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ABSTRACT 

 
The purpose of this paper is to consider the impulse formulations of the Euler equations for 

incompressible and compressible fluids. Different gauges are considered. In particular, the Kuz’min 

gauge provides an interesting case as it allows the fluid impulse velocity to describe the evolution of 

material surface elements. This result affords interesting physical interpretations of the Kuz’min 

invariant. Some exact solutions in the impulse formulation are studied. Finally, generalizations to 

compressible fluids are considered as an extension of these results. The arrangement of the paper is 

as follows: in the first chapter we will give a brief explanation on the importance of the study of fluid 

impulse. In chapters two and three we will derive the Kuz’min, E & Liu, Maddocks & Pego and the 

Zero gauges for the evolution equation of the impulse density, as well as their properties. The first 

three of these gauges have been named after their authors. Chapter four will study two exact 

solutions in the impulse formulation. Physical interpretations are examined in chapter five. In chapter 

six, we will begin with the generalization to the compressible case for the Kuz’min gauge, based on 

Shivamoggi et al. (2007), and we will derive similar results for the remaining gauges. In Chapter 

seven we will examine physical interpretations for the compressible case.  
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CHAPTER ONE: INTRODUCTION 

 
The study of fluid dynamics of the Euler equations in terms of a momentum variable is of great 

interest. The reason behind such interest lies in the fact that the total momentum of a fluid is not well 

defined, especially if the velocity field does not vanish at infinity. It is therefore necessary to utilize a 

more suitable, physically significant measure which we call the impulse of the fluid. It is this quantity 

that has the property of acting as the fluid’s momentum, in the form of a convergent integral. The 

Euler equations for incompressible fluid can be written in terms of a vector field p, commonly known 

as the impulse density. The relationship between p and the fluid velocity, u, is that the latter is the 

divergenceless projection of p. Different impulse formulations are possible, contingent on using 

different gauge conditions imposed on the impulse density. Given our choice of gauge, an evolution 

equation for p will describe the motion of the fluid. The Kuz’min gauge is of special importance 

because it describes the evolution of material surface elements in the fluid. Not surprisingly, this 

gauge has been widely studied. In the following two chapters, we will explore the fluid impulse 

formulations by using the most common gauges and then examine some of the properties of these 

gauges. We will discuss some exact solutions of these formulations in chapter four. We will explore 

the existence of some local invariants in the impulse formulations and discuss the physical 

interpretations in chapter five. The interest in local invariants, as opposed to standard (global) 

invariants, arises due to the lack of usefulness of the latter to keep track of changes in vortex line 

topology, which is local in nature. Local invariants are able to provide the track of such changes in 

vortex line topology. These local invariants are provided in the fluid impulse formulations. In this 

paper we will provide the generalizations of the impulse formulation for the Zero, E & Liu, and 

Maddocks & Pego gauges (see Chapter Six). We will finally extend these formulations in the 

compressible case in chapter seven.  
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CHAPTER TWO: IMPULSE FORMULATIONS 

 
Fluid impulse P is the integral of dispersed force impulse that would produce motion of a given fluid, 

when applied at any moment to its volume Ω (or at its bounding surface). For an ideal fluid 

(unbounded and incompressible) motionless at infinity, with bounded vorticity distribution, the fluid 

impulse is: 

1

2
P d


  r ω v  

To describe the evolution equations, we consider the Euler equations describing the motion of an 

incompressible fluid in 
n  (n = 2, 3): 

(2.1) 0 u  

(2.2)  
t 

         

u
u u  

where u is the fluid velocity, ρ is the density, and Ρ is the pressure. Introduce the impulse density as: 

(2.3)  p u  

The vector field p is the divergenceless projection of the fluid velocity u ( 0 u ). Both have the 

same vorticity, or local rotation (  u p ω ), and differ only by the gradient of the scalar 

field . By making use of identity [13] and setting  = 1 we can rewrite equation (2.2), 

 21

2
u

t


     


u

u u  

This is, 

 
2

2

u

t

           

u
u u  

By replacing u with p through manipulation, 
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2

2

u

t
 

                
p u p  

Distributing the differential operator and expanding the curl inside brackets, 

   
2

2

u

t t




                   

p
u p  

In utilizing identity [1], 

 
2

2

u

t t

            

p
u p  

Factoring the Del operator, we obtain, 

 
2

2

u

t t

             

p
u p  

Define now a scalar field 

2

2

u

t


 


 . We obtain 

(2.4)  
t


   


p

u p  

In tensor notation, (2.4) is, 

i
ijk j klm m

l i

p
u p

t x x
 

  
  

  
 

 is called the gauge and its various forms will dictate the behavior of the evolution equation (2.4).  

