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ABSTRACT 
 

 
Pratima Sadangi in a Ph.D. thesis submitted to Utkal University proved results on degree of 

approximation of functions by operators associated with their Fourier series.  In this dissertation, 

we consider degree of approximation of functions in ,  by different operators. In Chapter 1 we 

mention basic definitions needed for our work. In Chapter 2 we discuss different methods of 

summation. In Chapter 3 we define the ,  metric and present the degree of approximation 

problem relating to Fourier series and conjugate series of functions in the ,  metric using 

Karamata 
  

means.  In Chapter 4 we present the degree of approximation of an integral 

associated with the conjugate series by the Euler, Borel and (e,c) means of a series analogous to 

the Hardy-Littlewood series in the ,  metric.  In Chapter 5 we propose problems to be solved 

in the future.    
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CHAPTER 1: INTRODUCTION 
 

 
A series is divergent if its sum diverges to infinity or oscillates finitely.  Summability methods 

are used to assign a sum to series which oscillates finitely.  Methods used to sum such series 

include Cesáro, Nörlund, Riesz, Abel, Euler, Borel, (e,c), and Karamata means.  See Hardy [11] 

for all definitions and related results. 

1.1 Some Basic Definitions and Theorems 
 

Given ∑  with partial sum , let  , where  is some transform of .  Let  be the 

collection of all convergent sequences.  If  :  then  is said to be conservative. 

 

If  implies that   as ∞ then  is said to be regular. 

 

The degree of convergence of a summation method to a given function  is a measure of how 

fast  converges to .  This means that we need to find  such that 

 

1
,                                                                         1.1  

 

where ∞ as ∞. 

Theorem A: Given any finitely oscillating sequence, there exists regular transformation which 

makes it summable [8]. 
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Theorem B:  Given any regular transformation, there exists a sequence which cannot be 

summed by that method [4]. 

 

Theorem C:  Associated with each method is a limitation theorem which says what type of 

sequence can be summed by it [11]. 

 

A significant application of the summation methods is to Fourier series. 

1.2 Fourier Series 
 
     
Let 0,2  be periodic with period 2 .   is the collection of all continuous functions 

with period 2 . 

 

The Fourier series of  is iven byg  

1
2 cos sin ,                                                       1.2  

where  and  are the Fourier coefficients. 

The series conjugate to (1.2) is given by 

sin cos                                                        1.3  

Zygmund [38] showed that if  , 0 1 and  is the  partial sum of the 

Fourier series of  then 

;
log

.                                                       1.4  
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1.3 Hardy-Littlewood Series 

   
Let 

2 cos sin .                  1.5  

If   

                                             
1
2                                                      1.6  

 

then the Hardy-Littlewood series (HL-series), is defined as  

 

                  .                                                                              1.7  

 

Let 

                                sin cos .                         1.8  

 

If 

   
1
2                                                       1.9  

 

then the associated Hardy-Littlewood series is defined as 
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     .                                                                  1.10  

  
The convergence of the above series is addressed in a theorem due to Das et all. [6]. 

    

 In this dissertation we shall determine the degree of convergence of certain means of the Fourier 

series, conjugate series, and the associated Hardy-Littlewood series of a function  to itself in 

, .  In Chapter 2 we present some background material.  In Chapters 3 and 4 we show results 

related to our research.  In Chapter 5 we make some concluding remarks and state a few 

problems to be solved in the future.   
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CHAPTER 2: BACKGROUND 
  

Introduction 
 
 
In this chapter we define the methods of summation that will be used throughout the dissertation.  We also  

Give the definition of Hölder continuity.  We state the degree of approximation of Hölder 

continuous functions by the  means of their Fourier series and conjugate series due to Sadangi 

[29].  

2.1 Methods of Summation 
 
 
There are several methods of summ ng divergent series.  We shall state several such methods: i

Borel’s Exponential mean:  Let  ∑  be an infinite series with sequence of partial sums 

.  The Borel’s exponential mean ;  of the sequence  is defined by 

                                         ; ! , 0                                                  2.1  

Euler mean:   Given any sequence  its , 0, mean ;  is defined by ,

                                      ; 1                                                2.2  

(e,c) mean:   Let ∑  be an infinite series with the partial sums .  The , , 

0  mean ;  of  is defined by 

                     ;   exp                                        2.3  

where it is understood that 0, when 0. 
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 mean:  For 1,2,3, … and 0 , we define the numbers  by 

                                               

                                                                                       2.4  
 

 

                           

where  

     1 1
Γ

Γ  

.   

We shall use the convention that 0
0 1.  The numbers  are known as the absolute values of 

the Stirling numbers of the first kind. 

Let 0.  The  mean ,  of a sequence  is defined by  

  

                                              ,
Γ

Γ                                                  2.5  

   

If ,  as ∞ y that the sequence  is summable  to .  The   we sa

method  is regular for 0 and this case will be supposed throughout the present work. 
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2.2 Approximation by the  Means of Fourier Series and Conjugate Series in the 
Hölder Metric 

 

Let  be the space of all 2  periodic functions defined on 0,2  and let for 0 1 and for 

all ,  

                                        

           : | | | |                                   2.6  

                                      

where  is a positive constant.  The functions  are called Hölder continuous functions.  The 

space  0 1  is a Banach space [24] under the norm || · || : 

 

                                        sup ∆ ,                                             2.7  

        

where  denotes the sup norm of  with respect to , 

                            

                                        ∆ ,
| |

| | ,                                                 2.8  

                                                 

and by convention 

                   ∆ , 0. 

