.2)

Notice here that both sides of the above equation are expressed in terms of convolutions, the left hand side

involves q(x) and um,j(x), and the right hand side involves xq(x) and ϕm,j(x). Now taking the Fourier

transform of both sides and using its properties in regards of convolutions yields

∫ ∞
−∞

∫ ∞
−∞

q(x− θ)um,j(x)eiωθdxdθ =

∫ ∞
−∞

∫ ∞
−∞

(x− θ)q(x− θ)ϕm,j(x)eiωθdxdθ (3.10.3)

Now, introduce the substitution u = x− θ, then, our integrals become

∫ ∞
−∞

∫ −∞
∞

q(u)eiω(x−u)(−du)um,j(x)dx =

∫ ∞
−∞

∫ −∞
∞

uq(u)eiω(x−u)(−du)ϕm,j(x)dx∫ ∞
−∞

∫ ∞
−∞

q(u)e−iuωdueiωxum,j(x)dx =

∫ ∞
−∞

∫ ∞
−∞

uq(u)e−iωudueiωxϕm,j(x)dx∫ ∞
−∞

∫ ∞
−∞

q(u)eiu(−ω)dueiωxum,j(x)dx = −1

i

d

dω

{ ∫ ∞
−∞

q(u)eiu(−ω)du

}∫ ∞
−∞

eiωxϕm,j(x)dx

q̂(−ω)

∫ ∞
−∞

um,j(x)eixωdx = −1

i

d

dω
{q̂(−ω)}

∫ ∞
−∞

ϕm,j(x)eixωdx

q̂(−ω)ûm,j(ω) = i
d

dω
{q̂(−ω)} ϕ̂m,j(ω) (3.10.4)

Consequently,

ûm,j(ω) = i [q̂(−ω)]
−1 d

dω
{q̂(−ω)} ϕ̂m,j(ω) (3.10.5)

Now we need to relate ϕ̂m,j(ω) to ϕ̂(ω). Indeed, using the definition ϕm,j(x) = 2
m
2 ϕ(2mx− j) and taking
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the Fourier transform we derive

ϕ̂m,j(ω) = 2
m
2

∫ ∞
−∞

ϕ(2mx− j)eixωdx (3.10.6)

Now make the substitution u = 2mx− j, then our integral becomes

ϕ̂m,j(ω) = 2
−m

2

∫ ∞
−∞

ϕ(u)ei2
−mω(u+j)du

ϕ̂m,j(ω) = 2
−m

2 eiω2−mj

∫ ∞
−∞

ϕ(u)eiu(2−mω)du

ϕ̂m,j(ω) = 2
−m

2 eiω2−mjϕ̂(2−mω) (3.10.7)

In addition, define um,j(x) as

um,j(x) = 2m/2Um(2mx− j) (3.10.8)

Then, applying Fourier transform and making the substitution s = 2mx− j, we obtain

ûm,j(ω) = 2
m
2

∫ ∞
−∞

Um(2mx− j)eixωdx

= 2
−m

2

∫ ∞
−∞

Um(s)ei2
−mω(s+j)ds

= 2
−m

2 eiω2−mj

∫ ∞
−∞

Um(s)eis(2
−mω)ds

= 2
−m

2 eiω2−mjÛm(2−mω) (3.10.9)

Consequently, applying (3.10.7) and (3.10.9) to (5.68) yields Consequently, applying (3.10.7) and (3.10.9) to

(5.68) yields

ûm,j(ω) = i2−m/22i2
−mωj [q̂(−ω)]−1 d

dω
{q̂(−ω)}ϕ̂(2−mω)

2
−m

2 eiω2−mjÛm(2−mω) = i2−m/22i2
−mωj [q̂(−ω)]−1 d

dω
{q̂(−ω)}ϕ̂(2−mω)

Ûm(2−mω) = i[q̂(−ω)]−1 q̂′(−ω)ϕ̂(2−mω) (3.10.10)

Notice that it suffices to evaluate Ûm(ω) apply the inverse Fourier transform and then use (3.10.8), where

Ûm(ω) is given by

Ûm(ω) = i[q̂(−2mω)]−1 q̂′(−2mω)ϕ̂(ω) (3.10.11)
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To calculate Ûm(ω), it suffices to evaluate the Fourier transform q̂(ω) of the particular sampling distribution

q(x/θ), and then use formula (3.10.11). Finally, to derive an expression for γ2(m) we can calculate the norm

of um,j(x) by applying the Parseval identity and then take into account that Km,y has finite number of terms

to derive

γ2
m �

∫ ∞
−∞

∣∣[q̂(−2mω)]−1 q̂′(−2mω)ϕ̂(ω)
∣∣2 dω (3.10.12)

Also, the following relation allows to check the validity of condition (3.9.43):

||um,k(x)||∞ ≤ 2m/2 ||Um(x)||∞ (3.10.13)

Now, in order to calculate minimax lower bounds for the risk in the case of the location parameter family

of distributions, we need to find ψh,y(θ) and ωh,y(x). Let ψh,y(θ) be solution of equation (3.4.5). It is easy

to show that ψh,y(θ) is of the form ψh,y(θ) = ψh((θ − y)/h), where the Fourier transform ψ̂h(ω) of ψh(.) is

of the form It is easy to show that ψh,y(θ) is of the form where the Fourier transform ψ̂h(ω) of ψh(.) is

ψ̂h(ω) =
k̂(ω)

q̂(ω/h)
(3.10.14)

To obtain expression for ωh,y(x) recall that in the case of location parameter family equation (3.4.5) can be

rewritten as

ωh,y(x) = x−
∫

(x− θ) q(x− θ)ψh,y(θ)dθ

= x− ωh
(
x− y
h

)
(3.10.15)

where, ωh(.) is the inverse Fourier transform of

ω̂h(ω) = i−1k̂(ω)
q̂′(ω/h)

q̂(ω/h)
(3.10.16)

In this situation, the quantity ρr(h) defined in (3.4.20) and wh,y(y) are given by

ρr(h) =

[
max

1≤j≤r

(
h−j [w

(j)
h (0)]

)]−1

, wh,y(y) = y − wh(0) (3.10.17)

Below, we consider some special cases.

Example 9. Double-exponential distribution

66



Let q(x/θ) be the pdf of the double-exponential distribution

q(x/θ) =
1

2σ
e−
|x−θ|
σ (3.10.18)

where σ > 0 is known. Then, it suffices to evaluate the Fourier transform of q(x). Hence, calculating the

Fourier transform for the latter function, one has

q̂(ω) = 1/2σ

∫ ∞
−∞

e−
|x|
σ eixωdx

= 1/2σ

∫ 0

−∞
ex/σeixωdx+ 1/2σ

∫ ∞
0

e−x/σeixωdx

= 1/2σ

∫ 0

−∞
e
x(1+iωσ)

σ dx+ 1/2σ

∫ ∞
0

e−
x(1−iωσ)

σ dx

=
1

2σ

σ

1 + iωσ
+

1

2σ

σ

1− iωσ

=
1

2

1− iωσ + 1 + iωσ

(1 + iωσ)(1− iωσ)

=
1

1 + ω2σ2
(3.10.19)

or

q̂(ω) =
1

1 + ω2σ2
(3.10.20)

Now let us plug (3.10.20) in equation (3.10.11) and apply the inverse Fourier transform to try to obtain

expression for um,j(x). Indeed, applying the convolution property of Fourier transform, we obtain

Now, making the substitution s = 2mωσ on the integral part and noticing that it can be expressed as a

derivative with respect to x, yields

ϕ(x) ∗
∫ ∞
−∞

−i2s
1 + s2

e−ixs/σ2−mds = ϕ(x) ∗ σ d

dx

∫ ∞
−∞

2

1 + s2
e−i2

−mxs/σds

= ϕ(x) ∗ σ d

dx
e−

2−m|x|
σ

= ϕ(x) ∗ sign(x)2−me−
2−m|x|

σ

=

∫ ∞
−∞

ϕ(t)2−msign(x− t) exp
(
−2−m|x− t|/σ

)
dt (3.10.21)

Consequently,

Um(x) =

∫ ∞
−∞

ϕ(t)2−msign(x− t) exp
(
−2−m|x− t|/σ

)
dt (3.10.22)
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Hence, (3.10.8) can be expressed as

um,j(x) = 2m/2
∫ ∞
−∞

ϕ(2mt− j)2−msign(2mx− j − 2mt+ j) exp
(
−2−m|2mx− j − 2mt+ j|/σ

)
dt

= 2m/2
∫ ∞
−∞

ϕ(2mt− j)2−msign(2mx− 2mt) exp
(
−2−m|2mx− 2mt|/σ

)
dt

= 2m/2
∫ ∞
−∞

ϕ(2mt− j)sign(x− t) exp (−|x− t|/σ)dt (3.10.23)

or

um,j(x) =

∫ ∞
−∞

ϕm,j(t)sign(x− t) exp (−|x− t|/σ)dt (3.10.24)

In order to calculate (3.10.12) and (3.10.13) recall that (ωσ)2 + 1 ≥ 2ωσ, which implies that

∣∣[q̂(−2mω)]−1 q̂′(−2mω)
∣∣ =

2ωσ2

1 + (ωσ)2

≤ σ (3.10.25)

Therefore,

γ2
m �

∫ ∞
−∞

∣∣[q̂(−2mω)]−1 q̂′(−2mω)ϕ̂(ω)
∣∣2 dω

�
∫ ∞
−∞
|ϕ̂(ω)|2 dω = 1 (3.10.26)

Notice here that γ2
m is bounded above according to (3.8.8) with α = 0 and b = 0.

Let us now investigate convergence rates of the EB estimators. Indeed, using the definition of Rn(y), as

n→∞, one has

Rn(y) =
2m

n

(
γ2(m) + 1

)
+ 2−2mr

� 2m

n
(1 + 1) + 2−2mr (3.10.27)

Therefore one needs to select m0 that minimizes Rn(y). Hence, differentiating Rn(y) with respect to m and

equating to zero yields

2 ln 2
2m

n
− 2r2−2mr ln 2 = 0

2m

n
− r2−2mr = 0 (3.10.28)
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rearranging terms yields

1

nr
= 2−m(2r+1) (3.10.29)

which implies that 2m0 ∼ n
1

2r+1 , and therefore E
∣∣t̂m̂(y)− t(y)

∣∣2 = O
(
n−

2r
2r+1 log n

)
by theorem 4, provided

assumptions of Lemma 7 are met. Now that convergence rates are derived, it remains to verify whether

condition (3.9.43) of Lemma 8 is satisfied. Indeed, using (3.10.13), we obtain

|Um(x)| ≤
∫ ∞
−∞
|ϕ̂(ω)| dω � 1 (3.10.30)

This implies that that |um,j(x)| ≤ Cu2m/2. Hence, our condition is satisfied.

Now, to verify the lower bounds we use (3.10.16) to obtain,

ω̂h(ω) = −i−1k̂(ω)
2ωσ2h−1

σ2ω2h−2 + 1
(3.10.31)

It can be shown that

ωh,y(x) = x− 2

∫
k (t) sign(x− y − ht) exp(−|x− y − ht|/σ)dt (3.10.32)

ρr(h) = h−1 (3.10.33)

and

|ωh,y(y)| = y + 2h

∣∣∣∣∫ 1

−1

k(t) exp{−h/σ|t|}dt
∣∣∣∣ (3.10.34)

Therefore, r1 = r and r2 = 0 in (3.4.20), and application of Theorem 2 yields Rn(y) ≥ Cn−
2r

2r+1 , so that EB

estimator is optimal up to a logarithmic factor.

Example 10. Normal Distribution (θ, σ), with σ known.

Let q(x/θ) be the pdf of the normal distribution

q(x/θ) =
1√
2πσ

e−
(x−θ)2

2σ2 (3.10.35)

where σ > 0 is known. Then, it suffices to evaluate the Fourier transform of q(x). Hence, calculating the
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Fourier transform for the latter function, one has

q̂(ω) =
1√
2πσ

∫ ∞
−∞

e−
x2

2σ2 eixωdx

=
1√
2πσ

∫ ∞
−∞

exp

{
−x

2 − 2(iωσ2)x+ (iωσ2)2 − (iωσ2)2

2σ2

}
dx

= exp

{
(iωσ2)2

2σ2

}
1√
2πσ

∫ ∞
−∞

exp

{
−x

2 − 2(iωσ2)x+ (iωσ2)2

2σ2

}
dx

= exp

{
−ω2σ2

2

}
1√
2πσ

∫ ∞
−∞

exp

{
−
(
x− iωσ2

)2
2σ2

}
dx (3.10.36)

Notice that the integrand in the integral expression

1√
2πσ

∫ ∞
−∞

exp

{
−
(
x− iωσ2

)2
2σ2

}
dx (3.10.37)

represents the Kernel of a normal distribution with mean iωσ2 and standard deviation σ, and hence it is

equal to 1. Consequently,

q̂(ω) = exp

{
−ω2σ2

2

}
(3.10.38)

Now let us try to obtain expression for um,j(x). Indeed, plugging (3.10.38) in equation (3.10.11), applying

the inverse Fourier transform and using its convolution property, we obtain

Um(x) =

∫ ∞
−∞
−iω2mσ2ϕ̂(ω)e−ixωdω

= 2mσ2 d

dx

∫ ∞
−∞

ϕ̂(ω)e−ixωdω

= 2mσ2 d

dx
ϕ(x) (3.10.39)

Consequently,

Um(x) = 2mσ2ϕ′(x) (3.10.40)

or in terms of um,j(x), we have

um,j(x) = 2mσ2ϕ′m,j(x) (3.10.41)

Let us now calculate (3.10.12) and (3.10.13). Indeed, using (3.10.12) for γ2(m) and applying the Parseval’s
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identity, yields

γ2
m �

∫ ∞
−∞

∣∣[q̂(−2mω)]−1 q̂′(−2mω)ϕ̂(ω)
∣∣2 dω

�
∫ ∞
−∞

∣∣−iω2mσ2ϕ̂(ω)
∣∣2 dω

� 22m

∫ ∞
−∞
|ωϕ̂(ω)|2 dω

� 22m

∫ ∞
−∞
|ϕ′(x)|2 dx (3.10.42)

Since ϕ′(x) is square integrable, it follows that γ2
m � 22m. Notice here that γ2(m) is bounded above according

to (3.8.8) with α = 2 and b = 0. As for condition (3.9.43), we use (3.10.13). Thus, one has

||um,k(x)||∞ ≤ 2m/2 ||Um(x)||∞

= 2m/2
∣∣∣∣2mσ2ϕ′(x)

∣∣∣∣
∞

= 2m/22m
∣∣∣∣σ2ϕ′(x)

∣∣∣∣
∞

� 2m/22m (3.10.43)

which implies that the condition holds.

Let us now investigate convergence rates of the EB estimators. Indeed, using the definition of Rn(y), as

n→∞, one has

Rn(y) =
2m

n

(
γ2(m) + 1

)
+ 2−2mr

� 2m

n

(
22m + 1

)
+ 2−2mr

� 23m

n
+ 2−2mr (3.10.44)

Therefore one needs to select m0 according to definition (3.8.9). Hence, differentiating (3.10.44) with respect

to m and equating to zero yields

3 ln 2
23m

n
− 2r2−2mr ln 2 = 0

23m

n
− r2−2mr = 0

2(2r+3)m

n
− 2r

3
= 0 (3.10.45)
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which implies that 2m0 ∼ n
1

2r+3 , and therefore E
∣∣t̂m̂(y)− t(y)

∣∣2 = O
(
n−

2r
2r+3 log n

)
by theorem 4, provided

assumptions of Lemma 7 are met.

In addition, to verify the lower bounds we use (3.10.16) to obtain,

ω̂h(ω) = −i−1k̂(ω)
ωσ2

h
(3.10.46)

consequently,

ωh,y(x) = x+ σ2h−1k′
(
x− y
h

)
(3.10.47)

ρr(h) = hr+1 (3.10.48)

and

|ωh,y(y)| = y + h−1 (3.10.49)

Hence, r1 = r+ 1 and r2 = 1 in (3.4.20), and application of Theorem 2 yields Rn(y) ≥ Cn−
2r

2r+3 , so that EB

estimator is optimal up to a logarithmic factor.

3.10.2 One- Parameter exponential Family

Let the sampling distribution belong to the one-parameter exponential family. That is,

q(x|θ) = h(θ)f(x)e−x
αθ, x ∈ X, θ ∈ Θ (3.10.50)

where h(θ) ≥ 0 and f(x) ≥ 0. Also, h(θ) can not depend on x and f(x) can not depend on θ. Then, um,j(x)

is a solution of the following equation

∫ ∞
−∞

f(x)h(θ)e−x
αθum,j(x)dx =

∫ ∞
−∞

θf(x)h(θ)e−x
αθϕm,j(x)dx∫ ∞

−∞
f(x)e−x

αθum,j(x)dx =

∫ ∞
−∞

θf(x)e−x
αθϕm,j(x)dx (3.10.51)
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Recall now that we are using wavelets with bounded support. That is, supp ϕ ∈ [M1,M2]. DefineK2 = M2+j
2m ,

and K1 = M1+j
2m . Then, rearranging and integrating by parts in the right hand side we obtain

∫ ∞
−∞

f(x)e−x
αθum,j(x)dx =

∫ ∞
−∞

θxα−1/xα−1f(x)ϕm,j(x)e−x
αθdx

=

∫ ∞
−∞

θxα−1e−x
αθ{f(x)ϕm,j(x)}/xα−1dx

=
∣∣∣−e−xαθ/α{f(x)ϕm,j(x)}/xα−1

∣∣∣K2

K1

+

∫ ∞
−∞

1

α
e−x

αθ d

dx

{
f(x)ϕm,j(x)

xα−1

}
dx (3.10.52)

Now, since we are using wavelets with bounded support, and provided ϕ is continuous, the first term in the

right hand side vanishes, so we obtain the following expression

∫ ∞
−∞

{
f(x)um,j(x)− 1

α

d

dx

{
f(x)ϕm,j(x)

xα−1

}}
e−x

αθdx = 0 (3.10.53)

So that

um,j(x) =
1

αf(x)

d

dx

{
f(x)ϕm,j(x)

xα−1

}
. (3.10.54)

Now, in order to calculate lower bounds for the risk in the case of Examples 11 and 12, we need to

find ψh,y(θ) and wh,y(x). Let ψh,y(θ) be solutions of equation (3.4.5) and wh,y(x) be defined in (3.4.7). In

Examples 11 and 12, q(x | θ) is of the form

q(x | θ) = αh(θ)xα−1e−x
αθ, (3.10.55)

It is straightforward to verify that,

wh,y(x) = − f(x)

αxα−1

d

dx

[
1

f(x)
k

(
x− y
h

)]
=

f ′(x)

αxα−1f(x)
k

(
x− y
h

)
− 1

αhxα−1
k′
(
x− y
h

)
. (3.10.56)

For a fixed value of y > 0, one has r1 = r+ 1 and r2 = 1 in (3.4.20). Hence, application of Theorem 2 yields

Rn(y) ≥ Cn−
2r

2r+3 . (3.10.57)

Below, we consider some special cases.
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Example 11. Gamma Distribution (α, θ), with α known.

