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Abstract

We study spectral properties for invariant measures associated to affine iterated function

systems. We present various conditions under which the existence of a Hadamard pair implies

the existence of a spectrum for the fractal measure. This solves a conjecture proposed by

Dorin Dutkay and Palle Jorgensen, in several special cases in dimension 2.
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CHAPTER 1

INTRODUCTION

We will study some aspects of iterated function systems of affine type (IFS). The functions

are affine transformations defined on R2, taking values in R2. They are coupled by a matrix

R. When such a system is iterated an infinitely number of times it may give rise to a

fractal. What is a fractal? Some authors do not define fractal, but we do for the purpose

of this thesis; we define it in terms of dimension. The concept of topological dimension of a

set X, dimT (X), coincides with our intuition where a line has dimension one and an open

set in the plane dimension two. It is defined by a number of required properties, one of

which is invariance: dim(Ψ(X)) = dim(X) when Ψ is a homeomorphism. The Hausdorff

dimension of a set X in R2, dimH(X), is defined in a somewhat complicated way which is

well described in the literature [Fal03]. The Hausdorff dimension is a metric dimension and

so it is a parameter that describes the geometry of the set X.

Definition 1.1. (Mandelbrot) We say that a set X in Rd is a fractal if dimT (X) < dimH(X).

Then the difference dimH(X)− dimT (X), the fractal degree of X, shows how fractal X is.

Since dimT (X) only takes values on integers we have: A set X is fractal if dimH(X) is a

non-integer value.
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In our study we will be concerned only with a subset of all fractals, the affine class. We

first consider Rd, for d a positive integer.

Definition 1.2. Let R be a d × d expansive integer matrix. Expansive means that all its

eigenvalues have absolute value strictly bigger than one. Then R must be invertible. Let B

be a finite subset of Rd, with 0 ∈ B, and let N be the cardinality of B.

Define the maps

τb(x) = R−1(x+ b), (x ∈ Rd, b ∈ B) (1.1)

The set of such functions is the affine iterated function system IFS associated to R and B.

The property of R being expansive implies that the τb’s are contractions in some norm (for

example, for the classical middle-third Cantor set in one dimension R−1 would correspond

to the number 1/3) and the set B is {0, 2} which corresponds to the left and right third; the

fact that 1/2 is not in the set corresponds to the middle third being eliminated).

Next, we define the attractor of an iterated function system.

In general, for a contraction Ψ in a complete metric space, by the Banach fixed point

theorem, Ψ has a unique fixed point x, i.e., x satisfies x = Ψ(x).

We will start from Rd and then define another complete metric space, and another con-

traction Φ on it. Let K be the set of all non-empty compact sets in Rd. For A in K we set

Nε(A) = {x ∈ Rd : dist(x,A) ≤ ε}.

Define dH(A,B) = min{ε ≥ 0 : A ⊂ Nε(B) and B ⊂ Nε(A)}. Then dH(A,B) becomes a

metric on K, the Hausdorff metric. We are actually looking at each compact set as a point.
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This metric turns K into a complete metric space [YHK97]. Define Φ: K−→K by

Φ(A) =
N⋃
i=1

τb(A). (1.2)

According to [Hut81], the map Φ is a contraction on K. This is proved also,. e.g., in

[YHK97]. Hence there exists a unique compact set XB, called the attractor of the IFS, such

that XB = Φ(XB). In other words

XB =
⋃
b∈B

τb(XB). (1.3)

The compact XB will contain all the iterates of the τbs and no other points. Also, it is

enough to start from the origin, so

XB =

{
∞∑
k=1

R−kbk : bk ∈ B for all k ≥ 1

}
. (1.4)

Definition 1.3. The compact set XB defined uniquely by (1.3) (or, equivalently by (1.4)) is

called the attractor for the IFS (τb)b∈B.

The attractor XB is invariant in the following sense: starting from any x in XB all images

τb(x) will stay in XB. By restriction the individual mappings τb induce endomorphisms in

XB and these restricted mappings we also denote by τb.

For this IFS there exists [Hut81] a unique invariant probability measure µB, which we

define below.

Definition 1.4. By [Hut81] there exists a unique probability measure on Rd with the property:

µB(E) =
1

N

∑
b∈B

µB(τ−1
b (E)) for all Borel subsets E of Rd. (1.5)
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Equivalently,∫
f dµB =

1

N

∑
b∈B

∫
f ◦ τb dµB for all bounded Borel functions f on Rd. (1.6)

Moreover µB is supported on XB and is called the invariant measure of the IFS (τb)b∈B.

We say that µB has no overlap if

µB(τb(XB) ∩ τb′(XB)) = 0, for all b 6= b′ ∈ B. (1.7)

The measures µB, one for each IFS, are our objects of study. We now restrict our attention

to the case of dimension d = 2.

Geometrically, an IFS in this thesis is equivalent to a pair (X,µ) where X is a compact

subset of R2, µ is a probability measure whose support is X and determined uniquely by the

initial IFS mappings.

We want to understand X and µB better. For some IFS’s it may be possible to build

inside the Hilbert space L2(X,µB), where X by above is a compact subset of R2 and the

attractor of the IFS, an orthogonal basis for this Hilbert space composed of exponential

functions, i.e., a Fourier basis.

When is it possible to find such a basis for a particular IFS? As an illustration it is known

[JP98] that it is not possible for the middle-third Cantor set in one dimension. Of course,

the classical example when this is possible, is the unit interval with Lebesgue measure.

Existence of such a basis, we call it a Fourier basis, would make it possible to study the

geometry of X and its symmetries from the associated spectral data for the IFS by using

standard techniques from the theory of Fourier series.
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Several papers have displayed various classes of affine IFSs for which an orthogonal

Fourier basis exists in the corresponding L2(XB, µB), see e.g. [JP98, DJ06, DJ07, DJ08,

DJ09b, DHS09, DJ09a, DHJ09, Str00,  LW02,  LW06]. But in each case one or more extra

conditions must be met with in order to admit such a basis. This thesis takes a closer look

at those conditions in two dimensions.

Definition 1.5. For λ ∈ Rd, denote by eλ(x) the exponential function eλ(x) := e2πiλ·x.

A Borel probability measure µ on Rd is called spectral, if there exists a set Λ in Rd such

that the family of exponential functions

E(Λ) := {eλ : λ ∈ Λ}

is an orthonormal basis for L2(µ). In this case, the set Λ is called a spectrum of the measure

µ.

Definition 1.6. We will say that (B,L) is a Hadamard pair if B,L ⊂ Z2, 0 ∈ L, #L =

#B = N and the matrix

1√
N

(e2πiR−1b·l)b∈B,l∈L

is unitary.

If this is true we call (R,B,L) a spectral system.

Let S be the matrix RT and define the family of functions

τl(x) = S−1(x+ l) (x ∈ R2).
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Why is the set (τl)l∈L introduced? This principle, to study a related dual system, is not

uncommon in mathematics. To clarify this point, we underline that we are interested in the

measure µB associated to the IFS (τb)b∈B. The main question is whether this is a spectral

measure. The dual system (τl)l∈L is only considered in order to help us in constructing the

basis of exponentials.

It was proven in [DJ06] that for dimension one, the existence of a Hadamard pair is

sufficient for the measure µB to be spectral. This was a significant improvement of earlier

results, where also an analytical condition was necessary. In [DJ07], it was proved that this

condition and a certain “reducibility condition” (which we will discuss below), guarantee

that µB is a spectral measure. Dutkay and Jorgensen proposed the following conjecture.

Conjecture 1.7. If (R,B,L) is a spectral system then the measure µB is spectral.

We will study this conjecture in dimension 2, and we prove it is valid under various

conditions.

We will now discuss the iteration of points under the dual system L, i.e. we consider the

“dual” affine iterated function system defined by

τl(x) := S−1(x+ l), where S = RT , and l ∈ L.

As shown in [DJ06, DJ07] the dynamics of the dual IFS is essential in determining if µB

is spectral.
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When points are iterated by the affine maps in the IFS, some points will be periodic,

resulting in a cycle.

Definition 1.8. We say that a finite set C := {x0, x1, . . . , xp−1} is a cycle if there exists

l0, l1, . . . , lp−1 ∈ L such that τlk(xk) = xk+1 for k ∈ {0, . . . , p − 1}, where xp := x0. We say

that x0 is a periodic point and denote it by x0 =: ℘(lp−1, . . . , l0) to indicate the participating

maps. Certain cycles have a special character.

Let mB be the function

mB(x) :=
1

N

∑
b∈B

e2πib·x (x ∈ R2).

We call the cycle extreme, if |mB(xi)| = 1 for all i ∈ {0, . . . , p− 1}.

In dimension one a thorough study of the extreme cycles resolved the question of the

measure µB being spectral [DJ06]. In that case it was shown that existence of a Hadamard

pair is sufficient for the measure µB to be spectral. In addition, it was possible to compute

a spectrum explicitly by analyzing the extreme cycles.

So in dimension one the conjecture is true. If we add a special condition on the matrix R

and the sets B and L, the reducibility condition, it was proven in [DJ07] that the conjecture

is true also in higher dimensions. But as a general fact, in higher dimensions the possibilities

are much more varied. The function mB, which would be called a filter function in signal

processing, can now have infinitely many zeroes.

Also, the extreme cycles might in this case be replaced by infinite orbits. We will call them

infinite invariant sets, precise definitions will follow below. The study of these invariant sets
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was initiated by the French researchers Cerveau, Conze and Raugi [CCR96], for a different

but related purpose, and we will use their results in this thesis.

Repeating the Conjecture: if (R,B,L) is a spectral system then the measure µB is

spectral, we intend to give several good conditions for this conjecture to be true in dimension

two.

Two cases must be distinguished. Either there exists infinite minimal invariant sets or

all minimal invariant sets are finite, for a particular system.

In the latter case we call the Hadamard pair (B,L) simple, in the former case non-simple.

Also, we remind the readers that µB being spectral means that a complete orthonormal

Fourier series exists for the associated space L2 (µ,B).

Among our results we mention the following:

• Whenever (B,L) is a simple Hadamard pair the measure µB is spectral.

• If the eigenvalues of R are not rational then (B,L) is simple and the measure µB is spectral.

• If the determinant of R is a prime number then µB is spectral.

We will also give some conditions under which a non-simple pair gives rise to a spectral

measure µB.

To achieve the results above known facts about invariant sets are recalled in the next

section and new facts about them are added.

