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ABSTRACT

In survival analysis, the Cox model is one of the most widely used tools. However, up

to now there has not been any published work on the Cox model with complicated types of

censored data, such as doubly censored data, partly-interval censored data, etc., while these

types of censored data have been encountered in important medical studies, such as cancer,

heart disease, diabetes, etc. In this dissertation, we �rst derive the bivariate nonparametric

maximum likelihood estimator (BNPMLE) F̂n(t, z) for joint distribution function F0(t, z) of

survival time T and covariate Z, where T is subject to right censoring, noting that such

BNPMLE F̂n has not been studied in statistical literature. Then, based on this BNPMLE

F̂n we derive empirical likelihood-based (Owen, 1988) con�dence interval for the conditional

survival probabilities, which is an important and di�cult problem in statistical analysis,

and also has not been studied in literature. Finally, with this BNPMLE F̂n as a starting

point, we extend the weighted empirical likelihood method (Ren, 2001 and 2008a) to the

multivariate case, and obtain a weighted empirical likelihood-based estimation method for

the Cox model. Such estimation method is given in a uni�ed form, and is applicable to

various types of censored data aforementioned.
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CHAPTER 1. INTRODUCTION AND PRELIMINARIES

The Cox model is one of the most widely used tools in analysis of survival data. But up

to now there has not been any published work on the Cox model with complicated types

of censored data, such as doubly censored data, partly interval-censored data, etc. In this

dissertation, weighted empirical likelihood (Ren, 2001) is used to develop general estimation

methods for the Cox model with the various types of censored data aforementioned. To

facilitate this work, we derive the bivariate maximum likelihood distribution estimator for

right censored data, which also leads to the construction of the empirical likelihood-based

con�dence interval for conditional survival probabilities.

1.1 Introduction

Survival analysis is a branch of statistics concerned with the failure time, or the event

time, i.e., the time elapsed from a speci�c time origin until a failure occurs. In practice, a

failure time could be, for example, the age when a child learns a certain task, the time of

death from a particular disease, etc. Often, the interest of study is to determine the e�ect of

certain independent variables, called covariates, on the failure time of a subject. In particular,

medical researchers are often interested in the e�ect of a covariate, such as a treatment, on

a patient's survival time. Sometimes traditional methods, such as multiple regression, can

be used to determine the e�ect of the covariates on the failure time. However, two common

situations arise where these methods cannot be used. First, when the failure time is not

normally distributed, conventional methods such as least squares multiple regression cannot

be used. Second, traditional methods break down when censored data are observed. In this
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context, the Cox model (Cox, 1972) provides a useful tool because it does not require the

underlying distribution to be normal and can include right censored data in its estimation

procedures.

So far, most methods developed for the Cox model deal with right censored data. But

in recent years, more complicated types of censored data, such as doubly censored data,

interval censored data, partly interval-censored data, etc., have been encountered in impor-

tant scienti�c studies, including cancer research, AIDS research, heart and diabetes disease

research, etc. There have been some papers that extend the Cox model to deal with interval

censored data (Satten, 1996; Huang, 1996; among others), but for other types of censored

data mentioned above the statistical methods on the Cox model are lacking. This work will

develop general estimation methods for the Cox model with various types of censored data

by utilizing the weighted empirical likelihood method (Ren, 2001).

Likelihood is the most widely used procedure for inference in parametric as well as non-

parametric models. One reason for this is that the estimators usually possess desirable

asymptotic properties. The usual maximum likelihood estimator is obtained by maximiz-

ing the parametric likelihood function and is shown to be usually consistent, e�cient, and

asymptotically normal (Casella and Berger, 2002). Wilks (1938) showed that, under some

conditions, the logarithm of the parametric likelihood ratio has an asymptotic chi-square

distribution, which provides the key to constructing con�dence sets for the parameter. To

overcome the limitations of parametric likelihood, Owen (1988) proposed empirical likeli-

hood, which is a nonparametric method. Over the past two decades, it has been shown

(see Owen, 1988, 1990, 1991; DiCiccio et al., 1991; Qin and Lawless, 1994; Mykland, 1995;

among others) that Wilks' theorem holds for empirical likelihood and that empirical likeli-

hood inferences are of comparable accuracy to alternative methods. In particular, DiCiccio,

Hall and Romana (1991) showed that empirical likelihood is Bartlett-correctable. However,

when imposing a model assumption with those complicated types of censored data above

mentioned the empirical likelihood function is usually very complicated and very di�cult
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or impossible to maximize. To deal with these issues, Ren (2001, 2008a) proposed weighted

empirical likelihood, which provides a simple and direct way to incorporate some model as-

sumptions in the derivation of the likelihood function for various types of censored data. So

far, the results on weighted empirical likelihood have shown to be favorable to alternative

methods, but weighted empirical likelihood has only been applied to the univariate case.

In this dissertation, we extend the weighted empirical likelihood method to multivari-

ate survival data, and we develop a general weighted empirical likelihood-based estimation

method for the Cox model with various types of censored data aforementioned. Speci�cally,

we derive the weighted empirical likelihood-based estimating equation(s) for the regression

parameters in the Cox model. To facilitate this, we �rst derive the bivariate maximum like-

lihood distribution estimator for right censored data. In addition, we derive the empirical

likelihood-based con�dence interval for conditional survival probabilities with right censored

data.

This chapter is organized as follows: Section 1.2 gives a brief review of the proportional

hazards model and, in particular, the Cox model; Section 1.3 introduces several types of

censored data, gives real data examples for each type of censored data, and brie�y reviews

some relevant asymptotic results; Section 1.3 also reviews some recent results on the Cox

model; Section 1.4 reviews statistical inference based on parametric likelihood, empirical

likelihood, and weighted empirical likelihood; and Section 1.5 summarizes the main results

of this dissertation.

1.2 Cox's Proportional Hazards Model

Cox's proportional hazards model (in short, the Cox model) is a commonly used tool in

survival analysis to explore the relationship between the failure time and covariates. The

Cox model is a speci�c form of the proportional hazards model, and is popular because

it assumes that the risk for the treatment is proportional to the risk for the control, but

makes no assumptions on the shape of the underlying distribution function. In some limited
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situations, the assumption of proportional hazards (or risks) can be tested via goodness-of-

�t tests, while in some �elds there is empirical evidence to support the idea of proportional

hazards. Another bene�t of the Cox model is that the model is su�ciently �exible to

incorporate covariates and deal with right censored data (see description of right censored

data in Section 1.3.1). Next, we review some basic de�nitions and concepts in survival

analysis, then give the de�nitions of the proportional hazards model and the Cox model in

Sections 1.2.1-1.2.2, respectively.

Throughout this dissertation, let T be a non-negative continuous random variable, the

failure time variable, with distribution function (d.f.) FT (t) and density function f
T

(t). The

hazard function for T is the instantaneous risk, i.e., the probability that the failure occurs

at time T = t given survival up to time t:

hT (t) = lim
∆→0+

P{t < T ≤ t+ ∆ |T > t }
∆

. (1.2.1)

The hazard function is especially valuable in survival analysis because it provides a way to

consider the immediate risk attached to a subject.

In order to obtain an expression for the density function fT (t) in terms of the hazard

function hT (t), we utilize the de�nitions of derivatives and conditional probability to obtain:

hT (t) = lim
∆→0+

P{t < T ≤ t+ ∆ |T > t }
∆

= lim
∆→0+

P{t < T ≤ t+ ∆}
∆ · P{T > t}

= lim
∆→0+

FT (t+ ∆)− FT (t)

∆ · F̄T (t)
=

F ′T (t)

F̄T (t)
=

f
T

(t)

F̄T (t)
, (1.2.2)

where F̄T (t) = 1 − FT (t) = P{T > t} is the survivor function for T . Note that from

f
T

(t) = −F̄ ′T (t), we have

hT (t) = − d

dt

(
log F̄T (t)

)
, (1.2.3)
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and since F̄T (0) = 1, we integrate (1.2.3) and obtain:

F̄T (t) = exp

{
−
∫ t

0

hT (u)du

}
= exp{−HT (t)}, (1.2.4)

where HT (t) =
∫ t

0
hT (u)du is the cumulative hazard function of T . Taking derivatives in

(1.2.4), we have

f
T

(t) = hT (t) exp{−HT (t)}. (1.2.5)

Equations (1.2.4)-(1.2.5) give the relationship among f
T

(t), F̄T (t), and hT (t). The hazard

function, hT (t), is used in the following subsections to de�ne the proportional hazards model

and the Cox model.

1.2.1 Proportional Hazards Model

As follows, we describe the proportional hazards (PH) model, by �rst reviewing the

two-sample problem, then extending it to the general form of the PH model.

Two-Sample Problem

Consider two samples: a control group and a treatment group. Let hT0(t) and hT1(t) be

the hazard functions of the control group and the treatment group, respectively, and denote

the two observed samples as follows:

{
Control Group : T

(0)
1 , · · · , T (0)

n0

Treatment Group : T
(1)
1 , · · · , T (1)

n1 .
(1.2.6)

The PH model assumes that at time t, the hazard function hT0(t) of the control group and

the hazard function hT1(t) of the treatment group are proportional up to a constant ψ > 0

and is written as:

hT1(t) = ψhT0(t). (1.2.7)
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Note that the value of ψ determines whether the treatment is e�ective (i.e., better than the

control). If ψ < 1 in (1.2.7), then at any given time t, the hazard (or risk) for the treatment

is less than that for the control, thus the treatment is e�ective. On the other hand, if ψ > 1

in (1.2.7), then at any given time t, the hazard for the treatment is greater than that for

the control, thus the treatment is not e�ective. Some procedures are available (which will

be described in Section 1.2.2) to check whether the treatment is e�ective by testing

H0 : ψ = 1 vs. H1 : ψ < 1. (1.2.8)

For two-sample case (1.2.7)-(1.2.8), if we introduce a dichotomous variable Z, with

Z =

{
0 control group

1 treatment group,
(1.2.9)

and let h(t; z) denote the conditional hazard function of the survival time T given Z = z,

then we have hT1(t) = h(t; 1) and hT0(t) = h(t; 0), in turn, PH model (1.2.7) becomes

h(t; z) = ψ(z)hT0(t), where ψ(z) =

{
1 z = 0

ψ z = 1.
(1.2.10)

The observed data in this case is written as

(T1, Z1), · · · , (Tn, Zn), (1.2.11)

where n = n0 + n1, Ti = T
(0)
j or T

(1)
k , and Zi = 0 or 1 for i = 1, · · · , n.

Generalization of Two-Sample PH Model

PH model (1.2.10) can be generalized for cases when Z has multiple possible values

z0, z1, , · · · , zk. For example, suppose zi represents a di�erent treatment for a particular

disease, i.e.,
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Z =


0 control
1 treatment 1
...

...
k treatment k.

(1.2.12)

Then, h(t; j) is the conditional hazard function of the survival time T under the jth treat-

ment, and given Z = j, PH model (1.2.10) becomes

h(t; j) = ψ(j)hT0(t), j = 0, 1, · · · , k, (1.2.13)

where ψ(j) > 0 is a constant corresponding to the jth treatment group. Here, the observed
samples are



Control Group : T
(0)
1 , · · · , T (0)

n0

Treatment Group 1 : T
(1)
1 , · · · , T (1)

n1

Treatment Group 2 : T
(2)
1 , · · · , T (2)

n2

...
...

Treatment Group k : T
(k)
1 , · · · , T (k)

nk .

(1.2.14)

which can be written as

(T1, Z1), · · · , (Tn, Zn), (1.2.15)

where n = n0 + n1 + · · · + nk, and for each i = 1, · · · , n, we have Ti = T
(j)
kj

and Zi = j for

some j = 0, 1, · · · , k.

Therefore, when covariate variable Z is discrete or continuous, the generalized PH model

formula is given by

h(t; z) = ψ(z)h0(t), (1.2.16)

where ψ(z) > 0 is a function satisfying ψ(0) = 1, T is the survival time of the population

7



under consideration, h(t; z) is the conditional hazard function of T given Z = z, and h0(t) =

hT0(t) is the hazard function for T (0), which is the survival time T when Z = 0. In practice,

the observed data for PH model (1.2.16) are

(T1, Z1), · · · , (Tn, Zn), (1.2.17)

where n is the sample size, and for each i = 1, · · · , n, Ti is the survival time and Zi is the

observed variable on Z.

Further Generalization of PH Model

PH model (1.2.16) can be generalized further for cases where there are multiple explana-

tory variables, say Z1, · · · ,Zk, each of which may a�ect the survival time T . For example,

Z1 could be the treatment given to the patient, Z2 the patient's gender, Z3 the patients's

age, etc. If we let Z = (Z1, · · · ,Zk)>, then PH model (1.2.16) becomes

h(t; z) = ψ(z)h0(t), (1.2.18)

where ψ(z) > 0 and ψ(0) = 1, and the rest are the same as in (1.2.16). Here, the data

observed in practice may be written as

(T1,Z1), · · · , (Tn,Zn), (1.2.19)

where n is the sample size, and for the ith individual, Ti is the survival time and Zi is the

vector of explanatory variables.

In practice, if the survival time T is subject to right censoring (see more on this in Section

1.3.1), then the data in (1.2.19) is written as

(Vi, δi,Zi), i = 1, · · · , n (1.2.20)

8



where Vi = min(Ti, Ci), δi = I{Ti ≤ Ci}, and Ci is the right censoring variable which is

independent of (Ti,Zi).

1.2.2 Cox Model

As a special case of PH model (1.2.18), the Cox model (Cox, 1972) assumes a parametric

form of ψ(z):

ψ(z,β0) = eβ
>
0 z, (1.2.21)

where β0 = (β1, · · · , βk)> is a vector of regression parameters. Thus, the Cox model is

written as

h(t; z) = h0(t)eβ
>
0 z. (1.2.22)

Consider the two-sample case with right censoring (see (1.2.20) and Section 1.3.1 for the

de�nition). In this case, Z = 0 or 1 as in (1.2.9), β0 ∈ R, and the data observed are as

(1.2.20) with scalar Zi's:

(Vi, δi, Zi), i = 1, · · · , n. (1.2.23)

Then, Cox model (1.2.22) is the same as PH model (1.2.10) with parameter ψ(z) = eβ0z:

h(t; z) = h0(t)eβ0z. (1.2.24)

Here, we see that when Z = 1, we have hT1(t) = h(t; 1) = h0(t)eβ0 ; and when Z = 0, we

have hT0(t) = h0(t) = h(t; 0). Thus, (1.2.22) is the same as (1.2.7) with parameter ψ = eβ0 :

hT1(t) = hT0(t)eβ0 . (1.2.25)
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Note that as discussed earlier, we know that if ψ = eβ0 < 1 (if and only if β0 < 0) then

the treatment is e�ective; and if ψ = eβ0 > 1 (if and only if β0 > 0) then the treatment is

not e�ective. Thus, to check whether the treatment is e�ective using Cox model (1.2.25),

we test

H0 : β0 = 0 vs. H1 : β0 < 0. (1.2.26)

Next, we give a brief review on a simple method on the goodness-of-�t for Cox model (1.2.25),

then discuss the estimation and tests on β0 in (1.2.25).

Goodness-of-Fit of Cox Model (1.2.25) with Data (1.2.23)

The goodness-of-�t (GOF) of two-sample Cox model (1.2.25) can be tested using informal

graphical methods. Let F̄T1(t) and F̄T0(t) be the survivor functions corresponding to hT1(t)

and hT0(t), respectively. From Cox and Oakes (1984; page 70), we know that Cox model

(1.2.25) is equivalent to

F̄T1(t) =
(
F̄T0(t)

)eβ0 ⇐⇒ − ln F̄T1(t) = −eβ0 ln F̄T0(t) (1.2.27)

⇐⇒ ln
{
− ln F̄T1(t)

}
= ln

{
eβ0
[
− ln F̄T0(t)

]}
= β0 + ln

{
− ln F̄T0(t)

}
. (1.2.28)

Therefore, to check the GOF of Cox model (1.2.25) with right censored data (1.2.23), we may

examine the graphs for ln{− ln
¯̂
FT0(t)} and ln{− ln

¯̂
FT1(t)}, where F̂T0(t) and F̂T1(t) are the

Kaplan-Meier (KM) estimators (Kaplan and Meier, 1958) for FT0(t) and FT1(t), respectively.

Simulation Study for (1.2.27)-(1.2.28)

Consider FT0 = Exp(1) in Cox model (1.2.25), where Exp(µ) represents an exponential

distribution with mean µ. Then, we have F̄T0(t) = e−t for t > 0, and we have from (1.2.27)

F̄T1(t) =
(
e−t
)eβ0

= e−e
β0 t, for t > 0, (1.2.29)

which means FT1 = Exp(−eβ0). With this choice of FT0 and FT1, we see that FT0, FT1, and
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Figure 1.1: Comparing ln{− ln F̄n,T0(t)} and ln{− ln F̄n,T1(t)} with n = 50

β0 satisfy (1.2.27), thus they satisfy Cox model assumption (1.2.25).

Here, we consider the case when β0 = 2. We generate sample T1, · · · , Tn0 from FT0 =

Exp(1) and sample X1, · · · , Xn1 from FT1 = Exp(e−2), respectively, with n = n0 = n1 = 50,

and then calculate the empirical d.f.'s Fn,T0(t) and Fn,T1(t) for f
T0

(t) and f
T1

(t), respectively.

Figure 1.1 displays the comparison between ln{− ln F̄n,T0(t)} and ln{− ln F̄n,T1(t)} for β0 = 2

and n = 50, where the portion of the curves displayed is on the intersection of their ranges,

[T(1), T(n)] ∩ [X(1), X(n)] = [0.00968113, 3.43680386] ∩ [0.00804576, 0.70925274]

= [0.00968113, 0.70925274].

It is evident that Figure 1.1 shows that the di�erence between ln{− ln F̄n,T0(t)} and

ln{− ln F̄n,T1(t)} is approximately 2 on the interval for t > 0.05, which is in agreement with

the theoretical results in (1.2.27)-(1.2.28).

Also, this simulation study is repeated for case n = n0 = n1 = 200. Figure 1.2 displays

the comparison between ln{− ln F̄n,T0(t)} and ln{− ln F̄n,T1(t)} for β0 = 2 and n = 200,

11
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Figure 1.2: Comparing ln{− ln F̄n,T0(t)} and ln{− ln F̄n,T1(t)} with n = 200

where the portion of the curves displayed is on the intersection of their ranges,

[T(1), T(n)] ∩ [X(1), X(n)] = [0.00324821, 5.21481632] ∩ [0.00087197, 1.14824665]

= [0.00324821, 1.14824665].

From Figure 1.2 it is evident that the di�erence between ln{− ln F̄n,T0(t)} and ln{− ln F̄n,T1(t)}

is approximately 2 on the interval for t > 0.05. Note that the approximation in Figure 1.2 is

better than that in Figure 1.1, which is expected as the sample size is larger for Figure 1.2.

Estimation and Tests on β0 in (1.2.25) with Data (1.2.23)

Cox's partial likelihood estimate β̂c for β0 can be computed based on data (1.2.23) by

maximizing the partial likelihood function given by Cox (1972), i.e. by solving the following

estimating equation given by Tsiatis (1981):

n−1

n∑
i=1

δiZi − n−1

n∑
i=1

δi

∑n
j=1 Zje

βZjI{Vj ≥ Vi}∑n
j=1 e

βZjI{Vj ≥ Vi}
= 0. (1.2.30)
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From Andersen and Gill (1982), we know

√
n(β̂c − β0)

D→ N(0, σ2), as n→∞, (1.2.31)

where 0 < σ2 <∞ is a constant, which implies

β̂c − β0

σ/
√
n

D→ N(0, 1), as n→∞. (1.2.32)

Note that we may use the bootstrap method to estimate the standard error of β̂c. As

in Efron and Tibshirani (1986), draw B independent bootstrap samples (V ∗b1 , δ∗b1 , Z
∗b
1 ), · · · ,

(V ∗bn , δ∗bn , Z
∗b
n ), 1 ≤ b ≤ B, with replacement from observed data (1.2.23). For each bootstrap

sample, compute Cox's partial likelihood estimate β̂∗c (b) via estimating equation (1.2.30).

The bootstrap estimate for the standard error of β̂c is the sample standard deviation of

β̂∗c (1), · · · , β̂∗c (B), which is given by

ŝeB =

(∑B
b=1(β̂∗c (b)−

¯̂
β∗)2

B − 1

)1/2

, (1.2.33)

where

¯̂
β∗ = B−1

B∑
b=1

β̂∗c (b). (1.2.34)

Then, the test statistic based on (1.2.32) for hypothesis test (1.2.26) is given by

τ =
β̂c
ŝeB

D
≈ N(0, 1), as n→∞, (1.2.35)

and we reject H0 in favor of H1 if τ ≤ −zα, where α is the signi�cance level and zα satis�es

P{Z0 ≤ −zα} = α with Z0 as the standard normal random variable. Moreover, the

13



(1− α)100% con�dence interval for β0 is given by

(
β̂c − zα/2(ŝeB), β̂c + zα/2(ŝeB)

)
. (1.2.36)

Next, we give an example discussed in Cox (1972) and Gehan (1965) and conduct a graphical

check of the goodness-of-�t of the Cox model.

Example 1.1

As an example, consider a two-sample study discussed in Cox (1972) and Gehan (1965)

on the maintenance of remissions in acute leukemia patients. In this study, T is the

length of remission of a patient (in weeks), and each patient is either given a treatment

(6-Mercaptopurine) or a control (placebo). One year after the start of the study, the follow-

ing lengths of remissions were recorded:

Table 1.1 Lengths of Remission of Leukemia Patients (weeks)

Treatment 6* 6 6 6 7 9* 10* 10 11* 13 16
17* 19* 20* 22 23 25* 32* 32* 34* 35*

Control 1 1 2 2 3 4 4 5 5 8 8
8 8 11 11 12 12 15 17 22 23

* denotes a right censored observation (see Section 1.3.1 for the de�nition of right censoring)

The data in Table 1.1 can be written as (1.2.23) with n = 42, where Zi = 0 represents

the control group and Zi = 1 represents the treatment group. Thus, under Cox model

assumption (1.2.25), we may use hypothesis test (1.2.26) to see whether 6-Mercaptopurine

is an e�ective treatment for Leukemia patients.

To check the GOF for Cox model assumption (1.2.25) with Example 1.1, we may compute

the KM estimators F̂T0(t) and F̂T1(t), using the formula in Shorack and Wellner (1986; page

293), for the d.f.'s of the control group and the treatment group, respectively. Figure 1.3

displays the comparison between ln{− ln
¯̂
FT0(t)} and ln{− ln

¯̂
FT1(t)}, and shows that the two

curves are approximately parallel on the intersection of their supports. Based on (1.2.28),
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Figure 1.3: Graphical Check of Goodness-of-Fit

we conclude that by the graphical method, the Leukemia data Table 1.1 �ts Cox model

assumption (1.2.25) reasonably well.