In this case, f(x) = xα−1, h(θ) = θα

Γ(α) . Then, replacing this latter in equation (4.1.5) we obtain

∫ ∞
−∞

xα−1e−x
αθum,j(x)dx =

∫ ∞
−∞

θxα−1e−x
αθϕm,j(x)dx (3.10.58)

Now integrating by parts the right hand side, and noting that we are using wavelets with bounded support,

(3.10.58) becomes

∫ ∞
0

xα−1e−x
αθum,j(x)dx = −e−x

αθxα−1ϕm,j(x)|K2

K1

+

∫ ∞
0

e−x
αθ d

dx

{
xα−1ϕm,j(x)

}
dx

=

∫ ∞
0

e−x
αθ d

dx

{
xα−1ϕm,j(x)

}
dx (3.10.59)

Note in the above calculation that ϕ is assumed to be continuous, and therefore vanishes at M1 and M2, the

boundaries. Hence,

um,j(x) = x−α+1 d

dx

{
xα−1ϕm,j(x)

}
= (α− 1)x−1ϕm,j(x) +

d

dx
ϕm,j(x) (3.10.60)

So that

um,j(x) = (α− 1)x−12m/2ϕ(2mx− j) + 23m/2ϕ′(2mx− j) (3.10.61)
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Therefore, for any j 6= 0,

[
γ

(1)
j (m)

]2
=

∫ K2

K1

u2
m,j(x)dx

=

∫ K2

K1

[
(α− 1)x−12m/2ϕ(2mx− j) + 23m/2ϕ′(2mx− j)

]2
dx

= 2−m
∫ M2

M1

[
(α− 1)

∣∣∣∣z + j

2m

∣∣∣∣−1

2m/2ϕ(z) + 23m/2ϕ′(z)

]2

dz

= 22m

∫ M2

M1

[
(α− 1) |z + j|−1

ϕ(z) + ϕ′(z)
]2
dz

= 22m

∫ M2

M1

[
(α− 1)2 |z + j|−2

ϕ2(z) + (ϕ′(z))2
]
dz

+ 2(α− 1)22m

∫ M2

M1

|z + j|−1
ϕ(z)ϕ′(z)dz (3.10.62)

Now, integrating by parts the last integral term, and using the fact that ϕ is continuous and has bounded

support, we obtain

[
γ

(1)
j (m)

]2
= 22m

∫ M2

M1

[
(α− 1)2 |z + j|−2

ϕ2(z) + (ϕ′(z))2
]
dz

+ 2(α− 1)22m

[∣∣∣|z + j|−1
1/2ϕ2(z)

∣∣∣M2

M1

+
1

2

∫ M2

M1

|z + j|−2
ϕ2(z)dz

]

= 22m

∫ M2

M1

[{
(α− 1)2 + (α− 1)

}
|z + j|−2

ϕ2(z) + (ϕ′(z))2
]
dz

= 22m

∫ M2

M1

[
α(α− 1) |z + j|−2

ϕ2(z) + (ϕ′(z))2
]
dz (3.10.63)

provided ϕ′(x) is square integrable. Notice here that

22mα(α− 1) |M2 + j|−2 ≤ 22m

∫ M2

M1

α(α− 1) |z + j|−2
ϕ2(z)dz ≤ 22mα(α− 1) |M1 + j|−2

(3.10.64)

Now let the value of y be such that c1 ≤ y ≤ c2 for some 0 < c1 < c2 <∞. Then, it is easy to verify that if

j ∈ Km,y, then j � 2m, which implies that 22m
∫M2

M1
α(α − 1) |z + j|−2

ϕ2(z)dz � 1. Hence, provided ϕ′(x)

is square integrable, one has

γ2
m � 22m (3.10.65)

Notice here also that γ2
m is bounded above according to (3.8.8) with α = 2 and b = 0. Again we need to
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verify whether the condition (3.9.43) of Lemma 8 is met. Thus,

|um,j(x)| =

∣∣∣∣ϕ′m,j(x) + (α− 1)
ϕm,j(x)

x

∣∣∣∣
≤

∣∣ϕ′m,j(x)
∣∣+ max

x

∣∣∣∣α− 1

x

∣∣∣∣ . |ϕm,j(x)|

≤ 2
1
2m

∫ ∞
−∞

2m |ωϕ̂(ω)| dω + max
x

∣∣∣∣α− 1

x

∣∣∣∣ 2 1
2m

∫ ∞
−∞
|ϕ̂(ω)| dω

≤ 2 2
1
2m

∫ ∞
−∞

2m |ωϕ̂(ω)| dω (3.10.66)

which implies that the condition is satisfied. Since γ2
m � 22m, It follows that 2m0 ∼ n

1
2r+3 , and therefore

E
∣∣t̂m̂(y)− t(y)

∣∣2 = O
(
n−

2r
2r+3 log n

)
by theorem 4, provided assumptions of Lemma 7 are met. Hence, the

EB estimator is optimal within a log-factor of n due to (3.10.57).

Example 12. Weibull Distribution (α, θ), with α known.

If q(x|θ) is the pdf of the Weibull distribution

q(x|θ) = αθxα−1e−x
αθ, x ≥ 0, θ > 0, α ≥ 1. (3.10.67)

In this case, f(x) = xα−1 and h(θ) = αθ and, according to (3.10.54), um,j(x) is of the form

um,j(x) =
23m/2ϕ′(2mx− j)

αxα−1
. (3.10.68)

Therefore, for any j 6= 0,

[γ
(1)
j (m)]2 = 22αmα−2

∫ M2

M1

|z + j|−(2α−2)[ϕ′(z)]2dz, (3.10.69)

so that

22αmα−2(M2 −M1)|M2 + j|−(2α−2) ≤ [γ
(1)
j (m)]2 ≤ 22αmα−2(M2 −M1)|M1 + j|−(2α−2). (3.10.70)

Let the value of y be such that c1 ≤ y ≤ c2 for some 0 < c1 < c2 < ∞. Then, it is easy to show that

if j ∈ Km,y, then j � 2m. Since the set Km,y has a finite number of terms, it follows from (3.10.70) that

γ2
m � 22m. Finally, it remains to verify whether the condition (3.9.43) of Theorem 4 holds. Indeed, it follows
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from (3.10.68) that for j ∈ Km,y, one has

sup
x
|um,j(x)| ≤ sup

z

∣∣∣∣23m/2ϕ′(z)2m(α−1)

α[M1 + j]α−1

∣∣∣∣ ≤ C2m/2γ(m), (3.10.71)

so Theorem 4 can be applied. Hence, under assumptions of Lemma 7, one has α = 2, 2m0 ∼ n
1

2r+3 , and,

E
∣∣t̂m̂(y)− t(y)

∣∣2 = O
(
n−

2r
2r+3 log n

)
, by Theorem 4. Therefore, the EB estimator is optimal within a

log-factor of n due to (3.10.57).

3.10.3 Scale parameter family

If q(x|θ) is a scale parameter family, q(x|θ) = 1
θ q
(
x
θ

)
, it is difficult to pinpoint a general rule for finding

um,j(x), however, as it follows from Gamma distribution case many particular cases can be treated. Below,

we consider one more example.

Example 13. Uniform Distribution Let q(x | θ) be given by

q(x | θ) = θ−1 1 (0 < x < θ) , a ≤ θ ≤ b. (3.10.72)

Then, equation (4.1.5) is of the form

∫ θ

0

θ−1um,j(x)dx =

∫ θ

0

ϕm,j(x)dx (3.10.73)

Taking derivatives with respect to θ of both sides of (3.10.73) and replacing θ by x, we derive

um,j(x) = 2−m/2
∫ 2mx−j

M1

ϕ(z)dz + x2m/2ϕ(2mx− j). (3.10.74)

Since a ≤ θ ≤ b, then also one has a ≤ x ≤ b, and it is easy to check that

∫ b

a

x22mϕ2(2mx− j)dx � 1,

∫ b

a

(
2−m/2

∫ 2mx−j

M1

ϕ(z)dz

)2

dx = O(2−m), (3.10.75)

as m→∞. Then, γm � 1, α = 0 and condition (3.9.43) holds. Therefore, 2m0 ∼ n
1

2r+1 and, by Theorem 4,

E
∣∣t̂m̂(y)− t(y)

∣∣2 = O
(
n−

2r
2r+1 log n

)
.

Now, in order to calculate lower bounds for the risk we need to find ψh,y(θ) and wh,y(x). Then, according
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(3.4.5) and (3.4.7), functions ψh,y(θ) and wh,y(x) satisfy equations

∫ b

x

1

θ
ψh,y(θ)dθ = k

(
x− y
h

)
, (3.10.76)∫ b

x

ψh,y(θ)dθ = ωh,y(x), (3.10.77)

Now, differentiating both sides of the first equation with respect to x and solving for ψh,y(θ), we obtain

ψh,y(θ) = − θ
h
k′
(
θ − y
h

)
(3.10.78)

It can be shown that

wh,y(x) = xk

(
x− y
h

)
+ hK

(
x− y
h

)
(3.10.79)

where, K ′(z) = k(z). Notice that r1 = r and r2 = 0, hence, applying Theorem 2, we obtain the following

lower bounds for the risk Rn(y) ≥ Cn−
2r

2r+1 , so that the EB estimator is optimal, up to a logarithmic factor.
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CHAPTER 4: ANISOTROPIC DE-NOISING IN FUNCTIONAL

DECONVOLUTION MODEL WITH DIMENSION-FREE CONVERGENCE

RATES

4.1 Formulation of the Problem

Consider the problem of estimating a periodic (r+1)-dimensional function f(u, x) with u = (u1, · · · , ur) ∈

[0, 1]r x ∈ [0, 1], based on observations from the following noisy convolution

y(u, t) =

∫ 1

0

g(u, t− x)f(u, x)dx+ εz(u, t), u ∈ [0, 1]r, t ∈ [0, 1]. (4.1.1)

Here, ε is a positive small parameter such that asymptotically ε → 0, function g(., .) in (4.1.1) is assumed

to be known and z(u, t) is an r + 1-dimensional Gaussian white noise, i.e., a generalized r + 1-dimensional

Gaussian field with covariance function

E[z(u1, t1)z(u2, t1)] = δ(t1 − t2)

r∏
l=1

δ(u1l − u2l), (4.1.2)

where δ(·) denotes the Dirac δ-function and uil = (ui1, · · · , uir) ∈ [0, 1]r, i = 1, 2.

Denote

h(u, t) =

∫ 1

0

g(u, t− x)f(u, x)dx. (4.1.3)

Then, equation (4.1.5) can be rewritten as

y(u, t) = h(u, t) + εz(u, t) (4.1.4)

In order to simplify the narrative, we start with the two dimensional version of equation (4.1.1)

y(u, t) =

∫ 1

0

g(u, t− x)f(u, x)dx+ εz(u, t), u, t ∈ [0, 1]. (4.1.5)
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The sampling version of problem (4.1.5) appears as

y(ul, ti) =

∫ 1

0

g(ul, ti − x)f(ul, x)dx+ σξli, l = 1, · · · ,M, i = 1, · · · , N, (4.1.6)

where σ is a positive constant independent of N and M , ul = l/M , ti = i/N and ξli are i.i.d normal variables

with E(ξli) = 0, and E(ξl1i1ξl2i2) = δ(l1 − l2)δ(i1 − i2).

Equation (5.1.1) seems to be equivalent to M separate convolution equations

yl(ti) =

∫ 1

0

fl(x)gl(ti − x)dx+ σzli, l = 1, · · · ,M, i = 1, · · · , N, (4.1.7)

with yl(ti) = y(ul, ti), fl(x) = f(ul, x) and gl(ti − x) = g(ul, ti − x). This is, however, not true since the

solution of equation (5.1.1) is a two-dimensional function while solutions of equations (4.1.7) are M

unrelated functions fi(t). In this sense, problem (4.1.5) and its sampling equivalent (5.1.1) are functional

deconvolution problems.

Functional deconvolution problems have been introduced in Pensky and Sapatinas (2009) and further

developed in Pensky and Sapatinas (2010, 2011). However, Pensky and Sapatinas (2009, 2010, 2011) consid-

ered a different version of the problem where f(u, t) was a function of one variable, i.e. f(u, t) ≡ f(t). Their

interpretation of functional deconvolution problem was motivated by solution of inverse problems in mathe-

matical physics and multichannel deconvolution in engineering practices. Functional deconvolution problem

of types (4.1.5) and (5.1.1) are motivated by experiments where one needs to recover a two-dimensional

function using observations of its convolutions along profiles u = ui. This situation occurs, for example, in

geophysical explorations, in particular, the ones which rely on inversions of seismic signals (see, e.g., mono-

graphs of Robinson et al. (1996) and Robinson (1999) and, e.g., papers of Wason et al. (1984), Berkhout

(1986)and Heimer and Cohen (2008)).

In seismic exploration, a short duration seismic pulse is transmitted from the surface, reflected from

boundaries between underground layers, and received by an array of sensors on the Earth surface. The signals

are transmitted along straight lines called profiles. The received signals, called seismic traces, are analyzed

to extract information about the underground structure of the layers along the profile. Subsequently, these

traces can be modeled under simplifying assumptions as noisy outcomes of convolutions between reflectivity

sequences which describe configuration of the layers and the short wave like function (called wavelet in

geophysics) which corresponds to convolution kernel. The objective of seismic deconvolution is to estimate

the reflectivity sequences from the measured traces. In the simple case of one layer and a single profile, the
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boundary will be described by an univariate function which is the solution of the convolution equation. The

next step is usually to combine the recovered functions which are defined on the set of parallel planes passing

through the profiles into a multivariate function which provides the exhaustive picture of the structure of the

underground layers. This is usually accomplished by interpolation techniques. However, since the layers are

intrinsically anisotropic (may have different structures in various directions) and spatially inhomogeneous

(may experience, for example, sharp breaks), the former approach ignores the anisotropic and spatially

inhomogeneous nature of the two-dimensional function describing the layer and loses precision by analyzing

each profile separately.

This chapter will attempt to address three points:

i) Construction of a feasible procedure f̂(u, t) for estimating the (r + 1)-dimensional function f(u, t)

which achieves optimal rates of convergence (up to inessential logarithmic terms). We require f̂(u, t)

to be adaptive with respect to smoothness constraints on f . In this sense, this study is related to

a multitude of papers which offered wavelet solutions to deconvolution problems (see, e.g., Donoho

(1995), Abramovich and Silverman (1998), Pensky and Vidakovic (1999), Walter and Shen (1999), Fan

and Koo (2002), Kalifa and Mallat (2003), Johnstone, Kerkyacharian, Picard and Raimondo (2004),

Donoho and Raimondo (2004), Johnstone and Raimondo (2004), Neelamani, Choi and Baraniuk (2004)

and Kerkyacharian, Picard and Raimondo (2007)).

ii) Identification of the best achievable accuracy under smoothness constraints on f . We focus here on

obtaining fast rates of convergence. In this context, we prove that considering multivariate functions

with ’mixed’ smoothness and hyperbolic wavelet bases allows to obtain rates which are free of dimension

and, as a consequence, faster than the usual ones. In particular, the present study is related to

anisotropic de-noising explored by, e.g., Kerkyacharian, Lepski and Picard (2001, 2008). We compare

our functional classes as well as our rates with the results obtained there.

iii) Comparison of the two-dimensional version of the functional deconvolution procedure studied in the

present chapter to the separate solutions of convolution equations. We show especially that our ap-

proach delivers estimators with higher precision. For this purpose, in Section 4.5, we consider a discrete

version of functional deconvolution problem (5.1.1) (rather than the continuous equation (4.1.5)) and

compare its solution with solutions of M separate convolution equations (4.1.7). We show that, unless

the function f is very smooth in the direction of the profiles, very spatially inhomogeneous along the
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other direction and the number of profiles is very limited, functional deconvolution solution has a better

precision than the combination of M solutions of separate convolution equations.

4.2 Estimation Algorithm

In what follows, 〈·, ·〉 denotes the inner product in the Hilbert space L2([0, 1]) (the space of squared-

integrable functions defined on the unit interval [0, 1]), i.e., 〈f, g〉 =
∫ 1

0
f(t)g(t)dt for f, g ∈ L2([0, 1]).

We also denote the complex conjugate of a by ā. Let em(t) = ei2πmt be a Fourier basis on the interval

[0, 1]. Let hm(u) = 〈em, h(u, ·)〉, ym(u) = 〈em, y(u, ·)〉, zm(u) = 〈em, z(u, ·)〉, gm(u) = 〈em, g(u, ·)〉 and

fm(u) = 〈em, f(u, ·)〉 be functional Fourier coefficients of functions h, y, z, g and f respectively. Then,

applying the Fourier transform to equation (4.1.4), one obtains for any u ∈ [0, 1]

ym(u) = gm(u)fm(u) + εzm(u) (4.2.1)

and

hm(u) = gm(u)fm(u). (4.2.2)

Consider a bounded bandwidth periodized wavelet basis (e.g., Meyer-type) ψj,k(t) and finitely supported

periodized s0-regular wavelet basis (e.g., Daubechies) ηj′,k′(u). The choice of the Meyer wavelet basis

for t is motivated by the fact that it allows easy evaluation of the the wavelet coefficients in the Fourier

domain while finitely supported wavelet basis gives more flexibility in recovering a function which is spatially

inhomogeneous in u. Let m0 and m′0 be the lowest resolution levels for the two bases and denote the

scaling functions for the bounded bandwidth wavelet by ψm0−1,k(t) and the scaling functions for the finitely

supported wavelet by ηm′0−1,k′(u). Then, f(x, u) can be expanded into wavelet series as

f(u, x) =

∞∑
j=m0−1

∞∑
j′=m′0−1

2j−1∑
k=0

2j
′
−1∑

k′=0

βj,k,j′,k′ψj,k(x)ηj′,k′(u). (4.2.3)

Denote βj,k(u) = 〈f, ψj,k〉, then, βj,k,j′,k′ = 〈βj,k(u), ηj′,k′(u)〉. If ψj,k,m = 〈em, ψj,k〉 are Fourier coefficients

of ψj,k, then, by formula (5.3.4) and Plancherel’s formula, one has

βj,k(u) =
∑
m∈Wj

fm(u)ψj,k,m =
∑
m∈Wj

hm(u)

gm(u)
ψj,k,m, (4.2.4)
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where, for any j ≥ j0,

Wj = {m : ψjkm 6= 0} ⊆ 2π/3[−2j+2,−2j ] ∪ [2j , 2j+2], (4.2.5)

due to the fact that Meyer wavelets are band-limited (see, e.g., Johnstone, Kerkyacharian, Picard & Rai-

mondo (2004), Section 3.1). Therefore, βj,k,j′,k′ are of the form

βj,k,j′,k′ =
∑
m∈Wj

ψj,k,m

∫
hm(u)

gm(u)
ηj′,k′(u)du, (4.2.6)

and allow the unbiased estimator

β̃j,k,j′,k′ =
∑
m∈Wj

ψj,k,m

∫
ym(u)

gm(u)
ηj′,k′(u)du. (4.2.7)

We now construct a hard thresholding estimator of f(u, t) as

f̂(u, t) =

J−1∑
j=m0−1

J′−1∑
j′=m′0−1

2j−1∑
k=0

2j
′
−1∑

k′=0

β̂jk,j′k′ψjk(t)ηj′k′(u) (4.2.8)

where

β̂j,k,j′,k′ = β̃j,k,j′,k′1
(∣∣∣β̃j,k,j′,k′ ∣∣∣ > λjε

)
. (4.2.9)

and the values of J, J ′ and λjε will be defined later.