In this case the key to achieving results is once again to focus on the function
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mB(x) =
1

N

∑
b∈B

e2πib·x (x ∈ R2).

This function arises when considering the Fourier transforms of the invariance equation

for the measure µB

∫
f dµB =

1

N

∑
b∈B

∫
f ◦ τb dµB.

To see this, with our IFS the relation becomes (we temporarily disregard the subscript B on

the measure)

∫
f(t) dµ(t) =

1

N

∑
b∈B

∫
f(R−1(t+ b))dµ(t),

valid for all bounded Borel functions f .

The Fourier transform of a measure is defined by

µ̂(x) =

∫
e2πix·tdµ(t), (x ∈ R2).

Then

µ̂(x) =
1

N

∑
b∈B

∫
e2πix·R−1(t+b)dµ(t)

=
1

N

∑
b∈B

∫
e2πi(RT )−1x·(t+b)dµ(t)
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=
1

N

∑
b∈B

∫
e2πi(RT )−1x·tdµ(t)e2πi(RT )−1x·b.

Hence we have the useful relation

µ̂(x) = mB((RT )−1x)µ̂((RT )−1x) (x ∈ R2).

This result is one reason for our interest in the dual IFS:

τl(x) = (RT )−1(x+ l) (x ∈ R2, l ∈ L).

The mB-function and the dual IFS are also linked by the following formula:

Proposition 1.9. Suppose (B,L) is a Hadamard pair. Then

∑
l∈L

|mB(τlx)|2 = 1 (x ∈ R2),

which is valid irrespective of the value of x, a fact that we want to emphasize.

Proof. We have

mB(τlx) =
1

N

∑
b∈B

e2πib·(RT )−1(x+l) =
1

N

∑
b∈B

e2πiR−1b·(x+l).

Hence

|mB(τlx)|2 =
1

N

∑
b∈B

e2πiR−1b·xe2πiR−1b·l 1

N

∑
b′∈B

e−2πiR−1b
′ ·xe−2πiR−1b

′ ·l.

10



When summed over L this becomes

1

N2

∑
b,b′∈B

e2πiR−1(b−b′ )·x
∑
l∈L

e2πiR−1(b−b′ )·l.

For each fixed pair b 6= b
′
the sum over L is zero because the Hadamard matrix is unitary.

Hence the result follows.

This relation can be interpreted in probabilistic terms: |mB(τlx)|2 is the probability of

transition from x to τlx.

Definition 1.10. For x ∈ R2 we call a trajectory of x a set of points {τωn . . . τω1x|n ≥ 1},

where {ωn}n is a sequence of elements in L such that mB(τωn . . . τω1x) 6= 0 for all n ≥ 1.

The union of all trajectories of x is denoted by O(x) and its closure O(x) is called the

orbit of x.

If mB(τlx) 6= 0 for some l ∈ L we say that the transition from x to τlx is possible.

A closed subset F ⊂ R2, is called invariant if it contains the orbits of all its points. This

means that, if x ∈ F and l ∈ L are such that mB(τlx) 6= 0, then it follows that τlx ∈ F .

An invariant subset is called minimal if it does not contain any proper invariant subset.

Since the orbit of any point is an example of an invariant set, it must be that a closed subset

F is minimal if and only if F = O(x) for all x ∈ F .
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CHAPTER 2

A FUNDAMENTAL RESULT

Thus far we have defined and explained some preliminary ideas and facts. We also need a

fundamental result from earlier research [DJ07]. To present that it is necessary to utilize

more advanced concepts and they will be introduced below.

We found before that ∑
l∈L

|mB(τlx)|2 = 1,

irrespective of the starting point x. Defining Q(x) := QB(x) := |mB(x)|2 we write this

simpler as

∑
l∈L

Q(τlx) = 1, (2.1)

where Q(τlx) is interpreted as the probability of transition from x to τlx.

Introduce the space Ω of all infinite sequences, Ω = { (l1l2 . . . ) | lk ∈ L for all k ∈N} .

If the first n lks are fixed, all others varying freely, we have what we call an n-cylinder. The

set of all n-cylinders generate a σ-algebra Fn.
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Fix x ∈ Rd. (For this presentation we temporarily revert to dimension d.) The functions

τl of a particular IFS, acting on x and its iterates, give rise to a set of paths originating at

x. Each path is described by a set of indices, i.e. by a member of Ω.

The space Ω is now looked upon as a space of paths, originating at x.

Associated to Ω is a path-space measure Px. It is defined on the σ-algebra as follows.

For a function f on Ω which depends only on the first n coordinates

∫
f dPx =

∑
ω1,...ωn∈L

Q(τω1x)Q(τω2τω1x) . . . Q(τωn . . . τω1x)f(ω1, . . . ωn).

There is a question whether this definition of Px is well defined. For that we will define

and use the Radon notation for the measure Px:

For functions measurable on Ω

Px[f ] :=

∫
Ω

f(ω)dPx.

Now we show that Px is well defined.

If it is understood that f depends only on the first n coordinates, we temporarily denote

it by fn, it has to be checked that Px[fn] stays the same when f is viewed as depending on

only the first n+ 1 coordinates; f(ω) = f(ω1, . . . , ωn) = f(ω1, . . . , ωn, ωn+1). Then

Px[fn+1] =
∑

ω1,...,ωn+1

Q(τω1x) . . . Q(τωn+1 . . . τω1x)f(ω1, . . . , ωn+1)

=
∑

ω1,...,ωn

Q(τω1x) . . . Q(τωn . . . τω1x) ·
∑
ωn+1

Q(τωn+1τωn · · · τω1x)f(ω1, . . . , ωn)

13



=
∑

ω1,...,ωn

Q(τω1x) . . . Q(τωn . . . τω1x)f(ω1, . . . , ωn)

= Px[fn],

as we have claimed.

With this integral approach to the measure we now need the measure Px given on the

sets generating the σ-algebra.

When the first n components are l1, l2, . . . ln ∈ L, let Cn(i1, . . . , in) be a fixed n-cylinder

and for ω = ω1, . . . , ωn, let f(ω) = δi1ω1 . . . δinωn. Then we have

∫
f(ω)dPx =

∫
δi1ω1 . . . δinωndPx =

∫
χCn(i1, . . . , in)(ω)dPx = Px(Cn).

Hence

Px(Cn(i1, . . . , in)) = Q(τi1x)Q(τi2τi1x) . . . Q(τin . . . τi1).

Definition 2.1. Define the transfer operator

Tf(x) =
∑
l∈L

Q(τlx)f(τlx) (x ∈ Rd).

A measurable function h on Rd is said to be harmonic (with respect to R) if Th = h.

Our first aim is to construct an important harmonic function.

14



When F is a non-empty compact and invariant subset of Rd, we consider those elements

N(F ) in path space Ω such that the corresponding iterates by the τ -functions from some

point x eventually end up in F ;

N(F ) := { ω ∈ Ω | lim
n→∞

d(τωn . . . τω1x, F ) = 0}.

The fact that the maps τl are contractions implies that, for all x, y ∈ Rd,

lim
n
d(τωn . . . τω1x, τωn . . . τω1y) = 0.

Hence the definition of N(F ) does not depend on x.

The characteristic function of N(F ) is unaffected by a shift in the iteration from a point

x. What we mean is this: If ω = ω1ω2ω3 . . ., defining G(x, ω) := χN(F )(ω) we have

G(x, ω1ω2 . . . ) = G(τω1x, ω2ω3 . . . ); (2.2)

we say that G has the cocycle property.

Define hF (x) := Px(G(x, ·)). Observe that hF (x) = Px(χN(F )) =
∫
χN(F )(ω)dPx =

Px(N(F )).

Then 0 ≤ hF (x) ≤ 1. In [DJ07] it is proven that hF (x) is continuous.

Lemma 2.2. Let N,Q, Px and Ω be as above. Then for all measurable functions f on Ω

which depend only on the first n coordinates

15



∑
l∈L

Q(τlx)Pτlx[f(i, ·)] = Px[f ].

Proof. We have ∑
l∈L

Q(τlx)Pτlx[f(i, ·)]

=
∑
i

∑
ω1,...,ωn

Q(τω1τix) . . . Q(τωn . . . τω1τix)f(i, ω1, . . . , ωn)

= Px[f ].

Now we prove that hF is harmonic. By the cocycle property and the lemma

(ThF )(x) =
∑
i

Q(τix)hF (τix)

=
∑
i

Q(τix)Pτix[G(τix, ·)] =
∑
i

Q(τix)Pτix[G(x, i·)]

= Px[G(x, ·)] = hF (x).

So, for each invariant compact set F there is associated a harmonic function hF .

In [DJ07] it is shown that there is only a finite number of minimal compact invariant

subsets, and for any two of them F and G, d(F,G) > σ, where σ is a positive number and

d is the distance between the sets. (An invariant set is minimal if it does not contain any

proper invariant subset.)

We need to prove the following proposition from [DJ07], for its ideas.
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Proposition 2.3. Let F1, F2, . . . Fp be a family of mutually disjoint closed invariant subsets

of Rd such that there is no closed invariant set F with F ∩ ∪kFk = φ.

Then

Px(

p⋃
k=1

N(Fk)) = 1 (x ∈ Rd).

Proof. Assume this is not true; for some x ∈ Rd, Px(
⋃
kN(Fk)) < 1. Then defining h(x) :=

Px(
⋃
N(Fk)) we have

h(x) =

p∑
k=l

hFk
(x) < 1.

By above h is continuous and Th = h. Since

lim
n→∞

hF (τωn . . . τω1x) =


1, if ω ∈ N(Fk)

0, if ω /∈ N(Fk)

there are some paths ω /∈ ∪kN(Fk) such that limn→∞ h(τωn . . . τω1x) = 0.

Hence the set Z of zeroes of h is not empty. Also Th = h shows that Z is a closed

invariant subset. Claim: Z is disjoint from ∪kFk.

If not, Z ∩Fk 6= φ for some k ∈ {1, . . . , p}. Then take y ∈ Z ∩Fk. Because a transition is

always possible there exists ω ∈ Ω such that Q(τωn . . . τω1y) 6= 0 for all n ≥ 1. By invariance

τωn . . . τω1y ∈ Z ∩ Fk. Hence ω ∈ N(Fk), i.e. limn→∞ hFk
(τωn . . . τω1y) = 1.

But also, τωn . . . τω1y ∈ Z, so h(τωn . . . τω1y) = 0 for all n ≥ 1.
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This contradiction proves the claim. Hence

Px(∪kN(Fk)) = 1.