      

The metric induced by the norm || · ||  on  is called the Hölder metric.  It can be seen that 
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2                                                                     2.9  

                                

for 0 1.  Thus , || · ||  is a Banach space which deceases as  increases, i.e., 

 

                                      for 0 1                                            (2.10) 

 

Alextis [1] studied the degree of approximation of the functions in  class by the Cesáro means 

of their Fourier series in the sup-norm.  It was Prössodoorf [28] who initiated the work on the 

degree of approximation of functions in  by the Féjer mean of the Fourier series in the Hölder 

metric.  This result has been generalized by Chandra [2], Mohapatra and Chandra [23], Singh 

[30], [31] using different methods.  Chandra [2], [3] has studied the degree of approximation 

problem in the Hölder metric using Borel and Euler means.  The degree of approximation of a 

function  in  has been studied by Das, Ghosh, and Ray [5] by using (e,c) means of Fourier 

Series in the Hölder metric. 

 

The  means were first introduced by Karamata [15].  Lototsky [20] reintroduced the special 

case 1.  Vuckovic [37] first studied the  summability of the Fourier series. Sadangi [29] 

proved the following two theorems: 

 

T t be the  mean of the Fourier series (1.2) of  at .  If heorem A  Le ,  

 0 1 and  then 
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,· 1
log log
log

                                    2.11   

 

Theorem B Let , where ∑ .  Let ,  be the  mean of the 

series conjugate to the Fourier series of  at .  If  0 1 and , then 

 

                             ,· ·, 1
log log
log

, 0 1             2.12  

 

2.3 The Measure of Convergence of the Euler, Borel, and (e,c) Means  of a Series 
Associated with the Hardy-Littlewood Series in the Hölder Metric 

 
     

   
2 1

2 cot
1
2 log

1
2 csc

1
2   ,                                 2.13  

Let 

where 

1
2 .                                               2.14  

 

Das, Ray, and Sadangi [7]  obtained the rate of convergence of the associated Hardy-Littlewood 

series (1.10) to  in the Hölder metric: 

Theorem.    Let  be the nth partial sum of the Hardy-Littlewood series (1.7).  Let 

  0 1 and  .  Then 
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                             1

1
, 1

log
, 1

                                                 2.15  

Sadangi [29] obtained the degrees of approximation of  in the Hölder metric using the 

Euler, Borel, and ,  means of (1.7):  

Theorem 1.  Let 0 1 and let .  Then 

     || || 1

1
, 1

log
, 1  

                                                 2.16  

Theorem 2.    Let 0 1  and  let  .  Then 

  || || 1

1
, 1

log
, 1  

                                                2.17  

Theorem 3.  Let 0 1  and  let  .  Then 

      1

1
, 0

1
2

1
√

,
1
2 1

                                     2.18  
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CHAPTER 3:  APPROXIMATION BY THE  MEANS OF FOURIER 
SERIES AND CONJUGATE SERIES OF FUNCTIONS IN ,  

 

3.1 Definitions and notations 
 
 

Let 0,2  be the space of all 2 -periodic integrable functions.   

 

, 0,2 : | | | | ,                       3.1  

 

 where  is a positive constant.  The space ,  1, 0 1  is a Banach space 

under the norm || · || , : 

 

, sup | | .                                    3.2  

 

The metric induced by the norm || · || ,  on ,  is called Holder continuous with degree 

p.   It can be seen that 

 

, 2 , . 

 

Since ,  if and only if , ∞,  we have, 
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0,2 , , , 1, 0 1.               3.3  

 

We wri  te

 2  

  

 , cot   

 lim , , 

whenever t xits.he limit e  

 Let ,  and ,  respectively denote the th partial sums of the series (1.2) and 

(1.3).  It is known (Zygmund [38], p.50) that 

 

                               ,
2

                                                  3.4  

                                ,
2

,                                                         3.5  

where 

   

sin 1
2

2 sin 1
2

,
cos 1

2 cos 1
2

2 sin 1
2

                                      3.6  
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3.2 Main Results 
 
 
 In this chapter, we prove the following two theorems: 
 
 
Theorem 1.  Let ,  b t

0 1, and , ,  then  

e he  mean of the Fourier series of  at .  If  1,  

,· ,

log log
log

.                                               3.7  

 

Theorem 2.  Let ,  where ∑ .  Let ,  be the  mean of the 

series conjugate to the Fourier series of  at .  If  0 1  and , , then  

 

, ·, ,

log log
log

                                               3.8  

 

3.3 Additional Notations and Lemmas 
 
 

We use the foll t s: owing additional nota ion

   

   

  ,  

             , ,  

  ∑ sin  

 13



  ∑ cos  

∑    

  2 cos   

                        tan  

                        , ∏  

                       ∑  

                          

We need the following lemmas for the proof of our theorems. 

 

Lemma 1   Let 0 1.  If , th  and 0  en for 0

(i) 1
                  

| |                
| |  

 
    

(ii) 1  
                

| |            
| |  

  

Proof:  The first and second estimates of (i) follow from the definition of ,  and .  

Writing 

 

                                 | | | | | |  
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and using the first two estimates of (i) we can derive the third one.  Proof of (ii) is similar to that 

of (i). 

 

Lemma 2  Let 0 1.  If ,  then for  

(i) 1  
                  

| |               
| |   

(ii) 1  
                 

| |               
| |    

 

Proof:  Writing 

     

 

 

and using the fact that ,  we obtain the first estimate of (i).  The remaining part of the 

proof is similar to that of Lemma 1 and hence it is omitted. 