In what follows, we use the symbol C for a generic positive constant, independent of ε, which may take

different values at different places.

4.3 Smoothness classes and minimax lower bounds

4.3.1 Smoothness classes

It is natural to consider anisotropic multivariate functions, i.e., functions whose smoothness is different

in different directions. In order to construct Besov classes of mixed regularity, we choose l ≥ maxj sj and

define

Bs1,...,sdp,∞ =

f ∈ Lp,
∑

e⊂{1,...,d}

sup
t>0

sup
j∈e

t
−sj
j Ωl,e(f, te)p <∞

 . (4.3.1)

It is proved in, e.g., Heping (2004) that under appropriate (regularity) conditions which we are omitting

here, classes (4.3.1) can be expressed in terms of hyperbolic-wavelet coefficients, thus, providing a convenient
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generalization of the one-dimensional Besov Bsp,∞ spaces. Furthermore, Heping (2004) considers more general

Besov classes of mixed regularity Bs1,...,sdp,q that correspond to q <∞ rather than q =∞. In this discussion,

we shall assume that the hyperbolic wavelet basis satisfies required regularity conditions and follow Heping

(2004) definition of Besov spaces of mixed regularity

Bs1,...,sdp,q =

f ∈ L2(U) :

 ∑
j1,...,jd

2(
∑d
i=1 ji[si+

1
2−

1
p ])q

 ∑
k1,...,kd

|βj1,k1...,jdkd |
p


q
p


1/q

<∞

 . (4.3.2)

4.3.2 Lower bounds for the risk: two-dimensional case

Denote U = [0, 1]× [0, 1] and

s∗i = si + 1/2− 1/p, s′i = si + 1/2− 1/p′, i = 1, 2, p′ = min{p, 2}. (4.3.3)

In what follows, we assume that the function f(u, t) belongs to a two-dimensional Besov ball as described

above (d = 2), so that wavelet coefficients βjk,j′k′ satisfy the following condition

Bs1,s2p,q (A) =

f ∈ L2(U) :

∑
j,j′

2(js∗1+j′s∗2)q

∑
k,k′

|βjk,j′k′ |p


q
p


1/q

≤ A

 . (4.3.4)

Below, we construct minimax lower bounds for the L2-risk. For this purpose, we define the minimax L2-risk

over the set V as

Rε(V ) = inf
f̃

sup
f∈V

E
∣∣∣∣∣∣f̃ − f ∣∣∣∣∣∣2 , (4.3.5)

where ||g|| is the L2-norm of a function g(·) and the infimum is taken over all possible estimators f̃(·)

(measurable functions taking their values in a set containing V ) of f(·).

Assume that functional Fourier coefficients gm(u) of function g(u, t) are uniformly bounded from above

and below, that is, there exist positive constants ν, and C1 and C2, independent of m and u such that

C1 |m|−2ν ≤ |gm(u)|2 ≤ C2 |m|−2ν
. (4.3.6)

In order to construct lower bounds for the L2-risk of any estimator f̃n of f , we consider two cases, the

case when f(u, t) is dense in both variables (the dense-dense case) and the case when f(u, t) is dense in u

84



and sparse in t. The derivation is based on Lemma A.1 of Bunea, Tsybakov and Wegkamp (2007) which we

reformulate here for the case of squared risk.

Lemma 14. [Bunea, Tsybakov, Wegkamp (2007), Lemma A.1] Let Ω be a set of functions of cardinality

card(Ω) ≥ 2 such that

(i) ||f − g||2 ≥ 4δ2, for f, g ∈ Ω, f 6= g,

(ii) the Kullback divergences K(Pf , Pg) between the measures Pf and Pg satisfy the inequality K(Pf , Pg) ≤

log(card(Ω))/16, for f, g ∈ Ω.

Then, for some absolute positive constant C, one has

inf
Tn

sup
f∈ Ω

Ef ||Tn − f ||2 ≥ Cδ2. (4.3.7)

The dense-dense case. Let ω be the matrix with components ωk,k′ = {0, 1}, k = 0, · · · , 2j − 1,

k′ = 0, · · · , 2j′ − 1. Denote the set of all possible values ω by Ω and let the functions fj,j′ be of the form

fjj′(t, u) = γjj′
2j−1∑
k=0

2j
′
−1∑

k′=0

ωk,k′ψjk(t)ηj′k′(u). (4.3.8)

Note that matrix ω has N = 2j+j
′

components, and, hence, cardinality of the set of such matrices is

card(Ω) = 2N . Since fjj′ ∈ Bs1s2p,q (A), direct calculations show that γjj′ ≤ A2−j(s1+1/2)−j′(s2+1/2), so that

we choose γjj′ = A2−j(s1+1/2)−j′(s2+1/2). If f̃jj′ is of the form (4.3.8) with ω̃k,k′ ∈ Ω instead of ωk,k′ , then,

the L2-norm of the difference is of the form

∣∣∣∣∣∣f̃jj′ − fjj′ ∣∣∣∣∣∣2 = γ2
jj′

2j−1∑
k=0

2j
′
−1∑

k′=0

1 (ω̃k,k′ 6= ωk,k′) = γ2
jj′ρ(ω̃, ω) (4.3.9)

where ρ(ω̃, ω) =
∑2j−1
k=0

∑2j
′
−1

k′=0 1 (ω̃k,k′ 6= ωk,k′) is the Hamming distance between the binary sequences ω

and ω̃. In order to find a lower bound for the last expression, we apply the Varshamov-Gilbert lower bound

(see Tsybakov (2008), page 104) which states that one can choose a subset Ω1 of Ω, of cardinality at least 2N/8

such that ρ(ω̃, ω) ≥ N/8 for any ω, ω̃ ∈ Ω1. Hence, for any ω, ω̃ ∈ Ω1 one has
∣∣∣∣∣∣f̃jj′ − fjj′ ∣∣∣∣∣∣2 ≥ γ2

jj′2
j+j′/8.

Note that Kullback divergence can be written as

K(f, f̃) = (2ε2)−1
∣∣∣∣∣∣(f̃ − f) ∗ g

∣∣∣∣∣∣2 . (4.3.10)
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Since |ωjj′−ω̃jj′ | ≤ 1, plugging f and f̃ into (4.3.10), using Plancherel’s formula and recalling that |ψj,k,m| ≤

2−j/2, we derive

K(f, f̃) ≤ (2ε2)−12−jγ2
jj′

2j−1∑
k=0

2j
′
−1∑

k′=0

∑
m∈Wj

∫ 1

0

η2
j′k′(u) g2

m(u) du. (4.3.11)

Using (4.3.6), we obtain

2−j
∑
m∈Wj

∫ 1

0

η2
j′k′(u)g2

m(u)du ≤ C22−j
∑
m∈Wj

|m|−2ν

∫ 1

0

η2
j′k′(u)du ≤ C32−2νj , (4.3.12)

so that

K(f, f̃) ≤ Cε−2γ2
jj′2

j+j′2−2νj . (4.3.13)

Now, applying Lemma 14 with

δ2 = γ2
jj′2

j+j′/32 = A22−2s1j−2s2j
′
/32 (4.3.14)

one obtains constraint 2−j(2s1+2ν+1)−j′(2s2+1) ≤ Cε2/A2 on j, j′ and ε where C is an absolute constant.

Denote

τε = log2(CA2ε−2). (4.3.15)

Thus, we need to choose combination of j and j′ which solves the following optimization problem

2js1 + 2j′s2 ⇒ min j(2s1 + 2ν + 1) + j′(2s2 + 1) ≥ τε, j, j′ ≥ 0. (4.3.16)

It is easy to check that solution of this linear constraint optimization problem is of the form {j, j′} ={
(2s1 + 2ν + 1)−1τε, 0

}
if s2(2ν + 1) > s1, and {j, j′} =

{
0, (2s2 + 1)−1τε

}
if s2(2ν + 1) ≤ s1. Plugging

those values into (4.3.14), obtain

δ2 =

 CA2 (ε2/A2)
2s2

2s2+1 , if s1 > s2(2ν + 1),

CA2 (ε2/A2)
2s1

2s1+2ν+1 , if s1 ≤ s2(2ν + 1).
(4.3.17)

The sparse-dense case. Let ω be the vector with components ωk′ = {0, 1}. Denote Ω the set of all
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possible ω and let the functions fj,j′ be of the form

fjj′(t, u) = γjj′
2j
′
−1∑

k′=0

ωk′ψjk(t)ηj′k′(u) (4.3.18)

Note that vector ω has N = 2j
′

components, and, hence, its cardinality is card(Ω) = 2N . Since fjj′ ∈

Bs1s2p,q (A), direct calculations show that γjj′ ≤ A2−js
∗
1−j

′(s2+1/2), so we choose γjj′ = A2−js
∗
1−j

′(s2+1/2). If

f̃jj′ is of the form (4.3.18) with ω̃k,k′ ∈ Ω instead of ωk,k′ , then, calculating the L2 norm of the difference

similarly to dense-dense case, obtain

∣∣∣∣∣∣f̃jj′ − fjj′ ∣∣∣∣∣∣2 = γ2
jj′

2j
′
−1∑

k′=0

1 (ω̃k′ 6= ωk′) ≥ γ2
jj′2

j′/8. (4.3.19)

Similarly to dense-dense case, using formulae (4.3.6) and (4.3.10), Plancherel’s formula and |ψj,k,m| ≤ 2−j/2,

we derive

K(f, f̃) ≤ (2ε2)−1γ2
jj′

2j
′
−1∑

k′=0

2−j
∑
m∈Wj

∫ 1

0

η2
j′k′(u)g2

m(u)du ≤ C(2ε2)−1γ2
jj′2

j′2−2νj .

Now, applying Lemma 14 with

δ2 = γ2
jj′2

j′/32 = A22−2s′1j−2s2j
′
/32 (4.3.20)

one obtains constraint 2−j(2s
′
1+2ν)−j′(2s2+1) ≤ Cε2/A2 on j, j′ and ε where C is an absolute constant. Thus,

we need to choose combination of j and j′ which delivers solution to the following linear optimization problem

min{2js1 + 2j′s2} subject to constraint

2js1 + 2j′s2 ⇒ min s.t. j(2s′1 + 2ν) + j′(2s2 + 1) ≥ τε, j, j′ ≥ 0. (4.3.21)

It is easy to check that solution of this linear constraint optimization problem is of the form {j, j′} ={
(2s′1 + 2ν)−1τε, 0

}
if 2νs2 > s′1, and {j, j′} =

{
0, (2s2 + 1)−1τε

}
if 2νs2 ≤ s′1. Plugging those values into

(4.3.20), obtain

δ2 =


CA2 (ε2/A2)

2s2
2s2+1 , if 2νs2 ≤ s′1,

CA2 (ε2/A2)
2s′1

2s′1+2ν , if 2νs2 > s′1.

(4.3.22)
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Then, the following theorem gives the minimax lower bounds for the L2-risk of any estimator f̃n of f .

Theorem 5. Let min{s1, s2} ≥ max{1/p, 1/2} with 1 ≤ p, q ≤ ∞, let A > 0 and s′i, i = 1, 2, be defined in

(5.4.1). Then, under assumption (4.3.6), as ε→ 0

Rε(B
s1,s2
p,q (A)) ≥ CA2

(
ε2

A2

)d
(4.3.23)

where

d = min

(
2s2

2s2 + 1
,

2s1

2s1 + 2ν + 1
,

2s′1
2s′1 + 2ν

)
. (4.3.24)

Note that the value of d in (4.3.24) can be re-written as

d =


2s2

2s2+1 , if s1 > s2(2ν + 1),

2s1
2s1+2ν+1 , if ( 1

p −
1
2 )(2ν + 1) ≤ s1 ≤ s2(2ν + 1),

2s′1
2s′1+2ν , if s1 < ( 1

p −
1
2 )(2ν + 1).

(4.3.25)

Remark 3. Note that the rates obtained here are in fact the worst rate associated to the one dimensional

problem in each direction, which is not surprising since a function of only one variable and constant in the

other direction, e.g. f(u1, u2) = h(u1) belongs to Bs1,s2p,q (A) as soon as h belongs to a ball of the usual one

dimensional Besov space Bs1p,q, for any s2.

Also it is worthwhile to observe that the third rate (involving s′1) corresponds in dimension one to a

’sparse’ rate. Hence we observe here the so-called ’elbow phenomenon’ occurring only along the direction

2, because we are considering a L2 loss and the problem has a degree of ill-posedness ν precisely in this

direction.

4.4 Minimax upper bounds

Before deriving expressions for the minimax upper bounds for the risk, we formulate several useful lemmas

which give some insight into the choice of the thresholds λjε and upper limits J and J ′ in the sums in (4.2.8).

Lemma 15. Let β̃j,k,j′,k′ be defined in (4.2.7). Then, under assumption (4.3.6), one has

Var
(
β̃j,k,j′,k′

)
� ε222jν . (4.4.1)
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Proof of Lemma 15. Let us derive an expression for the upper bound of the variance of (4.2.7).

Subtracting (4.2.6) from (4.2.7) we obtain

β̃j,k,j′,k′ − βj,k,j′,k′ = ε
∑
m∈Wj

ψj,k,m

∫ 1

0

zm(u)

gm(u)
ηj′,k′(u)du. (4.4.2)

Now, before we proceed to the derivation of the upper bound of the variance, let us first state a result that will

be used in our calculation. Recall from stochastic calculus that for any function F (t, u) ∈ L2([0, 1]× [0, 1]),

one has

E

[∫ 1

0

∫ 1

0

F (t, u)dz(t, u)du

]2

=

∫ 1

0

∫ 1

0

F 2(t, u)dtdu. (4.4.3)

Hence, recalling that zm(u) =
∫
z(u, t)em(t)dt, choosing

F (t, u) =
∑
m∈Wj

ψj,k,m
em(t)

gm(u)
ηj′,k′(u), (4.4.4)

squaring both sides of (4.4.2), taking expectation and using the relation (4.4.3), we obtain

Var
(
β̃j,k,j′,k′

)
= ε2 E

∣∣∣∣∣∣
∑
m∈Wj

ψj,k,m

∫ 1

0

∫ 1

0

ηj′,k′(u)

gm(u)
em(t)dz(u, t)du

∣∣∣∣∣∣
2

= ε2

∫ 1

0

∫ 1

0

∑
m

∑
m′

ψj,k,mψj,k,m′

gm(u)gm′(u)
em(t)em′(t)|ηj′,k′(u)|2dtdu

= ε2
∑
m∈Wj

|ψj,k,m|2
∫ 1

0

|ηj′,k′(u)|2

|gm(u)|2
du, (4.4.5)

since in the double summation above, all terms involving m 6= m′ vanish due to
∫ 1

0
em(t)em′(t)dt = 0.

Consequently, Taking into account (4.2.5), (4.3.6) and the fact that |ψj,k,m| ≤ 2−j/2, obtain

Var
(
β̃j,k,j′,k′

)
� ε2

∑
m∈Wj

|ψj,k,m|2|m|2ν
∫ 1

0

∣∣η2
j′,k′(u)

∣∣ du � ε222jν (4.4.6)

so that (4.4.1) holds.
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Lemma 15 suggests that thresholds λjε should be chosen as

λjε = Cβ
√

ln(1/ε) 2jν ε (4.4.7)

where Cβ is some positive constant independent of ε. We choose J and J ′ as

2J = (ε2)−
1

2ν+1 , 2J
′

= (ε2)−1. (4.4.8)

Note that the choices of J , J ′ and λjε are independent of the parameters, s1, s2, p, q and A of the Besov

ball Bs1s2p,q (A), and therefore our estimator (4.2.8) is adaptive with respect of those parameters.

The next two lemmas provide upper bounds for the wavelet coefficients and the large deviation inequalities

for their estimators.

Lemma 16. Under assumption (5.4.2), one has

2j−1∑
k=0

2j
′
−1∑

k′=0

|βj,k,j′,k′ |2 ≤ A22−2(js′1+j′s′2) (4.4.9)

for any j, j′ ≥ 0.

Proof of Lemma 16 First note that, under assumption (5.4.2), one has

∑
k,k′

|βj,k,j′,k′ |p ≤ Ap2−p[(js1+j′s2)+( 1
2−

1
p )(j+j′)] (4.4.10)

If p ≤ 2, one has p′ = p, s′i = si + 1/2− 1/p, i = 1, 2, and

∑
k,k′

|βj,k,j′,k′ |2 ≤
∑
k,k′

|βj,k,j′,k′ |p
{

max
k,k′
|βj,k,j′,k′ |p

}(2−p)/p

≤ A22−2(js′1+j′s′2). (4.4.11)

If p ≥ 2, then p′ = 2, s′i = si, i = 1, 2, and, applying the Cauchy-Schwarz inequality, one obtain

∑
k,k′

|βj,k,j′,k′ |2 ≤

∑
k,k′

|βj,k,j′,k′ |p
2/p∑

k,k′

1

(1−2/p)

≤ A22−2[(js1+j′s2)], (4.4.12)

which completes the proof.
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Lemma 17. Let β̃j,k,j′,k′ and λjε be defined by formulae (4.2.7) and (4.4.7), respectively. Define, For some

positive constant α, the set

Θjk,j′k′,α = {Θ :
∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′ ∣∣∣ > αλjε}. (4.4.13)

Then, under assumption (4.3.6), as ε→ 0, one has

Pr (Θjk,j′k′,α) = O

(
ε

α2C2
β

2σ2
0 [ln(1/ε)]

− 1
2

)
(4.4.14)

where σ2
0 =

(
8π
3

)2ν 1
C1

and C1 is defined in (4.3.6).

Proof of Lemma 17 Observe that β̃j,k,j′,k′ − βj,k,j′,k′ is a zero-mean Gaussian random variable with

variance given by (4.4.6), so that

Var
(
β̃j,k,j′,k′

)
≤ ε2

(
8π

3

)2ν
22νj

C1
= σ2

0ε
222νj (4.4.15)

Denoting by Φ̄(x) = 1 − Φ(x) where Φ(x) is the standard normal c.d.f. and recalling that Φ̄(x) ≤

(x
√

2π)−1 exp(−x2/2) if x > 0, we derive

Pr (Ωjk,j′k′,α) = Pr (|ξj,k,j′,k′ | > αλjε) = 2Φ̄
(
αλjε(σ0ε2

νj)−1
)

≤ 2Φ̄
(
αCβ(σ0)−1

√
ln(1/ε)

)
≤ 2σ0

αCβ
√

2π ln(1/ε)
ε

α2C2
β

2σ2
0 (4.4.16)

which completes the proof.

