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ABSTRACT 
 

The objective of this thesis is to examine one of the most fundamental and yet important 

methodologies used in statistical practice, interval estimation of the probability of success in a 

binomial distribution.  

 The textbook confidence interval for this problem is known as the Wald interval as it 

comes from the Wald large sample test for the binomial case. It is generally acknowledged that 

the actual coverage probability of the standard interval is poor for values of p near 0 or 1.  

Moreover, recently it has been documented that the coverage properties of the standard interval 

can be inconsistent even if p is not near the boundaries.  For this reason, one would like to study 

the variety of methods for construction of confidence intervals for unknown probability p in the 

binomial case.  The present thesis accomplishes the task by presenting several methods for 

constructing confidence intervals for unknown binomial probability p. 

It is well known that the hypergeometric distribution is related to the binomial 

distribution. In particular, if the size of the population, N, is large and the number of items of 

interest k is such that 
 

 
   tends to p as N grows, then the hypergeometric distribution can be 

approximated by the binomial distribution.  Therefore, in this case, one can use the confidence 

intervals constructed for p in the case of the binomial distribution as a basis for construction of 

the confidence intervals for the unknown value k = pN.  The goal of this thesis is to study this 

approximation and to point out several confidence intervals which are designed specifically for 

the hypergeometric distribution.  In particular, this thesis considers several confidence intervals 
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which are based on estimation of a binomial proportion as well as Bayesian credible sets based 

on various priors.  
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CHAPTER ONE:  INTRODUCTION 

 

The objective of the present paper is to re-visit one of the most basic and 

methodologically important problems in statistical practice, namely, interval estimation of the 

probability of success in a binomial distribution.  There is a textbook confidence interval for this 

problem that has acquired nearly universal acceptance in practice.  This interval is of the form 

           
  
    

            
 

       (1.1) 

where      
 

 
   is the sample proportion of successes, and   

  
 is the 100          th percentile 

of the standard normal distribution.  The interval is easy to present and motivate and easy to 

compute.  The standard interval is known as the Wald interval as it comes from the Wald large 

sample test for the binomial case. 

It is widely recognized, however, that the actual coverage probability of the standard 

interval is poor for p near 0 or 1.  Even at the level of introductory statistics texts, the standard 

interval is often presented with the condition that it should be used only when 

                           

Moreover, recently it has also been pointed out that the coverage properties of the standard 

interval can be erratically poor even if p is not near the boundaries.  For this reason, one would 

like to study the variety of methods for construction of confidence intervals for unknown 

probability p in the binomial case.   
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Chapters 2 and 3 of the thesis accomplish the task by presenting a variety of methods for 

construction of the confidence intervals for unknown binomial probability p.  In particular, 

Chapter 2 is dedicated to construction of the confidence intervals by frequentist techniques while 

Chapter 3 considers interval estimators based on Bayesian methodology. 

It is well known that hypergeometric distribution is related to binomial distribution.  In 

particular, if the size of population N is large and the number of items of interest k is such that 

 

 
               

the hypergeometric distribution can be approximated by binomial.  Therefore, in this case one 

can use confidence intervals constructed for p in the case of the binomial distribution as a basis 

for construction of the confidence intervals for the unknown value     .   

The goal of Chapter 4 is to study this approximation and also to point out several 

confidence intervals which are designed specifically for the hypergeometric distribution.  In 

addition, we study several confidence intervals which are based on estimation of a binomial 

proportion as well as Bayesian credible sets based on various priors.  

The rest of the paper is organized as follows.  In Chapter 2 we consider frequentist 

techniques for interval estimation.  In particular, we provide background information about the 

standard Wald interval.  The following sections explain the construction of the alternative 

intervals that were discussed by Brown, Cai and DasGupta (2001, 2002).  We explore the Wilson 

interval, the Agresti-Coull interval, the logit interval, the likelihood interval, the Clopper-Pearson 

interval and the arcsine interval.  

