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ABSTRACT 

 
In recent years, the study of fluid flow with nanoparticles in base fluids has attracted the 

attention of several researchers due to its various applications to science and engineering 

problems. Recent investigations on convective heat transfer in nanofluids indicate that the 

suspended nanoparticles markedly change the transport properties and thereby the heat transfer 

characteristics. Convection in saturated porous media with nanofluids is also an area of growing 

interest. In this thesis, we study the effects of radiation on the heat and mass transfer 

characteristics of nanofluid flows over solid surfaces.  

In Chapter 2, an investigation is made into the effects of radiation on mixed convection 

over a wedge embedded in a saturated porous medium with nanofluids, while in Chapter 3 

results are presented for the effects of radiation on convection heat transfer about a cone 

embedded in a saturated porous medium with nanofluids.   

The resulting governing equations are non-dimensionalized and transformed into a non-

similar form and then solved by Keller box method. A comparison is made with the available 

results in the literature, and the results are found to be in very good agreement. The numerical 

results for the velocity, temperature, volume fraction, the local Nusselt number and the 

Sherwood number are presented graphically. The salient features of the results are analyzed and 

discussed for several sets of values of the pertinent parameters. Also, the effects of the Rosseland 

diffusion and the Brownian motion are discussed. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Humans have been fascinated with heat and energy since the discovery of fire, but 

scientists and mathematicians have been especially interested with the prediction and modeling 

of heat transfer since the Industrial Revolution.  With the ability to convert heat and energy into 

power (using inventions like the steam- and combustion-engine), it became clear that fully 

understanding exactly how heat transfer takes place from one medium to another was the key to 

conserving energy and making the most efficient devices and processes possible.  It was known 

that there were three main types of heat transfer:  conduction, convection, and radiation.  

Conduction is the direct transfer of heat between adjacent particles, and it can be thought of as 

heat transfer on a microscopic level.  Convection refers to the flow of heat through a liquid or 

gas along with the flow of the mass itself.  Therefore convection is typically thought of as a 

large-scale level of heat transfer.  Finally, radiation is the transfer of energy (and thus heat) 

directly through electromagnetic waves. 

Of the three types of heat transfer, convection was the most difficult to model because it 

required a complete understanding of the flow of fluids.  Unfortunately the large number of 

interacting forces and physical characteristics involved in fluid flow proved to be too complex 

for initial mathematical models to be accurate.  Specifically, if friction forces were added to the 

Newtonian motion equations, the system had no known analytical solutions and hence could only 

be solved numerically (which was especially tedious and unhelpful before the advent of 
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computers).  Neglecting friction in Newtonian motion equations allowed for analytical solutions, 

but the predicted results did not align with actual results seen in practice.  Scientists could not 

understand why the neglected friction forces, which seemed small in comparison to the gravity 

and pressure forces (especially in common fluids like air and water), would cause such large 

discrepancies in their calculations.  A breakthrough was finally made by Prandtl in the early 

1900s when he noticed that one could ignore the friction forces except on the fluid closest to the 

system surfaces.  In other words, a mass of fluid could be considered two separate parts:  an 

inner area where friction forces could be ignored, and the layer of fluid touching the system 

boundaries where friction forces had to be included.  Since the boundary layer was typically 

much smaller than the inner area, the ensuing equations were simplified and could be solved 

analytically.  Using Prandtl’s boundary layer theory, scientists were finally able to accurately 

predict the flow of fluids and, therefore, convective heat transfer. 

Unfortunately for those seeking to improve energy efficiency, a mathematical model for 

heat flow did not solve all of their problems.  Another common issue was the difficulty in 

combining conduction and convection.  This was because materials that conducted heat well 

(such as metals) did not flow very well, and materials that flowed well (such as water and air) 

did not conduct heat very well.  Heating metals into liquid form was one option, but it was not 

considered very practical because of the large amounts of energy required to reach the necessary 

temperatures.  A different solution, first proposed by Maxwell in 1873, was to add small particles 

of highly-conductive solids to regular liquids like water and alcohol.  For over a century it was 

only possible to produce these particles in diameters as small as millimeters and micrometers.  

Unfortunately, particles at those sizes tended to settle out of the fluids, caused erosion in their 
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containers, clogged very small passages, and caused considerable pressure drops in the fluids.  

