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ABSTRACT

We study spectral properties for invariant measures associated to affine iterated function
systems. We present various conditions under which the existence of a Hadamard pair implies
the existence of a spectrum for the fractal measure. This solves a conjecture proposed by

Dorin Dutkay and Palle Jorgensen, in several special cases in dimension 2.
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CHAPTER 1
INTRODUCTION

We will study some aspects of iterated function systems of affine type (IFS). The functions
are affine transformations defined on R?, taking values in R%. They are coupled by a matrix
R. When such a system is iterated an infinitely number of times it may give rise to a
fractal. What is a fractal? Some authors do not define fractal, but we do for the purpose
of this thesis; we define it in terms of dimension. The concept of topological dimension of a
set X, dimp(X), coincides with our intuition where a line has dimension one and an open
set in the plane dimension two. It is defined by a number of required properties, one of
which is invariance: dim(¥ (X)) = dim(X) when ¥ is a homeomorphism. The Hausdorff
dimension of a set X in R?, dimg(X), is defined in a somewhat complicated way which is
well described in the literature [Fal03]. The Hausdorff dimension is a metric dimension and

so it is a parameter that describes the geometry of the set X.

Definition 1.1. (Mandelbrot) We say that a set X in R is a fractal if dimp (X ) < dimp (X ).
Then the difference dimg (X )— dimp(X), the fractal degree of X, shows how fractal X is.
Since dimp(X) only takes values on integers we have: A set X is fractal if dimy(X) is a

non-integer value.



In our study we will be concerned only with a subset of all fractals, the affine class. We

first consider R?, for d a positive integer.

Definition 1.2. Let R be a d X d expansive integer matriz. FExpansive means that all its
eigenvalues have absolute value strictly bigger than one. Then R must be invertible. Let B

be a finite subset of RY, with 0 € B, and let N be the cardinality of B.
Define the maps

n(z) =R Yz +0b), (rcR"bcB) (1.1)

The set of such functions is the affine iterated function system IFS associated to R and B.

The property of R being expansive implies that the 7;,’s are contractions in some norm (for
example, for the classical middle-third Cantor set in one dimension R~! would correspond
to the number 1/3) and the set B is {0, 2} which corresponds to the left and right third; the

fact that 1/2 is not in the set corresponds to the middle third being eliminated).
Next, we define the attractor of an iterated function system.

In general, for a contraction ¥ in a complete metric space, by the Banach fixed point
theorem, ¥ has a unique fixed point x, i.e., = satisfies = = ¥(x).

We will start from R? and then define another complete metric space, and another con-
traction ® on it. Let K be the set of all non-empty compact sets in R%. For A in K we set
N.(A) = {z € R?: dist(x, A) < €}.

Define dy(A, B) = min{e > 0: A C N(B) and B C N.(A)}. Then dy(A, B) becomes a

metric on IC, the Hausdorff metric. We are actually looking at each compact set as a point.



This metric turns K into a complete metric space [YHK97]. Define ®: K—/C by
o(A) = Jn(4). (1.2)

According to [Hut81], the map & is a contraction on K. This is proved also,. e.g., in
[YHKO97]. Hence there exists a unique compact set Xp, called the attractor of the IFS, such

that Xp = ®(Xp). In other words

XB: UTb(XB)' (13)

beB
The compact Xp will contain all the iterates of the 7,s and no other points. Also, it is

enough to start from the origin, so

XB:{ZR_kbk:bkeror allkZl}. (1.4)
k=1

Definition 1.3. The compact set Xp defined uniquely by (1.3) (or, equivalently by (1.4)) is

called the attractor for the IFS (T)pep-

The attractor Xp is invariant in the following sense: starting from any = in Xpg all images
7p(x) will stay in Xp. By restriction the individual mappings 7, induce endomorphisms in

Xp and these restricted mappings we also denote by 7.

For this IFS there exists [Hut81] a unique invariant probability measure pp, which we

define below.

Definition 1.4. By [Hut81] there exists a unique probability measure on R with the property:

1
up(E) = N Z,uB(Tb_l(E)) for all Borel subsets E of R%. (1.5)

beB



Equivalently,

1
/fduB =~ Z/f o, dpg for all bounded Borel functions f on RY. (1.6)

beB

Moreover ug is supported on Xp and is called the invariant measure of the IFS (Ty)pep-

We say that ug has no overlap if

/LB(Tb(XB> N Tb/(XB)) =0, fOT’ all b 7é b € B. (17)

The measures g, one for each IFS, are our objects of study. We now restrict our attention

to the case of dimension d = 2.

Geometrically, an IF'S in this thesis is equivalent to a pair (X, u) where X is a compact
subset of R?, y is a probability measure whose support is X and determined uniquely by the

initial IF'S mappings.

We want to understand X and up better. For some IFS’s it may be possible to build
inside the Hilbert space L*(X, ug), where X by above is a compact subset of R? and the
attractor of the IFS, an orthogonal basis for this Hilbert space composed of exponential

functions, i.e., a Fourier basis.

When is it possible to find such a basis for a particular IFS? As an illustration it is known
[JP98] that it is not possible for the middle-third Cantor set in one dimension. Of course,

the classical example when this is possible, is the unit interval with Lebesgue measure.

Existence of such a basis, we call it a Fourier basis, would make it possible to study the
geometry of X and its symmetries from the associated spectral data for the IFS by using

standard techniques from the theory of Fourier series.



Several papers have displayed various classes of affine IFSs for which an orthogonal
Fourier basis exists in the corresponding L*(Xpg, ug), see e.g. [JP98, DJ06, DJO7, DJOS,
DJ09b, DHS09, DJ09a, DHJ09, Str00, LW02, LW06]. But in each case one or more extra
conditions must be met with in order to admit such a basis. This thesis takes a closer look
at those conditions in two dimensions.

2T

Definition 1.5. For A € R?, denote by ex(x) the exponential function ex(x) = e
A Borel probability measure 1 on R? is called spectral, if there exists a set A in R? such
that the family of exponential functions
EA):={ex: A€ A}
is an orthonormal basis for L* (u). In this case, the set A is called a spectrum of the measure
1L
Definition 1.6. We will say that (B, L) is a Hadamard pair if B,L. C Z?, 0 € L, #L =

#B = N and the matrix

(e2m‘R_1b.l)beB,leL

-

18 unitary.
If this is true we call (R, B, L) a spectral system.

Let S be the matriz RT and define the family of functions

() =S x+1) (ze€R?).



Why is the set (7);er, introduced? This principle, to study a related dual system, is not
uncommon in mathematics. To clarify this point, we underline that we are interested in the
measure pp associated to the IFS (7)pep. The main question is whether this is a spectral
measure. The dual system (7;);cy, is only considered in order to help us in constructing the

basis of exponentials.

It was proven in [DJO6] that for dimension one, the existence of a Hadamard pair is
sufficient for the measure ug to be spectral. This was a significant improvement of earlier
results, where also an analytical condition was necessary. In [DJ07], it was proved that this
condition and a certain “reducibility condition” (which we will discuss below), guarantee

that pp is a spectral measure. Dutkay and Jorgensen proposed the following conjecture.

Conjecture 1.7. If (R, B, L) is a spectral system then the measure ug is spectral.

We will study this conjecture in dimension 2, and we prove it is valid under various

conditions.

We will now discuss the iteration of points under the dual system L, i.e. we consider the

“dual” affine iterated function system defined by

7(x) := S (z +1), where S =R”, and l € L.

As shown in [DJ06, DJO07] the dynamics of the dual IFS is essential in determining if pp

is spectral.



When points are iterated by the affine maps in the IFS, some points will be periodic,

resulting in a cycle.

Definition 1.8. We say that a finite set C := {xo,x1,..., 2,1} i a cycle if there exists
lo,ly,...,l,—1 € L such that 7, (x;) = xp11 for k € {0,....p — 1}, where z, := xy. We say
that xo is a periodic point and denote it by xo =: p(ly—1,...,lo) to indicate the participating

maps. Certain cycles have a special character.

Let mp be the function

1 .
mp(z) = N Ze%’b'”” (z € R?).

beB

We call the cycle extreme, if |mp(x;)| =1 for alli € {0,...,p— 1}.

In dimension one a thorough study of the extreme cycles resolved the question of the
measure up being spectral [DJ06]. In that case it was shown that existence of a Hadamard
pair is sufficient for the measure up to be spectral. In addition, it was possible to compute

a spectrum explicitly by analyzing the extreme cycles.

So in dimension one the conjecture is true. If we add a special condition on the matrix R
and the sets B and L, the reducibility condition, it was proven in [DJ07] that the conjecture
is true also in higher dimensions. But as a general fact, in higher dimensions the possibilities
are much more varied. The function mpg, which would be called a filter function in signal

processing, can now have infinitely many zeroes.

Also, the extreme cycles might in this case be replaced by infinite orbits. We will call them

infinite invariant sets, precise definitions will follow below. The study of these invariant sets



was initiated by the French researchers Cerveau, Conze and Raugi [CCR96], for a different

but related purpose, and we will use their results in this thesis.

Repeating the Conjecture: if (R, B, L) is a spectral system then the measure pp is
spectral, we intend to give several good conditions for this conjecture to be true in dimension

two.

