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ABSTRACT 
 
In this thesis, we examine epidemiological models of two different retroviruses, which infect the 

human body.  The two viruses under study are HIV or the human immunodefiency virus and 

HTLV-I, which is the human T lymphotropic virus type I.  A retrovirus is a virus, which injects 

its RNA into the host, rather than it’s DNA.  We will study each of the different mathematical 

models for each of the viruses separately. Then we use MATLAB-SIMULINK to analyze the 

models by studying the reproductive numbers in each case and the disease progression by 

examining the graphs. In Chapter 1, we mention basic ideas associated with HIV and HTLV-I. In 

Chapter 2 some of the basic mathematical model of epidemiology is presented.  Chapter 3 is 

devoted to a model describing the intra-host dynamics of HIV.  Here, we take into account how 

HIV infects and replicates in the CD4+ T cells.  The model studied in this thesis examines the 

difference between cells, which are susceptible to the virus, and cells, which are not susceptible.  

Through the graphs associated with this model, we are able to see how this difference affects 

disease progression.  In Chapter 4, we examine the effect of HTLV-I virus on human body.  The 

HTLV-I virus causes a chronic infection in humans and may eventually lead to other diseases.  

In particular, the development of Adult T-cell Leukemia or ATL is studied in this thesis.  The T-

cell dynamics and progression to ATL is described using a mathematical model with coupled 

differential equations. Using mathematical analysis and SIMULINK, we obtain results on 

stability, asymptotic stability and the manner of progression of the disease. In Chapter 5 and 

appendices, we mention our inference and the MATLAB-SIMULINK codes used in this thesis, 

so that a reader can verify the details of the work carried out in this thesis. 

 

 

 iii



 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to everyone who loved 

and supported me through this entire process, especially my family. 

 

 iv



ACKNOWLEDGMENTS 

 
 First of all, I would like to thank Dr. Ram Mohapatra for being my advisor and 

cheerleader throughout this thesis process.  I would also like to thank Roderick Plemmons for 

helping with me the coding in Matlab and Simulink. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 v



TABLE OF CONTENTS 
 
LIST OF FIGURES ...................................................................................................................... vii 

LIST OF TABLES....................................................................................................................... viii 

CHAPTER ONE - INTRODUCTION............................................................................................ 1 

1.1 Introduction........................................................................................................................... 1 

1.2 Introduction to HIV .............................................................................................................. 2 

1.3 Introduction to HTLV-I ........................................................................................................ 3 

CHAPTER TWO – BACKGROUND STUDY.............................................................................. 6 

2.1 Introduction to mathematical models ................................................................................... 6 

2.2 Basic SIR Model................................................................................................................... 7 

2.3 Basic SIS Model ................................................................................................................. 11 

CHAPTER THREE – INTRA-HOST DYNAMICS OF HIV...................................................... 14 

3.1 Introduction to intra-host dynamics of HIV ....................................................................... 14 

3.2 HIV Simple Model.............................................................................................................. 15 

3.3 HIV Extended model .......................................................................................................... 17 

3.4 HIV Extended model Graphs and Biological Interpretation .............................................. 22 

CHAPTER FOUR – HTLV-I VIRUS AND ADULT T-CELL LEUKEMIA ............................. 31 

4.1 Introduction to the dynamics of HTLV-I............................................................................ 31 

4.2 Mathematical Model of HTLV-I Infection to ATL ............................................................ 32 

4.3 Stability of the system......................................................................................................... 35 

4.4 Katri and Ruan Model and the stability of the system........................................................ 38 

CHAPTER FIVE - CONCLUSION ............................................................................................. 43 

APPENDIX A SIMULINK OF STILIANAKIS AND SCHENZLE EQUATIONS ................... 45 

APPENDIX B  MATLAB OF STILIANAKIS AND SCHENZLE EQUATIONS ..................... 47 

LIST OF REFERENCES.............................................................................................................. 58 

 

 vi



 

LIST OF FIGURES 
Figure 1:  Decline of CD4+ T cells over first six months after initial infection........................... 23 

Figure 2:  Increase in HIV particles within the first six months of infection. .............................. 24 

Figure 3:  Decline of anti-HIV activity within the first six months of initial infection................ 24 

Figure 4:  Total cell count after 12 years.  Progression to AIDS occurs at y=0.2 ........................ 25 

Figure 5:  Anti-HIV activity after 12 years................................................................................... 26 

Figure 6:  HIV particle increase over 12 years. ............................................................................ 26 

Figure 7:  Total CD4+ T cell count after a 20% reduction of CD4+ T cell count (aqua), normal 

reduction (blue), and initial increase by 20% of CD4+ T cell count (red). .................................. 27 

Figure 8:  Changes in the P value and the impact on the total cell count. .................................... 28 

Figure 9:  Impact on CD4+ T cells when the values of Kω  are varied......................................... 29 

Figure 10:  Impact on CD4+ T cells when the value of Pω  is varied........................................... 30 

Figure 11:  Latently infected CD4+ T cells vs. Uninfected CD4+ T cells ................................... 42 

Figure 12: Simulink of Stilianakis and Schenzle equations.......................................................... 46 

 

 vii



LIST OF TABLES 
Table 1: Variables used in the simple model ................................................................................ 16 

Table 2: Variables used in the extended model ............................................................................ 17 

Table 3: Parameter Values used in the extended model ............................................................... 22 

Table 4: Variables used in the Stilianakis & Sydel model............................................................ 33 

Table 5: Variables and Parameter Values for contagion used in the model ................................. 41 

 

 

 

 

 

 

 viii



CHAPTER ONE - INTRODUCTION 

1.1 Introduction 

Disease has played an important part throughout the history of mankind.  Diseases have 

influenced the growth or decline of a population and have impact on the economy.  It causes 

more deaths than any other source, including war and natural disasters.  The manner in which 

diseases infect and invade a population has perplexed doctors and scientist for many years.  A 

branch of science called epidemiology was developed in order to help analyze and understand 

the spread of disease. 

Aristotle and Hippocrates of Cos started studying the transmission of diseases during 

300BC-400BC.  Later, germ theory was first studied by Jacob Henle in 1840 and was later 

developed by Robert Koch, Joseph Lister, and Louis Pasteur.  Modern mathematics was first 

used in the study of diseases in 1873 by P.D En'ko.  Sir R. A. Ross, W. H. Hamer, A.G 

Mckendrick, and W. O Kermack laid the foundation of mathematics in epidemiology between 

1900 and 1935. (See [15])  The study of epidemiology has grown tremendously since and most 

known communicable diseases have been modeled and analyzed. 

Epidemiology not only helps us to understand disease transmission, but also to know how 

to control the spread of a particular disease.  It is not a static science and is constantly changing.  

Infectious diseases are constantly evolving and changing, making them harder to control.  New 

strains, which are immune to antibiotics, are found everyday.  HIV and HTLV-I are two new 

viruses which were first discovered in the 1980’s.  These viruses have no known cure but doctors 

are working with epidemiologist, mathematicians, and scientist to find a cure and limit its 
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transmission.  We will use mathematical models to help us understand the spread of these viruses 

in the human body and the progression of these viruses to disease. 

1.2 Introduction to HIV 

In 1981 the Center for Disease Control reported on an unusual collection of homosexual 

males that had Pneumocyctis carinii pneumonia and Kaposi’s sarcoma.  These men were 

previously healthy individuals.  This was a new retroviral disease later to be named AIDS or 

Acquired Immunodeficiency Syndrome,  a disease for which there is still no cure and is the 

fourth leading cause of death worldwide.  The etiologic agent of this new epidemic is the human 

immunodeficiency virus or HIV, which will be studied in detail in this thesis.  HIV is the 

retrovirus which causes AIDS.  This virus slowly destroys the immune system over many years.  

Once the immune system is depleted, AIDS occurs. 

AIDS was first discovered in the United States but now affects the entire world and is 

considered the new “plague”.  It has killed more than 25 million people worldwide and is 

considered the most destructive epidemic in recorded history.  AIDS is now found in more than 

163 countries with the most being in Africa and the Caribbean being the second.  Sub-Saharan 

Africa is considered to be the global epicenter of the HIV epidemic. (See [5])  Ninety percent of 

the individuals infected with HIV are in developing countries and forty percent of those infected  

are females.  Individuals in the 15-24 age group are the fastest growing segment who are being 

infected with HIV. 

HIV can be transmitted in different ways.  The virus is present in bodily fluids, 

specifically blood, therefore, any activity that results in the transfer of bodily fluid can 

potentially result in the transfer of HIV.  Intimate sexual contact is one of the modes in which 
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fluid transfer occurs.  Intravenous drug use is another mode in which HIV is transmitted between 

individuals because many drug users share needles.  Two other modes which are not as common 

due to medical advances and new antiretroviral drugs are mother to child transmission and 

transmission through blood transfusion.  Mother to child transmission can occur during the 

birthing process or through breast feeding.  Although the rate of mother to child transmission has 

dropped in many developing countries, it is still very prevalent in the sub-Saharan regions of 

Africa.  Transmission due to blood transfusions are rarely seen today due to examination of the 

blood from donors for presence of HIV prior to saving them in the blood bank for patient use.  