However, in the past few decades advances in nanotechnology have allowed production of 

particles measured in terms of nanometers, and solid-liquid solutions with these particles have 

come to be known as nanofluids.  Although research is still ongoing, it appears that properly 

prepared nanofluids do not have the adverse effects associated with their larger-particle 

counterparts.  It has also been shown that nanofluids do indeed provide much better thermal 

conductivity compared to regular fluids.  Because they have such promise and potential, the 

study of heat transfer in nanofluids has increased dramatically in recent years and shows no signs 

of slowing down. 

For those wishing to learn more about boundary layer theory, a good introduction can be 

found in the textbook on fluid mechanics by Fox and McDonald [1], while the classic textbook 

by Schlichting [2] dealing entirely with boundary layer theory is perfect for those looking for a 

deep, comprehensive understanding of the subject.  In addition, the textbook by Pop and Ingham 

[3] is an excellent resource for mathematical models dealing specifically with convective heat 

transfer in porous media. 

1.2 Purpose of Study 

The enhanced heat transfer properties of nanofluids have been studied extensively, and 

several relations have been noted.  Masuda et al. [4] were the first to examine the thermal 

conductivity of nanofluids and found that conductivity increased linearly with particle volume 

fraction.  Lee et al. [5] also found a linear dependence between particle volume fraction and 

conductivity, but more importantly they also noticed that using particle materials with better 
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thermal conductivity did not necessarily always lead to nanofluids with better thermal 

conductivity.  The authors speculated that what was more important was how the particles 

clustered and observed that smaller clusters were one reason for the enhanced properties of 

nanofluids.  Using ultrasonic vibrations, Hong et al. [6] were able to vary cluster sizes in 

nanofluids over time and also concluded that smaller clusters led to better thermal conductivity.  

Similarly, Chopkar et al. [7] examined nanofluids composed of particles of identical materials 

but different sizes and determined that thermal conductivity was inversely related to particle size 

itself.  Finally, Li and Peterson [8] noted that thermal conductivity increases as the nanofluid 

temperature rises, and Li et al. [9] pointed out that the change in temperature affected the 

Brownian motion and clustering of nanoparticles.  In fact, since smaller particles, smaller 

clusters, and higher temperatures lead to increased Brownian motion of particles, many have 

surmised that it is this Brownian motion in nanofluids that gives them the enhanced heat transfer 

properties: Xuan et al. [10] have shown that the increased heat transfer rate is at least partially 

due to random particle motion.   

The study of heat transfer through convection has been very active in the past century, 

but there has also been a specific interest in convection around and through shapes like spheres, 

cones, and wedges.  The flow of heat around these objects has applications in many fields 

including the design of spacecraft, nuclear reactors, and many types of transformers and 

generators.   Takhar et al. [11] studied the mathematical solutions of free convection flow of 

gases around a vertical cone, while Alam et al. [12] performed similar research on free 

convection flow around a permeable vertical cone.  Pop et al. [13] examined the entire range of 

mixed convection (from free convection to forced convection) about a vertical cone.  Vajravelu 
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and Nayfeh [14] investigated free convection in heat-generating fluids around both cones and 

wedges.  The last few decades have also shown a major increase in the research of convective 

heat transfer through porous media.  This is because it is directly applicable to topics such as 

nuclear waste storage, ground-water pollution, chemical separation processes, and many other 

areas of interest.  In the past few years, this research has also considered the special case where 

the porous media is saturated with nanofluids.  Chamkha et al. [15] studied free convection 

around a sphere embedded in a nanolfuid-filled porous medium, while Gorla et al. [16] analyzed 

mixed convection past a wedge embedded in a porous medium saturated with nanofluids. 

Another important area of study is the effect of radiation on convective heat transfer.  

These effects are more pronounced in cases of extremely high temperatures and are therefore 

very applicable in fields such as space technology and geothermal engineering.  Bakier [17] 

analyzed the effect of radiation on mixed convection around a vertical flat plate embedded in a 

porous medium.  Similarly, Kumari and Nath [18] presented research on the effect of radiation 

on mixed convection about a non-isothermal horizontal plate embedded in a porous medium.  

Finally, of special interest to the results presented in this thesis was the research of Yih [19] who 

studied the effect of radiation on mixed convection over an isothermal wedge embedded in 

porous media. 

Unfortunately, to date there has been little research about the effects of radiation on 

mixed convection in porous media specifically saturated with nanofluids.  Motivated by this need 

and the aforementioned studies, an investigation was made into the effects of radiation on mixed 
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convection over cones and wedges in nanofluid-filled porous media while specifically taking 

Brownian motion into account. 