Using the statements above, we can derive upper bounds for the minimax risk of the estimator (4.2.8).

Now denote

χε,A = A−2ε2 ln(1/ε), (4.4.17)

2j0 = (χε,A)
− d

2s′1 , 2j
′
0 = (χε,A)

− d
2s′2 (4.4.18)

and observe that with J and J ′ given by (4.4.8), the estimation error can be decomposed into the sum of

four components as follows

E
∣∣∣∣∣∣f̂n − f ∣∣∣∣∣∣2 ≤

∑
j,k,j′,k′

E
∣∣∣∣∣∣β̂j,k,j′,k′ − βj,k,j′,k′ ∣∣∣∣∣∣2 ≤ R1 +R2 +R3 +R4, (4.4.19)
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where

R1 =

2m0−1∑
k=0

2m
′
0−1∑

k′=0

Var(β̃m0,k,m′0,k
′), (4.4.20)

R2 =

J−1∑
j=m0

J′−1∑
j′=m′0

∑
k,k′

E

[∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′ ∣∣∣2 1
(∣∣∣β̃j,k,j′,k′ ∣∣∣ > λjε

)]
, (4.4.21)

R3 =

J−1∑
j=m0

J′−1∑
j′=m′0

∑
k,k′

|βj,k,j′,k′ |2 Pr
(∣∣∣β̃j,k,j′,k′∣∣∣ < λjε

)
, (4.4.22)

R4 =

 ∞∑
j=J

J′−1∑
j′=m′0

+

J−1∑
j=m0

∞∑
j′=J′

+

∞∑
j=J

∞∑
j′=J′

∑
k,k′

|βj,k,j′,k′ |2 . (4.4.23)

For R1, using (4.4.1), derive, as ε→ 0,

R1 ≤ Cε2 = O
(
A2 χdε,A

)
. (4.4.24)

To calculate R4, we apply Lemma 16 and use (4.4.8) obtaining, as ε→ 0,

R4 = O

∑
j≥J

∑
j′≥m′0

+
∑
j≥m0

∑
j′≥J′

A22−2js′1−2j′s′2

 = O
(
A22−2Js1 +A22−2J′s2

)
= O

(
A2(ε2)

2s′1
2ν+1 +A2(ε2)2s′2

)
= O

(
A2χdε,A

)
. (4.4.25)

Then, our objective is to prove that, as ε→ 0, one has Ri = O
(
A2χdε,A[ln(1/ε)]d1

)
.

Now, note that each R2 and R3 can be partitioned into the sum of two errors as follows

R2 ≤ R21 +R22, R3 ≤ R31 +R32, (4.4.26)
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where

R21 =

J−1∑
j=m0

J′−1∑
j′=m′0

∑
k,k′

E

[∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′ ∣∣∣2 1

(∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′ ∣∣∣ > λjε
2

)]
(4.4.27)

R22 =

J−1∑
j=m0

J′−1∑
j′=m′0

∑
k,k′

E

[∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′ ∣∣∣2 1

(
|βj,k,j′,k′ | >

1

2
λjε

)]
. (4.4.28)

R31 =

J−1∑
j=m0

J′−1∑
j′=m′0

∑
k,k′

|βj,k,j′,k′ |2 Pr

(∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′ ∣∣∣ > λjε
2

)
, (4.4.29)

R32 =

J−1∑
j=m0

J′−1∑
j′=m′0

∑
k,k′

|βj,k,j′,k′ |2 1

(
|βj,k,j′,k′ | ≤

3λjε
2

)
. (4.4.30)

Combining (4.4.27) and (4.4.29), and applying Cauchy-Schwarz inequality and Lemma 17 with α = 1/2, one

derives

R21 +R31 = O

 J−1∑
j=m0

J′−1∑
j′=m′0

2j+j
′
ε

C2
β

16σ2
0 [ln(1/ε)]

− 1
4

√
ε424jν+j′


= O

(
2J(2ν+1) 23J′/2 (ε)

2+
C2
β

16σ2
0

)
= O

(
(ε2)

C2
β

32σ2
0
− 3

2

)
. (4.4.31)

Hence, due to condition (4.4.45), one has, as ε→ 0,

R21 +R31 ≤ Cε2 = O
(
A2χdε,A

)
. (4.4.32)

For the sum of R22 and R32, using (4.4.1) and (4.4.7), we obtain

∆ = R22 +R32 = O

 J−1∑
j=m0

J′−1∑
j′=m′0

∑
k,k′

min
{
β2
j,k,j′,k′ , ε

2 ln(1/ε) 22jν
} . (4.4.33)

Then, ∆ can be partitioned into the sum of three components ∆1, ∆2 and ∆3 according to three different
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sets of indices:

∆1 = O


J−1∑

j=j0+1

J′−1∑
j′=m′0

+

J−1∑
j=m0

J′−1∑
j′=j′0+1

A22−2js′1−2j′s′2

 , (4.4.34)

∆2 = O

 j0∑
j=m0

j′0∑
j′=m′0

ε2 ln(1/ε) 2j(2ν+1)+j′ 1
(

2j(2ν+1)+j′ ≤ χd−1
ε,A

) , (4.4.35)

∆3 = O

 j0∑
j=m0

j′0∑
j′=m′0

Ap
′
2−p

′js′1−p
′j′s′2

(
ε2 ln(1/ε)22jν

)1−p′/2
1
(

2j(2ν+1)+j′ > χd−1
ε,A

) , (4.4.36)

where d is defined in (4.3.24). It is easy to see that for ∆1 given in (4.4.34) and j0 and j′0 given by (4.4.18),

as ε→ 0, one has

∆1 = O
(
A2 χdε,A

)
, (4.4.37)

For ∆2 defined in (4.4.35), obtain

∆2 = O
(
ε2 ln(1/ε)χd−1

ε,A

)
= O

(
A2 χdε,A

)
, ε→ 0. (4.4.38)

In order to construct upper bounds for ∆3 in (4.4.36), we need to consider three different cases.

Case 1: s1 ≥ s2(2ν + 1). In this case, d = 2s2/(2s2 + 1) and

∆3 ≤ CA2(χε,A)1−p′/2
j0∑

j=m0

2−j[p
′s′1−2ν(1−p′/2)]

j′0∑
j′=m′0

2−p
′j′s′2 1

(
2j
′
> (χε,A)d−12−j(2ν+1)

)

≤ CA2(χε,A)(1−p′/2)+p′s′2(1−d)

j0∑
j=m0

2−j[p
′s′1−2ν(1−p′/2)−p′(2ν+1)s′2]

= CA2(χε,A)d
j0∑

j=m0

2−j[p
′s1−p′s2(2ν+1)], (4.4.39)

so that, as ε→ 0,

∆3 = O
(
A2 χdε,A [ln(1/ε)]1(s1=s2(2ν+1))

)
. (4.4.40)
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Case 2: ( 1
p −

1
2 )(2ν + 1) < s1 < s2(2ν + 1). In this case, d = 2s1/(2s1 + 2ν + 1) and

∆3 ≤ CA2(χε,A)1−p′/2
j0∑

j=m0

2−j[p
′s′1−2ν(1−p′/2)]

j′0∑
j′=m′0

2−p
′j′s′2 1

(
2j > (χε,A)

d−1
2ν+1 2−

j′
2ν+1

)

≤ CA2(χε,A)(1−p′/2)+p′
(1−d)
1+2ν (s1−(2ν+1)(1/p′−1/2)

j′0∑
j′=m′0

2−j
′p′[s′2−s1/(2ν+1)+(1/2−1/p′)]

≤ CA2(χε,A)d
j′0∑

j′=m′0

2−j
′p′[s2−s1/(2ν+1)], (4.4.41)

so that, as ε→ 0,

∆3 = O
(
A2 χdε,A

)
. (4.4.42)

Case 3: s1 ≤ ( 1
p −

1
2 )(2ν + 1). In this case, d = 2s′1/(2s

′
1 + 2ν) and p ≤ 2. Then, since ps′1 − 2ν(1− p/2) =

p[s1 − (1/p− 1/2)(2ν + 1)] ≤ 0, one has

∆3 ≤ CA2(χε,A)1−p′/2
j0∑

j=m0

2−j[ps
′
1−2ν(1−p/2)]

≤ CA2(χε,A)1−p′/2 2j0p[(1/p−1/2)(2ν+1)−s1] [ln(1/ε)]1(s1=(1/p−1/2)(2ν+1)). (4.4.43)

Plugging in j0 of the form (4.4.18), obtain as ε→ 0

∆3 = O
(
A2 χdε,A [ln(1/ε)]1(s1=(1/p−1/2)(2ν+1))

)
. (4.4.44)

Now, combining formulae (4.4.19)–(4.4.44) leads to the next theorem which provides upper bounds results.

Theorem 6. Let f̂(., .) be the wavelet estimator defined in (4.2.8), with J and J ′ given by (4.4.8). Let

condition (4.3.6) hold and min{s1, s2} ≥ max{1/p, 1/2}, with 1 ≤ p, q ≤ ∞. If Cβ in (4.4.7) is such that

C2
β ≥ 80(C1)−1(2π/3)2ν (4.4.45)

where C1 is defined in (4.3.6), then, as ε→ 0,

sup
f∈Bs1,s2p,q (A))

E
∣∣∣∣∣∣f̂ − f ∣∣∣∣∣∣2 ≤ CA2

(
ε2 ln(1/ε)

A2

)d
ln

(
1

ε

)d1

(4.4.46)
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where d is defined in (4.3.24) and

d1 = 1(s1 = s2(2ν + 1)) + 1(s1 = (2ν + 1)(1/p− 1/2)). (4.4.47)

Remark 4. Looking at the previous results, we conclude that the rates obtained by the wavelet estimator

defined in (4.2.8) are optimal, in the minimax sense, up to logarithmic factors. These factors are standard

and coming from the thresholding procedure.

4.5 Sampling version and comparison with separate deconvolution recoveries

Consider now the sampling version (5.1.1) of the problem (4.1.5). In this case, the estimators of wavelet

coefficients βj,k,j′,k′ can be constructed as

β̃j,k,j′,k′ =
1

M

∑
m∈Wj

ψj,k,m

M∑
l=1

ym(ul)

gm(ul)
ηj′,k′(ul). (4.5.1)

In practice, β̃j,k,j′,k′ are obtained simply by applying discrete wavelet transform to vectors ym(·)/gm(·).

Recall that the continuous versions (4.2.7) of estimators (4.5.1) have Var
(
β̃j,k,j′,k′

)
� ε222jν (see formula

(4.4.1)). In order to show that equation (5.1.1) is the sampling version of (4.1.5) with ε2 = σ2/(MN), one

needs to show that, in the discrete case, Var
(
β̃j,k,j′,k′

)
� σ2(MN)−122jν . This indeed is accomplished by

the following Lemma.

Lemma 18. Let β̃j,k,j′,k′ be defined in (4.5.1). Then, under assumption (4.3.6), as MN →∞, one has

Var
(
β̃j,k,j′,k′

)
� σ2(MN)−122jν . (4.5.2)

Proof of Lemma 18. Subtracting βj,k,j′,k′ from (4.5.1), one obtains

β̃j,k,j′,k′ − βj,k,j′,k′ =
σ

M

∑
m∈Wj

ψj,k,m

M∑
l=1

zm(ul)

gm(ul)
ηj′,k′(ul). (4.5.3)

where zm(ul) = ym(ul)− hm(ul). Since Fourier transform is an orthogonal transform, one has

E[zm1(ul1)zm2(ul2)] = 0 if l1 6= l2 and E[zm1(ul)zm2(ul)] = 0, so that

E[zm1(ul1)zm2(ul2)] =
σ2

N
δ(m1 −m2)δ(l1 − l2). (4.5.4)
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Therefore,

Var(β̃j,k,j′,k′) =
σ2

M2N

∑
m∈Wj

|ψj,k,m|2
M∑
l=1

1

|gm(ul)|2
|ηj′,k′(ul)|2

� σ222jν

MN

∑
m∈Wj

|ψj,k,m|2
1

M

M∑
l=1

|ηj′,k′(ul)|2 �
σ222jν

MN
, (4.5.5)

which completes the proof.

Using tools developed in Pensky and Sapatinas (2009) and Lemma 18, it is easy to formulate the lower and

the upper bounds for convergence rates of the estimator (4.2.8) with β̂jk,j′k′ given by (4.2.9) and the values

of λjε and J, J ′ defined in (4.4.7) and (4.4.8), respectively. In particular, we obtain the following statement.

Theorem 7. Let min{s1, s2} ≥ max{1/p, 1/2} with 1 ≤ p, q ≤ ∞, let A > 0 and s∗i be defined in (5.4.1).

Then, under assumption (4.3.6), as MN →∞, for some absolute constant C > 0 one has

R(MN)(B
s1,s2
p,q (A)) ≥ C(σ2(MN)−1)d. (4.5.6)

Moreover, if f̂(., .) is the wavelet estimator defined in (4.2.8), min{s1, s2} ≥ max{1/p, 1/2}, and J and J ′

given by (4.4.8), then, under assumption (4.3.6), as MN →∞,

sup
f∈Bs1,s2p,q (A))

E
∣∣∣∣∣∣f̂ − f ∣∣∣∣∣∣2 ≤ C(σ2(MN)−1 ln(MN))d (ln(MN))d1 . (4.5.7)

where d and d1 are defined in (4.3.24) and (4.4.47), respectively.

Now, let us compare the rates in Theorem 7 with the rates obtained by recovering each deconvolution

fl(t) = f(ul, t), ul = l/M , l = 1, · · · ,M , separately, using equations (4.1.7). In order to do this, we need

to determine in which space functions fl(x) are contained. The following lemma provides the necessary

conclusion.

Lemma 19. Let f ∈ Bs1,s2p,q (A) with s1 ≥ max{1/p, 1/2}, s2 > max{1/p, 1/2} and 1 ≤ p, q ≤ ∞. Then, for

any l = 1, ....,M , we have

fl(t) = f(ul, t) ∈ Bs1p,q(Ã). (4.5.8)
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Proof of Lemma 19. Recall that

f(u, t) =
∑
j,k

∑
j′,k′

βj,k,j′,k′ψj,k(t)ηj′,k′(u) and fl(t) =
∑
j,k

b
(l)
j,kψj,k(t)ηj′,k′(ul), (4.5.9)

so that

b
(l)
j,k =

∞∑
j′=0

∑
k′∈Kl

βj,k,j′,k′2
j′/2η(2j

′
ul − k′), (4.5.10)

where the set Kl = {k′ : η(2j
′
ul − k′) 6= 0} is finite for any l due to finite support of η.

Thus, since p ≥ 1, for any δ > 0, one has

2j−1∑
k=0

|b(l)j,k|
p ≤ C

2j−1∑
k=0

 ∞∑
j′=0

∑
k′∈Kl

|βj,k,j′,k′ | 2j
′(1+δ)/2 2−j

′δ/2

2

≤ C

2j−1∑
k=0

 ∞∑
j′=0

∑
k′∈Kl

|βj,k,j′,k′ |p 2j
′(1+δ)p/2

 ∞∑
j′=0

∑
k′∈Kl

(
2−j

′δ/2
) p
p−1

p−1

. (4.5.11)

Then, for any q ≥ 1, one has

Bj =

 ∞∑
j′=0

2j
′(1+δ)p/2

∑
k,k′

|βj,k,j′,k′ |p
q/p

. (4.5.12)

If q/p ≥ 1, then, using Cauchy-Schwarz inequality again, it is straightforward to verify that

Bj ≤ C̃δ
∞∑
j′=0

∑
k,k′

|βj,k,j′,k′ |p
q/p 2j

′(1+2δ)q/2. (4.5.13)

Hence,

∞∑
j′=0

2js
′
1q

2j−1∑
k=0

|b(l)j,k|
p

q/p

≤ C̃δ2js
′
1q

∞∑
j′=0

2j
′(1+2δ)q/2

∑
k,k′

|βj,k,j′,k′ |p
q/p ≤ C̃δAq = Ãq (4.5.14)

provided s∗2 ≥ (1 + 2δ)/2. Since s2 > max{1/2, 1/p} implies s2 > 1/2, choose δ = (s2 − 1/2)/2. If q/p < 1,
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then similar considerations yield

Bj ≤ C̃δ
∞∑
j′=0

∑
k,k′

|βj,k,j′,k′ |p
q/p 2j

′(1+δ)q/2, (4.5.15)

so that the previous calculation holds with δ instead of 2δ, and the proof is complete.

Using Lemma 19 and standard arguments (see, e.g., Johnstone, Kerkyacharian, Picard and Raimondo

(2004)), we obtain for each fl

sup
fl∈B

s1
p,q(Ã)

E
∣∣∣∣∣∣f̃l − fl∣∣∣∣∣∣2 �


CN−

2s1
2s1+2ν+1 , if s1 ≥ ( 1

p −
1
2 )(2ν + 1),

CN
− 2s′1

2s′1+2ν , if s1 < ( 1
p −

1
2 )(2ν + 1).

(4.5.16)

Now, consider estimator f̃ of f with f̃(ul, ti) = fl(ti). If fu = ∂f/∂u and fuu = ∂2f/∂u2 exist and uniformly

bounded for u ∈ [0, 1], then rectangle method for numerical integration yields

E
∣∣∣∣∣∣f̃ − f ∣∣∣∣∣∣2 = M−1

M∑
l=1

E
∣∣∣∣∣∣f̃l − fl∣∣∣∣∣∣2 +RM , (4.5.17)

where

RM ≤ (12M2)−1

[
E
∣∣∣∣∣∣f̃u − fu∣∣∣∣∣∣2 +

√
E
∣∣∣∣∣∣f̃ − f ∣∣∣∣∣∣2 E

∣∣∣∣∣∣f̃uu − fuu∣∣∣∣∣∣2] . (4.5.18)

If M is large enough, then RM = o

(
E
∣∣∣∣∣∣f̃ − f ∣∣∣∣∣∣2) as M →∞ and we derive

E
∣∣∣∣∣∣f̃ − f ∣∣∣∣∣∣2 �


CN−

2s1
2s1+2ν+1 , if s1 ≥ ( 1

p −
1
2 )(2ν + 1),

CN
− 2s′1

2s′1+2ν , if s1 < ( 1
p −

1
2 )(2ν + 1).

(4.5.19)

Recall that according to Theorem 7 the convergence rates due to simultaneous recoveries are represented

by

E
∣∣∣∣∣∣f̂ − f ∣∣∣∣∣∣2 �


(MN)−

2s2
2s2+1 , if s1 > s2(2ν + 1),

(MN)−
2s1

2s1+2ν+1 , if ( 1
p −

1
2 )(2ν + 1) ≤ s1 ≤ s2(2ν + 1),

(MN)
− 2s′1

2s′1+2ν , if s1 < ( 1
p −

1
2 )(2ν + 1).