The U.S. blood supply is very safe due to the extensive questioning of blood donors and the 

extensive testing of donated blood. 

HIV is characterized by immunosuppression, neurologic involvement and secondary 

tumors.  HIV attacks the CD4+ T-cells, which are responsible for the immune system.  The 

nature of this attack and how it occurs is modeled mathematically in Chapter Three in order to 

help us understand and predict the course of the disease.  Many graphs developed from the 

mathematical model help demonstrate the progression to AIDS.  The graphs were produced 

using Simulink and match those produced by Stilianakis and Schenzle in Fortran. 

1.3 Introduction to HTLV-I 

Human T-lymphotropic virus (HTLV-I) was the first retrovirus to be discovered.  This 

virus was discovered in Japan in 1980.  HTLV-I is a virus which lays latent for many years 

before causing other diseases to proliferate.  This virus is the predominant cause of two diseases.  

The first one is Adult T Cell leukemia/lymphoma or ATL, which is a T cell non-Hodgkin’s 

lymphoma with a leukemic phase of circulating CD4+T cells.  The progression from HTLV-I to 
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ATL is mathematically modeled and studied in Chapter 4.  The discovery of HTLV-I provided 

scientists with a clear proof of a relationship between viruses and cancer.  The second disease 

that is cause by HTLV-I is myelopathy (HAM) which is also known as tropical spastic para 

paresis (TSP).  Usually this virus does not produce disease until approximately twenty years after 

initial infection.  HTLV-I can also cause autoimmune or chronic inflammatory disorders such as 

arthropathy, Sjogren’s syndrome and facial nerve palsy.  Identification of the HTLV-I virus 

facilitated the discovery and isolation of HIV.   

HTLV-I infects ten to twenty million people world wide but only produces disease in 

approximately five percent of infected individuals.  Women are twice as likely to contract 

HTLV-I as men.  The HTLV-I infection is thought to occur in geographical clusters which are 

located in southern Japan, the Caribbean, parts of Africa, the Middle East, South America, 

Pacific Melanesian islands, and Papua New Guinea.  The virus is also found in the southeastern 

United States in certain immigrant groups. 

HTLV-I is transmitted in the same way as HIV, through bodily fluid transfer.  Unlike 

HIV, the main transmission is through breast feeding.  The HTLV-I antigen is found in the 

infected mother’s milk and is transmitted most likely through lymphocytes in the milk.  The 

prevalence of this vertical transmission through breast feeding has caused a clustering of cases in 

familial or geographically discrete groups. (See [14])  Other modes of are sexual transmission, 

infection from blood transfusion, and sharing needles among drug users.   

 Many people can be infected with HTLV-I and will never develop a disease from this 

virus.  Chapter Four will feature a mathematical model of the HTLV-I infection of CD4+ T-cells 

and the eventual progression to ATL.  The stability analysis will illustrate two different steady 

states.  One steady state when the virus will not progress to ATL, and another steady state when 
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the virus will progress to ATL.  A proposition for asymptotical stability is studied and a graph 

was produced using Simulink.  Even after rigorous analysis, this graph does not match the graph 

presented by the authors and further work may be needed in order to explore the difference. 
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CHAPTER TWO – BACKGROUND STUDY 

2.1 Introduction to mathematical models 

A mathematical model is a mathematical description of a real world system or event. (See 

[12])  Epidemiologists will use mathematical models in order to understand and predict the 

course of an infection or disease.  A well-formulated model can help an epidemiologist 

determine where resources need to be allocated and how those resources can help control or 

eradication of the disease.  In order to formulate a model for an infectious disease, an individual 

must first collect an abundance of empirical data through clinical testing.  Once this data is 

collected and analyzed, the modelers develop a model using the following steps.  Firstly, they 

note all the relevant assumptions, and then determine the relationship between the variables and 

parameters used in the model and finally, analyze any specific patterns that are found.  Deciding 

which parameters and variables will be used in the model and how much importance should be 

given depend on the characteristics of the disease under study and the intention of the model. 

(See [2])  Once the model is formulated and analyzed, it will help the scientists to draw 

inferences form a set of hypotheses in order to determine the course of the disease in an 

individual or in a population. 

Epidemiological models are usually formed using the general MSEIR model.  This model 

places individuals from a constant population into certain groups within the model and describes 

the transition rate between each group.  Each letter represents a different class or group.  M 

represents the temporary immunity that a mother can pass on to her child through the placenta.  

The S describes the susceptibles, which are the members of the population who are at risk for 

contracting the disease.  E stands for exposed and describes the individuals from the population 
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who are infected by the disease but are not infectious due to a latent period of a disease.  The I 

group is the Infectious group or the individuals from the population who have the ability to pass 

the disease to other members of the population.  R represents the group of individuals who have 

recovered from the disease, whether temporary or permanent, and also possess some type of 

immunity. 

2.2 Basic SIR Model 

The first model to consider is the basic SIR model.  It is a simple epidemic model 

developed by Kermack and McKendrick in 1927 to predict the behavior of many historical 

epidemics such as cholera, influenza, and the Great Plague.  This model is used by many 

epidemiologists because it can help predict the behavior and progress of different diseases.  This 

model is also a building block for many of the other more complicated models.  The SIR model 

considers a population that remains constant.  The population is divided into three classes: first, 

the individuals who are susceptible, S, to the disease, second, the individuals being exposed and 

infected by the disease, I, and last the individuals who will recover, R, from the infection and 

gain immunity to the disease.  This model does not consider any latent period of the disease.  

Once an individual is infected, he is automatically moved into the infectious classification.  The 

progress of the individuals from class to class can be demonstrated by 

 

   S                            I                            R 

 

Some models only consider the S and I classes.  Other models consider a fourth class, E, which 

takes in account a latent period of the disease in which the virus is present in the host but has not 
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infected the host.  When modeling a disease like AIDS, it is better to use a model which includes 

this class. 

This model makes many assumptions.  We must first assume the collection of 

individuals in each class is a differentiable function of time.  This is reasonable as long as there 

are enough people in each class.  Next, the model is deterministic.  This means that the behavior 

of the model is determined by the past behavior of diseases.  A stochastic model would be more 

effective if the model described classes with small populations.  Third, this model does not 

include a latent phase of the disease, which means that once a susceptible becomes infected, the 

individual is automatically placed into the infected class.  Fourth, the model assumes that an 

infected individual makes contact significant enough to transmit the disease at the contact rate, 

β .  If SN I S
N

Iβ β= , new cases will occur when N is the total number in the population, S is 

the number of susceptibles and I is the number of infecteds.  The fifth assumption is that the 

model has a mass action principle, which means every individual within the population has an 

equal chance to have contact with every other individual in the population.  This information 

implies that β , the contact rate, is the ratio of rate of contact to the population size.  Another 

assumption is that the recovery rate is proportional to the number of infecteds, and is represented 

by aI, where a is the removal rate.  The last assumption is that there is no entry or exit from the 

population except through death.  This occurs when the progression to disease is so quick that 

birth and death rates can be ignored.  This assumption can be changed in certain models. 

 Based on these assumptions, the classic Kermack and McKendrick model is: 

 dS SI
dt

β= −  (2.1) 

 dI SI aI
dt

β= −  (2.2) 
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 dR aI
dt

=  (2.3) 

Note that only non-negative solutions for S, I and R are of interest.  Also, remember the total 

population is constant and is embedded in the model.  If we add equations (2.1)-(2.3), we will 

get: 

 0dS dI dR
dt dt dt

+ + =  (2.4) 

Solving this differential equation will yield: 

 ( ) ( ) ( )S t I t R t N+ + =  (2.5) 

where N is the population size.  We also have the following initial conditions: 

  (2.6) 0 0(0) , (0) , (0)S S I I R= = = 0R

where  and . 0 0S > 0 0I >

 The population is constant, therefore, R can be determined if S and I are known.  For this 

reason, equation (2.3) can be dropped and the system can be reduced to only two equations.  This 

system is not possible to solve analytically but the equations can be analyzed using a qualitative 

approach.  Note that  and  if 0S ′ < 0I ′ > 0
aS
β

> .  Since S is decreasing, I will initially increase 

but then will decrease to zero.  The possibility of I increasing is what indicates an epidemic 

because I represents the infected individuals.  If 0
aS
β

< , then I will go to zero and there is no 

epidemic.  If 0
aS
β

> , the number of infected individuals will first increase to aS
β

= , and then 

decrease to zero.  From this, we see a threshold parameter.  The behavior of the disease will 

depend on the threshold quantity, 0S
a
β .  This number defines the reproduction number.  The 
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reproduction number, 0R , of the system is defined as the number of secondary infections 

produced by one primary infection in the population of susceptibles.  Therefore: 