Two cases must be distinguished. FEither there exists infinite minimal invariant sets or

all minimal invariant sets are finite, for a particular system.

In the latter case we call the Hadamard pair (B, L) simple, in the former case non-simple.
Also, we remind the readers that ug being spectral means that a complete orthonormal

Fourier series exists for the associated space L? (u, B).

Among our results we mention the following:

Whenever (B, L) is a simple Hadamard pair the measure pp is spectral.

If the eigenvalues of R are not rational then (B, L) is simple and the measure g is spectral.

If the determinant of R is a prime number then ppg is spectral.

We will also give some conditions under which a non-simple pair gives rise to a spectral

measure [ig.

To achieve the results above known facts about invariant sets are recalled in the next

section and new facts about them are added.

In this case the key to achieving results is once again to focus on the function



1 .
mp(x) = N Z T (x € R?).

beB

This function arises when considering the Fourier transforms of the invariance equation

for the measure upg

[ tnn =53 [ fondun

beB

To see this, with our IF'S the relation becomes (we temporarily disregard the subscript B on

the measure)

[ @dut) =5 X [ 5(R @+ maute),

beB

valid for all bounded Borel functions f.

The Fourier transform of a measure is defined by

Wh/WWWL@ﬂﬂ

Then

Z/ 2miz- R (t+b) d,u( )

beB

S5 X[m0

beB



1 . _ . _
_ NZ\/GQM(RT) 1w-tdu(t)62m(RT) 1$'b‘

beB

Hence we have the useful relation
f(z) = mp((R")"'2)a((R")'z) (z € R?).

This result is one reason for our interest in the dual IFS:

n(z) = (RN (z+1) (xeR%lel).
The mp-function and the dual IFS are also linked by the following formula:

Proposition 1.9. Suppose (B, L) is a Hadamard pair. Then

> Imp(na)P =1 (z€R?),

leL

which is valid irrespective of the value of x, a fact that we want to emphasize.

Proof. We have

1 27ib-(RT) =1 (z+1) 1 2miR™1b- (x+1)
mB(nx):NZe :NZG .

beB beB

Hence

1 -1y 1y, 1 o p—1p o _p—1p/.
‘TTLB(TISL’)P _ eQmR bx627rzR bl — e 2miR™'b -:ve 2miR™'b l.
N N

beB b eB

10



When summed over L this becomes
1 -1 / ip—1 !
§ e27rzR (b=b )z E 627r7,R (b=b )
N2 '
b €B leL

For each fixed pair b # b’ the sum over L is zero because the Hadamard matrix is unitary.

Hence the result follows.

This relation can be interpreted in probabilistic terms: |mp(7z)|? is the probability of

transition from x to 7x.

Definition 1.10. For z € R? we call a trajectory of x a set of points {7, ...Tu,xln > 1},

where {wy}n s a sequence of elements in L such that mg(ty,, ... T,,x) # 0 for all n > 1.

The union of all trajectories of x is denoted by O(x) and its closure O(z) is called the

orbit of x.
If mp(nix) # 0 for some | € L we say that the transition from x to mix is possible.

A closed subset F C R?, is called invariant if it contains the orbits of all its points. This

means that, if v € F and | € L are such that mg(mx) # 0, then it follows that Tz € F.

An invariant subset is called minimal if it does not contain any proper invariant subset.

Since the orbit of any point is an example of an invariant set, it must be that a closed subset

F is minimal if and only if F' = O(x) for all x € F.

11



CHAPTER 2
A FUNDAMENTAL RESULT

Thus far we have defined and explained some preliminary ideas and facts. We also need a
fundamental result from earlier research [DJO7]. To present that it is necessary to utilize

more advanced concepts and they will be introduced below.

We found before that

S ms(na)l? =1,

leL

irrespective of the starting point x. Defining Q(z) := Qp(z) := |mp(z)|*> we write this

simpler as

> Qnx) =1, (2.1)

leL

where Q(mx) is interpreted as the probability of transition from x to 7.

Introduce the space 2 of all infinite sequences, Q = { (l1ly...) | Iy € L forall k €N} .
If the first n [;s are fixed, all others varying freely, we have what we call an n-cylinder. The

set of all n-cylinders generate a o-algebra F,,.

12



Fix x € R% (For this presentation we temporarily revert to dimension d.) The functions
7; of a particular IFS, acting on x and its iterates, give rise to a set of paths originating at

x. Each path is described by a set of indices, i.e. by a member of (2.
The space €1 is now looked upon as a space of paths, originating at x.

Associated to € is a path-space measure P,. It is defined on the og-algebra as follows.

For a function f on 2 which depends only on the first n coordinates

/fdPx = Z Q (T, 0)Q (T T, ) + - QT -+ - Ty @) f (W1, -+ - W)

w1,...wn €L

There is a question whether this definition of P, is well defined. For that we will define

and use the Radon notation for the measure P,:

For functions measurable on 2

PAf= [ f)ar.

Now we show that P, is well defined.

If it is understood that f depends only on the first n coordinates, we temporarily denote
it by f,, it has to be checked that P,[f,] stays the same when f is viewed as depending on

only the first n + 1 coordinates; f(w) = f(w1,...,wn) = f(w1,...,Wn, Wns1). Then

Polfoca] = D Q). Qs - Ty ®) f(wi, - wnp1)

W1yeeoyWn41

= Z Q7o) ... QT -+ - Ty T) - Z Q(Tons1Tw, =+ Twn @) f(w1, -+ .y wp)

Wiye-eyWn Wn+1

13



as we have claimed.

With this integral approach to the measure we now need the measure P, given on the

sets generating the o-algebra.

When the first n components are Iy, 1y, ...1, € L, let C,(i1,...,i,) be a fixed n-cylinder

and for w = wy,...,wy, let f(w) = d0;,w; ...d, w,. Then we have

/f(w)dP:C = /5i1w1 o0, wndPy = /ch (i1, in) (W)dP, = P(C).

Hence

Px<Cn(Z17 cee 7Zn)) = Q(Tilx)Q(TizThx) te Q(Tzn cee Ti1)'

Definition 2.1. Define the transfer operator

Tf() = 3 Qna) f(nz) (v € RY).

leL

A measurable function h on R? is said to be harmonic (with respect to R) if Th = h.

Our first aim is to construct an important harmonic function.

14



When F is a non-empty compact and invariant subset of R%, we consider those elements
N(F) in path space  such that the corresponding iterates by the 7-functions from some

point x eventually end up in F’

N(F):={weQ]| lim d(r,, ... 7wz, F) =0}
n—oo

The fact that the maps 7; are contractions implies that, for all z,y € R,

Bmd(7,, - T, @y T, - - Ty y) = 0.

Hence the definition of N(F') does not depend on z.

The characteristic function of N(F') is unaffected by a shift in the iteration from a point

x. What we mean is this: If w = wywows .. ., defining G(z,w) := xnr)(w) we have

G(r,wiwsy . ..) = G(Ty, &, wows . . . ); (2.2)
we say that G has the cocycle property.

Define hp(z) := P,(G(z,-)). Observe that hp(z) = P,(xnwr)) = [ xn)(w)dP, =

Po(N(F)).

Then 0 < hp(z) < 1. In [DJO7] it is proven that hp(z) is continuous.

Lemma 2.2. Let N,Q, P, and ) be as above. Then for all measurable functions f on €}

which depend only on the first n coordinates

15



Proof. We have

Z Q(Tlx)PTla:[f@v )]

leL

= Z Z Q(To, 1) .. Q(Tw,, -+ - Ty i) f (w1, oy wh)

Now we prove that hg is harmonic. By the cocycle property and the lemma

(Thp)(z) = Z Q(rix)hp(rix)
=2 Q7i2) Pra[G(riz, )] = 3 Q(7i2) Pria[ G, )]

So, for each invariant compact set F' there is associated a harmonic function hp.

In [DJO7] it is shown that there is only a finite number of minimal compact invariant

subsets, and for any two of them F' and G, d(F,G) > o, where o is a positive number and

d is the distance between the sets. (An invariant set is minimal if it does not contain any

proper invariant subset.)

We need to prove the following proposition from [DJ07], for its ideas.

16



Proposition 2.3. Let Fy, F, ... E, be a family of mutually disjoint closed invariant subsets

of R? such that there is no closed invariant set F with F N ULF, = ¢.

Then

P JN(F)) =1 (zeRY).

Proof. Assume this is not true; for some z € R, P,(|J, N(F%)) < 1. Then defining h(z) :=

P.(UN(F})) we have

h(z) =Y hp(z) <1

By above h is continuous and Th = h. Since

1, if we N(F)

nh_)nolo hp (T, - Ty ) =

there are some paths w ¢ U, N(F},) such that lim, o h(7,,, ... 7,z) = 0.

Hence the set Z of zeroes of h is not empty. Also Th = h shows that Z is a closed

invariant subset. Claim: Z is disjoint from Uy Fj,.

If not, Z N Fy, # ¢ for some k € {1,...,p}. Then take y € ZN F}. Because a transition is
always possible there exists w € Q such that Q(7,, ... 7,,vy) # 0 for all n > 1. By invariance

Tum + - Twn Y € Z N Fy. Hence w € N(Fy), i.e. limy, o0 hp (T, - - Ty y) = 1.