 

Lemma 3  Suppose that  and  are both positive constants.  Let  be any real number.  Then as 

∞, 

                 1

,              1
log ,                 1

, 2 1 2

, 2 2 1 

,  0,1,2,3, … 
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Lemma 4  Let in in § . Then , , ,  and  be def ed as 3   

                            , sin ∑  

                            , cos ∑  

Proof:    By simple computation, we obtain 

   

Γ
Γ  

                                                  ∏  

                                                 ∏ cos sin  

∏                                                    

                                                 , exp ∑  

from which the ws.  lemma follo

Lemma 5  Let 0 .  Then for some posi  tive constant ,

(i)  ,
1                   

 
1

(ii) 
1                  

 
1

(iii) 
1                   
1

 

(iv)  

 16



Proof:  ,  attains its maximum value for 0 and it is easy to see that , 0 1 and 

this ensures the first estim f  Now  ate o  (i). 

                                          , ∏ 2 cos   

                                                       ∏  1
 

 

 

1
4  

 

                               

                                            exp
1
2 log 1

4  
.                                        3.9  

 

At this stage, we observe that  

0
4  

1 

for 1,2,3, … and 0 . As log 1  for 0 1 and sin , 0 , 

we have 

 ∑ log  1
 

 

                                                         ∑  
 

                                                         ∑  

                                                         log  ,                                                                    (3.10) 
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where  is some positive constant.  Using (3.9) and (3.10) we obtain the second estimate of 

Lemma 5 (i), (ii), and (iii) follow from (i).  As  (iv) follows at once. 

 

Lemma 6  L 4et 0 .  Then 

(i)  sin sin 0 log  ∑

(ii) cos ∑ cos 0 log  

Proof:  We have  

        sin
3
2 sin

3
2 .                                            3.11  

Next, we note that 

0
sin

cos

whenever 0 4 and 1.  Thus for 0 4, 

1 

  

sin
cos

sin
cos

sin
cos

 
cos  

            
 

cos
  

                                                              

                                 
sin

cos cos cos  

                                   

          , 1 1                                                                   3.12  
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Using (3.12), we have, 

3
2

3
2

1 1
 

                       

               log                                                                                  3.13  

 

Using  (3.13) in (3.11), we obtain lemma 6(i).  We omit the proof of (ii) as it is similar to that of 

(i). 

 

(i) 

Lemma 7 

 , 1 log  , , 0 2 

(ii) , , 1 , 2 

Proof:  We have 

  , ∏  

and so b m e ntiation, y logarith ic diff re

 , , ∑  

   , ∑  

  1  , ∑   , 0 2  

                       1 log  ,  

 and this completes the proof r some  with 0 1,  of (i).  By the Mean Value Theorem, fo

, , ,  
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                                                                                  ,  1 log

                                                                                  1 ,  for 2 

 

The following a is due to Hardy, Littlewood, and Pólya [ lemm 13]. 

Lemma 8  If ,  is a function of two variables defined for 0 , 0 2 ,   

then 

, , , 1 

 

3.4  Proof of Theorem 1 
 

Using (3.4) and notations of §3, we obtain 

  

,
Γ

Γ ,  

                           

Γ
Γ

2
 

                                        

Γ λ
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2 sin 1
2

2
 , 

from which it follows that 

    

              ,
2

sin 1
22

                               3.14  

Now, for fixed  with 0 , we write for 04   

2
1
22 sin

  

2
 

2 sin
 

                                      
2

                                                 3.15  

By Minkowski’s inequality, we have, 

 

  

And by Lemma 8, we may write, 

2 sin 1
2

2
,                                      3.16  

 

    
2

2 sin 1
2

 ,                                     3.17  
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2

2 sin 1
2

.                                     3.18  

 

By Lemma 1 (i) and Lemma 5 (ii), we obtain 

  

    | |
| |

log
.                                            3.19  

and 

| |  

| log             |

                                    
| |

log ∆ , ∆ positive however large.                      3.20   

 

Using Lemma 4, we may write 

1
2 sin

1
| | , sin  

, sin
3
2 sin               

                                                                                                                             3.21  

As , using Lemma 1 (i) and Lemma 5 (ii), we obtain 

| |  

 22



                                            
| |
log                                                                                    3.22  

by Lemma 3 (replacing  b .  Now y log )

                  | | | , sin |                                                             3.23   

 | | | , sin  |                                      

Replacing  by  in the second integral of the above line, we obtain, 

| | | , sin  |  

| | | , sin  |  

                                      | | | , sin  |                                                3.24  

From (3.23) and (3.24), we get 

2 | | | , | | | , |sin |  

| | | , sin  |  

| | | , sin  |  

                                                                   3.25  

By Lemma 1(i), Lemma 5 (i), we get 

| |  
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| |

log
                                                          3.26  

and 

| |  

|                           |

| |
log ∆ , ∆ positive however large                              3.27  

We rewrite 

, sin   

, , sin   

1 1
, sin   

                                                                                                               3.28  

By Lemma 1(i) and Lemma 2 (i), we obtain 

| |  

                         | |
log log
log

                                                         3.29  

By Lemma 1 (ii) and Lemma 7 (ii), we have 

| |  

| |  
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| |

log
                                                                           3.30  

using Lemma 3 (μ is replaced by log ). 

 Using Lemma 1 (ii), Lemma 5 (i), and Lemma 3 (replacing  by log ), we have 

, sin   

| |  

| |  

| |

1
log

, 1

log log
log , 1

                                         3.31  

Collecting the results (3.25) through (3.31), we aobt in, 

               | |
log log
log

, 0 1                           3.32  

Now, using Lemma 1(i), Lemma 5 d Lemma 6(i), we have  (i), an

                          , sin
3
2 sin  

       | | log   

                      
| |

log
,                                                                             3.33  

by applying Lemma 3. 