1.3 Thesis Overview 

In Chapter 2, results are presented for the effects of thermal radiation on laminar, steady 

mixed convection flow about a cone which is embedded in a porous medium saturated with an 

incompressible nanofluid.  The cone is assumed to be isothermal and vertically-aligned, while 

the porous medium is assumed to be uniform and in thermal equilibrium with the nanofluid.     

 In Chapter 3, an investigation is made into the effects of thermal radiation on laminar, 

steady mixed convection flow about an isothermal, vertically-aligned wedge which is embedded 

in a porous medium saturated with an incompressible nanofluid.  Once again, the porous medium 

is assumed to be uniform and in thermal equilibrium with the nanofluid.     

In Chapters 2 and 3, the equations used to model the systems account for both Rosseland 

diffusion and Brownian motion, and they are solved numerically using the Keller box method.  

Solutions are obtained from entirely free convection flow all the way to entirely forced 

convection flow and are compared with published results.  Nusselt and Sherwood numbers are 

also obtained numerically across the full range of convection and are studied and discussed.  
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CHAPTER 2 

MIXED CONVECTION OVER A WEDGE EMBEDDED IN A POROUS 

MEDIUM FILLED WITH A NANOFLUID 

 

2.1 Introduction 

 In this chapter we will provide the results of Chamkha et al. [20], where consideration is 

given to the effects of thermal radiation on steady, laminar, mixed convection boundary layer 

flow over an isothermal vertical wedge embedded in a porous medium saturated with a 

nanofluid.  Equations governing the system that account for Brownian motion and 

thermophoresis (using Rosseland diffusion approximation) are presented.  These equations are 

solved numerically using the Keller box method.  Results, including the local Nusselt and 

Sherwood numbers, are computed along the entire range of convection and for varying physical 

values.  Comparisons are made with available results, and good agreement is found. 

2.2 Analysis 

Consider the problem of a vertically-aligned wedge whose tip resides at x = 0, y = 0 and 

whose wedge angle is given by 2φ (Figure 2.1).  The uniform wall temperature of the wedge Tw 

is higher than the ambient temperature T, and the uniform nano-particle volume fraction of the 

wedge Cw is higher than the ambient nano-particle volume fraction C.  It is assumed that all 

fluid properties are constant, and the flow over the wedge is two-dimensional, laminar, steady, 

and incompressible.  The porous medium is assumed to be uniform and isotropic.  It is also 

assumed that the porous medium is in local thermal equilibrium with the fluid. 
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Figure 0.1 

A Sketch of the Physical Model 

 

Let u and v be the velocity components in the x and y direction, respectively, and then the 

continuity equation is  

0
u v

x y

 
 

 
                                                                                                                                  (1) 

because the flow is incompressible.  The Darcy model combined with the Boussinesq 

approximation also gives the momentum equation 

( )(1 ) p ff
gKC gKu T C

y y y

  

 

 
  

 
  

,                                                                        (2) 

where T is the temperature, C is the nano-particle volume fraction, K is the permeability of the 

porous medium, β is the volumetric expansion coefficient of the nanofluid,  g is the gravitational 

acceleration constant, and , ρf and ρp are the fluid viscosity, fluid density and the nano-particle 

mass density, respectively.  There is also the energy equation 
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2
2

2

316
,

3( )( )

T
e B

r s p f

DT T T C T T
u v D

x y y y y T y

T
T

a c y y

 



 



        
      

         

  
  

   

                                                                 (3) 

where k is the thermal conductivity, (ρc)f is the heat capacity of the fluid, (ρc)p is the effective 

heat capacity of the nano-particle material, /( )e fk c  is the thermal diffusivity of the porous 

medium, ( ) /( )p fc c   is the ratio of heat capacities, is the Stefan-Boltzmann constant, s is 

the scattering coefficient, ar is the Rosseland mean extinction coefficient, and DB and DT are the 

Brownian diffusion coefficient and thermophoretic diffusion coefficient, respectively.  Note that 

the last term on the right side of the energy transfer equation (3) is the thermal radiation heat flux 

and is approximated using the Roseland diffusion equation.  Further, the mass transfer equation 

is given by 

2 2

2 2

T
B

DC C C T
u v D

x y y T y

    
   

    
.                                                                                          (4) 

Finally, the appropriate boundary conditions suggested by the physics of the problem are  

0:    ( ,0) 0,    ,    w wy v x T T C C    ,                                                                                 (5a) 

:    ,    ,    y u U T T C C      ,                                                                                      (5b) 

where U, is the free stream velocity. 