 0
0

SR
a
β

=  (2.7) 

This number measures how fast the infection will spread.  If 0 1R < , the infection will not 

continue and the disease will disappear.  If 0 1R = , the infection will remain stable in 

transmission.  If , an epidemic will occur. (See [3])  To find the trajectories in the phase 

plane, we first divide the two equations of the model and get: 

0 1R >

 ( ) 1dI S a I a
dS SI S

β
β β
−

= = − +
−

 (2.8) 

Separation of variables and integration yields: 

 logaI S S
β

c= − + +  (2.9) 

where c is an arbitrary constant of integration.  Equation (2.9) can be defined as the following 

quantity: 

 ( , ) logaJ S I S I S
β

= + −  (2.10) 

where J(S,I)=c.  Different constants will give different trajectories and this constant can be 

obtained by knowing the initial values of and 0, ,S I S 0I .  We now have: 

 0 0 0 0 0( , ) logaJ S I S I S c
β

= + − =  (2.11) 
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If we assume a population of size K and introduce a small number of infecteds into the 

population so  and , we can determine 0S K≈ 0 0I ≈ 0
KR
a
β

=  from equation (2.7).  Taking the 

fact that li  and lim ( ) 0
t

I t
→∞

= m ( )
t

S t S∞→∞
= , we can find 0 0( , ) ( ,0)J S I J S∞= .  This will yield: 

 0log loga aK S S
β β

S∞ ∞− = −  (2.12) 

This helps to determine the reproduction number because it will give an expression for 
a
β  in 

parameters that can be determined: 

 0log SaK S
Sβ∞
∞

− =  (2.13) 

 

0log S
S

a K S
β ∞

∞

=
−

 (2.14) 

Note  because the initial number of susceptible will be greater than the number of 

susceptible who will become infected.  This will occur because there are some who will not 

come into contact with the disease. 

0S S∞>

2.3 Basic SIS Model 

 The SIS model is another type of model to study infectious diseases.  In this model, the 

infected will return to the susceptible class after recovery.  This model is more effective to use 

when studying sexually transmitted diseases.  The simplest model, which was also given by 

Kermack and McKendrick is: 

 dS SI aI
dt

β= − +  (2.15) 
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 dI SI aI
dt

β= −  (2.16) 

This model is different than the SIR model in that the recovered members will return to the 

susceptible class at a rate of aI instead of moving to a recovered class.  Just as in the SIR model 

the total population is constant, since ( )S I 0′+ = .  Again, let the constant population be 

represented by K.  If , we can replace S by K-I and reduce the model to a single 

differential equation.  This equation is: 

K S I= +

 2

( )

( )

( ) (1

dI I K I aI
dt

K a I I
IK a I aK

β

β β

β )

β

= − −

= − −

= − −
−

 (2.17) 

This is a logistic equation with a growth rate of K aβ −  and a carrying capacity of aK
β

− .  An 

analysis of this will show that if 0K aβ − <  or 1K
a
β

< , then for any , we see that 

 and l .  If 

0 0I >

lim ( ) 0
t

I t
→∞

= im ( )
t

S t K
→∞

= 1K
a
β

> , then for any , we will see that 0 0I > lim ( )
t

aI t K
β→∞

= −  

and lim ( )
t

aS t
β→∞

= .  As seen here, there is a single limiting value for I and this limiting value is 

determined by the quantity, K
a
β , regardless of the initial rate of infection.  The infection will 

disappear or the number of infected will approach zero when 1K
a
β

< .  Hence the equilibrium 

I=0 and S=K is considered the disease free equilibrium.  If 1K
a
β

> , the infection will continue.  
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The equilibrium, I K
a
β

= − , which corresponds to aS
β

= , is defined as the endemic 

equilibrium. 

 The dimensionless quantity, K
a
β , is the reproduction number for our system, noted as 

0
KR
a
β

= .  In Section (2.2), we discussed that the value of 0R  was the threshold parameter.  We 

also defined 0R , as the number of secondary infections produced by one primary infection in the 

population of susceptible.  The reproduction number helps determine the path which the disease 

will take.  If 0
KR
a
β

= , where Kβ is the number of contacts made by an average infected per 

unit of time and 1
a

 is the mean infected period, we can clearly see if 0 1R < , the infection will 

disappear and if , the infection will persist. 0 1R >
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CHAPTER THREE – INTRA-HOST DYNAMICS OF HIV 

3.1 Introduction to intra-host dynamics of HIV 

To understand how HIV destroys the immune system, we first must understand how the 

immune system works.  When a foreign substance, or antigen, enters the body, the body will 

initiate an immune response.  This immune response starts with macrophages and monocytes.  

These cells are the body’s first defense against the antigen.  They will seek out the antigen, 

surround it and overtake it.  This process is known as phagocytosis.  The macrophages will then 

analyze the content of the antigen and pass this information along to the CD4+ T lymphocytes, 

also called CD4+ T cells.  The CD4+ T cells will call for the production of more CD4+T- cells 

or will call for the production of types of T-cells such as the CD+8-T cells.  Another weapon 

used by the body’s defense system is the B lymphocytes or B cells.  These cell produce 

antibodies specifically engineered to destroy the pathogen detected by the macrophages. (See 

[7]) 

HIV is considered a lentivirus, meaning slow virus, which is a subclass of the retrovirus.  

In general, a virus will insert their own DNA into the host cell.  When the host cell replicates 

their DNA, the virus’ DNA is also replicated.  A retrovirus, like HIV, will insert RNA rather 

than DNA into the host.  Retroviruses have a unique enzyme , reverse transcriptase. (See [5]).  

This enzyme will prepare a DNA copy of the RNA genome into the host.  This DNA copy is 

eventually inserted into the genome of the host cell where the virus will persist for years and is 

impossible to eradicate. (See [19])  The HIV DNA will get copied every time the host cell 

divides. 
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On the cellular level, the HIV particles target the CD4+ T lymphocyte.  It attracts the 

CD4+T-lymphocyte through a glycoprotein called gp120.  The protein enzyme, gp120, is located 

on the surface of the HIV particle and it is attracted to the CD4 protein on the surface of the T-c 

ells, macrophages, and monocytes.  The CD4+ T cell attaches itself to the virus and is infected. 

The HIV infection can typically be divided into three phases.  The first phase is the 

primary infection.  During this initial phase, the virus is present in the host and replicates in the 

manner describe previously.  Three to six weeks after infection, 50-75% of patients develop an 

acute viral syndrome. (See [19])  There is also a significant reduction of CD4+ T cells.  The 

second phase of HIV infection is the longest phase.  It is the phase in which there is a long 

asymptomatic period and latency occurs.  There are two major features of this phase.  The first 

feature is the permanent viral replication in the lymphatic tissue and lymphoid organs.  The 

second feature is the gradual decline of the CD4+ T cells.  The final phase of the HIV infection 

shows a sharp decline of CD4+ T cells and the emergence of clinical immunodeficiency and 

progression to AIDS.  The period of time from initial infection to the formation of AIDS can 

vary from person to person.  The median estimate is eight to eleven years without treatment and 

even longer with treatment. 

3.2 HIV Simple Model 

Stilianakis and Schenzle developed this basic model to describe the long term dynamics 

of HIV progression through the body and the eventual development of AIDS.  The basic 

biomedical assumption of this model is the genetic variation of HIV.  It is assumed that the 

infection rate is the major source for the increase and selection of the HIV mutants. 
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Table 1: Variables used in the simple model 
 
 Variable  

X Total number of susceptible CD4+ T cells 
Y Total number of productively infected CD4+ 

T cells 
V Total number of HIV particles 
K Factor that describes the increase of the 

CD4+ T cell infection rate 

 

 

 

 

The model consists of the following non-linear differential equations: 

 0
dX X KVX
dt

μ κ= Λ − −  (3.1) 

 0
dY KVX Y
dt

κ δ= −  (3.2) 

 dV Y V
dt

β γ= −  (3.3) 

 max(K
dK V K K
dt

ω= )−  (3.4) 

 The biological representation of each term in each equation will now be discussed in 

order to provide a better understanding of the system.  In the first equation, equation (3.1), Λ 

represents the constant rate at which new CD4+ Tcells are produced.  These newly produced 

CD4+ T cells are considered to be susceptible.  The term μX is the rate at which susceptible cells 

die.  The last term, , is considered a mass action term which describes the rate at which 

susceptible cells are infected by the HIV particles.  This mass action term is also seen in the first 

term of equation (3.2).  The second term in equation (3.2) is 

0KVXκ

Yδ .  This term describes the death 

rate of the infected CD4+ T cells. 