 Collecting the results from (3.18) – (3.22), (3.32), and (3.33), we obtain 
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| | | |
log log
log

, 0 1              3.34  

which ensures that 

sup
| |

| |
log log
log

, 0 1              3.35  

 

Again ,  and so p g as above, we obtain roceedin

·  
log log

log , 0 1                                      3.36  

 combining (3.35) and (3.36) we obtain (3.7) and this completes the proof of Theorem 1. 

 

3.5  Proof of Theorem 2  
 

Using (3.5) and notations of §3, we obtain 

,
Γ λ

Γ ,  

Γ λ
Γ

2
 

2
 

Γ λ
Γ  

2 Γ λ
Γ cot

1
2

1
2   

2

2 sin 1
2

Γ
Γ cos

1
2  
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2 sin 1
2

2
,

2
 

which further ensures that 

,  ,

2 2

sin 1
22

                                                    3.37  

Now for fixed  with 0 4 and , we write  

2 2

2 sin 1
2

 

1
2

2 sin 2
 

                                                                                           3.38  

By Minkowski’s inequa elity, we hav  

. 

 

By Lemma 8, 

2
|| ||                                               3.39  

|| ||
2 sin 1

2

2
                                           3.40  

|| ||
2 sin 1

2

2
                                          3.41  
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By Lemma 1 (ii) and Lemma 5 (iv), we have 

| |   

                                                        
| |

log
                                                                  3.42  

Using Lemma 1 (ii) and Lemma 5 (iii), we have 

| |  

| |                 

| |
log ∆ , ∆ positive however large                        3.43  

Now, adopting the lines of arguments similar to those used in estimating  in the proof of 

Theorem 1, we can obtain 

| |
log log
log

, 0 1.                                             3.44  

 

Combining the results of (3.41) – (3.44), we obtain 

sup  
| |

log log
log

, 0 1.                                      3.45  

 

Similarly, 

·
log log

log , 0 1.                                                     3.46  
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(3.8) follows from (3.45) and (3.46) and this completes the proof of Theorem 2. 
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CHAPTER 4:  THE MEASURE OF CONVERGENCE OF THE EULER, 
BOREL, AND (e,c) MEANS OF A SERIES ASSOCIATED WITH THE 

HARDY-LITTLEWOOD SERIES IN ,      
                        

4.1 Definitions and notations 
 
 

Let 0,2  be the space of all 2 -periodic integrable functions and for all  

, 0,2 : | | | | ,                       4.1  

where  is a positive constant.  The space ,  1, 0 1  is a Banach space under the 

norm || · || , : 

, sup | | .                                    4.2  

 

The metric induced by the norm || · || ,  on ,  is called Hölder continuous with degree p.   It 

can be seen that 

 

, 2 , . 

 

Since ,  if and only if , ∞,  we have, 

 

0,2 , , , 1, 0 1.               4.3  

 30



 
 

We write 

1
2  2

1
 2

1
2 cot

1
2   

2 1
2 cot

1
2    

       
2 1

cot
1
22                                                      4.4  

   
2 1

2 cot
1
2 log

1
2 csc

1
2                                   4.5  

  0
1
2 cot

1
2                                                         4.6  

2 , 0 ,                                          2

and defined elsewhere by periodicity with period 2 . 

4.2  Main Results 
 
 

 31

It was Prössdorf [28] who initiated the work on the degree of approximations of the   class in 

the Hölder metric by Fejer means of the Fourier series.  Chandra [2] obtained a generalization of  

Prössdorf’s work on the Nörlund mean set-up.  Later Mohapatra and Chandra [23] considered 

the problem by matrix means.  Chandra [2], [3] also studied the degree of approximation of 

functions of the  class in the Hölder metric by their Fourier series using Borel’s exponential 



means and Euler means.  Das, Ojha, and Ray [5] have studied the degree of approximation of the 

integral 

0
1
2 cot

1
2   

By the Euler, Borel, and (e,c) transforms of the HL-series in the Hölder metric. 

Das, Ray, and Sadangi [6] obtained the following result on the rate of convergence of the series 

(1.10) to the integral  in the Hölder metric.  

Let 

, 1 

and zero otherwise. Let ; , ;  and ;  be respectively the , , Borel, and 

,  means of . 

 We prove the following theorems. 

Theorem 1.  Let 0 1 and let , .  Then 

     || || , 1

1
, 1

log
, 1  

                                                 4.7  

Theorem 2.    Let 0 1  and  let  , .  Then 
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  || || ,
1

1
, 1

log
, 1  

                                                4.8  

 

Theorem 3.  Let 0 1  and  let  , .  Then 

      , 1

1
, 0

1
2

1
                                     4.9  1

√
,

1
2

In proving these theorems our main observation is that the kernels for Euler, Borel, and (e,c) 

means have some important characteristics in common even though they appear to be different.  

In what follows, we shall prove our theorems in a unified manner by taking full advantage of the 

common properties possessed by the kernels of Euler, Borel, and (e,c) means. 

 

Recall the series (1.10).  It is known from Zygmund [38] that 

 

2 1 cos

2 tan 1
2

  

from which it ollows t at f h

                   
2 cos

2 tan 1
2

                                                    4.10  
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For 1, we have, for the odd function , 



 

2
sin   

                              
2

2 2 sin   

                      
1 cos

 

                                   
1

cot
1
2

cos
  

       
2 cos

2 tan 1
2

 

                                                                         4.11  

The series conjugate to ∑ sin  is ∑ cos  and hence, we have: 

Proposition:  The series (1.10) is the series conjugate to the Fourier series of the odd function 

 at 0.   