1.3 Censored Data

The term censoring (�rst used by Hald, 1949) is used to describe observations in a study

which contain incomplete information. Although the concept of censoring came from biomed-

ical research, censored observations occur in other areas of research such as social science,

reliability, and economic research. The most frequently encountered type of censoring in

practice is right censoring, thus analysis of right censored data has been a major area of

research for statisticians over the past three decades. In recent years, attention has been

focused on more complicated types of censored data, such as doubly censored data, inter-

val censored data, and partly interval-censored data, due to their applications in important

medical and epidemiological studies. For instance, doubly censored data were encountered in

recent studies on breast cancer (Peer et al., 1993; Ren and Gu, 1997; Ren and Peer, 2000),

interval censored data were encountered in HIV/AIDS research (O'Brien et al., 1994; De
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Gruttola and Lagakos, 1989; Kim et al., 1993; Ren, 2003), and partly interval-censored data

were encountered in Huntington Disease studies (Cupples et al., 1991) and Coronary Heart

Disease studies (Odell et al., 1992).

In Sections 1.3.1-1.3.4, we give the de�nitions of right censored data, doubly censored

data, interval censored data, and partly interval-censored data, respectively, and for each

type of censored data, we discuss some real data examples and review relevant asymptotic

results. In Section 1.3.5, we review some recent results on the Cox model with censored

data. As notations used throughout this dissertation, we let

T1, · · · , Tn (1.3.1)

be an independently and identically distributed (iid) random sample from a continuous and

nonnegative d.f. FT (t).

1.3.1 Right Censored Data

The observed data for sample (1.3.1) are:

Oi = (Vi, δi) 1 ≤ i ≤ n, (1.3.2)

with

Vi =

{
Ti if Ti ≤ Ci (δi = 1)

Ci if Ti > Ci (δi = 0),
(1.3.3)

where Ci is the right censoring variable and is independent from Ti.

Example: Laryngeal Cancer Data

Right censored data were encountered in a study on the incidence of death in male

laryngeal cancer patients (Kardaun, 1983). The study was conducted at a minor hospital

in The Netherlands during the period from 1970 to 1981. In the study, 90 male patients
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were diagnosed and treated for cancer of the larynx. For each patient, the age at the time

of diagnosis (ranging from 41 to 86 years), the year of diagnosis, and the stage of the cancer

were recorded. The stages of cancer were based on the T.N.M. classi�cation used by the

American Joint Committee for Cancer Staging. Here, the time Ti from the �rst treatment of

the laryngeal cancer to the death of the patient due to the cancer is of interest. However, not

all the patients died before the end of the study (March 1, 1981), thus Ti was not observed

for every patient. Among the 90 males in the study group, 40 were still alive by the end of

the study, yielding 40 right censored observations (δi = 0), while 50 died from the cancer

before the end of the study, yielding 50 uncensored observations (δi = 1). Hence, this data

set is a right censored sample (1.3.2) with n = 90.

Likelihood Function and Asymptotic Results

The likelihood function for FT (t) with right censored data (1.3.2) is given by

L(F ) =
n∏
i=1

[1− F (Vi)]
1−δi [F (Vi)− F (Vi−)]δi , (1.3.4)

where F (t) is any distribution function. The nonparametric maximum likelihood estimator

(NPMLE) for FT (t) is the function F̂n(t) that maximizes this likelihood function. The

product-limit estimator (Kaplan and Meier, 1958) has been shown to be the NPMLE F̂n(t)

for FT (t), and is given by

1− F̂n(t) =
∏
V(i)≤t

{
1− 1

n− i+ 1

}δ(i)
=
∏
V(i)≤t

{
1−

δ(i)

n− i+ 1

}
, (1.3.5)

where V(1) ≤ · · · ≤ V(n), and δ(i) is the corresponding δ for V(i) (Shorack and Wellner, 1986).

Note that if there are ties in the Vi's, then the Vi that is uncensored (δi = 1) is ranked ahead

of the Vj that is censored (δj = 0). Stute and Wang (1993) showed that, under certain

conditions, we have ||F̂n−FT ||
a.s.→ 0, as n→∞. It was also shown that

√
n(F̂n−FT ) weakly

converges to a centered Gaussian process (Gill, 1983).
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1.3.2 Doubly Censored Data

The observed data for sample (1.3.1) are:

Oi = (Vi, δi) 1 ≤ i ≤ n, (1.3.6)

with

Vi =


Ti if Di < Ti ≤ Ci (δi = 1)

Ci if Ti > Ci (δi = 2)

Di if Ti ≤ Di (δi = 3),

(1.3.7)

where Ci and Di are right and left censoring variables, respectively, with P{Di < Ci} = 1,

and (Ci, Di) is independent from Ti.

Example: Screening Mammograms Data

Doubly censored data were found in a study concerned with the e�ectiveness of screening

mammograms (Peer et al., 1993; Ren and Gu, 1997; Ren and Peer, 2000). During the period

from 1981 to 1990, nearly 30,000 women in Nijmegen, a city in The Netherlands of about

150,000 inhabitants, were invited for biennial screening mammograms, and 236 women with

ages ranging from 41 to 84 years were diagnosed with breast cancer. In this study, the age

Ti when a tumor volume developed was of interest. Among the 236 women, 45 had tumor

volumes observed at the �rst screening mammogram; yielding 45 left censored observations,

while 79 did not have tumor volumes observed at the last available screening mammogram;

yielding 79 right censored observations. The rest of the 112 women were observed to have

tumor growth at the screening mammograms; yielding 112 uncensored observations. Thus,

this data set is a doubly censored sample (1.3.6) with n = 236. Other examples of doubly

censored data can be found in Chang and Yang (1987), Mykland and Ren (1996), Ren and

Peer (2000), among others.

Likelihood Function and Asymptotic Results

The likelihood function for FT (t) with doubly censored data (1.3.6) is given in Mykland
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and Ren (1996). The NPMLE for FT (t) is the function F̂n(t) that maximizes this likelihood

function. An algorithm to compute F̂n(t) is given in Mykland and Ren (1996). Gu and

Zhang (1993) showed that, under certain conditions, we have ||F̂n − FT ||
a.s.→ 0, as n → ∞.

It was also shown that
√
n(F̂n − FT ) weakly converges to a centered Gaussian process (Gu

and Zhang, 1993).

1.3.3 Interval Censored Data

Interval Censored Case 1 Data

The observed data for sample (1.3.1) are:

Oi = (Ci, δi) 1 ≤ i ≤ n, (1.3.8)

where δi = I{Ti ≤ Ci}, and Ci is independent from Ti.

Interval Censored Case 2 Data

The observed data for sample (1.3.1) are:

Oi = (Ci, Di, δi) 1 ≤ i ≤ n, (1.3.9)

where

δi =


1 if Di < Ti ≤ Ci

2 if Ti > Ci

3 if Ti ≤ Di,

(1.3.10)

where (Ci, Di) is independent from Ti, and P{Di < Ci} = 1.

Example 1: HIV Transmission Data

From 1987 to 1992, at study sites in California, New Jersey, and New York City, a

retrospective study was conducted on the incidence of transmission of HIV from male blood

transfusion patients to their female sex partners (O'Brien et al., 1994). All the male patients
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contracted HIV due to an infected blood transfusion at a known date sometime after 1978.

Demographic and medical background information was obtained for the male and female

of each couple during a separate interview. Additionally, if the female had not already

been diagnosed with HIV, she was tested for infection of HIV at the time of the interview.

Here, the time Ti between the infection of the male partner and the contraction of HIV

by the female partner was of interest. However, only the time Ci between the infection of

the male partner and the interview was observed (in months) with an indicator function δi,

which indicates whether the female contracted HIV before the interview. The study group

consisted of 32 males aged 18 years and older and the 32 female sex partners. Of the 32

females, 7 contracted HIV before the time of the interview (δi = 1), while the remaining 25

had not contracted HIV by the time of the interview (δi = 0). Clearly, in this example Ci

is independent of Ti, thus this data set is an interval censored Case 1 sample (1.3.8) with

n = 32.

Example 2: HIV Infection Data

During the period from 1978 to 1988, 262 individuals with either Type A or Type B

hemophilia were treated at Hôpital Kremlin Bicêtre and Hôpital C÷ur des Yvelines in France

(De Gruttola and Lagakos, 1989; Kim et al., 1993; Ren, 2003). Each of the patients had

blood samples taken and stored at one of the hospitals, and these samples were later tested

for infection of HIV. All the infected individuals were believed to have become infected due

to contaminated blood factor they received for their hemophilia. This study is concerned

with the time Ti of infection of HIV, measured in 6-month intervals. However, the only

available information for each individual is that Ti ∈ [Di, Ci], where Di < Ci. Note that the

individuals infected with HIV at entry are assigned Di = 1, which denotes July 1, 1978. For

example, [1,4] denotes an individual who was found to be infected with HIV at entry during

the fourth 6-month interval. Among the 262 hemophilia patients in the study group, 25 were

found to be infected with HIV at entry (Ti ∈ [1, Ci], δi = 3), 40 never became infected with

HIV before the last test (Ti ∈ [Di,∞), δi = 2), while 197 became infected with HIV between
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two tests (Ti ∈ [Di, Ci], δi = 1). Note that clearly (Ci, Di) is independent of Ti since the

blood samples were stored without intentions of doing a test for HIV. Therefore, this data

set is an interval censored Case 2 sample (1.3.9) with n = 262.

Likelihood Function and Asymptotic Results

The likelihood functions for FT (t) with both interval censored Case 1 data (1.3.8) and

interval censored Case 2 data (1.3.9) are given in Groeneboom and Wellner (1992). For each

case, the NPMLE for FT (t) is the function F̂n(t) that maximizes the corresponding likelihood

function. A method to compute F̂n(t) with interval censored data is given in Groeneboom

and Wellner (1992). Groeneboom and Wellner (1992) showed that, under certain conditions,

||F̂n − FT ||
a.s.→ 0, as n → ∞. It was also shown that, under certain conditions F̂n(t) with

interval censored Case 1 data has n1/3 rate of convergence (Groeneboom and Wellner, 1992).

That is, for any �xed point t0,

n1/3{F̂n(t0)− FT (t)(t0)} D→ c0Z, as n→∞, (1.3.11)

where c0 is a constant, and Z = arg min
t

{
W (t) + t2

}
with W as the standard two-sided

Brownian motion. For interval censored Case 2 data, this result is unknown.

1.3.4 Partly Interval-Censored Data

`Case 1' Partly Interval-Censored Data

The observed data for sample (1.3.1) are:

Oi =

{
Ti if 1 ≤ i ≤ k0

(Ci, δi) if k0 + 1 ≤ i ≤ n,
(1.3.12)

where Ci is independent from Ti and δi = I{Ti ≤ Ci}.
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General Partly Interval-Censored Data

The observed data for sample (1.3.1) are:

Oi =

{
Ti if 1 ≤ i ≤ k0

(C, δi) if k0 + 1 ≤ i ≤ n,
(1.3.13)

where, for N potential examination times C1 < · · · < CN , C = (C1, · · · , CN) with C0 = 0

and CN+1 = ∞, and δi =
(
δ

(1)
i , · · · , δ(N+1)

i

)
with δ

(j)
i = I{Cj−1 < Ti ≤ Cj} for j =

1, · · · , N + 1. In other words, Ti is either known exactly or is known to fall in one of the

intervals (0, C1], (C1, C2], · · · , (CN ,∞).

Example 1: Huntington Disease Data

During the period from 1980 to 1987, the Huntington Disease Center in Boston, MA

collected information on pedigrees that have a history of Huntington Disease (HD). A study

was later conducted on the incidence of HD in these pedigrees (Cupples et al., 1991). A

proband is de�ned here as the �rst person of a pedigree to contact the Huntington Disease

Center. Not all of the probands were a�ected with HD. This study considers those pedigrees

for whom the proband was a�ected with HD. The time Ti of development of HD is of interest.

However, for some individuals in the study the exact time of development of HD is unknown,

but Ci was observed on the individual, where Ci is either the current age or the age at death

for the patient or the age before which Ti occurred. For some individuals, neither Ti nor Ci

was observed. Out of the total 1,364 individuals, here we only consider those 965 individuals

with information either Ti or Ci. Among these 965 individuals, 76 of them had exact ages

at onset of HD observed, yielding 76 Ti's; 80 were a�ected with HD before Ci, yielding 80

of (Ci, 1)'s; 809 were una�ected with HD by time Ci, yielding 809 of (Ci, 0)'s. Therefore,

the data set of 965 individuals is a `Case 1' partly interval-censored sample (1.3.12) with

n = 965.

Example 2: Coronary Heart Disease Data

Since 1971, o�spring from the original Framingham Heart Study cohort in Framingham,
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MA and their spouses have been identi�ed and studied (Feinleib et al., 1975; Odell et al.,

1992). The women were given three clinical examinations to study the age at onset of angina

pectoris (AP). The time between the �rst and second exam was approximately 8 years, and

the time between the second and third exam was approximately 4 years. One of the interests

of this study is the time Ti of the �rst occurrence of AP. Actual dates of the �rst occurrence

of AP were recorded if available. However, for some individuals in the study, the time of

�rst occurrence is only known to be between two of the clinical exams. So only an interval

could be recorded for these individuals. Of the 2,568 women in the study free of AP at the

time of the �rst exam, 16 had the �rst interval recorded (Ti ∈ (C1, C2]), 13 had the second

interval recorded (Ti ∈ (C2, C3]), 2,531 did not develop AP by the time of the last exam

(Ti ∈ (C3,∞)), and 8 had exact times of �rst occurrence of AP recorded. Hence, this data

set is a general partly interval-censored sample (1.3.13) with n = 2568.

Likelihood Function and Asymptotic Results

The likelihood functions for FT (t) with both `Case 1' partly interval-censored data (1.3.12)

and general partly interval-censored data (1.3.13) are given in Huang (1999). For each case,

the NPMLE for FT (t) is the function F̂n(t) that maximizes the corresponding likelihood

function. A method to compute F̂n(t) with partly interval-censored data is given in Huang

(1999). Huang (1999) showed that, under certain conditions, ||F̂n−FT ||
a.s.→ 0, as n→∞. It

was also shown that for both `Case 1' and general partly interval-censored data
√
n(F̂n−FT )

weakly converges to a centered Gaussian process (Huang, 1999).

1.3.5 Cox Model with Various Types of Censored Data

Over the past three decades, extensive research has been done for the Cox model with

non-censored and right censored data (1.3.2), and some research has also been done to deal

with interval censored data (1.3.8)-(1.3.9). As follows, we review some works on Cox model

(1.2.24) with right censored data (1.3.2) and interval censored data (1.3.8)-(1.3.9).

Kalb�eisch and Prentice (1973) studied the Cox model with right censored data (1.3.2)
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and used the marginal likelihood to estimate the regression parameters without having to

estimate the baseline hazard function.

Efron (1977) and Cox and Oakes (1984) studied Cox's partial likelihood estimate β̂C for

β0 for the Cox model with right censored data (1.3.2). As mentioned in Section 1.2.2, Cox's

partial likelihood estimate β̂C can be computed for right censored data (1.3.2) by solving

estimating equation (1.2.30). Efron (1977) showed that β̂C is asymptotically e�cient, while

Cox and Oakes (1984; page 123) pointed out that the loss in precision from using the partial

likelihood can be rather substantial.

Ren and Zhou (2011) also studied the Cox model with right censored data (1.3.2). They

used the empirical likelihood approach to pro�le out nuisance parameter FT0(t) to obtain

the full-pro�le likelihood function for β0 and the maximum likelihood estimator (MLE) for

(β0, FT0). Their simulation studies show that the MLE has small-sample advantage over

Cox's partial likelihood estimator β̂C .

Satten (1996) studied the Cox model with interval censored Case 2 data (1.3.9) and de-

veloped a method that extends the marginal likelihood approach of Kalb�eisch and Prentice

(1973) so that it can be used with this type of data. Using this method, Satten showed that

the regression parameters can be calculated for the Cox model with interval censored Case

2 data (1.3.9) without estimating the baseline hazard function.

Huang (1996) studied the Cox model with interval censored Case 1 data (1.3.8) and found

that the MLE for the regression parameters is asymptotically normal and e�cient with
√
n

convergence rate, even though the nonparametric MLE for the baseline integrated hazard

function has only a n1/3 convergence rate.

Pan (1999) studied the Cox model with interval censored Case 2 data (1.3.9) and ex-

tended the iterative convex minorant algorithm, given in Groeneboom and Wellner (1992),

to compute the MLE for the regression parameters.

Farrington (2000) extended the Cox-Snell residuals (Cox and Snell, 1968), Lagakos resid-

uals (Lagakos, 1980), deviance residuals (Therneau, Grambsch, and Fleming, 1990), and
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Schoenfeld residuals (Schoenfeld, 1982) so they may be used under Cox model (1.2.25) with

interval censored Case 2 data (1.3.9). In particular, the Cox-Snell residuals can be used to

detect non-proportional hazards, while the Lagakos residuals are used to check regression

relationships.

It is important to note that, although the papers by Satten (1996), Huang (1996), Pan

(1999), and Farrington (2000) all use the same de�nitions for interval censoring, the terms

used for censored data are not always consistent. For example, Sun, Liao and Pagano (1999)

and Pan (2001) studied the Cox model with �doubly censored data," but after close analysis

of these articles one can see that the failure time they considered is the time between two

events in which the �rst event is interval censored and the second event is right censored.

This type of censored data is not our doubly censored data (1.3.6).

One may also note that above mentioned papers together with earlier works on the

Cox model, say Andersen et al. (1993), only deal with non-censored data, right censored

data (1.3.2), and interval censored data (1.3.8)-(1.3.9). Currently, there has not been any

published work on the Cox model with doubly censored data (1.3.6) or with partly interval-

censored data (1.3.12)-(1.3.13).

In this dissertation, we develop general estimation methods for the Cox model with

various types of censored data. The key to our approach is the weighted empirical likelihood

function (Ren, 2001), which is reviewed in the next section.

1.4 Likelihood Inference

It is well-known that likelihood is probably the most important concept used for inference

with parametric models as well as nonparametric models. Likelihood methods are preferred

over other methods partly because the estimators usually possess desirable asymptotic prop-

erties such as consistency, e�ciency and asymptotic normality.

The likelihood function is de�ned as the probability of observing the available data. This

expression can be used to derive estimators and construct hypothesis tests and con�dence
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sets even if the distribution of the data is unknown. When the distribution of the data

is known, the parametric likelihood function can be used to �nd the maximum likelihood

estimator for the parameter and construct hypothesis tests and con�dence sets. To avoid

specifying a distribution for the data, empirical likelihood (Owen, 1988), a nonparametric

method, can be used to construct hypothesis tests and con�dence sets. Empirical likelihood

combines the reliability of nonparametric methods with the �exibility and e�ectiveness of

the likelihood approach. However, when imposing a model assumption with complicated

types of censored data, the empirical likelihood function can be very di�cult or impossible

to maximize. To deal with these issues, Ren (2001, 2008a) proposed weighted empirical

likelihood, which provides a simple and direct way to incorporate some model assumptions

in the derivation of the likelihood function for various types of censored data. So far, the

results on weighted empirical likelihood have shown to be favorable to alternative methods.

In Sections 1.4.1-1.4.3, we describe parametric likelihood, empirical likelihood, and weight-

ed empirical likelihood, respectively, and review some relevant inference problems.

1.4.1 Parametric Likelihood

Parametric likelihood is used to construct hypothesis tests and con�dence sets for an

unknown parameter when the underlying distribution is known.

Suppose T1, · · · , Tn is a random sample from a distribution with known density function

f
T

(t; θ), where the parameter θ ∈ Θ is unknown. Let t1, · · · , tn be the observed data and

T = T θ = (T1, · · · , Tn). Then

P
{

Observe the given data
}

= P{T1 = t1, · · · , Tn = tn}

iid
=

n∏
i=1

P{T = ti} =
n∏
i=1

f
T

(ti; θ). (1.4.1)
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Thus, the likelihood function for θ based on random sample T1, · · · , Tn is given by

L(θ |T ) =
n∏
i=1

f
T

(Ti; θ). (1.4.2)

The value of θ which maximizes L(θ |T ) over the whole parameter space Θ is called the

maximum likelihood estimator (MLE) and is denoted by θ̂.

Suppose we wish to test

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θc
0, (1.4.3)

where Θ0 is the subset of the parameter space under the null hypothesis. Then, the likelihood

ratio test statistic for (1.4.3) is given by

R(T ; θ) =
supu∈Θ0

L(u |T )

supu∈Θ L(u |T )
= sup

u∈Θ0

L(u |T )

L(θ̂ |T )
, (1.4.4)

where θ̂ is the MLE for θ.

For the rest of this subsection, we consider the simpler test of hypothesis

H0 : θ = θ0 vs. H1 : θ 6= θ0. (1.4.5)

Under test (1.4.5), the likelihood ratio test statistic in (1.4.4) becomes

R(T ; θ) =
L(θ0 |T θ)

L(θ̂ |T θ)
. (1.4.6)

To obtain the rejection region for hypothesis test (1.4.5), note that θ̂ ≈ θ because θ̂ is a

consistent estimator for θ. Now, if H0 holds in (1.4.5), then θ̂ will be close to θ0, thus

R(T ; θ) in (1.4.5) should be close to 1. On the other hand, if H0 does not hold, then θ̂ will

be signi�cantly di�erent from θ0 because θ 6= θ0, thus R(T ; θ) should be small since θ̂ is the

MLE. Therefore, the rejection region for (1.4.5) is {T | R(T ; θ) ≤ c} for some predetermined

27



constant 0 < c < 1.

Now, let

rθ(t) = sup
u=t

L(u |T θ)

L(θ̂ |T θ)
=
L(t |T θ)

L(θ̂ |T θ)
. (1.4.7)

Wilks (1938) showed that −2 log rθ0(θ0) has a limiting chi-squared distribution, where rθ0(θ0)

is R(T ; θ) in (1.4.6) under the null hypothesis. Therefore,

P{Type I error} = P{reject H0 | H0 is true} = P{R(T ; θ) ≤ c | θ = θ0}

= P{rθ0(θ0) ≤ c} = P{−2 log rθ0(θ0) ≥ −2 log c}
Wilks
≈ P{χ2

(1) ≥ −2 log c}, (1.4.8)

where χ2
(1) is a chi-squared random variable with 1 degree of freedom. For a given signi�cance

level 0 < α < 1, we can determine the value of c according to

α = P{χ2
(1) ≥ −2 log c}. (1.4.9)

Note that the acceptance region for hypothesis test (1.4.5) is

A(θ0) = {T | R(T ; θ) ≥ c} =

{
T

∣∣∣∣ L(θ0 |T θ)

L(θ̂ |T θ)
≥ c

}
. (1.4.10)

Thus, the (1− α)100% con�dence set for θ = θ0 is given by

C(T ) =

{
t

∣∣∣∣ L(t |T θ0)

L(θ̂ |T θ0)
≥ c

}
= {t | rθ0(t) ≥ c} . (1.4.11)
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To see that (1.4.11) is the (1− α)100% con�dence set for θ0, note that

P{θ0 ∈ C(T )} = P{rθ0(θ0) ≥ c} = P{−2 log rθ0(θ0) ≤ −2 log c}
Wilks
≈ P{χ2

(1) ≤ −2 log c} (1.4.9)
= 1− α. (1.4.12)

Note that the inference method described here is a parametric method, which assumes

an explicit distribution for the data. Such methods are potentially much more powerful

than nonparametric methods, but only if the distribution assumption used is correct. Us-

ing this method, the MLE is is shown to be usually consistent, asymptotically normal and

e�cient (Casella and Berger, 2002), and Wilks' theorem provides a way to construct con�-

dence sets for the parameter. However, in practical situations, the underlying distribution is

often unknown and assuming an incorrect distribution can be detrimental to con�dence sets

and hypothesis tests. In this situation, empirical likelihood (Owen, 1988) may be used to

construct con�dence sets and hypothesis tests without assuming a distribution for the data.