Chapter 3 is dedicated to Bayesian techniques for construction of confidence intervals 

which are called “credible intervals” in this case.  Section 3.1 lays down the foundations of the 
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Bayesian approach to statistics.  Construction of Bayesian credible sets is discussed in Section 

3.2.  Finally, in Section 3.3, we develop a confidence interval for the binomial distribution using 

the noninformative Jeffreys’ prior distribution.  

In Chapter 4, we introduce the hypergeometric distribution and show how it can be 

approximated to the binomial distribution.  Sections 4.3 and 4.4 show the construction of 

confidence intervals based on the normal approximation to hypergeometric distribution and an 

analog of the Wilson interval that was used for the binomial distribution.  We consider the 

Bayesian approach for the hypergeometric distribution in Section 4.5.  The priors used for 

designing the Bayesian confidence intervals are the binomial prior considered in Section 4.5.1 

and the Polya (beta-binomial) prior, used in Section 4.5.2. 

Finally, Chapter 5 brings conclusions about the construction of confidence intervals for 

the binomial and the hypergeometric distributions. 
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CHAPTER TWO:  CONFIDENCE INTERVALS FOR THE SUCCESS 

PROBABILITY IN BINOMIAL DISTRIBUTIONS 
 

 

2.1 – The Standard Interval 

 

The standard confidence interval for the estimation of the probability of success in a 

binomial proportion is widely accepted because of its simplicity of presentation and 

computation.  However, it has been shown to have problems with the actual coverage 

probability.  The justification for using this interval is based on the central limit theorem (CLT) 

which states that when the sample size is large, the number of successes in the binomial 

distribution can be approximated by a normal variable.   

The standard interval, known as the Wald interval, is of the form 

      
  
    

            
 

   (2.1.1) 

 where     
 

 
 is the sample proportion of successes,  (2.1.2) 

           is the proportion of failures, and  

   
  
 is the 100         th

 percentile of the standard normal distribution.   

This interval guarantees that for any fixed         the coverage probability, 

                     where                       . 

The standard normal confidence interval            
  
    

        
 

   is obtained by 

inverting the acceptance region of the Wald large sample normal test for a general problem.   Let 
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  be the generic parameter for p,    is the maximum likelihood estimate of   which is    
 

 
,  

        is the estimated standard deviation of     
    

 
  and       

  
   Replacing these into the 

equation  

   
      

       
                                                                               

results in the following equation:  

 
 
      

     
 

 
 
   

By solving the following equation for  ,             
    

 
  we obtain the standard confidence 

interval for   of the form: 

     
    

 
              

    

 
                                                          

Many textbooks present the standard interval with the provisions that the interval only be 

used when                            because of the interval has poor coverage 

properties when p is near the boundaries, 0 and 1.  It has also been found to have inadequate 

coverage even when p is not near the boundaries.  The oscillatory and poor behavior of the 

standard interval can be attributed to the discrete nature of the binomial distribution as well as its 

skewness.  The exact nominal confidence level cannot be achieved without a randomized 

procedure (Brown et al., 2001) 
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2.2 – The Wilson Interval 

 

The Wilson interval is an alternate interval which uses the exact standard error  

      
 

      
   instead of the estimated standard deviation          

 
      

  .  The Wilson 

interval is obtained by inverting the CLT approximation to the family of equal-tailed tests of    

the hypothesis H0 :  p = p0.  If the interval includes p0, then one accepts H0.  The Wilson interval 

has an actual coverage probability that is closer to the nominal value than the standard interval; 

however, it still oscillates when p is close to the boundaries, 0 and 1.  A modification can be 

made to eliminate the downward spikes at 0 and 1.  This interval is recommended for small n,  

n    .   