In this case, 

2
,                                             4.12  

where 

sin
cos 1

2 cos 1
2

2 sin 1
2

                                              4.13  
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At this stage we may note that Das, Ojha, and Ray [5] have established the Fourier character of 

the HL-series (1.7). 

 

4.3  Notations and Lemmas 
 

Throughout the section, we use the following additional notations: 

 

,

 

 

,

 

 

We need the following lemmas for proof of our theorems. 

 

Lemma 1.   Let 0 1.  If  , then for 0  

 

||  ||                                                                                            4.14

                                                      | |                                                                          4.15

 | |                                                                       4.16

                                                                                           4.17

| |                                                                      4.18  
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Proof:   The proof of (4.14) and (4.15) are omitted as they are immediate consequences of the 

definition of  and  , .  Writing 

| | / | | /  

and using the estimates (4.14) and (4.15), we obtain (4.16). 

  

As 

2 1
cot

1
22  , 

estimate (4.17) follows from the fact that . 

 

 As 

2 tan 1
2

2
, 

estimate (4.18) follows by applying (4.16). 

 

Lemma 2.  Let ,  and 0 1.  Then 

 

| |  

 

Proof.  Applying the Mean value theorem or some θ with 0 1  and (4.16), we obtain f

 

2 1
2 cot

1
2  . 
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                                                                     | |     

| | .                                                        

 

Lemma 3.  Let 0 1 and let , .   Then 

 

(i)  , | |

(ii) , | |  

 

Proof.  Since  ,  

Lemma 3(i) follows from (4.18).  Using (4.16), we have 

,                                   

2 1
2 cot

1
2 log

1
2 csc

1
2    

1 | | log
2

,                           

which ensures Lemma (ii) as the last integral is finite. 

 

Lemma 4 (Das, Ojha, and Ray [5]). Suppose that A and δ are both positive constants. Let β be 

any real number.  Then as ∞, 

  , 1
/

                                                  4.19  

1 log , 1                                                    4.20
/
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1
1

, 2 1 2 ,   0,1,2, …    
/

      4.21  

     1
1

, 2 2 1, 0,1,2, …
/

         4.22  

 

Lemma 5.  Let ,  be defined for all 0 and 0 .  Suppose that 

 

(i) 0 for all 0 and 0  ,

(ii)  ,  for each positive constant . , is monotonic decreasing in  over 0

(iii)  ome po tant . , as ∞, 0  for s sitive cons

(iv) , , , , , where / . 

 

Let  and  be respectively defined as in §1 and §4.  If , , 0 1 then 

for 0   

 

, sin  1 | |

1

a   
 1

log
 1

             4.23  

 

, sin  1 | |

1

b  
  0 1

log
     1

                4.24  

 

Proof of (a)   Putting / , we write 
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, sin                                                                       4.25  

                                        , sin                                        

          , sin  , sin            

    , sin                                                                4.26  

  

From (4.25) and (4.26) we obtain 

 

2 , ,      

           , sin  , sin  

                                                                                                  4.27  

 

By Minkowski’s Inequality, 

2 . 

 

 

Since, 

, , sin   
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, sin                       

,  ,
 

sin   

1 1
, sin   

                                                                                          4.28  

By Minkowski’s inequality, 

. 

By Lemma 8 from Chapter 3 and the method of proof of Theorem 1 of Chapter 3, we have, 

1 | | , 

  

1 | | , 1
log  , 1

                              4.29  

 

Where we have used  Lemma 2 and (iii) of Lemma 5. 

 

By Lemma 1 and the definition of , , and using the method similar to that used to obtain 

(4.29), we get 

1 | | ,  

1 | |   

1 | | , 0 1,                                      4.30  
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using Lemma 4. 

 Adopting the technique similar to those used in splitting J into P, Q, and R, we can write 

 

2 , 2 , 2 sin    

, sin  , sin   

                                                                                                                                  4.31  

By Minkowski’s inequality, 

2 . 

 

We have, 

1 1
,  

2
1 1

2 2 sin  

2
, sin   

2
,  , 2 sin   

2 1 1
2 , 2 sin   

                                                                                                    4.32  

By Minkowski’s inequality, 
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. 

 

By Lemma 2 and Lemma 8 of  Chapter 3, we get 

| |
2

| | | , sin  |  

1 | |  

1 | |                                                                     

1 | | , 0 1                                              4.33   

 

Using Lemma 1 and propert  we get ies of , ,

| |
2

| | | , , 2 sin  |  

1 | |
2

,  

1 | |                                               

1 | |  , 0 1                                                              4.34   

 

and 

| |
2

| |
1 1

2 
, 2 sin   

 

 42



1 | |
2

2    

1 | |                                     

1 | | , 0 1                                                    4.35   

 

Using Lemma 1 and the boundedness of , .  We get 

 

| | | , sin  |  

1 | |           

1 | |    1
log 2   1                                               4.36  

 

and 

| | | | | , sin  |  

1 | |         

1 | | , 0  1                                                  4.37  

Collecting the results from (4.31) – (4.37), we obtain 

 

1 | | , 0 1.                                           4.38  
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Combining the results of (4.28), (4.29), (4.30), and (4.38), we have 

 

1 | | ,             1     
log  ,       1

                                      4.39  

 

By Lemma 1, we have, for 0 1 

 

| | | , ||sin  |                                        4.40  

1 | |          

1 | | ∆                                                                    4.41  

 

for every positive ∆, however large.  Collecting the above estimates for , , and , we obtain 

 

1 | | ,                 1       
log  , 1    

 

and this completes the proof of part (a).  We omit the proof of (b) because it is similar to that of 

part (a).   The case where sin  is replaced with cos  can also be dealt with in a similar 

manner. 