 The first term in equation (3.3) is βY.  This term represents the rate in which infectious 

viral particles infect the CD4+ T cells.  γV represents the rate at which virus particles are cleared.  
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In the last equation, equation (3.4), one term is seen.  This equation represents how fast the virus 

can reproduce within the host and the maximum amount of virus particles that can be see within 

the host at any particular time within the evolutionary process. 

 The rate at which the virus reproduces is called the virus reproduction number.  In this 

model it is a dynamic quantity and it changes over time.  The virus reproduction number is: 

 0
0

( )( ) K t XR t 0βκ
δγ

=  (3.5) 

This reproduction number will increase monotonically toward: 

 * 0 max 0
0

K XR βκ
δγ

=  (3.6) 

3.3 HIV Extended model 

The following model is an extension of the original basic model.  The extended model 

takes into account the total number of susceptible CD4+ T cells and how fast new CD4+ T cells 

become susceptible to the HIV infection.  

Table 2: Variables used in the extended model 
 
Variable  Initial Values 
X Total number of non-susceptible CD4+ T 

cells 
11

0(0) 0.7 2.5 10X X= = × ×  

S Total number of susceptible CD4+ T cells 11
0(0) 0.3 2.5 10S S= = × ×  

Y Total number of productively infected 
CD4+ T cells 

0(0) 0Y Y= =  

V Total number of HIV particles 0(0) 1V V= =  
Z Anti-HIV activity of the immune system 6

0(0) 10Z Z −= =  
P Fraction of new CD4+ T cells entering the 

pool of susceptible CD4+ T cells 
0(0) 0.3P P= =  

K Factor that describes the increase of the 
CD4+ T cell infection rate 

0(0) 1.0K K= =  

N Total number of uninfected CD4+ T cells 11
0 0 0(0) 2.5 10N N X S= = + = ×  
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The model consists of the following non-linear differential equations: 

 (1 )dX P
dt

Xα μ= − −  (3.5) 

 0 ( )
dS SP S KV
dt P d

α μ κ= − −
+

 (3.6) 

 0 (
( ) Y Y

dY SKV Z Y
dt P d

κ μ= − +
+

)δ  (3.7) 

 ( V V
dV Y
dt

β μ δ= − + )Z V  (3.8) 

 max( ) [ ( ) ]dZ g V f S X Z Z
dt

θ ρ= + + −  (3.9) 

 max(P
dP V P P
dt

ω )= −  (3.10) 

 max(K
dK V K K
dt

ω= )−  (3.11) 

where 

 1( )
01 ( )

cbf N bN c
N

+
=

+

 and ( ) Vg V
a V

=
+

 (3.12) 

N can be divided into the number of non-susceptible T cells, X, and the number of susceptible T 

cells, S.  Therefore, N=X+S.   

To understand the system, an understanding of what each term biologically represents 

must first be presented.  In equation (3.5), P is the fraction of new CD4+ T cells that enter the 

susceptible and 1-P is the fraction of new CD4+ T cells that remain unsusceptible to the HIV 

virus.  The first term in equation (3.5) is α(1-P) where α is the T cell production rate.  This term 

represents the immigration rate of new non susceptible T cells.  The second term is μX in which 
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μ is the natural death rate of the unsusceptible cells.  Therefore, this term represents how many 

non susceptible CD4+ T cells die. 

Equation (3.6) represents the dynamics of the susceptible cells in the system.  The first 

term, αP, describes the immigration rate of the susceptible CD4+ T cells.  The second term, μS, 

represents the natural death rate of the susceptible cells.  The last term in equation (3.6) is 

0 ( )
SKV

P d
κ

+
.  This is a mass action term which describes the infection process between cells 

and viruses.  In particular, 
( )

S
P d+

 describes the dynamics changes in the susceptible cells.  The 

variable, P, in this term is very important in helping determine the course of the infection and the 

progression of the disease.  In fact, P shows that more cells can be attacked and infected by the 

virus than the immune system can combat.   

Equation (3.7) has many terms and this equation determines how many productively 

infected cells are in the blood.  The first term is the same mass action term that is seen in 

equation (3.6).  The second term in equation (3.7) is ( )Y Y Z Yμ δ+ .  Yμ  represents the death rate 

of productively infected cells and Y Zδ  represents how fast these dead cells are removed from the 

system.  Equation (3.8) describes the number of HIV particles that are produced and destroyed.  

The first term in equation (3.8) is Yβ .  In this term, β, describes the rate at which HIV particle 

cells are produced from infected cells.  The second term, ( )V V Z Vμ δ+ , describes the rate at 

which HIV particles are cleared and eliminated.  Vμ  is the rate in which virus particles are 

cleared and V Zδ  represents the anti-HIV activity and elimination. 

Equation (3.9) is the most complicated equation within the model because not much is 

known about the dynamics of the HIV specific immune response, therefore, a general equation is 
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used to model this response.  The equation shows the coupling of a time dependent decline of the 

CD4+ T cells and the intrinsic features of the immune response.  The variable, ρ, in equation 

(3.9) represents the HIV specific immune response.  This response occurs independently of the 

number of HIV particles that are present in the body.  The function, g(V), models how the 

immune response is activated depending on the quantity of the virus.  The term, 

max[ ( ) ]f S X Zρ + , is the rate once primary infection occurs in which HIV will start producing 

specific antibodies and the cytotoxic cells will start multiplying.  Once this occurs, the immune 

system will eventually become independent of the number of HIV particles and infected cells.  In 

equation (3.9), the function f(N) describes how the activity of the immune system is related to the 

number of available uninfected cells.  This function also takes account of the immune system’s 

ability to combat HIV when the number of CD4+ T cells is not sufficiently high.   

Equation (3.10) describes the increase in the rate of the fraction of new cells coming from 

the pool of susceptible cells and how they correspond to the generation and selection of HIV 

mutants.  Equation (3.10) describes the rate at which the HIV infection increases due to the 

reproduction of each virus particle. 

The virus reproduction number is also an important value to discuss.  The reproduction 

number represents how quickly the virus is reproducing.  The HIV reproduction number must be 

above one in order to show a persistent infection.  The virus reproduction number for this model 

is: 

 0
0 ( )( )(Y Y V V

KSR
)Z Z P d

βκ
μ δ μ δ

=
+ + +

 (3.13) 

If the values, S, Z, K could be held at fixed values, , , ,S Z K P , the biological interpretation would 

be that one HIV particle will generate 0R  secondary particles into the host.  At initial HIV 
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infection with time, t, equal to 0, the virus reproduction number has a value of 10 and is 

represented by the following equation: 

 

 0 0
0

0( )(Y V

SR
P d )

βκ
μ μ

=
+

 (3.14) 

This is the initial reproduction number with no anti-HIV activity.  A reproduction number which 

represents the presence of a fully activated anti-HIV activity with a maximum number of 

susceptible cells can also be found.  The reproduction number with maximum anti-HIV activity 

is represented by the following equation: 

 

 0 0

0( )( )(Y Y V V

SR
P d )

βκ
μ δ μ δ

′ =
+ + +

 (3.15) 

In this equation, Z and K are held at fixed values, max 1Z Z= =  and 1K = .  If R′ is greater than 

one, the infection will persist and cannot be cured.  The calculated value of R′  is 2.75.  This 

value confirms that a patient with HIV will not be able to overcome the infection. 

The HIV extended model is very complex and a full mathematical analysis is not 

possible.  However, this model is also more realistic and applicable because it takes into account 

the difference between susceptible and non susceptible CD4+ T cells.  Modeling with specific 

parameters will help explain the system better.  Most of the parameters used were found through 

clinical and experimental data. (See [19])  The parameter values are described in Table 3: 
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Table 3: Parameter Values used in the extended model 
 
Parameter  Values 
α  CD4+ T cell production rate 95 10× per day 
μ  Natural death rate of uninfected cells 0.02 per day 

0κ  Initial rate at which a HIV particle 
transforms a susceptible CD4+ T cell to a 
productively infected cell 

121.0 10−×  particles per day 

Yμ  Death rate of productively infected cells 0.6 per day 
0.6 per day Yδ  Maximum additional elimination rate of 

productively infected cell through anti-HIV 
activity 

β  HIV production rate from infected cells 150 particles per cell per day 

Vμ  Clearance rate of infectious virus particles 6 per day 

Vδ  Maximum additional elimination rate of 
virus particles through the anti-HIV activity 

5 per day 

θ  HIV dependent immune activation rate 610−  
ρ  Autonomous immune activation rate 0.1 per day 

Pω  Rate of increase of the fraction of 
susceptible cells by generation and selection 
of HIV mutants 

141.4 10−×  particles per day 

Kω  Rate of increase of reproduction per virus 
particle 

151.1 10−×  

a Constant 310  
b Constant 0.2 
c Constant 2.0 
d Constant 210−  

maxZ  Maximum ant-HIV activity 1.0 

maxP  Maximum fraction of susceptible cells 1.0 

 

maxK  Maximum infection rate of susceptible cells 
per infected cell 

20 

3.4 HIV Extended model Graphs and Biological Interpretation 

 The numerical results of the model using the parameter values from Section 3.3 were 

used to make the following graphs.  Figure 1 represents the number of CD4+ T cells.  Figure 2 

represents the number of HIV particles.  Figure 3 represents the anti-HIV activity.  Each of the 
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graphs represents the initial phase of the HIV infection within the first six months and supports 

the model predictions. 

