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ABSTRACT

Sampling and interpolation are two important topics in signal processing. Signal processing is a

vast field of study that deals with analysis and operations of signals such as sounds, images, sensor

data, telecommunications and so on. It also utilizes many mathematical theories such as approxi-

mation theory, analysis and wavelets. This dissertation is divided into two chapters: Modified Pál

Interpolation and Sampling Bilevel Signals with Finite Rate of Innovation. In the first chapter, we

introduce a new interpolation process, the modified Pál interpolation, based on papers by Pál, Jóo

and Szabó, and we establish the existence and uniqueness of interpolation polynomials of modified

Pál type.

The paradigm to recover signals with finite rate of innovation from their samples is a fairly

recent field of study. In the second chapter, we show that causal bilevel signals with finite rate of

innovation can be stably recovered from their samples provided that the sampling period is at or

above the maximal local rate of innovation, and that the sampling kernel is causal and positive on

the first sampling period. Numerical simulations are presented to discuss the recovery of bilevel

causal signals in the presence of noise.
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1.1 Pál interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Modified Pál interpolation I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Modified Pál interpolation II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Modified Pál interpolation III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

CHAPTER 2. SAMPLING BILEVEL FRI SIGNALS 34

2.1 Bilevel signals with finite rate of innovation . . . . . . . . . . . . . . . . . . . . . 35

2.2 Recovery of bilevel causal signals . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Stable recovery of bilevel causal signals from noisy samples . . . . . . . . . . . . 40

LIST OF REFERENCES 47

vi



LIST OF FIGURES

2.1 Bilevel signal x
0

(left) and sampling kernel h
0

(right) . . . . . . . . . . . . . . . . 44

2.2 Maximal transition position error . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



CHAPTER 1: Modified Pál Interpolation

A purpose of interpolation is to approximate a function (signal) from its limited information, such

as sampling data or a discrete set. Interpolation has shown to be important in signal processing,

approximation theory, computer aided design etc. There are many classical methods available such

as polynomial interpolation, trigonometric interpolation, fractal interpolation, spline interpolation

and wavelet interpolation.

In the first section of this chapter, we recall the interpolation of Pál type. In the second section,

we introduce the modified Pál interpolation. In third and fourth sections, we modify Szabó and

Joó’s generalized Pál interpolation.

1.1 Pál interpolation

In this section, we recall Hermite-Fejer interpolation discussed in [14], which is now known as Pál

interpolation.

Let X := {x
1

, . . . , x
n

} contain n distinct nodes x
1

< x
2

< · · · < x
n

on the real line, and

define

!
X

(x) =

nY

k=1

(x� x
k

). (1.1.1)

Between two neighbouring roots of !
X

(x) there is one and only one root for its derivative !0
X

(x).
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In other words, the roots x
1

, . . . , x
n

of the polynomial !
X

(x) and the roots x⇤
1

, . . . , x⇤
n�1

of its

derivative

!0
X

(x) = n
n�1Y

l=1

(x� x⇤
l

) (1.1.2)

has the following interlacing property:

x
1

< x⇤
1

< x
2

< x⇤
2

< ... < x⇤
n�1

< x
n

.

In [14], Pál considered the following interpolation problem: Find a polynomial P (x) of lowest

degree such that

P (x
k

) = y
k

for all 1  k  n and P 0
(x⇤

l

) = y⇤
l

for all 1  l  n� 1 (1.1.3)

for any given interpolation data {y
k

}n
k=1

and {y⇤
l

}n�1

l=1

.

Theorem 1.1.1. ([14]) Let X := {x
1

, . . . , x
n

} contain n distinct nodes on the real line, and

X⇤
:= {x⇤

1

, . . . , x⇤
n�1

} be the set of roots of the polynomial !0
X

(x), the derivative of the polynomial

!
X

(x) =

Q
n

k=1

(x � x
k

). Then given any interpolation data {y
k

}n
k=1

and {y⇤
l

}n�1

l=1

there exists a

polynomial P (x) of degree 2n� 1 that satisfies (1.1.3). Moreover,

P (x) = �
nX

k=1

y
k

!
X

(x)

(!0
X

(x
k

))

2

Q
i 6=k

(x
k

� x
i

)

Z
!0
X

(x)

(x� x
k

)

2

�
!0
X

(x
k

)� !00
X

(x
k

)(x� x
k

)

�
dx

+

n�1X

l=1

y⇤
l

!
X

(x)

!
X

(x⇤
l

)

Z Q
j 6=l

(x� x⇤
j

)

Q
j 6=l

(x⇤
l

� x⇤
j

)

dx. (1.1.4)

Observe that for any polynomial P satisfying (1.1.3), P (x) + C!
X

(x) has the same interpo-

lation property (1.1.3) for any constants C. The uniqueness of polynomials satisfying (1.1.3) is

2



established when an additional interpolation condition is imposed.

Theorem 1.1.2. ([14]) Let {x
k

}n
k=1

, {x⇤
l

}n�1

l=1

, {y
k

}n
k=1

and {y⇤
l

}n�1

l=1

be as in Theorem 1.1.1, and

let a 6= x
k

for all k = 1, 2, ..., n. Then the polynomial R(x) defined by

R(x) = �
nX

k=1

y
k

!
X

(x)

(!0
X

(x
k

))

2

Q
i 6=k

(x
k

� x
i

)

xZ

a

!0
X

(t)

(t� x
k

)

2

�
!0
X

(x
k

)� !00
X

(x
k

)(t� x
k

)

�
dt

+

n�1X

l=1

y⇤
l

!
X

(x)

!
X

(x⇤
l

)

xZ

a

Q
j 6=l

(t� x⇤
j

)

Q
j 6=l

(x⇤
l

� x⇤
j

)

dt for x 2 (a� �, a+ �), (1.1.5)

is the unique polynomial of degree at most 2n � 1 that satisfies (1.1.3) and R(a) = 0, where

� = min

1kn

|x
k

� a|.

1.2 Modified Pál interpolation I

In this section, we consider finding a polynomial P (x) of lowest degree for any given interpolation

data {y
k

}n
k=1

and {y⇤
l

}n�1

l=1

such that

P (x⇤
l

) = y⇤
l

for all 1  l  n� 1, and

Z
x

k+1

x

k

P (x) dx = y
k+1

for all 1  k  n� 1.

Theorem 1.2.1. Let X := {x
1

, . . . , x
n

} contain n distinct nodes on the real line ordered by x
1

<

x
2

< . . . < x
n

, and let X⇤
= {x⇤

l

}n�1

l=1

denote the set of the roots of the polynomial !0
X

(the

derivative of the polynomial !
X

in (1.1.1)). Given interpolation data {y
k

}n
k=2

and {y⇤
l

}n�1

l=1

, the

3



polynomial P (x) of degree 2n� 2 defined by

P (x) :=

d

dx

h
�

nX

k=2

z
k

!
X

(x)

(!0
X

(x
k

))

2

Q
i 6=k

(x
k

� x
i

)

Z
!0
X

(x)

(x� x
k

)

2

�
!0
X

(x
k

)� !00
X

(x
k

)(x� x
k

)

�
dx

+

n�1X

l=1

y⇤
l

!
X

(x)

!
X

(x⇤
l

)

Z Q
j 6=l

(x� x⇤
j

)

Q
j 6=l

(x⇤
l

� x⇤
j

)

dx
i
, (1.2.1)

satisfies

P (x⇤
l

) = y⇤
l

, 1  l  n� 1, (1.2.2)

and Z
x

k+1

x

k

P (x) dx = y
k+1

, 1  k  n� 1, (1.2.3)

where z
k

=

kP
q=2

y
q

, 2  k  n.

Proof. Let us show that a polynomial P of the following form

P (x) =
d

dx

"
nX

k=2

z
k

A
k

(x) +
n�1X

l=1

y⇤
l

B
l

(x)

#
(1.2.4)

has the interpolation properties (1.2.2) and (1.2.3), where polynomials {A
k

(x)}n
k=2

and {B
l

(x)}n�1

l=1

of degree at most 2n� 1 satisfy

8
><

>:

(a) A
k

(x
i

) = �
ki

for all 2  k  n and 1  i  n

(b) A0
k

(x⇤
j

) = 0 for all 2  k  n and 1  j  n� 1,
(1.2.5)

4



and 8
><

>:

(c) B
l

(x
i

) = 0 for all 1  l  n� 1 and 1  i  n

(d) B0
l

(x⇤
j

) = �
lj

for all 1  l  n� 1 and 1  j  n� 1.
(1.2.6)

Here �
ij

stands for the Kronecker symbol defined by �
ij

= 1 if i = j and �
ij

= 0 otherwise.

Set z
1

= 0. By (1.2.4)–(1.2.6),

Z
x

i+1

x

i

P (x)dx =

⇣ nX

k=2

z
k

A
k

(x) +

n�1X

l=1

y⇤
l

B
l

(x)
⌘���

x

i+1

x

i

= z
i+1

� z
i

= y
i+1

for all 1  i  n� 1, and

P (x⇤
j

) =

nX

k=2

z
k

A0
k

(x⇤
j

) +

n�1X

l=1

y⇤
l

B0
l

(x⇤
j

) = y⇤
j

for all 1  j  n�1. This proves that a polynomial P of the form (1.2.4) satisfies the interpolation

requirements (1.2.2) and (1.2.3).