 

Lemma 6.  If , , 0 1, then as ∞ 

 

a        | |
1 | |/
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 b              
| |

| | 1                     
/

 

 

Proof:  The result follows from Lemma 1. 

 

Lemma 7.  Let 0 1 and let , .  Then as ∞ 

 

a  
| |

| |  1 | | ∆ 

 

and 

 

b  
| |

| |  1 ∆               

 

Proof:  By Lemma 1 

 

| |
1 | |             

1      

1 | | ∆, ∆ 0 

 

Part (b) can be dealt with in a similar fashion. 
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4.4  Proof of Theorem 1 
 

We will use the following additional notations for the proof of Theorem 1. 

 

  

1 1 cos2  

tan
sin

cos  

, 1 cos
1
2 , 0 

 

, 1 sin
1
2 , 0 

1
1

 

 

1
1
2 

We need the fol mas. lowing lem

Lemma 8.  Let 0 .  Then 

,                                                             4.42  

where 2 1  

 

Lemma 9.  For 0 π, 
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(i) cos,                                                                              (4.43) 

(ii)                                                                                                       (4.44) , 1  

(iii)                                                                                                       (4.45) 

 

Proof:  By simple computation, we have 

 

, , 1  

1   

 
cos

1
2 sin

1
2  

 

from which (ii) follows.  As cos 1 and ∑ 1 , estimate (iii) 

follows. 

 

As 

1 1
1  

 

We have, 

1
1
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1
1

1                                            4.46  

Now 

1
1

1
1

1                                     

1
1

1  

1
1                                                                                 4.47  

 

Using (4.47) in (4.46) we obtain (4.45). 

 

Lemma 10.  Let , , and 0 .  Then for  

 

1                                              4.48  

 

Proof:   By the Mean Value Theorem, we have for some  with 0 1 

 

 

1 2 cos 1 sin  

1                                                  
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Lemma 11.   Let  and 0 .  Then for 0  

cos
1
2 cos                                          4.49  

 

 Proof:  We have 

 

cos λt 2 sin
1 1

sin
1
2

1
2cos

1
2  2 2

|
1
2 | 

| | 1

tan  
sin sin sin

1  

 

sin
cos  

                                            

 

Proof of Theorem 1.  Using (4.10), we have 

 

 

            
2
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2

2 2  

             
1

 

            
cos cos 1

2 cos 1
2

2 sin 2
  

 
cos 1

2   log 2
1 1

2 cot
1
2 2 sin 2

    4.50  

Now, 

1
2 cot

1
2  

2 1
cot

1
2   

1
2 cot

1
22    

 
2 1

cot
1

  
1
2 cot

1
22 2                  

2 1
cot

1
log

1
csc

1
2 2 2 2 log 2   

  log 2                                                                                    4.51  

 

From (4.4) and (4.5), it follows that, for 1, 

 

cos 1
2

2 sin 1
2

1
          4.52  

 

Using (4.6) in (4.5), we obtain, 
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; 1  

               1  

                
2 sin 1

2
1  

 

cos
1
2                        

                1  
1

                                         

      1 1 2 sin 1
2

, 1 cos
1
2 ,   4.53  

 

which ensures that 

 ;

                                                        1 2 sin 1
2

,  

                                                               1 cot
1
2

1
2           4.54  

 

Hence, 

 

1 ,
2 sin 1

2
,   
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1 12 tan 2
,  

.                                                     4.55  

By Minkowsk si’  inequality, 

 

 

By Lemma 3, 

1
| , | | |

1                                4.56  

By Lemma 3 and Lemma 9 (iii) 

, , | |                                        4.57  

Using Lemma 1, we get 

, 1 2 tan 1
2

 

1 | |
1  

1 | |
1                                                                   4.58  

We put .  Now for fixed  with 0 4 e lit the integral  as follows: / w  sp

 
/

1  | , |  
/ 2 sin 2

,                                                                      4.59  

by Minkowski’s inequality. 

By Lemma 9 (ii) and Lemma 6, 
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2 sin 1
2

| , |  

1 | |
| |/

 

1 | |
                                                                              4.60  

By Lemma 8, Lemma 9, and Lemma 7, we obtain 

2 sin 1
2  

t  cos
1
2  

1 | |
| |

| |                

1 | |
∆ , ∆ 0, however large                                        4.61  

 

We write 

2 sin 1
2

| , |  

1
cos

1
2                                                               

1

2 sin 1
2

  

             cos   

                                                  cos
1

cos  2

                                                    4.62  
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, we obtain Using Lemma 1, Lemma 8, Lemma 4 and the fact that 

| | | |
1

2 sin 1
2

1
cos

1
2  

1 | |           
/

 

 1 | |                   
/

 

1 | |
                                                                                          4.63  

Using Lemma 1, Lemma 8, Lemma d Lemma 4, we have 11, an  

| |
| |

| | cos
1
2 cos

/
 

1 | |  
/

1 | |
/

 

1 | |
                                                                                     4.64  

 

Collecting the estimates for , , , , ,   and   from (4.56), 

(4.57), (4.58), (4.60), (4.61), (4.63), and (4.64), we obtain 

 

1 | |
                                           4.65  
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For  

, . 