 During primary infection there are a large number of virus particles which enter the body 

and start infecting the CD4+ T cells.  At the start of the infection, the number of HIV particles 

grows exponentially.  The HIV viremia causes a temporary reduction of CD4+ T cells which 

then recover and remain at a lower level than before the infection.  Notice in Figure 1 and Figure 

2 the increase and decrease of HIV particles and CD4+ T cells occurs at the same time around 15 

days.  Right after the initial infection, the anti-HIV activity mounts an attack against the invading 

virus particles and we see a resurgence of CD4+ T cells.  The anti-HIV activity increases rapidly 

and then reaches its max.  The anti-HIV activity is not the only reason the viremia starts to break 

down.  Note there are only a certain number of available CD4+ T cells to infect. 

 

Figure 1:  Decline of CD4+ T cells over first six months after initial infection. 
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Figure 2:  Increase in HIV particles within the first six months of infection. 

 
Figure 3:  Decline of anti-HIV activity within the first six months of initial infection. 
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 During the second phase of the infection for about ten years, the virus is slightly 

suppressed and increases slowly.  This is the latent period of the infection.  The model shows the 

immune system will hold to 50% of the normal value for about 10 years but will drop 

significantly during the two years following.  After about twelve years, the CD4+ T cells will 

drop below 20% which is the definition of disease progression to AIDS. (See [19]).  We see a 

decline of anti-HIV activity.  The HIV virus particles replicate freely and reach a higher 

concentration than that of the primary infection.  At this point, the immune system can’t control 

other infections. 

 

Figure 4:  Total cell count after 12 years.  Progression to AIDS occurs at y=0.2 
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Figure 5:  Anti-HIV activity after 12 years. 

 
Figure 6:  HIV particle increase over 12 years. 
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Surprisingly, the model predicts that the initial dose of HIV particles introduced into the 

host does not play an important role in progression to disease.  A highly activated CD4+ T cell 

pool is one of the main determinants to infection and disease progression.  If an individual is 

unhealthy, their CD4+ T cell pool would be larger than normal and would favor CD4+ T cell 

infection by the HIV virus.  If an individual has an initial value of 1200 per  CD4+ T cells, 

then the progression to disease occurs much faster.  If the initial value was 800 per  CD4+ T 

cells a much smoother progression occurs.  The following graph shows the impact of initial cell 

count on the infection process. 

3mm

3mm

 

Figure 7:  Total CD4+ T cell count after a 20% reduction of CD4+ T cell count (aqua), normal 
reduction (blue), and initial increase by 20% of CD4+ T cell count (red). 
 
 This model also looks at the dynamics of the susceptible and non-susceptible cells.  The 

variable, P, in the model represents the proportion of new CD4+ T cells which are becoming 
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susceptible.  The higher the amount of activated CD4+ T cells, the faster the virus progresses to 

disease.  The initial value of P is important to the dynamics of this model.  If the initial value of 

P is small, the immune system will hold at 50% for about twelve years.  However, if P is a larger 

fraction, the progression to disease is much faster.  This means through the generation and 

selection of HIV mutants, the HIV virus will increase the range of CD4+ T cells tropism over 

more and more CD4+ T cell clones, until after twelve years almost all of the clones are equally 

susceptible to be infected by the HIV virus. (See [19])  The variable, K, is the factor which 

represents the infection rate at which the CD4+ T cells increase by the generation and selection 

of HIV mutants. 

 

Figure 8:  Changes in the P value and the impact on the total cell count. 
 
 The speed at which P and K change are measure by Pω  and Kω .  These values also play 

an important role in the model and the disease progression.  If the value of Kω  were increased or 

 28



decreased by a factor of five, the reduction rate of the CD4+ T cells would look similar but the 

end result make be different.  If Kω  was decreased by a factor of five, the model predicts the 

individual’s life span would increase by two years.  If Kω  was increased by a factor of five, the 

model predicts a faster progression to disease around eight years.  There is a stark difference 

when the value of Pω  is changed by a factor of five.  If Pω  is increased by the factor, 

progression to disease occurs after six years. 

 

Figure 9:  Impact on CD4+ T cells when the values of Kω  are varied. 
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Figure 10:  Impact on CD4+ T cells when the value of Pω  is varied. 
 As seen through the graphs, P,K, Pω , and Kω  are very important to the intra-host 

dynamics of HIV.  The effect of the rate of the fraction of susceptible cells by generation and 

selection of HIV mutants is very important in determining the progression to disease. (See [19])   

HIV will affect many people in many different ways.  This model helps to predict the 

course that HIV will take during the three stages of the disease.  The model may loose 

applicability for the late part of the last stage of the disease because of the many other extreme 

pathological conditions.  In the latter stage of the disease, the immune system is completely 

compromised and is no longer able to fight infection.  When this happens, a simple cold could 

cause death.  Understanding the course of this disease through the model presented can help 

doctors and scientist find a cure for this epidemic. 
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CHAPTER FOUR – HTLV-I VIRUS AND ADULT T-CELL LEUKEMIA 

4.1 Introduction to the dynamics of HTLV-I 

As we have seen in the previous chapter, the HIV infection takes place through cell to 

cell contact with infected CD4+ T-cells and eventually takes over the immune system.  A virus 

that is similar and related to HIV is the first form of a human T-lymphotropic virus or HTLV.  

Just as HIV can lead to the AIDS virus, HTLV-I can lead to many diseases, including adult T-

cell leukemia/lymphoma.  Actively infected T-cells can infect other T-cells and can eventually 

convert to ATL cells.  This process typically happens during the latent phase of the virus.   

HTLV-I shares many similarities with HIV except in the range of diseases that it causes 

and how it causes these diseases.  There are two major virologic differences between HIV and 

HTLV-I.  One difference is that HTLV-I does not destroy the CD4+ T-cells but in fact, causes 

cell proliferation and transformation.  The other is that HTLV-I has a low replication rate but a 

high fidelity of replication, which results in a low viral burden and high genetic stability.  This 

reduces the possibility of immune escape. (See [14])   

HTLV-I is an enveloped double stranded RNA retrovirus which attacks the CD4+ T-

cells.  Transmission of HTLV-I is mainly associated with the cells.  The cells receive this virus 

through a glucose transporter called glut-1.  Once received, the virus inserts a DNA copy into the 

host cell.  The virus replicates with each mitotic cell division.  As cells continue to divide, the 

virus spreads.  HTLV-I will remain latent for many years before the virus causes Adult T-cell 

leukemia to manifest.  The latently infected cells contain the virus but do not produce DNA, 

therefore, the cells are incapable of contagion.  This chapter examines a math model which 

examines the process of how HTLV-I causes ATL. 
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Adult T-cell leukemia or lymphoma is a non-Hodgkins lymphoma.  Adult T-cell 

leukemia occurs first, which is a cancer of the cells.  Lymphona also occurs and is a cancer 

which attacks the B-lymphocytes and the lymphatic system.  There are four distinct clinical 

forms of ATL.  The disease can be classified as acute ATL, chronic ATL, lymphoma, and 

smoldering ATL.  Once ATL develops, most individuals will survive for only a year or two.  The 

median survival rate for the acute and lymphoma subtypes is less than one year.  Individuals with 

acute or smoldering ATL may survive longer. (See [8])  Standard chemotherapy is not effective 

against ATL. 

4.2 Mathematical Model of HTLV-I Infection to ATL 

Stilianakis and Seydel produced a basic math model that describes the T-cell dynamics of 

the HTLV-I infection and the development of ATL.   
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Table 4: Variables used in the Stilianakis & Sydel model 
 

 Variable  
T Number of susceptible CD4+ T cells 

 Number of latently infected CD4+ T cells LT  
Number of actively infected CD4+ T cells AT   
Number of leukemia T-cells MT  

 Λ Constant rate at which new CD4+ Tcells are 
produced (assumed to be susceptible) 

 κ Rate at which CD4+ T cells come into 
contact with actively infected cells. 