Before stating the basic result, a theorem and some definitions are needed. First, a

technical definition is given. When the subspace V in question is {0}, it ensures uniqueness

of paths emanating from a point x.

Definition 2.4. For a subspace V of Rd we say that the hypothesis “(H) modulo V ” is

satisfied if for all integers p ≥ 1 the equality τε1 . . . τεp0 − τη1 . . . τηp0 ∈ V , with εi, ηi ∈ L

implies εi − ηi ∈ V , i ∈ {1, . . . , p}.

Remark 2.5. The hypothesis “(H) modulo V “ can be rephrased as follows (assuming that V

is invariant for S): take two elements λ := εp + Sεp−1 + · · ·+ Sp−1ε1 and γ := ηp + Sηp−1 +

· · ·+Sp−1η1, with all digits εi, γi in L. If λ ≡ γmodV , i.e., λ− γ ∈ V then all the digits are

congruent modV , i.e., εi − ηi ∈ V for i ∈ {1, . . . , p}.

To see this, note that

τε1 . . . τεp0 = S−p(εp + Sεp−1 + · · ·+ Sp−1ε1) = S−pλ.

Similarly for γ.
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Then, using the invariance of V under S, we have that τε1 . . . τεp0 − τη1 . . . τηp0 ∈ V iff

λ − γ ∈ V . From this we see that the two formulations of the hypothesis “(H) modulo V “

are equivalent.

The hypothesis “(H) modulo V “ expresses the compatibility between the modV equiva-

lence and the dual IFS (τl)l∈L.

Theorem 2.6. [CCR96]. Let M be a minimal compact invariant set contained in the set of

zeroes of an entire function h on Rd.

(i) There exists V , a proper subspace of Rd (possibly reduced to {0}), such that M is contained

in a finite union R of translates of V .

(ii) This union contains the translates of V by the elements of a cycle { x0, τl1x0, . . . , τlm−1 . . . τl1x0}

contained in M , and for all x in this cycle, the function h is zero on x + V.

(iii) Suppose the hypothesis “(H) modulo V “ is satisfied. Then

R = { x0 + V, τl1x0 + V, . . . , τlm−1 . . . τl1x0 + V },

and every possible transition from a point in M ∩ (τlq . . . τl1x0 + V ) leads to a point in

M ∩ (τlq+1 . . . τl1x0 + V ) for all 1 ≤ q ≤ m− 1, where τlm . . . τl1x0 = x0.

(iv) Since the function Q is entire, the union R is itself invariant.

Definition 2.7. By saying that a Hadamard triple (R,B,L) can be reduced to Rr we mean

that the following conditions are satisfied:
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(i) The subspace Rr × {0} is invariant for S = RT so S can be brought to the form

S =

S1 C

0 S2

 , S−1 =

S−1
1 D

0 S−1
2

 ,

where S1, C and S2 are integer matrices, the S-matrices are quadratic and S1 is of order r,

less than d.

(ii) For all first components b1 of elements of B, the number of b2 ∈ Rd−r such that (b1, b2) ∈ B

is N2, independent of b1, and for all second components l2 of elements in L, the number of

l1 ∈ Rr such that (l1, l2) ∈ L is N1, independent of l2 and N1N2 = N .

(iii) The invariant measure for the iterated function system

τri(x) = (ST1 )−1(x+ ri), (x ∈ Rr),

where {r1, . . . , rN1} are the first components of the elements of B, is a spectral measure and

has no overlap.

Remark 2.8. We used here Proposition 3.2 in [DJ07] to simplify the definition.

Definition 2.9. Two Hadamard triples (R1, B1, L1) and (R2, B2, L2) are conjugate if there

exists an invertible integer matrix M whose inverse is also integer such that

R2 = MR1M
−1, B2 = MB1 and L2 = (MT )−1L1.
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If this is the case it means that the transition between the two IFSs (τb) is made by M ,

the transition between the two IFSs (τl) is made by (MT )−1 and that the qualitative features

of the two systems are the same.

We say that the Hadamard triple (R,B,L) satisfies the reducibility condition if

(i) for all minimal compact invariant subsets F , the subspace V in Theorem 2.6 can be chosen

such that there exists a Hadamard triple (R′, B′, L′) conjugate to (R,B,L) which can be

reduced to Rr, and such that the conjugating matrix M maps V onto Rr × {0}.

Here R′ = MRM−1.

(ii) for any two distinct minimal compact invariant sets F1, F2 the corresponding unions R1,R2

of the translates of the associated subspaces, given in Theorem 2.6, are disjoint.

Theorem 2.10. Let R be an expansive d× d integer matrix, B a subset of Zd with 0 ∈ B.

Assume that there exists a subset L of Zd with 0 ∈ L such that (R,B,L) is a Hadamard

triple which satisfies the reducibility condition. Then the invariant measure µB is a spectral

measure.

Now a proof of this theorem is outlined. The full proof is presented in [DJ07].

Outline of the proof. Guiding line: The relation
∑

F hF = 1 has to be utilized. Writing

this in terms of | µ̂B |2 this relation will ultimately translate into the Parseval equality for a

family of exponential functions.
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Consider a minimal compact invariant set F . By Theorem 2.6 there is a subspace V ,

invariant for S, such that F is contained in the union of some translates of V . Since the

reducibility condition is satisfied there exists a conjugated Hadamard triple (R′, B′, L′) which

can be reduced to Rr, and such that the corresponding matrix M maps V onto Rr × {0}.

Hence we can assume that V = Rr × {0}.

Combining Theorem 2.6 with a lengthy computation it is shown that, for some cycle

C := { x0, τl1x0, . . . , τlm−1 . . . τl1x0} , with τlm . . . τl1x0 = x0, F is contained in the union

R = { x0 + V, τl1x0 + V, . . . , τlm−1 . . . τl1x0 + V } , and R is an invariant subset.

The matrix R has the form

R =

A1 0

C A2

 ; hence R−1 =

 A−1
1 0

−A−1
2 CA−1

1 A−1
2

 .

By induction

R−k =

A−k1 0

Dk A−k2

 ,

where

Dk := −
k−1∑
l=0

A
−(l+1)
2 CA

−(k−l)
1 .

Combining this with the fact that

XB =

{
∞∑
k=1

R−kbk | bk ∈ B

}
,
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we will decompose XB into two components X1 and X2.

Any element (x, y) in XB can be written as:

x =
∞∑
k=1

A−k1 rik , y =
∞∑
k=1

Dkrik +
∞∑
k=1

A−k2 ηik .

If we now define

X1 :=

{
∞∑
k=1

A−k1 rik | ik ∈ { 1, . . . , N1}

}

and let µ1 be the invariant measure for the iterated function system

τri(x) = A−1
1 (x+ ri), i ∈ {1, . . . , N1}, where N1 is a factor of N , then the set X1 becomes

the attractor of this iterated function system.

In this way XB is decomposed into the detailed expressions of X1 and X2 and it is also

accomplished to decompose the measure µB as a product of the measure µ1 on X1 and some

measure µ2.

The cycle C above, associated to the minimal invariant set M ,

C = { x0, τl1x0, . . . , τlm−1 . . . τl1x0} with τlm . . . τl1x0 = x0, is decomposed as well.

If y0 is the second component of x0 and h1, . . . , hm are the second components of l1, . . . , lm,

we arrive at C2 = { y0, τh1y0, . . . , τhm−1 . . . τh1y0} . This cycle is proven to be extreme.

All these facts and partial results for the components are put to work in several compu-

tations, and the Fourier transforms of the decomposed measures are computed.
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Let F1, . . . , Fp be the list of all minimal compact invariant sets. For each k there is a

reduced subspace Vk and some cycle Ck such that Fk ⊂ Rk := Ck+Vk, with mutually disjoint

Rk. One of the results give, for each k, a set Λ(FK) ⊂ Zd such that

hRk
(x) =

∑
λ∈Λ(Fk)

|µ̂B(x+ λ)|2 (x ∈ Rd).

By the Proposition 2.3
p∑

k=1

hRk
(x) = 1.

Hence ∑
k=1

∑
λ∈Λ(Fk)

|µ̂B(x+ λ)|2 = 1.

Can λ appear twice here? Fix λ0 ∈ ∪kΛ(Fk) and let x = −λ0. One term in the sum

is 1, since µ̂B(0) = 1, and the others 0. Thus λ cannot appear twice. We also see that

µ̂B(−λ0 +λ) = 0 for λ 6= λ0, which implies that e2πiλ0·x and e2πiλ·x are orthogonal in L2(µB).

Recall the notation ex(t) = e2πix·t. The double sum above now turns into

‖e−x‖2
2 =

∑
λ∈

⋃p
k=1 Λ(Fk)

|< e−x|eλ >|2 (x ∈ Rd).

Hence the closed span of the family of functions { eλ | λ ∈ Λ} , with Λ = ∪pk=1Λ(Fk),

contains all the functions ex.

By the Stone-Weierstrass Theorem it contains L2(µB). Thus, {eλ | λ ∈ Λ} forms an

orthonormal basis for L2(µB).
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Remark 2.11. Suppose now that all the minimal invariant sets are finite. Then they will

have to be extreme cycles. In this case, the subspaces V in Theorem 2.6 can be taken to be

the trivial one V = 0; hence the reducibility condition is automatically satisfied. Combining

this with the results from [DJ06] and [DJ07] we obtain that the measure µB is spectral and

a spectrum can be obtained from the extreme cycles. We make this precise in the next

theorem.

Theorem 2.12. Suppose (B,L) is a Hadamard pair and all minimal compact invariant sets

are finite (hence extreme cycles). Then the measure µB is spectral with spectrum Λ, where

Λ is the smallest subset of Rd that contains −C for all extreme cycles C, and which has the

invariance property

RTΛ + L ⊂ Λ.

Example 2.13. We illustrate some of the notions introduced above with an example in di-

mension one. This is the first example of a fractal measure which admits an orthonormal

Fourier basis, i.e., it is a spectral measure. The example was introduced by Jorgensen and

Pedersen in [JP98]. Consider the function σ(x) = 4x mod Z. Its inverse has two branches

τ0 and τ2.
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Let I = [0, 1] and define on I τ0(x) = x
4

and τ2(x) = x+2
4

. These mappings form an affine

IFS with R = 4. When infinitely iterated they give rise to a minimal invariant compact set

X4, now called the quarter Cantor set.