The Wilson confidence interval is  

     
   

  

 
    

   
  

 
  

      
      

  

  
 

 
  

                                     

is obtained by solving inequality 

 

    

       
 

 
                                                                     

which requires the quadratic formula to solve for θ.  Clearing the denominator and squaring both 

sides yields  

             
   

 
 

    

 
                                                    

which can be re-grouped to obtain the quadratic equation  
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Using the quadratic formula with the terms A =   
  

 
 , B =        

  

 
   and C =    gives   

  

    
  

          
  

  
 

      
  

       

    
  

  
                                      

Multiplying the terms in the radicand gives      
     

 
 

  

         
      

 
 ,  grouping the terms 

   

 
      

  

     
           

  
  

    

    
 

Simplification of the radical and the numerator  

   
    

  

                 
  

  

    
                                              

and finally after substituting 
 

 
 for    in the first term of the numerator we arrive at the Wilson 

confidence interval for   of the form: 

  
  

                
  

  

    
       

  
  

                
  

  

    
                 

 

 

2.3 – The Agresti-Coull Interval 

 

The Agresti-Coull interval is another alternative to the standard interval which has a 

similar form but a different choice for   .  The center of the Wilson region is used instead of    
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(Agresti & Coull, 1998).  Even though these intervals are centered about the same value,     the 

actual coverage probability is more conservative than the Wilson interval.  Due to its simple 

form, the Agresti-Coull interval is recommended for large values of n, n > 40.  This interval may 

be preferred also for smaller sample sizes if the simplest form is desired (Brown et al., 2002). 

To construct the Agresti-Coull confidence interval, let 

      
  

 
,          ,      

  

  
 

Using a construction similar to the standard interval we obtain the following: 

 
 
      

     
  

 
 
                                                                           

Simplifying the last expression, we obtain the following equation  

          
    

  
                                                                        

Solving for    we obtain the Agresti-Coull confidence interval for   of the form: 

      
    

  
             

    

  
                                                           

 

 

2.4 – The Logit Interval 

 

The logit interval is formed by inverting the Wald-type interval for the log odds.  This 

interval has a good coverage probability for values of p that are not close to 0 or 1.  Denote 
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The maximum likelihood estimate, MLE of   for 0 < X < n is 

             
  

     
      

 
 

   
 
 

      
 

     
                            

which is also known as the empirical logit transform.  The variance of    can be estimated by the 

delta method:  

                                                                                      

For the functions       we can rewrite equation (2.4.3) as   

                                                                                   

We calculate the derivative of      as follows  

                          
 

 
  

 

     
 

 

      
  

Substituting into the delta method equation 2.4.4 we arrive at 

                        
 

        
                                                      

which can be simplified to 

              
 

       
   

Replacing   with    
 

 
  we obtain  

              
 

 
 
    

 
  

  

which we can simplified to 
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The resulting variance is     
 

      
.  Therefore, the approximate 100 (1 – α)% confidence 

interval for λ is            
 

  .   

    
 

   
    

 

        
            

 

   
    

 

        
                         

We transform back to get the lower and upper limits of the confidence interval for p.   

The lower limit is         
  

  –    
    

Eliminate the logarithm by rewriting the last equation as        
  

      
 . Then to obtain the lower 

limit,    we solve the following equation by converting the fraction: 

               .  We can solve the resulting equation for the lower limit,   , as 

     
   

      
                                                                          

The upper limit is obtained in a similar fashion  

    
   

        
                                                                        

The logit confidence interval for   is of the form,            .  : 

 
   

      
      

   

      
 

Substituting the lower and upper limits for λ from equation (2.4.7) into the equation above 

results in the logit confidence interval 
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Brown, Cai and DasGupta have shown that expected length of the logit interval is larger 

than that of the Clopper-Pearson interval (2001). 

 

 

2.5 – The Anscombe Logit Interval 

 

Anscombe (1956) suggested an alternative value of    which provides a better estimate of 

λ:   

       
      

        
                                                                 

Using higher order series expansion of the delta method (Gart & Zweifel, 1967), one can 

estimate the variance of    by 

    
          

             
                                                             

The new Anscombe logit interval is overall shorter than the logit confidence interval (Brown et 

al., 2002)  Rewriting equation (2.5.1) and using     
 

 
 , we obtain  

         
         

            
                                                            

and the estimator of the variance is  
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Using similar calculations as for the logit interval (Cox & Snell, 1989), we obtain the confidence 

intervals for    of the form 

    
      

        
     

          

             
       

      
      

        
     

          

             
                                              

Then with similar transformation back to p we obtain the lower and upper limits for p as shown 

in equations (2.4.8) and (2.4.9).  