 α Transmission rate in which latent cells 
become actively infected cells 

 ρ Transmission rate in which actively infected 
cells convert to ATL cells 

 β ATL proliferation rate of a classical logistic 
growth model 

 Removal or death rate of susceptible 
CD4+T-cells 

Tμ  

 Removal or death rate of latently infected 
CD4+ T cells 

Lμ  

 
Aμ  Removal or death rate of actively infected 

CD4+ T cells  

 

This model consists of the following non-linear differential equations: 

 TT T AT Tμ κ′ = Λ − −  (4.1) 

 ( )L A LT T T TLκ μ α′ = − +  (4.2) 

 ( )A L AT T TAα μ ρ′ = − +  (4.3) 

 
max

(1 )M
M A M M

M

TT T T T
T

ρ β μ′ = + − − M  (4.4) 
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The terms in this model each have a biological meaning.  The first term in equation (4.1) 

is Λ .  This term is the rate in which the new CD4+ T cells are produced.  Each cell that is 

produced is assumed to be susceptible to the virus.  The second term in equation (4.1) represents 

the rate at which all CD4+ T cells die.  The last term in equation (4.1) is AT Tκ  and is considered 

the mass action term.  This term represents the infection process of susceptible cells which come 

into contact with actively infected CD4+ T cells.   

Equation (4.2) starts with the same mass action term that is seen in equation (4.1).  The 

second term is ( )L TLμ α+ .  Lets break this term up into two terms, L LTμ  and LTα  and explain 

them separately.  L LTμ  describes how fast the latently infected cells are dying.  LTα  describes 

how fast the latently infected cells become actively infected cells.  In general, the whole term 

describes the dynamics of the latently infected cells. 

The first term in equation (4.3) is LTα .  As seen in equation (4.2), this term represents 

how fast the latently infected cells become actively infected cells.  The next term is ( )A ATμ ρ+ .  

Again, lets break this up into two terms, A ATμ  , which describes the death rate of the actively 

infected cell, and ATρ , which describes how fast the actively infected cells become ATL cells.  

The terms in equation (4.3) represent the dynamics of the actively infected cells and how they 

change to ATL cells. 

Equation (4.4) is the equation which represents the growth of the leukemia cells, which 

follows the classical logistical growth function.  This equation begins with ATρ .  This term was 

also seen in equation (4.3) and it describes the speed at which actively infected cells become 

ATL cells.  The second term is 
max

(1 )M
M

M

TT
T

β − .  This term describes the growth of the ATL cells, 
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where β  is the speed for which the saturation level for leukemia cells is reached and  is the 

maximum amount of ATL cells that can be attained.  The last term,

maxMT

M MTμ , describes the death 

rate of the ATL cells.  This equation illustrates the dynamics of the ATL or leukemia cells in the 

body. 

The virus reproduction number for this model is: 

 0
0 ( )(L A

TR
)

ακ
μ α μ ρ

=
+ +

 (4.5) 

This number helps to determine how fast the disease will spread throughout the body.  0R  

represents the number of secondary infections caused by one primary infected cell introduced 

into the pool of susceptible CD4+ T cells during the infection period. (See [18])  If , a 

chronic infection is seen.  This is typical in most HTLV-I infections.  If , the virus cannot 

reproduce enough to sustain an infection.  The reproduction number will be important to 

determining the stability of the system. 

0 1R >

0 1R ≤

 

4.3 Stability of the system 

To analyze the stability of this system, we must first find the equilibrium points.  In order 

to find the equilibrium points, we set equations (4.1)-(4.4) equal to 0 and solve.  The equation 

has two possible solutions or steady states.  This system can have an uninfected steady state and 

a positively infected steady state.  For the uninfected steady state, the T-cell population will have 

the following value: 

 0
T

T
μ
Λ

=  (4.5) 
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The initial conditions would then be 0(0)T T= , (0) 0LT = , (0) 0AT = , and .  Therefore 

the uninfected steady state would be 

(0) 0MT =

0 0( ,0,0,0)E T= .  The positive infected steady state would 

be ( , , , )L A ME T T T T=  where: 

 

max max2

( )( )

( )( )
( )

( )( )
( )( )

( )
0

L A

T L A
L

L

T L A
A

L A

M M A M
M M

T

T

T

T T T
T T

μ α μ ρ
ακ

ακ μ μ α μ ρ
ακ μ α

ακ μ μ α μ ρ
κ μ α μ ρ

β μ ρ
β β

+ +
=

Λ − + +
=

+
Λ − + +

=
+ +

−
− − =

 (4.6) 

We are first going to examine the stability of the uninfected steady state.  For this state, 

the values yield the following Jacobian matrix associated with equations (4.1)-(4.4):  

 

 

max

0 0
0

0 0

0 0 1 2

T A

A L

A

M
M

M

T T
T T

J
T

T

μ κ κ
κ α μ κ

α μ ρ

ρ β μ

− − −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −= ⎜ ⎟

⎛ ⎞⎜ ⎟
− −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (4.7) 

 

In the uninfected steady state, the characteristic of the polynomial is found by taking the 

determinant of the Jacobian or det ( )J Iλ− .  The characteristic polynomial is: 

 2( ) ( )( )( ( ) ( )( )M T L A L Ap λ β μ λ μ λ λ λ μ α μ ρ μ α μ ρ ακ= − − − + + + + + + + −  (4.9) 
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The eigenvalues of ( ) 0p λ =  are: 

 

2

3,4

1

2

( ) 4(( )( )
( )

2 2

L A L A
TL A

M

T

μ μ α ρ μ α μ ρ ακ
μμ α μ ρ

λ

λ β μ
λ μ

Λ
+ + + − + + −

− + + +
= ±

= −
= −  (4.10) 

The eigenvalues help determine the stability of the steady state.  If 1 0Mλ β μ= − >  , then the 

proliferation rate of the abnormal cells are greater than the death rate and the infection increases.  

If 1 0Mλ β μ= − <  , then the death rate of the ATL cells is greater than the proliferation rate and 

the stability will actually depend on the other eigenvalues, 3 4,λ λ .  These eigenvalues are either 

real or complex conjugates.  In both cases, the real parts are negative if and only if the 

reproduction number is less than or equal to one or: 

 0
0 1

( )( )L A

TR ακ
μ α μ ρ

= ≤
+ +

 (4.11) 

 

If we assume that the ATL cells grow at an uncontrollable rate, then 1 0λ >  and the point, 

, where 0 0( ,0,0,0)E T= 0
T

T
μ
Λ

= , is an unstable saddle point.  If 1 0λ < , the reproduction number 

will determine the next steady state.  If 0 1R ≤  the uninfected steady state is the only state and it 

is stable.  The system will move to the endemically infected steady state when  and this 

represents a chronic infection.  When this occurs,  will become unstable and 

0 1R >

0E E  will exist. 

For the endemically infected steady state, the Jacobian and the determinant of equations 

(4.1)-(4.4) will give the following characteristic equation: 

 3 2 0A B Cλ λ λ+ + + =  (4.12) 
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Where: 

 
T L A A

T L T T L A A A A A

L A A A A L A A

A T
B T T T
C T T T T

μ μ μ ρ α κ
Tμ μ αμ μ ρ κμ κμ κρ ακ

κμ μ καμ κρμ ακρ

= + + + + +

= + + + + + +

= + + +

 (4.13) 

We must use the Routh-Hurwitz condition in order to further determine the stability of the 

system.  Note that  and   By the Routh-Hurwitz criteria, the eigenvalues of 

equation (4.12) will have negative real parts if and only if  and .  We 

have already noted that  and .  We can also show 

0, 0A B> > 0C >

0, 0A C> > 0AB C− >

0A > 0C > 0AB C− > , therefore, we can 

determine that the eigenvalues are always negative.  When the eigenvalues are negative, we can 

show that steady state is stable and the infection is chronic. 