■ 

 

In the following pages, we will now discuss the most commonly used gauges in the fluid impulse 

formulations beginning with the customarily used Kuz’min gauge. We shall use tensor notation for 

simplicity purposes. 
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2.1 Kuz’min (Geometric) Gauge 

 

Let j ju p , then (2.4) becomes 

i
kij j klm m j j

l i

p
u p u p

t x x
 

  
 

  
 

We first develop the left-hand side (LHS), 

i i
kij j klm m kij klm j m

l l

p p
u p u p

t x t x
   

  
  

   
 

Rewriting the Levi-Civita operator into Kronecker delta operator, we obtain 

 i i
kij klm j m il jm im jl j m

l l

p p
u p u p

t x t x
     

  
   

   
 

Substituting back, we find 

(2.5)    
ji i

j j j j

i j i

pp p
u u u p

t x x x

  
  

   
 

And the right-hand side (RHS) is 

j j j j j j

i i i

u p u p p u
x x x

  
  
  

 

Substituting back, we obtain, 

j j ji i
j j j j

i j i i

p p up p
u u u p

t x x x x

   
   

    
 

This yields, 

 (2.6)      .
ji i

j j

j i

up p
u p

t x x

 
 

  
       

■ 
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2.2 E & Liu Gauge 

Let 
1

2
j ju u , then (2.5) becomes 

1

2

ji i
j j j j

i j i

pp p
u u u u

t x x x

  
  

   
 

Expanding the RHS, 

ji i
j j j j

i j i

pp p
u u u u

t x x x

  
  

   
 

Rearranging, 

j ji i
j j j

j i i

u pp p
u u u

t x x x

  
  

   
 

Factoring the partial differential and using equation (2.3),  

i i
j j j j

j i j

p p
u u u u

t x x x

                  

This is,  

i i
j j

j i j

p p
u u

t x x x

   
 

   
 

so 

(2.7)    0.i i
j

j

p u
u

t x

 
 

 
      

■ 

2.3 Zero Gauge 

Let 0 , so that we immediately obtain 

(2.8) 0i
kij j klm m

l

p
u p

t x
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or equivalently

 

  0i
im jl il jm j m

l

p
u p

t x
   

 
  

 
 

And applying the Kronecker delta on uj only, 

  0i
im l il m m

l

p
u u p

t x
 

 
  

 
 

0li
mi m

l

p
A p

t x

 
 

 
 

where l

mi im l il mA u u   . The significance of this partial differential equation (PDE)  is that it will 

be hyperbolic or degenerate hyperbolic depending on the eigenvalues of the matrix 

2 2 3 3 2 1 3 1

1 2 1 1 3 3 3 2

1 3 2 3 1 1 2 2

l l

mi

u n u n u n u n

A n u n u n u n u n

u n u n u n u n

                   

When we calculate  det 0l l

miA n I  , we obtain the eigenvalues 

 0, ,j j j ju n u n 
 

By substituting λ = 0, we can solve the system 

12 2 3 3 2 1 3 1

1 2 1 1 3 3 3 2 2

1 3 2 3 1 1 2 2 3

0

xu n u n u n u n

u n u n u n u n x

u n u n u n u n x







                         

This leads to the conclusion that for λ = 0, the corresponding eigenvector is the normal vector n. 

Since if (x1, x2, x3)
T = (n1, n2, n3)

T then we can verify that  

2 2 1 3 3 1 2 1 2 3 1 3

1 2 1 1 1 2 3 3 2 3 2 3

1 3 1 2 3 2 1 1 3 2 2 3

0

0

0

u n n u n n u n n u n n

u n n u n n u n n u n n

u n n u n n u n n u n n
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For the case where λ = u n = 0, the system does not have independent eigenvectors and thus it is 

degenerate hyperbolic.       ■ 

 

2.4 Maddocks & Pego (Impetus) Gauge 

Let 
1

2
j j j ju p u u  . By replacing on (2.5), 

1

2

ji i
j j j j j j

i j i

pp p
u u u p u u

t x x x

              
 

which is 

j j j ji i
j j j j j

i j i i i

p p u up p
u u u p u

t x x x x x

    
    

     
 

Further reduction yields 

  ji i
j j j

j i

up p
u u p

t x x

 
  

  
 

And in using (2.3) we readily see that 

(2.9) .
ji i

j

j j i

up p
u

t x x x

   
 

   
 

■ 



 

 8 

CHAPTER THREE: GAUGE PROPERTIES 

 

3.1 L2 Norm 

 

Theorem (1). For a given flow on a fixed domain , the value of p that has the minimal L2 norm is 

obtained for p = u. 