 
   

      
        

   

      
                                                                   

where 

        
      

        
     

          

             
 

 and  

        
      

        
     

          

             
 

Therefore, the Anscombe logit confidence interval for   is of the form: 
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2.6 – The Likelihood Ratio Interval 

 

The likelihood ratio interval is most commonly used when constructing confidence 

intervals.  This is accomplished by inverting the likelihood ratio test which accepts the null 

hypothesis    H0: p = p0 if -2 log Λn ≤ κ
2
,  where Λn is the likelihood ratio  

    
     

        
                                                                         

Here,  L is the likelihood function. In particular, 

Likelihood Function of    :          
 
 
                   (2.6.2) 

Likelihood Function of  p0:          
 
 
   

       
        (2.6.3) 

Likelihood Ratio:       
     

          
  

  
          

              
  

                

                    (2.6.4) 

Testing hypothesis:  H0: p = p0  versus H1: p ≠ p0, we obtain the acceptance rule  –2 log Λn ≤ κ
2
  

which can be rewritten as  

                                                      ≤   κ
2 
  (2.6.5) 

Simplifying the inequality in (2.6.5), we obtain the likelihood ratio confidence interval for p. The 

shortcoming of this interval is that there is no closed form solution. (Brown et al., 2001) 

  
        

         
 κ 
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2.7 – The Clopper-Pearson Interval 

 

The Clopper-Pearson interval is obtained by inverting the equal-tailed binomial test 

rather than the normal approximation (Clopper, 1934).  If  X = x is observed, then the Clopper-

Pearson confidence interval is 

CICP = [ LCP(x), UCP(x) ]  

where LCP(x) is the solution, in p, to the inequality Pp(X ≥ x) = 
 

 
, which is the 

 

 
  quantile of the 

beta distribution Beta (x, n – x + 1).  UCP(x) is the solution, in p, to Pp(X ≤ x) = 
 

 
,  which is the    

   
 

 
  quantile of a beta distribution Beta (x + 1, n – x).  The Clopper-Pearson interval 

guarantees that the actual coverage probability is always greater than or equal to the nominal 

confidence level.  It has been shown that this interval is very conservative and, unless n is large, 

the actual coverage probability is larger than 1 – α (Brown et al., 2001).  Due to this fact, the 

Clopper-Pearson interval is not recommended unless it is desired that the coverage probability 

always be larger than or equal to the nominal value.  

 

 

2.8 – The Arcsine Interval 

 

The arcsine interval is obtained by using a variance stabilizing transformation to 

determine a function       with a variance that is independent of the parameter of interest, p.  
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Then through transformation we can obtain a confidence interval for p (Hogg, 2005).  The 

interval is derived by using the delta method.  Let                
 

     and   

                   
 

     

Using the delta method to estimate the variance of       we need to calculate the 

derivative of        

       
 

           
                                                                 

Substituting this into the delta method equation 2.4.4 we arrive at 

                 
         

 
  

 

           
 

 

                                          

The resulting variance can be simplified to attain      
 

  
.  The approximate 100(1 – α)% 

confidence interval for λ is            
 

   

         
 

     
 

  
 

  
                

 
     

 

  
 

  
                                

We transform this interval back to obtain the upper and lower limits of the approximate 

100(1 – α)% confidence interval for p. 