Now it remains to construct polynomials A
k

(x), 2  k  n, and B
l

(x), 1  l  n � 1, of

degree at most 2n � 1 satisfying (1.2.5) and (1.2.6) respectively. First we construct polynomials

B
l

(x), 1  l  n� 1, of degree at most 2n� 1 satisfying (1.2.6). Take 1  l  n� 1. From the

requirement (c) in (1.2.6),

B
l

(x) = !
X

(x)V
l

(x) (1.2.7)

for some polynomial V
l

(x) of degree at most n� 1. Consequently,

B0
l

(x) = !0
X

(x)V
l

(x) + !
X

(x)V 0
l

(x) =
!0
X

(x)

(x� x⇤
l

)

W
l

(x) (1.2.8)

5



for some polynomial W
l

(x) of degree at most n, where the last equality follows from the require-

ment (d) in (1.2.6). Multiplying x� x⇤
l

at both sides of the above equation leads to

[!0
X

(x)V
l

(x) + !
X

(x)V 0
l

(x)](x� x⇤
l

) = !0
X

(x)W
l

(x).

Rearranging above equation yields

!0
X

(x)
�
(x� x⇤

l

)V
l

(x)�W
l

(x)
�
= �(x� x⇤

l

)!
X

(x)V 0
l

(x). (1.2.9)

Recall that !
X

and its derivative !0
X

do not have common roots. Then it follows from (1.2.9) that

(x� x⇤
l

)V 0
l

(x) = !0
X

(x)M
l

(x) (1.2.10)

for some polynomial M
l

(x). Comparing the degree of both sides of the equation (1.2.10) shows

that M
l

(x) has degree zero, i.e. M(x) = M for some costant M .

Evaluating (1.2.8) at x = x⇤
l

and recalling the requirement (d) in (1.2.6) gives

1 = !0
X

(x⇤
l

)V
l

(x⇤
l

) + !
X

(x⇤
l

)V 0
l

(x⇤
l

) = !
X

(x⇤
l

)V 0
l

(x⇤
l

), (1.2.11)

and hence

V 0
l

(x⇤
l

) = (!
X

(x⇤
l

))

�1.

Substituting this in (1.2.10) and recalling that M
l

is a constant function, we obtain

V 0
l

(x) =
1

!
X

(x⇤
l

)

Q
j 6=l

(x� x⇤
j

)

Q
j 6=l

(x⇤
l

� x⇤
j

)

. (1.2.12)

6



Therefore

V
l

(x) =

Z
1

!
X

(x⇤
l

)

Q
j 6=l

(x� x⇤
j

)

Q
j 6=l

(x⇤
l

� x⇤
j

)

dx. (1.2.13)

Substituting the above expression about V
l

(x) into (1.2.7) yields

B
l

(x) =
!
X

(x)

!
X

(x⇤
l

)

Z Q
j 6=l

(x� x⇤
j

)

Q
j 6=l

(x⇤
l

� x⇤
j

)

dx, 1  l  n� 1.

The polynomials B
l

, 1  l  n � 1, just defined have degree at most 2n � 1. It satisfies the

requirement (c) in (1.2.6), and also the requirement (d) in (1.2.6) since

B0
l

(x) =
!0
X

(x)

!
X

(x⇤
l

)

Z Q
j 6=l

(x� x⇤
j

)

Q
j 6=l

(x⇤
l

� x⇤
j

)

dx+

!
X

(x)

!
X

(x⇤
l

)

Q
j 6=l

(x� x⇤
j

)

Q
j 6=l

(x⇤
l

� x⇤
j

)

and hence

B0
l

(x⇤
j

0) =
!
X

(x⇤
j

0)

!
X

(x⇤
l

)

Q
j 6=l

(x⇤
j

0 � x⇤
j

)

Q
j 6=l

(x⇤
l

� x⇤
j

)

=

8
><

>:

1 if j0 = l

0 if j0 6= l.

This completes the construction of polynomials B
l

, 1  l  n � 1, of degree at most 2n � 1

satisfying (1.2.6).

Now we start to find A
k

, 2  k  n, of degree at most 2n � 1 that satisfies (1.2.5). From the

requirement (a) in (1.2.5) it follows that

A
k

(x) =
!
X

(x)

x� x
k

S
k

(x), 2  k  n (1.2.14)

for some polynomial S
k

(x) of degree at most n that satisfies

S
k

(x
k

) 6= 0. (1.2.15)

7



Taking derivative of both sides of (1.2.14) and applying the requirement (b) in (1.2.5), we have

A0
k

(x) =

✓
!0
X

(x)

(x� x
k

)

� !
X

(x)

(x� x
k

)

2

◆
S
k

(x) +
!
X

(x)

(x� x
k

)

S 0
k

(x) = !0
X

(x)T
k

(x)

for some polynomial T
k

(x) of degree at most n� 1. Thus

!0
X

(x)(x� x
k

)

�
S
k

(x)� T
k

(x)(x� x
k

)

�
= !

X

(x)
�
S
k

(x)� (x� x
k

)S 0
k

(x)
�
. (1.2.16)

Again, recall that !
X

(x) and !0
X

(x) do not share any roots. Then

S
k

(x)� (x� x
k

)S 0
k

(x) = !0
X

(x)U
k

(x) (1.2.17)

and

S
k

(x)� (x� x
k

)T
k

(x) =
!
X

(x)

x� x
k

U
k

(x) (1.2.18)

for some polynomial U
k

(x) of degree at most one. Substituting x by x
k

in (1.2.18) and recalling

that A
k

(x
k

) = 1 by the requirement (a) in (1.2.5), we obtain

U
k

(x
k

) =

1

!0
X

(x
k

)

Q
i 6=k

(x
k

� x
i

)

. (1.2.19)

Taking derivative of both sides of (1.2.17) yields

(!0
X

(x)U
k

(x))0 = �(x� x
k

)S 00
k

(x),

8



which implies that

!00
X

(x
k

)U
k

(x
k

) + !0
X

(x
k

)U 0
l

(x
k

) = 0. (1.2.20)

Thus !0
X

U
k

has the following Taylor expansion at x = x
k

:

!0
X

(x)U
k

(x) = !0
X

(x
k

)U
k

(x
k

) + c
2

(x� x
k

)

2

+ c
3

(x� x
k

)

2

+ . . .+ c
n

(x� x
k

)

N (1.2.21)

for some c
i

, 2  i  N = n� 1 + degU
k

. Dividing both sides of (1.2.17) by (x� x
k

)

2 gives

!0
(x)U

k

(x)

(x� x
k

)

2

=

S
k

(x)

(x� x
k

)

2

� S 0
k

(x)

x� x
k

= �
✓

S
k

(x)

x� x
k

◆0

.

This together with (1.2.21) implies that

S
k

(x)

x� x
k

= �
Z

!0
X

(x)U
k

(x)

(x� x
k

)

2

dx.

Hence

A
k

(x) = �!
X

(x)

Z
!0
X

(x)U
k

(x)

(x� x
k

)

2

dx. (1.2.22)

Now it remains to figure out the polynomial U
k

of degree at most one. Write

U
k

(x) = r
0

+ r
1

(x� x
k

). (1.2.23)

Then

r
0

= U
k

(x
k

) =

1

!0
X

(x
k

)

Q
i 6=k

(x
k

� x
i

)

(1.2.24)

9



by (1.2.19). From (1.2.20) and 1.2.23 it follows that

r
1

= � !00
X

(x
k

)

(!0
X

(x
k

))

2

Q
i 6=k

(x
k

� x
i

)

. (1.2.25)

Therefore

U
k

(x) =
1

(!0
X

(x
k

))

2

Q
i 6=k

(x
k

� x
i

)

�
!0
X

(x
k

)� !00
X

(x
k

)(x� x
k

)

�
.

Substituting this into (1.2.22), we obtain

A
k

(x) = � !
X

(x)

(!0
X

(x
k

))

2

Q
i 6=k

(x
k

� x
i

)

Z
!0
X

(x)

(x� x
k

)

2

�
!0
X

(x
k

)� !00
X

(x
k

)(x� x
k

)

�
dx, 2  k  n.

(1.2.26)

Finally let us verify that the functions A
k

, 2  k  n, satisfy (1.2.5). Notice that

A0
k

(x) = � !0
X

(x)Q
i 6=k

(x
k

� x
i

)

Z
!0
X

(x)

(x� x
k

)

2

�
1� !00

X

(x
k

)

!0
X

(x
k

)

(x� x
k

)

�
dx

� !
X

(x)Q
i 6=k

(x
k

� x
i

)

!0
X

(x)

(x� x
k

)

2

�
1� !00

X

(x
k

)

!0
X

(x
k

)

(x� x
k

)

�
,

which implies that A0
k

(x⇤
l

) = 0 for all 1  l  n � 1. On the other hand, A
k

(x
k

0
) = 0 for all

k0 6= k as !
X

(x
k

0
) = 0, and

A
k

(x
k

) = � lim

x!x

k

!
X

(x)

(!0
X

(x
k

))

2

Q
i 6=k

(x
k

� x
i

)

Z
1

(x� x
k

)

2

�
(!0

X

(x
k

))

2

+Q(x� x
k

)

�
dx

= lim

x!x

k

!
X

(x)Q
i 6=k

(x
k

� x
i

)(x� x
k

)

= 1

where Q is a polynomial such that Q(0) = 0. This proves that polynomials A
k

, 2  k  n, in

(1.2.26) satisfies (1.2.5).