In this example the Hausdorff dimension dH is easily computed as

log(number of replicas)

log(magnification factor)
=

ln 2

ln 4
=

1

2

Computing the spectrum: We can write τb(x) = R−1(x + b) with R = 4 and b ∈ B =

{0, 2}. We look for a Hadamard pair (B,L). L has to be of the form {0, l}, l an integer.

There is a unique invariant probability measure µB such that µB = 1
2
(µB ◦τ−1

0 +µB ◦τ−1
2 )

whose support is X4. Important is also the function

mB(x) :=
1

N

∑
b∈B

e2πib·x =
1

2
(1 + e2πi·2x).

In general, the elements of the Hadamard matrix H are

1√
N

(e2πiR−1b·l)b∈B,l∈L.

In this case

H =
1√
2

1 1

1 e2πi 1
4

2l


which is unitary iff l is an odd integer.

According to [DJ06], for each such set L there is a spectrum Λ(l) and a basis ONB for

L2(X4, µB). Here ONB := {e2πiλx : λ ∈ Λ(l)}.
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To find Λ(1) we look at the extreme cycles; the cycles where |mB(x)| = 1 for each x in

the cycle. For L = {0, 1} there are very few possibilities; the only extreme cycle is {0}, the

iterates of τ0 when starting from 0. By the theory the spectrum then consists of the iterated

images of the correspondence x→ 4x+ l, l ∈ {0, 1}. Hence Λ(1) is found to be

{
n∑
k=0

4klk : lk ∈ {0, 1}} = {0, 1, 4, 5, 16, 17, 20, 21, 24, 25, . . . }

for n = 0, 1, 2, . . .

In this case we shall confirm the orthogonality of the exponentials by a direct computa-

tion. The general relation ∫
fdµ =

1

N

∑
b∈B

∫
f(τB(x))dµ

for all bounded Borel functions translates into

∫
fdµ =

1

2
(

∫
f(x/4)dµ+

∫
f(x/4 + 1/2)dµ).

Then ∫
e2πitxdµ(x) =

1

2
(

∫
e(1/2)πitxdµ(x) +

∫
e(1/2)πitxeπitdµ(x)).

Let µ̂(t) =
∫
e2πitxdµ(x) and H(t) = 1

2
(1 + eπit). Then we have the neat relation

µ̂(t) = H(t)µ̂(
t

4
).

With the assumptions, set

P := {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums}.
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Then the functions {eλ : λ ∈ P} are mutually orthogonal in L2(X4, µ) where

eλ(x) := e2πiλx.

Indeed let λ =
∑

4klk, λ
′
=
∑

4kl
′

k be points in P , and assume λ 6= λ
′
. Then

∫
eλeλ′dµ =

∫
e2πi(λ

′−λ)xdµ(x)

= µ̂(λ
′ − λ)

= µ̂(l
′

0 − l0 + 4(l
′

1 − l1) + . . . )

= H(l
′

0 − l0)µ̂(l
′

1 − l1 + 4(l
′

2 − l2) + . . . ).

If l0 6= l
′
0 then H(l

′
0 − l0) = 0 since the matrix H is unitary. If not, there is a first n such

that ln 6= l
′
n, and then

µ̂(λ
′ − λ) = µ̂(4n(l

′

n − ln) + 4n+1(l
′

n+1 − ln+1) + . . . )

= H(l
′

n − ln)µ̂(l
′

n+1 − ln+1 + . . . ) = 0

since H(l
′
n − ln) = 0.
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Spectra have also been computed for l other than 1, see [DJ06, DHS09]. If

l ∈ {5, 7, 9, 11, 13, 17, 19, 23, 29}

then one can prove that

Λ(l) = lΛ(1) = {lλ : λ ∈ Λ(1)}. However, Λ(3),Λ(15),Λ(27), and Λ(63) are not so easily

described. For example,

Λ(3) = {l0 + 4l1 + · · ·+ 4nln : lk ∈ {0, 3}} ∪ {l0 + 4l1 + · · ·+ 4nln − 1 : lk ∈ {0,−3}},

for n = 0, 1, 2, . . . .
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CHAPTER 3

SIMPLE HADAMARD PAIRS

Definition 3.1. We say that the Hadamard pair (B,L) is simple if there are no infinite

minimal compact invariant sets.

Theorem 3.2. If (B,L) is simple then the measure µB is spectral.

Proof. Follows from [DJ07] and the spectrum is described in Theorem 2.12.

Theorem 3.3. Assume the eigenvalues of the matrix R are not rational. Then the Hadamard

pair (B,L) is simple and the measure µB is spectral.

Proof. We distinguish two cases: Suppose first that the attractor X(L) is contained in a

finite union of some translates of a subspace V of dimension 1.

Then, in this case since mB is an entire function, mB restricted to any compact subset

of these translates of V , in particular to X(L), will have only finitely many zeros. Then one

can use the results in [DJ06] to conclude that µB is spectral.

In the other case, X(L) is not contained in a finite union of translates of a subspace.

Consider M , a minimal compact invariant set. We will prove that M has to be an extreme
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cycle. Suppose not. By Theorem 2.6, M is contained in a finite union R of translates of

some proper subspace V , and R is invariant. If V = {0}, then M coincides with the finite

cycle in Theorem 2.6 and every possible transition from a point y = τlq . . . τl1x0 in the cycle

leads to a point τlq+1y in the cycle. Then |mB(τlq+1y)| = 1 and so M would be extreme.

Hence we have obtained that V has to be one-dimensional if M is not extreme.

We claim that there exists a ∈ R2 such that mB(a+ v) = 0 for all v ∈ V .

First there must exists some l ∈ L and some x ∈ R such that τlx 6∈ R. Otherwise, X(L)

is contained in R and this would contradict our assumption. Let x = y + v with v ∈ V . We

have τlx = S−1(y+ l) +S−1v, and since V is invariant for S, it follows that S−1(y+ l) is not

in V . But then for any x′ = y + v′ ∈ R with v′ ∈ V , we obtain τlx
′ is not in V .

Since R is invariant this means that mB(τl(y + v′)) = 0 for all v′ ∈ V , and therefore

mB(S−1(l + y) + S−1v′) = 0, for all v′ ∈ V.

But S−1V = V so we obtain our claim.

On the other hand, mB is Z2-periodic. So mB(a + v + k) = 0 for all v ∈ V, k ∈ Z2. If

V is not a rational subspace (i.e., it is not spanned by a vector with rational components),

then V + Z2 is dense in R2, and that would imply that mB is constant 0, a contradiction.

Hence V must be a rational subspace. Let (p, q)T be a rational vector that spans V . Since

V is invariant, (p, q)T is an eigenvector for S. But, as S has integer entries, this means that
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S has a rational eigenvalue. Then, since the sum of the eigenvalues is the trace of S, so an

integer, both of them have to be rational.

Lemma 3.4. Let R be an 2×2 integer matrix with rational eigenvalues. Then the eigenvalues

are integers. Let λ be one of the eiganvalues.

There exists an integer matrix M with detM = 1 such that MRM−1 has the form

MRM−1 =

λ n

0 q


Proof. Let

R =

a b

c d


The eigenvalues λ verify the characteristic equation

λ2 − Tλ+D = 0,

where T = Trace(R) = a+ d and D = detR = ad− bc. So

λ =
T ±
√
T 2 − 4D

2
.
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If the eigenvalues are rational then T 2 − 4D is a perfect square. Note also that T 2 − 4D

is even iff T is even. Therefore, if λ is rational then λ is an integer.

Let λ be one of the two eigenvalues. Then solving the equation Rx = λx we obtain that

R has an eigevector with rational components. Multiplying by the common denominator,

we see that R has an eigenvector (x, y)T with integer components, and dividing by the larges

common divisor, we can assume x and y are mutually prime.Then there exists z, t ∈ Z such

that xt+ yz = 1. Let

M−1 :=

x −z
y t


Then detM = 1 and M is an integer matrix. Also

RM−1 =

λx ∗
λy ∗

 so MRM−1 =

λ ∗
0 ∗



Corollary 3.5. Suppose the matrix R has a prime determinant. Then the measure µB is

spectral.

Proof. If R has prime determinant then R cannot have rational eigenvalues, because in this

case, by Lemma 3.4, it follows that the eigenvalues are integers, and since their product is

detR, one of them has to be ±1 since detR is prime. But R expansive and therefore the

eigenvalues are irrational so µB is spectral by Theorem 3.3.
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The following theorem was proved in [CHR97] in connection with the study of self-affine

tiles. It provides another case when the measure µB is spectral.

Theorem 3.6. [CHR97] If B is a complete set of representatives for Z2/RZ2 then µB is a

spectral measure, and the spectrum is a lattice.

Using our techniques we are able to be more specific and describe the spectrum of µB in

the case when the system (B,L) is also simple.

Theorem 3.7. Assume B is a complete set of representatives modulo RZ2 (hence also L

is a complete set of representatives modulo RTZ2). Assume in addition that (R,B,L) is

simple. Let C be the set of all extreme cycle points and let Λ be the smallest subset of R2

that contains −C and with the property RTΛ + L ⊂ Λ. Let Γ be the additive subgroup of R2

generated by C and Z2. Assume that Γ is a discrete lattice. Then Λ = Γ and Γ is a spectrum

for µB.

Proof. Take c ∈ C. Since c is a cycle point for (τl)l∈L there exist some c′ ∈ C and l0 ∈ L such

that τl0c
′ = c. Then RT c = c′ + l0.

Since any point in Γ is of the form

γ = a+

p∑
i=1

mici,
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for some a ∈ Z2, ci ∈ C and mi ∈ Z it follows that RTγ + l will also be in Γ. So

RTΓ + L ⊂ Γ. This implies that Λ ⊂ Γ.

To prove the reverse inclusion, we claim that for any γ ∈ Γ, there exists l ∈ L such that

τlγ ∈ Γ.

To see this, take

γ = a+

p∑
i=1

mici

as above.

Since L is a complete set of representatives modulo RTZ2, there exist a′ ∈ Z2 and la ∈ L

such that a = RTa′ + la. Also, for each i ∈ {1, . . . , p}, since ci is a cycle point, there exist

c′i ∈ C and li ∈ L such that τlici = c′i, which implies that ci = RT c′i − li. Then

γ = RT (a′ +

p∑
i=1

mic
′
i) + la −

p∑
i=1

mili.

Using again that L is a complete set of representatives, we have that there exist l ∈ L

and k ∈ Z2 such that

la −
p∑
i=1

mili = RTk − l.