1.4.2 Empirical Likelihood

Empirical likelihood is analogous to parametric likelihood and is described as follows.

Consider random sample (1.3.1) and let T = (T1, · · · , Tn). Owen (1988) de�ned the empirical

likelihood function as

L(F ) =
n∏
i=1

[F (Ti)− F (Ti−)] , (1.4.13)

where F is any distribution function. The empirical distribution function

Fn(t) =
1

n

n∑
i=1

I{Ti ≤ t}, (1.4.14)

is well-known to be the NPMLE of FT (t) since it maximizes likelihood function (1.4.13)

over all d.f.'s F . Note that Fn in (1.4.14) is usually consistent, asymptotically normal and
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e�cient.

Often a parameter θ of a d.f. F can be expressed as a statistical functional: θ = T (F ). For

instance, the mean is given as θ = T (F ) =
∫
tdF (t), and the median is given as θ = F−1(1

2
).

As for parametric likelihood inference, if we wish to test (1.4.3), for θ = T (FT ), the empirical

likelihood ratio test statistic for (1.4.3) is given by

R(T ;FT ) =
supT (F )∈Θ0

L(F )

supF L(F )
= sup

T (F )∈Θ0

L(F )

L(Fn)
, (1.4.15)

where L(F ) and Fn are given in (1.4.13) and (1.4.14), respectively.

For the rest of this subsection, we consider the simpler test (1.4.5). Here, the empirical

likelihood ratio test statistic for (1.4.5) is given by

R(T ;FT ) = sup
T (F )=θ0

L(F )

L(Fn)
. (1.4.16)

To obtain the rejection region for hypothesis test (1.4.5), note that Fn ≈ FT because Fn is

a consistent estimator for FT . Now, if H0 holds in (1.4.5) (i.e. T (FT ) = θ0), then (1.4.16)

becomes

1 ≥ R(T ;FT ) =
supT (F )=θ0 L(F )

L(Fn)
≥ L(FT )

L(Fn)
. (1.4.17)

Since Fn ≈ FT , we have L(FT )
L(Fn)

≈ L(Fn)
L(Fn)

= 1, which means that R(T ;FT ) should be close

to 1. On the other hand, if H0 does not hold (i.e. T (FT ) 6= θ0), then T (Fn) is far from θ0

because Fn ≈ FT implies T (Fn) ≈ T (FT ). Thus, for any F satisfying T (F ) = θ0, F is not

close to Fn (otherwise we would have θ0 = T (F ) ≈ T (Fn), a contradiction). Consequently,

supT (F )=θ0 L(F ) is not close to L(Fn) because Fn is the unique NPMLE. Hence, R(T ;FT )

should be small (i.e. not close to 1) when H0 does not hold. Therefore, the rejection region

for (1.4.5) is {T | R(T ;FT ) ≤ c} for some predetermined constant 0 < c < 1.
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Now, let

r(t) = sup
T (F )=t

L(F )

L(Fn)
. (1.4.18)

Owen (1988) proved the analog to Wilks' (1938) theorem. In particular, for the mean

θ0 = E(T ) =
∫
tdFT (t), Owen (1988) showed:

Theorem 1.1. (Owen, 1988) Assume
∫
|t|3dFT (t) <∞. Then, under H0 : θ = θ0, we have

−2 log r(θ0)
D→ χ2

(1), as n→∞.

Therefore, we have

P{Type I error} = P{reject H0 | H0 is true} = P{R(T ;FT ) ≤ c | θ = θ0}

= P{r(θ0) ≤ c} = P{−2 log r(θ0) ≥ −2 log c}

≈ P{χ2
(1) ≥ −2 log c}. (1.4.19)

For a given signi�cance level 0 < α < 1, we can determine the value of c according to

α = P{χ2
(1) ≥ −2 log c}. (1.4.20)

The acceptance region for hypothesis test (1.4.5) is

A(θ0) = {T | R(T ;FT ) ≥ c} =
{
T
∣∣∣ sup
T (F )=θ0

L(F )

L(Fn)
≥ c
}
. (1.4.21)

Thus, the (1− α)100% con�dence set for θ = θ0 =
∫
tdf

T0
(t) is given by

C(T ) =
{
t
∣∣∣ sup
T (F )=t

L(F )

L(Fn)
≥ c
}

=
{
t | r(t) ≥ c

}
(1.4.22)

=

{
T (F )

∣∣∣ L(F )

L(Fn)
≥ c

}
, (1.4.22a)

where in most cases, the equivalence between (1.4.22) and (1.4.22a) can be shown under
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certain conditions. Owen (1988) showed that (1.4.22) is an interval, C(T ) = [TL, TU ], where

TL = infF∈Ec
∫
tdF and TU = supF∈Ec

∫
tdF with

Ec =

{
F
∣∣∣ L(F )

L(Fn)
≥ c, F (t) =

n∑
i=1

p
i
I{Ti ≤ t}, 0 ≤ p

i
≤ 1,

n∑
i=1

p
i

= 1

}
.

To see that C(T ) is a (1− α)100% con�dence interval for θ0 =
∫
tdFT (t), note that

P{θ0 ∈ C(T )} = P{TL ≤ θ0 ≤ TU} = P{r(θ0) ≥ c}

= P{−2 log r(θ0) ≤ −2 log c}
Owen
≈ P{χ2

(1) ≤ −2 log c}
(1.4.20)

= 1− α. (1.4.23)

Note that empirical likelihood is preferred over other nonparametric methods partly be-

cause it has been shown that the empirical log-likelihood ratio usually has an asymptotic

chi-squared distribution (Owen, 1988) and that inferences based on the empirical likelihood

function are of comparable accuracy to alternative methods (see Owen, 1990, 1991; DiCi-

ccio et al., 1991; Qin and Lawless, 1994; Mykland, 1995; among others). In particular,

DiCiccio, Hall and Romana (1991) showed that empirical likelihood is Bartlett-correctable.

However, the empirical likelihood method is not ideal when imposing a model assumption

with complicated types of censored data because the likelihood function can be very di�cult

or impossible to maximize. To deal with these issues, Ren (2001, 2008a) proposed weighted

empirical likelihood, which provides a simple and direct way to incorporate some model

assumptions in the derivation of the likelihood function for various types of censored data.

1.4.3 Weighted Empirical Likelihood

Consider random sample (1.3.1) and let {Oi| 1 ≤ i ≤ n} denote the observed censored

data for random sample (1.3.1), where the censoring could be right censoring (1.3.2), dou-

bly censoring (1.3.6), interval censoring (1.3.8)-(1.3.9), or partly-interval censoring (1.3.12)-
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(1.3.13). Instead of studying the di�erent types of censored data separately as in the empiri-

cal likelihood approach, Ren (2001) proposed a weighted empirical likelihood function, which

is formulated in a uni�ed form depending only on the probability mass of the NPMLE F̂n(t)

for FT (t). The weighted empirical likelihood by Ren (2001, 2008a) is given as follows.

As reviewed in Section 1.3, the likelihood function for each of the types of censored data

above mentioned has been given in literature. The NPMLE F̂n for FT is the solution which

maximizes the likelihood function and is shown to be a strong uniform consistent estimator of

FT under some suitable conditions (see Section 1.3 for details). Moreover, it has been shown

that for observed censored data {Oi| 1 ≤ i ≤ n}, there exist m distinct points U1 < · · · < Um

along with p̂
j
> 0, 1 ≤ j ≤ m, such that the NPMLE F̂n can be expressed as

F̂n(t) =
m∑
j=1

p̂
j
I{Uj ≤ t}; (1.4.24)

see Kaplan and Meier (1958) for right censored data (1.3.2), Mykland and Ren (1996) for

doubly censored data (1.3.6), Groeneboom and Wellner (1992) for interval censored data

(1.3.8)-(1.3.9), and Huang (1999) for partly-interval censored data (1.3.12)-(1.3.13). For in-

stance, with right censored data (1.3.2), Kaplan and Meier (1958) showed that the Uj's are

just the the uncensored observations in (1.3.2). Since F̂n is a strong uniform consistent esti-

mator of FT , we may expect a random sample T ∗1 , · · · , T ∗n from F̂n to behave asymptotically

the same as T1, · · · , Tn. Let F ∗n denote the empirical d.f. of T ∗1 , · · · , T ∗n . Now, since F̂n ≈ F ∗n ,

we have

n∏
i=1

P{T = Ti} ≈
n∏
i=1

P{T ∗ = T ∗i } =
m∏
j=1

P{T ∗ = Uj}n[F ∗n(Uj)−F ∗n(Uj−)]

≈
m∏
j=1

P{T ∗ = Uj}n[F̂ (Uj)−F̂ (Uj−)] =
m∏
j=1

P{T ∗ = Uj}
np̂
j .
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Thus, the weighted empirical likelihood function (Ren, 2001) is given by

L̂(F ) =
m∏
i=1

[F (Ui)− F (Ui−)]np̂i , (1.4.25)

where F is any distribution function. The weighted empirical likelihood function (1.4.25) may

be viewed as the asymptotic version of the empirical likelihood function L(F ) for censored

data; see arguments in Ren (2008a). Note that when there is no censoring, the weighted

empirical likelihood function (1.4.25) is the same as Owen's empirical likelihood function

(1.4.13); see arguments in Ren (2001).

The results on weighted empirical likelihood have shown to be favorable to alternative

methods. In Ren (2001), it is shown that the weighted empirical likelihood ratio con�dence

interval for the mean with various types of censored data has comparable coverage accu-

racy to alternative methods, including the nonparametric bootstrap-t. In Ren (2008a), it

is shown that for general two-sample semiparametric models with various types of censored

data, the weighted empirical likelihood-based semiparametric maximum likelihood estima-

tor for the underlying parameter and distribution have desirable asymptotic properties. In

Ren (2008b), smoothed weighted empirical likelihood ratio con�dence intervals for quantiles

are constructed in a uni�ed framework for various types of censored data and the cover-

age accuracy equation for the weighted empirical likelihood con�dence interval is derived,

which generally guarantees at least '�rst order' accuracy. Simulation studies show (Ren,

2008b) that for right censored data (1.3.2), the smoothed weighted empirical likelihood ratio

con�dence intervals are generally shorter than existing empirical likelihood-based con�dence

intervals and provide comparable coverage accuracy. In addition, simulation studies also

show (Ren 2008b) that for interval censored data (1.3.8)-(1.3.9), the smoothed weighted

empirical likelihood con�dence intervals perform favorably compared to existing methods.

But, so far, weighted empirical likelihood has only been applied to the univariate case.

In this dissertation, we extend the weighted empirical likelihood method to the multivariate
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case which provides the tool to study the Cox model problem with data (1.2.19), where the

survival time T is subject to any of the types of censoring discussed in Section 1.3.

1.5 Summary of this Dissertation's Results

The main results of this dissertation are organized as follows. In Chapter 2, we derive the

bivariate nonparametric maximum likelihood estimator (BNPMLE) F̂n(t, z) for the bivariate

distribution function F0(t, z) of (T, Z) based on right censored survival data (2.1.2) in which

the survival time T is subject to right censoring and the covariate Z is a scalar and is

completely observable. This BNPMLE F̂n is used to facilitate our work in Chapter 3 and

provides a starting point of our work in Chapter 4.

In Chapter 3, we derive the empirical likelihood-based con�dence interval for conditional

survival probabilities with right censored bivariate survival data (2.1.2). We also provide an

analytic solution for the empirical likelihood ratio, which is needed for future studies of the

asymptotic properties of the empirical likelihood ratio.

In Chapter 4, we extend the weighted empirical likelihood method (Ren, 2001 and 2008a)

to the multivariate case and develop estimation methods in a uni�ed form for Cox model

(1.2.22) with various types of censored data mentioned in Section 1.3. In particular, we show

that the estimator for Cox model (1.2.24) with various types of censored data including those

introduced in Section 1.3 is given by the solution of an estimating equation which can be

solved using, say, the Newton-Raphson method. As reviewed in Section 1.3.5, currently

there has not been any published work on the Cox model with doubly censored data (1.3.6)

or with partly interval-censored data (1.3.12)-(1.3.13). Our work here provides solutions to

these problems in a uni�ed form.

In Chapter 5, we give some concluding remarks and discuss further research.
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CHAPTER 2. BIVARIATE NONPARAMETRIC MAXIMUM

LIKELIHOOD ESTIMATOR FOR RIGHT CENSORED DATA

In this chapter, we derive the bivariate nonparametric maximum likelihood estimator

(BNPMLE) for bivariate d.f. F0(t, z) of (T, Z), where the survival time T is subject to right

censoring and the covariate Z is a scalar and is completely observable.

2.1 Introduction

In survival analysis, we often encounter data in which the survival time T is subject to

right censoring and the vector Z = (Z1, · · · , Zk) of covariates such as age, gender, etc., is

completely observable. Here, we consider the case where the covariate Z is a scalar, i.e.,

k = 1, and is completely observable. The generalization of our results in this chapter to the

case where Z is a vector is straightforward. Suppose that

(T1, Z1), · · · , (Tn, Zn)
iid∼ F0(t, z) = P{T ≤ t, Z ≤ z}, (2.1.1)

but the actual observed survival data are the bivariate data with the survival time subject

to random right censoring as follows:

(V1, δ1, Z1), · · · , (Vn, δn, Zn), (2.1.2)

where (Vi, δi) is right censored data (1.3.2), Zi is the covariate, and Ci is the right censoring

variable with d.f. FC and density function f
C
and is independent of (Ti, Zi).

In practice, if one wishes to use the nonparametric approach (i.e., without imposing any
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model assumptions) in the study of the relation between T and Z, a natural thing to do is

to estimate the bivariate d.f. F0(t, z) of (T, Z) based on observed survival data (2.1.2). To

our best knowledge, there are no published works on this problem in statistical literature.

Another motivation of this work is that the BNPMLE F̂n(t, z) for F0(t, z) plays an important

role for the weighted empirical likelihood-based estimator for the Cox model (1.2.24) with

right censored data (2.1.2), which is studied in Chapter 4 of this dissertation.

In Section 2.2, we derive the BNPMLE F̂n(t, z) for F0(t, z) based on right censored

bivariate data (2.1.2), and we show that when there is no censoring the BNPMLE coincides

with the bivariate empirical d.f. of sample (2.1.1). The proofs are deferred to Section 2.3.

2.2 Bivariate Nonparametric Maximum Likelihood Estimator

To derive the BNPMLE for bivariate d.f. F0(t, z) of (T, Z) based on right censored data

(2.1.2), we let

U1 < · · · < Um be all the distinct observations among V1, · · · , Vn

W1 < · · · < Wq be all the distinct observations among Z1, · · · , Zn.
(2.2.1)

Then, for observed data (2.1.2), the likelihood function is given by

P{Observe the given data} =
n∏
k=1

P{V = Vk, δ = δk, Z = Zk}

=
∏
δk=1

P{Tk = Vk, Z = Zk, Tk ≤ Ck}
∏
δk=0

P{Ck = Vk, Z = Zk, Tk > Ck}

=
∏
δk=1

P{Tk = Vk, Z = Zk, Vk ≤ Ck}
∏
δk=0

P{Ck = Vk, Z = Zk, Tk > Vk}

⊥
=
∏
δk=1

P{T = Vk, Z = Zk}F̄C(Vk)
∏
δk=0

f
C

(Vk)P{Z = Zk, T > Vk}

=
n∏
k=1

(
P{T = Vk, Z = Zk}F̄C(Vk)

)δk(
f
C

(Vk)P{T > Vk, Z = Zk}
)1−δk

, (2.2.2)
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which is proportional to

n∏
k=1

(
P{T = Vk, Z = Zk}

)δk(
P{T > Vk, Z = Zk}

)1−δk

=
n∏
k=1

(
dF0(Vk, Zk)

)δk(
F0(∞, dZk)− F0(Vk, dZk)

)1−δk

=
m∏
i=1

q∏
j=1

(
dF0(Ui,Wj)

)γij(
F0(∞, dWj)− F0(Ui, dWj)

)nij−γij
, (2.2.3)

where dF0(t, z) = P{T = t, Z = z}, F0(t, dz) = F0(t, z)− F0(t, z−), and

nij =
n∑
k=1

I{Vk = Ui, Zk = Wj}; γij =
n∑
k=1

I{Vk = Ui, δk = 1, Zk = Wj} (2.2.4)

for 1 ≤ i ≤ m, 1 ≤ j ≤ q. From (2.2.2)-(2.2.3), we see that the likelihood function for d.f.

F0(t, z) of (T, Z) with right censored data (2.1.2) is given by

L(F ) =
m∏
i=1

q∏
j=1

(
dF (Ui,Wj)

)γij(
F (∞, dWj)− F (Ui, dWj)

)nij−γij
, (2.2.5)

where F is any bivariate d.f., and denoting PF as the probability under F , we have dF (t, z) =

PF{T = t, Z = z} and F (t, dz) = F (t, z) − F (t, z−) = PF{T ≤ t, Z = z}. Note that from

(2.2.4) we have the following three consequences:

n =
m∑
i=1

q∑
j=1

nij (2.2.6)

n1j + · · ·+ nmj ≥ 1, 1 ≤ j ≤ q (2.2.7)

nij = 0 =⇒ γij = 0. (2.2.8)

This means that those terms with nij = 0 in (2.2.5) have no e�ects to the value of likelihood
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function L(F ). As follows, we deal with this issue as in Ren and Riddlesworth (2011). Let

mj = max{i |nij > 0}, 1 ≤ j ≤ q, (2.2.9)

then we have from (2.2.8) that nij = γij = 0 for all 1 ≤ j ≤ q, mj < i ≤ m; in turn,

likelihood function (2.2.5) for F0 is equivalently written as

L(F ) =

q∏
j=1

mj∏
i=1

(
dF (Ui,Wj)

)γij(
F (∞, dWj)− F (Ui, dWj)

)nij−γij
. (2.2.10)

To maximize likelihood function (2.2.10), we restrict all possible candidates to those

bivariate d.f.'s that assign all their probability masses to points (Ui,Wj) and line segments

Lj = {(t,Wj) ∈ R2; t > Um} for 1 ≤ i ≤ m, 1 ≤ j ≤ q. Therefore, likelihood function

(2.2.10) becomes

L(F ) =

q∏
j=1

mj∏
i=1

(
p
ij

)γij( mj+1∑
k=i+1

p
kj

)nij−γij
≡ L(p), (2.2.11)

where

p =
(
p

11
, · · · , p

m1 + 1, 1
, · · · , p

1q
, · · · , p

mq + 1, q

)
(2.2.12)

F (t, z) =
m∑
i=1

q∑
j=1

q
ij
I{Ui ≤ t,Wj ≤ z}, for t ≤ Um, z ∈ R (2.2.13)

satisfy



p
ij

= q
ij

= dF (Ui,Wj) = PF
{
T = Ui, Z = Wj

}
, for 1 ≤ j ≤ q, 1 ≤ i ≤ mj

q
m+ 1, j

= PF
{

(T, Z) ∈ Lj
}

= PF
{
T > Um, Z = Wj

}
, for 1 ≤ j ≤ q

p
mj + 1, j

= PF
{
T > Umj , Z = Wj

}
=
∑m+1

i=mj+1 qij , for 1 ≤ j ≤ q∑q
j=1

∑mj+1
i=1 p

ij
=
∑q

j=1

∑m+1
i=1 q

ij
= 1.

(2.2.14)
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The BNPMLE F̂n(t, z) for F0(t, z) is the solution that maximizes the likelihood function

L(F ) = L(p) in (2.2.11) over all functions F (t, z) in (2.2.13) satisfying (2.2.14).

Note that if mj < m, the values of q
ij
's for mj < i ≤ m have no e�ects to the value of

likelihood function (2.2.11). Thus, we can only derive the BNPMLE in terms of p (2.2.12)

for L(p). Let p̂ denote the solution to the following optimization problem:


max L(p) =

q∏
j=1

mj∏
i=1

(
p
ij

)γij( mj+1∑
k=i+1

p
kj

)nij−γij
subject to : 0 ≤ p

ij
≤ 1, 1 ≤ j ≤ q, 1 ≤ i ≤ mj;

∑q
j=1

∑mj+1
i=1 p

ij
= 1.

(2.2.15)

The following theorem gives the solution and properties of p̂ with the proof deferred to

Section 2.3.

Theorem 2.1. For any 1 ≤ i ≤ m, 1 ≤ j ≤ q, we denote

Nij = nij + · · ·+ nmj =
n∑
k=1

I{Vk ≥ Ui, Zk = Wj}. (2.2.16)

Then, the solution p̂ of (2.2.15) is unique and satis�es the following:

(i) For any 1 ≤ j ≤ q, 1 ≤ i ≤ mj, we have p̂
ij
> 0 if and only if γij > 0;

(ii) For any 1 ≤ j ≤ q, 1 ≤ i ≤ mj, we have
∑mj+1

k=i p̂
kj
> 0;

(iii) For any 1 ≤ j ≤ q, with notation
∏0

k=1 ck ≡ 1 we have


p̂
ij

=
( γij
Nij

)(N1j

n

) i−1∏
k=1

(
1− γkj

Nkj

)
, for 1 ≤ i ≤ mj

p̂
mj + 1, j

=
N1j

n
−

mj∑
i=1

p̂
ij
.

(2.2.17)

It should be noted that Theorem 2.1 shows that the BNPMLE is unique in terms of

p (2.2.12), but such uniqueness does not seem obvious in terms of F as given by (2.2.13)-

(2.2.14), because if mj < m and pmj+1,j > 0 for some 1 ≤ j ≤ q, it is not obvious how

probability mass p
mj + 1, j

is distributed among q
mj + 1, j

, · · · , q
mj
, q
m+ 1, j

. In this dissertation,
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following the treatment in Ren and Riddlesworth (2011) we apply the formula of p̂
ij
's in

(2.2.17) to all q̂
ij
's generally, then the BNPMLE F̂n(t, z) for F0(t, z) is given by



F̂n(t, z) =
m∑
i=1

q∑
j=1

q̂
ij
I{Ui ≤ t,Wj ≤ z}, for t ≤ Um, z ∈ R

q̂
ij

=
( γij
Nij

)(N1j

n

) i−1∏
k=1

(
1− γkj

Nkj

)
, for 1 ≤ i ≤ m, 1 ≤ j ≤ q

q̂
m+ 1, j

= PF̂n
{
T > Um, Z = Wj

}
=
N1j

n
−

m∑
i=1

q̂
ij
, for 1 ≤ j ≤ q,

(2.2.18)

where 0/0 is set as 0 whenever it occurs.

There are two points about (2.2.18) that should be noticed. First, from (2.2.4), (2.2.9),

and (2.2.16), we have that


nmj ,j > 0 =⇒ N1j ≥ N2j ≥ · · · ≥ Nmj ,j > 0, for 1 ≤ j ≤ q

nij = γij = Nij = 0, for 1 ≤ j ≤ q, mj < i ≤ m when mj < m.