10



We remark that there are many polynomials that satisfies (1.2.2) and (1.2.3). Consider a poly-

nomial ˜P of the following form:

˜P (x) = P (x) + !0
X

(x)(↵ + �!
X

(x)) (1.2.27)

where ↵, � 2 R. Then

Z
x

k+1

x

k

˜P (x)dx =

Z
x

k+1

x

k

P (x)dx+

Z
x

k+1

x

k

!0
X

(x)(↵ + �!
X

(x)) dx

= y
k+1

+

�
↵!

X

(x) + (�/2)(!
X

(x))2
�⇤

x

k+1

x

k

= y
k+1

, 1  k  n� 1.

Also, observe that

˜P (x⇤
l

) = P (x⇤
l

) + !0
X

(x⇤
l

)(↵ + �!
X

(x⇤
l

)) = y⇤
l

, 1  l  n� 1.

Therefore a polynomial P of the form of (1.2.27) satisfies (1.2.2) and (1.2.3). On the other hand,

If Q is a polynomial of degree at most 2n � 1 that satisfies (1.2.2) and (1.2.3), then R(x) :=

Q(x)� P (x) satisfies

R(x⇤
l

) = 0 for all 1  l  n� 1, and

Z
x

k+1

x

k

R(x)dx = 0 for all 1  k  n� 1. (1.2.28)

From the above requirement, the antiderivative of the polynomial

Z
R(x)dx = c+ !

X

(x)S(x) (1.2.29)

11



for some polynomial S of degree at most n, and

R(x) = !0
X

(x)M(x) (1.2.30)

for some polynomial M of degree at most n. Therefore

!0
X

(x)S(x) + !
X

(x)S 0
(x) = !0

X

(x)M(x). (1.2.31)

Rearranging the above equation gives

!0
X

(x)(S(x)�M(x)) = �!
X

(x)S 0
(x). (1.2.32)

Recall that !
X

(x) and !0
X

(x) do not have common roots, and that S 0
(x) has degree at most n� 1.

Therefore S 0
(x) = �

2

!0
X

(x) for some constant �. This implies that

M(x) = ↵ + �!
X

(x),

or equivalently

R(x) = P (x) + !0
X

(x)(a+ �!
X

(x)) (1.2.33)

for some constant ↵, �. This leads to the following theorem.

Theorem 1.2.2. Let X := {x
1

, . . . , x
n

} contain n distinct nodes on the real line ordered by x
1

<

x
2

< · · · < x
n

, and let X⇤
= {x⇤

l

}n�1

l=1

denote the set of the roots of the polynomial !0
X

(the

derivative of the polynomial !
X

in (1.1.1)). Given data {y
k

}n
k=1

and {y⇤
l

}n�1

l=1

, define a polynomial

P (x) of degree 2n � 2 as in (1.2.1). Then a polynomial R of degree at most 2n � 1 that satisfies

12



(1.2.2) and (1.2.3) if and only if R(x) = P (x) + !0
X

(x)(↵ + �!
X

(x)) for some constants ↵, �.

1.3 Modified Pál interpolation II

Let a, b, and c be real numbers, and let x⇤
k

, k = 1, 2, ..., n⇤, be the real roots of

!̃
X

(x) := a!
X

(x) + (bx+ c)!0
X

(x).

Szabó and Joó [21] [22] [23] [24] generalized the Pál interpolation problem to the following:

Let a, b, c be real numbers, and let x⇤
l

, l = 1, 2, ..., n⇤ be the real roots of !̃
X

(x) := a!
X

(x) +

(bx+ c)!0
X

(x). Determine a polynomial R(x) of the lowest possible degree that has the properties

R(x
k

) = y
k

, 1  k  n, and R0
(x⇤

l

) = y⇤
l

, 1  l  n⇤.

They found general polynomials for the following cases: (1) b = 0 and (2) a < 0, b = 1. If

a = b = 0 and c = 1, the above interpolation become Pál interpoltion.

In this section, we modify the work done by Sźabo and Joó [21] to fit the following conditions:

R(x⇤
l

) = y⇤
l

, 1  l  n,

and Z
x

k+1

x

k

R(x) dx = y
k+1

, 1  k  n� 1,

under the assumption that a 6= 0 and b = 0. In this case n⇤
= n. Moreover, roots of !

X

(x) and

!̃
X

(x) have the following interlacing property:

x
1

< x⇤
1

< x
2

< · · · < x
n

< x⇤
n

13



if a/c < 0; and

x⇤
1

< x
1

< x⇤
2

< · · · < x⇤
n

< x
n

if a/c > 0.

Theorem 1.3.1. Let a, c 6= 0, X := {x
1

, . . . , x
n

} contain n distinct nodes on the real line ordered

by x
1

< x
2

< . . . < x
n

, denote by X⇤
:= {x⇤

1

, x⇤
2

, . . . , x⇤
n

} the set of real roots of the polynomial

!̃
X

(x) := a!
X

(x) + c!0
X

(x), and let

⌦(x⇤
l

) =

a!
X

(x) + c!0
X

(x)

x� x⇤
l

���
x=x

⇤
l

. (1.3.1)

Given the interpolation data {y
k

}n
k=2

and {y⇤
l

}n
l=1

, set z
k

=

kP
q=2

y
q

, 2  k  n, and define the

polynomial R(x) of degree 2n� 2 by

R(x) :=

d

dx

h nX

k=2

z
k

!
X

(x)

c!0
X

(x
k

)

Q
i 6=k

(x
k

� x
i

)

e
a

c

x (1.3.2)

⇥
1Z

x

a!
X

(t) + c!0
X

(t)

(t� x
k

)

2

�
1� !00

X

(x
k

)

!0
X

(x
k

)

(t� x
k

)

�
e�

a

c

tdt

�
nX

l=1

y⇤
l

!
X

(x)e
a

c

x

!
X

(x⇤
l

)⌦(x⇤
l

)

1Z

x

a!
X

(t) + c!0
X

(t)

(t� x⇤
l

)

e�
a

c

tdt
i

for x > x
n

14



if a

c

> 0, and

R(x) :=

d

dx

h
�

nX

k=2

z
k

!
X

(x)

c!0
X

(x
k

)

Q
i 6=k

(x
k

� x
i

)

e
a

c

x (1.3.3)

⇥
xZ

�1

a!
X

(t) + c!0
X

(t)

(t� x
k

)

2

�
1� !00

X

(x
k

)

!0
X

(x
k

)

(t� x
k

)

�
e�

a

c

tdt

+

n�1X

l=1

y⇤
l

!
X

(x)e
a

c

x

!
X

(x⇤
l

)⌦(x⇤
l

)

xZ

�1

a!
X

(t) + c!0
X

(t)

(t� x⇤
l

)

e�
a

c

tdt
i

for x < x
1

if a

c

< 0. Then R(x) satisfies

R(x⇤
l

) = y⇤
l

, 1  l  n, (1.3.4)

and Z
x

k+1

x

k

R(x) dx = y
k+1

, 1  k  n� 1. (1.3.5)

Proof. We start by decomposing R(x) into a sum of two functions, as in the previous section,

R(x) =
d

dx

"
nX

k=2

z
k

A
k

(x) +
nX

l=1

y⇤
l

B
l

(x)

#
, (1.3.6)

where polynomials {A
k

(x)}n
k=2

and {B
l

(x)}n
l=1

of degree at most 2n� 1 satisfy

8
><

>:

(a) A
k

(x
i

) = �
ki

for all 2  k  n and 1  i  n

(b) A0
k

(x⇤
j

) = 0 for all 2  k  n and 1  j  n,
(1.3.7)
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and 8
><

>:

(c) B
l

(x
i

) = 0 for all 1  l  n and 1  i  n

(d) B0
l

(x⇤
j

) = �
lj

for all 1  l  n and 1  j  n.
(1.3.8)

Similar to the previous section let’s first construct the polynomials B
l

(x), 1  l  n. From the

requirement (c) in (1.3.8) we know that

B
l

(x) = !
X

(x)V
l

(x) (1.3.9)

for a polynomial V
l

(x) of degree at most n� 1. Recall that roots of a!
X

(x) + c!0
X

(x) are real and

have a multiplicity of one. Consequently,

B0
l

(x) = !0
X

(x)V
l

(x) + !
X

(x)V 0
l

(x) =
a!

X

(x) + c!0
X

(x)

(x� x⇤
l

)

W
l

(x) (1.3.10)

for some polynomial W
l

(x) of degree at most n � 1, where the last equality follows from the

requirement (d) in (1.3.8). Multiplying x� x⇤
l

at both sides of the above equation leads to

!0
X

(x)[(x� x⇤
l

)V
l

(x)� cW
l

(x)] = !
X

(x)[�(x� x⇤
l

)V 0
l

(x) + aW
l

(x)].