                
 

     
 

  
 

  
                       

 
     

 

  
 

  
                  

Anscombe presented an alternative value for    that provides a better variance 

stabilization      is replaced with      
      

      
 

  
 

            
 

            
 

                                                  

The approximate 100 (1 – α)% confidence interval for p 



 

16 

 

              
 

     
 

 
  

  
                       

 
     

 

 
  

  
                    

The interval performs well for p not close to 0 or 1.  It has downward spikes near the boundaries 

(Brown et al., 2001).   
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CHAPTER THREE:  BAYESIAN CREDIBLE SETS FOR THE SUCCESS 

PROBABILITY OF BINOMIAL DISTRIBUTIONS 
 

 

3.1 – Bayesian Approach to Statistics 

 

To understand Bayesian approach let us begin with conditional probabilities which are 

used to revise the probability space based on new information.  The definition of conditional 

probability is given by Casella and Berger as follows, 

If A and B are events in S, and P(B) > 0, then the conditional probability of A given B, 

written P(A|B), is 

        
      

    
                                                                   

This can be rewritten as                      Using this definition we can arrive at 

        
      

    
   Rewriting this in a similar fashion gives us                     

Substituting this into the numerator of the conditional probability definition gives 

              
    

    
                                                                

an equation commonly known as Bayes’ Rule after Sir Thomas Bayes.  Bayes’ Rule has a more 

general form that applies to partitions of a sample space (Casella, 2002).   

Let A1, A2, … be a partition of the sample space and let B be any set.  Then, for each I = 1, 2, … 
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 When two continuous random variables are, conditional probabilities about one variable 

can be created given knowledge of the other random variable using joint distributions.  Let (X,Y) 

be a continuous bivariate random vector with joint pdf f(x,y) and marginal pdfs fX(x) and fY(y). 

For any x such that fX(x) > 0, the conditional pdf of Y given that X = x is the function of y 

        
      

     
                                                                      

Similarly, for any y such that fY(y) > 0, the conditional pdf of X given that Y = y is the function 

of x  

        
      

     
 

 In the Bayesian approach,  θ is considered a quantity whose variation can be described by 

a probability distribution known as the prior distribution.  This is a subjective distribution based 

on the individual’s beliefs about the sample before the data is observed.  A sample is then taken 

from the population indexed by θ the prior distribution is then updated using Bayes’ rule with 

this sample information to produce the posterior distribution. 

 Let π(θ) denote the prior distribution, f(x|θ) the sampling distribution, m(x) the marginal 

distribution of X which is                    then the posterior distribution, π(θ|x) is   

        
          

    
  

          

             
                                             

The posterior distribution which is the conditional distribution of θ given the sample x can be 

used to make inferences about random quantity θ (Berger, 2003). 

These inferences are influenced by the information provided in the prior.  Selection of a 

prior distribution to represent information which can be limited or nonexistent has been 
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researched by many authors (Dyer & Pierce, 1993).  The chosen prior distribution may satisfy 

the prior beliefs about the data but it also carries additional information which could be invalid.  

To avoid these concerns, many authors have investigated ways of creating noninformative priors 

that do not make assumptions about the data parameters.  Jeffreys’ noninformative prior is one of 

the most popular non-informative prior distribution since it is easy to derive and to justify 

(Berger, 2003). 

 The Jeffreys’ prior is the positive square root of expected Fisher information, I(θ), for θ.  

             
 
  

                       
  

   
                                                          

For the binomial case, we can arrive at the Jeffreys’ prior by calculating the second derivative of 

the Fisher Information: 

                     

                                 

 

  
            

 

 
  

     

   
 

  

   
             

 

  
  

     

      
                                                  

Now entering 3.1.7 into Fisher information and using the expected value of X as nθ we obtain  

            
 

  
  

     

      
   

  

  
  

      

      
  

 

      
 

The resulting Jeffreys’ prior is  
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If we disregard the  
 

  term we have Jeffreys’ prior as     
 

       
 

   which is a beta density 

with parameters 
 

 
 and 

 

 
. 

  

 

3.2 – Bayesian Interval Estimation 

 

An interval estimate of a real-valued parameter θ based on a random sample X = (x1, …, 

xn) is a pair of functions L(x1, …, xn) and U(x1, …, xn) such that L(x) ≤ U(x) for all x.  The 

random interval [L(X), U(X)] is the interval estimator.  The coverage probability of the interval 

estimator [L(X), U(X)] is the probability that the random interval covers the parameter θ.  The 

probability is referred to as the confidence level.  The interval estimator and the measure of 

confidence are known as confidence intervals or confidence sets. 