But also, 7, ... 7w,y € Z, s0 h(7,, ... T,y) =0 for all n > 1.

17



This contradiction proves the claim. Hence

Pp(UeN (F)) = 1.

Before stating the basic result, a theorem and some definitions are needed. First, a
technical definition is given. When the subspace V' in question is {0}, it ensures uniqueness

of paths emanating from a point x.

Definition 2.4. For a subspace V of R? we say that the hypothesis “(H) modulo V7 is

satisfied if for all integers p > 1 the equality 7., ...7,0 — 7, ... 7,0 € V, with €;,n; € L

P

implies ¢, —m; € V, i€ {1,...,p}.

Remark 2.5. The hypothesis “(H) modulo V' can be rephrased as follows (assuming that V'
is invariant for S): take two elements A := €, + Se,_1 + -+ -+ SP7 ey and v :=1n, + Snp_1 +
oo 8P~y with all digits €;,~; in L. If A = ymodV, i.e., A\ —~ € V then all the digits are

congruent mod V', i.e., ¢, —m; € V fori € {1,...,p}.

To see this, note that

Ty Te,0=5"P(ep + Sepy + -+ + SPle)) = S7PA.

Similarly for ~.

18



(ii)

(iii)

(iv)

Then, using the invariance of V' under S, we have that 7, ...7.,0 — 7, ...7, 0 € V iff

A — v € V. From this we see that the two formulations of the hypothesis “(H) modulo V

are equivalent.

The hypothesis “(H) modulo V “ expresses the compatibility between the mod V' equiva-

lence and the dual IFS (7;)ier.

Theorem 2.6. [CCRI6]. Let M be a minimal compact invariant set contained in the set of

zeroes of an entire function h on R%,

There exists V', a proper subspace of R? (possibly reduced to {0} ), such that M is contained

i a finite union R of translates of V.

This union contains the translates of V' by the elements of a cycle { xo, 7,70, ..., 7, _, -+ T, To}

contained in M, and for all x in this cycle, the function h is zero on x + V.

Suppose the hypothesis “(H) modulo V “ is satisfied. Then

R:{.Z'O—FVv,Tlll’o—i-V,...,Tlm,l...Tllxo—l—V},

and every possible transition from a point in M N (7, ... 7,20 + V) leads to a point in

MO (Tig41 .-z + V) foralll <q<m—1, where T, ...7,10 = .

Since the function Q) is entire, the union R is itself invariant.

Definition 2.7. By saying that a Hadamard triple (R, B, L) can be reduced to R" we mean

that the following conditions are satisfied:

19



(i) The subspace R" x {0} is invariant for S = RT so S can be brought to the form

0 S, 0 Sy!
where Sy, C and Sy are integer matrices, the S-matrices are quadratic and Sy is of order r,

less than d.

(ii) For all first components by of elements of B, the number of by € RT" such that (by,by) € B
1s No, independent of by, and for all second components Iy of elements in L, the number of

l1 € R" such that (I1,15) € L is Ny, independent of ly and NyNy = N,

(#ii) The invariant measure for the iterated function system

7, (2) = (S1) "z + 1), (z€R),

where {rq,...,rn, } are the first components of the elements of B, is a spectral measure and

has no overlap.

Remark 2.8. We used here Proposition 3.2 in [DJ07] to simplify the definition.

Definition 2.9. Two Hadamard triples (Ry, B, L1) and (Rq, B, Ly) are conjugate if there

exists an invertible integer matriz M whose inverse is also integer such that

Ry = MRM~ By = MB; and Ly = (MT)"'L,.

20



If this is the case it means that the transition between the two IFSs (7,) is made by M,
the transition between the two IFSs (1) is made by (M™T)™' and that the qualitative features

of the two systems are the same.

We say that the Hadamard triple (R, B, L) satisfies the reducibility condition if

(i) for all minimal compact invariant subsets F', the subspace V in Theorem 2.6 can be chosen
such that there exists a Hadamard triple (R, B', L") conjugate to (R, B, L) which can be

reduced to R", and such that the conjugating matriz M maps V' onto R” x {0}.
Here R = MRM ™.

(i1) for any two distinct minimal compact invariant sets Fy, Fy the corresponding unions R, R

of the translates of the associated subspaces, given in Theorem 2.6, are disjoint.

Theorem 2.10. Let R be an expansive d X d integer matriz, B a subset of Z¢ with 0 € B.

Assume that there exists a subset L of Z¢ with 0 € L such that (R, B, L) is a Hadamard
triple which satisfies the reducibility condition. Then the invariant measure pug is a spectral

measure.

Now a proof of this theorem is outlined. The full proof is presented in [DJOT7].

Outline of the proof. Guiding line: The relation ). hr = 1 has to be utilized. Writing
this in terms of | fip | this relation will ultimately translate into the Parseval equality for a

family of exponential functions.
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Consider a minimal compact invariant set F. By Theorem 2.6 there is a subspace V,
invariant for .S, such that F' is contained in the union of some translates of V. Since the
reducibility condition is satisfied there exists a conjugated Hadamard triple (R', B, L") which

can be reduced to R", and such that the corresponding matrix M maps V onto R" x {0}.
Hence we can assume that V' = R" x {0}.
Combining Theorem 2.6 with a lengthy computation it is shown that, for some cycle
C:={ xo, %0y, Tl 4 - TuTo} , With 7, ... 7,29 = x0, I is contained in the union

R={zo+V,muze+V,....7, ... 7,20+ V} , and R is an invariant subset.

m—1

The matrix R has the form

A0 At 0
R = : hence R7!=
C A —AJTCATY AG?
By induction
ATE 0
Rfk = )
D, AF

where

k—1
Dy ==Y A, Meoa .

=0

Combining this with the fact that

Xp = {ZR_kbk | bkEB},

k=1
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we will decompose Xpg into two components X; and Xs.

Any element (z,y) in Xp can be written as:
xr = Z ATFr,, oy = Z Dyri, + Z A,
k=1 k=1 k=1

If we now define

X1 = {ZAl_krlk | Zk S { 1,..‘,N1} }
k=1

and let p1 be the invariant measure for the iterated function system
7. () = A7 (x +7),i € {1,..., N1}, where N, is a factor of N, then the set X becomes
the attractor of this iterated function system.

In this way Xp is decomposed into the detailed expressions of X; and X5 and it is also
accomplished to decompose the measure up as a product of the measure ©; on X; and some

measure o.

The cycle C above, associated to the minimal invariant set M,

C=A{xo,m,%0,,T,, 4. -TuTo} With 7 ...7,x9 = x0, is decomposed as well.
If y is the second component of xg and A, ..., h,, are the second components of I, ..., [,,,
we arrive at Co = { Yo, Th,Y0s - - - » Thy,_1 - - - Thy Yo} - This cycle is proven to be extreme.

All these facts and partial results for the components are put to work in several compu-

tations, and the Fourier transforms of the decomposed measures are computed.
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Let Fy,...,F, be the list of all minimal compact invariant sets. For each k there is a
reduced subspace Vj, and some cycle Cy, such that Fy, C Ry := Cr + V., with mutually disjoint

Ri. One of the results give, for each k, a set A(Fx) C Z% such that

hr,(x Z lip(z+N))? (zeRY).

AEA(Fy)

By the Proposition 2.3

> hp(r) =1.

Hence
> 5 fante o
k=1 AeA(F})
Can X appear twice here? Fix \g € UyA(F) and let £ = —)Ag. One term in the sum

is 1, since fig(0) = 1, and the others 0. Thus A cannot appear twice. We also see that

fis(—Xo+ ) = 0 for A # X\g, which implies that e2™* and > are orthogonal in L*(upg).

Recall the notation e,(t) = ¢>™**. The double sum above now turns into

leali= Y I<edesP (werY).
AEU£:1A(FI€)

Hence the closed span of the family of functions { ey | A € A} | with A = U}_, A(F}),

contains all the functions e,.

By the Stone-Weierstrass Theorem it contains L*(ug). Thus, {e) | A € A} forms an

orthonormal basis for L*(ug).
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]

Remark 2.11. Suppose now that all the minimal invariant sets are finite. Then they will
have to be extreme cycles. In this case, the subspaces V' in Theorem 2.6 can be taken to be
the trivial one V' = 0; hence the reducibility condition is automatically satisfied. Combining
this with the results from [DJ06] and [DJ07] we obtain that the measure pp is spectral and
a spectrum can be obtained from the extreme cycles. We make this precise in the next

theorem.

Theorem 2.12. Suppose (B, L) is a Hadamard pair and all minimal compact invariant sets
are finite (hence extreme cycles). Then the measure pp is spectral with spectrum A, where
A is the smallest subset of R? that contains —C' for all extreme cycles C, and which has the

moariance property

R'A+ L CA.

Ezxample 2.13. We illustrate some of the notions introduced above with an example in di-
mension one. This is the first example of a fractal measure which admits an orthonormal
Fourier basis, i.e., it is a spectral measure. The example was introduced by Jorgensen and
Pedersen in [JP98]|. Consider the function o(z) = 4z mod Z. Its inverse has two branches

7o and 7.
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Let I = [0,1] and define on I 75(z) = £ and m»(x) = 22, These mappings form an affine

IFS with R = 4. When infinitely iterated they give rise to a minimal invariant compact set

X4, now called the quarter Cantor set.
In this example the Hausdorff dimension dy is easily computed as

log(number of replicas)  In2 1

log(magnification factor) In4 2

Computing the spectrum: We can write 7,(z) = R™'(z +b) with R=4 and b € B =

{0,2}. We look for a Hadamard pair (B, L). L has to be of the form {0,[}, [ an integer.