Recall that !
X

and its derivative !0
X

do not have common roots. Then

M!0
X

(x) = �(x� x⇤
l

)V 0
l

(x) + aW
l

(x) (1.3.11)

and

M!
X

(x) = (x� x⇤
l

)V
l

(x)� cW
l

(x) (1.3.12)
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for a constant M. Multiplying (1.3.11) with c and (1.3.12) with a, and then adding them together,

we obtain

(x� x⇤
l

)[aV
l

(x)� cV 0
l

(x)] = M [a!
X

(x) + c!0
X

(x)].

Multiplying both sides by � e

�a

c

x

c(x�x

⇤
l

)

gives

d

dx

�
e�

a

c

xV
l

(x)
�
= �Me�

a

c

x

c

a!
X

(x) + c!0
X

(x)

(x� x⇤
l

)

. (1.3.13)

Integrating both sides leads to

V
l

(x) =
Me

a

c

x

c

1Z

x

a!
X

(t) + c!0
X

(t)

(t� x⇤
l

)

e�
a

c

tdt, x > x⇤
l

, if
a

c
> 0, (1.3.14)

and

V
l

(x) = �Me
a

c

x

c

xZ

�1

a!
X

(t) + c!0
X

(t)

(t� x⇤
l

)

e�
a

c

tdt, x < x⇤
l

, if
a

c
< 0. (1.3.15)

The next step is to determine the constant M. Note from (1.3.10) and the condition (d) in (1.3.8)

that

B0
l

(x⇤
l

) = !
X

(x⇤
l

)V 0
l

(x⇤
l

) + V
l

(x⇤
l

)!0
X

(x⇤
l

) = 1. (1.3.16)

Multiplying both sides of (1.3.13) by �c and replacing x with x⇤
l

gives

� cV 0
l

(x⇤
l

) + aV
l

(x⇤
l

) =

a!
X

(x) + c!0
X

(x)

x� x⇤
l

���
x=x

⇤
l

M. (1.3.17)

Note that the right hand side of the above equation is nonzero because x⇤
l

is a simple root of the

polynomial a!
X

(x) + c!0
X

(x). Multiplying both sides of (1.3.16) by � c

!

X

(x

⇤
l

)

and recalling that
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a!
X

(x⇤
l

) + c!0
X

(x⇤
l

) = 0, we get

� c

!
X

(x⇤
l

)

= �cV 0
l

(x⇤
l

) + aV
l

(x⇤
l

). (1.3.18)

Let ⌦(x⇤
l

) =

a!

X

(x)+c!

0
X

(x)

x�x

⇤
l

���
x=x

⇤
l

. Thus combining (1.3.17) and (1.3.18) determines the constant

M =

�c

!
X

(x⇤
l

)⌦(x⇤
l

)

. (1.3.19)

Therefore,

B
l

(x) = � !
X

(x)e
a

c

x

!
X

(x⇤
l

)⌦(x⇤
l

)

1Z

x

a!
X

(t) + c!0
X

(t)

(t� x⇤
l

)

e�
a

c

tdx if
a

c
> 0 (1.3.20)

and

B
l

(x) =
!
X

(x)e
a

c

x

!
X

(x⇤
l

)⌦(x⇤
l

)

xZ

�1

a!
X

(t) + c!0
X

(t)

(t� x⇤
l

)

e�
a

c

tdt if
a

c
< 0. (1.3.21)

The polynomials B
l

, 1  l  n, just defined have degree at most 2n � 1. They satisfy the

requirement (c) in (1.3.8) as they have the factor !
X

, and also the requirement (d) in (1.3.8) as

B0
l

(x) =

!
X

(x)e
a

c

x

!
X

(x⇤
l

)⌦(x⇤
l

)

a!
X

(x) + c!0
X

(x)

x� x⇤
l

e�
a

c

x �

e
a

c

x

(a!
X

(x) + c!0
X

(x))

c!
X

(x⇤
l

)⌦(x⇤
l

)

1Z

x

a!
X

(t) + c!0
X

(t)

(t� x⇤
l

)

e�
a

c

tdt if
a

c
> 0,
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and

B0
l

(x) =

!
X

(x)e
a

c

x

!
X

(x⇤
l

)⌦(x⇤
l

)

a!
X

(x) + c!0
X

(x)

x� x⇤
l

e�
a

c

x

+

e
a

c

x

(a!
X

(x) + c!0
X

(x))

c!
X

(x⇤
l

)⌦(x⇤
l

)

xZ

�1

a!
X

(t) + c!0
X

(t)

(t� x⇤
l

)

e�
a

c

tdt if
a

c
< 0.

Thus

B0
l

(x⇤
j

0) =
!
X

(x⇤
j

0)

!
X

(x⇤
l

)

⌦(x⇤
j

0)

⌦(x⇤
l

)

=

8
><

>:

1 if j0 = l

0 if j0 6= l.

This completes the construction of polynomials B
l

, 1  l  n, of degree at most 2n� 1 satisfying

(1.3.8).

Polynomial A
k

(x), 2  k  n, can be constructed in a similar way. Condition (a) implies that

A
k

(x) =
!
X

(x)

x� x
k

S(x), (1.3.22)

where S(x) is a nonzero polynomial of degree at most n. Taking derivative on both sides of (1.3.22)

gives

A0
k

(x) =
!
X

(x)

x� x
k

S 0
(x) +


!0
X

(x)

x� x
k

� !
X

(x)

(x� x
k

)

2

�
S(x). (1.3.23)

Recall that a!
X

(x) + c!0
X

(x) has all roots being real and simple, we obtained from Condition (b)

that A0
k

(x) = (a!
X

(x) + c!0
X

(x))T (x) for some polynomial T of degree at most n� 2. Thus

(a!
X

(x) + c!0
X

(x))T (x) =
!
X

(x)

x� x
k

S 0
(x) +


!0
X

(x)

x� x
k

� !
X

(x)

(x� x
k

)

2

�
S(x). (1.3.24)

Multiplying both sides by (x � x
k

)

2 and then moving all terms with the factor !
X

(x) to the right
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hand side, we obtain

!0
X

(x)(x�x
k

)

⇥
S(x)�c(x�x

k

)T (x)
⇤
= !

X

(x)
⇥
S(x)�(x�x

k

)S 0
(x)+a(x�x

k

)

2T (x)
⇤
. (1.3.25)

Since !
X

and !0
X

are relatively prime (i.e. they do not have any zeros in common),

!0
X

(x)U
k

(x) = S(x)� (x� x
k

)S 0
(x) + a(x� x

k

)

2T (x) (1.3.26)

and
!
X

(x)

x� x
k

U
k

(x) = S(x)� c(x� x
k

)T (x) (1.3.27)

for a polynomial U
k

(x) of degree at most 1. From (1.3.26) and (1.3.27),

!0
X

(x)U
k

(x)

(x� x
k

)

2

=

S(x)

(x� x
k

)

2

� S 0
(x)

x� x
k

+ aT (x) = �
✓

S(x)

x� x
k

◆0

+ aT (x). (1.3.28)

and
!
X

(x)U
k

(x)

(x� x
k

)

2

=

S(x)

x� x
k

� cT (x). (1.3.29)

Multiplying (1.3.29) with a/c, and then adding it with (1.3.28) yields

�
✓

S(x)

x� x
k

◆0

+

a

c

S(x)

x� x
k

=

1

c

a!
X

(x) + c!0
X

(x)

(x� x
k

)

2

U
k

(x).

Multiplying both sides with e�
a

c

x gives

d

dx

✓
e�

a

c

x

S(x)

x� x
k

◆
= �e�

a

c

x

c

a!
X

(x) + c!0
X

(x)

(x� x
k

)

2

U
k

(x).
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Integrating both sides leads to

S(x)

x� x
k

= �e
a

c

x

c

Z
a!

X

(x) + c!0
X

(x)

(x� x
k

)

2

U
k

(x)e�
a

c

xdx. (1.3.30)

The above equation combined with equation (1.3.22) gives

A
k

(x) = �1

c
e

a

c

x!
X

(x)

Z
a!