 

Proof. By definition the L
p
 norm is: 

1

( )
ppp

f f x dx
 

      

Substituting p, 

22
dx


 p u

 

Expanding the square, 

  
2 2 2

2dx dx  
 

      u u u  

By making use of the divergence theorem, 

   
2 2 2

2dx dx dS  
  

       u u u n  

But 0 u n  everywhere on the surface , thus 

(3.1)  2 2 2
.dx


  p u  ■ 

 

Proof for the Kuz’min gauge. By taking the norm of the gauge, 

 
22
dx


   u p u u

 

Distributing the dot product, 
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22 2 dx


   u p u u

 

This is equivalent to 

     
22 22 22 dx 



       
 u p u u u u  

As above, using the divergence theorem and 0 u n  on : 

     
22 22 22u dx 



       
 u p u u u  

In the case where p = u, we obtain 

 
22 2 dx


  u u u  

Thus, the minimal L2 norm is given when p = u.        ■ 

3.2 Total Impulse   

 
Theorem (2). Total fluid impulse is  

   1

2
P dV dS

 
       p r p n r n p  

where P is the fluid impulse. 

 

Proof. Recall from Batchelor (1967) that for unit density,  

(3.2) 
1

2
P d


  r ω v   

Further, recall that  ω u p , thus 

 1

2
P d


   r p v  

Change to tensors to ease in computation, 
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1

2

m
ijk j klm

l

p
P r dV

x
 






  

On rearranging the Levi-Civita operator, 

1

2

m
kij klm j

l

p
P r dV

x
 






  

which is equivalent to 

 1

2

m
il jm im jl j

l

p
P r dV

x
   




 

  

And so, 

(3.3) 
1

2

j i
j j

i j

p p
P r dV r dV

x x 

          
   

Consider the multivariate integration by parts, 

i

i i

u v
vdx uvn d u dx

x x


  

 
 

     

where ni is the component form of the normal n. We can apply this to (3.3), 

1

2

j j

j j i j i j j i

i j

r r
P p r n dS p dV p r n dS p dV

x x   

            
     

Rearranging, 

 1

2

j j

j j i i j j j i

i j

r r
P p r n p r n dS p p dV

x x 

                 
 

 

where the partial differentials are 

1   and  3
j j

ji jj

i j

r r

x x
 

 
   

 
 

Thus 
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(3.4)  1

2
j j i i j j iP p r n p r n dS p dV

 
     

or 

(3.5)    1

2
P dV dS

 
       p r p n r n p  

If we now choose appropriate boundary conditions to eliminate the surface integral, then 

P dV


  p  

and hence, p is the fluid impulse density. ■ 

 

3.3 Kelvin-Helmholtz Theorem 

 
Theorem (3). Given (2.3), then the Kelvin-Helmholtz Theorem holds for p, such that 

0
d

dl
dt 

  p
 

where Ω is a closed material curve in the fluid.  

 

Proof. The total derivative of the closed material curve integral of u can be written as 

 d dd d
d d

dt dt dt  
      

lu
u l l u  

 

Substituting (2.3) into the equation, we see that the first term in the RHS is, 

 dd
d d

dt dt



 


   

pu
l l   

or 
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d d
d d

dt dt 
   

u p
l l   

On examination of the second term in the RHS, 

 
1 1 2 2 3 3

d d
d u du u du u du

dt  
       

l
u u u    

This can be written as, 

 2 2 2 2

1 1 2 2 3 3 1 2 3 0u du u du u du d u u u d
  

         u    

Ultimately, we can see that  

d d
d d

dt dt 
   u l p l 

 