There is a unique invariant probability measure pug such that ug = %(M BOTy 'Y pporyt)

whose support is Xy. Important is also the function

1 bz 1 2T
mB(w) — Nze%mb _ 5(1 +62 2 )

beB

In general, the elements of the Hadamard matrix H are

1 .
ﬁ(esz 1bl)beB,leL-
In this case
1 |1 1
H=—
V2 1 e2miz2l

which is unitary iff [ is an odd integer.

According to [DJ06], for each such set L there is a spectrum A(l) and a basis ON B for

L*(X4, pup). Here ONB := {e¥% : X € A(I)}.
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To find A(1) we look at the extreme cycles; the cycles where |mp(z)| = 1 for each x in
the cycle. For L = {0,1} there are very few possibilities; the only extreme cycle is {0}, the
iterates of 7y when starting from 0. By the theory the spectrum then consists of the iterated

images of the correspondence © — 4z 41,1 € {0,1}. Hence A(1) is found to be
() 4k 1 € {0,1}} = {0,1,4,5,16,17,20,21,24,25,. .. }
k=0

forn=20,1,2,...
In this case we shall confirm the orthogonality of the exponentials by a direct computa-

tion. The general relation

[ tin=5 X [ stesonn

beB

for all bounded Borel functions translates into
1
[ tdn =5 [ sivdus [ fias 1210,

Then

/627Tltxdﬂ($) — 5(/ 6(1/2)mtxd,u(x) +/€(1/2)”1t$e”2tdu(x)).

Let j(t) = [ ™ dpu(x) and H(t) = (1 + ™). Then we have the neat relation

With the assumptions, set

P:={lo+4l +4%, +---:1; € {0,1}, finite sums}.
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Then the functions {ey : A € P} are mutually orthogonal in L?(Xy, 1) where
27rz'>\33'

ex(z) :=e

Indeed let A = >_ 4%, A" = >~ 4*I; be points in P, and assume A # \". Then

/ae/\/d,u — /627ri(>‘l—)‘)$d/,b<l’)

= a(ly —lo+40, - L) +...)
= H(ly — lo)a(ly — 1y + 4y — Io) +...).

If Iy # I, then H(l, — ly) = 0 since the matrix H is unitary. If not, there is a first n such

that 1, # [,,, and then

AN = A) = A (1, = 1) + 4" Ly = L) + -2 2)

= H(l, = L)l =l +...) =0

since H(l, —1,,) = 0.
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Spectra have also been computed for [ other than 1, see [DJ06, DHS09]. If

l€{5,7,9,11,13,17,19,23,29}

then one can prove that

A(l) =1IA(1) = {IX: X € A(1)}. However, A(3),A(15), A(27), and A(63) are not so easily

described. For example,

AB)={lo+4l +---+4"1,: [, € {0,3}}U{lo+ 4l +--- + 4", — 1 : I, € {0, -3} },

forn=0,1,2,....
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CHAPTER 3
SIMPLE HADAMARD PAIRS

Definition 3.1. We say that the Hadamard pair (B, L) is simple if there are no infinite

minimal compact invariant sets.

Theorem 3.2. If (B, L) is simple then the measure pup is spectral.

Proof. Follows from [DJ07] and the spectrum is described in Theorem 2.12.

]

Theorem 3.3. Assume the eigenvalues of the matriz R are not rational. Then the Hadamard

pair (B, L) is simple and the measure pp is spectral.

Proof. We distinguish two cases: Suppose first that the attractor X (L) is contained in a

finite union of some translates of a subspace V' of dimension 1.

Then, in this case since mpg is an entire function, mp restricted to any compact subset
of these translates of V', in particular to X (L), will have only finitely many zeros. Then one

can use the results in [DJ06] to conclude that pp is spectral.

In the other case, X (L) is not contained in a finite union of translates of a subspace.

Consider M, a minimal compact invariant set. We will prove that M has to be an extreme
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cycle. Suppose not. By Theorem 2.6, M is contained in a finite union R of translates of
some proper subspace V, and R is invariant. If V' = {0}, then M coincides with the finite
cycle in Theorem 2.6 and every possible transition from a point y = 7, ... 7, 7o in the cycle
leads to a point 7,,,y in the cycle. Then |mp(7441y)| = 1 and so M would be extreme.

Hence we have obtained that V has to be one-dimensional if M is not extreme.
We claim that there exists a € R? such that mp(a+v) =0 for all v € V.

First there must exists some [ € L and some z € R such that ;z ¢ R. Otherwise, X (L)
is contained in R and this would contradict our assumption. Let z =y + v with v € V. We
have 7z = S~ (y+1) + S~ v, and since V is invariant for S, it follows that S~!(y +1) is not

in V. But then for any 2’ = y + v’ € R with v' € V', we obtain 72’ is not in V.

Since R is invariant this means that mp(7(y +v')) = 0 for all ' € V, and therefore

mp(ST' 1 +y)+S) =0, forall v/ € V.

But S~V =V so we obtain our claim.

On the other hand, mp is Z*-periodic. So mg(a+v+k) =0 for all v € V,k € Z*. 1If
V' is not a rational subspace (i.e., it is not spanned by a vector with rational components),
then V + Z? is dense in R?, and that would imply that mp is constant 0, a contradiction.
Hence V must be a rational subspace. Let (p,¢)T be a rational vector that spans V. Since

V is invariant, (p,q)T is an eigenvector for S. But, as S has integer entries, this means that
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S has a rational eigenvalue. Then, since the sum of the eigenvalues is the trace of S, so an

integer, both of them have to be rational.

O

Lemma 3.4. Let R be an 2 X2 integer matriz with rational eigenvalues. Then the eigenvalues

are integers. Let A be one of the eiganvalues.

There exists an integer matriz M with det M = 1 such that MRM~" has the form

A n
MRM™! =
0 ¢
Proof. Let
a b
R =
c d

The eigenvalues A verify the characteristic equation

A —TA+D =0,

where T' = Trace(R) = a +d and D = det R = ad — bc. So

T++vT1?—-4D
5 .

A:
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If the eigenvalues are rational then 7% — 4D is a perfect square. Note also that 7% — 4D

is even iff T" is even. Therefore, if A is rational then X is an integer.

Let A\ be one of the two eigenvalues. Then solving the equation Rx = Ax we obtain that
R has an eigevector with rational components. Multiplying by the common denominator,
we see that R has an eigenvector (z,y)? with integer components, and dividing by the larges

common divisor, we can assume z and y are mutually prime.Then there exists z,t € Z such

that 2t +yz = 1. Let

M=
y i

Then det M = 1 and M is an integer matrix. Also

[]

Corollary 3.5. Suppose the matriz R has a prime determinant. Then the measure ug s

spectral.

Proof. If R has prime determinant then R cannot have rational eigenvalues, because in this
case, by Lemma 3.4, it follows that the eigenvalues are integers, and since their product is
det R, one of them has to be 41 since det R is prime. But R expansive and therefore the

eigenvalues are irrational so pup is spectral by Theorem 3.3.
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The following theorem was proved in [CHR97] in connection with the study of self-affine

tiles. It provides another case when the measure pp is spectral.

Theorem 3.6. [CHRY7] If B is a complete set of representatives for Z? | RZ* then up is a

spectral measure, and the spectrum s a lattice.

Using our techniques we are able to be more specific and describe the spectrum of pp in

the case when the system (B, L) is also simple.

Theorem 3.7. Assume B is a complete set of representatives modulo RZ? (hence also L
is a complete set of representatives modulo RTZ?). Assume in addition that (R, B, L) is
simple. Let C be the set of all extreme cycle points and let A be the smallest subset of R?
that contains —C and with the property R"A + L C A. Let T be the additive subgroup of R?

generated by C and Z?. Assume that T is a discrete lattice. Then A =T and T is a spectrum

Jor up.

Proof. Take ¢ € C. Since c is a cycle point for (1), there exist some ¢ € C and [y € L such

that 7,¢ = c¢. Then RTc = ¢ + lo.

Since any point in I' is of the form

p
Yy=a+ E Mm;Cs,
i=1
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for some a € Z% ¢; € C and m; € Z it follows that RTy + [ will also be in I'. So

R'T + L Cc T'. This implies that A C T..

To prove the reverse inclusion, we claim that for any v € I', there exists [ € L such that

iy el

To see this, take

Yy=a+ imici
i=1

as above.

Since L is a complete set of representatives modulo RTZ?2, there exist a’ € Z% and [, € L
such that a = RTa’ + 1,. Also, for each i € {1,...,p}, since ¢; is a cycle point, there exist

¢, € C and I; € L such that 7,¢; = ¢;, which implies that ¢; = RT¢, — [;. Then

p p
Y= RT(CL, + Zmzc;) + la — Zmzlz
=1 i=1

Using again that L is a complete set of representatives, we have that there exist [ € L

and k € Z? such that

l, — zp:mizi = RTE—1.

i=1

Let v =a+k+ >  myc; € 7. We have vy = RTv — 1, so 1y = /.