Let γ′ = a+ k +
∑p

i=1mici ∈ Γ. We have γ = RTγ′ − l, so τlγ = γ′.

This proves our claim.
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Now take γ0 ∈ Γ. Then −γ0 ∈ Γ, thus there exist l1 ∈ L such that τl1(−γ0) =: −γ1 ∈ Γ.

This implies that γ0 = RTγ1 + l1. By induction, we can find l1, . . . , ln such that

−γn := τln . . . τl1(−γ0) ∈ Γ and this means also that γn−1 = RTγn + ln.

But τln . . . τl1(−γ0) converges to the attractor XL. Therefore if we take a ball B(0, r) that

contains XL, we have γn = −τln . . . τl1γ0 ∈ B(0, r) ∩ Γ for n large.

Since Γ is discrete, the set B(0, r) ∩ Γ is discrete. So −γn = τln . . . τl1γ0 will land in a

cycle for the IFS (τl)l∈L.

We claim that this is an extreme cycle.

To see that, note first for any extreme cycle point c one has

N =

∣∣∣∣∣∑
b∈B

e2πib·c

∣∣∣∣∣ ≤∑
b∈B

|e2πib·c| = N.

Hence we must have equality in the triangle inequality, and since 0 ∈ B, we get that

e2πib·c = 1, which means that b · c ∈ Z.

Then for any x ∈ Z2,

mB(x+ c) =
1

N

∑
b∈B

e2πib·(x+c) =
1

N

∑
b∈B

e2πib·x = mB(x).

So c is a period for mB.

Then for any γ ∈ Γ, with γ of the form
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γ = a+

p∑
i=1

mici

as above, with a ∈ Z2 and ci ∈ C, we have

|mB(γ)| = |mB(a+

p∑
i=1

mici)| = |mB(a)| = 1.

This shows that the cycle where −γn lands is an extreme cycle. So γn ∈ −C ⊂ Λ for

some large n. Then, iterating back we have γn−1 = RTγn + ln ∈ Λ. By induction, we get

γ0 ∈ Λ. Therefore Γ ⊂ Λ. Also, Theorem 2.12 shows that Λ is a spectrum for µB and this

proves the last statement.

Corollary 3.8. Let (R,B,L) be a Hadamard system. Let C be the set of all extreme cycle

point and let Γ be the additive subgroup generated by C and Z2. Then RTΓ + L ⊂ Γ and

every γ ∈ Γ is a period for mB, we have

mB(x+ γ) = mB(x), (x ∈ R2),

and b · γ ∈ Z for all b ∈ B.

Proof. Everything is contained in the proof of Theorem 3.7.

37



CHAPTER 4

NON-SIMPLE HADAMARD PAIRS

Before going into detail, first we have to prove the uniqueness of an important subspace,

namely the subspace associated to infinite minimal compact invariant sets as in Theorem

2.6, see Lemma 4.6. We recall some facts about invariant sets and we prove some additional

properties.

When (B,L) form a Hadamard pair, recall the notation

τl(x) = S−1(x+ l) with l ∈ L and S = RT ,

and for a cycle starting at x0 : x0 =: ℘(lp−1, . . . , l0) when the maps τlk are used: τlkxk = xk+1

for k ∈ { 0, . . . , p− 1} and xp := x0. In this situation we say that x0 is a periodic point and

that the cycle is extreme if | mB(xi) |= 1 for all i ∈ { 0, . . . , p− 1} .

Lemma 4.1. [CCR96] Let v = ℘(γm, . . . , γ1) be a periodic point. Suppose there exists

l1, . . . , ls ∈ L such that τls . . . τl1v is again a periodic point. Then l1 = γm, l2 = γm−1, . . . , so

τls . . . τl1v belongs to the cycle generated by v.

Definition 4.2. Suppose (R,B,L) is a spectral system. We are working with the dual IFS

(τl)l∈L. We say that a transition x→ τlx is possible if |mB(τlx)| 6= 0. We say that a set M
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is invariant, if for every x ∈M and every possible transition x→ τlx, the point τlx is also

in M .

Lemma 4.3. [CCR96] If M is a compact invariant set, then one of the following conditions

holds:

(i) M contains an extreme cycle.

(ii) M contains a non-isolated cycle.

Definition 4.4. We say that a union R of translates of a one-dimensional subspace V ,

R = {x0 + V, . . . , xm + V } is associated to minimal invariant sets if R is invariant and

contains an infinite compact minimal invariant set M . We also say that the subspace V is

associated to minimal invariant sets.

Lemma 4.5. Let M be an infinite compact minimal invariant set. Then M is a perfect set

hence uncountable.

Proof. By Lemma 4.3, there exists a cycle C in M . At least one of the points x0 ∈ C has a

possible transition to a point outside the cycle, y0 = τl0x0. Otherwise, the cycle C is extreme,

and since M is minimal M = C, but this would contradict the fact that M is infinite. The

point y0 is in M since M is invariant, and since M is minimal, M = O(y0).

Now take a point x ∈ M . There exist points of the form τln . . . τl1y0 as close to x as we

want. Since y0 = τl0x0 6∈ C and x0 is cyclic, by Lemma 4.1, it follows that these points can

39



be chosen distinct. This proves that x is not isolated in M hence M is perfect. Since it is

also compact in R2, it follows that M is also uncountable.

Lemma 4.6. Suppose there are two union of translates R = {x0 + V, . . . , xp + V }, R′ =

{y0 + V ′, . . . , yp′ + V ′} which are both associated to minimal invariant sets. Then V = V ′.

Proof. Let M and M ′ be the infinite minimal compact invariant sets associated to R and

R′ respectively.

Suppose the one-dimensional subspaces V and V ′ are distinct. Then R ∩ R′ is a finite

invariant set (any two non-parallel lines intersect in a single point). Hence it has to contain

an extreme cycle ℘(γ1, . . . , γm), and any possible transition from a point in R ∩ R′ will

eventually end in an extreme cycle.

By drawing a picture the truth of the fact that

⋃
a∈R∩R′

(a+ V ) = R

becomes obvious.

Now take a a point in R ∩ R′ and let l1, l2, · · · ∈ L give possible transitions from a to

τl1a, τl2τl1a, . . .

For r ∈ N consider the functions
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fr,a(v) = mB(τlr . . . τl1(a+ v)), (v ∈ V ).

We have that fr is analytic and fr(0) 6= 0. Therefore each function fr has only finitely

many zeroes on any compact subset of V .

Take ω0 ∈M with the property that mB(τlr . . . τl1(a+ω0)) = fr,a(ω0) 6= 0, for all r. This

is possible because the zeroes of the functions fr are at most countable and the set M is

infinite and perfect, hence uncountable.

Then the transitions a+ ω0 7→ τl1(a+ ω0) 7→ τl2τl1(a+ ω0) 7→ . . . are all possible.

Since R is invariant and a+ ω0 ∈ R we have that τlr . . . τl1(a+ ω0) ∈ R.

On the other hand dist(τlr . . . τl1(a+w0), τlr . . . τl1(a)) converges to 0, so τlr . . . τl1(a+w0)

converges to the extreme cycle. This implies that the extreme cycle is contained in M , but

this contradicts the fact that M is minimal and infinite.

This section is about non-simple Hadamard pairs. In this case, any infinite minimal

compact invariant set is contained in a union of translates of some one-dimensional subspace

(Theorem 2.6). Moreover this subspace is unique (Lemma 4.6) and we call it the subspace

associated to minimal invariant sets or SAMIS. We prove that, if the Hadamard pair is

non-simple, then the system (R,B,L) is conjugate to a spectral system (R′, B′, L′) where

the matrix is lower triangular, and its SAMIS is R× {0} (Proposition 4.9). In addition, the

set L′ can be chosen to have some extra properties (Proposition 4.13).
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Thus,we have the following result:

• To solve the Conjecture 1.7 in dimension two, it is enough to study spectral systems

(R,B,L) that satisfy (4.1)–(4.4).

Theorems 4.14, 4.15, 4.17 give various conditions that imply that µB is spectral.

Definition 4.7. We say that two affine IFSs (R,B) and (R′, B′) are conjugate (through

M) if there exists an integer matrix M with detM = ±1 such that

R′ = MRM−1 and B′ = MB.

If (R,B,L) and (R′, B′, L′) is a spectral system, then we say that they are conjugate

through M if in addition L′ = (MT )−1L.

The next proposition follows from a simple computation.

Proposition 4.8. Let (R,B) and (R′, B′) be two conjugate affine IFSs through the matrix

M . Then µB is a spectral measure with spectrum Λ iff µB′ is spectral with spectrum (MT )−1Λ.

Proposition 4.9. Suppose (B,L) is not simple. Then the spectral system (R,B,L) is con-

jugate to a spectral system (R′, B′, L′) such that R′ is lower triangular and its SAMIS is

R× {0}.

Proof. From Theorem 3.3, we know the eigenvalues have to be rational. From Lemma 3.4,

the eigenvalues are actually integers, the SAMIS V is actually a rational eigenspace, and we
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can conjugate this affine IFS to another one in such a way that the matrix R becomes lower

triangular, and this eigenspace becomes R× {0}.

Remark 4.10. By Theorem 3.3, if the eigenvalues of R are irrational then (B,L) is simple,

and the measure µB is spectral. If the eigenvalues of R are rationals then, by Lemma 3.4

the eigenvalues are integers and we have two cases. If the pair (B,L) is simple, then the

measure µB is spectral, by Theorem 3.2. If (B,L) is not simple, then by Proposition 4.9, the

spectral system is conjugated to one that has a lower triangular matrix, and whose subspace

associated to invariant sets is R × {0}. Therefore, in order to settle the conjecture for the

case of dimension d = 2 it is enough to focus on the case when R is of the form

R =

a 0

c d


and the subspaces associated to invariant sets is R× {0}.

Lemma 4.11. Suppose (B,L) is a Hadamard pair, and let L′ ⊂ Z, 0 ∈ L′, #L = #L′ = N .

Assume that for every l ∈ L there exist a unique l′(l) in L′ such that l is congruent to l′(l)

modulo S. Then (B,L′) is a Hadamard pair.

Proof. Since the sets L and L′ have the same cardinality N , it follows that the map l 7→ l′(l)

is a bijection. Take l1 6= l2 in L. Then

l1 = l′(l1) + Sk1, l2 = l′(l2) + Sk2 for some k1, k2 ∈ Z2. Then we have:
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∑
b∈B

e2πib·S−1(l′(l1)−l′(l2)) =
∑
b∈B

e2πib·(S−1(l1−l2)−(k1−k2)) =
∑
b∈B

e2πib·S−1(l1−l2) = 0.