And by the Kelvin-Helmholtz Theorem, 

0
d

d
dt 

  u l  

This implies that 

(3.6) 0
d

d
dt 

  p l  

or 

(3.7) d k


  p l    (k constant). ■ 

3.4 Kuz’min Invariant 

 
Theorem (4). In the Kuz’min gauge, there exists a local invariant 

constant. p ω  

Proof. Consider the curl of equation (2.4) and identity [4] such that 
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    0
t

          
p

u p
 

Given that ∇ × p = ω, 

0
t

       
p

u ω
 

On distributing the curl, 

(3.8) 
 

 
t

 
 



p
u ω

 

In applying identity [9], 

       
t


       


ω

u ω ω u ω u u ω
 

As a consequence of identity [2] and due to incompressibility (in 3D), 

(3.9)    
t


   


ω

u ω ω u
 

This can be written as a material derivative, 

(3.10)  D

Dt
 

ω
ω u

 

Now, consider the Kuz’min gauge, equation (2.6), in vector notation, 

(3.11)    T
t


   


p

u p u p
 

If we now use (3.9) and (3.11), we can readily see that 

(3.12) 
 

0
D

Dt




p ω

 

since equating the two RHS gives 

      0
T

     p ω u u p ω
 

An implication of (3.12) is that  
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constant p ω
 

This result leads to the physical implication that the volume of the fluid element remains unchanged. 

This is, of course, conservation of mass since the fluid is incompressible (see Chapter Five).    ■ 

3.5 Invariance of Impulse 

 
Theorem (5). The impulse P required to generate motion of the fluid at rest is independent of time 

such that 

0
dP

dt
  

Proof. If we consider the time derivative of equation (3.2), then 

 

1

2

dP
d

dt t





 


ω

r v  

 

and utilizing (3.8), we obtain 

 

 1

2

dP
d

dt



      r u ω v  

 

If we let   u ω , then in changing to tensor notation, the integrand becomes 

  ijk j klm m kij klm j m

l l

r r
x x

     
         

r u ω  

On changing to Kronecker delta 

 kij klm j m il jm lm jl j m

l l

r r
x x

       
 

 
 

 

If we make use of the identity ij j ix x  , then 

   il jm lm jl j m j j i j

l i j

r r r
x x x

      
             

 

If we now change to vector notation, we see that 
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(3.13) 
1

2
2

i

dP
dV d

dt
  

 
    u ω v

 
 

since the surface integrals resulting by application of the divergence theorem vanish at infinity.  

Rewriting (3.13) as 

 dP
d

dt



   u u v  

and using identity [13] yields 

 21

2

dP
d

dt




        u u u v
 

 

On transforming to surface integral by means of the divergence theorem, 

 

 21

2

dP
d

dt




       nu u n u S
 

 

where the velocity u vanishes at infinity. Thus, 

 

(3.14) 0.
dP

dt
     ■ 
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CHAPTER FOUR: EXACT SOLUTIONS 

 

4.1 Exact Solution 

 
Let’s consider the following exact solution for the two-dimensional Euler equations, as studied by 

Russo & Smereka (1999): 

  2 2  where  ,f r r x y    

             

0

1
ˆ 0, where   ,

r

U r U r U r f s sds
r

    u u  

Recall equation (2.6), 

ji i
j j

j i

up p
u p

t x x

 
 

  
 

and 

 
 1 1

0
rru u

r r r





 
   

 
u  

The r component is 

r r r r r
r r

u u p u up p p u u
u p p

t r r r r r r r

    




                        
 

which reduces to 

r r r r r
r r

u up p p u u
u p p

t r r r r r

 




                
 

But since the r and  components of u are  0 , ru u U r   then, 

   
r r

U r U rp p
p

t r r




 
 

  
 

Since the pr component is independent of , 
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 rp
p U r

t






  

And integrating with respect to t, 

(4.1)  rp p U r t   

Next, the θ component is 

    0
u

rp rp
t r


 



 
 

 
 

which implies that the total derivative, 

  0
D

rp
Dt

   

Thus, the term rpθ is a function of r, 

 rp F r   

We obtain: 

 1
p F r

r
   

And since  p u , then the θ component of p is, 

1
p u

r
 






 


 

And we observe that  

1
0

r









 

This gives us, 

 p u U r    

If we now replace the above result in, 
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 rp p U r t   

Then, 

   rp U r U r t   

And given,  

ˆˆ
rp p p r θ  

We obtain the solution 

(4.2)      ˆ .U r U r t U r p r θ  ■ 

4.2 2π-periodic Solution 

 