This proves our claim.
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Now take 79 € I'. Then —vg € I', thus there exist [; € L such that 7, (—7) =: —y1 € I

This implies that v = RTv; + [;. By induction, we can find [, ..., [, such that
~Yn =1, .. T1,(—0) € I and this means also that v,_; = RTv, + [,.

But 7, ... 7, (—7) converges to the attractor X . Therefore if we take a ball B(0,r) that

contains X, we have v, = —7,, ... 7,7 € B(0,7) NI for n large.

Since I" is discrete, the set B(0,7) NI is discrete. So —v, = 7, ... 7,7 will land in a

cycle for the IFS (7)er.
We claim that this is an extreme cycle.

To see that, note first for any extreme cycle point ¢ one has

N =

§ 627rzb~c

beB

< Z |€27rib-c| — N.

beB

Hence we must have equality in the triangle inequality, and since 0 € B, we get that

e?mb¢ — 1 which means that b- c € Z.

Then for any x € 72,

1 . 1 .
mp(x+c) = ¥ Z e2mib-(z+e) _ ¥ Z Xm0 — mp(x).

beB beB

So ¢ is a period for mp.

Then for any v € I', with ~ of the form
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Yy=a+ zp:mici
i=1

as above, with a € Z? and ¢; € C, we have

imp(7)| = |mz(a+ Zmzcz)’ = |mg(a)| = 1.

=1

This shows that the cycle where —v, lands is an extreme cycle. So v, € —C C A for
some large n. Then, iterating back we have v,_; = RT~, + 1, € A. By induction, we get
Y € A. Therefore I' C A. Also, Theorem 2.12 shows that A is a spectrum for pp and this

proves the last statement.

]

Corollary 3.8. Let (R, B, L) be a Hadamard system. Let C be the set of all extreme cycle
point and let T' be the additive subgroup generated by C and Z*. Then R'T + L C T and

every v € I' is a period for mpg, we have

mp(z +7) =mp(x), (xr&R?),

and b-~v € Z for allb € B.

Proof. Everything is contained in the proof of Theorem 3.7.
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CHAPTER 4
NON-SIMPLE HADAMARD PAIRS

Before going into detail, first we have to prove the uniqueness of an important subspace,
namely the subspace associated to infinite minimal compact invariant sets as in Theorem
2.6, see Lemma 4.6. We recall some facts about invariant sets and we prove some additional

properties.

When (B, L) form a Hadamard pair, recall the notation

m(r) =Sz +1) withl € L and S = RT,

and for a cycle starting at zo : zo =: @(lp—1, - . ., lo) when the maps 7, are used: 7, T}, = 41
for ke {0,...,p—1} and z, := x¢. In this situation we say that z, is a periodic point and

that the cycle is extreme if | mp(x;) |[=1forallie { 0,...,p—1}.

Lemma 4.1. [CCR96] Let v = ©(Ym,-..,71) be a periodic point. Suppose there exists
li,...,ls € L such that 7, ...m,v is again a periodic point. Then Iy = Vm,lo = Ym—1,..., SO

T, ... T,V belongs to the cycle generated by v.

Definition 4.2. Suppose (R, B, L) is a spectral system. We are working with the dual IFS

(T)ie. We say that a transition x — iz is possible if [mp(miz)| # 0. We say that a set M
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s tnvariant, if for every x € M and every possible transition x — Tz, the point Tjx is also

in M.

Lemma 4.3. [CCRI6] If M is a compact invariant set, then one of the following conditions

holds:

(i) M contains an extreme cycle.

(i1) M contains a non-isolated cycle.

Definition 4.4. We say that a union R of translates of a one-dimensional subspace V,
R=Axo+V,...,z, + V} is associated to minimal invariant sets if R is invariant and
contains an infinite compact minimal invariant set M. We also say that the subspace V is

associated to minimal invariant sets.

Lemma 4.5. Let M be an infinite compact minimal invariant set. Then M 1is a perfect set

hence uncountable.

Proof. By Lemma 4.3, there exists a cycle C'in M. At least one of the points zy € C has a
possible transition to a point outside the cycle, yo = 7;,29. Otherwise, the cycle C'is extreme,
and since M is minimal M = C, but this would contradict the fact that M is infinite. The

point yg is in M since M is invariant, and since M is minimal, M = O(yy).

Now take a point x € M. There exist points of the form 7, ...7,y0 as close to x as we

want. Since yo = 7,20 € C' and g is cyclic, by Lemma 4.1, it follows that these points can
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be chosen distinct. This proves that x is not isolated in M hence M is perfect. Since it is

also compact in R?, it follows that M is also uncountable.

O

Lemma 4.6. Suppose there are two union of translates R = {zo+ V,...,x, + V}, R' =

{yo+ V', ... ,yy +V'} which are both associated to minimal invariant sets. Then V =V'.

Proof. Let M and M’ be the infinite minimal compact invariant sets associated to R and

R’ respectively.

Suppose the one-dimensional subspaces V' and V' are distinct. Then R N'R’ is a finite
invariant set (any two non-parallel lines intersect in a single point). Hence it has to contain
an extreme cycle p(71,...,7m), and any possible transition from a point in R N R will

eventually end in an extreme cycle.

By drawing a picture the truth of the fact that

U @+v)=Rr

aERNR/

becomes obvious.

Now take a a point in R N R" and let ly,ls, -+ € L give possible transitions from a to

T Ay T, T Ay - e

For r € N consider the functions
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fra()=mp(n, ...7(a+v)), (weV).

We have that f,. is analytic and f,.(0) # 0. Therefore each function f, has only finitely

many zeroes on any compact subset of V.

Take wy € M with the property that mp(7, ... 7, (a+wp)) = fralwo) # 0, for all r. This
is possible because the zeroes of the functions f,. are at most countable and the set M is

infinite and perfect, hence uncountable.
Then the transitions a + wy — 7, (@ + wo) — 7,7, (a + wp) — ... are all possible.
Since R is invariant and a + wy € R we have that 7, ... 7, (a +wp) € R.

On the other hand dist(7, ... 7, (a+wy), 7, ... 7, (a)) converges to 0, so 7, ... 7, (a+wp)
converges to the extreme cycle. This implies that the extreme cycle is contained in M, but

this contradicts the fact that M is minimal and infinite.

This section is about non-simple Hadamard pairs. In this case, any infinite minimal
compact invariant set is contained in a union of translates of some one-dimensional subspace
(Theorem 2.6). Moreover this subspace is unique (Lemma 4.6) and we call it the subspace
associated to minimal invariant sets or SAMIS. We prove that, if the Hadamard pair is
non-simple, then the system (R, B, L) is conjugate to a spectral system (R, B’, L") where
the matrix is lower triangular, and its SAMIS is R x {0} (Proposition 4.9). In addition, the

set L' can be chosen to have some extra properties (Proposition 4.13).
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Thus,we have the following result:

e To solve the Conjecture 1.7 in dimension two, it is enough to study spectral systems
(R, B, L) that satisfy (4.1)—(4.4).
Theorems 4.14, 4.15, 4.17 give various conditions that imply that upg is spectral.

Definition 4.7. We say that two affine IFSs (R, B) and (R',B’') are conjugate (through

M ) if there exists an integer matriz M with det M = £1 such that

R = MRM™" and B' = MB.
If (R,B,L) and (R',B’,L') is a spectral system, then we say that they are conjugate
through M if in addition L' = (MT)7 L.
The next proposition follows from a simple computation.

Proposition 4.8. Let (R, B) and (R, B') be two conjugate affine IFSs through the matriz

M. Then up is a spectral measure with spectrum A iff up: is spectral with spectrum (MT)71A.

Proposition 4.9. Suppose (B, L) is not simple. Then the spectral system (R, B, L) is con-
Jugate to a spectral system (R',B', L") such that R is lower triangular and its SAMIS is

R x {0}.

Proof. From Theorem 3.3, we know the eigenvalues have to be rational. From Lemma 3.4,

the eigenvalues are actually integers, the SAMIS V' is actually a rational eigenspace, and we
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can conjugate this affine IF'S to another one in such a way that the matrix R becomes lower

triangular, and this eigenspace becomes R x {0}.

O

Remark 4.10. By Theorem 3.3, if the eigenvalues of R are irrational then (B, L) is simple,
and the measure pp is spectral. If the eigenvalues of R are rationals then, by Lemma 3.4
the eigenvalues are integers and we have two cases. If the pair (B, L) is simple, then the
measure pp is spectral, by Theorem 3.2. If (B, L) is not simple, then by Proposition 4.9, the
spectral system is conjugated to one that has a lower triangular matrix, and whose subspace
associated to invariant sets is R x {0}. Therefore, in order to settle the conjecture for the

case of dimension d = 2 it is enough to focus on the case when R is of the form

R:
c d

and the subspaces associated to invariant sets is R x {0}.

Lemma 4.11. Suppose (B, L) is a Hadamard pair, and let ' C 7,0 € L', #L = #L' = N.
Assume that for every | € L there exist a unique I'(l) in L' such that [ is congruent to I'(l)

modulo S. Then (B, L) is a Hadamard pair.