(2.2.19)

Thus, in line 2 of (2.2.18), we have all Nij > 0 for 1 ≤ i ≤ mj, and that if mj < m, then

by line 2 of (2.2.19) we have all q̂
ij

= 0 for mj < i ≤ m, which means points (Ui,Wj) for

mj < i ≤ m are not observed among (Vk, Zk)'s in data (2.1.2), and no probability masses

are assigned to these points (Ui,Wj). Second, line 3 of (2.2.18) follows from line 2 of (2.2.17)

in two ways: (a) if mj = m, it follows from lines 1-3 of (2.2.14):

q̂
mj + 1, j

= p̂
mj + 1, j

=
N1j

n
−

mj∑
i=1

p̂
ij

=
N1j

n
−

mj∑
i=1

q̂
ij

;

(b) if mj < m, it follows from p̂
mj + 1, j

=
∑m+1

i=mj+1 q̂ij = q̂
m+ 1, j

and

p̂
mj + 1, j

=
N1j

n
−

mj∑
i=1

p̂
ij

=
N1j

n
−

mj∑
i=1

q̂
ij
,

which are due to lines 1 and 3 in (2.2.14) and the fact that q̂
ij

= 0 for all mj < i ≤ m.
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The following corollary shows that the BNPMLE F̂n(t, z) in (2.2.18) coincides with the

bivariate empirical d.f. when there is no censoring in (2.1.2).

Corollary 2.1. When there is no censoring in data (2.1.2), BNPMLE F̂n(t, z) in (2.2.18)

coincides with the bivariate empirical d.f. of sample (2.1.1).

Remark 2.1: From (2.2.18), the probability under F̂n at any given point Wα for some

1 ≤ α ≤ q is given as follows:

PF̂n{Z = Wα} = PF̂n{T ≤ Um, Z = Wα}+ PF̂n{T > Um, Z = Wα}

=
m∑
i=1

q∑
j=1

q̂
ij
I{Wj = Wα}+ q̂

m+ 1, α

=
m∑
i=1

q̂
iα

+
N1j

n
−

m∑
i=1

q̂
iα

=
N1j

n
. (2.2.20)

2.3 Proofs

Proof of Theorem 2.1 (i): "⇐": Clearly, if γαζ > 0 for some 1 ≤ ζ ≤ q, 1 ≤ α ≤ mζ ,

then any solution p that maximizes L(p) in (2.2.15) satis�es p
αζ
> 0.

"⇒": Assume γαζ = 0 for some 1 ≤ ζ ≤ q, 1 ≤ α ≤ mζ . Then, likelihood function

(2.2.15) is equivalently written as

L(p) =

( q∏
j=1
j 6=ζ

mj∏
i=1

(
p
ij

)γij( mj+1∑
k=i+1

p
kj

)nij−γij)(
p
α+ 1, ζ

+ · · ·+ p
mζ + 1, ζ

)nαζ

×
( α−1∏

i=1

(
p
iζ

)γiζ(p
i+ 1, ζ

+ · · ·+ p
αζ

+ · · ·+ p
mζ + 1, ζ

)niζ−γiζ)

×
( mζ∏
i=α+1

(
p
iζ

)γiζ(p
i+ 1, ζ

+ · · ·+ p
mζ + 1, ζ

)niζ−γiζ)
, (2.3.1)
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where from (2.2.9) and α ≤ mζ we know nαζ > 0. Assume p̂
αζ
> 0, where p̂ is a solution to

(2.2.15), and let p̃ be a vector with components p̃
ij
, 1 ≤ j ≤ q, 1 ≤ i ≤ mj, that satisfy

p̃
αζ

= 0; p̃
mζ + 1, ζ

= p̂
mζ + 1, ζ

+ p̂
αζ

; p̃
ij

= p̂
ij
, otherwise, (2.3.2)

which implies


0 ≤ p̃

ij
≤ 1, 1 ≤ j ≤ q, 1 ≤ i ≤ mj∑q

j=1

∑mj+1
i=1 p̃

ij
=
∑q

j=1

∑mj+1
i=1 p̂

ij
= 1

p̂
mζ + 1, ζ

< p̃
mζ + 1, ζ

, p̂
mζ + 1, ζ

+ p̂
αζ

= p̃
mζ + 1, ζ

+ p̃
αζ
.

(2.3.3)

Therefore, from (2.3.1)-(2.3.3), we have

L(p̂) =

( q∏
j=1
j 6=ζ

mj∏
i=1

(
p̂
ij

)γij( mj+1∑
k=i+1

p̂
kj

)nij−γij)(
p̂
α+ 1, ζ

+ · · ·+ p̂
mζ + 1, ζ

)nαζ

×
( α−1∏

i=1

(
p̂
iζ

)γiζ(p̂
i+ 1, ζ

+ · · ·+ p̂
αζ

+ · · ·+ p̂
mζ + 1, ζ

)niζ−γiζ)

×
( mζ∏
i=α+1

(
p̂
iζ

)γiζ(p̂
i+ 1, ζ

+ · · ·+ p̂
mζ + 1, ζ

)niζ−γiζ)

<

( q∏
j=1
j 6=ζ

mj∏
i=1

(
p̃
ij

)γij( mj+1∑
k=i+1

p̃
kj

)nij−γij)(
p̃
α+ 1, ζ

+ · · ·+ p̃
mζ + 1, ζ

)nαζ

×
( α−1∏

i=1

(
p̃
iζ

)γiζ(p̃
i+ 1, ζ

+ · · ·+ p̃
αζ

+ · · ·+ p̃
mζ + 1, ζ

)niζ−γiζ)

×
( mζ∏
i=α+1

(
p̃
iζ

)γiζ(p̃
i+ 1, ζ

+ · · ·+ p̃
mζ + 1, ζ

)niζ−γiζ)
≡ L(p̃),

a contradiction.
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Proof of Theorem 2.1 (ii): Note that for any solution p that maximizes L(p) in

(2.2.15), we have

L(p) > 0,

which implies the following in the product of L(p) in (2.2.15):

0 < (p
mj , j

)γmj,j(p
mj + 1, j

)nmj,j−γmj,j

=


(p
mj + 1, j

)nmj,j if γmj ,j = 0

(p
mj , j

)γmj,j(p
mj + 1, j

)nmj,j−γmj,j if γmj ,j > 0.

Therefore, since nmj ,j > 0 in (2.2.19), we have p
mj + 1, j

> 0 when γmj ,j = 0 and p
mj , j

> 0

when γmj ,j > 0, which imply p
mj , j

+ p
mj + 1, j

> 0.

Before proving Theorem 2.1 (iii), we establish the following lemmas, while the proofs are

given at the end of this section.

Lemma 2.1. Let

J1 ≡
{

(i, j) | γij = 0, Nij − γij > 0, 1 ≤ j ≤ q, 1 ≤ i ≤ mj

}
(2.3.4)

G1(a1) ≡
∏∏
(i,j)∈J1

(1− aij)Nij , a1 = {aij | (i, j) ∈ J1}. (2.3.5)

Then, the solution to

 max G1(a1)

subject to : 0 ≤ aij ≤ 1, (i, j) ∈ J1

(2.3.6)

is uniquely given by

â1 = 0. (2.3.7)
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Lemma 2.2. Let

J2 ≡
{

(i, j) | γij > 0, Nij − γij = 0, 1 ≤ j ≤ q, 1 ≤ i ≤ mj

}
(2.3.8)

G2(a2) ≡
∏∏
(i,j)∈J2

(aij)
γij , a2 = {aij | (i, j) ∈ J2}. (2.3.9)

Then, the solution to

 max G2(a2)

subject to : 0 ≤ aij ≤ 1, (i, j) ∈ J2

(2.3.10)

is uniquely given by

â2 = 1. (2.3.11)

Lemma 2.3. Let

J3 ≡
{

(i, j) | γij > 0, Nij − γij > 0, 1 ≤ j ≤ q, 1 ≤ i ≤ mj

}
(2.3.12)

G3(a3) ≡
∏∏
(i,j)∈J3

(aij)
γij(1− aij)Nij−γij , a3 = {aij | (i, j) ∈ J3}. (2.3.13)

Then, the solution to

 max G3(a3)

subject to : 0 ≤ aij ≤ 1, (i, j) ∈ J3.
(2.3.14)

is uniquely given by â3 =
{
âij | (i, j) ∈ J3

}
, where

âij =
γij
Nij

, (i, j) ∈ J3. (2.3.15)
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Lemma 2.4. Let

J ≡
{

(i, j) | 1 ≤ j ≤ q, 1 ≤ i ≤ mj

}
(2.3.16)

G4(a) ≡
∏∏
(i,j)∈J

(aij)
γij(1− aij)Nij−γij , a = {aij | (i, j) ∈ J}. (2.3.17)

Then, the solution to

 max G4(a)

subject to : 0 ≤ aij ≤ 1, (i, j) ∈ J.
(2.3.18)

is given by â =
{
âij | (i, j) ∈ J

}
, where

âij =
γij
Nij

, (i, j) ∈ J. (2.3.19)

Lemma 2.5. Let

G5(b) ≡
q∏
j=1

(b1j)
N1j , b = (b11, · · · , b1q). (2.3.20)

Then, the solution to

 max G5(b)

subject to : 0 ≤ b1j ≤ 1, 1 ≤ j ≤ q;
∑q

j=1 b1j = 1,
(2.3.21)

is uniquely given by b̂ = (b̂11, · · · , b̂1q), where

b̂1j =
N1j

n
, 1 ≤ j ≤ q. (2.3.22)

Proof of Theorem 2.1 (iii): To �nd the solution to (2.2.15), consider the following
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substitutions:

aij =
p
ij

bij
and bij =

mj+1∑
k=i

p
kj
, for 1 ≤ j ≤ q, 1 ≤ i ≤ mj, (2.3.23)

which imply



bmj+1,j = p
mj + 1, j

bi+1,j =

mj+1∑
k=i+1

p
kj

= bij − pij

1− aij =
bi+1,j

bij
.

(2.3.24)

Therefore, L(p) in (2.2.15) can be equivalently written as

L(p) =

q∏
j=1

mj∏
i=1

(p
ij

)γij(bi+1,j)
nij−γij =

q∏
j=1

mj∏
i=1

(p
ij

)γij(bij − pij )
nij−γij

=

q∏
j=1

mj∏
i=1

(p
ij

)γij
(p

ij

aij
− p

ij

)nij−γij
=

q∏
j=1

mj∏
i=1

(p
ij

)nij
q∏
j=1

mj∏
i=1

(1− aij
aij

)nij−γij
=
( q∏
j=1

mj∏
i=1

(p
ij

)nij
)∏q

j=1

∏mj
i=1 (aij)

γij(1− aij)N−γij−(n1j+···+ni−1,j)∏q
j=1

∏mj
i=1 (aij)nij(1− aij)N−(n1j+···+nij)

=
( q∏
j=1

mj∏
i=1

(p
ij

)nij
) ∏q

j=1

∏mj
i=1 (aij)

γij(1− aij)N−γij−(N1j−Nij)∏q
j=1

∏mj
i=1 (aij)nij(1− aij)N−(N1j−Ni+1,j)

=
( q∏
j=1

mj∏
i=1

(bij)
nij
)∏q

j=1

∏mj
i=1 (aij)

γij(1− aij)N−γij−(N1j−Nij)∏q
j=1

∏mj
i=1 (1− aij)N−(N1j−Ni+1,j)

, (2.3.25)

where N ≡ m · q and Nij is given by (2.2.16). From (2.3.24) the denominator in (2.3.25) can

be written as

q∏
j=1

mj∏
i=1

(1− aij)N−(N1j−Ni+1,j) =

q∏
j=1

mj∏
i=1

(bi+1,j

bij

)N−(n1j+···+nij)

=

q∏
j=1

((b2j)
N−n1j

(b1j)N−n1j

(b3j)
N−n1j−n2j

(b2j)N−n1j−n2j
· · · ·

(bmj+1,j)
N−(n1j+···+nmj,j)

(bmj ,j)
N−(n1j+···+nmj,j)

)
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=

q∏
j=1

1

(b1j)N

(
(b1j)

n1j(b2j)
n2j · · · (bmj ,j)

nmj,j
)

(bmj+1,j)
N−(N1j−Nmj+1,j)

=
( q∏
j=1

mj∏
i=1

(bij)
nij
) q∏
j=1

(bmj+1,j)
N−(N1j−Nmj+1,j)

(b1j)N

=
( q∏
j=1

mj∏
i=1

(bij)
nij
) q∏
j=1

(bmj+1,j)
N−N1j

(b1j)N
, (2.3.26)

where the last equality is true because from (2.2.16) and (2.2.19), we have Nmj+1,j = 0 for

all 1 ≤ j ≤ q. Since N −N1j is independent of i, we have, from (2.3.24),

q∏
j=1

mj∏
i=1

(1− aij)N−N1j =

q∏
j=1

( mj∏
i=1

(1− aij)
)N−N1j

=

q∏
j=1

( mj∏
i=1

bi+1,j

bij

)N−N1j

=

q∏
j=1

(b2j

b1j

b3j

b2j

· · · ·
bmj+1,j

bmj ,j

)N−N1j

=

q∏
j=1

(bmj+1,j

b1j

)N−N1j

=

∏q
j=1(bmj+1,j)

N−N1j∏q
j=1(b1j)N−N1j

,

which implies

q∏
j=1

(bmj+1,j)
N−N1j =

( q∏
j=1

(
b1j)

N−N1j

) q∏
j=1

mj∏
i=1

(1− aij)N−N1j . (2.3.27)

Plugging (2.3.27) into (2.3.26), we obtain

q∏
j=1

mj∏
i=1

(1− aij)N−(N1j−Ni+1,j) =
( q∏
j=1

mj∏
i=1

(bij)
nij
)(∏q

j=1

∏mj
i=1(1− aij)N−N1j∏q
j=1(b1j)N1j

)
,

in turn, L(p) in (2.3.25) is equivalently written as

L(p) =
( q∏
j=1

(b1j)
N1j

) q∏
j=1

mj∏
i=1

(aij)
γij(1− aij)Nij−γij

=
( q∏
j=1

(b1j)
N1j

)∏∏
(i,j)∈J

(aij)
γij(1− aij)Nij−γij ≡ G(a, b), (2.3.28)
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where J is given by (2.3.16) and

a =
{
aij | (i, j) ∈ J

}
; b = (b11, . . . , b1q), (2.3.29)

with aij and b1j given by (2.3.23). Therefore, optimization problem (2.2.15) is equivalent to

the following optimization problem:

 max G(a, b)

subject to : 0 ≤ aij ≤ 1, 0 ≤ b1j ≤ 1, (i, j) ∈ J ;
∑q

j=1 b1j = 1,
(2.3.30)

where we know a solution to (2.3.30) exists because G(a, b) in (2.3.28) is a polynomial, thus

is continuous in (a, b), and the constraint set

{
(a, b)

∣∣∣ 0 ≤ aij ≤ 1, 0 ≤ b1j ≤ 1, (i, j) ∈ J ;

q∑
j=1

b1j = 1
}

is compact. Since the constraint set can be written as

{
(a, b)

∣∣∣ 0 ≤ aij ≤ 1, 0 ≤ b1j ≤ 1, (i, j) ∈ J ;

q∑
j=1

b1j = 1
}

=
{
a
∣∣ 0 ≤ aij ≤ 1, (i, j) ∈ J

}
∪
{
b
∣∣∣ 0 ≤ b1j ≤ 1, 1 ≤ j ≤ q;

q∑
j=1

b1j = 1
}

and G(a, b) in (2.3.28) can be written as

G(a, b) = G4(a)G5(b), (2.3.31)

where G4(a) and G5(b) are given by (2.3.17) and (2.3.20), respectively, we know from Lem-

mas 2.4 and 2.5 that the solution for (2.3.30) is uniquely given by (â, b̂), where â is the

unique solution to optimization problem (2.3.18) and is given by (2.3.19) and b̂ is the unique

solution to optimization problem (2.3.21) and is given by (2.3.22).
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To obtain an expression for p
ij
in terms of aij and b1j, note that from (2.3.23), we have

p
1j

= a1jb1j,

p
2j

= a2jb2j = a2j(b1j − p1j
) = a2jb1j(1− a1j),

p
3j

= a3jb3j = a3j(b1j − p1j
− p

2j
) = a3j(b1j − a1jb1j − a2jb1j(1− a1j))

= a3jb1j(1− a1j)(1− a2j) = a3jb1j

2∏
k=1

(1− akj),

and if we continue this we get the following general expression for p
ij
:

p
ij

= aijb1j

i−1∏
k=1

(1− akj), 1 ≤ j ≤ q, 1 ≤ i ≤ mj, (2.3.32)

where
∏0

k=1 ck ≡ 1. Also, from (2.3.23), we have

p
mj + 1, j

= b1j −
mj∑
i=1

p
ij
, 1 ≤ j ≤ q. (2.3.33)

Therefore, the solution to (2.2.15) is uniquely given by


p̂
ij

= âij b̂1j

i−1∏
k=1

(1− âkj), 1 ≤ j ≤ q, 1 ≤ i ≤ mj

p̂
mj + 1, j

= b̂1j −
mj∑
i=1

p̂
ij
, 1 ≤ j ≤ q,

(2.3.34)

where (â, b̂) is the unique solution to (2.3.30). The proof follows from (2.3.34) with â and

b̂ given by (2.3.19) and (2.3.22), respectively.

Proof of Corollary 2.1: As follows, we �nd q̂
ij
in (2.2.18) when there is no censoring

in data (2.1.2). Without loss of generality, assume T1 < T2 < · · · < Tn. Since there is no
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censoring in data (2.1.2), the observed data are

(Ti, 1, Zi), i = 1, . . . , n, (2.3.35)

and we have Ui = Ti and Wj = Zk for some 1 ≤ k ≤ n and all 1 ≤ i ≤ m, 1 ≤ j ≤ q with

m = n and q ≤ n. Note that from (2.2.19) we know

q̂
ij

= 0, 1 ≤ j ≤ q, mj < i ≤ m. (2.3.36)

Suppose 1 ≤ j ≤ q, 1 ≤ i ≤ mj. Since there is no censoring in data (2.1.2), we have from

T1 < T2 < · · · < Tn and (2.2.4)

γij = nij = 0 or 1 for all 1 ≤ j ≤ q, 1 ≤ i ≤ mj. (2.3.37)

If γij = 0, we have in (2.2.18)

q̂
ij

= 0. (2.3.38)

Consider the case γij = nij = 1, which implies that q̂
ij
in (2.2.18) becomes

q̂
ij

=
( 1

Nij

)(N1j

n

) i−1∏
k=1

(
1− γkj

Nkj

)
. (2.3.39)

Since N1j ≥ Nij, there are two possible cases:

Case 1: N1j = Nij

Case 2: N1j > Nij.

As follows, we �nd q̂
ij
given by (2.3.39) for these two cases, respectively.

51



Case 1: Since N1j = Nij, q̂ij in (2.3.39) becomes

q̂
ij

=
1

n

i−1∏
k=1

(
1− γkj

Nkj

)
. (2.3.40)

If i = 1, we have

q̂
ij

=
1

n

0∏
k=1

(
1− γkj

Nkj

)
=

1

n
(1) =

1

n
. (2.3.41)

Suppose i > 1. From N1j = Nij and (2.2.16), we have

n1j + · · ·+ ni−1,j + nij + · · ·+ nnj = nij + · · ·+ nnj,

which implies n1j = · · · = ni−1,j = 0. Therefore, γ1j = · · · = γi−1,j = 0 from (2.3.37), and q̂
ij

in (2.3.40) becomes

q̂
ij

=
1

n

i−1∏
k=1

(
1− 0

Nkj

)
=

1

n
(1) =

1

n
. (2.3.42)

Case 2: Since N1j > Nij, we have from (2.2.16)

n1j + · · ·+ ni−1,j + nij + · · ·+ nnj > nij + · · ·+ nnj,

which implies that i 6= 1 and there is at least one 1 ≤ k ≤ i−1 such that nkj = 1. Therefore,

there exist 1 ≤ i1 < · · · < i` ≤ i− 1 such that


ni1j = · · · = ni`j = 1

nkj = 0 for all 1 ≤ k ≤ i− 1, k 6= i1, . . . , i`.

(2.3.43)
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Thus, from (2.3.37), we see that


γi1j = · · · = γi`j = 1

γkj = 0 for all 1 ≤ k ≤ i− 1, k 6= i1, . . . , i`,

(2.3.44)

and q̂
ij
in (2.3.39) becomes

q̂
ij

=
( 1

Nij

)(N1j

n

) i−1∏
k=1

(
1− γkj

Nkj

)
=
( 1

Nij

)(N1j

n

)(
1− 1

Ni1j

)(
1− 1

Ni2j

)
· · ·
(

1− 1

Ni`j

)
=
( 1

Nij

)(N1j

n

)(Ni1j − 1

Ni1j

)(Ni2j − 1

Ni2j

)
· · ·
(Ni`j − 1

Ni`j

)
=
( 1

n

)(N1j

Ni1j

)(Ni1j − 1

Ni2j

)(Ni2j − 1

Ni3j

)
· · ·
(Ni`j − 1

Nij

)
, (2.3.45)

where the last equality is a rearrangement of the terms. Note that from (2.3.43), we have

Ni1j = ni1j + · · ·+ ni−1,j + nij + · · ·+ nnj = 1 + · · ·+ 1︸ ︷︷ ︸
` times

+Nij = `+Nij = N1j

Ni2j = ni2j + · · ·+ ni−1,j + nij + · · ·+ nnj = 1 + · · ·+ 1︸ ︷︷ ︸
`−1 times

+Nij = `− 1 +Nij = Ni1j − 1

...

Ni`j = ni`j + · · ·+ ni−1,j + nij + · · ·+ nnj = 1 +Nij = Ni`−1,j − 1

Nij = nij + · · ·+ nnj = Ni`j − 1,

which implies from (2.3.45)

q̂
ij

=
1

n
. (2.3.46)

This ends the argument for Case 2.
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From (2.3.36), (2.3.38), (2.3.41)-(2.3.42) and (2.3.46), we have

q̂
ij

=


0, if 1 ≤ j ≤ q, mj < i ≤ m

0, if γij = 0, 1 ≤ j ≤ q, 1 ≤ i ≤ mj

1

n
, if γij = 1, 1 ≤ j ≤ q, 1 ≤ i ≤ mj.

=


0, if γij = 0, 1 ≤ j ≤ q, 1 < i ≤ n

1

n
, if γij = 1, 1 ≤ j ≤ q, 1 < i ≤ n,

(2.3.47)

where the last equality is true because m = n and γij = 0 for mj < i ≤ m from (2.2.19).

Therefore, when there is no censoring in data (2.1.2), F̂n(t, z) in (2.2.18) becomes

F̂n(t, z) =
1

n

q∑
j=1

mj∑
i=1

γij=1

I{Ui ≤ t,Wj ≤ z} =
1

n

q∑
j=1

n∑
i=1

γij=1

I{Ui ≤ t,Wj ≤ z} (2.3.48)

t ≤ Um, z ∈ R.