Now consider  ,s u v u u where 

   , sin cos       ,        , sin cosu x y y x v x y x y   

With initial condition 

   , ,0 ,   where  sin cos sin cos  sx y x y x y y x    p u  

If we write in vector notation, we see that 

 sin cos , sin cosy x x y u  

And  

   , cos cos sin sin , sin sin cos cosx y y x y x x y x y      

This yield 

   , , sin cos cos cos sin sin , sin cos sin sin cos cosx y t y x y x y x x y x y x y     p  

For the case of
2

x y   , 

   2 2 2 2 2 2 2 2 2 2 2 2 2 2
, , sin cos cos cos sin sin , sin cos sin sin cos cost                  p  
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This reduces to, 

     2 2 2 2 2 2
, , sin sin , sin sin 1, 1t          p  

We see that the components of p are:      

sin cos cos cos sin sin

sin cos sin sin cos cos

x

y

p y x y x y x

p x y x y x y

  

  
 

Then 

 

 

sin sin 2 sin cos sin cos cos cos

sin sin 2 sin cos sin cos cos cos

x

y

p
y x x y y x y x

t

p
x y x y y x x y

t


   




   


 

We can easily see that 

 
   2 2 2 2

2 2 2 2

, , , ,
sin sin 1     ,      sin sin 1

x yp t p t

t t

   

   
 

   
 

 

and thus 

 
 

 
 2 2 2 2

2 2 2 2

, , , ,
, ,        ,      , ,

x y

x y

p t p t
p t p t

t t

   

   
 

 
 

 

By solving the differential equations, 

 

 
 
 

12 21

2 22 2

, ,ln

ln , ,

t
x x xt x

t
yy y yt

p p p t k ep t C

p t Cp p p t k e

 

  

                           
 

Utilizing the initial condition we find 

1 2 1k k   

 
 

2 2

2 2

, ,

, ,

t

x

t

y

p t e

p t e

 

  




 

■ 
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 CHAPTER FIVE: PHYSICAL INTERPRETATIONS 

 
The results found above have interesting physical implications.  

5.1    Evolution of Line Elements 

 
Consider, for example, the presence of an infinitesimal material element δl in the volume of the fluid. 

If we now examine the material derivative of this element, we see that 

(5.1)  D

Dt
 

δl
δl u  

On expansion of the operator we obtain 

(5.2)    
t


   


δl

u δl δl u  

which, on comparing with (3.9), implies that  the material element δl evolves like the vorticity ω. In 

other words, any vortex line can be considered a material line element.    ■ 

5.2    Evolution of Surface Elements 

 
Now, consider a material surface element, represented by the vector field δσ. If we now consider the 

evolution of this vector field in u (i.e. u δσ), then by substituting in (2.4),  

   
t


    


δσ

u δσ u δσ  

which is the same as the equation for the impulse density in the Kuz’min gauge. By making use of 

identity [7], we obtain 

     
t


          


δσ

u δσ u δσ δσ u δσ u u δσ  

Canceling the gradient terms and further manipulation yields, 
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t

         
δσ

u δσ δσ u δσ u  

Using identity [4],   

     
t

           
δσ

u δσ δσ u δσ u δσ u  

Cancelation gives 

 
t


   


δσ

u δσ u δσ  

By the properties of the gradient operator, this yields, 

(5.3)    T
t


   


δσ

u δσ u δσ
 

In comparison with (2.6), we see that they are identical. The physical interpretation of this is that the 

surface element given by the vector field δσ evolves as the fluid impulse density p!      ■ 

5.3    Conservation of Volume Elements 

 
Consider a fluid element in the form of a cylinder surface with its base δσ and generator δl; its 

volume is given by 

v  δl δσ  

Consider the rate of change of the volume of this fluid element. In light of (3.9) and (3.11) we can 

arrive at 

(5.4) 
 

0
D

Dt




δl δσ
 

This result has the physical interpretation that the fluid element preserves its volume. This establishes 

conservation of mass given incompressibility of the fluid, according to equation (2.1).     ■ 
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CHAPTER SIX: GENERALIZATIONS 

 

A natural extension of the results found above for incompressible fluids is to that for compressible 

fluids. We shall now examine the generalization of the previous chapters to the four gauges to such 

fluids. We begin by establishing the Euler equations for compressible fluids: 