For the given system of equations it is actually convenient to transform them into a non-

similar dimensionless form which can be studied as an initial-value problem. This is done by 

introducing the stream function: u / y,   v / x   and the variables 
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1/ 2 1( )x

y
Pe

x
   , 

1
1/ 2

1 x

x

Ra

Pe




  
    
   

1/ 2 1( ) ( , )e xPe f     , 
w

T T

T T
 







, 

w

C C

C C
 







,   




 



,   U Bx 

  ,   
x ePe U x /  , 

 (1 ) ( ) /x f T w eRa C g K T T x       ,                                                                                (6)              

where Pex is the local Peclet number, Rax is the modified Rayleigh number, a is the free stream 

velocity constant, and  is the free stream velocity exponent. Using the expressions above, one 

can transform equations (1) - (4) and the boundary conditions (5) into  

2(1 ) ( )f Nr       ,                                                                                                                (7) 

   

2

3

1
(1 )

2

4
 1 1 (1 )( ),

3 2

d

f Nb Nt

R f
H f

     

 
    

 

       

  
           

                                                            (8) 

(1 ) (1 )( )
2 2

Le Nt Le f
f f

Nb


      

 

 
         

 
,                                                       (9) 

(1 ) ( ,0) (1 ) ( ,0) 0
f

f    



   


,  ( ,0) 1   ,   ( ,0) 1   ,                                       (10a) 

2( , )f     ,  ( , ) 0    ,   ( , ) 0    ,                                                                              (10b) 

where e

B

Le
D


 , 

( )( )

(1 ) ( )

p f w

f w

C C
Nr

C T T

 

 

 

  

 


 
, 

( ) ( )

( )

p B w

f e

c D C C
Nb

c

 

 


 , 

( ) ( )

( )

p T w

f e

c D T T
Nt

c T

 

 






 ,  34 /d r sR T k a 

    ,  TTH w /  ,                                         (11) 

are the Lewis number, buoyancy ratio, Brownian motion parameter, thermophoresis parameter, 
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conduction-radiation parameter and the surface temperature excess ratio, respectively.  It is 

important to note that Pex = 0, which represents pure free convection, corresponds to the  value 

of 0, while Rax = 0, which represents pure forced convection, corresponds to the  value of 1.  

Thus, varying  between 0 and 1 allows computations over the entire range of mixed convection.  

Finally, it is useful to define the local Nusselt number Nux and the local Sherwood 

number Shx with the equations 

3

1/ 2 1/ 2

4
( ,0) 1

3

dx

x x

R HNu

Ra Pe
 

 
   

  
,                                                                                      (12) 

 
1/ 2 1/ 2

( ,0)x

x x

Sh

Ra Pe
  


                                                                                                            (13) 

The local Nusselt number is a dimensionless ratio of convective heat transfer to conductive heat 

transfer across a boundary.  A ratio close to 1 typically indicates laminar flow, whereas much 

higher values represent more active flow that may or may not be turbulent.  Similarly, the local 

Sherwood number is a dimensionless ratio of convective mass transfer to diffusive mass transfer. 

2.3 Numerical Methods 

The system of non-linear partial differential equations (7), (8) and (9) along with the 

mixed boundary conditions (10) are solved numerically, and the Keller box method is used.  This 

method converts the system into nonlinear finite difference equations by using midpoints over 

rectangles in the graph, then linearizes them with Newton’s method and solves the resulting 

equations with factorization [21]. In this case, the computations were carried out with  = 0.01 

and  = 0.01 (uniform grids). It was found that a value of  = 50 was sufficient enough to 
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obtain a desired accuracy of |'(0)| < 10
-5

.  First, the buoyancy ratio Nr, the Brownian motion 

parameter Nb, the thermophoresis parameter Nt, and the radiation–conduction parameter Rd were 

set to zero in order to compare results to those published by Hsieh et al. [22] and Yih [19].  There 

was an excellent agreement, and these results are presented in Table 2.1. 