Lemma 4.12. If (B,L) is a Hadamard pair then no two distinct elements of B are congruent

modulo R and no two distinct elements of L are congruent modulo RT .

Proof. Suppose that b, b
′ ∈ B satisfy b− b′ = Rm for some m ∈ Zd, then

e2πiR−1b·l = e2πiR−1b
′ ·l

for all l ∈ L since L ⊂ Zd.

This means that the rows in the Hadamard matrix labeled b and b
′
cannot be orthogonal.

Proposition 4.13. Assume

R =

a 0

c d


and suppose (B,L) is not simple, and its SAMIS is V := R× {0}. Then there exists L′

such that

(i) (B,L′) is a Hadamard pair;

(ii) L′ ⊂ {0, . . . , |a| − 1} × {0, . . . , |d| − 1};
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(iii) The hypothesis ”(H) modulo V ” is satisfied (relative to L′).

Proof. Assume, without loss of generality and for the rest of the section, that a and d are

nonnegative. We use Lemma 4.11 and replace each l ∈ L by some element in {0, . . . , a−1}×

{0, . . . , d − 1} which is congruent to it modulo S. Take l ∈ L, l 6= 0. Let l = (l1, l2)T . Let

q = l2 mod d. Then there exists y ∈ Z such that q − l2 = dy. Then take p = cy + l1 mod a.

Then a simple computation shows that l′(l) := (p, q)T is congruent to l modulo S. Define

L′ := {l′(l) : l ∈ L}. With Lemma 4.11, (i) follows and (ii) is clear too.

For (iii), suppose τε1 . . . τεp0− τη1 . . . τηp0 ∈ V with εi, ηi ∈ L′. This means that

S−1(ε1 − η1) + · · ·+ S−p(εp − ηp) ∈ V.

Since V is invariant for S this implies

εp − ηp + S(εp−1 − ηp−1) + · · ·+ Sp−1(ε1 − η1) ∈ V.

But this means that the second component of εp − ηp is a multiple of d. From (ii) it

follows that the second components of εp and ηp are equal so εp−ηp ∈ V . Then, S−1(εp−ηp)

is in V so we can reduce the problem to p− 1 and use induction to conclude that εi− ηi ∈ V

for all i.
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Proposition 4.13 allows us to make the following assumptions which we assume to hold

throughout this section:

R =

a 0

c d

 (4.1)

Either (B,L) is simple or it is a non-simple Hadamard pair and its SAMIS is V = R×{0};

(4.2)

L ⊂ {0, . . . , a− 1} × {0, . . . , d− 1}; (4.3)

The hypothesis “(H) modulo V “ is satisfied. (4.4)

Theorem 4.14. Assume (4.1)–(4.4) hold. Define B1 := proj1(B) = {b1 : (b1, b2) ∈

B for some b2}; for b1 ∈ B1 let B2(b1) := {b2 : (b1, b2) ∈ B} and define the Laurent polyno-

mials

pb1(z) =
∑

b2∈B2(b1)

zb2 , (b1 ∈ B1).

Suppose the polynomials pb1, b1 ∈ B1 have no common zero of the form e
2πi k

d(dj−1) with

k ∈ Z, j ∈ N. Then the measure µB is spectral.
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Proof. We prove (B,L) is simple hence µB is spectral, by Theorem 2.12. If not, since R×{0}

is its SAMIS then, there exists a cycle point x0 = (x1, y1)T as in Theorem 2.6 (iii). Then it

is easy to see that y1 is a cycle point for the IFS τl2 : x 7→ d−1(x+ l2) where l2 ∈ proj2(L).

This means that for some η1, . . . , ηj ∈ proj2(L) we have

y1 = τηj . . . τη1y1 = d−1ηj + · · ·+ d−jη1 + d−jy1.

Then

y1 =
η1 + · · ·+ dj−1ηj

dj − 1
.

Consider now the union R of translates of V = R × {0} as in Theorem 2.6(iii). For

one of the translates, which we can relabel x0 + V = {(x, y1)T : x ∈ R}, there exists some

l = (l1, l2)T such that τ l(x0 + V ) = {(x, d−1(y1 + l2))T : x ∈ R} is not contained in R, hence

it is disjoint from it. Otherwise, the whole attractor X(L) will be contained in R, and in

this case mB has only finitely many zeroes on X(L) so we can use the results in [DJ06].

Since R is invariant, this means that mB((x, d−1(y1 + l2))T ) = 0. Then

∑
b1∈B1

∑
b2∈B2(b1)

e2πi(b1x+b2d−1(y1+l2)) = 0, (x ∈ R)

This implies that for all b1 ∈ B1
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∑
b2∈B2(b1)

e2πib2d−1(y1+l2) = 0

and this contradicts the nonexistence of a common zero for the polynomials pb1 of the

given form. The contradiction show that (B,L) has to be simple so the measure is spectral.

Theorem 4.15. Suppose detR is a product of 2 (not necessarily distinct) prime numbers.

Then µB is a spectral measure.

Proof. We can assume that (4.1)–(4.4) hold. Also, with the notation in Theorem 4.14 we

can assume there exists b1 ∈ B1 such that #B2(b1) ≥ 2; otherwise pb(z) has only one term

so it cannot have zeroes on the unit circle, and the result follows from Theorem 4.14.

Define L2 := proj2(L) and for l2 ∈ L2 let L1(l2) := {l1 : (l1, l2)T ∈ L}.

Lemma 4.16. We can assume there exist l2 ∈ L2 such that #L1(l2) ≥ 2; otherwise the

measure µB is spectral.

Proof. Suppose #L1(l2) = 1 for all l2 ∈ L2. Take R as in Theorem 2.6(iii). We know that

each possible transition from a point (x, y1)T in R will lead to a point (x′, y2)T in R and

y2 is independent of x. Suppose this transition is done using a map τl0 with l0 = (l1, l2)T .

The assumption then implies that, using instead τl′ with l′ 6= l, the second coordinate of this

point will not be y2.
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But this contradicts Theorem 2.6(iii). So for all l′ 6= l0, τl′(x, y1)T is outside R. Therefore

mB(τl′(x, y1)T ) = 0.

But, since

∑
l∈L

|mB(τl(x, y1)T )|2 = 1,

this implies that |mB(τl0(x, y1)T )| = 1, and using the triangle inequality and the fact

that 0 ∈ B, this implies that b · (x, y1) ∈ Z. Since x is arbitrary, this implies in turn that

B1 = {0}, which means that X(B) is actually one-dimensional, contained in {0} × R, and

we can apply the results in [DJ06].

Resuming the proof of the theorem, since detR is a product of two primes, we can assume

a and d are prime.

First, take b1 ∈ B1, such that there exist b2 6= b′2 in B2(b1). Using Lemma 4.12, b2 and

b′2 are not congruent modulo d. Apply the Hadamard property to the rows corresponding to

(b1, b2), (b1, b
′
2) ∈ B:

∑
(l1,l2)T∈L

e2πi
b2−b′2

d
·l2 = 0.

Then
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pL2(e
2πi

b2−b′2
d ) =

∑
l2∈L2

#L1(l2)e2πi
b2−b′2

d
·l2 = 0,

where pL2(z) =
∑

l2∈L2
#L1(l2)zl2 . But since pL2 has integer coefficients it follows that

pL2 is divisible by the minimal polynomial for e2πi
b2−b′2

d which is the cyclotomic polynomial

Φd(z) = 1 + z + · · · + zd−1, since d is prime. But L2 ⊂ {0, . . . , d − 1} according to our

assumptions. Therefore pL2 is a constant multiple of Φd. This means that L2 = {0, . . . , d−1}

and #L1(l2) is independent of l2 ∈ L2. We also have d ·#L1(l2) = N .

Now, using Lemma 4.16, take l2 ∈ L2 and l1 6= l′1 in L1(l2). Apply the Hadamard property

to the columns corresponding to (l1, l2) and (l′1, l2) in L:

∑
(b1,b2)T∈B

e2πib1·
l1−l′1

a = 0.

Then

pB1(e
2πi

l1−l′1
a ) =

∑
b1∈B1

#B2(b1)e2πi(b1 mod a)· l1−l′1
a =

∑
b1∈B1

#B2(b1)e2πib1·
l1−l′1

a = 0,

where pB1(z) =
∑

b1∈B1
#B2(b1)zb1 mod a. We might have two different b1, b

′
1 in B1 such

that b1 ≡ b′1 mod a.

We write further

pB1(z) =
a−1∑
k=0

( ∑
b1∈B1,b1 mod a=k

#B2(b1)

)
zk.
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Since pB1 has integer coefficients, it follows that pB1 is divisible by the minimal polynomial

for e2πi
l1−l′1

a which is the cyclotomic polynomial Φa(z) = 1 + z + · · ·+ za−1, since a is prime.

Therefore pB2 is a constant multiple of Φa. This means that B1 mod a = {0, . . . , a− 1} and∑
b1 mod a=k #B2(b1) is independent of k ∈ {0, . . . , a− 1}. Hence

a ·

( ∑
b1 mod a=k

#B2(b1)

)
=

a−1∑
i=0

( ∑
b1 mod a=i

#B2(b1)

)
=
∑
b1∈B1

#B2(b1) = #B = N.

We have d · #L1(l2) = N = a · (
∑

b1 mod a=k #B2(b1)). If a 6= d, then a divides #L1(l2)

and since N ≤ ad it follows that N = ad. But this implies that B is a complete set of

representatives for Z2/RZ2. Using Theorem 3.6 it follows that µB is spectral.

If a = d then take (l1, l2) 6= 0 in L. Using the Hadamard property we have

0 =
∑
b∈B

e2πiR−1b·l =
∑

(b1,b2)∈B

e2πi
ab1l1−cb1b2+ab2l2

a2 .

Thus, we have a sum of #B = N roots of order a2 of unity. Since a is prime, using [LL00]

we get that N is divisible by a. Therefore N = a or N = a2. If N = a2 = detR, then B

is a complete set of representatives for Z2/RZ2, and with Theorem 3.6, we get that µB is

spectral.

If N = a then we obtain that #L1(l2) = 1 for all l2 ∈ L2. But this contradicts the

assumption of Lemma 4.16, so µB is spectral.