Therefore, we may write 

| | cos   

           | | | , cos  | .                                       4.66  

 

Note that ,  satisfies (i), (ii), (iii), and (iv) of Lemma 5.  Therefore, 

 

1 | |

1
 , 1

log
, 1

 

1 | |

1
 , 1

log
, 1

                                       4.67  

Which in conjunction with (4.65) gives us 

sup
 

∆ , sup  | |  

1

1
, 1

log
, 1

                         4.68  
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Again ,  and so using Lemma 5(b), 6(b), 7(b), and proceeding as 

above, we obtain 

·  1

1
, 0 1

log
, 1

                  4.69  

 

Combining (4.68) and (4.69), we get (4.10) and this completes the proof of Theorem 1. 

4.5  Proof of Theorem 2 
 
 
    We will use the following additional notations and Lemmas for the proof of Theorem 2. 

 

;              

! cos
1
2   

! sin
1
2  

         
1
2 

1
!

!

 

 

Lemma 12.  Let 0 2/ .  Then /4  and let 

(i)                                                                                        (4.70) 

 56

(ii) / 1                                                   (4.71) 



Lemma 13    For 0

(i) cos sin                                                                  (4.72) 

(ii)                                                                                                         (4.73) 1

(iii)                                                                                                           (4.74) 

Proof:  By simple computation we have 

!  

                                !   

                    

                                   , 

which ensures (i).  (ii) follows from (i). 

Now, 

!
1

 

1 ! 1  

1
 

 1 !  

1
 

                     

1
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Lemma 14.  Let  and 0 /4 Then for 0 . .  

cos sin
1

cos                                       4.75  2

Proof:  Expressing the difference cos sin cos  as a product and making use of the 

fact that sin  the estimate (4.75) can be established. 

Proof of Theorem 2.    From (4.52), we get for 1 

cos 1
2

in 12 s 2

1
               4.76  

Hence the Borel’s exponential mean ;  of   is given by 

; !
cos 1

2
2 sin 1

1

2
 

                     1
2 sin 1

2
cos

1
2 , 

whic  th ensure hat 

               ,                                                                                                      

2 sin 1
2 2 tan 1

2
      4.77  

Therefore, 

,
2 sin 1

2
 

                       
2 tan 1

2
,  
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:                                          4.78  

By Minkows ’ski  inequality, 

 

   Using the estimates for , , , ,  and  and adopting the technique 

employed for deriving the estimates for , ,  and  in §5, it can be shown that 

 1 | |  ,                                                     4.79

1 | | ,                                                      4.80  

and 

1 | |                                                         4.81  

 

 

We put .  Now for fixed  with 0 /4, we write 

 
2 sin 1   

2

  ,                                                                   4.82  

By Lemma13 (ii), Lemma 6, and Lemma 8 of Chapter 3, 

1 | |
1 | |

                                   4.83  

By Lemma 12, Lemma 13(i),  Lem nd Lemma 8 of Chapter 3, ma 7, a

2 sin 1
2

cos sin
1
2   
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1 ||                             

  1
| |

∆   , ∆ positive however large                                    4.84  

We write 

 
2 sin 1

2
cos sin

1
2    

        
1

2 sin 1
2

1

/
cos sin

1
2        

 cos  cos sin
1
2 cos   

  ,                                                                                      4.85  

by Minkowski’s inequality. 

 

Using Lemma 1, Lemma 13 (i), Lemma 14, and Lemma 4 and proceeding as in the proof of 

 and , it can be shown that 

 

1 | |                                                     4.86  

and 

1 | |
                                                                4.87  

Collecting the estimates for , , , , ,  and  from (4.79), 

(4.80), (4.81), (4.83), (4.84), (4.86), and (4.87), we obtain 
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1
| |

                                 4.88  

For  (i.e., ), the expres  reduces to sion ,  

 In view of Lemma 12 the function ,  satisfies all the requirements of Lemma 5 and 

hence 

cos   

, cos  

1 | |

1
, 1 

log
 , 1

       ,                      4.89  

by the method used previously. 

 

From (4.88) and (4.89), we obtain, 

1 | |

1
, 1 

log
 , 1

 

which ensures that  

sup
 

∆ , sup
| |

| |  

1

1
, 1 

log
 , 1

                      4.90   
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When ,  it can be shown that 

· sup 1

1
, 0 1

log
, 1

         4.91  

From (4.90) and (4.91), we obtain (4.8) and this completes the proof of Theorem 2. 

 

4.6   Proof of Theorem 3 
 
 
We will use the following notations and Lemmas for Theorem 3. 

 

                        

 1 2 cos  

cos
1
2  

;  

1
 

1
2 ,

1
4 , /   

We need the following Lemmas. 

Lemma 15.   Let  0.  T e

 62

h n 

exp                                                     4.92  



where 

 

 

Lemma 16.  For 0 

i    1                                                           4.93  
√

ii                                                                  4.94  

Proof: 

(i)   We have 

cos
1
2  

                    

                          2  – exp   

 .                     

(ii) Clearly, 

1
1

1
1 , whenever 1 0 

 

and so 
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1

 

1 1                                        

1
1

1 1 1  

                                            1
1

1                                                                       4.95  

 

As / , we have 

                                            
1

1 1                                                         4.96  

Lastly, 

 

1 1 , 2                      

1
1

1    
1

11  

1 1 1 log                                                

1                                                                                                                           4.97  

 

From (4.95), (4.96), and (4.97) th   t of th  ma follows. e second par e Lem

 Lemma 17.    For the functions ,   and  , we have,   
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cos
1
2 .                                      4.98  

Proof: 

We have, 

  cos
1
2                                                              

  cos
1
2   cos

1
2               

 cos
1
2 cos

1
2 cos

1
2 , 

which ensures that 

cos
1
2 cos

1
2 cos

1
2  

2 cos 1 cos
1
2                       

 cos
1
2 ,                                         

from which (4.98) follows. 