Table 0.1 

Comparison of Results with Published Results for the Full Range of Convection 

 

 
Hsieh et 

al. [22] 
Yih [19] Present results 

 =0 =0 =1/3 =1 =0 =1/3 =1 

1.0 0.5642 0.5642  0.6515  0.7979 0.5642 0.6516 0.7979 

0.9 0.5098 0.5097  0.5878  0.7181 0.5098 0.5879 0.7181 

0.8 0.4603 0.4602  0.5278  0.6385 0.4602 0.5280 0.6385 

0.7 0.4174 0.4173  0.4731  0.5599 0.4173 0.4732 0.5599 

0.6 0.3832 0.3832  0.4261  0.4854 0.3832 0.4261 0.4854 

0.5 0.3603 0.3603  0.3900  0.4227 0.3603 0.3901 0.4227 

0.4 0.3506 0.3505  0.3686  0.3823 0.3506 0.3687 0.3823 

0.3 0.3550 0.3550  0.3643  0.3697 0.3550 0.3643 0.3697 

0.2 0.3732 0.3732  0.3769  0.3786 0.3732 0.3769 0.3786 

0.1 0.4035 0.4035  0.4044  0.4049 0.4035 0.4043 0.4049 

0.0 0.4438 0.4437  0.4437  0.4437 0.4437 0.4437 0.4437 

 

Computations were also carried out for several sets of values of the physical parameters.  

The effects of these variations were examined against the velocity, temperature, and volume 

fraction profiles, as well as against the dimensionless Nusselt and Sherwood numbers.  Figures 



13 

 

2.2 and 2.3 show how the Nusselt and Sherwood numbers were affected, respectively, for 

various values of the wedge angle λ.  Note that for these cases Rd = 3, H = 2, Nr = 0.5, Nb = 0.3, 

Nt = 0.1, and Le = 10. 

 

Figure 0.2 

The Local Nusselt Number Profile for Various Values of λ 

 

 

Figure 0.3 

The Local Sherwood Number Profile for Various Values of λ 

 

Figures 2.4 and 2.5 show the effects on the Nusselt and Sherwood numbers, respectively,  

when varying the Brownian motion parameter Nb.  For these cases Rd = 3, λ = 1/3, H = 2, Nr = 

0.5, Nt = 0.1, and Le = 10. 
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Figure 0.4 

The Local Nusselt Number Profile for Various Values of Nb 

 

 

Figure 0.5 

The Local Sherwood Number Profile for Various Values of Nb 

 

Figures 2.6 and 2.7 show how varying the thermophoresis parameter Nt  affects the local 

Nusselt and Sherwood numbers.  For these calculations, the parameters are Rd = 3, λ = 1/3, H = 

2, Nr = 0.5, Nb = 0.3, and Le = 10. 
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Figure 0.6 

The Local Nusselt Number Profile for Various Values of Nt 

 

 

Figure 0.7 

The Local Sherwood Number Profile for Various Values of Nt 

 

Finally, Figures 2.8 and 2.9 show how changes in the radiation–conduction parameter Rd 

affect the local Nusselt and Sherwood numbers.  In these scenarios, λ = 1/3, H = 2, Nr = 0.5, Nb = 

0.3, Nt = 0.1, and Le = 10. 
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Figure 0.8 

The Local Nusselt Number Profile for Various Values of Rd 

 

 

Figure 0.9 

The Local Sherwood Number Profile for Various Values of Rd 

 

2.4 Discussion of Results 

Figures 2.2 and 2.3 show that the local Nusselt and local Sherwood numbers increase as 

the wedge angle λ increases; indicating the enhanced heat and mass transfer.  This makes sense 

because as the wedge angle λ increases and the wedge becomes “flatter” and less of an 

obstruction, one expects mass and heat transfer to increase.  Figures 2.4 and 2.5 show that 
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increasing Nb also shows enhancements in the local Nusselt and local Sherwood numbers, 

although it appears that this Brownian motion parameter does not have much of an effect.  

Figures 2.6 and 2.7 show how changing the thermophoresis parameter affects the local Nusselt 

and local Sherwood numbers. Since an increase in Nt causes the temperature and volume fraction 

to increase, the local Nusselt number increased while the local Sherwood number decreased.  

Finally, the effects of the radiation-conduction parameter Rd on the local Nusselt number and 

local Sherwood number are shown in figures 2.8 and 2.9. Figure 2.8 plots the mixed convection 

parameter  (over the entire range from 0 to 1) against the local Nusselt number for both 

Newtonian fluids and nanofluids using several different values for Rd, while figure 2.9 shows the 

same graph for the local Sherwood number. For = 0 (pure free convection), it is apparent that 

increasing Rd causes both the local Nusselt and local Sherwood number to increase.  The figures 

also show that the local Nusselt number is more affected by Rd than the local Sherwood number, 

which can be attributed to the fact that the local Nusselt number is more sensitive to Rd and the 

suface temperature excess ratio H.  Finally, it can also be seen that as approaches 1 

(representing pure forced convection), the flow no longer depends on the thermal and volume 

fraction buoyancy effects, and hence the local Sherwood number no longer depends on Rd. 