But from (2.2.4) and (2.3.35) and since there is no censoring in data (2.1.2), we have

{
(i, j)

∣∣ γij = 1
}

=
{

(i, j)
∣∣∣ n∑
k=1

I{Tk = Ui, Zk = Wj} = 1
}

=
{

(i, j)
∣∣ (Ui,Wj) = (Tk0 , Zk0) for some 1 ≤ k0 ≤ n

}
.

Since Ui = Ti and the Wj's are all the distinct observations among Z1, . . . , Zn, we know that

[
# of (Ui,Wj)'s satisfying (Ui,Wj) = (Tk0 , Zk0) for some 1 ≤ k0 ≤ n

]
= n,
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which implies

q∑
j=1

n∑
i=1

γij=1

I{Ui ≤ t,Wj ≤ z} =
n∑
i=1

I{Ti ≤ t, Zi ≤ z}. (2.3.49)

The proof follows from (2.3.48)-(2.3.49).

Proof of Lemma 2.1: Since Nij > 0 for (i, j) ∈ J1, where J1 is given by (2.3.4),

we know that any solution to (2.3.6) will satisfy aij < 1, which implies that optimization

problem (2.3.6) is equivalent to


max logG1(a1) =

∑∑
(i,j)∈J1

Nij log(1− aij)

subject to : 0 ≤ aij < 1, (i, j) ∈ J1.

(2.3.50)

The proof follows from noting that logG1(a1) is well-de�ned on set

A1 ≡
{
a1 | 0 ≤ aij < 1, (i, j) ∈ J1

}
, (2.3.51)

and logG1(a1) is a strictly decreasing function in each component of a1 ∈ A1 because

∂

∂aij

(
logG1(a1)

)
=
−Nij

1− aij
< 0, (i, j) ∈ J1.

Proof of Lemma 2.2: Since γij > 0 for (i, j) ∈ J2, where J2 is given by (2.3.8),

we know that any solution to (2.3.10) will satisfy aij > 0, which implies that optimization

problem (2.3.10) is equivalent to


max logG2(a2) =

∑∑
(i,j)∈J2

γij log aij

subject to : 0 < aij ≤ 1, (i, j) ∈ J2.

(2.3.52)
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The proof follows from noting that logG2(a2) is well-de�ned on set

A2 ≡
{
a2 | 0 < aij ≤ 1, (i, j) ∈ J2

}
, (2.3.53)

and logG2(a2) is a strictly increasing function in each component of a2 ∈ A2 because

∂

∂aij

(
logG2(a2)

)
=
γij
aij

> 0, (i, j) ∈ J2.

Proof of Lemma 2.3: Since γij > 0 and Nij − γij > 0 for (i, j) ∈ J3, where J3 is given

by (2.3.12), we know that any solution to (2.3.14) will satisfy 0 < aij < 1, which implies

that optimization problem (2.3.14) is equivalent to


max logG3(a3) =

∑∑
(i,j)∈J3

[
γij log aij + (Nij − γij) log(1− aij)

]
subject to : 0 < aij < 1, (i, j) ∈ J3.

(2.3.54)

Note that logG3(a3) is well-de�ned on the convex set

A3 ≡
{
a3 | 0 < aij < 1, (i, j) ∈ J3

}
. (2.3.55)

Also, note that âij =
γij
Nij

, (i, j) ∈ J3, is a solution to

0 =
∂

∂aij

(
logG3(a3)

)
=
γij
aij
− Nij − γij

1− aij
,

and 0 < âij < 1 since γij > 0 and Nij − γij > 0 for (i, j) ∈ J3. The proof follows from noting

that for (i, j), (k, `) ∈ J3, we have


∂2

∂a2
ij

(
logG3(a3)

)
=
−γij
(aij)2

− Nij − γij
(1− aij)2

< 0,

∂2

∂aij∂ak`

(
logG3(a3)

)
= 0 for i 6= k or j 6= `,

(2.3.56)
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which implies that logG3(a3) is strictly concave down on A3.

Proof of Lemma 2.4: Note that from (2.2.19), J in (2.3.16) can be written as

J =
{

(i, j) |Nij > 0
}

= J1 ∪ J2 ∪ J3, (2.3.57)

where J1∩J2∩J3 = ∅ and J1, J2, and J3 are given by (2.3.4), (2.3.8) and (2.3.12), respectively.

Therefore, G4(a) in (2.3.17) can be written as

G4(a) = G1(a1)G2(a2)G3(a3), (2.3.58)

where G1(a1), G2(a2) and G3(a3) are given by (2.3.5), (2.3.9) and (2.3.13), respectively.

Thus, from Lemmas 2.1-2.3 and (2.3.57), we know the solution to (2.3.18) is uniquely given

by

â = {âij | (i, j) ∈ J} = â1 ∪ â2 ∪ â3,

where â1 = 0 is the unique solution to (2.3.6), â2 = 1 is the unique solution to (2.3.10) and

â3 is the unique solution to (2.3.14) and is given by (2.3.15). Therefore, we have

âij =



0, if (i, j) ∈ J1

1, if (i, j) ∈ J2

γij
Nij

, if (i, j) ∈ J3

=



0, if γij = 0, Nij − γij > 0, 1 ≤ j ≤ q, 1 ≤ i ≤ mj

1, if γij > 0, Nij − γij = 0, 1 ≤ j ≤ q, 1 ≤ i ≤ mj

γij
Nij

, if γij > 0, Nij − γij > 0, 1 ≤ j ≤ q, 1 ≤ i ≤ mj,

(2.3.59)

and the proof follows from (2.3.57) and (2.3.59).
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Proof of Lemma 2.5: From N1j > 0 in (2.2.19), we know that any solution to (2.3.21)

will satisfy b1j > 0, which implies, from
∑q

j=1 b1j = 1, that optimization problem (2.3.21) is

equivalent to


min − logG1(b) = −

q∑
j=1

N1j log b1j

subject to : h(b) = 0; b ∈ B,
(2.3.60)

where

h(b) ≡ 1−
q∑
j=1

b1j, B ≡
{
b | 0 < b1j < 1, 1 ≤ j ≤ q

}
. (2.3.61)

As follows, we discuss the Karush-Kuhn-Tucker (KKT) su�cient conditions (Bazaraa et al.,

1993; page 164) for optimization problem (2.3.60).

Using Lagrange multipliers, let

G(b, ν) ≡ − logG1(b) + νh(b) = −
q∑
j=1

N1j log b1j + ν
(

1−
q∑
j=1

b1j

)
, (2.3.62)

which has the following partial derivatives


∂

∂b1j

(
G(b, ν)

)
= −N1j

b1j

− ν, 1 ≤ j ≤ q

∂

∂ν

(
G(b, ν)

)
= 1−

q∑
j=1

b1j.

(2.3.63)

From ∂G/∂b1j = 0, we have

b1j =
−N1j

ν
, 1 ≤ j ≤ q, (2.3.64)
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and from (2.2.6), (2.2.16) and ∂G/∂ν = 0, we have

1 =

q∑
j=1

b1j =
−1

ν

q∑
j=1

N1j =
−1

ν

q∑
j=1

m∑
i=1

nij =
−n
ν

=⇒ ν = −n. (2.3.65)

Therefore, b̂1j =
N1j

n
is a solution to ∇G(b, ν) = −∇ logG1(b) + ν∇h(b) = 0.

Note that B in (2.3.61) is open and convex and that logG1(b) and h(b) are well-de�ned

on B. We know b̂ is a feasible solution for (2.3.60) because from (2.3.64)-(2.3.65), we have∑q
j=1 b̂1j = 1 and from (2.2.6) and (2.2.19), we have 0 < N1j < n, which implies 0 < b̂1j < 1.

Note that − logG1(b) is strictly concave up on B because


∂2

∂b2
1j

(
− logG1(b)

)
=

N1j

(b1j)2
> 0

∂2

∂b1j∂b1k

(
− logG1(b)

)
= 0 for j 6= k.

(2.3.66)

Therefore, from Bazaraa et al. (1993; page 116), we know − logG1(b) is pseudoconvex on

B (see de�nition in Bazaraa et al., 1993; page 113). Also, from Bazaraa et al. (1993; page

118, Problem 3.4, and page 116), we know h(b) is both quasiconvex and quasiconcave (see

de�nitions in Bazaraa et al., 1993; page 108) since h(b) is linear. The proof follows from the

KKT su�cient conditions and Theorem 3.4.2 in Bazaraa et al. (1993; pages 164 and 101,

respectively).
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CHAPTER 3. EMPIRICAL LIKELIHOOD RATIO

CONFIDENCE INTERVAL FOR CONDITIONAL SURVIVAL

PROBABILITIES

In this chapter, we study the empirical likelihood ratio con�dence interval for conditional

survival probabilities with right censored bivariate data (1.2.23) or (2.1.2).

3.1 Introduction

In survival analysis, often interested is focused on the probability that a patient survives

up to time t0 given that the covariate Z is equal to a speci�ed value z0. For instance, one

might be interested in the conditional survival probability given that the patient is a male, or

the conditional survival probability given that the patient received a particular treatment. In

this chapter, we consider right censored data (1.2.23) or (2.1.2), where Z is a discrete variable

and z0 is one of the possible values of Z, and we construct the empirical likelihood-based

con�dence interval for the following conditional probability:

θ0 = P{T ≤ t0 |Z = z0}. (3.1.1)

Note that the con�dence interval for conditional survival probability

(1− θ0) = P{T > t0 |Z = z0} (3.1.2)

is equivalent to that for θ0.

In Section 3.2, we show that the empirical likelihood ratio con�dence set for θ0 is in

fact an interval. To study the asymptotic behavior of the empirical likelihood ratio, the
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expression of such ratio is needed and is a rather complex issue. We provide an analytic

solution for such likelihood ratio in Section 3.2. Section 3.3 discusses the computation of

the empirical likelihood ratio con�dence interval (ELRCI) for θ0. All proofs are deferred to

Sections 3.4-3.5.

3.2 Con�dence Interval for Conditional Survival Probabilities

Note that from (2.2.1) we have that as n→∞

Um > t0 in probability, (3.2.1)

because as n→∞, we have that for d.f. FV of V with 0 < FV (t0) < 1,

P
{
Um ≤ t0

}
= P

{
V1 ≤ t0, · · · , Vn ≤ t0

}
=
(
FV (t0)

)n → 0.

Also, note that 0 < P{Z = z0} < 1 since Z is discrete and z0 is one the possible values of

Z, which implies that as n→∞

∃ 1 ≤ ζ ≤ q such that Wζ = z0 in probability, (3.2.2)

where the proof of (3.2.2) is similar to that of (3.2.1) above. Let F (t, z), p = (p
ij

), and

q = (q
ij

) be de�ned as in (2.2.12)-(2.2.14), where for p
ij
's and q

ij
's we use the same treatment
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as in (2.2.18)-(2.2.19) for p̂
ij
's and q̂

ij
's. Then, we have



F (t, z) =
∑q

j=1

∑m
i=1 qijI{Ui ≤ t,Wj ≤ z}, for t ≤ Um, z ∈ R

p
ij

= q
ij
, for 1 ≤ j ≤ q, 1 ≤ i ≤ mj

q
ij

= 0, for 1 ≤ j ≤ q, mj < i ≤ m

q
m+ 1, j

= PF{T > Um, Z = Wj}, for 1 ≤ j ≤ q

p
mj + 1, j

= PF{T > Umj , Z = Wj} = q
m+ 1, j

, for 1 ≤ j ≤ q∑q
j=1

∑mj+1
i=1 p

ij
=
∑q

j=1

∑m+1
i=1 q

ij
= 1.

(3.2.3)

If we let T (F ) be the following statistical functional

T (F ) = PF{T ≤ t0 |Z = z0},

then from (3.2.1)-(3.2.3) we have that in probability as n→∞,

T (F ) =
PF{T ≤ t0, Z = z0}

PF{Z = z0}

=
PF{T ≤ t0, Z = Wζ}

PF{T ≤ Um, Z = Wζ}+ PF{T > Um, Z = Wζ}

=

∑q
j=1

∑m
i=1 qijI{Ui ≤ t0, Wj = Wζ}∑q

j=1

∑m
i=1 qijI{Ui ≤ Umj , Wj = Wζ}+ q

m+ 1, ζ

=

∑q
j=1

∑mj
i=1 pijI{Ui ≤ t0, Wj = Wζ}∑q

j=1

∑mj
i=1 pijI{Ui ≤ Umj , Wj = Wζ}+ p

mζ + 1, ζ

=

∑mζ
i=1 piζI{Ui ≤ t0}∑mζ
i=1 piζ + p

mζ + 1, ζ

=

∑mζ
i=1 piζI{Ui ≤ t0}∑mζ+1

i=1 p
iζ

≡ T (p). (3.2.4)

For L(F ) given by (2.2.11) and F̂n given by (2.2.18), we let

R(F ) ≡ L(F )

L(F̂n)
=

L(p)

L(F̂n)
. (3.2.5)
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Thus, from (3.2.4)-(3.2.5), the empirical likelihood ratio is denoted by

r(θ0) ≡ sup
F

{
R(F )

∣∣T (F ) = θ0

}
=

1

L(F̂n)
sup
p

{
L(p)

∣∣T (p) = θ0, p ∈ Fn
}
, (3.2.6)

where

Fn =

{
p
∣∣∣ 0 ≤ p

ij
≤ 1, 1 ≤ j ≤ q, 1 ≤ i ≤ mj;

q∑
j=1

mj+1∑
i=1

p
ij

= 1

}
. (3.2.7)

From (1.4.22)-(1.4.22a), we see that for 0 < c < 1, the con�dence set Sn for the conditional

probability θ0 based on right censored data (1.2.23) or (2.1.2) is given by

Sn =
{
θ | r(θ) ≥ c

}
=
{
T (F )

∣∣R(F ) ≥ c
}

=
{
T (p) |L(p) ≥ cL(F̂n), p ∈ Fn

}
=
{
T (p) |p ∈ En

}
, (3.2.8)

where

En =

{
p
∣∣∣L(p) ≥ cL(F̂n), p ∈ Fn

}
. (3.2.9)

In Section 3.4, we prove the following theorems on the con�dence set Sn for θ0.

Theorem 3.1. Sn given by (3.2.8) is an interval satisfying Sn = [TL, TU ], where

TL = inf
p∈En

T (p) and TU = sup
p∈En

T (p). (3.2.10)

Theorem 3.2. For Sn and r(θ0) given by (3.2.8) and (3.2.6), respectively, we have that in

probability as n→∞,

θ0 ∈ Sn if and only if r(θ0) ≥ c. (3.2.11)
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Note that (3.2.4) and Theorems 3.1-3.2 imply

P{TL ≤ θ0 ≤ TU} = P{−2 log r(θ0) ≤ −2 log c}+ op(1). (3.2.12)

Thus, the asymptotic behavior of empirical likelihood ratio con�dence interval (ELRCI)

[TL, TU ] can be studied via the empirical log likelihood ratio log r(θ0). An analytic solution

for log r(θ0) based on data (1.2.23) or (2.1.1) is given in the following theorem with the proof

deferred to Section 3.4, while the computation of TL and TU is discussed in Section 3.3.

Theorem 3.3. Under the following conditions:

Λn ≡ min{Niζ − γiζ | 1 ≤ i ≤ mζ , Ui ≤ t0} > 0, in probability (AS3.1)

mζ∏
i=1
Ui≤t0

(
1− γiζ

Niζ − Λn

)
< 1− θ0 <

mζ∏
i=1
Ui≤t0

(
1− γiζ

Niζ

)
, in probability (AS3.2)

an expression of (3.2.6) is given by

log r(θ0) =

mζ∑
i=1
Ui≤t0

[
Niζ log

Niζ

Niζ − λ̃
+ (Niζ − γiζ) log

Niζ − λ̃− γiζ
Niζ − γiζ

]
, (3.2.13)

in probability, where in probability λ̃ ∈ (0,Λn) is the unique root of

g(λ) ≡ log(1− θ0)−
mζ∑
i=1
Ui≤t0

log
(

1− γiζ
Niζ − λ

)
. (3.2.14)

Remark 3.1: It is expected that −2 log r(θ0) converges in distribution to a Chi-squared

distribution with 1 degree of freedom as n→∞. This will be further studied, and our result

(3.2.13) here will facilitate this future work. For simulation studies on −2 log r(θ0), above

equation (3.2.14) may be solved using, say, Newton-Raphson method.

Remark 3.2: The meaning of Assumption (AS3.1) in Theorem 3.3 may be understood
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as follows. From (2.2.16) and (3.2.1), we know that in probability, for any 1 ≤ i ≤ mζ

satisfying Ui ≤ t0,

Niζ

n
≥ P{V ≥ t0, Z = z0}+ op(1) (3.2.15)

γiζ
n
≤ P{V ≥ t0, δ = 1, Z = z0}+ op(1). (3.2.16)

Thus, for any 1 ≤ i ≤ mζ satisfying Ui ≤ t0 we have in probability

Niζ − γiζ
n

≥ P{V ≥ t0, δ = 0, Z = z0}+ op(1), (3.2.17)

which implies in (AS3.1) we have Λn/n > 0 in probability, provided P{V ≥ t0, δ = 0, Z =

z0} > 0. As for Assumption (AS3.2), one should notice that the last term of inequality is

the conditional Kaplan-Meier estimation (Kaplan and Meier, 1958) for (1− θ0). Thus, with

(AS3.1) we have non-strict inequalities hold in probability in (AS3.2). The strict inequalities

are required only for the unique existence of the solution for g(λ) = 0 in (3.2.14), while it is

shown in Section 3.5 that g(λ) is strictly increasing.

3.3 Computation of Con�dence Interval

In this section, we discuss the computation of TL and TU in (3.2.10) for the ELRCI in

Theorem 3.1. In particular, we outline the details for �nding the lower bound TL for the

ELRCI, while the upper bound TU for the ELRCI will be studied further in the future.

To �nd an expression for TL in (3.2.10), we solve the following optimization problem

TL =


min T (p) =

∑mζ
i=1 piζI{Ui ≤ t0}∑mζ+1

i=1 p
iζ

subject to : 0 ≤ p
ij
≤ 1, for 1 ≤ j ≤ q, 1 ≤ i ≤ mj;

L(p) ≥ cL(F̂n);
∑q

j=1

∑mj+1
i=1 p

ij
= 1.

(3.3.1)
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Consider the transformation τ(p) = (a, b), where a = {aij | 1 ≤ j ≤ q, 1 ≤ i ≤ mj} and

b = (b11, · · · , b1q) are given by (2.3.23). Under this transformation, we have from (3.2.4) and

(2.3.32)

T (p) =

∑mζ
i=1 aiζb1ζ

∏i−1
k=1(1− akζ)I{Ui ≤ t0}

b1ζ

=

mζ∑
i=1

aiζ

i−1∏
k=1

(1− akζ)I{Ui ≤ t0}

=

mζ∑
i=1

(
1− (1− aiζ)

)
I{Ui ≤ t0}

i−1∏
k=1

(1− akζ)

=

mζ∑
i=1

( i−1∏
k=1

(1− akζ)−
i∏

k=1

(1− akζ)
)
I{Ui ≤ t0}

= 1−
mζ∏
i=1

(1− aiζ)I{Ui ≤ t0} = 1−
mζ∏
i=1
Ui≤t0

(1− aiζ) = 1− T1(a), (3.3.2)

where

T1(a) ≡
mζ∏
i=1
Ui≤t0

(1− aiζ). (3.3.3)

From (2.3.28) and (3.3.3), we see that optimization problem (3.3.1) is equivalent to

TL =


min 1− T1(a)

subject to : 0 ≤ aij ≤ 1, 0 ≤ b1j ≤ 1, (i, j) ∈ J ;

G(a, b) ≥ cL(F̂n);
∑q

j=1 b1j = 1,

where J is given by (2.3.16), which implies that

TL = 1− T1(aL), (3.3.4)
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where

− T1(aL) =


min −T1(a)

subject to : 0 ≤ aij ≤ 1, 0 ≤ b1j ≤ 1, (i, j) ∈ J ;

G(a, b) ≥ cL(F̂n);
∑q

j=1 b1j = 1.

(3.3.5)

As follows, we discuss the solution to (3.3.5).

If we de�ne 

g
1
(a, b) ≡ log

(
cL(F̂n)

)
− logG(a, b)

h1(b) ≡ 1−
∑q

j=1 b1j

X1 ≡
{
a
∣∣ 0 < aij < 1, (i, j) ∈ J

}
X2 ≡

{
b
∣∣ 0 < b1j < 1, 1 ≤ j ≤ q

}
,

(3.3.6)

then to �nd the solution to optimization problem (3.3.5), we solve

 min − log T1(a)

subject to : (a, b) ∈ X1 ×X2; g
1
(a, b) ≤ 0; h1(b) = 0.

(3.3.7)

Using Lagrange multipliers with λL1 ≥ 0, let

HL(a, b, λ1, λ2) ≡ − log T1(a) + λ1g1
(a, b) + λ2h1(b)

= −
∑

(iζ)∈J1

log(1− akζ) + λ2

(
1−

q∑
j=1

b1j

)
+ λ1

{
log
(
cL(F̂n)

)
−

q∑
j=1

N1j log b1j

−
∑∑

(i,j)∈J

[
γij log aij + (Nij − γij) log(1− aij)

]}
, (3.3.8)
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where J1 is given in (3.5.1), and note that HL has the following partial derivatives



∂HL

∂aij
=

1

1− aij
I
{

(i, ζ) ∈ J1

}
− λ1

(γij
aij
− Nij − γij

1− aij

)
, (i, j) ∈ J

∂HL

∂b1j

= −λ2 − λ1

(N1j

b1j

)
, 1 ≤ j ≤ q

∂HL

∂λ1

= g
1
(a, b)

∂HL

∂λ2

= h1(b).

(3.3.9)

From ∂HL/∂aij = 0 in (3.3.9), we have

aij =


λ1γij

λ1Nij + 1
for (i, j) ∈ J1

γij
Nij

for (i, j) ∈ J2.