Proof of Theorem 3:    

Collecting the expressi  for  from (57), we have, on

;                                                                                                    

 
cos 1

2 
2 sin 1

2

1
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2 sin 1

2
.                                                                     4.99  

Thus, 

;                                                                               

1
2 sin 1

2
  

which further ensures that 

 

 

  

1 ,
2 sin 1

2
,             4.100  

 

Using Lemma 17 and Lemma 15, we can rewrite (4.100) as follows: 

 

1 ,
2 sin 1

2

| | cos
1
2   

                            
2 sin 1

2

| | ,                                               

1 ,
2 sin 1

2
cos

1
2   
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cos 1
2

2 sin 1
2

,
2 sin 1

2

| |  

                                          4.101  

As 1 , using Lemma 3 (ii), we have 

 1 , 1 | |                                             4.102  

 

By Lemma 1 and Lemma 15, 

2 sin 1
2

cos
1
2   

1 | |                   

                                             1 | | .                                                                              4.103  

By Lemma 1 and Lemma 16 (i), 

|2 s n 1i 2 |
| |                

1 | |   
√

                                                        1 | |
√

 .                                                                   4.104  

Using Lemma 3 (i) and Lemm  6 ), we taina 1  (ii ob  

                                                   , 1 | |                            4.105  

Collecting the results from (4.101) – (4.105), we get 
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 1 | | 1 | |                       4.106  

We put .  Now for fixed  with 0  we split the integral s follows: /4 a

 
/

 1 cos
1
2/ 2 sin 2

   

                                                                                      4.107  

 

  Following the same lines of argument used in obtaining estimates for  and  in §4, it 

can be shown that for 0 1, 

                                                              1
| |

                                                         4.108  

                                                               1
| |

∆ , ∆ 0                                             4.109  

Next, we write 

1

2 sin 1
2

1
cos

1
2   

| |/
cos

1
2                   

                               

                                                                                          4.110  

Using Lemma 1, Lemma 4, and proceeding as in the proof of , it can be shown that 

 1 | | .                                                   4.111  

From (4.106) – (4.111), it follows that 
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 1 | | 1 | |                 4.112  

 

For , ,  

Clearly, ,  satisfies the conditions of Lemma 5, and hence, 

||/
|cos  |  

| | | , cos  |
/

 

                                                           1 | |

1
, 1

log
, 1

                                  4.113  

 

From (4.112) and (4.113), it follows that 

 ∆ ,   

                                                                    1

1
, 0

1
2

1
                    4.114  1

√
,
1
2

 

Again, , , and so procee ng as above  we obtain di ,

                              ·  1

1
, 0

1
2

1
                                4.115  1

√
,
1
2
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Now (4.9) follows from (4.114) and (4.115) and this completes the proof of Theorem 3. 
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CHAPTER 5:  CONCLUSION AND FUTURE PROBLEMS 
 

5.1 Conclusion 
 
In this dissertation we have extended the result of Pratima Sadangi [29] to obtain estimates in 

,  norm, 1.  These estimates were obtained by applying a result from Inequalities, Hardy, 

Littlewood, and Polya [13] and a modification of the methods used by Sadangi [29].  However, 

there still remains other results which can be obtained.  These future problems are mentioned 

below: 

5.2  Problem 1 
 
 
In 2007 R. A. Lasuriya [17] used a modified version of the distance function in the space  to 

obtain degree of convergence of functions in . 

Suppose that ∞, ∞  and  is the space of uniformly continuous and bounded 

functions ·  on the whole real a s  norxi with m 

· sup | |. 

Denote by  the set of all functions g the condition ·  satisfyin

sup
,

; , ∞, 

where 

; ,
| |

| | , ; , 0 

and, for 0,  is a nondecreasing function.  We can show that  is a Banach space 

with respect to the generalized Hölder norm 
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                                   · ·  sup , ; , .                           5.1) 

 

Suppose that  is the set of functions ·  ondition satisfying the c

sup
,

 ; , sup
,

| |
 | | ∞ 

and contained in the space ,  where. For 0,  is a nondecreasing function.  In 

particular, setting 

,   , 0 1, 

 

for  we obtain the space 

 

: | | | | , ,  

 

with Hölder norm 

sup
,

| |
| |  

and for the set  we have 

 

: | | | , ,  |

. 
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Theorem [17].  Suppose that 0 1.  Then, for any , the following relation 

holds: 

; 1 sup  
,

| |
| |

1 1
, 1  5.2  

where 1  is a quantity uniformly bounded in the parameter  and depending, in general, on 

· . 

 

This leads to the following problem: 

 
Problem 1.  Consider functions in  and define   ,,  as the notion of distance in that 

space.  We then obtain an estimate for ,  in that metric. 

 

5.3  Problem 2 
 
 
In 1996 in a Ph.D. thesis submitted to Utkal University Ojha [27] proved results for degree of 

convergence of functions associated with their Fourier series.  These results are analogous to the 

results of Sadangi [29] considered in the present dissertation.  Our next objective is to solve the 

following: 

 

Problem 2.  Prove analogous theorems for Fourier series of those proved in Chapter 4 of the 

present dissertation. 
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