(6.1)   0
t





 


u  

and 

(6.2)   1

t 


   


u

u u
 

We know from Chapter Two that equation (6.2) can be written as 

(6.3)  
2

2

u

t

           

u
u u P

 

where, assuming the fluid to be barotropic, we have 

(6.4)   d





 P

 

If we now consider the Helmholtz decomposition (2.3), then for arbitrary scalar , p evolves 

according to (6.3), such that 

(6.5)  
2

2

u

t t

              

p
u p P

 

6.1 General Results for the Kuz’min Gauge 

 
Theorem (6). In a compressible barotropic fluid, p evolves, in the Kuz’min gauge, according to the 

equation 

   T
t


   


p

u p u p  
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which is the same as that for the incompressible case, namely, equation (2.6). 

Proof. If we let  u p , we see that, in light of (6.5),  satisfies the PDE 

(6.6)  
2

2

u

t





   


u P  

In substituting (6.6) into (6.5) we clearly see that by making use of identity [7], we obtain 

     
t


          


p

u p u p p u p u u p  

Canceling the gradient terms and further manipulation yields, 

 
t

         
p

u p p u p u  

Using identity [4],   

     
t

           
p

u p p u p u p u  

Cancelation gives 

 
t


   


p

u p u p  

Rewriting in matrix notation, 

 T

t


  


p

u p u p  

By the properties of the gradient operator, this yields, 

(6.7)    T
t


   


p

u p u p
 

which is the same as that for the incompressible case, namely, equation (2.6)!    ■ 
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Theorem (7). The evolution equation of the potential vorticity 


ω
 is 

D

Dt  

              

ω ω
u  

Proof. In the case of compressible barotropic fluid, the density is a function of only pressure. Thus, 

we can write the RHS of equation (6.2) as 

1 1
d

 

        P  

and on writing the LHS of (6.2) as a material derivative, we have 

(6.8) 
D

Dt


u
P  

If we now take the curl of (6.8), we see that 

  0
D

Dt

      
u

P
 

On distributing the curl and using identity [13], this leads to the vorticity evolution equation 

     
t


     


ω

u ω ω u ω u
 

Combining this equation with the mass conservation equation (6.1), we obtain for the evolution of 

the potential vorticity 


ω
 

(6.9)  
t   

                             

ω ω ω
u u

 

or 

(6.10) 
D

Dt  

              

ω ω
u
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This result indicates that changes in the potential vortex lines evolve the same way as the material 

line elements. Further, this implies that vortex lines move with the fluid.    ■ 

 

Theorem (8). The impulse density p, in a compressible fluid, satisfies the Kelvin-Helmholtz 

circulation theorem (3.6): 

0
d

d
dt 

  p l  

Proof. The proof of this theorem is analogous to the proof exhibited in Chapter Three.  ■ 

 

Theorem (9). For a compressible barotropic fluid, there exists, in the Kuz’min gauge, a local 

invariant 

constant





p ω
 

Proof. Equation  (6.7)  along with the potential vorticity evolution equation (6.9), in a manner 

analogous to that discussed in Chapter Three, gives 

(6.11) 0
D

Dt 

      

p ω
 

Equation (6.11) leads to the local invariant
  

constant





p ω

 

This result leads to the physical implication that the mass of the fluid element is invariant. This is, of 

course, conservation of the mass condition for a compressible fluid (see Chapter Seven).    ■ 
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6.2 General Results for the Zero Gauge 

 
Theorem (10). In a compressible barotropic fluid, p evolves, in the Zero gauge, according to the 

equation 

t 


 


p ω

u

 

which is the same as that for the incompressible case, namely, equation (2.8). 

Proof. If we let 0 ,  satisfies the PDE  

(6.12) 

2

2

u

t


 


P  

 

which immediately yields 

 

(6.13)   0
t


   


p

u p  

 

And by the definition of vorticity, 

 

(6.14) 
t 


 


p ω

u  

 

which is the same as that of the incompressible case, namely, equation (2.8)! The physical 

interpretation of (6.14) is that p is invariant all along vortex lines l and families of such vortex lines 

are overlapped by material surfaces ρS.    ■ 

 

6.3 General Results for the E & Liu Gauge 

 
Theorem (11). In a compressible barotropic fluid, p evolves, in the E & Liu gauge, according to the 

equation 
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  0
t


  


p

u u
 

 
which is the same as that for the incompressible case, namely, equation (2.7). 