4.4 Katri and Ruan Model and the stability of the system 

In 2004, Katri and Ruan developed a similar model which takes into account the 

difference between contact with the virus and infection by the virus.  This is denoted using a 1κ  

in certain equations.  Remember that κ  represents the rate at which uninfected cells are 

contacted by actively infected cells.  In this model, 1κ  represents the rate of infection of the T-

cells by the actively infected T-cells.  The equations for the Katri and Ruan model are the same 

as the original model but in equation (4.2) κ  is replace with 1κ  and the new model is: 

 TT T AT Tμ κ′ = Λ − −  (4.14) 

 1 ( )L A LT T T LTκ μ α′ = − +  (4.15) 

 ( )A L AT T TAα μ ρ′ = − +  (4.16) 

 
max

(1 )M
M A M M

M

TT T T T
T

ρ β μ′ = + − − M  (4.17) 
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This small change in the model changes the reproduction number to be: 

 1 0
0 ( )(L A

TR
)

ακ
μ α μ ρ

=
+ +

 (4.18) 

 The uninfected steady state and stability analysis remains the same as the Stilianakis & 

Seydel model, however the new positive infected steady state would be ( , , , )L A ME T T T T=  

where: 

 

max max

1

1

1

2

( )( )

( )( )
( )
( )( )

( )( )
( )

0

L A

T L A
L

L

T L A
A

L A

M M A M
M M

T

T

T

T T T
T T

μ α μ ρ
ακ

ακ μ μ α μ ρ
ακ μ α

ακ μ μ α μ ρ
κ μ α μ ρ

β μ ρ
β β

+ +
=

Λ − + +
=

+
Λ − + +

=
+ +

−
− − =

 (4.19) 

For this state, the values yield the following Jacobian matrix associated with equations (4.14)-

(4.19): 

 

max

1 1

0 0
0

0 0

0 0 1 2

T A

A L

A

M
M

M

T T
T T

J

T
T

μ κ κ
κ α μ κ

α μ ρ

ρ β μ

⎛ ⎞− − −
⎜ ⎟− −⎜ ⎟
⎜ ⎟− −= ⎜ ⎟

⎛ ⎞⎜ ⎟
− −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (4.20) 

We will denote: 

 
max

(1 2 )M
M

M

TM
T

β μ′ = − −  (4.21) 

Then the eigenvalues of this Jacobian are M ′ .  These eigenvalues will always be negative since 

maxM MT T> when the infection is chronic.  The Jacobian will yield the following characteristic 

equation: 
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  (4.22) 3 2
1 2 4 3 5( ) ( )a a a a aλ λ λ+ + + + + = 0

Where: 

 

2
1

2 2 2 2
2

2 2
3

2

4 1 1 1 1

5 1 1

( )

(

A L T A

A L A T L A A A

A L T A T L A T

T A A A T A L

T L T A A L L A

L A L A

T T A

a T

a T T T T

a T T

T
a
a

κ κμ κρ κμ ακ κμ

κ μ κ α μ κμ κ μ κ ρ
μ κμ μ κα μ κμ κμ ρ καμ καρ μ κρ

μ καρ κ αρ κ μ α μ μ κμ

μ κμ ρ μ καμ κ μ ρ μ μ
κ αρ κ μ ρ κ αμ κ μ μ
μ κ αρ μ μ κ

= + + + + +

= + + + + +
+ + + + + +

= + + +

+ + + +
= − − − −
= − + 1 1 )L T L T Aμ μ κ μ ρ μ κ αμ+ +

 (4.23) 

Note:  The coefficients were written in this manner for convenience and comparison in some 

later work by Katri & Ruan. 

Again, we must use the Routh-Hurwitz condition in order to further determine the stability of the 

system.  According to the Routh-Hurwitz condition, the eigenvalues of equation (4.23) will have 

negative real parts if and only if: 

 1 3 5

1 2 4 3 5

0, ( ) 0
( ) ( )

a a a
a a a a a
> + >

0+ − + >
 (4.24) 

 Proposition 1:.The infected steady state E  is asympototically stable if  and the 

inequalities in (4.24) are satisfied.  This occurs if (a) 

0 1R >

1κ κ> , or (b) 1κ κ= .(See [6]) 

.In order or check that this proposition is valid, we will use the following parameters and values 

estimated by Stilianakis & Seydel (See [18]). 
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Table 5: Variables and Parameter Values for contagion used in the model 
 
Parameter  Values 
T  Uninfected CD4+ T-cell population size 31000 / mm  

LT  Latently infected CD4+ T-cell density 3250 / mm  

AT  Actively infected CD4+ T-cell density 31.5 / mm  

MT  Leukemic CD4+ T-cell density 0 

Tμ  Natural death rate of CD4+ T-cells 30.6mm  per day 

Lμ  Blanket death rate of latently infected CD4+ 
T-cells 

0.006 per day 

Aμ  Blanket death rate of actively infected cells 0.05 per day 

Mμ  Death rate of leukemic cells 0.0005 per day 

1κ  Rate uninfected CD4+ T-cells become 
latently infected 

varies 

κ  Rate infected cells are contacted varies 
β  Growth rate of leukemic CD4+ T-cell 

population 
0.0003 per day 

α  Rate latently infected cells become actively 
infected 

0.0004 per day 

ρ  Rate actively infected cells become 
leukemic 

0.00004 per day 

maxMT  Maximal population level of leukemic 
CD4+ T-cells 

32200 / mm  

λ  Source term for uninfected CD4+ T cells 6 per day 

 

0T  Derived quantity which represents the 
CD4+ T-cell population for HTLV-I 
negative persons 

31000 / mm  

We can use these parameter values and the estimated values of κ  and 1κ , given by Stilianakis & 

Seydel on the basis of parameter values from the HIV infection process, to find that 0 1.25R =  if 

.  If we take 1 0.1κ = 1 0.1κ κ= = , we find that the inequalities in equation (4.24) are satisfied and 

part (b) of Proposition 1 is true.  Furthermore, the steady state, (800,187.5,1.5,1.3)E = , would 

be asymptotically stable.  If we take 0.5κ =  and 1 0.1κ = , we will again find that the inequalities 

in equation (4.24) are satisfied and part (a) of Proposition 1 is also true.  The steady state would 

be (800,37.38,0.3,0.6)E = , which is also asymptotically stable.  The following graph was 
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created using the parameter values given in Table 5.  The numerical simulation shows the 

number of healthy CD4+ T cells decreases dramatically while the latently infected cells increase, 

then remain steady. 

 

Figure 11:  Latently infected CD4+ T cells vs. Uninfected CD4+ T cells 
 

 HTLV-I is a virus in which only 5% of infected individuals will ever develop any disease 

such as Adult T-cell Leukemia.  We have shown through the stability analysis, we can predict 

when the infection will persist and become ATL. 
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CHAPTER FIVE - CONCLUSION 
 The interaction between HIV and the immune system is a dynamic process.  

Mathematical models are used to understand this process and explore which biological 

mechanisms cause disease progression.  There is no cure or vaccine for HIV at the present time, 

but the treatment regimes used by doctors extend the lives of HIV patients.  Doctors are also 

working to find a vaccine.  Future work should be focused on finding the optimal treatment 

schedule in order to prolong the life of patients and hopefully, find a cure.  

 It is unclear why some HTLV-I carriers progress to disease while the majority of them do 

not do so.  It is also not known why some infected individuals develop ATL and others develop 

HAM/TSP. (See [8]). Further studies should focus on finding the mechanism, which causes the 

virus to progress to disease and finding the genetic markers that will determine which disease the 

virus will trigger.  HTLV-I also has no known cure or vaccine.  However, a vaccine to prevent 

infection is currently being explored by scientists. 

In this thesis we examined many mathematical models which are used to predict the 

course of a disease.  Specifically, we examined two retroviruses, HIV and HTLV-I.  A basic 

model and background study was given in Chapter Two.  Chapter Three explored a model of the 

intra-host dynamics of HIV.  Graphs which were obtained from each of the models help predict 

what factors are important for HIV to progress to AIDS.  Chapter Four is concerned with two 

different models of HTLV-I progression to ATL.  Using analytical techniques we study the 

stability and asymptotic stability and with the aid of SIMULINK, we obtain graphs associated 

with the models to obtain information on progression of the disease.  
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The mathematical models presented here are useful and can help predict the course of the 

infection.  However, as more clinical data about the virus becomes available, the models can be 

refined further to reflect the new information.  
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APPENDIX A 
SIMULINK OF STILIANAKIS AND SCHENZLE EQUATIONS 
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Figure 12: Simulink of Stilianakis and Schenzle equations 
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APPENDIX B 
 MATLAB OF STILIANAKIS AND SCHENZLE EQUATIONS 
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clear all 
close all 

clc 

%first pass for plot of P=.1  in Figure 3 
%days for simulation to run 
days=4380; 

% defining variables 
alpha=5*10^9; 

mu=.02; 
k0=1*10^-12; 
mu_Y=.6; 

delta_Y=.6; 

beta=150; 
mu_V=6; 
delta_V=5; 
theta=10^-6; 
rho=.1; 
omega_P=1.4*10^-14; 

omega_K=1.1*10^-15; 
Zmax=1; 
Pmax=1; 
Kmax=20; 
a=10^3; 
b=.2; 
c=2; 

d=10^-2; 

% initial values of intergration 
N0=2.5*10^11; 

X0=.7*2.5*10^11; 
S0=.3*2.5*10^11; 
Y0=0; 

V0=1; 
Z0=10^-6; 
P0=.1; 
K0=1; 