X

(x) + c!0
X

(x)

(x� x
k

)

2

U
k

(x)e�
a

c

xdx. (1.3.31)

Now it remains to figure out the polynomial U
k

of degree at most one. Write

U
k

(x) = r
0

+ r
1

(x� x
k

). (1.3.32)

Then by (1.2.19)

r
0

= U
k

(x
k

) =

1

!0
X

(x
k

)

Q
i 6=k

(x
k

� x
i

)

, (1.3.33)

and by (1.3.26),

!00
X

(x
k

)U
k

(x
k

) + !0
X

(x
k

)U 0
k

(x
k

) = 0. (1.3.34)

The above equation implies that

r
1

= � !00
X

(x
k

)

(!0
X

(x
k

))

2

Q
i 6=k

(x
k

� x
i

)

. (1.3.35)

Therefore

U
k

(x) =
1

(!0
X

(x
k

))

2

Q
i 6=k

(x
k

� x
i

)

�
!0
X

(x
k

)� !00
X

(x
k

)(x� x
k

)

�
.
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Substituting this into (1.3.31), we obtain that

A
k

(x) =

1

c!0
X

(x
k

)

Q
i 6=k

(x
k

� x
i

)

e
a

c

x!
X

(x)

⇥
1Z

x

a!
X

(t) + c!0
X

(t)

(t� x
k

)

2

�
1� !00

X

(x
k

)

!0
X

(x
k

)

(t� x
k

)

�
e�

a

c

tdt for x > x
k

, (1.3.36)

if a

c

> 0, and

A
k

(x) = � 1

c!0
X

(x
k

)

Q
i 6=k

(x
k

� x
i

)

e
a

c

x!
X

(x)

xZ

�1

a!
X

(t) + c!0
X

(t)

(t� x
k

)

2

�
1� !00

X

(x
k

)

!0
X

(x
k

)

(t� x
k

)

�
e�

a

c

tdt for x < x
k

, (1.3.37)

if a

c

< 0. Note that A
k

(x) satisfies condition (b) because

A0
k

(x) = � e
a

c

x!
X

(x)

c!0
X

(x
k

)

Q
i 6=k

(x
k

� x
i

)

a!
X

(x) + c!0
X

(x)

(x� x
k

)

2

⇣
1� !00

X

(x
k

)

!0
X

(x
k

)

(x� x
k

)

⌘
e�

a

c

x

� 1

c2
e

a

c

x

(a!
X

(x) + c!0
X

(x))

⇥
Z

a!
X

(x) + c!0
X

(x)

!0
X

(x
k

)(x� x
k

)

2

Q
i 6=k

(x
k

� x
i

)

�
1� !00

X

(x
k

)

!0
X

(x
k

)

(x� x
k

)

�
e�

a

c

xdx.

Thus A0
k

(x⇤
j

) = 0 because both terms have the factor a!
X

(x) + c!0
X

(x) which is zero when x is
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replaced by x⇤
j

. Note that

(a!
X

(x) + c!0
X

(x))U
k

(x)

= (a!
X

(x
k

) + c!0
X

(x
k

))U
k

(x
k

) + ((a!
X

(x) + c!0
X

(x)U
k

(x))0|
x=x

k

(x� x
k

)

+c
2

(x� x
k

)

2

+ · · ·+ c
N

(x� x
k

)

N

=

cQ
i 6=k

(x
k

� x
i

)

� aQ
i 6=k

(x
k

� x
i

)

(x� x
k

) + c
2

(x� x
k

)

2

+ · · ·+ c
N

(x� x
k

)

N

by (1.3.33) and (1.3.35). Therefore,

Z
a!

X

(x) + c!0
X

(x)

(x� x
k

)

2

U
k

(x)e�
a

c

xdx = � ce�
a

c

x

Q
i 6=j

(x
k

� x
j

)

1

x� x
k

+Q(x)e�
a

c

x

for some polynomial Q of degree at most n. Therefore A
k

is a polynomial of degree at most 2n�1

satisfying

A
k

(x
j

) = 0 for all j 6= k

and

A
k

(x
k

) = �1

c
e

a

c

x

k

lim

x!x

k

�ce�
a

c

x

Q
i 6=j

(x
k

� x
j

)

!
X

(x)

x� x
k

= 1.

1.4 Modified Pál interpolation III

In this section, we consider the modified Pál interpolation associated with !̃
X

(x) := a!
X

(x) +

(bx+ c)!0
X

(x) with a < 0 and b = 1.
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Theorem 1.4.1. Let X := {x
1

, . . . , x
n

} contain n distinct nodes on the real line ordered by x
1

<

x
2

< . . . < x
n

, 0 > a /2 {�1,�n} and 0 6= c 62 �X . Assume that the polynomial !̃
X

(x) :=

a!
X

(x)+ (x+ c)!0
X

(x) has n simple roots, which is denoted by X⇤
:= {x⇤

1

, x⇤
2

, . . . , x⇤
n

}. Then the

polynomial R(x) of degree 2n� 2 defined by

R(x) :=

d

dx

h
�

nX

k=2

z
k

!
X

(x)

|x+ c|�a

xZ

�c

|t+ c|�a

t+ c

!̃
X

(t)

!0
X

(x
k

)(t� x
k

)

2

Q
i 6=k

(x
k

� x
i

)

(1� ↵
k

(t))dt

+

n�1X

l=1

y⇤
l

�
l

⌦(x⇤
l

)

!
X

(x)

xZ

�c

����
t+ c

x+ c

����
�a

1

t+ c

!̃
X

(t)

t� x⇤
l

dt
i

satisfies the following conditions

R(x⇤
l

) = y⇤
l

, 1  l  n, (1.4.1)

and Z
x

k+1

x

k

R(x) dx = y
k+1

, 1  k  n� 1, (1.4.2)

where

z
k

=

kX

q=2

y
q

, ↵
k

(t) =
!00
X

(x
k

)

!0
X

(x
k

)

(t� x
k

), 2  k  n,

and

�
l

=

x⇤
l

+ c

!
X

(x⇤
l

)

, ⌦(x⇤
l

) =

!̃
X

(x)

x� x⇤
l

���
x=x

⇤
l

, 1  l  n� 1.

Proof. We begin the proof the same way as the previous sections, by decomposing R(x) into a
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sum of polynomials A
k

(x) and B
l

(x), c.f.(1.2.4) and (1.3.6), which satisfy the conditions:

8
><

>:

(a) A
k

(x
i

) = �
ki

for all 2  k  n and 1  i  n

(b) A0
k

(x⇤
j

) = 0 for all 2  k  n and 1  j  n,
(1.4.3)

and 8
><

>:

(c) B
l

(x
i

) = 0 for all 1  l  n and 1  i  n

(d) B0
l

(x⇤
j

) = �
lj

for all 1  l  n and 1  j  n.
(1.4.4)

Again, we start by obtaining the polynomial B
l

(x), 1  l  n. By (1.4.4),

B
l

(x) = !
X

(x)V
l

(x) (1.4.5)

where V
l

(x) is a polynomial of degree at most n� 1. Taking derivative of the above equality leads

to

B0
l

(x) = !
X

(x)V 0
l

(x) + !0
X

(x)V 0
l

(x) =
a!

X

(x) + (x+ c)!0
X

(x)

x� x⇤
l

W
l

(x) (1.4.6)

for a polynomial W
l

(x) of degree at most n � 1, where the last equality holds by (1.4.4) and the

assumption that all roots of a!
X

(x) + (x + c)!0
X

(x) are real and simple. Recall that !
X

and !0
X

have no common roots. Hence we obtain from (1.4.6) that

� (x� x⇤
l

)V 0
l

(x) + aW
l

(x) = M!0
X

(x) (1.4.7)

and

(x� x⇤
l

)V
l

(x)� (x+ c)W
l

(x) = M!
X

(x) (1.4.8)
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for some constant M . Dividing (1.4.7) by x�x⇤
l

and (1.4.8) by (x+ c)(x�x⇤
l

)/a, and then taking

their sum, we have

V 0
l

(x)� a

x+ c
V
l

(x) = � M

x+ c

a!
X

(x) + (x+ c)!0
X

(x)

x� x⇤
l

. (1.4.9)

Multiplying by |x+ c|�a and then integrating at both sides yields

V
l

(x) = �M |x+ c|a
xZ

�c

|t+ c|�a

a!
X

(t) + (t+ c)!0
X

(t)

(t� x⇤
l

)(t+ c)
dt. (1.4.10)

To find the constant M , we note that from condition (d) and (1.4.6)

B0
l

(x⇤
k

) = 1 = !
X

(x⇤
l

)V 0
l

(x⇤
l

) + !0
X

(x⇤
l

)V
l

(x⇤
l

). (1.4.11)

Replacing x with x⇤
l

in (1.4.9) we get

� (x⇤
l

+ c)V 0
l

(x⇤
l

) + aV
l

(x⇤
l

) = M
a!