Proof. Since the sets L and L' have the same cardinality N, it follows that the map [ — ’(])

is a bijection. Take l; # Iy in L. Then

Iy =U'(ly) + Sky, ly = I'(ly) + Sk for some ki, ko € Z2. Then we have:
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Z e?ﬂ'ib-sfl(l'(ll)—l/(lg)) _ Z 627rib~(571(ll—lg)—(k‘1—k‘2)) — 2627”‘6571([1—@) — 0
beB beB beB

O

Lemma 4.12. If (B, L) is a Hadamard pair then no two distinct elements of B are congruent

modulo R and no two distinct elements of L are congruent modulo RT .
Proof. Suppose that b,b" € B satisfy b — b = Rm for some m € Z¢, then

— ——
627rzR bl _ 627rzR bl

for all [ € L since L C Z.
This means that the rows in the Hadamard matrix labeled b and b cannot be orthogonal.

]

Proposition 4.13. Assume

and suppose (B, L) is not simple, and its SAMIS is V := R x {0}. Then there exists L’

such that

i) (B,L") is a Hadamard pair;
(i) (

(i) L' < {0,... |a| — 1} x {0,...,|d| — 1};
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(11i) The hypothesis ”(H) modulo V" is satisfied (relative to L').

Proof. Assume, without loss of generality and for the rest of the section, that a and d are
nonnegative. We use Lemma 4.11 and replace each [ € L by some element in {0,...,a—1} x
{0,...,d — 1} which is congruent to it modulo S. Take [ € L, I # 0. Let | = (I;,1l5)". Let
q = lymod d. Then there exists y € Z such that ¢ — [, = dy. Then take p = cy + [y mod a.
Then a simple computation shows that I'(l) := (p,q)? is congruent to [ modulo S. Define

L' :={l'(l): 1 € L}. With Lemma 4.11, (i) follows and (ii) is clear too.

For (iii), suppose 7, ... 7,0 — 7, ... 7,0 € V with ¢;,n; € L'. This means that

P

SHer—m)+--+SP(e,—m,) €V.

Since V' is invariant for S this implies

€p — Mp + S(Epfl — 7]1;71) + -+ Sp71<€1 — 771) eV.

But this means that the second component of €, — 7, is a multiple of d. From (ii) it
follows that the second components of €, and 7, are equal so €, —n, € V. Then, S~!(e, —1,)
is in V' so we can reduce the problem to p — 1 and use induction to conclude that ¢, —n; € V

for all 7.
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Proposition 4.13 allows us to make the following assumptions which we assume to hold

throughout this section:

R= (4.1)

Either (B, L) is simple or it is a non-simple Hadamard pair and its SAMIS is V' = Rx{0};

(4.2)
Lc{0,...,a—1} x{0,...,d—1}; (4.3)
The hypothesis “(H) modulo V¢ is satisfied. (4.4)

Theorem 4.14. Assume (4.1)—(4.4) hold. Define By = proj;(B) = {by : (b1,b2) €
B for some by}; for by € By let Ba(by) := {by : (b1,b2) € B} and define the Laurent polyno-

maials

o, (2) = Z 22 (b € By).

ba€B2(b1)
it .
Suppose the polynomials py,, by € By have no common zero of the form T a@ T with

k€ Z,j € N. Then the measure pug 1is spectral.
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Proof. We prove (B, L) is simple hence up is spectral, by Theorem 2.12. If not, since R x {0}
is its SAMIS then, there exists a cycle point ¥y = (z1,y;)” as in Theorem 2.6 (iii). Then it

is easy to see that g is a cycle point for the IFS 7, : z + d~'(x + Iy) where Iy € proj,(L).

This means that for some n;,...,n; € proj,(L) we have

Y1 ="Ty; - TpY1 = d_lnj e d Ty + d 7y

Then

mt- Ay
d—1

=

Consider now the union R of translates of V' = R x {0} as in Theorem 2.6(iii). For
one of the translates, which we can relabel zg + V = {(z,y1)" : € R}, there exists some
[ = (Iy,1l5)" such that 7y(zg + V) = {(z,d"*(y1 +12))" : € R} is not contained in R, hence

it is disjoint from it. Otherwise, the whole attractor X (L) will be contained in R, and in

this case mp has only finitely many zeroes on X (L) so we can use the results in [DJ06].

Since R is invariant, this means that mp((z,d ' (y; + 12))T) = 0. Then

b1€B1 boeBo(b1)

This implies that for all b; € By
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a1
E eQﬂ'zbzd (y1+l2) — O
ba€Ba(b1)

and this contradicts the nonexistence of a common zero for the polynomials py, of the

given form. The contradiction show that (B, L) has to be simple so the measure is spectral.

]

Theorem 4.15. Suppose det R is a product of 2 (not necessarily distinct) prime numbers.

Then up 1s a spectral measure.

Proof. We can assume that (4.1)—(4.4) hold. Also, with the notation in Theorem 4.14 we
can assume there exists by € By such that #By(by) > 2; otherwise p,(z) has only one term

so it cannot have zeroes on the unit circle, and the result follows from Theorem 4.14.
Define Ly := proj,(L) and for Iy € Lo let Li(lo) := {ly : (I1,1s)T € L}.

Lemma 4.16. We can assume there ezist ly € Lo such that #L,(ls) > 2; otherwise the

measure (g s spectral.

Proof. Suppose #Ly(l3) = 1 for all Iy € Ly. Take R as in Theorem 2.6(iii). We know that

each possible transition from a point (z,;)7 in R will lead to a point (2/,12)7 in R and
Yo is independent of z. Suppose this transition is done using a map 7, with lo = (I3,12)7.
The assumption then implies that, using instead 7 with [ # [, the second coordinate of this

point will not be ys.
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But this contradicts Theorem 2.6(iii). So for all I' # I, 7:(x,y1)7 is outside R. Therefore
mp (1 (x,31)") = 0.

But, since

S Ims(mla, )P = 1,

leL

this implies that |mp(7,(z,y1)T)| = 1, and using the triangle inequality and the fact
that 0 € B, this implies that b - (z,y;) € Z. Since z is arbitrary, this implies in turn that
By, = {0}, which means that X (B) is actually one-dimensional, contained in {0} x R, and

we can apply the results in [DJO06].

Resuming the proof of the theorem, since det R is a product of two primes, we can assume

a and d are prime.

First, take by € By, such that there exist by # b}, in Bs(by). Using Lemma 4.12, by and
b, are not congruent modulo d. Apply the Hadamard property to the rows corresponding to

(bl,bQ), (bl,bé) < BZ

by — bt
E e?m 2d2'l2 :0

(li,l2)Tel

Then
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bo—bl bo—bl
pL2(62m 2d 2) _ Z #Ll(l2)€2m Qd 2.0, — O,

lo€L2

where pr,(z) = >, c;, #L1(l2)2". But since py, has integer coefficients it follows that
pL, is divisible by the minimal polynomial for 62”@ which is the cyclotomic polynomial
Py(2) = 1+ 2+ -+ 2971 since d is prime. But Ly, C {0,...,d — 1} according to our
assumptions. Therefore py, is a constant multiple of ®4. This means that Ly = {0,...,d—1}

and #Lq(l2) is independent of [y € Ly. We also have d - #Lq(ls) = N.

Now, using Lemma 4.16, take [y € Ly and [; # I} in Ly (ls). Apply the Hadamard property

to the columns corresponding to (l1,ls) and (I},3) in L:

Qm‘b.@
E e e = (.

(bl ,bg)TGB

Then

!

L 1, -1
27 L 171
a

) = Z # By (by )1 mod ) T — Z #32(51)€2ﬂib1'11;11 =0,

b1€B b1€B1

pBl(e

where pg, (2) = Y, cp, #Ba(b1)2"™°4¢. We might have two different by, b} in B; such

that b; = b} mod a.

We write further

pe(2) = _ ( > #Bg(b1)> 2~

b1 €B1,b1 mod a=k

20



Since pp, has integer coefficients, it follows that pp, is divisible by the minimal polynomial

1y 1]
for 2™~ which is the cyclotomic polynomial ®,(z) =1+ 2z + -+ + 27! since a is prime.
Therefore pp, is a constant multiple of ®,. This means that By moda = {0,...,a — 1} and

> b moda—t #B2(D1) is independent of k € {0,...,a — 1}. Hence

( Z # By (b1) ) Y ( ‘#82(171)) = Z #By(b)) = #B = N.

b1 mod a=k 1=0 b1631

We have d - #L1(ly) = a - (D oy modak 7 B2(01)). If @ # d, then a divides #L;(l2)
and since N < ad it follows that N = ad. But this implies that B is a complete set of

representatives for Z2/RZ?. Using Theorem 3.6 it follows that up is spectral.

If @ = d then take (I1,l5) # 0 in L. Using the Hadamard property we have

R .abyly—cbybgtabgly
0= E eQmR bl — § 627”—:;2 )

beB (b1,b2)€B

Thus, we have a sum of #B = N roots of order a? of unity. Since a is prime, using [LLOO]
we get that N is divisible by a. Therefore N = a or N = a?. If N = a® = det R, then B
is a complete set of representatives for Z?/RZ?, and with Theorem 3.6, we get that up is

spectral.