(4.5.20)

Notice that comparing the two approaches we have two cases; the case when s1 < ( 1
p −

1
2 )(2ν + 1) and when

s1 > s2(2ν + 1). In the former one, simultaneous recoveries outperform separate recoveries without any
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additional conditions since dividing (4.5.20) by (4.5.19) yields M
− 2s′1

2s′1+2ν . By straightforward calculations,

one can check that in the latter case s1 > s2(2ν + 1) convergence rates of separate deconvolution recoveries

may be better than that of the simultaneous estimator. To see this, notice that when s1 > s2(2ν + 1),

s1 > ( 1
p −

1
2 )(2ν+1). Indeed, in order for separate recoveries to outperform simultaneous recoveries, (4.5.19)

divided by (4.5.20) must be less than one, so that comparing the rates, yields

N−
2s1

2s1+2ν+1

(MN)−
2s2

2s2+1

< 1

M
2s2

2s2+1N−
2s1

2s1+2ν+1N
2s2

2s2+1 < 1

M
2s2

2s2+1N
− 2s1−2s2(2ν+1)

(2ν+1)(2s1+2ν+1) < 1 (4.5.21)

Hence, we derive the conclusion that simultaneous recovery delivers better precision than separate ones

unless

lim
M→∞
N→∞

MN
− s1−s2(2ν+1)

s2(2s1+2ν+1) < 1, s1 > s2(2ν + 1). (4.5.22)

It is easy to see that relation (4.5.22) holds only if s1 is large, s2 is small and M is relatively small in

comparison with N .

4.6 Extension to the (r + 1)-dimensional case

In this section, we extend the results obtained above to the (r + 1)-dimensional version of the model

(4.1.1). In this case, expanding both sides of equation (4.1.1) over Fourier basis, as before, we obtain for any

u ∈ [0, 1]r

ym(u) = gm(u)fm(u) + εzm(u). (4.6.1)

Construction of the estimator follows the path of the two-dimensional case. With ψj,k(t) and ηj′,k′(u) defined

earlier, we consider vectors j′ = (j′1, · · · , j′r), k′ = (k′1, · · · , k′r), m′ = (m′1, · · · ,m′r) and J′ = (J ′1, · · · , J ′r),

and subsets Υ(m′,J′) and K(j′) of the set of r-dimensional vectors with nonnegative integer components:

Υ(m′,J′) = {j′ : m′l ≤ j′l ≤ J ′l , l = 1, · · · , r}, K(j′) = {k′ : 0 ≤ k′l ≤ j′l − 1, l = 1, · · · , r}. (4.6.2)
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If ∞ is the r-dimensional vector with all components being ∞, one can expand f(u, t) into wavelet series as

f(u, t) =

∞∑
j=m0−1

2j−1∑
k=0

∑
j′∈Υ(m′,∞)

∑
k′∈K(j′)

βjk,j′,k′ψjk(t)

r∏
l=1

ηj′l,k′l(ul), (4.6.3)

where coefficients βjk,j′,k′ are of the form

βjk,j′,k′ =
∑
m∈Wj

ψj,k,m

∫
[0,1]d

hm(u)

gm(u)

r∏
l=1

[ηj′l,k′l(ul)] du, (4.6.4)

the set Wj is defined by formula (4.2.5) and hm(u) = 〈(f ∗ g)(·,u), em(·)〉. Similarly to the two-dimensional

case, we estimate f(u, t) by

f̂(u, t) =

J−1∑
j=m0−1

2j−1∑
k=0

∑
j′∈Υ(m′,J′)

∑
k′∈K(j′)

β̂j,k,j′,k′ ψjk(t)

r∏
l=1

ηj′l,k′l(ul) (4.6.5)

with

β̂j,k,j′,k′ = β̃j,k,j′,k′1
(∣∣∣β̃j,k,j′,k′ ∣∣∣ > λj,ε

)
. (4.6.6)

Here

β̃j,k,j′,k′ =
∑
m∈Wj

ψj,k,m

∫
ym(u)

gm(u)

r∏
l=1

[ηj′l,k′l(ul)]du (4.6.7)

are the unbiased estimators of βjk,j′,k′ , J is defined in (4.4.8), J ′l are such that 2J
′
l = ε−2, l = 1, · · · , r, and

λj,ε is given by formula (4.4.7). Assume, as before, that functional Fourier coefficients gm(u) of function

g(u, t) are uniformly bounded from above and below

C1 |m|−2ν ≤ |gm(u)|2 ≤ C2 |m|−2ν
(4.6.8)

and that function f(u, t) belongs to an (r + 1)-dimensional Besov ball. As described in section 4.3.1 to

define these Besov balls, we introduce the vector s2 = (s21, · · · , s2r) and denote by s′2 and s∗2 vectors with

components s′2l = s2l + 1/2− 1/p′ and s∗2l = s2l + 1/2− 1/p, l = 1, · · · , r, respectively, where p′ = min{p, 2}.

If s0 ≥ maxl s2l, then the (r+1)-dimensional Besov ball of radius A is characterized by its wavelet coefficients
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βj,k,j′,k′ as follows (see, e.g. Heping (2004))

Bs1,s2p,q (A) =

f ∈ L2([0, 1]r+1) :

∑
j,j′

2[js∗1+j′T s∗2]q

∑
k,k′

|βjk,j′,k′ |p


q
p


1/q

≤ A

 . (4.6.9)

It is easy to show that, with the above assumptions, similarly to the two-dimensional case, as ε→ 0, one has

Var
(
β̃j,k,j′,k′

)
� ε222jν ,

2j−1∑
k=0

2j
′
−1∑

k′=0

|βj,k,j′,k′ |2 ≤ A22−2(js′1+j′T s∗2), (4.6.10)

Pr
(∣∣∣β̃j,k,j′,k′ − βj,k,j′,k′ ∣∣∣ > αλjε

)
= O

(
ε

α2C2
β

2σ2
0 [ln(1/ε)]

− 1
2

)
. (4.6.11)

The upper and the lower bounds for the risk are expressed via

s2,0 = min
l=1,··· ,r

s2,l = s2,l0 , (4.6.12)

where l0 = arg min s2,l. In particular, the following statements hold.

Theorem 8. Let min{s1, s2,l0} ≥ max{1/p, 1/2} with 1 ≤ p, q ≤ ∞. Then, under assumption (4.6.8), as

ε→ 0,

Rε(B
s1,s2
p,q (A)) ≥ CA2

(
ε2

A2

)D
(4.6.13)

where

D = min

(
2s2,0

2s2,0 + 1
,

2s1

2s1 + 2ν + 1
,

2s′1
2s′1 + 2ν

)
. (4.6.14)

or,

D =


2s2,0

2s2,0+1 , if s1 > s2,0(2ν + 1),

2s1
2s1+2ν+1 , if ( 1

p −
1
2 )(2ν + 1) ≤ s1 ≤ s2,0(2ν + 1),

2s′1
2s′1+2ν , if s1 < ( 1

p −
1
2 )(2ν + 1).

(4.6.15)

Proof of Theorem 8. Repeating the proof of Theorem 5 with j′ and k′ replaced by j′ and k′,

respectively, and s2j
′ replaced by j′

T
s′2, we again arrive at two cases. Denote the r-dimensional vector with

all unit components by e.

In the dense-dense case, we use (r + 1)-dimensional array w, so that N = 2j+eT j′ . Choose γ2
j,j′ =
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A22−j(2s1+1)−j′T (2s2+e) and observe that K(f, f̃) ≤ Cε−2γ2
jj′2

j+eT j′2−2νj . Now, applying Lemma 14 with

δ2 = γ2
jj′2

j+eT j′/32 = A22−2s1j−2j′T s2/32 (4.6.16)

one arrives at the following optimization problem

2js1 + 2j′s2 ⇒ min j(2s1 + 2ν + 1) +

r∑
l=1

(2s2,l + 1)j′l ≥ τε, j, j′l ≥ 0, (4.6.17)

where τε is defined in formula (4.3.15). Setting j = τε/(2s1 + 2ν + 1)−
∑r
l=1(2sl + 1)/(2s1 + 2ν + 1), arrive

at optimization problem

2s1τε
2s1 + 2ν + 1

+

r∑
l=1

2j′l [s2,l(2ν + 1)− s1]

2s1 + 2ν + 1
⇒ min, j′l ≥ 0, l = 1, · · · , r. (4.6.18)

If s2,l0(2ν + 1) ≥ s1, then each j′l is multiplied by a nonnegative number and minimum is attained when

j′l = 0, l = 1, · · · , r. Then, j = τε/(2s1 + 2ν + 1). On the other hand, if s2,l0(2ν + 1) < s1, then jl0 is

multiplied by the smallest factor which is negative. Therefore, minimum in (4.6.18) is attained if j = 0,

j′l = 0, l 6= l0 and jl0 = τε/(2s2,l0 + 1). Plugging those values into (4.6.16), obtain

δ2 =

 CA2 (ε2/A2)
2s2,0

2s2,0+1 , if s1 > s2,0(2ν + 1),

CA2 (ε2/A2)
2s1

2s1+2ν+1 , if s1 ≤ s2,0(2ν + 1).
(4.6.19)

In the sparse-dense case, we use r-dimensional array w, so that N = 2e
T j′ . Choose γ2

j,j′ as,

γ2
j,j′ = A22−2js∗1−j

′T (2s2+e) and observe that K(f, f̃) ≤ Cε−2γ2
jj′2

j+eT j′2−2νj .

Now, applying Lemma 14 with

δ2 = A22−2s∗1j−2j′T s2/32 (4.6.20)

one arrives at the following optimization problem

2js1 + 2j′s2 ⇒ min j(2s∗1 + 2ν + 1) +

r∑
l=1

(2s2,l + 1)j′l ≥ τε, j, j′l ≥ 0, (4.6.21)

Again, setting j = τε/(2s
∗
1 + 2ν)−

∑r
l=1(2sl + 1)/(2s∗1 + 2ν), arrive at optimization problem

2s∗1τε
2s∗1 + 2ν

+

r∑
l=1

2j′l [2s2,lν − s∗1]

2s∗1 + 2ν
⇒ min, j′l ≥ 0, l = 1, · · · , r. (4.6.22)
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Repeating the reasoning applied in the dense-dense case, we obtain j = 0, j′l = 0, l 6= l0 and jl0 =

τε/(2s2,l0 + 1) if 2s2,l0ν < s∗1, and j = τε/(2s1 + 2ν + 1), j′l = 0, l = 1, · · · , r, if 2s2,l0ν > s∗1. Plugging those

values into (4.6.20), obtain

δ2 =

 CA2 (ε2/A2)
2s2,0

2s2,0+1 , if 2νs2,0 ≤ s∗1,

CA2 (ε2/A2)
2s∗1

2s∗1+2ν , if 2νs2,0 > s∗1.
(4.6.23)

In order to complete the proof, combine (4.6.19) and (4.6.23) and note that s∗1 = s′1 if p ≤ 2.

Theorem 9. Let f̂(., .) be the wavelet estimator defined in (4.6.5), with J defined in (4.4.8), J ′l such that

2J
′
l = (ε2)−1, l = 1, · · · , r, and λj,ε given by formula (4.4.7). Let condition (4.3.6) hold and min{s1, s2,0} ≥

max{1/p, 1/2}, with 1 ≤ p, q ≤ ∞. If Cβ in (4.4.7) satisfies condition (4.4.45), then, as ε→ 0,

sup
f∈Bs1,s2p,q (A))

E
∣∣∣∣∣∣f̂ − f ∣∣∣∣∣∣2 ≤ CA2

(
A−2 ε2 ln(1/ε)

)D
ln (1/ε)

D1 (4.6.24)

where D is defined in (4.6.14) and

D1 = 1(s1 = s2,0(2ν + 1)) + 1(s1 = (2ν + 1)(1/p− 1/2)) +
∑
l 6=l0

1(s2,l = s2,0). (4.6.25)

Proof of Theorem 9. Repeat the proof of Theorem 6 with j′ and k′ replaced by j′ and k′, respectively,

s2j
′ replaced by j′

T
s′2 and

2j0 = (χε,A)
− d

2s′1 , 2j
′
0,l = (χε,A)

− d
2s′

2,l , l = 1, · · · , r. (4.6.26)

Then, formulae (4.4.19)–(4.4.32) are valid. One can also partition ∆ in (4.4.33) into ∆1, ∆2 and ∆3 given

by expressions similar to (4.4.34), (4.4.35) and (4.4.36) with r + 1 sums in (4.4.34) instead of two,
∑j′0
j′=m′0

replaced by r respective sums and 1
(

2j(2ν+1)+j′ > χd−1
ε,A

)
replaced by 1

(
2j(2ν+1)+eT j′ > χd−1

ε,A

)
. Then,

upper bounds (4.4.37) and (4.4.38) hold. In order to construct upper bounds for ∆3, we again need to

consider three different cases.

In Case 1, s1 ≥ s2,0(2ν+1), replace
∑j′0
j′=m′0

by
∑j′0,l0
j′l0

=m′l0
and

∑j0
j=m0

by the sum over j, j′1, · · · , j′l0−1, j
′
l0+1

, · · · , j′r. Repeating calculations for this case, keeping in mind that s′2,l ≥ s′2,0 for any l and noting that,
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whenever s′2,l = s′2,0, we gain an extra logarithmic factor, we arrive at

∆3 = O
(
A2 χdε,A [ln(1/ε)]1(s1=s2(2ν+1))+

∑
l6=l0

1(s2,l=s2,0)
)
. (4.6.27)

In Case 2, (1/p−1/2)(2ν+1) < s1 < s2,0(2ν+1), replace
∑j′0
j′=m′0

by
∑

j′∈Υ(m′,j′0) where j′0 = (j′0,1, · · · , j′0,r)

and arrive at (4.4.42). In Case 3, s1 ≤ ( 1
p −

1
2 )(2ν + 1), since the sum over j′ is uniformly bounded,

calculations for the two-dimensional case hold and (4.4.44) is valid. Combination of (4.6.27), (4.4.42) and

(4.4.44) completes the proof.

Remark 5. Observe that convergence rates in Theorems 8 and 9 depend on s1, p, ν and minl s2l but not

on the dimension r.

It could be also natural to ask what would the corresponding results be if s1 itself was multidimensional,

that is, if one considers the case of convolution in more than one direction where

h(u, t) =

∫
[0;1]d

g(u, t− x)f(u, x)dx, t ∈ [0; 1]d; u ∈ [0; 1]r. (4.6.28)

Although this is beyond the scope of this discussion, let us just mention that, as soon as one establishes

upper bounds for the variances of the wavelet coefficients like (4.6.10) as well as concentration inequalities

for the wavelet coefficients estimators like in (4.6.11), one expects to obtain convergence rates similar to

Theorems 8 and 9 with s1 replaced with mink s1k.
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CHAPTER 5: FUNCTIONAL DECONVOLUTION MODEL WITH

LONG-RANGE DEPENDENT ERRORS

5.1 Formulation of the Problem

We consider the estimation problem of the unknown response function f(·) ∈ L2(T ) from observations

y(ul, ti) driven by

y(ul, ti) =

∫
T

g(ul, ti − x)f(x)dx+ ξli, l = 1, 2, . . . ,M, i = 1, 2, . . . , N, (5.1.1)

where ul ∈ U = [a, b], 0 < a ≤ b <∞, T = [0, 1], ti = i/N , and the errors ξli are Gaussian random variables,

independent for different l’s, but dependent for different i’s.

Denote the total number of observations n = NM and assume, without loss of generality, that N = 2J

for some integer J > 0. For each l = 1, 2, . . . ,M , let ξ(l) be a Gaussian vector with components ξli,

i = 1, 2, . . . , N , and let Σ(l) := Cov(ξ(l)) := E[ξ(l)(ξ(l))T ] be its covariance matrix.

Assumption A1: For each l = 1, 2, . . . ,M , Σ(l) satisfies the following condition: there exist constants

K1 and K2 (0 < K1 ≤ K2 <∞), independent of l and N , such that, for each l = 1, 2, . . . ,M ,

K1N
2dl ≤ λmin(Σ(l)) ≤ λmax(Σ(l)) ≤ K2N

2dl , 0 ≤ dl < 1/2, (5.1.2)

where λmin and λmax are the smallest and the largest eigenvalues of (the Toeplitz matrix) Σ(l). (Here, and

in what follows, “T ” denotes the transpose of a vector or a matrix.)

Assumption A1 is valid when, for each l = 1, 2, . . . ,M , ξ(l) is a second-order stationary Gaussian sequence

with spectral density satisfying certain assumptions. We shall elaborate on this issue in Section 5.2. Note

that, in the case of independent errors, for each l = 1, 2, . . . ,M , Σ(l) is proportional to the identity matrix and

106



that dl = 0. In this case, the multichannel deconvolution model (5.1.1) reduces to the one with independent

and identically distributed Gaussian errors. In a view of (5.1.1), the limit situation dl = 0, l = 1, 2, . . . ,M ,

can be thought of as the standard multichannel deconvolution model described in Pensky and Sapatinas

(2009, 2010).

In the multichannel deconvolution model studied by Pensky and Sapatinas (2009, 2010), as well as in the

very current extension of their results to derivative estimation by Navarro et al. (2013), it is assumed that

errors are independent and identically distributed Gaussian random variables. However, empirical evidence

has shown that even at large lags, the correlation structure in the errors can decay at a hyperbolic rate,

rather than an exponential rate. To account for this, a great deal of papers on long-range dependence (LRD)

have been developed. The study of LRD (also called long memory) has a number of applications, as it can

be reflected by the very large number of articles having LRD or long memory in their titles, in areas such

as climate study, DNA sequencing, econometrics, finance, hydrology, internet modeling, signal and image

processing, physics and even linguistics. Other applications can be found in Beran (1992, 1994), Beran et

al. (2013) and Doukhan et al. (2003).

Although quite a few LRD models have been considered in the regression estimation framework, very little

has been done in the standard deconvolution model. The density deconvolution set up has also witnessed

some shift towards analyzing the problem for dependent processes. The argument behind that was that a

number of statistical models, such as non-linear GARCH and continuous-time stochastic volatility models,

can be looked at as density deconvolution models if we apply a simple logarithmic transformation, and

thus there is need to account for dependence in the data. This started by Van Zanten et al. (2008) who

investigated wavelet based density deconvolution studied by Pensky and Vidakovic (1999) with a relaxation

to weakly dependent processes. Comte et al. (2008) analyzed another adaptive estimator that was proposed

earlier but under the assumption that the sequence is strictly stationary but not necessarily independent.

However, it was Kulik (2008), who considered the density deconvolution for LRD and short-range dependent

(SRD) processes. However, Kulik (2008) did not considered nonlinear wavelet estimators but dealt instead

with linear kernel estimators.

In nonparametric regression estimation, ARIMA-type models for the errors were analyzed in Cheng and

Robinson (1994), with error terms of the form σ(xi, ξi). In Csörgo and Mielniczuk (2000), the error terms

were modeled as infinite order moving averages processes. Mielniczuk and Wu (2004) investigated another

form of LRD, with the assumption that xi and ξi are not necessarily independent for the same i. ARIMA-

type error models were also considered in Kulik and Raimondo (2009). In the standard deconvolution model,
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and using a maxiset approach, Wishart (2012) applied a fractional Brownian motion to model the presence

of LRD, while Wang (2012) used a minimax approach to study the problem of recovering a function f from

a more general noisy linear transformation where the noise is also a fractional Brownian motion.