X

(x) + (x+ c)!0
X

(x)

x� x⇤
l

���
x=x

⇤
l

:= M⌦(x⇤
l

). (1.4.12)

We remark that ⌦(x⇤
l

) is nonzero because roots of a!
X

(x)+(x+ c)!0
X

(x) are simple. Multiplying

both sides of (1.4.11) with x⇤
l

+ c gives

x⇤
l

+ c = (x⇤
l

+ c)!0
X

(x⇤
l

)V
l

(x⇤
l

) + (x⇤
l

+ c)V 0
l

(x⇤
l

)!
X

(x⇤
l

). (1.4.13)
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Recall that x⇤
l

is a root of the polynomial a!
X

(x) + (x+ c)!0
X

(x), i.e.,

a!
X

(x⇤
l

) + (x⇤
l

+ c)!0
X

(x⇤
l

) = 0. (1.4.14)

This together with (1.4.11) implies that

x⇤
l

+ c = �a!
X

(x⇤
l

)V
l

(x⇤
l

) + (x⇤
l

+ c)!
X

(x⇤
l

)V 0
l

(x⇤
l

). (1.4.15)

Observe that !
X

(x⇤
l

) 6= 0, as otherwise (x⇤
l

+ c)!0
X

(x⇤
l

) = 0, which contradicts to the assumptions

on c and the simple root property for !
X

(x). Therefore,

� x⇤
l

+ c

!(x⇤
l

)

= �V 0
l

(x⇤
l

)(x⇤
l

+ c) + aV
l

(x⇤
l

). (1.4.16)

Thus

M = � x⇤
l

+ c

!
X

(x⇤
l

)⌦(x⇤
l

)

(1.4.17)

by (1.4.12) and (1.4.16). From (1.4.10) and (1.4.17) we conclude that

B
l

(x) =
x⇤
l

+ c

!
X

(x⇤
l

)⌦(x⇤
l

)

!
X

(x)

xZ

�c

����
t+ c

x+ c

����
�a

1

t+ c

a!
X

(t) + (t+ c)!0
X

(t)

t� x⇤
l

dt. (1.4.18)

The polynomials B
l

, 1  l  n�1, satisfy the requirement (c) in (1.4.4) as they have the factor
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!
X

by (1.4.5), and also the requirement (d) in (1.4.4) as

B0
l

(x) = M!
X

(x)
1

x+ c

a!
X

(x) + (x+ c)!0
X

(x)

x� x⇤
l

+M(!
X

(x)(x+ c)a)0
Z

x

�c

|t+ c|�a

a!
X

(t) + (t+ c)!0
X

(t)

(t+ c)(t� x⇤
l

)

dt

and hence

B0
l

(x⇤
j

0) =

8
><

>:

1 if j0 = l

0 if j0 6= l.

This completes the construction of polynomials B
l

, 1  l  n� 1.

We finish this section by the construction of polynomials A
k

, 2  k  n. Condition (a) in

(1.4.3) implies that

A
k

(x) =
!
X

(x)

x� x
k

S(x) (1.4.19)

where S(x) is a nonzero polynomial of degree at most n. The above equation (1.4.19) together

with condition (b) in (1.4.3) implies that

A0
k

(x) =

⇣
(x� x

k

)!0
X

(x)� !
X

(x)

(x� x
k

)

2

⌘
S(x) +

!
X

(x)

x� x
k

S 0
(x)

=

�
a!

X

(x) + (x+ c)!0
X

(x)
�
T (x) (1.4.20)

for a polynomial T (x) of degree at most n�2. Multiplying (1.4.20) with (x�x
k

)

2 and rearranging

the equation yields

!0
X

(x)(x� x
k

)

⇥
S(x)� (x+ c)(x� x

k

)T (x)
⇤

= !
X

(x)
⇥
S(x)� (x� x

k

)S 0
(x) + a(x� x

k

)T (x)
⇤
.
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Recalling that !
X

(x) and !0
X

(x) have no roots in common, we have

!0
X

(x)U
k

(x) = S(x)� (x� x
k

)S 0
(x) + a(x� x

k

)

2T (x) (1.4.21)

and
!
X

(x)

x� x
k

U
k

(x) = S(x)� (x+ c)(x� x
k

)T (x) (1.4.22)

for some polynomial U
k

of degree at most one. Rearranging equations (1.4.21) and (1.4.22) yields

�
⇣ S(x)

x� x
k

⌘0
+ aT (x) =

!0
X

(x)U
k

(x)

(x� x
k

)

2

(1.4.23)

and
S(x)

x� x
k

� (x+ c)T (x) =
!
X

(x)U
k

(x)

(x� x
k

)

2

. (1.4.24)

Multiplying (1.4.24) by a/(x+ c) and adding it to (1.4.23) gives

�
⇣ S(x)

x� x
k

⌘0
+

a

x+ c

⇣ S(x)

x� x
k

⌘
= �U

k

(x)

x+ c

a!
X

(x) + (x+ c)!0
X

(x)

(x� x
k

)

2

. (1.4.25)

Multiplying both sides of the above equation by |x+ c|�a leads to

d

dx

⇣
|x+ c|�a

S(x)

x� x
k

⌘
= �U

k

(x)

x+ c
|x+ c|�a

�
a!

X

(x) + (x+ c)!0
X

(x)
�
. (1.4.26)

Hence

S(x)

x� x
k

= �|x+ c|a
Z |x+ c|�a

x+ c

a!
X

(x) + (x+ c)!0
X

(x)

(x� x
k

)

2

U
k

(x)dx. (1.4.27)
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Comparing (1.4.27) to (1.4.19) yields

A
k

(x) = �!
X

(x)|x+ c|a
Z |x+ c|�a

x+ c

a!
X

(x) + (x+ c)!0
X

(x)

(x� x
k

)

2

U
k

(x)dx. (1.4.28)

From (1.4.21)

S(x
k

) = !0
X

(x
k

)U
k

(x
k

). (1.4.29)

From (1.4.19) and condition (a) it follows that

A
k

(x
k

) = !0
X

(x
k

)S(x
k

) = 1.

Therefore,

S(x
k

) =

1

!0
X

(x
k

)

(1.4.30)

and

U
k

(x
k

) =

S(x
k

)

!0
X

(x)
=

1

�
!0
X

(x
k

)

�
2

. (1.4.31)

Multiplying (1.4.21) by x+ c and (1.4.22) by a and adding the two gives

(a!
X

(x) + (x+ c)!0
X

(x))U
k

(x) = S(x)[(x+ c) + a(x� x
k

)]� (x+ c)(x� x
k

)S 0
(x). (1.4.32)

Replacing x with x
k

yields

!̃(x)U
k

(x)|
x=x

k

= (x+ c)S(x)|
x=x

k

=

x+ c

!0
X

(x)

���
x=x

k

. (1.4.33)
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Now taking the derivative on both sides of (1.4.32) yields

�
(a!

X

(x)+(x+c)!0
X

(x))U
k

(x)
�0
= �S 00

(x)(x+c)(x�x
k

)+S 0
(x)(x�x

k

)(a�1)+(a+1)S(x).

(1.4.34)

Replacing x with x
k

in the above equation and then applying (1.4.30) gives

�
(a!

X

(x) + (x+ c)!0
X

(x))U
k

(x)
�0|

x=x

k

=

a+ 1

!0
X

(x
k

)

. (1.4.35)

Therefore, the Taylor series expansion of !̃(x)U
k

(x) about the point x
k

is

(a!
X

(x) + (x+ c)!0
X

(x))U
k

(x) =

x
k

+ c

!0
X

(x
k

)

+

a+ 1

!0
X

(x
k

)

(x� x
k

)

+c
2

(x� x
k

)

2

+ · · ·+ c
N

(x� x
k

)

N (1.4.36)

for some constants c
i

, 2  i  N , where N = n+ degU
k

 n+ 1. Hence by (1.4.28)

A
k

(x) = � !
X

(x)

|x+ c|�a

Z |x+ c|�a

x+ c

⇣ x
k

+ c

!0
X

(x
k

)

· 1

(x� x
k

)

2

+

a+ 1

!0
X

(x
k

)

· 1

x� x
k

+ c
2

+ · · ·+ c
N

(x� x
k

)

N�2

⌘
dx. (1.4.37)

Note that Z
(x+ c)�a�1

(x� x
k

)

2

dx = �(x+ c)�a�1

x� x
k

� (a+ 1)

Z
(x+ c)�a�2

x� x
k

dx. (1.4.38)
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Therefore for x > c

Z |x+ c|�a

x+ c

⇣ x
k

+ c

!0
X

(x
k

)

· 1

(x� x
k

)

2

+

a+ 1

!0
X

(x
k

)

· 1

x� x
k

⌘
dx

= � x
k

+ c

!0
X

(x
k

)

(x+ c)�a�1

x� x
k

� (a+ 1)(x
k

+ c)

!0
X

(x
k

)

Z
(x+ c)�a�2

x� x
k

dx

+

a+ 1

!0
X

(x
k

)

Z
(x+ c)�a�1

x� x
k

dx

= � x
k

+ c

!0
X

(x
k

)

(x+ c)�a�1

x� x
k

� 1

!0
X

(x
k

)

(x+ c)�a�1

+ C

= � (x+ c)�a

!0
X

(x
k

)(x� x
k

)

+ C. (1.4.39)

By (1.4.28), (1.4.37) and (1.4.39), we then obtain

A
k

(x) =

!
X

(x)

!0
X

(x
k

)(x� x
k

)

�!
X

(x)|x+ c|a
Z

(x+ c)�a�1

�
c
2

+ · · ·+ c
N

(x� x
k

)

N�2

�
dx

which implies that A
k

(x) is a polynomial and

A
k

(x) = �!
X

(x)|x+ c|a
xZ

�c

|t+ c|�a

t+ c

!̃(x)

!0
X

(x
k

)(t� x
k

)

2

Q
i 6=k

(x
k

� x
i

)

U
k

(x)dx. (1.4.40)

Recall that U
k

(x) is a linear function. Then we may write

U
k

(x) = r
0

+ r
1

(x� x
k

). (1.4.41)
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From (1.4.35) and (1.4.31),

�
(a!