If N = a then we obtain that #L,(ls) = 1 for all [, € L,. But this contradicts the

assumption of Lemma 4.16, so upg is spectral.

Theorem 4.17. Assume (4.1)—(4.4) hold. Define By = proj,(B), Ba(by) := {by : (b1, b2)T €

B} fO’f’ bl € Bl, L2 = pron(L), Ll(lg) = {ll : (ll,lg)T c L} fO’f’ 12 c L2. ]f #Bg(bl) = Nz
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independent of by € By and #L1(ls) = Ny independent of ly € Ly and N1 Ny = N then pp is

a spectral measure.

Proof. Theorem 4.18 below guarantees that the IFS 7, (z) = a™'(x + b1), by € By has no

overlap. Then the result follows from [DJO07, Proposition 3.2 and Theorem 3.8].

]

Theorem 4.18. Let R be an integer, |R| > 1 and let D be a set of integers such that no
two distinct elements of D are congruent modulo R. Consider the IFS 14(z) = R~ (z + d),
d € D and let X(D) be its attractor and D := logp(#D). Then the Hausdorff measure of
X (D) satisfies 0 < HP(X (D)) < oo, the invariant measure pp of the IFS (74)aep is the

renormalized Hausdorff measure HP restricted to X (D) and the measure up has no overlap.

Proof. Let N := #D. Since the elements of D are incongruent modulo R we can enlarge it
to a set D O D which is a complete set of representatives for Z/RZ. We denote by X (D)

the attractor of the IFS associated to D.

By [Ban91, Theorem 1], the attractor X (D) has non-empty interior int(X (D)) # 0.

Then

UdepTa(int(X (D)) C Uyepra(int(X(D))) C int <Udeﬁ7'd(X (15))) = int(X (D)).

This means that the Open Set Condition is satisfied for the IFS (74)4ep-

Using [Hut81, Theorem 5.3.1 (ii)], we can conclude that 0 < HP(X (D)) < cc.
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For any Borel subset E of R and d € D, we have

HP (17 1(E)) = HP(RE—d) = HP(RE) = RPHP(E) = NHP(E). Similarly HP (14(E)) =

HP(E).
We have
HP(X(D)) = H” (Uaepma( X (D)) < Y H" (1(X (D)) = % - NHP(X (D)) = HP (X (D)),

deD
Since we must have equality, this implies that HP (74(X (D)) N71a (X (D))) = 0 for distinct

d,d € D, which means that there is no overlap (other than on sets of measure zero).

Then we also have, for any Borel set E:

HP(ENX(D) = Y HP(ENm(X(D) = 3 %”HD(le(E) A X(D)).

deD deD

This proves that H” restricted to X (D) is invariant for the IFS, but since pp is the

unique measure with this property, all statements in the theorem have been proven.
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CHAPTER 5
EXAMPLES

We begin by studying some examples where the matrix R has determinant 2. Such matrices
were completely classified in [LW95]. We include the result here.

0 2 0 2 1 1 0 2
Now, introduce C; = , Oy = , O3 = , Cy=

10 -1 0 -1 1 -1 1

We say that two matrices A and B are conjugate if there exists a matrix P € My(Z) with
| det P| = 1 such that PAP~! = B. We then write A ~ B. For the general case | det A| = 2

we have the following lemma from [LW95].

Lemma 5.1. [LW95]

Let A € My(Z) be expansive. If det A = —2, then A is conjugate to Cy. If det A = 2,

then A is conjugate to

one of the matrices Cs, £C3, £C4.

To gain a better understanding of these matrices we shall need the full proof.

Proof.

aixp Qag

ag1 A2
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Following [LW95] we define the weight p(A) of A to be p(A) := —ay1a9.
The assumptions [A| > 1, [A2| > 1, [A\; Ao = 2 imply that || < 2, [Ag] < 2

and then |aj1 + ags| = | A1 + A2| < 4. Since the common sum is an integer |a;; + ags| < 3.

But 3 is

not possible, so we actually have |aj; + ag| < 2. Squaring this we obtain ajjaze < 1,

which can be written

as p(4) > —1.

We will use induction on the weight p(A) to prov that A ~ B for some matrix

0 b2
B —
bar oo
Base case p(A) = —1. In this case |aj1| = |age| = 1 and ajpa9 = —p(A) —det A = —1 or

3, hence |aj2| =1 or

las;| = 1. We may assume, without loss of generality, that |as;| = 1. Attempting P =

1 A
we have
01
a11 + Aagy  *
PAP ! =
* k
Now choose A = —sign(ajjaz;) and we are done.
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The case p(A) = 0. Here a;; = 0 or ag = 0. If a;; = 0 we are done. Suppose agy = 0.

Then

-1

0 1 a1 Q12 O 1 0 a921
1 0] [asy O 10 aiz a1

Assume now that the hypothesis is true when the weight p(A) < k, k € N.
Suppose p(A) = k. Claim: the hypothesis then is true in this case as well.

It must be that |ag| < |aji| or |a1a| < |age|, because, if not true, we would have

| det A| = |ag1a12 — ar1a22| > (|air| + 1)(Jagz| + 1) — |ai1||ag| > 3,

which is not possible.

We now assume, without loss of generality, that |as| < |ai1|. Let A = —sign(aj1a9;) and
consider
1
1 A ai; Qa2 1 A ai + /\CLQl *
Al = =
01 21 Q929 01 * 29 — )\a21
Here

p(A1) = —(ann + Aagr)(ax — Aag) = p(A) + a§1 + Aag1a11 — Aag1ag.

Since a11A99 = —k <0
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—)\aglagg = Sign(alldgl)aglagg <0

in all cases. Hence

P(Al) < p(A) + a§1 - Sign(anam)azlan < P(A)~

Observe now that a completely general matrix was used in the initial discussions; their

conclusions therefore hold for A;. Since we have shown that p(A;) < k the hypothesis is true

for A;. Hence A; ~ B for some B = . Since A ~ A; we then have that A ~ B.

b21 622

This proves our claim and ends the induction.

Assume now that det A = —2. Then bj2by; = 2. From

’)\1’ > 1, ‘)\2‘ > 1,)\1)\2 = -2

follows —2 < A} < —1,1 < Ay < 2 (if Ay is smaller).

Then we infer that byy = A\; + Aa = 0. Whatever is the combination of byy and by it is

0 —1
always true that B ~ . Take e.g. bjg = —1,by; = —2, P = . Then

PBP ! =
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At last, assume that det A = 2. Then b12by; = —2. Now we can only deduce that |bes| < 2.

0 2
Let D = . By taking P to be one of the matrices
-1 2
-1 0 1 0 01 0 —1 0 1
‘[7 ) Y Y )

we will have PBP~! = Oy, +D, or £C4.

1 -1
Finally, with QQ = , we have that C5 = QDQ~!.
0 1
m
0 2
Ezxample 5.2. Let R = . Then
10

We want B = {(0,0)7, (b;,b2)"} to be a complete set of representatives modulo RZ2.

This means that

(0,0)" and (by, b»)T should not be congruent modulo R; there must not be a solution in Z
to (b1, b2)T = R(x,y)T. In other words R™'(by,bo)T & Z?, so we must have that (1/2)b; ¢ Z

or by ¢ 7.
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We can therefore choose b; = 1, by = 0. Hence let
B={(0,0)",(1,0)"}.

The attractor of the affine IFS (R, B) is shown in Figure 5.1.

-

Figure 5.1: Xp

If the dual IFS corresponds to L = {(0,0)7, (I;,15)"}, then the Hadamard matrix

!

\/5 1 eQﬂ'iR’ 1yl

equals
1 (1 1
V2

1 eiﬂlg

which is unitary iff /5 is odd. Take
L = {(0,0),(0,1)"}.

The attractor of the affine IFS (R”, L) := X[, is shown in Figure 5.3.
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-~

Figure 5.2: X

To find the spectrum A we refer to the theorem on determinants whose absolute value is
a prime number, saying that such a system must be simple. Since this is the case with the
matrix R, the system (R, B, L) is simple, by that theorem. Therefore looking at the extreme

cycles will give us the spectrum. We have that
mp(z,y)| = [1/2(1+ )| =1

ift x € Z, while y is arbitrary.

The extreme cycle points must belong to the attractor X, which in this example is just
the closed filled unit square. Among the four points there with x € Z, (0,0) and (1,1) are

the only cycle points (fixpoints) and they are also extreme. All of this is

very easily checked. By Theorem 3.7 the spectrum A is the lattice generated by the

extreme cycles and Z2. Therefore A = Z2.

0 2
FExample 5.3. Let R =

-1 0
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Then

R =
05 0

We want B = {0, (b1, b2)"} to be a complete set of representatives modulo RZ?. This is
the same as asking for the equation R(z,y)T = (b1, b2)T to have no solution in Z. Equivalently
R71(by, b)) ¢ 72

Hence 0.5b; ¢ Z or —by ¢ 7. We can then take by = 1, by = 0.

Hence let B = {0, (1,0)7}.

The attractor of the affine IFS (R, B) is shown in Figure 5.3.

Figure 5.3: Xp

Let L = {0, (l1,12)} be the dual IFS. The Hadamard matrix will once more become

which is unitary iff /5 is an odd number.
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Take

L =1{0,(0,1)T}.