The objective of the discussion in this chapter is to study the multichannel deconvolution model from a

minimax point of view, with the relaxation that errors exhibit LRD. We do not limit our consideration to a

specific type of LRD: the only restriction is that the errors should satisfy Assumption A1. In particular, we

derive minimax lower bounds for the L2-risk in model (5.1.1) under Assumption A1 when f(·) is assumed to

belong to a Besov ball and g(·, ·) has smoothness properties similar to those in Pensky and Sapatinas (2009,

2010), including both regular-smooth and super-smooth convolutions. In addition, we propose an adaptive

wavelet estimator for f(·) and show that such estimator is asymptotically optimal (or near-optimal within

a logarithmic factor) in the minimax sense, in a wide range of Besov balls. We prove that the convergence

rates of the resulting estimators depend on the balance between the smoothness parameter (of the response

function f(·)), the kernel parameters (of the blurring function g(·, ·)), and the long memory parameters dl,

l = 1, 2 . . . ,M (of the error sequence ξ(l)). Since the parameters dl depend on the values of l, the convergence

rates have more complex expressions than the ones obtained in Kulik and Raimondo (2009) when studying

nonparametric regression estimation with ARIMA-type error models. The convergence rates we derive are

more similar in nature to those in Pensky and Sapatinas (2009, 2010). In particular, the convergence rates

depend on how the total number n = NM of observations is distributed among the total number M of

channels. As we illustrate in two examples, convergence rates are not affected by long range dependence in

case of super-smooth convolutions, however, the situation changes in regular cases.

5.2 Stationary Sequences with Long-Range Dependence

In this section, for simplicity of exposition, we consider one sequence of errors {ξj : j = 1, 2, . . .}. Assume

that {ξj : j = 1, 2, . . .} is a second-order stationary sequence with covariance function γξ(k) := γ(k),

k = 0,±1,±2, . . . . The spectral density is defined as

aξ(λ) := a(λ) :=
1

2π

∞∑
k=−∞

γ(k) exp(−ikλ), λ ∈ [−π, π]. (5.2.1)
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On the other hand, the inverse transform which recovers γ(k), k = 0,±1,±2, . . ., from a(λ), λ ∈ [−π, π], is

given by

γ(k) =

∫ π

−π
eikλa(λ)dλ, k = 0,±1,±2, . . . , (5.2.2)

under the assumption that the spectral density a(λ), λ ∈ [−π, π], is squared-integrable.

Let Σ = [γ(j − k)]Nj,k=1 be the covariance matrix of (ξ1, . . . , ξN ). Define X = {x ∈ CN : x∗x = 1}, where

x∗ is the complex-conjugate of x. Since Σ is Hermitian, one has

λmin(Σ) = inf
x∈X

(x∗Σx) and λmax(Σ) = sup
x∈X

(x∗Σx) . (5.2.3)

With the definitions introduced above,

x∗Σx =

N∑
j,k=1

x∗γ(j − k)x =

∫ π

−π

∣∣∣∣∣∣
N∑
j=1

xje
−ijλ

∣∣∣∣∣∣
2

a(λ)dλ. (5.2.4)

Note that, by the Parseval identity, the function h(λ) =
∣∣∣∑N

j=1 xje
−ijλ

∣∣∣2, λ ∈ [−π, π], belongs to the set

HN =

{
h : h symmetric, |h|∞ ≤ N,

∫ π

−π
h(λ)dλ = 2π

}
. (5.2.5)

Let d ∈ [0, 1/2). Consider the following class of spectral densities

Fd =
{
a : a(λ) = |λ|−2da∗(λ), 0 < Cmin ≤ |a∗(λ)| ≤ Cmax <∞, λ ∈ [−π, π]

}
. (5.2.6)

Below we provide two examples of second-order stationary sequences such that their spectral densities

a(λ), λ ∈ [−π, π], belong to the class Fd described in (5.2.6).

Fractional ARIMA(0, d, 0). Let {ξj : j = 1, 2, . . .} be the second-order stationary sequence

ξj =

∞∑
m=0

amηj−m, (5.2.7)
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where ηj are uncorrelated, zero-mean, random variables, σ2
η := Var(ηj) <∞, and

am = (−1)m
(
−d
m

)
= (−1)m

Γ(1− d)

Γ(m+ 1)Γ(1− d−m)
(5.2.8)

with d ∈ [0, 1/2). Then, am, m = 0, 1, . . ., are the coefficients in the power-series representation

A(z) := (1− z)−d :=

∞∑
m=0

amz
m. (5.2.9)

Therefore, the spectral density a(λ), λ ∈ [−π, π], of {ξj : j = 1, 2, . . .}, is given by

a(λ) =
σ2
η

2π

∣∣A(e−iλ)
∣∣2 =

σ2
η

2π

∣∣1− e−iλ∣∣−2d
=
σ2
η

2π
|2(1− cosλ)|−d ∼

σ2
η

2π
|λ|−2d

(λ→ 0). (5.2.10)

Hence, the sequence {ξj : j = 1, 2, . . .} has spectral density a(λ), λ ∈ [−π, π], that belongs to the class Fd

described in (5.2.6). (The sequence {ξj : j = 1, 2, . . .} is called the fractional ARIMA(0,d,0) time series.)

Fractional Gaussian Noise. Assume that BH(u), u ∈ [0,∞], is a fractional Brownian motion with

the Hurst parameter H ∈ [1/2, 1). Define the second-order stationary sequence ξj = BH(j) − BH(j − 1),

j = 1, 2, . . . . Its spectral density a(λ), λ ∈ [−π, π], is given by (see, e.g., [26], p. 222)

a(λ) = σ2(2π)−2H−2Γ(2H + 1) sin(πH)4 sin2(λ/2)×
∞∑

k=−∞

|k + (λ/2π)|−2H−1, (5.2.11)

and, hence,

a(λ) =
2σ2

π
Γ(2H + 1) sin(πH)λ1−2H (λ→ 0). (5.2.12)

Hence, the sequence {ξj : j = 1, 2, . . .} has spectral density a(λ), λ ∈ [−π, π], that belongs to class Fd with

d = H − 1/2. (The sequence {ξj : j = 1, 2, . . .} is called the fractional Gaussian noise.)

It follows from (5.2.6) that, for a ∈ Fd, one has a(λ) ∼ |λ|−2d (λ → 0). It also turns out that the

condition a ∈ Fd, d ∈ [0, 1/2), implies that all eigenvalues of the covariance matrix Σ are of asymptotic

order N2d (N →∞). In particular, the following lemma is true.

Lemma 20. Assume that {ξj : j = 1, 2, . . .} is a second-order stationary sequence with spectral density

a ∈ Fd, d ∈ [0, 1/2). Then, for some constants K1d and K2d (0 < K1d ≤ K2d <∞), that depend on d only,

K1dN
2d ≤ λmin(Σ) ≤ λmax(Σ) ≤ K2dN

2d. (5.2.13)
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Proof of Lemma 20. We prove the upper bound only since the proof of the lower bound is similar.

By (5.2.3)-(5.2.4), and the definitions of HN and Fd,

λmax(Σ) ≤ Cmax sup
h∈HN

∫ π

−π
h(λ)|λ|−2ddλ = 2Cmax sup

h∈HN

∫ π

0

h(λ)|λ|−2ddλ. (5.2.14)

Now, we split
∫ π

0
=
∫ π/N

0
+
∫ π
π/N

. Since d < 1/2, for the first integral, we have

∫ π/N

0

h(λ)|λ|−2ddλ ≤ N
∫ π/N

0

λ−2ddλ = N
1

1− 2d

( π
N

)−2d+1

=
1

1− 2d
N2d. (5.2.15)

For the second integral, since d ≥ 0, we have

∫ π

π/N

h(λ)|λ|−2ddλ ≤
( π
N

)−2d
∫ π

π/N

h(λ)dλ ≤
( π
N

)−2d
∫ π

0

h(λ)dλ ≤ π(2π)−2dN2d. (5.2.16)

This completes the proof of the lemma. �

Remark 6. If d = 0, then Fd is the class of spectral densities a(λ) that are bounded away from 0 and ∞

for all λ ∈ [−π, π]. In particular, the corresponding second-order stationary sequences {ξj : j = 1, 2, . . .}

are weakly dependent. Then, the statement of Lemma 20 reduces to a result in Grenander and Szegö [32],

Section 5.2.

It follows immediately from Lemma 20 that if, for each l = 1, 2, . . . ,M , ξ(l) is a second-order stationary

Gaussian sequence with spectral density al ∈ Fdl , dl ∈ [0, 1/2), that ξ(l) are independent for different l’s,

and that dl’s are uniformly bounded, then Assumption A1 holds.

Corollary 3. For each l = 1, 2, . . . ,M , let ξ(l) be a second-order stationary Gaussian sequence with spectral

density al ∈ Fdl , dl ∈ [0, 1/2). We assume that ξ(l) are independent for different l’s. Let dl, l = 1, 2, . . . ,M ,

be uniformly bounded, i.e., there exists d∗ (0 ≤ d∗ < 1/2) such that, for each l = 1, 2, . . . ,M ,

0 ≤ dl ≤ d∗ < 1/2. (5.2.17)

Then, Assumption A1 holds.
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5.3 The Estimation Algorithm

In what follows, 〈·, ·〉 denotes the inner product in RN . We also denote the complex-conjugate of

a ∈ C by ā, the discrete Fourier basis on the interval T by em(ti) = e−i2πmti , ti = i/N , i = 1, 2, . . . , N ,

m = 0,±1,±2, . . ., and the complex-conjugate of the matrix A by A∗.

Recall the multichannel deconvolution model (5.1.1). Denote

h(ul, ti) =

∫
T

g(ul, ti − x)f(x)dx, l = 1, 2, . . . ,M, i = 1, 2, . . . , N. (5.3.1)

Then, equation (5.1.1) can be rewritten as

y(ul, ti) = h(ul, ti) + ξli, l = 1, 2, . . . ,M, i = 1, 2, . . . , N. (5.3.2)

For each l = 1, 2, . . . ,M , let hm(ul) = 〈em, h(ul, ·)〉, ym(ul) = 〈em, y(ul, ·)〉, zlm = 〈em, ξ(l)〉, gm(ul) =

〈em, g(ul, ·)〉 and fm = 〈em, f〉 be the discrete Fourier coefficients of the RN vectors h(ul, ti), y(ul, ti), ξli,

g(ul, ti) and f(ti), i = 1, 2, . . . , N , respectively. Then, applying the discrete Fourier transform to (5.3.2), one

obtains, for any ul ∈ U , l = 1, 2, . . . ,M ,

ym(ul) = gm(ul)fm +N−1/2zlm (5.3.3)

and

hm(ul) = gm(ul)fm. (5.3.4)

Multiplying both sides of (5.3.3) by N−2dlgm(ul), and adding them together, we obtain the following

estimator of fm

f̂m =

(
M∑
l=1

N−2dl gm(ul)ym(ul)

)
/

(
M∑
l=1

N−2dl |gm(ul)|2
)
. (5.3.5)

Let ϕ∗(·) and ψ∗(·) be the Meyer scaling and mother wavelet functions, respectively, defined on the real

line (see, e.g., Meyer (1992)), and obtain a periodized version of Meyer wavelet basis as in Johnstone et al.

(2004), i.e., for j ≥ 0 and k = 0, 1, . . . , 2j − 1,

ϕjk(x) =
∑
i∈Z

2j/2ϕ∗(2j(x+ i)− k), ψjk(x) =
∑
i∈Z

2j/2ψ∗(2j(x+ i)− k), x ∈ T.
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Following Pensky and Sapatinas (2009, 2010), using the periodized Meyer wavelet basis described above, for

some j0 ≥ 0, expand f(·) ∈ L2(T ) as

f(t) =

2j0−1∑
k=0

aj0kϕj0k(t) +

∞∑
j=j0

2j−1∑
k=0

bjkψjk(t), t ∈ T. (5.3.6)

Furthermore, by Plancherel’s formula, the scaling coefficients, aj0k = 〈f, ϕj0k〉, and the wavelet coefficients,

bjk = 〈f, ψjk〉, of f(·) can be represented as

aj0k =
∑

m∈Cj0

fmϕmj0k, bjk =
∑
m∈Cj

fmψmjk, (5.3.7)

where Cj0 = {m : ϕmj0k 6= 0} and, for any j ≥ j0,

Cj = {m : ψmjk 6= 0} ⊆ 2π/3[−2j+2,−2j ] ∪ [2j , 2j+2]. (5.3.8)

(Note that the cardinality |Cj | of the set Cj is |Cj | = 4π2j , see, e.g., Johnstone et al. (2004).) Estimates of

aj0k and bjk are readily obtained by substituting fm in (5.3.7) with (5.3.5), i.e.,

âj0k =
∑

m∈Cj0

f̂mϕmj0k, b̂jk =
∑
m∈Cj

f̂mψmjk. (5.3.9)

We now construct a (block thresholding) wavelet estimator of f(·), suggested by Pensky & Sapatinas

(2009, 2010). For this purpose, we divide the wavelet coefficients at each resolution level into blocks of

length lnn. Let Aj and Ujr be the following sets of indices

Aj =
{
r | r = 1, 2, . . . , 2j/ lnn

}
, (5.3.10)

Ujr =
{
k | k = 0, 1, . . . , 2j − 1; (r − 1) lnn ≤ k ≤ r lnn− 1

}
. (5.3.11)

Denote

Bjr =
∑
k∈Ujr

b2jk, B̂jr =
∑
k∈Ujr

b̂2jk. (5.3.12)
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Finally, for any j0 ≥ 0, the (block thresholding) wavelet estimator f̂n(·) of f(·) is constructed as

f̂n(t) =

2j0−1∑
k=0

âj0kϕj0k(t) +

J−1∑
j=j0

∑
r∈Aj

∑
k∈Ujr

b̂jk1(|B̂jr| ≥ λj)ψjk(t), t ∈ T, (5.3.13)

where 1(A) is the indicator function of the set A, and the resolution levels j0 and J and the thresholds λj

will be defined in Section 5.5.

In what follows, the symbol C is used for a generic positive constant, independent of n, while the symbol

K is used for a generic positive constant, independent of m, n, M and u1, u2, . . . , uM . Either of C or K may

take different values at different places.

5.4 Minimax Lower Bounds for the L2-Risk

Recall that

s∗ = s+ 1/2− 1/p, s′ = s+ 1/2− 1/p′, p′ = min{p, 2}. (5.4.1)

Assume that the unknown response function f(·) belongs to a Besov ball Bsp,q(A) of radius A > 0, so that

the wavelet coefficients aj0k and bjk defined in (5.3.7) satisfy the following relation

Bsp,q(A) =

f ∈ L2(U) :

2j0−1∑
k=0

|aj0k|
p

 1
p

+

 ∞∑
j=j0

2js
∗q

2j−1∑
k=0

|bjk|p


q
p


1/q

≤ A

 . (5.4.2)

Below, we construct minimax lower bounds for the (quadratic) L2-risk. For this purpose, we define the

minimax L2-risk over the set V ⊆ L2(T ) as in (4.3.5).

For M = Mn and N = n/Mn, denote

τκ(m,n) = M−1
M∑
l=1

N−2κdl |gm(ul)|2κ, κ = 1 or 2 or 4, (5.4.3)

and

∆κ(j, n) = |Cj |−1
∑
m∈Cj

τκ(m,n) [τ1(m,n)]−2κ, κ = 1 or 2. (5.4.4)

The expression τ1(m,n) appears in both the lower and the upper bounds for the L2-risk. Hence, we

impose the following assumption:
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Assumption A2: For some constants ν1, ν2, λ1, λ2 ∈ R, α1, α2 ≥ 0 (λ1, λ2 > 0 if α1 = α2 = 0,

ν1 = ν2 = 0) and K3,K4, β > 0, independent of m and n, and for some sequence εn > 0, independent of m,

one has

K3εn |m|−2ν1(ln |m|)−λ1e−α1|m|β ≤ τ1(m,n) ≤ K4εn |m|−2ν2(ln |m|)−λ2e−α2|m|β , (5.4.5)

where either α1α2 6= 0 or α1 = α2 = 0 and ν1 = ν2 = ν > 0. The sequence εn in (5.4.5) is such that

n∗ = nεn →∞ (n→∞). (5.4.6)

In order to construct minimax lower bounds for the L2-risk, we consider two cases: the dense case and

the sparse case, when the hardest functions to estimate are, respectively, uniformly spread over the unit

interval T and are represented by only one term in a wavelet expansion. Here also, we apply Lemma (14).

Under Assumptions A1 and A2, the following statement is true.

The dense case. Let ω be the vector with components ωk = {0, 1}. Denote the set of all possible vec-

tors ω by Ω = {(0, 1)2j}. Note that the vector ω has ℵ = 2j entries and, hence, card(Ω) = 2ℵ. Let

H(ω̃,ω) =
∑2j−1
k=0 1 (ω̃k 6= ωk) be the Hamming distance between the binary sequences ω and ω̃. Then, the

Varshamov-Gilbert Lemma (see, e.g., Tsybakov (2008), p. 104) states that one can choose a subset Ω1 of Ω,

of cardinality at least 2ℵ/8, such that H(ω̃,ω) ≥ ℵ/8 for any ω, ω̃ ∈ Ω1.

Consider two arbitrary sequences ω, ω̃ ∈ Ω1 and the functions fj and f̃j given by

fj(t) = ρj

2j−1∑
k=0

ωkψjk(t) and f̃j(t) = ρj

2j−1∑
k=0

ω̃kψjk(t), t ∈ T. (5.4.7)

Choose ρj = A2−j(s+1/2), so that fj , f̃j ∈ Bsp,q(A). Then, calculating the L2-norm difference of fj and f̃j ,

we obtain

∣∣∣∣∣∣f̃j − fj∣∣∣∣∣∣2 = ρ2
j

∣∣∣∣∣∣
∣∣∣∣∣∣
2j−1∑
k=0

(ω̃k − ωk)ψjk

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= ρ2
jH(ω̃,ω) ≥ 2jρ2

j/8. (5.4.8)

Hence, we get 4δ2 = 2jρ2
j/8 in condition (i) of Lemma 14.

Direct calculations yield that, under Assumptions A1, A2 and (5.4.6), for some constants c3 > 0 and
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c4 > 0, independent of n,

∆1(j, n) ≤


c3 ε

−1
n 22νjjλ2 , if α1 = α2 = 0,

c4 ε
−1
n 22ν1jjλ2 exp

{
α1

(
8π
3

)β
2jβ
}
, if α1α > 0.