Overall, the local Nusselt number was found to increase whenever the wedge angle, 

Brownian motion, thermophoresis, or radiation-conduction parameters were increased.  The local 

Sherwood number also increased as the wedge angle, Brownian motion, and radiation-

conduction parameters were increased, but it actually decreased when the thermophoresis 

parameter was increased.  Another observation was that the local Nusselt number and local 

Sherwood number tended to decrease initially when moving away from pure free convection, but 
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they eventually reached minimum values somewhere in the mixed convection area and gradually 

increased on the way to pure forced convection.  Finally, it was also noted that the effects of the 

radiation-conduction parameter were much stronger on the local Nusselt number than the local 

Sherwood number, but the opposite was true for the effects of the thermophoresis parameter. 
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CHAPTER 3 

MIXED CONVECTION ABOUT A CONE EMBEDDED IN A POROUS 

MEDIUM FILLED WITH A NANOFLUID 

 

3.1 Introduction 

 In this chapter we will provide the results of Chamkha et al. [23], where consideration is 

given to the effects of thermal radiation on steady, laminar, mixed convection boundary layer 

flow over an isothermal vertical cone embedded in a porous medium saturated with a nanofluid.  

Once again, equations governing the system that account for Brownian motion and 

thermophoresis (using Rosseland diffusion approximation) are presented.  These equations are 

solved numerically using the Keller box method.  Results, including the local Nusselt and 

Sherwood numbers, are computed along the entire range of convection and for varying physical 

values.  Comparisons are made with available results and good agreement is found. 

3.2 Analysis 

Consider the problem of a vertically-aligned isothermal cone (Figure 3.1) whose tip 

resides at x = 0, y = 0 and whose wedge angle is given by 2.  As in the case with wedge in 

Chapter 2, the uniform wall temperature of the cone Tw is higher than the ambient temperature 

T, and the uniform nano-particle volume fraction of the wedge w is higher than the ambient 

nano-particle volume fraction .  It is assumed that all fluid properties are constant, and the 

flow over the cone is two-dimensional, laminar, steady, and incompressible.  The porous 

medium is assumed to be uniform and isotropic.  It is also assumed that the porous medium is in 

local thermal equilibrium with the fluid. 
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Figure 0.1 

A Sketch of the Physical Model 

 

Let u and v be the velocity components in the x and y direction, respectively, and then the 

continuity equation is  

( ) ( )
0

ru rv

x y

 
 

 
,                                                                                                                       (1) 

because the flow is incompressible.  The Darcy model combined with the Boussinesq 

approximation also gives the momentum equation 

( )cos(1 ) cos p ff
gKgKu T

y y y

     

 

 
  

 
  

,                                                          (2) 

where T is the temperature,  is the nano-particle volume fraction, K is the permeability of the 
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porous medium, β is the volumetric expansion coefficient of the nanofluid,  g is the gravitational 

acceleration constant, and , ρf and ρp are the fluid viscosity, fluid density and the nano-particle 

mass density, respectively.  There is also the energy transfer equation 

2
2

2

316
,

3( )( )

T
B

r s p f

DT T T T T
u v D

x y y y y T y

T
T

a c y y


 



 



        
      

         

  
  

   

                                                              (3) 

where k is the thermal conductivity, (ρc)f is the heat capacity of the fluid, (ρc)p is the effective 

heat capacity of the nano-particle material, /( )fk c  is the thermal diffusivity of the porous 

medium, ( ) /( )p fc c   is the ratio of heat capacities, is the Stefan-Boltzmann constant, s is 

the scattering coefficient, ar is the Rosseland mean extinction coefficient, and DB and DT are the 

Brownian diffusion coefficient and thermophoretic diffusion coefficient, respectively.  As in 

Chapter 2, note that the last term on the right side of the energy transfer equation (3) is the 

thermal radiation heat flux and is approximated using the Roseland diffusion equation.  Further, 

there is the mass transfer equation 

2 2

2 2

T
B

D T
u v D

x y y T y

  



    
    

    
.                                                                                            (4) 

Finally, the appropriate boundary conditions suggested by the physics of the problem are  

0:    ( ,0) 0,    ,    w wy v x T T      ,                                                                                   (5a) 

:    ,    ,    y u U T T        ,                                                                                        (5b) 

where U, is the free stream velocity.  For cone flow, U is calculated using the equation
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mU Bx  , where B is a prescribed constant and m is the cone angle parameter. Hess and 

Faulkner [24] give the tabulated values of m for various values of the half angle . 