% simulation 
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sim('untitled_P_01_08') 
% plotting 

t=X(:,1); 
x1=X(:,2); 
s1=S(:,2); 

y1=Y(:,2); 

v1=V(:,2); 

z1=Z(:,2); 
p1=P(:,2); 

k1=K(:,2); 
figure (8) 

hold on 
plot (t,(x1+s1+y1)/N0,'b') 
ylabel('(X+S+Y)/N0') 

xlabel('Time in days') 
title('Decrease of total cell count over time') 
%second pass for second plot on simulation with P=.8 from figure 3 
%days for simulation to run 
days=4380; 
% defining variables 
alpha=5*10^9; 

mu=.02; 
k0=1*10^-12; 
mu_Y=.6; 
delta_Y=.6; 
beta=150; 

mu_V=6; 
delta_V=5; 
theta=10^-6; 
rho=.1; 

omega_P=1.4*10^-14; 

omega_K=1.1*10^-15; 
Zmax=1; 
Pmax=1; 

Kmax=20; 
a=10^3; 

b=.2; 
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c=2; 
d=10^-2; 

% initial values of intergration 
N0=2.5*10^11; 
X0=.7*2.5*10^11; 

S0=.3*2.5*10^11; 

Y0=0; 

V0=1; 
Z0=10^-6; 

P0=.8; 
K0=1; 

% simulation 
sim('untitled_P_01_08') 
% plotting 

t=X(:,1); 
x1=X(:,2); 
s1=S(:,2); 
y1=Y(:,2); 
v1=V(:,2); 
z1=Z(:,2); 
p1=P(:,2); 

k1=K(:,2); 
plot (t,(x1+s1+y1)/N0,'g') 
%first pass for plot of omega_k  in Figure 6 
%days for simulation to run 
days=4380; 

% defining variables 
alpha=5*10^9; 
mu=.02; 
k0=1*10^-12; 

mu_Y=.6; 

delta_Y=.6; 
beta=150; 
mu_V=6; 

delta_V=5; 
theta=10^-6; 

rho=.1; 
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omega_P=1.4*10^-14; 
omega_K=1.1*10^-15; 

Zmax=1; 
Pmax=1; 
Kmax=20; 

a=10^3; 

b=.2; 

c=2; 
d=10^-2; 

% initial values of intergration 
N0=2.5*10^11; 

X0=.7*2.5*10^11; 
S0=.3*2.5*10^11; 
Y0=0; 

V0=1; 
Z0=10^-6; 
P0=.3; 
K0=1; 
% simulation 
sim('untitled_P_01_08') 
% plotting 

t=X(:,1); 
x1=X(:,2); 
s1=S(:,2); 
y1=Y(:,2); 
v1=V(:,2); 

z1=Z(:,2); 
p1=P(:,2); 
k1=K(:,2); 
plot (t,(x1+s1+y1)/N0,'r') 

%second pass for second plot on simulation with 5*omega_k from figure 6 

%days for simulation to run 
days=4380; 
% defining variables 

alpha=5*10^9; 
mu=.02; 

k0=1*10^-12; 
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mu_Y=.6; 
delta_Y=.6; 

beta=150; 
mu_V=6; 
delta_V=5; 

theta=10^-6; 

rho=.1; 

omega_P=1.4*10^-14; 
omega_K=5*1.1*10^-15; 

Zmax=1; 
Pmax=1; 

Kmax=20; 
a=10^3; 
b=.2; 

c=2; 
d=10^-2; 
% initial values of intergration 
N0=2.5*10^11; 
X0=.7*2.5*10^11; 
S0=.3*2.5*10^11; 
Y0=0; 

V0=1; 
Z0=10^-6; 
P0=.3; 
K0=1; 
% simulation 

sim('untitled_P_01_08') 
% plotting 
t=X(:,1); 
x1=X(:,2); 

s1=S(:,2); 

y1=Y(:,2); 
v1=V(:,2); 
z1=Z(:,2); 

p1=P(:,2); 
k1=K(:,2); 
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plot (t,(x1+s1+y1)/N0,'c') 
%third pass for second plot on simulation with 1/5*omega_k from figure 6 

%days for simulation to run 
days=4380; 
% defining variables 

alpha=5*10^9; 

mu=.02; 

k0=1*10^-12; 
mu_Y=.6; 

delta_Y=.6; 
beta=150; 

mu_V=6; 
delta_V=5; 
theta=10^-6; 

rho=.1; 
omega_P=1.4*10^-14; 
omega_K=1/5*1.1*10^-15; 
Zmax=1; 
Pmax=1; 
Kmax=20; 
a=10^3; 

b=.2; 
c=2; 
d=10^-2; 
% initial values of intergration 
N0=2.5*10^11; 

X0=.7*2.5*10^11; 
S0=.3*2.5*10^11; 
Y0=0; 
V0=1; 

Z0=10^-6; 

P0=.3; 
K0=1; 
% simulation 

sim('untitled_P_01_08'); 
% plotting 

t=X(:,1); 
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x1=X(:,2); 
s1=S(:,2); 

y1=Y(:,2); 
v1=V(:,2); 
z1=Z(:,2); 

p1=P(:,2); 

k1=K(:,2); 

plot (t,(x1+s1+y1)/N0,'m') 
% %first pass for plot of Omega_P in Figure 7 

% %days for simulation to run 
% days=4380; 

%  
% % defining variables 
%  

% alpha=5*10^9; 
% mu=.02; 
% k0=1*10^-12; 
% mu_Y=.6; 
% delta_Y=.6; 
% beta=150; 
% mu_V=6; 

% delta_V=5; 
% theta=10^-6; 
% rho=.1; 
% omega_P=1.4*10^-14; 
% omega_K=1.1*10^-15; 

% Zmax=1; 
% Pmax=1; 
% Kmax=20; 
% a=10^3; 

% b=.2; 

% c=2; 
% d=10^-2; 
%  

% % initial values of intergration 
% N0=2.5*10^11; 

% X0=.7*2.5*10^11; 
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% S0=.3*2.5*10^11; 
% Y0=0; 

% V0=1; 
% Z0=10^-6; 
% P0=.3; 

% K0=1; 

% % simulation 

% sim('untitled_P_01_08') 
% % plotting 

% t=X(:,1); 
% x1=X(:,2); 

% s1=S(:,2); 
% y1=Y(:,2); 
% v1=V(:,2); 

% z1=Z(:,2); 
% p1=P(:,2); 
% k1=K(:,2); 
% plot (t,(x1+s1+y1)/N0,'k--') 
%second pass for plot of 2*Omega_P in Figure 7 
%days for simulation to run 
days=4380; 

% defining variables 
alpha=5*10^9; 
mu=.02; 
k0=1*10^-12; 
mu_Y=.6; 

delta_Y=.6; 
beta=150; 
mu_V=6; 
delta_V=5; 

theta=10^-6; 

rho=.1; 
omega_P=2*1.4*10^-14; 
omega_K=1.1*10^-15; 

Zmax=1; 
Pmax=1; 

Kmax=20; 
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a=10^3; 
b=.2; 

c=2; 
d=10^-2; 
% initial values of intergration 

N0=2.5*10^11; 

X0=.7*2.5*10^11; 

S0=.3*2.5*10^11; 
Y0=0; 

V0=1; 
Z0=10^-6; 

P0=.3; 
K0=1; 
% simulation 

sim('untitled_P_01_08') 
% plotting 
t=X(:,1); 
x1=X(:,2); 
s1=S(:,2); 
y1=Y(:,2); 
v1=V(:,2); 

z1=Z(:,2); 
p1=P(:,2); 
k1=K(:,2); 
plot (t,(x1+s1+y1)/N0,'y') 
%third pass for plot of 1/2*Omega_P in Figure 7 

%days for simulation to run 
days=4380; 
% defining variables 
alpha=5*10^9; 

mu=.02; 

k0=1*10^-12; 
mu_Y=.6; 
delta_Y=.6; 

beta=150; 
mu_V=6; 

delta_V=5; 
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theta=10^-6; 
rho=.1; 

omega_P=.5*1.4*10^-14; 
omega_K=1.1*10^-15; 
Zmax=1; 

Pmax=1; 

Kmax=20; 

a=10^3; 
b=.2; 

c=2; 
d=10^-2; 

% initial values of intergration 
N0=2.5*10^11; 
X0=.7*2.5*10^11; 

S0=.3*2.5*10^11; 
Y0=0; 
V0=1; 
Z0=10^-6; 
P0=.3; 
K0=1; 
% simulation 

sim('untitled_P_01_08') 
% plotting 
t=X(:,1); 
x1=X(:,2); 
s1=S(:,2); 

y1=Y(:,2); 
v1=V(:,2); 
z1=Z(:,2); 
p1=P(:,2); 

k1=K(:,2); 

plot (t,(x1+s1+y1)/N0,'k') 
legend('P=.1','P=.8','Omega_K_&_P','5*Omega_K','1/5*Omega_K','2*Omega_P','.5*
Omega_P') 
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