(5.4.9)

Apply now Lemma 14 with j such that

2πA2K−1
1 n2−2js ∆1(j, n) ≤ 2j ln 2/16, (5.4.10)

i.e.,

2j �


[
n∗(lnn∗)−λ2

] 1
2s+2ν+1 , if β = 0,

(lnn∗)1/β , if β > 0,
(5.4.11)

to obtain

δ2 =


[
n∗(lnn∗)−λ2

]− 2s
2s+2ν+1 , if β = 0,

(lnn∗)−2s/β , if β > 0.
(5.4.12)

The sparse case. Let the functions fj be of the form fj(t) = ρjψjk(t), t ∈ T , and denote

Ω = {fj(t) = ρjψjk(t) : k = 0, 1, . . . , 2j − 1, f0 = 0}. (5.4.13)

Thus, card(Ω) = 2j . Choose now ρj = A2−js
∗
, so that fj ∈ Bsp,q(A). It is easy to check that, in this case,

one has 4δ2 = ρ2
j in Lemma 14, and that

K(Pω, Pω̃) ≤ 2πA2K−1
1 n2−2js′ ∆1(j, n). (5.4.14)

With

2j �


[
n∗(lnn∗)−λ2−1

] 1
2s′+2ν , if β = 0,

(lnn∗)1/β , if β > 0,
(5.4.15)

we then obtain that K(Pω, Pω̃) ≤ 2πA2K−1
1 n2−2js′ ∆1(j, n) and

δ2 =


[

n∗

(lnn∗)λ2+1

]− 2s′
2s′+2ν

, if β = 0,

(lnn∗)−2s′/β , if β > 0.

(5.4.16)
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Recall that s′ = min{s, s∗}. By noting that

2s/(2s+ 2ν + 1) ≤ 2s′/(2s′ + 2ν), if ν(2− p) ≤ ps′, (5.4.17)

we then choose the highest of the lower bounds in (5.4.12) and (5.4.16). The results can be summarized in

the next theorem. �

Theorem 10. Let Assumptions A1 and A2 hold. Let {φj0,k(·), ψj,k(·)} be the periodic Meyer wavelet basis

discussed in Section 5.3. Let s > max(0, 1/p− 1/2), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and A > 0. Then, as n→∞,

Rn(Bsp,q(A)) ≥


C(n∗)−

2s
2s+2ν+1 (lnn∗)

2sλ2
2s+2ν+1 , if α1 = α2 = 0, ν(2− p) < ps′,

C
(

lnn∗

n∗

) 2s′
2s′+2ν

(lnn∗)
2s′λ2

2s′+2ν , if α1 = α2 = 0, ν(2− p) ≥ ps′,

C(lnn∗)−
2s′
β , if α1α2 6= 0.

(5.4.18)

5.5 Minimax Upper Bounds for the L2-Risk

Let f̂n(·) be the (block thresholding) wavelet estimator defined by (5.3.13). Choose now j0 and J such

that

2j0 = lnn∗, 2J = (n∗)
1

2ν+1 , if α1 = α2 = 0, (5.5.1)

2j0 =
3

8π

(
lnn∗

2α

) 1
β

, 2J = 2j0 , if α1α > 0. (5.5.2)

(Since j0 > J − 1 when α1α > 0, the estimator (5.3.13) only consists of the first (linear) part and, hence, λj

does not need to be selected in this case.) Set, for some constant µ > 0, large enough,

λj = µ2(n∗)−1 ln(n∗) 22νjjλ1 , if α1 = α2 = 0. (5.5.3)

Note that the choices of j0, J and λj are independent of the parameters, s, p, q and A of the Besov ball

Bsp,q(A); hence, the estimator (5.3.13) is adaptive with respect to these parameters.
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Denote (x)+ = max(0, x),

% =


(2ν+1)(2−p)+

p(2s+2ν+1) , if ν(2− p) < ps′,

(q−p)+

q , if ν(2− p) = ps′,

0, if ν(2− p) > ps′.

(5.5.4)

Assume that, in the case of α1 = α2 = 0, the sequence εn is such that

− h1 lnn ≤ ln(εn) ≤ h2 lnn (5.5.5)

for some constants h1, h2 ∈ (0, 1). Observe that condition (5.5.5) implies (5.4.6) and that lnn∗ � lnn (n→

∞). (Here, and in what follows, u(n) � v(n) means that there exist constants C1, C2 (0 < C1 ≤ C2 < ∞),

independent of n, such that 0 < C1v(n) ≤ u(n) ≤ C2v(n) <∞ for n large enough.)

The proof of the minimax upper bounds for the L2-risk is based on the following two lemmas.

Lemma 21. Let Assumptions A1 and A2 hold. Let the estimators âj0k and b̂jk of the scaling and wavelet

coefficients aj0k and bjk, respectively, be given by (5.3.7) with f̂m defined by (5.3.5). Then, for all j ≥ j0,

E|âj0k − aj0k|2 ≤ Cn−1∆1(j0, n) and E|̂bjk − bjk|2 ≤ Cn−1∆1(j, n). (5.5.6)

If α1 = α2 = 0 and (5.5.5) holds, then, for any j ≥ j0,

E|̂bjk − bjk|4 ≤ Cn3 (lnn)3λ1 (n∗)−
3

2ν+1 . (5.5.7)

Proof of Lemma 21. First, consider model (5.1.1). Then, using (5.3.3), (5.3.5), (5.3.7) and (5.3.9),

one has

âj0k − aj0k =
∑

m∈Cj0

(
f̂m − fm

)
ϕmj0k, b̂jk − bjk =

∑
m∈Cj

(
f̂m − fm

)
ψmjk, (5.5.8)

where

f̂m − fm =
1√
N

(
M∑
l=1

N−2dlgm(ul)zlm

)
/

(
M∑
l=1

N−2dl |gm(ul)|2
)
. (5.5.9)
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Consider vector V(l) with components

V (l)
m = N−2dlψmjkgm(ul)

[
M∑
l=1

N−2dl |gm(ul)|2
]−1

. (5.5.10)

It is easy to see that, due to |ψmjk| ≤ 2−j/2 and the definition of Cj ,

∣∣∣∣∣∣V(l)
∣∣∣∣∣∣2 = N−4dl

∑
m∈Cj

|ψmjk|2|gm(ul)|2
[
M∑
l=1

N−2dl |gm(ul)|2
]−2

≤ 4π|Cj |−1 N−4dl
∑
m∈Cj

|gm(ul)|2
[
M∑
l=1

N−2dl |gm(ul)|2
]−2

. (5.5.11)

Define

vm =

M∑
l=1

N−2dl |gm(ul)|2 = Mτ1(m,n). (5.5.12)

Hence, ∣∣∣∣∣∣V(l)
∣∣∣∣∣∣2 ≤ 4π|Cj |−1 N−2dlN−2dl

∑
m∈Cj

|gm(ul)|2v−2
m . (5.5.13)

Using Assumption A1, since zlm are independent for different l′s, we obtain

E|̂bjk − bjk|2 =
1

N

∑
m1,m2∈Cj

ψm1jkψm2jk

M∑
l=1

N−4dlv−1
m1
v−1
m2
gm1

(ul)gm2
(ul)Cov (zlm1

, zlm2
)

=
1

N

M∑
l=1

V(l)
T
Σ(l)V(l)

≤ 1

N

M∑
l=1

λmax(Σ(l))
∣∣∣∣∣∣V(l)

∣∣∣∣∣∣2
≤ 4πK2 |Cj |−1N−1

M∑
l=1

N−2dl
∑
m∈Cj

|gm(ul)|2v−2
m

= 4πK2 |Cj |−1N−1
∑
m∈Cj

v−2
m

M∑
l=1

N−2dl |gm(ul)|2 = 4πK2 |Cj |−1N−1
∑
m∈Cj

v−1
m ,

(5.5.14)

so that

E|̂bjk − bjk|2 ≤ Cn−1|Cj |−1
∑
m∈Cj

[τ1(m,n)]
−1
. (5.5.15)
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(One can obtain an upper bound for E|âj0k − aj0k|2 by following similar arguments.)

In order to prove (5.5.7), define

Bl = N−2dl

[
M∑
l=1

N−2dl |gm(ul)|2
]−1

. (5.5.16)

Note that

E (zlm1
zlm2

zlm3
zlm4

) ≤
[
Π4
i=1E|zmil|4

]1/4
. (5.5.17)

Consequently, using Assumption A1, the fact that zlm are independent for different l′s, and that E|zml|4 =

3
[
E|zml|2

]2
for standard (complex-valued) Gaussian random variables zml, one obtains

E|̂bjk − bjk|4 = O

N−2
M∑
l=1

B4
l

 ∑
m∈Cj

|ψmjk||gm2
(ul)|

(
E|zml|4

)1/44


+ O


N−1

M∑
l=1

B2
l

∑
m1,m2∈Cj

ψm1jkψm2jkgm1
(ul)gm(ul)Cov (zlm1

, zlm2
)

2


= O

N−2
M∑
l=1

B4
l

 ∑
m∈Cj

|ψmjk|2|gm(ul)|2
∑
m∈Cj

E|zml|2
2


+ O


n−1|Cj |−1

∑
m∈Cj

[τ1(m,n)]
−1

2
 (5.5.18)

Since
∑
m∈Cj E|zml|2 = O(|Cj |), one derives

E|̂bjk − bjk|4 = O

|Cj |−1
∑
m∈Cj

[
1

M3

τ2(m,n)

[τ1(m,n)]4

]
+

∆2
1(j, n)

n2


= O

(
M−3∆2(j, n) + n−2∆2

1(j, n)
)
. (5.5.19)

To calculate the asymptotic order of ∆2(j, n) when α1 = α2 = 0, recall that |gm(ul)|2 ≤ ||g||∞. Then,

∆2(j, n) = O
(
26jνj3λ1ε−3

n

)
. (5.5.20)
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∆2(j, n) = O

|Cj |−1
∑
m∈Cj

τ2(m,n) [τ1(m,n)]−4


= O

|Cj |−1
∑
m∈Cj

M−1
∑M
l=1N

−4dl |gm(ul)|4[
M−1

∑M
l=1N

−2dl |gm(ul)|2
]4


= O

|Cj |−1
∑
m∈Cj

M−1
∑M
l=1N

−2dl |gm(ul)|2[
M−1

∑M
l=1N

−2dl |gm(ul)|2
]4


= O

|Cj |−1
∑
m∈Cj

[τ1(m,n)]
−3


= O

(
26jνj3λ1ε−3

n

)
(5.5.21)

Thus, using (5.4.9) and the fact that 2j ≤ 2J−1 < (n∗)1/(2ν+1), (5.5.19) can be rewritten as

E|̂bjk − bjk|4 = O
(
26νjj3λ1ε−3

n M−3 + 24jνj2λ1ε−2
n n−2

)
= O

(
n3 (lnn)

3λ1 (n∗)
−3/(2ν+1)

)
. (5.5.22)

Hence, (5.5.7) follows. This completes the proof of the lemma. �

Lemma 22. Let Assumptions A1, A2 and (5.5.5) hold. Let the estimators b̂jk of the wavelet coefficients

bjk be given by (5.3.7) with f̂m defined by (5.3.5). Let

µ ≥
√

2

1− h1

[
√
c1 +

√
8πκ√
K3

(ln 2)λ1/2

(
2π

3

)ν]
, (5.5.23)

where c1, K3 and h1 are defined in (5.5.36), (5.4.5) and (5.5.5), respectively. Then, for all j ≥ j0 and any

κ > 0,

P

 ∑
k∈Ujr

|̂bjk − bjk|2 ≥ (4n∗)−1 µ2 22νj jλ lnn∗

 ≤ n−κ. (5.5.24)

Proof of Lemma 22. Consider a set of vectors

Ωjr =

vk, k ∈ Ujr :
∑
k∈Ujr

|vk|2 ≤ 1

 (5.5.25)
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and a centered Gaussian process

Zjr =
∑
k∈Ujr

vk (̂bjk − bjk). (5.5.26)

Note that

sup
v
Zjr(v) =

√ ∑
k∈Ujr

|̂bjk − bjk|2. (5.5.27)

We shall apply below a lemma of Cirelson, Ibragimov and Sudakov (1976) which states that, for any x > 0,

Pr

 ∑
k∈Ujr

|̂bjk − bjk|2 ≥ (x+B1)

 ≤ exp

(
− x2

2B2

)
, (5.5.28)

where,

B1 = E

√ ∑
k∈Ujr

|̂bjk − bjk|2

 ≤ √c12jνjλ1/2
√

lnn√
n∗

(5.5.29)

with c1 defined in (5.4.9), and

B2 = sup
v∈Ωjr

Var(Zjr(v)) = sup
v∈Ωjr

E|
∑
k∈Ujr

vk (̂bjk − bjk)|2. (5.5.30)

Denote

wjm =
∑
k∈Ujr

vkψmjk

[
M∑
l=1

N−2dl |gm(ul)|2
]−1

, m ∈ Cj . (5.5.31)

Then, under Assumption A2 with α1 = α2 = 0, using argument similar to the proof of (5.5.6), one obtains

B2 = sup
v∈Ωjr

N−1
∑

m1,m2∈Cj

wjm1wjm2 E

[
M∑
l=1

N−4dlgm1(ul)gm2(ul)zlm1zlm2

]
≤ sup

v∈Ωjr

N−1
M∑
l=1

N−4dlλmax(Σ(l))
∑
m∈Cj

|wjmgm(ul)|2

≤ K3n
−1 sup

v∈Ωjr

 ∑
m∈Cj

|wjm|2 [τ1(m,n)]
−1

 ≤ 4πC∗3 22jνjλ1 (n∗)−1, (5.5.32)

where C∗3 = (K3)−1(ln 2)λ1(2π/3)2ν .
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Apply now inequality (5.5.28) with x such that x2 = 2B2κ lnn, and note that

(x+B1)2 = (n∗)−122jνjλ1 lnn

(
√
c1 +

√
8πκK−1

3 (ln 2)λ1(2π/3)2ν

)2

(5.5.33)

and

µ2 ≥ 4(1− h1)−1

(
√
c1 +

√
8πκK−1

3 (ln 2)λ1(2π/3)2ν

)2

, (5.5.34)

which guarantees (5.5.28). This completes the proof of the lemma. �

Under Assumptions A1 and A2, and using Lemmas 21 and 22, the following statement is true.

Theorem 11. Let Assumptions A1 and A2 hold. Let f̂n(·) be the wavelet estimator defined by (5.3.13),

with j0 and J given by (5.5.1) (if α1 = α2 = 0) or (5.5.2) (if α1α2 > 0) and µ satisfying (5.5.23) with κ = 5.

Let s > 1/p′, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and A > 0. Then, under (5.4.6) if α1α2 > 0 or (5.5.5) if α1 = α2 = 0,

as n→∞,

sup
f∈Bsp,q(A)

E
∣∣∣∣∣∣f̂n − f ∣∣∣∣∣∣2 ≤


C(n∗)−

2s
2s+2ν+1 (lnn)%+

2sλ1
2s+2ν+1 , if α1 = α2 = 0, ν(2− p) < ps′,

C
(

lnn
n∗

) 2s′
2s′+2ν

(lnn)
%+

2s′λ1
2s′+2ν , if α1 = α2 = 0, ν(2− p) ≥ ps′,

C(lnn∗)−
2s′
β , if α1α2 > 0.

(5.5.35)

Proof of Theorem 11. Direct calculations yield that under Assumptions A1, A2 and (5.5.5), for some

constants c1 > 0 and c2 > 0, independent of n, one has

∆1(j, n) ≤


c1 ε

−1
n 22νjjλ1 , if α1 = α2 = 0,

c2 ε
−1
n 22ν1jjλ1 exp

{
α1

(
8π
3

)β
2jβ
}
, if α1α > 0.

(5.5.36)

Using 5.5.36, the proof of this theorem is now almost identical to the proof of Theorem 9 of Section 4.6,

when r = 1. �

Remark 7. Theorems 10 and 11 imply that, for the L2-risk, the wavelet estimator f̂n(·) defined by (5.3.13)

is asymptotical optimal (in the minimax sense), or near optimal within a logarithmic factor, over a wide

range of Besov balls Bsp,q(A) of radius A > 0 with s > max(1/p, 1/2), 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. The

convergence rates depend on the balance between the smoothness parameter s (of the response function
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f(·)), the kernel parameters ν, β, λ1 and λ2 (of the blurring function g(·, ·)), the long memory parameters dl,

l = 1, 2 . . . ,M (of the error sequence ξ(l)), and how the total number of observations n is distributed among

the total number of channels M . In particular, M and dl, l = 1, 2, . . . ,M , jointly determine the value of εn

which, in turn, defines the “essential” convergence rate n∗ = nεn which may differ considerably from n. For

example, if M = Mn = nθ, 0 ≤ θ < 1 and |gm(ul)|2 � |m|−2ν for every l = 1, 2 . . . ,M , then

εn = M−1
M∑
l=1

N−2dl , (5.5.37)

and, therefore, n1−2d∗(1−θ) ≤ n∗ ≤ n, where d∗ = max1≤l≤M dl, so that, n∗ can take any value between

n1−2d∗(1−θ) and n. This is further illustrated in Section 5.6 below.

5.6 Illustrative Examples

In this section, we consider some illustrative examples of application of the theory developed in the pre-

vious sections. They are particular examples of inverse problems in mathematical physics where one needs

to recover initial or boundary conditions on the basis of observations from a noisy solution of a partial

differential equation.

We assume that condition (5.2.17) holds true and that there exist θ1 and θ2, such that M = Mn satisfies

nθ1 ≤M ≤ nθ2 , 0 ≤ θ1 ≤ θ2 < 1. (5.6.1)

(Note that, under (5.6.1), n1−θ2 ≤ N ≤ n1−θ1 .)

Example 14. Consider the case when gm(·), m = 0,±1,±2, . . ., is of the form

gm(u) = Cg exp
(
−K|m|βq(u)

)
, u ∈ U, (5.6.2)

where q(·) in (5.6.2) is such that, for some q1 and q2,

0 < q1 ≤ q(u) ≤ q2 <∞, u ∈ U. (5.6.3)

This set up takes place in the estimation of the initial condition in the heat conductivity equation or the

estimation of the boundary condition for the Dirichlet problem of the Laplacian on the unit circle (see Exam-
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ples 1 and 2 of Pensky and Sapatinas (2009, 2010)). In the former case, gm(u) = exp(−4π2m2u), u ∈ U , so

that K = 4π2, β = 2, q(u) = u, q1 = a and q2 = b. In the latter case, gm(u) = Cu|m| = C exp(−|m| ln(1/u)),

0 < r1 ≤ u ≤ r2 < 1, so that K = 1, β = 1, q(u) = ln(1/u), q1 = ln(1/r2) and q2 = ln(1/r1).

It is easy to see that, under conditions (5.6.2) and (5.6.3), for τ1(m,n) given in (5.4.3),

τ1(m,n) ≤ Cg εn exp
(
−2Kq1|m|β

)
and τ1(m,n) ≥ Cg εn exp

(
−2Kq2|m|β

)
, (5.6.4)

where εn is of the form (5.5.37). Assumptions (5.2.17) and (5.6.1) lead to the following bounds for n∗:

n1−2d∗(1−θ1) ≤ n∗ ≤ n, (5.6.5)

so that lnn � lnn∗. Therefore, according to Theorems 10 and 11,

Rn(Bsp,q(A)) � (lnn)−
2s∗
β . (5.6.6)

Note that, in this case, the value of d∗ has absolutely no bearing on the convergence rates of the linear

wavelet estimators: the convergence rates are determined entirely by the properties of the smoothness pa-

rameter s∗ (of the response function f(·)) and the kernel parameter β (of the blurring function g(·, ·)).