As was done previously in Chapter 2 with the wedge, the given system of equations is 

more convenient to solve if it is transformed into a non-similar dimensionless form which can be 

studied as an initial-value problem. This is done by introducing the stream function: u / y,  

v / x   and the variables 

1/ 2 1( )x
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1 x
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xPe U x /  ,   (1 ) ( ) /x f T wRa g K T T x        ,                               (6) 

where Pex is the local Peclet number, Rax is the modified Rayleigh number, a is the free stream 

velocity constant, and m is the free stream velocity exponent. Using the expressions above one 

can transform equations (1) - (4) and the boundary conditions (5) into  

2(1 ) ( )S Nrf      ,                                                                                                             (7) 
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are the Lewis number, buoyancy ratio, Brownian motion parameter, thermophoresis parameter, 

conduction-radiation parameter and the surface temperature excess ratio, respectively. 

3.3 Numerical Methods 

Once again, the equations (7), (8), and (9) along with the mixed boundary conditions (10) 

were solved numerically using the Keller box method.  The computations were again carried out 

with  = 0.01 and  = 0.01 (uniform grids), and it was found that a value of  = 50 was 

sufficient enough to obtain a desired accuracy of |'(0)| < 10
-5

.  The buoyancy ratio Nr, the 

Brownian motion parameter Nb, the thermophoresis parameter Nt, and the radiation-conduction 

parameter Rd were first set to zero in order to compare results to those published by Yih [25].  

There was an excellent agreement, and these results are presented in Table 3.1. 

  



24 

 

Table 0.1 

Comparison of Results with Published Results for the Full Range of Convection 

 

 Yih [25] Present results 

 m=0.0316314 m=0.2450773 m=0.6667277 m=0.0316314 m=0.2450773 m=0.6667277 

0.0 1.0380 1.0380 1.0380 1.0380 1.0380 1.0380 

0.1 0.9438 0.9444 0.9452 0.9438 0.9444 0.9452 

0.2 0.8728 0.8751 0.8788 0.8728 0.8751 0.8788 

0.3 0.8301 0.8357 0.8449 0.8301 0.8357 0.8449 

0.4 0.8196 0.8301 0.8480 0.8196 0.8301 0.8480 

0.5 0.8423 0.8589 0.8883 0.8423 0.8589 0.8883 

0.6 0.8960 0.9191 0.9614 0.8960 0.9192 0.9615 

0.7 0.9758 1.0054 1.0604 0.9758 1.0054 1.0605 

0.8 1.0761 1.1117 1.1783 1.0761 1.1117 1.1784 

0.9 1.1919 1.2328 1.3097 1.1920 1.2329 1.3097 

1.0 1.3192 1.3648 1.4508 3913.1 1.3649 1.4509 
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Computations were also carried out for several different values of various physical 

parameters.  The effects of these variations were examined against the dimensionless Nusselt and 

Sherwood numbers.  Figures 3.2 and 3.3 show results for varying the cone angle parameter m.  In 

these figures, Rd = 2, H = 1.5, Nr = 0.5, Nb = 0.3, Nt = 0.1, and Le = 10. 

 

Figure 0.2 

The Local Nusselt Number Profile for Various Values of m 

 

 

Figure 0.3 

The Local Sherwood Number Profile for Various Values of m 
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Figures 3.4 and 3.5 show how the local Nusselt and Sherwood numbers are affected when 

varying the Brownian motion parameter Nb.  In these cases, Rd = 2, m = .1156458, H = 1.5, Nr = 

0.5, Nt = 0.1, and Le = 10. 

 

Figure 0.4 

The Local Nusselt Number Profile for Various Values of Nb 

 

 

Figure 0.5 

The Local Sherwood Number Profile for Various Values of Nb 

 

Figures 3.6 and 3.7 show the effects of varying the thermophoresis parameter Nt on the 

local Nusselt and Sherwood numbers.  For these cases, Rd = 2, m = .1156458, H = 1.5, Nr = 0.5, 

Nb = 0.3, and Le = 10. 
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Figure 0.6 

The Local Nusselt Number Profile for Various Values of Nt 

 

 

Figure 0.7 

The Local Sherwood Number Profile for Various Values of Nt 

 

Finally, figures 3.8 and 3.9 show the results for the radiation–conduction parameter Rd.  