(3.3.10)

where J2 is given by (3.5.5) and we note that J1 ∪ J2 = J . From ∂HL/∂b1j = 0 in (3.3.9),

we have

b1j =
−λ1

λ2

N1j, 1 ≤ j ≤ q, (3.3.11)

where from ∂HL/∂λ2 = h1(b) = 0 in (3.3.9), we have from (3.3.6), (3.3.11), (2.2.6) and

(2.2.16)

1 =

q∑
j=1

b1j =
−λ1

λ2

q∑
j=1

N1j =
−λ1

λ2

q∑
j=1

m∑
i=1

nij =
−λ1n

λ2

=⇒ λ2 = −λ1n (3.3.12)

From ∂HL/∂λ1 = 0 in (3.3.9), we have from (3.3.6)

0 =g
1
(a, b) = log

(
cL(F̂n)

)
− logG(a, b) = log c+ log

L(F̂n)

G(a, b)
. (3.3.13)
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Let (aL, bL) be a solution to equations (3.3.9)-(3.3.13). Thus, we know

g
1
(aL, bL) = 0; h1(bL) = 0; (3.3.14)

∇− log T1(aL) + λ1∇g1
(aL, bL) + λ2∇h1(bL) = ∇HL(aL, bL, λL1 , λ

L
2 ) = 0, (3.3.15)

with aL = {aLij | (i, j) ∈ J} and bL = (bL11, · · · , bL1q), where

aLij =


λL1 γij

λL1Nij + 1
for (i, j) ∈ J1

γij
Nij

for (i, j) ∈ J2

(3.3.16)

bL1j =
N1j

n
, 1 ≤ j ≤ q (3.3.17)

and λL1 is a solution to g
2
(λ) = 0, where

g
2
(λ) ≡ log c+

L(F̂n)

G(aL, bL)
. (3.3.18)

Note that from (2.3.28) and (2.3.30), we know L(F̂n) = G(â, b̂) with â and b̂ given by

(2.3.19) and (2.3.22), respectively. Noting that aLij = âij for (i, j) ∈ J2 and bL1j = b̂1j for

1 ≤ j ≤ q, we have from (3.3.16), (3.3.18), (2.3.19) and (2.3.28)

g
2
(λ) = log c+ log

( q∏
j=1

(b̂1j)
N1j

)∏∏
(i,j)∈J

(âij)
γij
(
1− âij

)Nij−γij
( q∏

j=1

(bL1j)
N1j

)∏∏
(i,j)∈J

(aLij)
γij
(
1− aLij

)Nij−γij
= log c+ log

∏∏
(i,j)∈J1

(
âij
aLij

)γij(1− âij
1− aLij

)Nij−γij
= log c+

∑∑
(i,j)∈J1

[
γij log

âij
aLij

+ (Nij − γij) log
1− âij
1− aLij

]

= log c+

mζ∑
i=1
Ui≤t0

[
γiζ log

λNiζ + 1

λNiζ

+ (Niζ − γiζ) log
(Niζ − γiζ)(λNiζ + 1)

Niζ(λNiζ − λγiζ + 1)

]
. (3.3.19)
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As follows, we discuss the Karush-Kuhn-Tucker su�cient conditions (Bazaraa et al., 1993;

page 164) for optimization problem (3.3.7).

Note that − log T1, g1 and h1 in (3.3.6) are well-de�ned on the open, convex set X1×X2.

Also, note that − log T1(a) is strictly is concave up on X1 because for all a ∈ X1, we have

∂2

∂a2
iζ

(
− log T1(a)

)
=

1

(1− aiζ)2
> 0

∂2

∂aiζakζ

(
− log T1(a)

)
= 0 for i 6= k.

Therefore, from Bazaraa et al. (1993; page 116), we know − log T1(a) is pseudoconvex on

X1 (see de�nition in Bazaraa et al., 1993; page 113). For X given by (3.4.8), we know

(aL, bL) ∈ X, which implies from (3.4.13) that − logG(a, b) is quasiconvex at (aL, bL), in

turn, g1(a, b) in (3.3.6) is quasiconvex at (aL, bL) (see de�nition in Bazaraa et al., 1993;

page 108). Also, from Bazaraa et al. (1993; page 118, Problem 3.4, and page 116), we know

h1(b) is both quasiconvex and quasiconcave on X2 (see de�nitions in Bazaraa et al., 1993;

page 108) since h1(b) is linear.

Note that we can relax the restriction on a in X1 ×X2 given by (3.3.6) to


0 ≤ aij < 1, if γij = 0, (i, j) ∈ J1

0 < aij < 1, otherwise

(3.3.20)

because if γij = 0, (i, j) ∈ J1, then a
L
ij = 0 in (3.3.16) and we have in the sum for G(a, b) in

(2.3.28):

γij log aij = 0 log 0 = 0,

thus g1(a, b) in (3.3.6) is well-de�ned. Noting that γij ≥ 0 for all (i, j) ∈ J , we see that

aL in (3.3.16) satis�es (3.3.20) for all (i, j) ∈ J and λL1 > 0, which implies (aL, bL) is a

feasible solution for the minimization problem in (3.3.7) if λL1 > 0 is as solution to g
2
(λ) = 0.
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Therefore, from the KKT conditions and Theorem 3.4.2 in Bazaraa et al. (1993; pages 164

and 101), the solution to minimization problem (3.3.7) is uniquely given by (aL, bL) in

(3.3.16)-(3.3.17) if λL1 > 0 is the unique solution to g
2
(λ) = 0 in (3.3.19). As follows, we

discuss the unique existence of the solution to g
2
(λ) = 0 on (0,∞).

Note that for λ > 0, we have from (3.3.19) and Lemma 3.1 (ii) that as n→∞,

g′
2
(λ) =

mζ∑
i=1
Ui≤t0

[
−γiζ

λ
(
λNiζ + 1

) +
γiζ
(
Niζ − γiζ

)(
λNiζ + 1

)(
λNiζ − λγiζ + 1

)]

=

mζ∑
i=1
Ui≤t0

−γiζ
λ
(
λNiζ + 1

)(
λNiζ − λγiζ) + 1

) < 0, in probability, (3.3.21)

which implies that g
2
(λ) is a strictly decreasing function on (0,∞). Also, note that if we let

k1 ≡ log c+

mζ∑
i=1
Ui≤t0

(Niζ − γiζ) log
Niζ − γiζ
Niζ

, (3.3.22)

then we have from (3.3.19),

lim
λ→0+

g
2
(λ) = log c+

mζ∑
i=1
Ui≤t0

[
− γiζ lim

λ→0+
log(λNiζ) + (Niζ − γiζ) log

Niζ − γiζ
Niζ

]

= k1 −
mζ∑
i=1
Ui≤t0

γiζ lim
λ→0+

log(λNiζ) =∞ (3.3.23)

and since 0 < c < 1, we have

lim
λ→∞

g
2
(λ) = log c < 0. (3.3.24)

Since g
2
(λ) is well-de�ned on (0,∞), we see that g

2
(λ) is continuous on (0,∞). Therefore,

from the Intermediate Value Theorem, we see that there exists a unique solution to g
2
(λ) = 0

on (0,∞).
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Therefore, the lower bound of the ELRCI is given by (3.3.4) with aL given by (3.3.16),

where λL1 is the solution to g
2
(λ) = 0 on (0,∞). Note that we may use the Newton-Raphson

method to �nd this solution.

3.4 Proofs of Theorems 3.1-3.2

Proof of Theorem 3.1: Note that set En given by (3.2.9) is compact because set Fn

in (3.2.7) is compact and L(p) in (2.2.11) is a polynomial, thus is continuous in p. Also,

note that T (p) in (3.2.4) is well-de�ned on En in (3.2.9) because

p ∈ En =⇒
mj+1∑
k=i

p
kj
> 0, for all 1 ≤ j ≤ q, 1 ≤ i ≤ mj, (3.4.1)

which implies that the denominator of T (p) in (3.2.4) is positive for any p ∈ En; i.e,

p ∈ En =⇒
mj+1∑
k=1

p
kj
> 0. (3.4.2)

To see (3.4.1), it su�ces to notice that for any p ∈ En, we have

L(p) ≥ cL(F̂n) > 0, (3.4.3)

which implies the following in the product of L(p) in (2.2.11):

0 < (p
mj , j

)γmj,j(p
mj + 1, j

)nmj,j−γmj,j

=


(p
mj + 1, j

)nmj,j if γmj ,j = 0

(p
mj , j

)γmj,j(p
mj + 1, j

)nmj,j−γmj,j if γmj ,j > 0

in turn, from nmj ,j > 0 in (2.2.19), we have p
mj + 1, j

> 0 when γmj ,j = 0; p
mj , j

> 0 when

γmj ,j > 0; which give p
mj , j

+ p
mj + 1, j

> 0.

Since the numerator of T (p) in (3.2.4) is a linear function in p, from (3.4.2) we know
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that T (p) is continuous on En. Thus, from Royden (1988; page 191), we know that Sn given

by (3.2.8) is a compact set in R. Note that if En is connected, then Sn is connected (Royden,

1988; page 182), which implies that Sn is either an interval or a single point (Royden, 1988;

page 183). Since Sn is compact, we know that Sn is a closed interval [TL, TU ] with TL and

TU given by (3.2.10). Thus, if we de�ne

τ(p) = (a, b) ⇐⇒


aij =

p
ij

bij

bij =
∑mj+1

k=i p
kj

1 ≤ j ≤ q, 1 ≤ i ≤ mj, (3.4.4)

where a = (aij) and b = (b1j), the proof follows from showing: (I) τ(En) is convex; (II) En is

connected; which are proved as follows.

(I) "τ (En) is convex": Note that from (3.4.1), τ is well-de�ned on En. Also note that

under transformation (3.4.4), we have from (2.3.28)

L(p) = L
(
τ−1(a, b)

)
=

( q∏
j=1

(b1j)
N1j

) q∏
j=1

mj∏
i=1

(aij)
γij(1− aij)Nij−γij = G(a, b), (3.4.5)

which, from (3.4.2) and
∑q

j=1 b1j = 1, implies

τ(En) =
{
τ(p)

∣∣L(p) ≥ cL(F̂n), p ∈ Fn
}

=
{

(a, b)
∣∣ 0 ≤ aij ≤ 1, 0 < b1j < 1, 1 ≤ j ≤ q, 1 ≤ i ≤ mj;

q∑
j=1

b1j = 1, G(a, b) ≥ cL(F̂n)
}
. (3.4.6)
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Thus, from (3.4.5) and G(a, b) ≥ cL(F̂n) > 0, we know that for any (a, b) ∈ τ(En) we have



0 < b1j < 1 for 1 ≤ j ≤ q

0 ≤ aij < 1 for (i, j) ∈ J1

0 < aij ≤ 1 for (i, j) ∈ J2

0 < aij < 1 for (i, j) ∈ J3,

(3.4.7)

where J1, J2 and J3 are given by (2.3.4), (2.3.8) and (2.3.12), respectively. If we let

X ≡
{

(a, b) | 0 ≤ aij < 1, (i, j) ∈ J1; 0 < aij ≤ 1, (i, j) ∈ J2;

0 < aij < 1, (i, j) ∈ J3; 0 < b1j < 1, 1 ≤ j ≤ q;

q∑
j=1

b1j = 1

}
, (3.4.8)

then τ(En) in (3.4.6) is equivalently written as

τ(En) =
{

(a, b) ∈ X
∣∣G(a, b) ≥ cL(F̂n)

}
. (3.4.9)

For any (a(1), b(1)) ∈ τ(En) and (a(2), b(2)) ∈ τ(En), (3.4.9) implies

(a(1), b(1)) ∈ X, (a(2), b(2)) ∈ X (3.4.10)

G
(
a(1), b(1)

)
≥ cL(F̂n), G

(
a(2), b(2)

)
≥ cL(F̂n). (3.4.11)

Since X is a convex set, (3.4.10) implies that for any 0 ≤ λ ≤ 1,

λ

a(1)

b(1)


>

+ (1− λ)

a(2)

b(2)


>

∈ X. (3.4.12)
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Also, if we can show

G(a, b) is quasiconcave on X (3.4.13)

(see de�nition in Bazaraa et al., 1993; page 108), then from (3.4.11) we have

G

λ
a(1)

b(1)


>

+ (1− λ)

a(2)

b(2)


>

≥ min

G

a(1)

b(1)


> , G


a(2)

b(2)


>
 ≥ cL(F̂n). (3.4.14)

Hence, the convexity of τ(En) follows from (3.4.9), (3.4.12) and (3.4.14).

To establish (3.4.13), from Bazaraa et al. (1993; page 116) it su�ces to show that G(a, b)

is concave down on X. Note that logG is well-de�ned on X, and from (2.3.31), (2.3.58) and

(3.4.8), we have for (a, b) ∈ X,

logG(a, b) = logG1(a1) + logG2(a2) + logG3(a3) + logG5(b), (3.4.15)

where G1(a1) : A1 → R is given by (2.3.5), G2(a2) : A2 → R is given by (2.3.9), G3(a3) :

A3 → R is given by (2.3.13), G5(b) : B → R is given by (2.3.20), and A1, A2, A3 and B are

given by (2.3.51), (2.3.53), (2.3.55) and (2.3.61), respectively. We know that logG3(a3) is

concave down on A3 from (2.3.56), and logG5(b) is concave down on B from (2.3.66). From

(2.3.5), we have for all a1 ∈ A1

∂2

∂a2
ij

(
logG1(a1)

)
=

−Nij

(1− aij)2
< 0

∂2

∂aij∂ak`

(
logG1(a1)

)
= 0 for (i, j) 6= (k, `),
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which implies logG1(a1) is concave down on A1. Also, from (2.3.9), we have for all a2 ∈ A2

∂2

∂a2
ij

(
logG2(a2)

)
=
−γij
(aij)2

< 0

∂2

∂aij∂ak`

(
logG2(a2)

)
= 0 for (i, j) 6= (k, `),

which implies logG2(a2) is concave down on A2. Therefore, logG is concave down on X.

(II) "En is connected": Since τ(En) is convex, τ(En) is connected (Royden, 1988; page

183, Problem 35). From (2.3.32), we know τ−1(a, b) exists and is continuous on τ(En) in

(3.4.6). Hence, from Royden (1988; page 182), τ−1
(
τ(En)

)
= En is connected.

Proof of Theorem 3.2: "⇒": Assume θ0 ∈ Sn = [TL, TU ], where TL and TU are

given by (3.2.10). From the proof of Theorem 3.1, we know T (p) in (3.2.4) is continuous on

En in (3.2.9). Thus, since TL and TU are the lower bound and upper bound of T (p) on En,

respectively, we know that from the Intermediate Value Theorem, there exists p∗ ∈ En such

that θ0 = T (p∗). From p∗ ∈ En, we know p∗ ∈ Fn and L(p∗) ≥ cL(F̂n), which implies from

θ0 = T (p∗) and (3.2.6),

r(θ0) =
1

L(F̂n)
sup
p

{
L(p) |T (p) = θ0, p ∈ Fn

}
≥ L(p∗)

L(F̂n)
≥ c.

"⇐": Assume r(θ0) ≥ c, where r(θ0) is given by (3.2.6). From (3.2.1), (3.2.4) and

(3.2.7), we know that in probability as n→∞,

En ≡
{
p |T (p) = θ0, p ∈ Fn

}
(3.4.16)

is not empty. From (3.2.6), we know that for any su�ciently large k, there exists p(k) ∈ En
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such that

L(p(k))

L(F̂n)
≥ r(θ0)− 1

k
,

which, from r(θ0) ≥ c, implies

p(k) ∈ Fn, T (p(k)) = θ0,
L(p(k))

L(F̂n)
≥ c− 1

k
. (3.4.17)

Since p(k) ∈ Fn and Fn is compact, we know that {p(k)} is bounded, thus there exists a

convergent subsequence, still denoted as p(k), such that

p(k) → p(0) ∈ Fn, as k →∞. (3.4.18)

Since L(p) is continuous, from (3.4.17)-(3.4.18) we have

L(p(0))

L(F̂n)
= lim

k→∞

L(p(k))

L(F̂n)
≥ c > 0, (3.4.19)

which, from the arguments in (3.4.1)-(3.4.3), implies
∑mζ+1

k=1 p(0)

kζ
> 0; in turn, from (3.4.17)-

(3.4.18) and (3.2.4) we have

T (p(0)) = lim
k→∞

T (p(k)) = θ0. (3.4.20)

The proof follows from (3.4.18)-(3.4.20) and Theorem 3.1.

3.5 Proof of Theorem 3.3

Before proving Theorem 3.3, we establish the following lemmas, while the proofs are given

at the end of this section.

Lemma 3.1. For Λn and g(λ) given by (AS3.1) and (3.2.14), respectively, we have as
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n→∞,

(i) P{V ≤ t0, Z = z0, δ = 1} > 0, in probability

(ii) En1 ≡
{
i | 1 ≤ i ≤ mζ , Ui ≤ t0, γiζ > 0

}
6= ∅, in probability

(iii) ∃ a unique solution to g(λ) = 0 on (0,Λn), in probability.

Lemma 3.2. Let λ̃ denote the unique solution to g(λ) = 0 on (0,Λn) in Lemma 3.1 and let

J1 ≡
{

(i, ζ) | 1 ≤ i ≤ mζ , Ui ≤ t0
}

(3.5.1)

G6(a6) ≡
∏

(i,ζ)∈J1

(aiζ)
γiζ
(
1− aiζ

)Niζ−γiζ , a6 = {aiζ | (i, ζ) ∈ J1}. (3.5.2)

Then, the solution to


max G6(a6)

subject to : 0 ≤ aiζ ≤ 1, (i, ζ) ∈ J1; 1− θ0 =
∏

(i,ζ)∈J1

(
1− aiζ

) (3.5.3)

is uniquely given by ã6 =
{
ãiζ | (i, ζ) ∈ J1

}
, where

ãiζ =
γiζ

Niζ − λ̃
, (i, ζ) ∈ J1. (3.5.4)

Lemma 3.3. Let

J2 ≡
{

(i, ζ) | 1 ≤ i ≤ mζ , Ui > t0
}
∪
{

(i, j) | j 6= ζ, 1 ≤ i ≤ mj

}
. (3.5.5)

For G4(a), J and J1 given by (2.3.17), (2.3.16) and (3.5.1), respectively, we have J = J1∪J2
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and the solution to
max G4(a)

subject to : 0 ≤ aij ≤ 1, (i, j) ∈ J ; 1− θ0 =
∏

(i,ζ)∈J1

(
1− aiζ

) (3.5.6)

is uniquely given by ã =
{
ãij | (i, j) ∈ J

}
, where

ãij =


γij

Nij − λ̃
, (i, j) ∈ J1

γij
Nij

, (i, j) ∈ J2.

(3.5.7)

Proof of Theorem 3.3: To obtain an expression for r(θ0) in (3.2.6), we solve the

following optimization problem


max L(p)

subject to : 0 ≤ p
ij
≤ 1, 1 ≤ j ≤ q, 1 ≤ i ≤ mj;∑q

j=1

∑mj+1
i=1 p

ij
= 1; θ0 = T (p).

(3.5.8)

Under transformation (2.3.23), we know from (2.3.28) and (3.3.3) that optimization problem

(3.5.8) is equivalent to


max G(a, b)

subject to : 0 ≤ aij ≤ 1, 0 ≤ b1j ≤ 1, (i, j) ∈ J ;∑q
j=1 b1j = 1; 1− θ0 = T1(a),

(3.5.9)

where J is given by (2.3.16) and a and b are given by (2.3.29). Note that T1(a) in (3.3.3) is

a polynomial, thus it is continuous in a. Therefore, the constraint set

{
(a, b)

∣∣∣ 0 ≤ aij ≤ 1, 0 ≤ b1j ≤ 1, (i, j) ∈ J ;

q∑
j=1

b1j = 1, 1− θ0 = T1(a)
}

79



is compact. Since G(a, b) in (2.3.28) is a polynomial, it is continuous in (a, b), thus we know

a solution to (3.5.9) exists. From (3.3.3) and (3.5.1), we know that the constraint set can be

written as

{
(a, b)

∣∣∣ 0 ≤ aij ≤ 1, 0 ≤ b1j ≤ 1, (i, j) ∈ J ;

q∑
j=1

b1j = 1, 1− θ0 =
∏

(i,ζ)∈J1

(
1− aiζ

)}
=
{
a
∣∣ 0 ≤ aij ≤ 1, (i, j) ∈ J, 1− θ0 =

∏
(i,ζ)∈J1

(
1− aiζ

)}
∪
{
b
∣∣∣ 0 ≤ b1j ≤ 1, 1 ≤ j ≤ q;

q∑
j=1

b1j = 1
}
,

and sinceG(a, b) in (2.3.28) can be written asG(a, b) = G4(a)G5(b), whereG4(a) andG5(b)

are given by (2.3.17) and (2.3.20), respectively, we know from Lemmas 3.3 and 2.5 that the

solution for (3.5.9) is uniquely given by (ã, b̂), where ã is the unique solution to optimization

problem (3.5.6) and is given by (3.5.7) and b̂ is the unique solution to optimization problem

(2.3.21) and is given by (2.3.22).

Therefore, from (3.5.8)-(3.5.9), we have the following expression for r(θ0) in (3.2.6):

r(θ0) =
G(ã, b̂)

L(F̂n)
, (3.5.10)

where ã is given by (3.5.7), b̂ is given by (2.3.22), and we know from (2.3.28) and (2.3.30)

that L(F̂n) = G(â, b̂) with â and b̂ given by (2.3.19) and (2.3.22), respectively. Noting that

âij = ãij for (i, j) ∈ J2, we have from (2.3.28), (3.5.1) and (3.5.10)

r(θ0) =
G(ã, b̂)

G(â, b̂)
=

( q∏
j=1

(b̂1j)
N1j

)∏∏
(i,j)∈J

(ãij)
γij(1− ãij)Nij−γij

( q∏
j=1

(b̂1j)
N1j

)∏∏
(i,j)∈J

(âij)
γij(1− âij)Nij−γij

=
∏∏
(i,j)∈J1

( ãij
âij

)γij(1− ãij
1− âij

)Nij−γij
=

mζ∏
i=1
Ui≤t0

( ãij
âij

)γij(1− ãij
1− âij

)Nij−γij
.
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Plugging in ãij and âij in (3.5.7) and (2.3.19), respectively, and doing some simple algebra,

we obtain the expression for log r(θ0) in (3.2.13).

Proof of Lemma 3.1 (i): Note that as n→∞, we have

U1 < t0, in probability, (3.5.11)

where the proof of (3.5.11) is similar to that of (3.2.1). From (3.5.11), we know that as

n → ∞, there exists ξ0 > 0 and t1 ≤ t0, where t1 is an interior point of the support of C,

such that F̄C(t) ≥ c0 for all t1 ≤ t ≤ t0. Therefore, we have

P{V ≤ t0, Z = z0, δ = 1} = P{T ≤ t0, Z = z0, T ≤ C}

=

∫∫
t≤t0
t≤c

f(t, c, z0) dt dc =

∫∫
t≤t0
t≤c

f
0
(t, z0)f

C
(c) dt dc

=

∫ t0

−∞
f

0
(t, z0)

∫ ∞
t

f
C

(c) dc dt =

∫ t0

−∞
f

0
(t, z0)F̄C(t) dt

≥
∫ t0

t1

f
0
(t, z0)F̄C(t) dt ≥ ξ0

∫ t0

t1

f
0
(t, z0) dt > 0, in probability.