X

(x) + (x+ c)!0
X

(x)U
k

(x)
�0|

x=x

k

=

a+ 1

!0
X

(x
k

)

+

(x
k

+ c)!00
X

(x
k

)

�
!0
X

(x
k

)

�
2

+ (x
k

+ c)r
1

!0
X

(x
k

)

=

a+ 1

!0
X

(x
k

)

. (1.4.42)

This together with (1.4.31) implies that

r
0

=

1

(!0
X

(x
k

))

2

and r
1

= � !00
(x

k

)

�
!0
X

(x
k

)

�
3

. (1.4.43)

Finally,

A
k

(x) = � !
X

(x)

|x+ c|�a

xZ

�c

|t+ c|�a

t+ c

a!
X

(t) + (t+ c)!0
X

(t)

!0
X

(x
k

)(t� x
k

)

2

Q
i 6=k

(x
k

� x
i

)

✓
1� !00

X

(x
k

)

!0
X

(x
k

)

(t� x
k

)

◆
dt.

(1.4.44)

Using (1.4.37) and (1.4.39), we can verify that A
k

, 2  k  n, just defined satisfy the requirement

(a) and (b) in (1.4.3).
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CHAPTER 2: Sampling Bilevel Signals With Finite Rate of Innovation

Sampling plays a very important role in signal processing. Many sampling techniques were devel-

oped in past last sixty years and they have been used extensively in engineering and life sciences,

especially in processing audio signals, images and in communication channels. Sampling also

brings into light some mathematical tools from Fourier analysis and approximation theory.

Bilevel signals are one of the simplest of signals but they have many important applications

such as coding image, audio, seismic and ECG data. Some examples of bilevel signals are doc-

uments (where black indicates text and white indicates background), line art, hand-written signa-

tures, bar codes, and vehicle license plates. All of which are frequently handled by machine vision

systems for automatic recognition and identification. Vetterli, Marziliano and Blu show in [30]

that a bilevel signal x can be reconstructed from its samples x ⇤ h(nT ), n � 0, when the sampling

kernel h is the box spline �
[0,T )

(or the hat spline (1/T � |t|)�
[�1/T,1/T )

) and the sampling rate T

is at (or above) the maximal local rate of innovation R of the signal x. In this section, we show

that bilevel causal signals x are uniquely determined from their samples x ⇤ h(n/T ), n � 1, if the

causal sampling kernel h is positive on (0, T ) and the sample rate T is at (or above) the maximal

local rate of innovation R (see Theorem 1). Our numerical simulations indicate that the bilevel

signal recovery procedure from noisy samples x ⇤ h(n/T ) + ✏
n

, n � 1, is stable when the number

of transition positions are not too large. This chapter is based on [15].
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2.1 Bilevel signals with finite rate of innovation

A time signal is said to have finite rate of innovation if it can be determined by finitely many

freedoms (free variables) per unit of time [31]. Prototype examples of signals with finite rate of in-

novation include bandlimited signals, time signals in shift-invariant spaces, delta pulses, signals in

ultra-wide band communication, bilevel signals, and mass spectrometry data in medical diagnosis.

There are several ways to define the rate of innovation [3, 19, 20, 29, 30, 31].

A bilevel time signal is a continuous time-signal that takes only two values 0 and 1. Denote by

�
E

the characteristic function on a set E. In this chapter, we consider causal bilevel signal x of the

following type:

x(t) :=
NX

i=1

�
[t2i�1,t2i](t), (2.1.1)

where N � 0, and transition values (positions) t
i

, 1  i  2N, satisfy

t
i

< t
i+1

, 1  i  2N. (2.1.2)

A bilevel signal x is said to have finite rate of innovation if its maximal local rate of innovation

is finite. For the bilevel causal signal x in (2.1.1), define its maximal local rate of innovation R

by reciprocal of the maximal positive number ⌧
0

such that there is at most one transition position

t
i

, 1  i  2N, in any time interval [t, t+ ⌧
0

), t � 0, that is,

R = sup

1i<2N

1

t
i+1

� t
i

. (2.1.3)
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2.2 Recovery of bilevel causal signals

In this section, we provide a necessary condition on the sampling kernel h such that bilevel signals

x can be uniquely determined from their samples. We also propose an algorithm for the stable

recovery of bilevel signals.

Theorem 2.2.1. If h is a causal sampling kernel with h(t) > 0 on (0, 1/T ), then any bilevel causal

signal x in (2.1.1) with the maximal local rate of innovation R less than or equal to the sampling

rate T can be recovered from its samples x ⇤ h(n/T ), n � 1.

Proof. Let

H(t) =

tZ

0

h(s)ds, 0  t  1/T. (2.2.1)

Then H(0) = 0 and H is a strictly increasing function on [0, 1/T ) as h is strictly positive on

(0, 1/T ). Denote its inverse function on [0, T ] by H�1

: [0, H(T )] ! [0, T ].

Let x be a bilevel causal signal in (2.1.1) with transition positions t
i

, 1  i  2N, satisfying

(2.1.2). Then its first sample y
1

= x ⇤ h(1/T ) is given by

y
1

=

1Z

0

x(t)h(
1

T
� t)dt =

1/TZ

0

x(t)h(
1

T
� t)dt

=

1/TZ

0

�
[t1,t2)(t)h(

1

T
� t)dt.

Here the first two equalities hold due to the causality of the signal x and the sampling kernel h,
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and the third equality follows from (2.1.1) and the observation that

t
i

� t
2

= (t
2

� t
1

) + t
1

� 1

R
+ 0 � 1

T
, i � 2.

Thus,

y
1

=

1/TZ

0

�
[t1,

1
T

)

(t)h
�
1

T
� t

�
dt = H(max{T�1 � t

1

, 0}). (2.2.2)

Recall that H is strictly increasing on [0, 1/T ). Then there exists a transition position in the time

interval [0, 1/T ) if and only if y
1

= x ⇤ h(1/T ) > 0. Moreover, if it exists, we can solve

H(

1

T
� t

1

) = y
1

to obtain

t
1

= 1/T �H�1

(y
1

). (2.2.3)

Thus for a bilevel causal signal, we may determine from its first sample x ⇤ h(1/T ) the existence

(or nonexistence) of its transition position on the time period [0, 1/T ), and determine the transition

in that time period if it does exist.

Inductively, we may assume that all transition positions of the bilevel signal x on the time

interval [0, n/T ) has been determined from its samples y
k

= x ⇤ h(k/T ), 1  k  n. We examine

four cases to determine its transition location (if it exists) on the time period [n/T, (n+1)/T ) from

sample y
n+1

= x ⇤ h((n+ 1)/T ).

Case 1: There is no transition position on the time interval [0, n/T ).

In this case, following above argument to determine transition positions in the interval [0, 1/T ),
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we have that there exists a transition position on [n/T, (n + 1)/T ) if and only if y
n+1

> 0. If it

exists, the transition position is the first one, t
1

, of the bilevel signal x and

t
1

=

n+ 1

T
�H�1

(y
n+1

). (2.2.4)

Case 2: The last transition position on the time interval [0, n/T ) is t
2i0�1

for some i
0

� 1.

In this case, t
2i0 � n/T and t

i

� (n+ 1)/T for all i > 2i
0

. Thus

y
n+1

= x ⇤ h(n+ 1

T
) =

n+1
TZ

0

x(t)h(
n+ 1

T
� t)dt

=

n+1
TZ

0

⇣ X

1i<i0

�
[t2i�1,t2i)(t) + �

[t2i0�1,
n+1
T

)

(t)
⌘
h
⇣n+ 1

T
� t

⌘
dt

�

n+1
TZ

n

T

�
[min(t2i0 ,

n+1
T

),

n+1
T

)

(t)h(
n+ 1

T
� t)dt.

Hence there exists a transition position t
2i0 in the time interval [n/T, (n+ 1)/T ) if and only if

ỹ
n+1

:=

n+1
TZ

0

⇣ X

1i<i0

�
[t2i�1,t2i)(t) + �

[t2i0�1,
n+1
T

)

(t)
⌘
h(

n+ 1

T
� t)dt� y

n+1

(2.2.5)

is positive. Moreover, if ỹ
n+1

> 0, the transition position t
2i0 in the time interval [n/T, (n+1)/T )

is determined by

t
2i0 =

n+ 1

T
�H�1

(ỹ
k+1

). (2.2.6)

Case 3: The last transition position on the time interval [0, n/T ) is t
2i0 for some 1  i

0

< N.
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In this case, the (n+ 1)�th sample y
n+1

= x ⇤ h((n+ 1)/T ) is given by

y
n+1

=

n/TZ

0

⇣ i0X

i=1

�
[t2i�1,t2i)(t)

⌘
h(

n+ 1

T
� t)dt

+

n+1
TZ

min{t2i0+1,
n+1
T

}

h(
n+ 1

T
� t)dt. (2.2.7)

Therefore, there exists a transition value t
2i0+1

2 [n/T, (n+ 1)/T ) if and only if

ỹ
n+1

:= y
n+1

�
n/TZ

0

⇣ i0X

i=1

�
[t2i�1,t2i)(t)

⌘
h(

n+ 1

T
� t)dt (2.2.8)

is positive. Also, we see that if ỹ
n+1

> 0 then the transition value t
2i0 + 1 can be obtained by

t
2i0+1

=

n+ 1

T
�H�1

(ỹ
n+1

). (2.2.9)

Case 4: The last transition position on the time range [0, n/T ) is t
2N

. In this case, all transition

positions of the bilevel signal, x, have been recovered already. Hence the bilevel signal, x, is fully

recovered.