Proof. If we now let 
2

2

u
 ,  satisfies the PDE  

(6.15) 
t





P.  

 
Then, (6.5) becomes 

 

  1

2t


     


p

u p u u  

Replacing p with (2.3) 

     
t


           

p
u u u u u u  

Distributing the curl, we have 

       
t




         

p

u u u u u u  

Finally, by identity [2] 

(6.16)   0
t


  


p

u u
 

which is the same as that for the incompressible case, namely, equation (2.7)!     ■ 

6.4 General Results for the Maddocks & Pego Gauge 

 
Theorem (12). In a compressible barotropic fluid, p evolves, in the Maddocks & Pego, according to 

the equation 

    .
T

t



    


p

u p u
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which is the same as that for the incompressible case, namely, equation (2.9). 

Proof. If we now let 
2

2

u
  u p ,  satisfies the PDE  

(6.17) 
t





  


u P.

 
 

Then, (6.5) becomes, with the use of [7], 

 

      1

2t


             


p

u p u p p u p u u p u u  

Immediate cancelation and rewriting gives 

  1

2t


         


p

u p p u p u u u  

Making use of identity [13], 

     
t


           


p

u p p u p u u u u u  

Using (2.3), 

         
t

 


             

p

u p u u u u u u u u  

Distribution of the curl yields, 

         
t

 


               

p

u p u u u u u u u u u  

Cancelation and distribution of the dot product gives us, 

       
t

 


           

p

u p u u u u u u  

or 

   
t

 
           

p
u p u u  

which is the same as,  
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(6.18)       .
T

t



    


p

u p u  

which is the same as that for the incompressible case, namely, equation (2.9)!     ■ 
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CHAPTER SEVEN: PHYSICAL INTERPRETATIONS FOR 

COMPRESSIBLE FLUIDS 

 
We are now ready to recognize the physical interpretations for the compressible, barotropic fluid. 

  

7.1 Evolution of Line Elements 

 
Consider a vector field linked to an infinitesimal material element l in the volume of the fluid. If we 

now examine the material derivative of this element, we see that 

(7.1)  D

Dt
 

l
l u  

On expansion of the operator we obtain 

(7.2)    
t


   


l

u l l u  

which is identical to (6.9). This implies that the material element l evolves as does the potential 

vorticity 


ω
. This is equivalent to saying that the potential vortex line can be considered a material 

line element.   ■ 

7.2 Evolution of Surface Elements 

If now ρS represents a vector field linked to a material surface element, then by substituting in (6.5),  

 
   

t


 


    



S
u S u S  

which is the same as the equation for the impulse density in the Kuz’min gauge. By making use of 

identity [7], we obtain 

 
           

t


    


          



S
u S u S S u S u u S  
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Canceling the gradient terms and further manipulation yields, 

 
       

t


  

         

S
u S S u S u  

Using identity [4],   

 
       

t


   

           

S
u S S u S u S u  

Cancelation gives 

 
   

t


 


   



S
u S u S  

By the properties of the gradient operator, this yields, 

(7.3) 
 

      T

t


 


   



S
u S u S

 

On comparison with (6.7), we see that they are identical. The physical interpretation is that the 

surface element given by the vector field ρS evolves as the fluid impulse density p, as in the 

incompressible case!      ■ 

7.3 Conservation of Mass Elements 

 
Consider a fluid element in the form of a cylinder surface with its base ρS and generator l. We see 

that its mass δm is given by 

m  l S  

Consider now the rate of change of the volume of this fluid element. In light of (6.7) and (6.9) we see 

(7.4) 
 

0
D

Dt




l S
 

This result has the physical interpretation that the fluid element preserves its mass. This establishes 

conservation of mass in the case of compressible fluid.     ■ 
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CHAPTER EIGHT: SUMMARY 

 
In this paper, we have considered impulse formulations of the Euler equations for both 

incompressible and compressible fluids. Different gauge conditions are considered. The geometric 

gauge provided a remarkable physical interpretation. In this gauge, the impulse density evolves the 

same way as material surfaces: its direction is orthogonal to the material surface element, and its 

length is proportional to the area of the surface element. The impulse density has a local invariant 

associated with it which has the physical implication of conservation of volume of fluid elements. It 

is interesting that, in the compressible barotropic case, the results turn out to be similar to those for 

the incompressible case.  
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