Proof of Lemma 3.1 (ii): From (2.2.19), we know Nkζ > 0 for all 1 ≤ k ≤ mζ , which

implies that En1 in the statement of Lemma 3.1 (ii) can be written as

En1 =
{
k | 1 ≤ k ≤ mζ , Uk ≤ t0, γkζ > 0, Nkζ > 0

}
. (3.5.12)

From Nkζ > 0 and (2.2.16), we have for all 1 ≤ k ≤ mζ

∃ (Vi, Zi) such that Vi ≥ Uk and Zi = Wζ = z0, (3.5.13)
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which implies

En1 6= ∅ ⇐⇒ ∃ 1 ≤ k ≤ mζ s.t. Uk ≤ t0, γkζ > 0, Nkζ > 0

⇐⇒ ∃ (Vi, Zi) and ∃ 1 ≤ k ≤ mζ s.t. Vi ≥ Uk, Uk ≤ t0, Zi = z0, γkζ > 0,

in turn, we know that En1 in (3.5.12) can be written as

En1 =
{
k | ∃ (Vi, Zi) satisfying Vi ≥ Uk, Uk ≤ t0, Zi = z0, γkζ > 0, 1 ≤ k ≤ mζ

}
. (3.5.14)

If we let

An ≡ {Vi |Vi ≤ t0, Zi = z0, 1 ≤ i ≤ n}, (3.5.15)

then from (3.5.11) and (3.2.2), we have that as n →∞, there exist Uα1 , · · · , Uαρ , in proba-

bility, which denote the distinct Vi's in An such that Uαk ≤ t0 for 1 ≤ k ≤ ρ. Therefore, we

have from (2.2.4)

γαk,ζ =
n∑
i=1

I{Vi = Uαk , δi = 1, Zi = z0}

= [# of (Vi, Zi, δi)
′s satisfying Vi = Uαk ≤ t0, Zi = z0, δi = 1]. (3.5.16)

and we see that if γαk,ζ > 0 for some 1 ≤ k ≤ ρ, then αk ∈ En1, which implies

P{En1 6= ∅} ≥ P{∃ γαkζ > 0 for some 1 ≤ k ≤ ρ}. (3.5.17)

Note that from Lemma 3.1 (i), we have

P{∃ γαkζ > 0 for some 1 ≤ k ≤ ρ} = 1− P{γαkζ = 0 for all 1 ≤ k ≤ ρ}

= 1− P
{

[# of (Vi, Zi, δi)
′s s.t. Vi = Uαk ≤ t0, Zi = z0, δi = 1] = 0, 1 ≤ k ≤ ρ

}
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= 1− P
{

[# of (Vi, Zi, δi)
′s s.t. Vi ≤ t0, Zi = z0, δi = 1] = 0

}
= 1− P{(Vi, Zi, δi) ∈ Ac, 1 ≤ i ≤ n} = 1−

n∏
i=1

P{(Vi, Zi, δi) ∈ Ac}

= 1−
[
P{(V, Z, δ) ∈ Ac}

]n
= 1−

[
1− P{(V, Z, δ) ∈ A}

]n
= 1−

[
1− P{V ≤ t0, Z = z0, δ = 1}

]n → 1 as n→∞, (3.5.18)

where A ≡ {(t, z, d) | t ≤ t0, z = z0, d = 1}. The proof follows from (3.5.17)-(3.5.18).

Proof of Lemma 3.1 (iii): Note that as n→∞, we know

0 < θ0 < 1, in probability, (3.5.19)

which implies that g(λ) in (3.2.14) is well-de�ned on (0,Λn), in probability. Therefore, g(λ) is

continuous on (0,Λn), in probability, since it is a log function and is well-de�ned on (0,Λn),

in probability. As n → ∞, we know g(λ) is a strictly increasing function on (0,Λn), in

probability, since from Lemma 3.1 (ii) and (3.2.14), we have in probability for λ ∈ (0,Λn),

g′(λ) =

mζ∑
i=1
Ui≤t0

1

1− γiζ
Niζ−λ

( γiζ
(Niζ − λ)2

)
=

mζ∑
i=1
Ui≤t0

γiζ
(Niζ − λ)(Niζ − λ− γiζ)

> 0. (3.5.20)

In addition, note that from (AS3.2), we have as n→∞

lim
λ→0+

g(λ) = log(1− θ0)−
mζ∑
i=1
Ui≤t0

log
(

1− γiζ
Niζ

)
< 0, in probability (3.5.21)

lim
λ→Λn−

g(λ) = log(1− θ0)−
mζ∑
i=1
Ui≤t0

log
(

1− γiζ
Niζ − Λn

)
> 0, in probability. (3.5.22)

The proof follows from the Intermediate Value Theorem and (3.5.20)-(3.5.22).

Proof of Lemma 3.2: From (3.5.19), we know that as n→∞, any solution to (3.5.3)
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will satisfy the following, in probability,


0 ≤ aij < 1 if γij = 0, (i, j) ∈ J1

0 < aij < 1 if γij > 0, (i, j) ∈ J1.

(3.5.23)

If we let

h(a6) ≡ log(1− θ0)−
∑

(i,ζ)∈J1

log
(
1− aiζ

)
(3.5.24)

A ≡
{
a6 | 0 < aij < 1, (i, j) ∈ J1

}
, (3.5.25)

then to solve optimization problem (3.5.3), we solve the following optimization problem


min − logG6(a6) =

∑
(i,ζ)∈J1

[
− γiζ log aiζ − (Niζ − γiζ) log(1− aiζ)

]
subject to : a6 ∈ A, h(a6) = 0.

(3.5.26)

As follows, we discuss the KKT su�cient conditions (Bazaraa et al., 1993; page 164) for

optimization problem (3.5.26).

Using Lagrange multipliers, let

G(a6, λ) ≡ − logG6(a6) + λh(a6)

=
∑

(i,ζ)∈J1

[
− γiζ log aiζ − (Niζ − γiζ + λ) log(1− aiζ)

]
+ λ log(1− θ0), (3.5.27)

which has the following partial derivatives


∂

∂aiζ

(
G(a6, λ)

)
=
−γiζ
aiζ

+
Niζ − γiζ + λ

1− aiζ
, (i, ζ) ∈ J1

∂

∂λ

(
G(a6, λ)

)
= log(1− θ0)−

∑
(i,ζ)∈J1

log
(
1− aiζ

)
.

(3.5.28)
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From ∂G/∂aiζ = 0, we have

aijζ =
γiζ

Niζ − λ
, (i, ζ) ∈ J1, (3.5.29)

and from ∂G/∂λ = 0, (3.5.29) and (3.5.1), we have

log(1− θ0)−
mζ∑
i=1
Ui≤t0

log
(

1− γiζ
Niζ − λ

)
= 0. (3.5.30)

Therefore, we see that ã6 =
{
ãij | (i, j) ∈ J1

}
given by (3.5.4) is a solution to ∇G(a6, λ) =

−∇ logG6(a6) + λ∇h(a6) = 0 since λ̃ is a solution to g(λ) = 0, where g(λ) is given by

(3.2.14).

Note that A in (3.5.25) is open and convex. Also, note that we can relax the restriction

on A to (3.5.23) because if γij = 0, then ãij = 0 and we have in the sum for logG6(a6) in

(3.5.2)

γij log aij = 0 log 0 = 0,

thus logG6(a6) is well-de�ned. Noting that γiζ ≥ 0 for all 1 ≤ i ≤ mζ , we see that ãij

in (3.5.4) satis�es (3.5.23) since λ̃ ∈ (0,Λn). Note that − logG6(a6) in (3.5.2) is strictly

concave up on A because


∂2

∂a2
ij

(
− logG6(a6)

)
=

γij
(aij)2

+
Nij − γij
(1− a∗ij)2

> 0

∂2

∂aij∂ak`

(
− logG6(a6)

)
= 0 for (i, j) 6= (k, `).

Therefore, from Bazaraa et al. (1993; page 116), we know − logG6(a6) is pseudoconvex on

A (see de�nition in Bazaraa et al., 1993; page 113). Also, from Bazaraa et al. (1993; page

116) we know h(a6) in (3.5.24) is quasiconvex on A (see de�nition in Bazaraa et al., 1993;
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page 108) since


∂2

∂a2
ij

(
h(a6)

)
=

1

(1− aij)2
> 0

∂2

∂aij∂ak`

(
h(a6)

)
= 0 for (i, j) 6= (k, `),

which implies that h(a6) is strictly concave up on A. Since λ̃ > 0 is the unique solution to

g(λ) = 0, the proof follows from the KKT su�cient conditions and Theorem 3.4.2 in Bazaraa

et al. (1993; pages 164 and 101, respectively).

Proof of Lemma 3.3: Note that from (2.3.13), (3.5.1) and (3.5.5), we have J1∩J2 = ∅

and J = J1 ∪ J2. Therefore, the constraint set in (3.5.6) can be written as

{
a
∣∣∣ 0 ≤ aij ≤ 1, (i, j) ∈ J ; 1− θ0 =

∏
(i,ζ)∈J1

(
1− aiζ

)}
=
{
a
∣∣∣ 0 ≤ aij ≤ 1, (i, j) ∈ J1, 1− θ0 =

∏
(i,ζ)∈J1

(
1− aiζ

)}
∪
{
a
∣∣ 0 ≤ aij ≤ 1, (i, j) ∈ J2

}
,

and G4(a) in (2.3.14) can be written as G4(a) = G6(a6)G7(a7), where G6(a6) is given by

(3.5.2) and

G7(a7) ≡
∏

(i,j)∈J2

(aij)
γij
(
1− aij

)Nij−γij , a7 = {aij | (i, j) ∈ J2}. (3.5.31)

From Lemma 2.4, we know the solution to


max G7(a7) =

∏∏
(i,j)∈J2

(aij)
γij(1− aij)Nij−γij

subject to : 0 ≤ aij ≤ 1, (i, j) ∈ J2

(3.5.32)
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is uniquely given by ã7 =
{
ãij | (i, j) ∈ J2

}
, where

ãij =
γij
Nij

, (i, j) ∈ J2 (3.5.33)

because the constraint set for optimization problem (3.5.32) is a subset of the constraint set

for optimization problem (2.3.18) and functions G4 and G7 have a similar form. Therefore,

from J = J1 ∪ J2, Lemma 3.2 and (3.5.32)-(3.5.33), we know that the solution for (3.5.6) is

uniquely given by

ã =
{
ãij | (i, j) ∈ J

}
= ã6 ∪ ã7, (3.5.34)

where ã6 is the unique solution to optimization problem (3.5.3) and is given by (3.5.4) and

ã7 is uniquely given by (3.5.33).
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CHAPTER 4. WEIGHTED EMPIRICAL

LIKELIHOOD-BASED MAXIMUM LIKELIHOOD

ESTIMATOR FOR COX MODEL

In this chapter, we derive the weighted empirical likelihood-based estimators for Cox

model (1.2.24) in a uni�ed form for various types of censored data mentioned in Section 1.3.

4.1 Introduction

Let

(Oi, Zi), 1 ≤ i ≤ n (4.1.1)

be the observed data on sample (1.2.17), where Oi's are the observed censored data on Ti's,

and the censoring can be right censoring (1.3.2), doubly censoring (1.3.6), interval censoring

(1.3.8)-(1.3.9), or partly-interval censoring (1.3.12)-(1.3.13), etc. We denote

F̂n(t, z) =
m∑
i=1

q∑
j=1

ω̂ijI{Ui ≤ t,Wj ≤ q} (4.1.2)

as an estimator for joint d.f. F0(t, z) for (T, Z) based on observed censored data (4.1.1),

where ω̂ij is the probability mass at point (Ui,Wj) computed based on (4.1.1) satisfying

U1 < · · · < Um and W1 < · · · < Wq. In the case of right censored data (1.2.23) or (2.1.2),

we have Oi = (Vi, δi) in (4.1.1) and ω̂ij = q̂
ij
in (4.1.2) where q̂

ij
's are given by (2.2.18).

For doubly censored data, see Ren and Gu (1997). We refer to Ren and He (2011) for

discussions on other types of censored data. In this chapter, we derive weighted empirical

likelihood-based estimator β̂ for β0 in Cox model (1.2.24) with censored data (4.1.1).
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In Section 4.2, we derive the weighted empirical likelihood function (Ren, 2001) for

Cox model (1.2.24) with censored data (4.1.1). Then, the weighted empirical likelihood-

based estimator β̂ for β0 is derived in Section 4.3. Some remarks on the weighted empirical

likelihood function and estimator β̂ are given in Section 4.4.

4.2 Weighted Empirical Likelihood Function for Cox Model

For Cox model (1.2.24), let G0(t) and g
0
(t) denote the d.f. and the probability density

function (p.d.f.), respectively, corresponding to baseline hazard function h0(t) and let F (t|z)

and f(t|z) denote the conditional d.f. and conditional p.d.f., respectively, of T given Z = z.

Then, under Cox model assumption (1.2.24), we have from (1.2.4)

F̄ (t|z) = exp
{
−
∫ t

0

h(u; z)du
}

= exp
{
− eβ0z

∫ t

0

h0(u)du
}

= exp
{
− eβ0zH0(t)

}
=
(

exp
{
−H0(t)

})eβ0z
=
(
Ḡ0(t)

)eβ0z
⇐⇒ f(t|z) = eβ0zg

0
(t)
(
Ḡ0(t)

)eβ0z−1
. (4.2.1)

If we let f
0
(t, z) and fz(z) denote the p.d.f. of F0(t, z) and the marginal p.d.f. of Z, respec-

tively, then (4.2.1) implies

f
0
(t, z) = f(t|z)fz(z) = eβ0zfz(z)g

0
(t)
(
Ḡ0(t)

)eβ0z−1
. (4.2.2)

Applying (4.1.2) to (1.4.25), we obtain the bivariate version of the weighted empirical

likelihood function (Ren, 2001) under Cox model (1.2.24) with censored data (4.1.1) as

follows:

m∏
i=1

q∏
j=1

[
f

0
(Ui,Wj)

]nω̂ij
=

m∏
i=1

q∏
j=1

[
eβ0Wjfz(Wj)g0

(Ui)
(
Ḡ0(Ui)

)eβ0Wj−1
]nω̂ij

=

( m∏
i=1

q∏
j=1

[
fz(Wj)

]nω̂ij)( m∏
i=1

q∏
j=1

eβ0Wj

[
g

0
(Ui)

]nω̂ij[
Ḡ0(Ui)

]nω̂ij(eβ0Wj−1
))
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=

( m∏
i=1

q∏
j=1

[
fz(Wj)

]nω̂ij)

×
( m∏

i=1

eβ0
∑q
j=1Wj

[
g

0
(Ui)

]n∑q
j=1 ω̂ij

[
Ḡ0(Ui)

]n∑q
j=1 ω̂ij

(
eβ0Wj−1

))
. (4.2.3)

Thus, the weighted empirical likelihood function for (β0, G0) under Cox model (1.2.24) based

on data (4.1.1) is proportional to

L(β,G) =
m∏
i=1

eβW
[
G(Ui)−G(Ui−)

]nω̂i[
Ḡ(Ui)

]nωi(β)

, (4.2.4)

where G is any distribution function, and

W ≡
q∑
j=1

Wj, ω̂i ≡
q∑
j=1

ω̂ij, and ωi(β) ≡
q∑
j=1

ω̂ij
(
eβWj − 1

)
. (4.2.5)

In the next section, we derive the weighted empirical likelihood-based estimator (β̂, Ĝ) for

(β0, G0) under likelihood function (4.2.4).

4.3 Weighted Empirical Likelihood-Based Maximum Likelihood Estimator

To maximize (4.2.4), we consider the case where β > 0 and without loss of generality,

assumeWj > 0 for all 1 ≤ j ≤ q, because otherwise we can just shift theWj's. We restrict all

possible candidates to those d.f.'s that assign all their probability masses to points (Ui,Wj)

and line segment L = {t ∈ R | t > Um} for 1 ≤ i ≤ m, 1 ≤ j ≤ q. Therefore, likelihood

function (4.2.4) becomes

L(β,G) =
m∏
i=1

eβW(p
i
)nω̂i
( m+1∑
k=i+1

p
k

)nωi(β)

≡ L(β,p), (4.3.1)
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where

G(t) =
m∑
i=1

p
i
I{Ui ≤ t}, p = (p

1
, . . . , p

m+ 1
) (4.3.2)

satisfy


p
i

= G(Ui)−G(Ui−) = PG(T = Ui), for 1 ≤ i ≤ m

p
m+ 1

= Ḡ(Um) = PG(T > Um)∑m+1
i=1 p

i
= 1.

(4.3.3)

The reason we include p
m+ 1

in (4.3.1)-(4.3.3) for d.f. G(t) is that we may have the case

nωm(β) > 0 in (4.2.4), in which case any solution that maximizes L(β,G) in (4.2.4) satis�es

Ḡ(Um) ≡ p
m+ 1

> 0. To see this, note that since β > 0 and Wj > 0 for all 1 ≤ j ≤ q, we

have

ωm(β) =

q∑
j=1

ω̂mj(e
βWj − 1) >

q∑
j=1

ω̂mj(e
βW1 − 1) = (eβW1 − 1)

q∑
j=1

ω̂mj > 0,

whenever
∑q

j=1 ω̂mj = PF̂n(T = Um) > 0.

The weighted empirical likelihood-based estimator (β̂, Ĝ) for (β0, G0) is the solution that

maximizes L(β,G) = L(β,p) in (4.3.1) over all functions G(t) in (4.3.2) satisfying (4.3.3).

Speci�cally, (β̂, Ĝ) is given by the solution of


max L(β,p) =

m∏
i=1

eβW(p
i
)nω̂i
( m+1∑
k=i+1

p
k

)nωi(β)

subject to : 0 ≤ p
i
≤ 1, 1 ≤ i ≤ m+ 1;

∑m+1
i=1 p

i
= 1.

(4.3.4)

The idea for solving (4.3.4) is outlined as follows:

Step 1: For �xed β > 0, �nd the solution Ĝ(· ; β) that maximizes L(β,p);

Step 2: Obtain the pro�le likelihood function for β given by `(β) = L(β, Ĝ(· ; β)), and

91



�nd β̂ that maximizes `(β) for all β > 0. Then, the solution to optimization problem (4.3.4)

is given by (β̂, Ĝ), where Ĝ(·) = Ĝ(· ; β̂).

Next, we follow Steps 1 and 2 to �nd the solution (β̂, Ĝ) to optimization problem (4.3.4).

Step 1: For �xed β > 0, since eβW is independent of p, we solve the following opti-

mization problem:


max L1(p; β) ≡

m∏
i=1

(p
i
)nω̂i
( m+1∑
k=i+1

p
k

)nωi(β)

subject to : 0 ≤ p
i
≤ 1, 1 ≤ i ≤ m+ 1;

∑m+1
i=1 p

i
= 1.

(4.3.5)

In Section 4.5, we show that the solution to (4.3.5) is uniquely given by


p̂
i
(β) = âi(β)

i−1∏
j=1

(
1− âj(β)

)
, 1 ≤ i ≤ m

âi(β) =
nω̂i
Ni(β)

, 1 ≤ i ≤ m,

(4.3.6)

with
∏0

k=1 ck ≡ 1, and

L1(p̂(β); β) =
m∏
i=1

(
âi(β)

)nω̂i(1− âiβ)
)Ni(β)−nω̂i , (4.3.7)

where for each 1 ≤ i ≤ m, we de�ne

ni(β) ≡ n[ω̂i + ωi(β)]
(4.2.5)

= n

q∑
j=1

ω̂ije
βWj (4.3.8)

Ni(β) ≡ ni(β) + · · ·+ nm(β) =
m∑
`=i

n`(β) = n
m∑
`=i

q∑
j=1

ω̂`je
βWj . (4.3.9)

Therefore, for any U1 ≤ t ≤ Um, we have

Uα ≤ t ≤ Uα+1, for some 1 ≤ α ≤ m− 1, (4.3.10)
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which implies from (4.3.2) and (4.3.6),

Ĝ(t; β) =
m∑
i=1

p̂
i
(β)I{Ui ≤ t} =

m∑
i=1

p̂
i
(β)I{Ui ≤ Uα} =

α∑
i=1

p̂
i
(β)

=
α∑
i=1

âi(β)
i−1∏
j=1

(
1− âj(β)

)
=

α∑
i=1

(
1−

(
1− âi(β)

)) i−1∏
j=1

(
1− âj(β)

)
=

α∑
i=1

( i−1∏
j=1

(
1− âj(β)

)
−

i∏
j=1

(
1− âj(β)

))

=
(

1−
(
1− â1(β)

))
+
((

1− â1(β)
)
−

2∏
j=1

(
1− âj(β)

))
+ · · ·

+
( α−2∏
j=1

(
1− âj(β)

)
−

α−1∏
j=1

(
1− âj(β)

))
+
( α−1∏
j=1

(
1− âj(β)

)
−

α∏
j=1

(
1− âj(β)

))
= 1−

α∏
j=1

(
1− âj(β)

)
= 1−

∏
Ui≤Uα

(
1− âi(β)

)
= 1−

∏
Ui≤t

(
1− âi(β)

)
.

Therefore, we have

1− Ĝ(t; β) =
∏
Ui≤t

(
1− âi(β)

)
, (4.3.11)

where âi(β) is given by (4.3.6).

Step 2: From (4.3.4)-(4.3.7), the pro�le likelihood function is given by

`(β) = eβWL1(p̂(β); β) = eβW
m∏
i=1

(
âi(β)

)nω̂i(1− âi(β)
)Ni(β)−nω̂i

= eβW
m∏
i=1

( nω̂i
Ni(β)

)nω̂i(
1− nω̂i

Ni(β)

)Ni(β)−nω̂i
, (4.3.12)
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which implies

log `(β) = βW +
m∑
i=1

[
nω̂i log

( nω̂i
Ni(β)

)
+
(
Ni(β)− nω̂i

)
log
(Ni(β)− nω̂i

Ni(β)

)]
= βW +

m∑
i=1

[
nω̂i

(
log nω̂i − logNi(β)

)
+
(
Ni(β)− nω̂i

)(
log
(
Ni(β)− nω̂i

)
− logNi(β)

)]
= βW +

m∑
i=1

[
nω̂i log nω̂i +

(
Ni(β)− nω̂i

)
log
(
Ni(β)− nω̂i

)
−Ni(β) logNi(β)

]
. (4.3.13)

Taking the derivative of (4.3.13), we have

d

dβ

(
log `(β)

)
= W +

m∑
i=1

[(
Ni(β)− nω̂i

) N ′i(β)

Ni(β)− nω̂i
+N ′i(β) log

(
Ni(β)− nω̂i

)
−Ni(β)

N ′i(β)

Ni(β)
−N ′i(β) logNi(β)

]
= W +

m∑
i=1

[
N ′i(β) log

(
Ni(β)− nω̂i

)
−N ′i(β) logNi(β)

]
= W +

m∑
i=1

N ′i(β) log
Ni(β)− nω̂i

Ni(β)
= W +

m∑
i=1

N ′i(β) log

(
1− nω̂i

Ni(β)

)
(4.2.5)

=

q∑
j=1

Wj +
m∑
i=1

N ′i(β) log

(
1− nω̂i

Ni(β)

)
, (4.3.14)

where from (4.3.9), we know

N ′i(β) =
d

dβ

(
n

m∑
`=i

q∑
j=1

ω̂`je
βWj

)
= n

m∑
`=i

q∑
j=1

Wjω̂`je
βWj . (4.3.15)

Thus, estimator β̂ for β0 for Cox model (1.2.24) based on weighted empirical likelihood

function (4.2.4) with censored data (4.1.1) is given by a solution of the following estimating

equation:

q∑
j=1

Wj + n

m∑
i=1

( m∑
`=i

q∑
j=1

Wjω̂`je
βWj

)
log

(
1−

∑q
j=1 ω̂ij∑m

`=i

∑q
j=1 ω̂`je

βWj

)
= 0. (4.3.16)
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Therefore, estimator (β̂, Ĝ) for (β0, G0) in Cox model (1.2.24) with censored data (4.1.1) is

given by Ĝ(t) = Ĝ(t; β̂) as in (4.3.11) with β̂ as the solution of estimating equation (4.3.16).