In other words, in case of super-smooth convolutions, LRD does not influence the convergence rates of

the suugested wavelet estimator. A similar effect is observed in the case of kernel smoothing, see Section 2.2

in Kulik (2008).

Example 15. Suppose that the blurring function g(·, ·) is of a box-car like kernel, i.e.,

g(u, t) = 0.5 q(u) 1(|t| < u), u ∈ U, t ∈ T, (5.6.7)

where q(·) is some positive function which satisfies conditions (5.6.3). In this case, the functional Fourier

coefficients gm(·) are of the form

g0(u) = 1 and gm(u) = (2πm)−1 γ(u) sin(2πmu), m ∈ Z \ {0}, u ∈ U. (5.6.8)
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It is easy to see that estimation of the initial speed of a wave on a finite interval (see Example 4 of Pensky

and Sapatinas (2009) or Example 3 of Pensky and Sapatinas (2010)) leads to gm(·) of the form (5.6.8) with

q(u) = 1. Assume, without loss of generality, that u ∈ [0, 1], so that a = 0, b = 1, and consider (equispaced

channels) ul = l/M , l = 1, 2, . . . ,M , such that

dl = a1ul + a2, 0 ≤ a2 ≤ d∗ < 1/2, 0 ≤ a1 + a2 ≤ d∗ < 1/2, (5.6.9)

i.e., condition (5.2.17) holds. Note that if a1 = 0, then

τ1(m,n) �M−1N−2a2(4π2m2)−1
M∑
l=1

sin2(2πml/M), (5.6.10)

which is similar to the expression for τ1(m,n) studied in Section 6 of Pensky and Sapatinas (2010). Following

their calculations, one obtains that, if j0 in (5.3.13) is such that 2j0 > (lnn)δ for some δ > 0 and M ≥

(32π/3)n1/3, then, for n and |m| large enough,

τ1(m,n) � N−2a2m−2. (5.6.11)

Assume now, without loss of generality, that a1 ≥ 0. (Note that the case of a1 ≤ 0 can be handled

similarly by changing u to 1 − u.) Below, we shall show that, in this case, a similar result can be obtained

under less stringent conditions on M = Mn. Indeed, the following statement is true.

Lemma 23. Let g(·, ·) be of the form (5.6.7), where q(·) is some positive function which satisfies (5.6.3),

and let dl, l = 1, 2, . . . ,M , be given by (5.6.9) with a1 ≥ 0. Assume (without loss of generality) that

U = [0, 1], and consider ul = l/M , l = 1, 2, . . . ,M . Let M = Mn satisfy (5.6.1) with θ1 > 0 if a1 > 0 and

M ≥ (32π/3)n1/3 if a1 = 0. If m ∈ Aj , where |Aj | = Cm2j , for some absolute constant Cm > 0, with

j ≥ j0 > 0, where j0 is such that 2j0 ≥ C0 lnn for some C0 > 0, then, for n and |m| large enough,

τ1(m,n) � N−2a2m−2(log n)−1. (5.6.12)

Proof of Lemma 23. Below we consider only the case of a1 > 0. Validity of the satement for a1 = 0

follows from Pensky and Sapatinas (2010).
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By direct calculations, one obtains that

τ1(m,n) = M−1(4π2m2)−1N−2a2

M∑
l=1

q2(l/M) sin2(2πmlM−1)N−2a1l/M . (5.6.13)

Therefore,

(4π2m2)−1q2
1 N

−2a2S(m,n) ≤ τ1(m,n) ≤ (4π2m2)−1q2
2 N

−2a2S(m,n), (5.6.14)

where

S(m,n) = M−1
M∑
l=1

sin2(2πmlM−1)N−2a1l/M . (5.6.15)

Denote p = N−2a1/M , x = 4πmM−1 and note that, as n→∞,

pM = N−2a1 → 0 (5.6.16)

and

p = exp
(
−2a1M

−1 lnN
)

= 1− 2a1M
−1 lnN + 2a2

1M
−2 ln2N + o(M−2 ln2N), (5.6.17)

since M−1 lnN → 0 as n→∞.

Using the fact that sin2(x/2) = (1 − cosx)/2 and formula 1.353.3 of Gradshtein & Ryzhik (1980), we

obtain

S(m,n) =
1

M

[
1− pM

1− p
− 1− p cosx− pM cos(Mx) + pM+1 cos((M − 1)x)

1− 2p cosx+ p2

]
. (5.6.18)

Since m is an integer and x = 4πmM−1,

cos(Mx) = 1, sin(Mx) = 0, cos((M − 1)x) = cosx. (5.6.19)

Therefore, simple algebraic transformations yield

S(m,n) =
p(p+ 1)(1− pM )(1− cosx)

M(1− p)[(1− p)2 + 2p(1− cosx)]
(5.6.20)
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The asymptotic expansion (5.6.17) for p as n→∞, leads to

(1− pM )

M(1− p)
≈ 1−N−2a1

4a1 lnN(1− a1M−1 lnN)
, (5.6.21)

so that, if N is large enough, due to p < 1, one obtains an upper bound for S(m,n):

S(m,n) =
(1− pM )

M(1− p)

[
(1− p)2

p(p+ 1)(1− cosx)
+

2

p+ 1

]−1

≤ 1

2a1 lnN
. (5.6.22)

In order to obtain a lower bound for S(m,n), we note that for N large enough, one has 1/2 < p < 1.

Consider the following two cases: x ≥ π/3 and x < π/3. If x ≥ π/3, then cosx ≤ 1/2 and

F (p, x) =
(1− p)2

p(p+ 1)(1− cosx)
+

2

p+ 1
≤ 2, (5.6.23)

If x < π/3, we can use the fact that 1− cosx = 2 sin2(x/2) ≥ 3x2/8, so that

F (p, x) ≤ 4

3

[
1 +

8(1− p)2

3x2

]
≤ 4

3

[
1 +

2a2
1 ln2N

3π2m2

]
(5.6.24)

for N large enough.

Since |m| = Cm2j > CmC0 lnn for some δ > 0 and lnn ≥ (1− θ1)−1 lnN due to assumption (5.6.1), one

has m2 ≥ CmC0(1− θ1)−1 ln2N and

S(m,n) ≥ C(lnN)−1. (5.6.25)

Observe now that lnN � lnn. This completes the proof of the theorem. �

It follows immediately from Lemma 23 that, if

M = Mn = nθ, 0 < θ < 1, (5.6.26)

then Assumption A2 holds with α1 = α2 = 0, ν1 = ν2 = ν = 2, εn = n−2a2(1−θ) (lnn)−1 and λ1 = λ2 = 0.

Note that εn satisfies conditions (5.4.6) and (5.5.5), so that lnn � lnn∗. Therefore, according to Theorems

10 and 11,

Rn(Bsp,q(A)) ≥


C(n∗)−

2s
2s+5 , if 4− 2p < ps∗,

C
(

lnn∗

n∗

) s∗
s∗+2

, if 4− 2p ≥ ps∗,
(5.6.27)
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and

sup
f∈Bsp,q(A)

E
∣∣∣∣∣∣f̂n − f ∣∣∣∣∣∣2 ≤


C(n∗)−

2s
2s+5 (lnn)

%
, if 4− 2p < ps∗,

C
(

lnn
n∗

) s∗
s∗+2

(lnn)
%
, if 4− 2p ≥ ps∗,

(5.6.28)

where

n∗ = n1−2a2(1−θ) (lnn)−1 (5.6.29)

and

% =


(5(2−p)+

p(2s+5) , if 4− 2p < ps∗,

(q−p)+

q , if 4− 2p = ps∗,

0, if 4− 2p > ps∗.

(5.6.30)

Note that LRD affects the convergence rates in this case via the parameter a2 that appears in the

definition (5.6.9).
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CHAPTER 6: DISCUSSION

In this dissertation, we have discussed two different nonparametric models using the minimax approach;

empirical Bayes model and functional deconvolution model.

In the case of the nonparametric empirical Bayes estimation, we derived lower bounds for the risk of

the nonparametric empirical Bayes estimators. In order to attain this convergence rate, we suggested an

adaptive wavelet-based method of EB estimation. The method is based on approximating Bayes estimator

t(y) corresponding to observation y as a whole using finitely supported wavelet family. The wavelet estimator

is used in a rather non-ortodox way: t(y) is estimated locally using only a linear scaling part of the expansion

at the resolution level m where coefficients are recovered by solving a system of linear equations.

The advantage of the method lies in its flexibility. The technique works for a variery of families of

conditional distributions. Computationally, it leads to solution of a finite system of linear equations which,

due to decorrelation property of wavelets, is sparse and well conditioned. The size of the system depends on

the size and regularity of the wavelet which is used for representation of the EB estimator t(y).

A non-adaptive version of the method was introduced in Pensky and Alotaibi (2005). However, since

no mechanism for choosing the resolution level m of the expansion was suggested, the Pensky and Alotaibi

(2005) paper remained of a theoretical interest only. In this dissertation, we use Lepski method for choosing

an optimal resolution level m and show that the resulting EB estimator remains nearly asymptotically

optimal (within a logarithmic factor of the number of observations n).

Finally, we should comment that, although the choice of a wavelet basis for representation of t(y) is

convenient, it is not unique. Indeed, one can use a local polynomial or a kernel estimator for represen-

tation of t(y). In this case, the challenge of finding support of the estimator for the local polynomials or

bandwidth for a kernel estimator can be addressed by Lepski method in a similar manner. However, the dis-

advantage of abandoning wavelets will be that the system of equations will cease to be sparse and well-posed.

Another model investigated in the paper is the functional deconvolution model introduced by Pensky
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and Sapatinas (2009, 2010, 2011). Our study of this model expanded results of Pensky and Sapatinas (2009,

2010, 2011) to the case of estimating an (r + 1)-dimensional function or the situation of dependent errors.

In both cases, we derived minimax lower bounds for the integrated square risk over a wide range of Besov

balls and constructed adaptive wavelet estimators that attain those optimal convergence rates.

In particular, in the case of estimating a periodic (r+ 1)-dimensional function, we constructed functional

deconvolution estimators based on the hyperbolic wavelet thresholding procedure. We derived the lower

and the upper bounds for the minimax convergence rates which confirm that estimators derived in here are

adaptive and asymptotically near-optimal, within a logarithmic factor, in a wide range of Besov balls of

mixed regularity.

Although results of Kerkyacharian, Lepski and Picard (2001, 2008) have been obtained in a slightly

different framework (no convolution), they can nevertheless be compared with the results obtained in the

present dissertation. Set ν = 0 to account for the absence of convolution, pi = p and d = r + 1. Then,

convergence rates in the latter can be identified as rates of a one-dimensional setting with a regularity

parameter which is equal to the harmonic mean

s̄ =

(
1

s1
+ · · ·+ 1

sd

)−1

< min
i=1,··· ,d

si. (6.0.1)

In our case, the rates can also be identified as the rates in the one-dimensional setting with a regularity

parameter mini si which is always larger than s̄. Moreover, if si = s, one obtains s̄ = sd > s = min si,

showing that estimators of Kerkyacharian, Lepski and Picard (2001, 2008) in the Nikolski spaces are affected

by “the curse of dimensionality” while the estimators in the anisotropic Besov spaces of mixed regularity

considered above are free of “the curse of dimensionality” and, therefore, have higher convergence rates.

The problem of deconvolution of a two-dimensional function is related to seismic inversion which can

be reduced to solution of noisy convolution equations which deliver underground layer structures along the

chosen profiles. The common practice in seismology is to recover layer structures separately for each profile

and then to combine them together. This, however, usually is not the best strategy and leads to estimators

which are inferior to the ones obtained as two-dimensional functional deconvolutions. Indeed, as it is shown

above, unless function f is very smooth in the direction of the profiles, very spatially inhomogeneous along

another dimension and the number of profiles is very limited, functional deconvolution solution has preci-

sion superior to combination of M solutions of separate convolution equations. The precise condition when

separate recoveries are preferable to the two-dimensional one is given by formula (4.5.22) which, essentially,
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is very reasonable. In fact, if the number M of profiles is small, there is no reason to treat f as a two-

dimensional function. Small value of s2 indicates that f is very spatially inhomogeneous and, therefore, the

links between its values on different profiles are very weak. Finally, if s1 is large, deconvolutions are quite

precise, so that combination of various profiles cannot improve the precision.

Finally, we considered a multichannel deconvolution model with long-range dependent (LRD) Gaussian

errors. Deconvolution is the common problem in many areas of signal and image processing which include,

for instance, LIDAR (Light Detection and Ranging) remote sensing and reconstruction of blurred images.

LIDAR is a laser device which emits pulses, reflections of which are gathered by a telescope aligned with

the laser (see, e.g., Park, Dho & Kong (1997) and Harsdorf & Reuter (2000)). The return signal is used to

determine distance and the position of the reflecting material. However, if the system response function of

the LIDAR is longer than the time resolution interval, then the measured LIDAR signal is blurred and the

effective accuracy of the LIDAR decreases. If M (M ≥ 2) LIDAR devices are used to recover a signal, then

we talk about a multichannel deconvolution problem. This leads to the discrete model (5.1.1) considered in

this work.

The multichannel deconvolution model (5.1.1) can also be thought of as the discrete version of a model

referred to as the functional deconvolution model by Pensky and Sapatinas (2009, 2010). The functional

deconvolution model has a multitude of applications. In particular, it can be used in a number of inverse

problems in mathematical physics where one needs to recover initial or boundary conditions on the basis of

observations from a noisy solution of a partial differential equation. Lattes & Lions (1967) initiated research

in the problem of recovering the initial condition for parabolic equations based on observations in a fixed-time

strip. This problem and the problem of recovering the boundary condition for elliptic equations based on

observations in an internal domain were studied in Golubev & Khasminskii (1999); the latter problem was

also discussed in Golubev (2004). Some of these specific models were considered in Section 5.6.

The multichannel deconvolution model (5.1.1) and its continuous version, the functional deconvolution

model, were studied by Pensky and Sapatinas (2009, 2010), under the assumption that errors are independent

and identically distributed Gaussian random variables. The objective of this discussion was to study the

multichannel deconvolution model (5.1.1) from a minimax point of view, with the relaxation that errors

exhibit LRD. We were not limited in our consideration to a specific type of LRD: the only restriction made

was that the errors should satisfy a general assumption in terms of the smallest and larger eigenvalues of

their covariance matrices. In particular, minimax lower bounds for the L2-risk in model (5.1.1) under such
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assumption were derived when f(·) is assumed to belong to a Besov ball and g(·, ·) has smoothness properties

similar to those in Pensky and Sapatinas (2009, 2010), including both regular-smooth and super-smooth

convolutions.

In addition, an adaptive wavelet estimator of f(·) was constructed and it was shown that such estimator

is asymptotically optimal (in the minimax sense), or near-optimal within a logarithmic factor, in a wide

range of Besov balls. The convergence rates of the resulting estimators depend on the balance between the

smoothness parameter (of the response function f(·)), the kernel parameters (of the blurring function g(·, ·)),

and the long memory parameters dl, l = 1, 2 . . . ,M (of the error sequence ξ(l)), and how the total number

of observations is distributed among the total number of channels. Note that SRD is implicitly included in

our results by selecting dl = 0, l = 1, 2, . . . ,M . In this case, the convergence rates we obtained coincide with

the convergence rates obtained under the assumption of independent and identically distributed Gaussian

errors by Pensky and Sapatinas (2009, 2010).

If the errors are independent and identically distributed Gaussian random variables, for box-car kernels,

it is known that, when the number of channels in the multichannel deconvolution model (5.1.1) is finite, the

precision of reconstruction of the response function increases as the number of channels M grow (even when

the total number of observations n for all channels M remains constant) and this requires the channels to

form a Badly Approximable (BA) M -tuple (see De Canditiis and Pensky (2004, 2007)). Under the same

assumption for the errors, Pensky and Sapatinas (2009, 2010) showed that the construction of a BA M -tuple

for the channels is not needed and a uniform sampling strategy for the channels with the number of channels

increasing at a polynomial rate (i.e., ul = l/M , l = 1, 2, . . . ,M , for M = Mn ≥ (32π/3)n1/3) suffices to

construct an adaptive wavelet estimator that is asymptotically optimal (in the minimax sense), or near-

optimal within a logarithmic factor, in a wide range of Besov balls, when the blurring function g(·, ·) is of

box-car like kernel (including both the standard box-car kernel and the kernel that appears the estimation

of the initial speed of a wave on a finite interval). Example 15 showed that a similar result is still possible

under long-range dependence with (equispaced channels) ul = l/M , l = 1, 2, . . . ,M , nθ1 ≤ M = Mn ≤ nθ2 ,

for some 0 ≤ θ1 ≤ θ2 < 1 when dl = a1ul + a2, l = 1, 2, . . . ,M , 0 ≤ a2 < 1/2, 0 ≤ a1 + a2 < 1/2.

However, in real-life situations, the number of channels M = Mn usually refers to the number of physical

devices and, consequently, may grow to infinity only at a slow rate as n→∞. When M = Mn grows slowly

as n increases, (i.e., M = Mn = o((lnn)α) for some α ≥ 1/2), in the multichannel deconvolution model

with independent and identically distributed Gaussian errors, Pensky and Sapatinas (2011) developed a

procedure for the construction of a BA M -tuple on a specified interval, of a non-asymptotic length, together
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with a lower bound associated with this M -tuple, which explicitly shows its dependence on M as M grows.

This result was further used for the derivation of upper bounds for the L2-risk of the suggested adaptive

wavelet thresholding estimator of the unknown response function and, furthermore, for the choice of the

optimal number of channels M which minimizes the L2-risk. It would be of interest to see whether or not

similar upper bounds are possible under long-range dependence. Another avenue of possible research is to

consider an analogous minimax study for the functional deconvolution model (i.e., the continuous version

of the multichannel deconvolution model (5.1.1)) under long range-dependence (e.g., modeling the errors

as a fractional Brownian motion) and examine the effect of the convergence rates between the two models,

similar to the convergence rate study of Pensky and Sapatinas (2010) when the errors were considered to be

independent and identically distributed Gaussian random variables.

For future work, in the case of the empirical Bayes Model, we plan to consider the compound estimation

problem, i.e., the case when n values x1, · · · , xn are observed where xi’s are conditionally independent and

are distributed according to the pdfs q(· | θi), i = 1, · · · , n, and θi are independent with the common prior

pdf g(θ). In this scheme, the form of conditional pdf q(x | θ) is known, g(θ) is unknown and the goal is

to estimate the collection of unknown θ’s, θ1, · · · , θn. This is an important problem which has a variety of

applications (see, e.g. Brown and Greenshtein (2009), Brown et al. (2005) and Raykar and Zhao (2010)).
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