This completes the inductive proof.

From the above argument of Theorem 1, we can use the following algorithm to recover a bilevel

causal signal x in (2.1.1) from its samples x ⇤ h(n/T ), 1  n  K, in the noiseless environment,

where K > t
2N

T.

Bilevel Signal Recovery Algorithm:
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Step 1: If all samples y
n

= x ⇤h(n/T ), n � 1, are zero, then the bilevel signal x is the zero signal,

else find the first nonzero sample, say y
n0 > 0, the first transition location of the bilevel

signal, x, is located at t
1

:= n
0

/T �H�1

(y
n0), and set n = n

0

.

Step 2: Do Step 2a if the last transition position on the time interval [0, n/T ) is t
2i0�1

for some

i
0

� 1, Step 2b else if the last transition location on the interval [0, n/T ) is t
2i0 for some

1  i
0

< N, or else Step 4.

• Step 2a: Let ỹ
n+1

as in (2.2.5). Define t
2i0 as in (2.2.6) and set n = n+ 1 if ỹ

n+1

> 0.

• Step 2b: Let ỹ
n+1

as in (2.2.8). Define t
2i0+1

as in (2.2.9) and set n = n+ 1 if ỹ
n+1

> 0.

Step 3: Set n = n+ 1. Do Step 2 if n < K, and Step 4 if n = K.

Step 4: Stop as all transition positions t
i

, 1  i  2N, of bilevel signal x have been recovered.

2.3 Stable recovery of bilevel causal signals from noisy samples

In this section, we consider the stable recovery of a bilevel signal x in (2.1.1) from its noisy samples

{x ⇤ h(n/T ) + ✏
n

} where ✏
n

, n � 1, are bounded noises.

First, we note that the sampling procedure from bilevel signals x to their samples are stable in

bounded norm.

Theorem 2.3.1. Let T > 0, h be a bounded filter supported in [0,M/T ), x(t) =
P

N

i=1

�
[t2i�1,t2i)(t)

be a bilevel causal signal with maximal local innovation rate R  T, and

x̃(t) =

NX

i=N

�
[t2i�1+�2i�1,t2i+�2i)(t) (2.3.1)

40



be a perturbation of the bilevel signal x with perturbed transition positions {t
i

+ �
i

}2N
i=1

satisfying

� := sup

1i2N

|˜t
i

� t
i

| < 1

2R
. (2.3.2)

Then the sample error between x ⇤ h(n/T ) and x̃ ⇤ h(n/T ), n � 1, are dominated by (bMR

T

c +

2)||h||1�, i.e.,
���x ⇤ h(n

T
)� x̃ ⇤ h(n

T
)

��� 
⇣
bMR

T
c+ 2

⌘
||h||1�, n � 1, (2.3.3)

where ||h||1 is the L1 norm of the sampling kernel h.

Proof. By the assumption on maximal local innovation rate R of the bilevel signal x and the

maximal transition position perturbation � between bilevel signals x and x̃, we have that

|x(t)� x̃(t)| =
2NX

i=1

�
t

i

+[min{�
i

,0},max{�
i

,0})(t). (2.3.4)

Therefore,

|x ⇤ h(n/T )� x̃ ⇤ h(n/T )|

=

���
n/TZ

0

(x(t)� x̃(t))h(k/T � t)dt
���

 �||h||1

n/TZ

(n�M)/T

2NX

i=1

�
t

i

+[min{�
i

,0},max{�
i

,0})(t)dt.

(2.3.5)
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Therefore,

|x ⇤ h(n/T )� x̃ ⇤ h(n/T )|

 �||h||1#{t
i

: t
i

2 [(n�M)/T � �, n/T + �)}

 �||h||1(b(M/T + 2�)/(1/R)c+ 1)

 �||h||1(bMR/T c+ 2),

where the first inequality holds as t
i

2 [(n � m)/T � �, n/T + �) if the intersection of t
i

+

[min(�
i

� 0),max(�
i

, 0)) and [(n�M)/T, n/T ) is nonempty, the second inequality holds true as

t
i+1

� t
i

� 1/R for all 1  i < 2N, and the last inequality follows from the assumptions that

� < 1/(2R) and R  T. This proves that the sampling error estimate (2.3.3) between the bilevel

causal signals x and x̃.

Now we consider recovering a bilevel signal x from its noisy samples {x⇤h(n/T )+✏
n

}, where

✏
n

, n � 1, are bounded noises. Let us start this nonlinear problem by looking at two examples.

Example 1: Take

x
1

(t) =
1X

i=1

�
[2i�1,2i)

(t)

as the original bilevel signal and

h
1

(t) = �
[0,2)

(t)

as the sampling kernel. For sufficiently small ✏ > 0, define

x
1,✏

=

1X

i=1

�
[(1+✏)(2i�1),2(1+✏)i)

(t). (2.3.6)
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Then for every, i � 1, the i�th innovation positions of bilevel signals x
1

and x
1,✏

are i and i(1+ ✏)

respectively (hence their difference is i✏ which could be arbitrarily large for sufficiently large i).

On the other hand, maximal sampling errors for those two bilevel signals x
1

and x
1,✏

are bounded

by ✏ as

|x
1,✏

⇤ h
1

(n)� x
1

⇤ h
1

(n)| = |x
1,✏

⇤ h
1

(n)� 1|  ✏, n � 1.

This leads to the instability of the recovery procedure from samples {x
1

⇤ h
1

(n/T ) + ✏
n

} to the

bilevel signal x
1

in the presence of bounded noises {✏
n

}.

Example 2: Take x
1

and h
1

in Example 1 as the original bilevel signal and the sampling kernel

respectively. Define

x
2,✏

=

1X

i=1

�
[2i�1+✏,2i+✏)

(t)

for sufficiently small ✏ > 0. Then the difference between the i�th transition positions of bilevel

signals x
1

and x
2,✏

is always ✏
0

for every i � 1, and there is no difference between their n�th sam-

ples except for n = 1. This suggests that the recovery procedure from samples {x
1

⇤h
1

(n/T )+✏
n

}

to the bilevel signal x
1

is not locally-behaved and the reconstruction error on transition positions

could disseminate.

From the above two examples, we see that the recovery procedure from samples {x ⇤ h(n)} to

bilevel signals x is unstable in the presence of bounded noises and that it is globally-behaved in

general. In the following, we present some numerical simulations with small number of transition

positions and sampling rate over maximal local rate of innovation of bilevel signals.
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Take a sampling kernel h
0

(t) = (t+ 1)/2�
[0,1)

(t) + (2t� 1)�
[1,2)

, and a bilevel signal

x
0

(t) = �
[0.3791,1.9885)

(t) + �
[3.1306,4.3440)

(t)

+ �
[5.7552,7.1820)

(t) + �
[8.7423,10.1052)

(t)

+ �
[11.4200,12.6884)

(t) (2.3.7)

containing 10 transition positions, see Figure 2.1. Here the transition positions t0
i

, 1  i  10,

Figure 2.1: Bilevel signal x
0

(left) and sampling kernel h
0

(right)

of the bilevel signal x
0

are randomly selected so that t0
i

� t0
i�1

2 [1.1, 1.9], 2  i  10. The

bilevel signal x
0

in (2.3.7) has 0.8756 as its maximal local rate of innovation. We sample the

convolution x
0

⇤ h
1

between x
0

and h
1

every second, which gives the sampling vectors Y
0

=

(x
0

⇤ h(1), · · · , x
0

⇤ h(14)), and then add bounded random noise to the sampling vectors

Y
�

= Y
0

+ �(✏
1

, · · · , ✏
14

) (2.3.8)
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where � � 0 and ✏
i

2 [�1, 1], 1  i  14, are random noises. We apply the bilevel signal recovery

Figure 2.2: Maximal transition position error

algorithm in Section 2.2 and denote the reconstructed bilevel signal x
�

with the first 10 transition

positions being t
1,�

, · · · , t
10,�

. Define the maximal error of transition positions by

P (�) = max

1i10

|t
i,�

� t0
i

|,

where t0
1

, · · · , t0
10

are transition positions of the bilevel signal x
0

. We perform the recovery algo-

rithm 50 times for every noise level � 2 [0, 0.03]. The maximal value of P (�) after performing 50

times is plotted in Figure 2.2 with a solid line, while the average value of P (�) plotted with dashed

line. Notice that max

1n14

|x
0

⇤ h
1

(n)| = 0.9796. So this numerical simulation indicates that

our algorithm to recover the bilevel signal x
0

from its noisy samples x
0

⇤ h
0

(n/T ) + ✏
n

, n � 1,

is reliable when the noise level ✏ + max

n�1

|✏
n

| is at (or below) 2% of the maximal sample value
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max

n�1

|x
0

⇤ h
0

(n/T )|.

In conclusion, we show that bilevel causal signals x could be reconstructed from their samples

x ⇤ h(n/T ), n � 1, if the sampling kernel h is causal and positive on (0, 1/T ) and if the sample

rate T is at (or above) the maximal local rate of innovation R. We also propose a stable bilevel

signal recovery algorithm in the presence of bounded noise if the number of transition positions of

bilevel signals is not large.
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