To compute β̂, the Newton-Raphson method may be used with Cox's partial likelihood

estimate β̂c as the initial value. This is to be further studied in the future.

4.4 Remarks

Remark 4.1: As reviewed in Section 1.3.5, currently there has not been any published

work on the Cox model with doubly censored data (1.3.6) or with partly interval-censored

data (1.3.12)-(1.3.13). Here, our work provides solutions to these problems in a uni�ed form,

because our results in Sections 4.2 and 4.3 hold for any type of censored data whose estimator

F̂n(t, z) for d.f. F0(t, z) can be expressed as (4.1.2). It should be noted that equation (4.3.16)

is relatively easy to solve with the use of a computer, where only one program needs to be

written to �nd the weighted empirical likelihood-based estimators (β̂, Ĝ) for (β0, G0) for Cox

model (1.2.24) with various types of censored data.

Remark 4.2: In this work we considered Cox model (1.2.24) in which there is only one

explanatory variable Z. It should be noted that the extension of these results to multivariate

explanatory variablesZ = (Z1, . . . ,Zk) in Cox model (1.2.22) is straightforward, and it works

for various types of censored data mentioned in Section 1.3.

4.5 Proofs

Proof of (4.3.6)-(4.3.7): To �nd the solution to (4.3.5), we consider the following

substitutions:

ai =
p
i

bi
and bi =

m+1∑
k=i

p
k
, 1 ≤ i ≤ m, (4.5.1)
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which imply

bm+1 = p
m+ 1

, bi+1 =
m+1∑
k=i+1

p
k

= bi − pi , and 1− ai =
bi+1

bi
. (4.5.2)

Here, we follow the same procedure used in the proof of Theorem 2.1(iii). From (4.5.1)-(4.5.2)

and (4.3.8)-(4.3.9), likelihood function (4.3.5) can be equivalently written as

L1(p; β) =
m∏
i=1

(p
i
)nω̂i(bi+1)nωi(β) =

m∏
i=1

(p
i
)nω̂i(bi − pi)

nωi(β)

=
m∏
i=1

(p
i
)nω̂i
(p

i

ai
− p

i

)nωi(β)

=
m∏
i=1

(p
i
)n[ω̂i+ωi(β)]

(1− ai
ai

)nωi(β)

=
( m∏
i=1

(p
i
)ni(β)

) m∏
i=1

(1− ai)ni(β)−nω̂i

(ai)ni(β)−nω̂i

=
( m∏
i=1

(p
i
)ni(β)

)∏m
i=1(ai)

nω̂i(1− ai)n−nω̂i−(n1(β)+···+ni−1(β))∏m
i=1(ai)ni(β)(1− ai)n−(n1(β)+···+ni(β))

=
( m∏
i=1

(p
i
)ni(β)

)∏m
i=1(ai)

nω̂i(1− ai)n−nω̂i−(N1(β)−Ni(β))∏m
i=1(ai)ni(β)(1− ai)n−(N1(β)−Ni+1(β))

=
( m∏
i=1

(p
i
)ni(β)

) ∏m
i=1(ai)

nω̂i(1− ai)n−nω̂i−(N1(β)−Ni(β))∏m
i=1

(
p
i
bi

)ni(β)

(1− ai)n−(N1(β)−Ni+1(β))

=
( m∏
i=1

(bi)
ni(β)

)∏m
i=1(ai)

nω̂i(1− ai)n−nω̂i−(N1(β)−Ni(β))∏m
i=1(1− ai)n−(N1(β)−Ni+1(β))

. (4.5.3)

From (4.5.2), (4.3.12) and b1 =
∑m+1

i=1 p
i

= 1, the denominator in (4.5.3) is equivalent to

m∏
i=1

(1− ai)n−(N1(β)−Ni+1(β)) =
m∏
i=1

(bi+1

bi

)n−(N1(β)−Ni+1(β))

=
(b2)n−n1(β)

(b1)n−n1(β)

(b3)n−n1(β)−n2(β)

(b2)n−n1(β)−n2(β)
· · · · (bm+1)n−n1(β)−···−nm(β)

(bm)n−n1(β)−···−nm(β)

=
1

(b1)n

(
(b1)n1(β)(b2)n2(β) · · · · (bm)nm(β)

)
(bm+1)n−N1(β)

=
( m∏
i=1

(bi)
ni(β)

)(bm+1)n−N1(β)

(b1)n
=
( m∏
i=1

(bi)
ni(β)

)
(bm+1)n−N1(β), (4.5.4)
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where the last equality is true because b1 =
∑m+1

i=1 p
i

= 1. Since n − N1(β) is independent

of i, we have from (4.5.2)

m∏
i=1

(1− ai)n−N1(β) =
( m∏
i=1

(1− ai)
)n−N1(β)

=
( m∏
i=1

bi+1

bi

)n−N1(β)

=
(b2

b1

b3

b2

· · · · bm+1

bm

)n−N1(β)

= (bm+1)n−N1(β) (4.5.5)

and plugging this into (4.5.4), we obtain

m∏
i=1

(1− ai)n−(N1(β)−Ni+1(β)) =
( m∏
i=1

(bi)
ni(β)

) m∏
i=1

(1− ai)n−N1(β). (4.5.6)

Plugging (4.5.6) into (4.5.3), the likelihood function becomes

L1(p; β) =

∏m
i=1(ai)

nω̂i(1− ai)n−nω̂i−(N1(β)−Ni(β))∏m
i=1(1− ai)n−N1(β)

=
m∏
i=1

(ai)
nω̂i(1− ai)Ni(β)−nω̂i ≡ G(a; β), (4.5.7)

where a = (a1, . . . , am) with ai's given by (4.5.1). Therefore, optimization problem (4.3.5)

is equivalent to the following optimization problem:


max G(a; β) =

m∏
i=1

(ai)
nω̂i(1− ai)Ni(β)−nω̂i

subject to : 0 ≤ ai ≤ 1, for 1 ≤ i ≤ m.

(4.5.8)

Note that the set

{
a | 0 ≤ ai ≤ 1, 1 ≤ i ≤ m

}
is compact and G(a; β) is continuous in a, thus a solution to (4.5.8) exists from Weier-

strass' Theorem (Bazaraa et al., 1993; page 41). Let â denote the solution to optimization

problem (4.5.8). Suppose nω̂i > 0 and Ni(β) − nω̂i > 0. Therefore, any solution â that
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maximizes G(a; β) in (4.5.8) will satisfy 0 < âi < 1. Therefore, optimization problem (4.5.8)

is equivalent to


max log G(a; β) =

m∑
i=1

[
nω̂i log ai + (Ni(β)− nω̂i) log(1− ai)

]
subject to : 0 < ai < 1, 1 ≤ i ≤ m.

(4.5.9)

Note that log G(a; β) is well-de�ned on the open convex set

A ≡
{
a | 0 < ai < 1, 1 ≤ i ≤ m

}
,

and from ∂ log G(a; β)/∂ai = 0, we have for 1 ≤ i ≤ m

∂

∂ai

(
log G(a; β)

)
=
nω̂i
ai
− Ni(β)− nω̂i

1− ai
= 0 ⇐⇒ âi(β) =

nω̂i
Ni(β)

.

Note that â(β) = {âi(β) | 1 ≤ i ≤ m} is a feasible solution for optimization problem (4.5.9)

because nω̂i > 0 and Ni(β)− nω̂i > 0 imply 0 < âi < 1. Since for all a ∈ A, we have

∂2

∂a2
i

(
log G(a; β)

)
=
−nω̂i
(ai)2

− Ni(β)− nω̂i
(1− ai)2

< 0, (4.5.10)

∂2

∂ai∂ak

(
log G(a; β)

)
= 0 for i 6= k, (4.5.11)

we see that the Hessian matrix for log G(a; β) will have diagonal entries given by (4.5.10)

and 0's elsewhere, which implies log G(a; β) is strictly concave down on set A. Therefore,

the solution for (4.5.9) is uniquely given by

âi(β) =
nω̂i
Ni(β)

, 1 ≤ i ≤ m. (4.5.12)

98



To get p̂
i
(β) in terms of âi(β), note that from (4.5.1)

p̂
1
(β) = â1(β)b̂1(β) = â1(β)

m+1∑
j=1

p̂
j
(β) = â1(β)

p̂
2
(β) = â2(β)b̂2(β) = â2(β)

m+1∑
j=2

p̂
j
(β) = â2(β)

(
1− p̂

1
(β)
)

= â2(β)
(
1− â1(β)

)
,

p̂
3
(β) = â3(β)b̂3(β) = â3(β)

m+1∑
j=3

p̂
j
(β) = â3(β)

(
1− p̂

1
(β)− p̂

2
(β)
)

= â3(β)
(
1− â1(β)− â2(β) + â1(β)â2(β)

)
= â3(β)

(
1− â2(β)

)
− â1(β)â3(β)

(
1− â2(β)

)
= â3(β)

(
1− â1(β)

)(
1− â2(β)

)
= â3(β)

2∏
j=1

(1− âj(β)).

Continue this and we get a general expression for p̂
i
(β) as follows:

p̂
i
(β) = âi(β)

i−1∏
j=1

(
1− âj(β)

)
, 1 ≤ i ≤ m. (4.5.13)

where
∏0

k=1 ck is set as 1 when it occurs.
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CHAPTER 5. CONCLUDING REMARKS

In Chapter 2, we provided the bivariate nonparametric maximum likelihood estimator

(BNPMLE) F̂n(t, z) for the bivariate distribution function F0(t, z) based on right censored

survival data (2.1.2) in which the survival time T is subject to right censoring and the

covariate Z is a scalar and is completely observable. This BNPMLE F̂n provides a completely

nonparametric method for the data analysis on the studies of the relation between T and Z.

But the asymptotic properties of F̂n needs to be studied in the future.

In Chapter 3, we derived empirical likelihood based con�dence interval for conditional

survival probabilities with right censored data (2.1.2), and we provided an analytic expression

for the empirical likelihood ratio. The asymptotic distribution of such likelihood ratio will

be studied in the future.

In Chapter 4, we derived the estimator (β̂, Ĝ) for (β0, G0) in Cox model (1.2.24) with

general censored data (4.1.1). Our methods here hold for various types of censored data,

including some of those that have not been previously studied in the literature, such as

doubly censored data (1.3.6) and party interval-censored data (1.3.12)-(1.3.13). But the

asymptotic properties of estimator (β̂, Ĝ) needs to be studied in the future.

100



LIST OF REFERENCES

Andersen, P.K. and Gill, R.D. (1982). Cox's Regression Model for Counting Processes: A
Large Sample Study. Annals of Statistics 10, 1100-1120.

Andersen, P.K., Borgan, O., Gill, R.D. and Keiding, N. (1993). Statistical Models Based on
Counting Processes, 1st Edition. Springer.

Bazaraa, M.S., Sherali, H.D. and Shetty, C.M. (1993). Nonlinear Programming: Theory and
Algorithms, 2nd Edition. John Wiley & Sons, INC.

Casella, G. and Berger, R.L. (2002). Statistical Inference, 2nd Edition. Duxbury.

Chang, M.N. and Yang, G.L. (1987). Strong Consistency of a Nonparametric Estimator of
the Survival Function with Doubly Censored Data. Annals of Statistics 15, 1536-1547.

Cox, D.R. (1972). Regression Models and Life Tables (with Discussion). Journal of the
Royal Statistical Society, Series B 34, 187-221.

Cox, D.R. and Oakes, D. (1984). Analysis of Survival Data. Chapman & Hall.

Cox, D.R. and Snell, E.J. (1968). A General De�nition of Residuals. Journal of the Royal
Statistical Society, Series B 30, 248-275.

Cupples, L.A., Risch, N., Farrer, L.A. and Myers, R.H. (1991). Estimation of Morbid Risk
and Age at Onset with Missing Information. American Journal of Human Genetics 49,
76-87.

Dabrowska, D.M. (1988). Kaplan-Meier Estimate on the Plane. Annals of Statistics 16,
1475-1489.

Dabrowska, D.M. (1989). Uniform Consistency of the Kernel Conditional Kaplan-Meier
Estimate. Annals of Statistics 17, 1157-1167.

De Gruttola, V. and Lagakos, S.W. (1989). Analysis of Doubly Censored Survival Data,
with Application to AIDS. Biometrics 45, 1-11.

DiCiccio, T.J., Hall, P.J. and Romano, J. (1991). Empirical Likelihood is Bartlett-correctable.
Annals of Statistics 19, 1053-1061.

Efron, B. (1967). The Power of the Likelihood Ratio Test. Annals of Mathematical Statistics
38, 802-806.

Efron, B. (1977). The E�ciency of Cox's Likelihood Function for Censored Data. Journal
of the American Statistical Association 72, 557-565.

Efron, B. and Tibshirani, R. (1986). Bootstrap Methods for Standard Errors, Con�dence
Intervals, and Other Measures of Statistical Accuracy. Statistical Science 1, 54-75.

Farrington, C.P. (2000). Residuals for Proportional Hazards Models with Interval Censored
Survival Data. Biometrics 56, 473-482.

Feinleib, M., Kannel, W.B., Garrison, R.J., McNamara, P.M. and Castelli, W.P. (1975). The
Framingham O�spring Study: Design and Preliminary Data. Preventive Medicine 4,
518-525.

101



Gehan, E.A. (1965). A GeneralizedWilcoxen Test for Comparing Arbitrarily Single-Censored
Samples. Biometrika 52, 203-224.

Gill, R.D. (1983). Large Sample Behavior of the Product-Limit Estimator on the Whole
Line. Annals of Statistics 11, 49-58.

Groeneboom, P. and Wellner, J.A. (1992). Information Bounds and Nonparametric Maxi-
mum Likelihood Estimation. Birkhäuser-Verlag.

Gu, M.G. and Zhang, C.H. (1993). Asymptotic Properties of Self-Consistent Estimators
Based On Doubly Censored Data. Annals of Statistics 21, 611-624.

Hald, A. (1949). Maximum Likelihood Estimation of the Parameters of a Normal Distribu-
tion Which is Truncated at a Known Point. Skand. Atkuarietidskr 32, 119-134.

Hogg, R.V. and Craig, A.T. (1995). Introduction to Mathematical Statistics, 5th Edition.
Prentice-Hall, INC.

Huang, J. (1996). E�cient Estimation for the Proportional Hazards Model with Interval
Censoring. Annals of Statistics 24, 540-568.

Huang, J. (1999). Asymptotic Properties of Nonparametric Estimation Based on Partly
Interval-Censored Data. Statistica Sinica 9, 501-519.

Huang, J. and Wellner, J.A. (1995). E�cient Estimation for the Cox Model With Case 2
Interval Censoring. Technical Report, Department of Statistics, University of Washing-
ton.

Huang, J. and Wellner, J.A. (1997). Interval Censored Survival Data: A Review of Recent
Progress. Springer-Verlag, INC.

Kalb�eisch, J.D. and Prentice, R.L. (1973). Marginal Likelihoods Based on Cox's Regression
and Life Model, Biometrika, 60, 267-278.

Kalb�eisch, J.D. and Prentice, R.L. (2002). The Statistical Analysis of Failure Time Data,
2nd Edition. John Wiley & Sons, INC.

Kaplan, E.L. and Meier, P. (1958). Nonparametric Estimation from Incomplete Observa-
tions. Journal of the American Statistical Association 53, 457-481.

Kardaun, O. (1983). Statistical Analysis of Male Larynx-Cancer Patients-A Case Study.
Statistica Neerlandica 37, 103-126.

Kim, M.Y., De Gruttola, V. and Lagakos, S.W. (1993). Analyzing Doubly Censored Data
with Covariates, with Applications to AIDS. Biometrics 49, 13-22.

Klein, J.P. and Moeschberger, M.L. (1997). Survival Analysis: Techniques for Censored and
Truncated Data. Springer-Verlag, INC.

Lagakos, S.W. (1979). General Right Censoring and Its Impact on the Analysis of Survival
Data. Biometrics 35, 139-156.

Lagakos, S.W. (1980). The Graphical Evaluation of Explanatory Variables in Proportional
Hazard Regression Models. Biometrika 68, 93-98.

Lin, D.Y. and Ying, Z. (1993). A Simple Nonparametric Estimator of the Bivariate Survival
Function Under Univariate Censoring. Biometrika 80, 573-581.

Mykland, P.A. (1995). Dual Likelihood. Annals of Statistics 23, 396-421.

102



Mykland, P.A. and Ren, J. (1996). Algorithms for Computing Self-Consistent and Maximum
Likelihood Estimators with Doubly Censored Data. Annals of Statistics 24, 1740-1764.

Oakes, D. (2000). Survival Analysis. Journal of the American Statistical Association 95,
282-285.

Oakes, D. (2001). Biometrika Centenary: Survival Analysis. Biometrika 88, 99-142.

O'Brien, T.R., Busch, M.P., Donegan, E., Ward, J.W., Wong, L., Samson, S.M., Perkins,
H.A., Altman, R., Stoneburner, R.L. and Holmberg, S.D. (1994). Heterosexual Trans-
mission of Human Immunode�ciency Virus Type 1 from Transfusion Recipients to their
Sex Partners. Journal of Acquired Immune De�ciency Syndromes 7, 705-710.

Odell, P.M., Anderson, K.M. and D'Agostino, R.B. (1992). Maximum Likelihood Estimation
for Interval Censored Data Using a Weibull-Based Accelerated Failure Time Model.
Biometrics 48, 951-959.

Owen, A.B. (1988). Empirical Likelihood Ratio Con�dence Intervals For a Single Functional.
Biometrika 75, 237-249.

Owen, A.B. (1990). Empirical Likelihood Ratio Con�dence Regions. Annals of Statistics
18, 90-120.

Owen, A.B. (1991). Empirical Likelihood for Linear Models. Annals of Statistics 19, 1725-
1747.

Owen, A.B. (2001). Empirical Likelihood. Chapman & Hall/CRC.

Pan, W. (1999). Extending the Iterative Convex Minorant Algorithm to the Cox Model for
Interval Censored Data. Journal of Computational and Graphical Statistics 8, 109-120.

Pan, W. (2001). A Multiple Imputation Approach to Regression Analysis for Doubly Cen-
sored Data with Application to AIDS Studies. Biometrics 57, 1245-1250.

Peer, P.G., Van Dijck, J.A., Hendriks, J.H., Holland, R. and Verbeek A.L. (1993). Age-
Dependent Growth Rate of Primary Breast Cancer. Cancer 71, 3547-3551.

Qin, J. and Lawless, J. (1994). Empirical Likelihood and General Estimating Equations.
Annals of Statistics 22, 300-325.

Ren, J. (2001). Weighted Empirical Likelihood Ratio Con�dence Intervals for the Mean with
Censored Data. Annals of the Institute of Statistical Mathematics 53, 498-516.

Ren, J. (2003). Goodness of Fit Tests with Interval Censored Data. Scandinavian Journal
of Statistics 30, 211-226.

Ren, J. (2008a). Weighted Empirical Likelihood in Some Two-Sample Semiparametric Mod-
els with Various Types of Censored Data. Annals of Statistics 36, 147-166)

Ren, J. (2008b). Smoothed Weighted Empirical Likelihood Ratio Con�dence Intervals for
Quantiles. Bernoulli 14, 725-748.

Ren, J. and Gu, M.G. (1997). RegressionM -Estimators with Doubly Censored Data. Annals
of Statistics 25, 2638-2664.

Ren, J. and He, B. (2011). Estimation and Goodness-of-Fit for the Cox Model with Various
Types of Censored Data. Journal of Statistical Planning Inference 141, 961-971.

103



Ren, J. and Riddlesworth, T. (2011). Bivariate Nonparametric Maximum Likelihood Esti-
mator with Right Censored Data. (in preparation).

Ren, J. and Peer, P.G. (2000). A Study on E�ectiveness of Screening Mammograms. Inter-
national Journal of Epidemiology 29, 803-806.

Ren, J. and Zhou, M. (2011). Full Likelihood Inference in the Cox Model: An Empirical
Likelihood Approach. Annals of the Institute of Statistical Mathematics 63, 1005-1018.

Royden, H.L. (1988). Real Analysis, 3rd Edition. Prentice-Hall, INC.

Satten, G.A. (1996). Rank-Based Inference in the Proportional Hazards Model for Interval
Censored Data. Biometrika 83, 355-370.

Schoenfeld, D. (1982). Partial Residuals for the Proportional Hazards Regression Model.
Biometrika 69, 239-241

Shorack, G.R. and Wellner, J.A. (1986). Empirical Processes with Applications to Statistics.
John Wiley & Sons, INC.

Stute, W. and Wang, J.L. (1993). The Strong Law Under Random Censorship. Annals of
Statistics 21, 1591-1607.

Sun, J., Liao, Q. and Pagano, M. (1999). Regression Analysis of Doubly Censored Failure
Time Data with Applications to AIDS Studies. Biometrics 55, 909-914.

Therneau, T.M., Grambsch, P.M. and Fleming, T.R. (1990). Martingale-Based Residuals
for Survival Models. Biometrika 77, 147-160.

Tsiatis, A.A. (1981). A Large Sample Study of Cox's Regression Model. Annals of Statistics
9, 93-108.

Turnbull, B.W. (1974). Nonparametric Estimation of a Survivorship Function with Doubly
Censored Data. Journal of the American Statistical Association 69, 169-173.

Wilks, S.S. (1938). The Large-Sample Distribution of the Likelihood Ratio for Testing
Composite Hypotheses. Annals of Mathematical Statistics 9, 60-62.

104


	Estimation For The Cox Model With Various Types Of Censored Data
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION AND PRELIMINARIES
	1.1 Introduction
	1.2 Cox's Proportional Hazards Model
	1.2.1 Proportional Hazards Model
	1.2.2 Cox Model

	1.3 Censored Data
	1.3.1 Right Censored Data
	1.3.2 Doubly Censored Data
	1.3.3 Interval Censored Data
	1.3.4 Partly Interval-Censored Data
	1.3.5 Cox Model with Various Types of Censored Data

	1.4 Likelihood Inference
	1.4.1 Parametric Likelihood
	1.4.2 Empirical Likelihood
	1.4.3 Weighted Empirical Likelihood

	1.5 Summary of this Dissertation's Results

	CHAPTER 2. BIVARIATE NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATOR FOR RIGHT CENSORED DATA
	2.1 Introduction
	2.2 Bivariate Nonparametric Maximum Likelihood Estimator
	2.3 Proofs

	CHAPTER 3.  EMPIRICAL LIKELIHOOD RATIO CONFIDENCE INTERVAL FOR CONDITIONAL SURVIVAL PROBABILITIES
	3.1 Introduction
	3.2 Confidence Interval for Conditional Survival Probabilities
	3.3 Computation of Confidence Interval
	3.4 Proofs of Theorems 3.1-3.2
	3.5 Proof of Theorem 3.3

	CHAPTER 4. WEIGHTED EMPIRICAL LIKELIHOOD-BASED MAXIMUM LIKELIHOOD ESTIMATOR FOR COX MODEL
	4.1 Introduction
	4.2 Weighted Empirical Likelihood Function for Cox Model
	4.3 Weighted Empirical Likelihood-Based Maximum Likelihood Estimator
	4.4 Remarks
	4.5 Proofs

	CHAPTER 5. CONCLUDING REMARKS
	LIST OF REFERENCES