Theorem 4.17. Assume (4.1)–(4.4) hold. Define B1 = proj1(B), B2(b1) := {b2 : (b1, b2)T ∈

B} for b1 ∈ B1, L2 := proj2(L), L1(l2) := {l1 : (l1, l2)T ∈ L} for l2 ∈ L2. If #B2(b1) = N2
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independent of b1 ∈ B1 and #L1(l2) = N1 independent of l2 ∈ L2 and N1N2 = N then µB is

a spectral measure.

Proof. Theorem 4.18 below guarantees that the IFS τb1(x) = a−1(x + b1), b1 ∈ B1 has no

overlap. Then the result follows from [DJ07, Proposition 3.2 and Theorem 3.8].

Theorem 4.18. Let R be an integer, |R| > 1 and let D be a set of integers such that no

two distinct elements of D are congruent modulo R. Consider the IFS τd(x) = R−1(x + d),

d ∈ D and let X(D) be its attractor and D := log|R|(#D). Then the Hausdorff measure of

X(D) satisfies 0 < HD(X(D)) < ∞, the invariant measure µD of the IFS (τd)d∈D is the

renormalized Hausdorff measure HD restricted to X(D) and the measure µD has no overlap.

Proof. Let N := #D. Since the elements of D are incongruent modulo R we can enlarge it

to a set D̃ ⊃ D which is a complete set of representatives for Z/RZ. We denote by X(D̃)

the attractor of the IFS associated to D̃.

By [Ban91, Theorem 1], the attractor X(D̃) has non-empty interior int(X(D̃)) 6= ∅.

Then

∪d∈Dτd(int(X(D̃))) ⊂ ∪d∈D̃τd(int(X(D̃))) ⊂ int
(
∪d∈D̃τd(X(D̃)

)
) = int(X(D̃)).

This means that the Open Set Condition is satisfied for the IFS (τd)d∈D.

Using [Hut81, Theorem 5.3.1 (ii)], we can conclude that 0 < HD(X(D)) <∞.
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For any Borel subset E of R and d ∈ D, we have

HD(τ−1
d (E)) = HD(RE−d) = HD(RE) = RDHD(E) = NHD(E). SimilarlyHD(τd(E)) =

1
N
HD(E).

We have

HD(X(D)) = HD (∪d∈Dτd(X(D))) ≤
∑
d∈D

HD(τd(X(D))) =
1

N
·NHD(X(D)) = HD(X(D)).

Since we must have equality, this implies that HD(τd(X(D))∩τd′(X(D))) = 0 for distinct

d, d′ ∈ D, which means that there is no overlap (other than on sets of measure zero).

Then we also have, for any Borel set E:

HD(E ∩X(D)) =
∑
d∈D

HD(E ∩ τd(X(D))) =
∑
d∈D

1

N
HD(τ−1

d (E) ∩X(D)).

This proves that HD restricted to X(D) is invariant for the IFS, but since µD is the

unique measure with this property, all statements in the theorem have been proven.
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CHAPTER 5

EXAMPLES

We begin by studying some examples where the matrix R has determinant 2. Such matrices

were completely classified in [LW95]. We include the result here.

Now, introduce C1 =

0 2

1 0

 , C2 =

 0 2

−1 0

 , C3 =

 1 1

−1 1

 , C4 =

 0 2

−1 1

 .
We say that two matrices A and B are conjugate if there exists a matrix P ∈M2(Z) with

| detP | = 1 such that PAP−1 = B. We then write A ∼ B. For the general case | detA| = 2

we have the following lemma from [LW95].

Lemma 5.1. [LW95]

Let A ∈ M2(Z) be expansive. If detA = −2, then A is conjugate to C1. If detA = 2,

then A is conjugate to

one of the matrices C2,±C3,±C4.

To gain a better understanding of these matrices we shall need the full proof.

Proof.

A =

a11 a12

a21 a22

 .
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Following [LW95] we define the weight p(A) of A to be p(A) := −a11a22.

The assumptions |λ1| > 1, |λ2| > 1, |λ1λ2| = 2 imply that |λ1| < 2, |λ2| < 2

and then |a11 + a22| = |λ1 + λ2| < 4. Since the common sum is an integer |a11 + a22| ≤ 3.

But 3 is

not possible, so we actually have |a11 + a22| ≤ 2. Squaring this we obtain a11a22 ≤ 1,

which can be written

as p(A) ≥ −1.

We will use induction on the weight p(A) to prov that A ∼ B for some matrix

B =

 0 b12

b21 b22

 .
Base case p(A) = −1. In this case |a11| = |a22| = 1 and a12a21 = −p(A)− detA = −1 or

3, hence |a12| = 1 or

|a21| = 1. We may assume, without loss of generality, that |a21| = 1. Attempting P =1 λ

0 1

 we have

PAP−1 =

a11 + λa21 ∗

∗ ∗

 .
Now choose λ = −sign(a11a21) and we are done.
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The case p(A) = 0. Here a11 = 0 or a22 = 0. If a11 = 0 we are done. Suppose a22 = 0.

Then

0 1

1 0


a11 a12

a21 0


0 1

1 0


−1

=

 0 a21

a12 a11

 .
Assume now that the hypothesis is true when the weight p(A) < k, k ∈ N.

Suppose p(A) = k. Claim: the hypothesis then is true in this case as well.

It must be that |a21| ≤ |a11| or |a12| ≤ |a22|, because, if not true, we would have

| detA| = |a21a12 − a11a22| ≥ (|a11|+ 1)(|a22|+ 1)− |a11||a22| ≥ 3,

which is not possible.

We now assume, without loss of generality, that |a21| ≤ |a11|. Let λ = −sign(a11a21) and

consider

A1 =

1 λ

0 1


a11 a12

a21 a22


1 λ

0 1


−1

=

a11 + λa21 ∗

∗ a22 − λa21

 .
Here

p(A1) = −(a11 + λa21)(a22 − λa21) = p(A) + a2
21 + λa21a11 − λa21a22.

Since a11a22 = −k < 0
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−λa21a22 = sign(a11a21)a21a22 < 0

in all cases. Hence

p(A1) < p(A) + a2
21 − sign(a11a21)a21a11 ≤ p(A).

Observe now that a completely general matrix was used in the initial discussions; their

conclusions therefore hold for A1. Since we have shown that p(A1) < k the hypothesis is true

for A1. Hence A1 ∼ B for some B =

 0 b12

b21 b22

 . Since A ∼ A1 we then have that A ∼ B.

This proves our claim and ends the induction.

Assume now that detA = −2. Then b12b21 = 2. From

|λ1| > 1, |λ2| > 1, λ1λ2 = −2

follows −2 < λ1 < −1, 1 < λ2 < 2 (if λ1 is smaller).

Then we infer that b22 = λ1 + λ2 = 0. Whatever is the combination of b12 and b21 it is

always true that B ∼ C1. Take e.g. b12 = −1, b21 = −2, P =

0 −1

1 0

 . Then

PBP−1 =

0 2

1 0

 .
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At last, assume that detA = 2. Then b12b21 = −2. Now we can only deduce that |b22| ≤ 2.

Let D =

 0 2

−1 2

 . By taking P to be one of the matrices

I,

−1 0

0 1

 ,
1 0

0 −1

 ,
0 1

1 0

 ,
0 −1

1 0

 ,
 0 1

−1 0


we will have PBP−1 = C2,±D, or ±C4.

Finally, with Q =

1 −1

0 1

 , we have that C3 = QDQ−1.

Example 5.2. Let R =

0 2

1 0

 . Then

R−1 =

 0 1

0.5 0

 .
We want B = {(0, 0)T , (b1, b2)T} to be a complete set of representatives modulo RZ2.

This means that

(0, 0)T and (b1, b2)T should not be congruent modulo R; there must not be a solution in Z

to (b1, b2)T = R(x, y)T . In other words R−1(b1, b2)T /∈ Z2, so we must have that (1/2)b1 /∈ Z

or b2 /∈ Z.
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We can therefore choose b1 = 1, b2 = 0. Hence let

B = {(0, 0)T , (1, 0)T}.

The attractor of the affine IFS (R,B) is shown in Figure 5.1.

Figure 5.1: XB

If the dual IFS corresponds to L = {(0, 0)T , (l1, l2)T}, then the Hadamard matrix

1√
2

1 1

1 e2πiR−1b·l


equals

1√
2

1 1

1 eiπl2


which is unitary iff l2 is odd. Take

L = {(0, 0)T , (0, 1)T}.

The attractor of the affine IFS (RT , L) := XL is shown in Figure 5.3.
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Figure 5.2: XL

To find the spectrum Λ we refer to the theorem on determinants whose absolute value is

a prime number, saying that such a system must be simple. Since this is the case with the

matrix R, the system (R,B,L) is simple, by that theorem. Therefore looking at the extreme

cycles will give us the spectrum. We have that

|mB(x, y)| = |1/2(1 + e2πix)| = 1

iff x ∈ Z, while y is arbitrary.

The extreme cycle points must belong to the attractor XL, which in this example is just

the closed filled unit square. Among the four points there with x ∈ Z, (0,0) and (1,1) are

the only cycle points (fixpoints) and they are also extreme. All of this is

very easily checked. By Theorem 3.7 the spectrum Λ is the lattice generated by the

extreme cycles and Z2. Therefore Λ = Z2.

Example 5.3. Let R =

 0 2

−1 0

 .
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Then

R−1 =

 0 −1

0.5 0

 .
We want B = {0, (b1, b2)T} to be a complete set of representatives modulo RZ2. This is

the same as asking for the equationR(x, y)T = (b1, b2)T to have no solution in Z. Equivalently

R−1(b1, b2)T /∈ Z2.

Hence 0.5b1 /∈ Z or −b2 /∈ Z. We can then take b1 = 1, b2 = 0.

Hence let B = {0, (1, 0)T}.

The attractor of the affine IFS (R,B) is shown in Figure 5.3.

Figure 5.3: XB

Let L = {0, (l1, l2)} be the dual IFS. The Hadamard matrix will once more become

1√
2

1 1

1 eiπl2

 ,
which is unitary iff l2 is an odd number.
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Take

L = {0, (0, 1)T}.

The attractor of the affine IFS (RT , L) := XL is shown in Figure 5.4.

Figure 5.4: XL

Since the determinant of R is 2, a prime number, the system (R,B,L) is simple. Therefore

it is enough to consider the extreme cycles in order to find the spectrum. Since B is the

same set as in the previous example we obtain that a point (x, y)T is extreme iff x /∈ Z, while

y is arbitrary.