The attractor of the affine IFS (R”, L) := X[, is shown in Figure 5.4.

Figure 5.4: X,

Since the determinant of R is 2, a prime number, the system (R, B, L) is simple. Therefore
it is enough to consider the extreme cycles in order to find the spectrum. Since B is the
same set as in the previous example we obtain that a point (z,y)’ is extreme iff z ¢ Z, while

y is arbitrary.

Since any cycle must be contained in the attractor X, and since this is a filled square

contained in (—0.4,0.7) x (—0.7,0.4),
(see Figure 5.4) we must have that the extreme points are of the form (0, y) for some y.

Now, from an extreme point we must be able to reach an extreme point, which may

possibly be the same point, by some 7.
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That is to say that 7;(0,y)" = (0,91)7 for some [ = (0,15) and y;. Hence y = —ly =0 or

-1 and y; = 0.

In conclusion, the origin is the only extreme point.

Since the spectrum A is generated by the extreme points and Z?, we have found that

A =72

Example 5.4. Let

Then

We want B = {0, (b1,b2)"}, to be a complete set of representative modulo Z?. This
means that the equation R(x,y)T = (by,b)” should have no solution in Z. Equivalently

R7Y(by,b5)" & Z%. This means

btz ¢ 7, or Wtz & 7. Therefore we can take (by, b2)” = (1,0)” so

The attractor of the affine IFS (R, B) is given in Figure 5.5.
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Figure 5.5: Xp

Next, we need the set L = {0, (I1,15)T}. We require the Hadamard condition so
we want the matrix

e 1

\/5 1 62771‘(1/2,1/2)T-(11,12)T

to be unitary. This condition is satisfied if [; + Iy is odd. Therefore (I1,15)" = (1,0)" will

verify the conditions, so we can take

The attractor of the affine IFS (R, L) is given in Figure 5.6.

Since the determinant of R is 2 which is a prime number, the system (R, B, L) is simple.

Therefore we just have to look for the extreme cycles. The function mp is
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Figure 5.6: X,

male,y) = S(1+6), ((r,y) € ),

Then |mp(x,y) =1 iff € Z and y is arbitrary.

Since any cycle is contained in the dual attractor X, and since X is contained in
(—1,1) x (—2,1) (see Figure 5.6), we have that any cycle point (xg, o) is of the form (0, y)
with y € (—=2,1).

One of the transitions of the extreme cycle point (xg,yo) will lead to another extreme
cycle point. Therefore we must have that for some | € L, 7,(0,y) is of the form (0,y’). This

means that
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Then l; +y = 0so either [y =0,y =0or [; =1, y = —1. In the first case we obtain the

trivial extreme cycle {0}. In the second case we obtain the extreme cycle {(0,—1)}.

Thus all the extreme cycles in this example are

{0} and {(0,—-1)}.

Since B is a complete set of representatives modulo RZ?, by Theorem 3.7 the spectrum

A will be the lattice generated by the extreme cycles and Z2. Therefore

A=7%
Ezxample 5.5. Let
0 2
R =
-1 1
Then
11 —2
R1'=2
2
1 0

We want B = {0, (by,b2)T}, to be a complete set of representatives modulo RZ2. This
means that the equation R(x,y)T = (by,b)T should have no solution in Z. Equivalently

R7Y(by,by)T & Z2. This means

b2z ¢ 7, or & & Z. Therefore we can take (b, b)" = (1,0)7 so
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The attractor of the affine IFS (R, B) is given in Figure 5.7.

Figure 5.7: Xp

Next, we need the set L = {0, (I1,12)"}. The Hadamard condition implies that the matrix

1 1

V2

1 e2m‘(1/2,1/2)T~(11,l2)T

has to be unitary. This condition is satisfied if I; + I is odd. Therefore (I1,15)" = (1,0)T

will verify the conditions, so we can take

The attractor of the affine IFS (R”, L) is given in Figure 5.8.
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Figure 5.8: X,

Since the determinant of R is 2 which is a prime number, the system (R, B, L) is simple.

Therefore we just have to look for the extreme cycles. The function mpg is again

male,y) = S+ E), ((2,y) € B,

Then |mp(x,y) = 1 iff z € Z and y is arbitrary.

Since any cycle is contained in the dual attractor X, and since X is contained in
(—1,1) x (—1,1) (see Figure 5.7), we have that any cycle point (xg, o) is of the form (0, y)
with y € (—1,1).

One of the transitions of the extreme cycle point (xg,yo) will lead to another extreme
cycle point. Therefore we must have that for some | € L, 7;(0,y) is of the form (0,y’). This

means that

68



Then [y +y = 0 so either [y =0,y =0o0r [; =1, y = —1. In the first case we obtain the

trivial extreme cycle {0}. In the second case we obtain the extreme cycle {(0,—1)}.

Thus all the extreme cycles in this example are

{0} and {(0,—-1)}.

Since B is a complete set of representatives modulo RZ?, by Theorem 3.7 the spectrum

A will be the lattice generated by the extreme cycles and Z2. Therefore

A =77

Remark 5.6. Looking at the picture of the attractor X it seems that this tiles R? by Z x 2Z
and not by Z?. We check that this is the case by showing that the spectrum of X is the

dual lattice Z x %Z.

For this, we turn the Example 5.5 around and take RT for the matrix R, L for the set B

and vice versa.

Example 5.7. Let
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Then

Since the determinant of R is 2 which is a prime number, the system (R, B, L) is simple.

Therefore we just have to look for the extreme cycles. The function mp is

male,y) = 31+ E), ((2,y) € B,

Then |mp(z,y) = 1 iff z € Z and y is arbitrary.

Since any cycle is contained in the dual attractor X, and since X is contained in
(—1,1) x (—2,1) (see Figure 5.8), we have that any cycle point (xg, o) is of the form (0, y)
with y € (=2,1).

One of the transitions of the extreme cycle point (xg,yo) will lead to another extreme
cycle point. Therefore we must have that for some | € L, 7;(0,y) is of the form (0,y’). This

means that
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1 0 Y Y

Then I} — 2y = 0 so either ; =0,y =0or l; =1, y = 1/2. In the first case we obtain

the trivial extreme cycle {0}. In the second case we obtain the extreme cycle {(0,1/2)}.

Thus all the extreme cycles in this example are

{0} and {(0,1/2)}.

Since B is a complete set of representatives modulo RZ?, by Theorem 3.7 the spectrum

A will be the lattice generated by the extreme cycles and Z2. Therefore

A:ZXEZ.
2

Ezample 5.8. We present here a non-simple system (R, B, L).

Consider the expansive matrix:

4 0
1 4

Let

71



Let

Then the matrix %(eQﬂR_lb'Z)begleL is seen to be unitary.
Hence (R, B, L) is a Hadamard triple.

By analyzing the extreme cycles, i.e. those cycles where | mp(x,y) |= 1,| mp,(z) |= 1

and | mp,(y) |= 1, it is possible to compute the spectrum A of ug.

For example, we have

1 , , ,
1= |mp(z,y)| = | Z(1 2T | o2misy | p2milat3y)y |

This is only possible if all exponentials are equal to 1. Hence the cycle is extreme iff

x€Zand y € Z/3.

Now, if (x0,%0) is a point of an mp-cycle (extreme) and (I1,l2) € L then 7, 1,)(%0, o) is

also one of the points in the cycle.
With 7;(2) = S7'(2 + 1) we have
4 —1 i ll

T(ll,lz)(x(]a yO) = 1_16 +
0 4 Yo ly

Hence }L(-’fﬂo +1) — %(yo +13) € Z and i(yo +1y) € Z/3.

The point (¢, yo) must also belong to the attractor X, of the IFS (7)icr.
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Since the rectangle

[—1/4, 2/3} X {0, 2/3]
is invariant for all 7;,1 € L, this means that the attractor is a subset of that rectangle,

and so (zg,yo) must also satisfy
—1/4 <2y <2/3,0<y<2/3.
Combining these facts we conclude that the only extreme mpg-cycle is {(0,0)}.

In two dimensions the situation is more complex. It is not enough only to consider the

cycles, we need to find a proper vector space whose translates by the elements of the mg-cycle

4 1
(here the origin) is invariant with respect to S =

0 4

The set of eigenvectors of S is invariant, hence V' = {(z,0)} fits very well. Now the

x+1

T This means

measure £; on the first component corresponds to the IFS 70 = £ and 7, =
that R =4 and B = {0,1} and then L = {0,2} gives a Hadamard pair. For the associated

mp,-function | (1 + ™) |= 1 it means that x must be an integer, and so the cycle is {0}.

Still, it gives a contribution A(0) to the spectrum, as in earlier examples. Analyzing the
second component a new [FS appears with respect to which the translated vector space 2/3+
V is invariant. It gives a contribution A(2/3) to the spectrum. But A(0) and A(2/3) both
contributes to both components. The system (R, B, L) satisfies the reducibility condition.

The result of all this is the following.

The spectrum Ap = A(0) UA(2/3), where
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A(0) = { <Z4kak + ) k4, Z4kbk> | ax, by, € {0, 2}}
k=0 k=0 k=0

and

A(2/3) = {(iélkak, —2/3 — izlkbk | ag, by € {0,2},n,m € N} .

k=0 k=0
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