In these scenarios, m = .0316314, H = 1.5, Nr = 0.5, Nb = 0.3, Nt = 0.1, and Le = 10. 
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Figure 0.8 

The Local Nusselt Number Profile for Various Values of Rd 

 

 

Figure 0.9 

The Local Sherwood Number Profile for Various Values of Rd 

 

3.4 Discussion of Results 

 Figures 3.2 and 3.3 illustrate the effects of the cone angle parameter m on the local 

Nusselt number and on the local Sherwood number in the entire range for the mixed convection 

parameter (0 1).   Note that higher values of m correspond to higher values of the half cone 

angle  and vice versa.  From the figures one can see that increasing m causes both the local 

Nusselt and local Sherwood numbers to increase, indicating enhancements in both the heat and 
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mass transfer. This is true for the entire range 0 < < 1. However, it is interesting to note that the 

effect of m on the local Nusselt and local Sherwood numbers is almost negligible for pure free 

convection (= 0). 

 Figures 3.4 and 3.5 display the changes in the local Nusselt number and local Sherwood 

number for various values of the Brownian motion parameter Nb for the entire range of the mixed 

convection parameter 0 1  . It is seen that as Nb increases both the local Nusselt number and 

local Sherwood number also increase, although the effect on the local Sherwood number is much 

smaller. 

Figures 3.6 and 3.7 show the influence of the thermophoresis parameter Nt on the local 

Nusselt number and local Sherwood number, respectively.  Once again, results are displayed 

over the entire range of the mixed convection parameter 0 1  .  It can be seen that increasing 

Nt causes the local Nusselt and local Sherwood numbers to increase as well. 

Figures 3.8 and 3.9 show the effect of the radiation-conduction parameter Rd on the local 

Nusselt and local Sherwood numbers for both cases of Newtonian and nanofluids in the entire 

range of the mixed convection parameter 0 1  , respectively. Similar to what was seen for 

the wedge in Chapter 2, when = 0 (pure free convection), it is apparent that increasing Rd 

causes both the local Nusselt and local Sherwood number to increase.  It is also seen that the 

local Nusselt number is more affected by Rd than the local Sherwood number, which can be 

attributed to the fact that the local Nusselt number is more sensitive to Rd and the surface 

temperature excess ratio H.  Figure 3.9 also shows that as approaches 1 (representing pure 
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forced convection), the flow becomes uncoupled from the thermal and volume fraction buoyancy 

effects, and hence the local Sherwood number no longer depends on Rd. 

Overall, it was observed that the local Nusselt number was found to increase whenever 

the half cone angle, Brownian motion, thermophoresis, or radiation-conduction parameters were 

increased.  The local Sherwood number also increased as the half cone angle, Brownian motion, 

and radiation-conduction parameters were increased, but it was seen to decrease when the 

thermophoresis parameter was increased.  It was also noticed that the local Nusselt number and 

local Sherwood number tended to decrease initially when moving away from pure free 

convection, but they eventually reached minimum values somewhere in the mixed convection 

area and gradually increased on the way to pure forced convection.  These results were similar to 

what was seen with the wedge in Chapter 2.  Finally, it was also observed that the effects of the 

radiation-conduction parameter were much stronger on the local Nusselt number than on the 

local Sherwood number. However, the effects of the thermophoresis parameter were actually 

much stronger for the local Sherwood number than the local Nusselt number. 
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CHAPTER 4 

PROSPECTS FOR FUTURE WORK 

 
 The equations presented in this thesis were mathematically derived, and results were 

obtained numerically.  A natural extension to this would therefore be for scientists to set up 

models similar to these problem specifications in the lab and to compare their results with those 

seen here.  This type of work would hopefully align with the presented results and lend credence 

to the conclusions reached. 

 The system of equations also only considered two-dimensional, laminar, steady (time-

independent), incompressible flow.  Hence, it could be extended to include many combinations 

of various types of flows.  For instance, many real-world applications may require a three-

dimensional analysis of the flow.  Several other scenarios may involve flows that are turbulent or 

flows that vary over time (unsteady).  Finally, it was also assumed that the porous media were 

uniform, isotropic, and in local thermal equilibrium with the fluid.  Solutions would likely be 

desired when some or all of those characteristics were varied.  
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