Since any cycle must be contained in the attractor XL, and since this is a filled square

contained in (−0.4, 0.7)× (−0.7, 0.4),

(see Figure 5.4) we must have that the extreme points are of the form (0, y) for some y.

Now, from an extreme point we must be able to reach an extreme point, which may

possibly be the same point, by some τl.
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That is to say that τl(0, y)T = (0, y1)T for some l = (0, l2) and y1. Hence y = −l2 = 0 or

-1 and y1 = 0.

In conclusion, the origin is the only extreme point.

Since the spectrum Λ is generated by the extreme points and Z2, we have found that

Λ = Z2.

Example 5.4. Let

R =

 1 1

−1 1

 .
Then

R−1 =
1

2

1 −1

1 1


We want B = {0, (b1, b2)T}, to be a complete set of representative modulo Z2. This

means that the equation R(x, y)T = (b1, b2)T should have no solution in Z. Equivalently

R−1(b1, b2)T 6∈ Z2. This means

b1−b2
2
6∈ Z or b1+b2

2
6∈ Z. Therefore we can take (b1, b2)T = (1, 0)T so

B =

0,

1

0


 .

The attractor of the affine IFS (R,B) is given in Figure 5.5.
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Figure 5.5: XB

Next, we need the set L = {0, (l1, l2)T}. We require the Hadamard condition so

we want the matrix

1√
2

1 1

1 e2πi(1/2,1/2)T ·(l1,l2)T


to be unitary. This condition is satisfied if l1 + l2 is odd. Therefore (l1, l2)T = (1, 0)T will

verify the conditions, so we can take

L =

0,

1

0


 .

The attractor of the affine IFS (RT , L) is given in Figure 5.6.

Since the determinant of R is 2 which is a prime number, the system (R,B,L) is simple.

Therefore we just have to look for the extreme cycles. The function mB is
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Figure 5.6: XL

mB(x, y) =
1

2
(1 + e2πix), ((x, y) ∈ R2).

Then |mB(x, y) = 1 iff x ∈ Z and y is arbitrary.

Since any cycle is contained in the dual attractor XL, and since XL is contained in

(−1, 1)× (−2, 1) (see Figure 5.6), we have that any cycle point (x0, y0) is of the form (0, y)

with y ∈ (−2, 1).

One of the transitions of the extreme cycle point (x0, y0) will lead to another extreme

cycle point. Therefore we must have that for some l ∈ L, τl(0, y) is of the form (0, y′). This

means that

1

2

 1 1

−1 1


l1
y

 =

0

y′

 .
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Then l1 + y = 0 so either l1 = 0, y = 0 or l1 = 1, y = −1. In the first case we obtain the

trivial extreme cycle {0}. In the second case we obtain the extreme cycle {(0,−1)}.

Thus all the extreme cycles in this example are

{0} and {(0,−1)}.

Since B is a complete set of representatives modulo RZ2, by Theorem 3.7 the spectrum

Λ will be the lattice generated by the extreme cycles and Z2. Therefore

Λ = Z2.

Example 5.5. Let

R =

 0 2

−1 1

 .
Then

R−1 =
1

2

1 −2

1 0


We want B = {0, (b1, b2)T}, to be a complete set of representatives modulo RZ2. This

means that the equation R(x, y)T = (b1, b2)T should have no solution in Z. Equivalently

R−1(b1, b2)T 6∈ Z2. This means

b1−2b2
2
6∈ Z or b1

2
6∈ Z. Therefore we can take (b1, b2)T = (1, 0)T so
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B =

0,

1

0


 .

The attractor of the affine IFS (R,B) is given in Figure 5.7.

Figure 5.7: XB

Next, we need the set L = {0, (l1, l2)T}. The Hadamard condition implies that the matrix

1√
2

1 1

1 e2πi(1/2,1/2)T ·(l1,l2)T


has to be unitary. This condition is satisfied if l1 + l2 is odd. Therefore (l1, l2)T = (1, 0)T

will verify the conditions, so we can take

L =

0,

1

0


 .

The attractor of the affine IFS (RT , L) is given in Figure 5.8.
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Figure 5.8: XL

Since the determinant of R is 2 which is a prime number, the system (R,B,L) is simple.

Therefore we just have to look for the extreme cycles. The function mB is again

mB(x, y) =
1

2
(1 + e2πix), ((x, y) ∈ R2).

Then |mB(x, y) = 1 iff x ∈ Z and y is arbitrary.

Since any cycle is contained in the dual attractor XL, and since XL is contained in

(−1, 1)× (−1, 1) (see Figure 5.7), we have that any cycle point (x0, y0) is of the form (0, y)

with y ∈ (−1, 1).

One of the transitions of the extreme cycle point (x0, y0) will lead to another extreme

cycle point. Therefore we must have that for some l ∈ L, τl(0, y) is of the form (0, y′). This

means that
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1

2

 1 1

−2 0


l1
y

 =

0

y′

 .
Then l1 + y = 0 so either l1 = 0, y = 0 or l1 = 1, y = −1. In the first case we obtain the

trivial extreme cycle {0}. In the second case we obtain the extreme cycle {(0,−1)}.

Thus all the extreme cycles in this example are

{0} and {(0,−1)}.

Since B is a complete set of representatives modulo RZ2, by Theorem 3.7 the spectrum

Λ will be the lattice generated by the extreme cycles and Z2. Therefore

Λ = Z2.

Remark 5.6. Looking at the picture of the attractor XL it seems that this tiles R2 by Z×2Z

and not by Z2. We check that this is the case by showing that the spectrum of XL is the

dual lattice Z× 1
2
Z.

For this, we turn the Example 5.5 around and take RT for the matrix R, L for the set B

and vice versa.

Example 5.7. Let
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R =

0 −1

2 1

 .
Then

R−1 =
1

2

 1 1

−2 0


We saw in Example 5.5 that we can take

B =

0,

1

0


 = L.

Since the determinant of R is 2 which is a prime number, the system (R,B,L) is simple.

Therefore we just have to look for the extreme cycles. The function mB is

mB(x, y) =
1

2
(1 + e2πix), ((x, y) ∈ R2).

Then |mB(x, y) = 1 iff x ∈ Z and y is arbitrary.

Since any cycle is contained in the dual attractor XL, and since XL is contained in

(−1, 1)× (−2, 1) (see Figure 5.8), we have that any cycle point (x0, y0) is of the form (0, y)

with y ∈ (−2, 1).

One of the transitions of the extreme cycle point (x0, y0) will lead to another extreme

cycle point. Therefore we must have that for some l ∈ L, τl(0, y) is of the form (0, y′). This

means that
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1

2

1 −2

1 0


l1
y

 =

0

y′

 .
Then l1 − 2y = 0 so either l1 = 0, y = 0 or l1 = 1, y = 1/2. In the first case we obtain

the trivial extreme cycle {0}. In the second case we obtain the extreme cycle {(0, 1/2)}.

Thus all the extreme cycles in this example are

{0} and {(0, 1/2)}.

Since B is a complete set of representatives modulo RZ2, by Theorem 3.7 the spectrum

Λ will be the lattice generated by the extreme cycles and Z2. Therefore

Λ = Z× 1

2
Z.

Example 5.8. We present here a non-simple system (R,B,L).

Consider the expansive matrix:

R =

4 0

1 4

 .
Let

B =

{0

0

 ,
1

0

 ,
0

3

 ,
1

3

}
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Let

L =

{0

0

 ,
2

0

 ,
0

2

 ,
2

2

}.
Then the matrix 1

2
(e2πiR−1b·l)b∈B,l∈L is seen to be unitary.

Hence (R,B,L) is a Hadamard triple.

By analyzing the extreme cycles, i.e. those cycles where | mB(x, y) |= 1, | mB1(x) |= 1

and | mB2(y) |= 1, it is possible to compute the spectrum Λ of µB.

For example, we have

1 = | mB(x, y) | = | 1

4
(1 + e2πix + e2πi3y + e2πi(x+3y)) | .

This is only possible if all exponentials are equal to 1. Hence the cycle is extreme iff

x ∈ Z and y ∈ Z/3.

Now, if (x0, y0) is a point of an mB-cycle (extreme) and (l1, l2) ∈ L then τ(l1,l2)(x0, y0) is

also one of the points in the cycle.

With τl(z) = S−1(z + l) we have

τ(l1,l2)(x0, y0) = 1
16

4 −1

0 4



x0

y0

+

l1
l2


 .

Hence 1
4
(x0 + l1)− 1

16
(y0 + l2) ∈ Z and 1

4
(y0 + l2) ∈ Z/3.

The point (x0, y0) must also belong to the attractor XL of the IFS (τl)l∈L.
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Since the rectangle[
−1/4, 2/3

]
×
[
0, 2/3

]
is invariant for all τl, l ∈ L, this means that the attractor is a subset of that rectangle,

and so (x0, y0) must also satisfy

−1/4 ≤ x0 ≤ 2/3, 0 ≤ y ≤ 2/3.

Combining these facts we conclude that the only extreme mB-cycle is {(0, 0)}.

In two dimensions the situation is more complex. It is not enough only to consider the

cycles, we need to find a proper vector space whose translates by the elements of the mB-cycle

(here the origin) is invariant with respect to S =

4 1

0 4

 .
The set of eigenvectors of S is invariant, hence V = {(x, 0)} fits very well. Now the

measure µ1 on the first component corresponds to the IFS τ0 = x
4

and τ1 = x+1
4

. This means

that R = 4 and B = {0, 1} and then L = {0, 2} gives a Hadamard pair. For the associated

mB1-function | 1
2
(1 + e2πix) |= 1 it means that x must be an integer, and so the cycle is {0}.

Still, it gives a contribution Λ(0) to the spectrum, as in earlier examples. Analyzing the

second component a new IFS appears with respect to which the translated vector space 2/3+

V is invariant. It gives a contribution Λ(2/3) to the spectrum. But Λ(0) and Λ(2/3) both

contributes to both components. The system (R,B,L) satisfies the reducibility condition.

The result of all this is the following.

The spectrum ΛB = Λ(0) ∪ Λ(2/3), where
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Λ(0) =

{( n∑
k=0

4kak +
n∑
k=0

k4k−1bk,
n∑
k=0

4kbk

)
| ak, bk ∈ {0, 2}

}

and

Λ(2/3) =

{( n∑
k=0

4kak,−2/3−
m∑
k=0

4kbk | ak, bk ∈ {0, 2}, n,m ∈ N

}
.
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