In classical statistics, the confidence interval is said to “cover the parameter’’ to stress the 

fact that the interval is a random quantity while parameter is a fixed.  The (1 – α) confidence 

interval [L(X), U(X)] is one of the possible realized values of the random interval.  Since the 

parameter is a fixed quantity there is a probability of 0 or 1 that it is within the realized interval.  

We can then say that there is a 100(1 – α)% chance of coverage that the realized random interval 

covers the true parameter (Casella, 2002).   

Bayesian statistics differ from classical statistics in that the parameter is treated as a 

random variable with a probability distribution known as the prior distribution. Bayesian claims 

of coverage are made with respect the posterior distribution of the parameter (Berger, 2003).   
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This allows us to say that the parameter is within the confidence interval with some probability, 

not 0 or 1. 

Bayesian statistics refers to the interval estimates as credible sets to avoid any confusion 

with classical statistics confidence sets which are markedly different probability assessments 

about the parameter.  If π(θ|x)  is the posterior distribution of θ given X = x, then for any set  

     , the credible probability of A is 

                     
 

 

                                                         

 and A is a credible set for θ.  The Bayesian credible probability reflects the experimenter’s 

subjective beliefs about the parameter, the prior distribution, and then updated with the data to 

create the posterior distribution.  A Bayesian claim of 100(1 – α)% coverage means that after 

viewing and updating the prior distribution with the data they are 100(1 – α)% sure of coverage.  

While in classical statistics, a claim of 100(1 – α)% coverage means repeated identical trials 

100(1 – α)% of the realized confidence sets will cover the true parameter. 

 There can be several kinds of credible sets used.  The equal-tailed credible sets are 

formed by breaking α equally between the upper and lower bounds giving a 1 – α credible 

interval.                     where    is the     quantile of        and    is the       

quantile of          The highest posterior density set, HPD, can also be used to create the 

credible set.  The goal is to create the shortest credible interval for   that satisfies the following  

                                     
 

             

                           

This credible set is known as HPD region since it contains values of the parameter for which the 

posterior density is highest.  An HPD interval uses lower and upper bounds that correspond to 
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the highest parts of the posterior distribution that contain a 1 – α area between them.  The shape 

of the HPD region is based on the shape of the posterior distribution.  If the posterior distribution 

is symmetric then the HPD region formed will also be symmetric.  In the text of Box and Tiao, 

they discuss the main properties of a HPD interval.  One property is that that density of every 

point inside the interval is greater than that of every point outside the interval (1992).  The 

second main property is that for a given probability, 1 – α, the interval is of the shortest length.  

 

 

3.3 – The Jeffreys Interval 

 

The Jeffreys prior interval is another alternative interval chosen by Brown, Cai and 

DasGupta (2001).  Beta priors are commonly used to make inferences on p, because the family 

of beta distributions is the standard conjugate prior family for binomial distributions.  In general, 

if               and p has a prior distribution of             , with the density function,  

     
              

        
                                                         

 then the corresponding posterior distribution of p will also be a beta distribution 

                                                                           

The           equal-tailed Bayesian interval is given as 

                           
                                      

where               denotes the α quantile of a Beta         distribution. 
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A non-informative prior is preferred when creating the credible interval as it does not 

influence the interval it treats all values of θ the same.  Continuous non-informative prior are 

often improper (Hogg, 2005). The non-informative prior has an advantage because it remains 

invariant under transformation of the parameters.   

The prior chosen was the non-informative Jeffreys’ prior, Beta  
 

 
 
 

 
  which was derived 

in section 3.3.  The corresponding density function (3.3.1) for the Jeffreys’ prior  

      
   

         
  

  
 
     

 
  

  

can be simplified using the fact that  

Beta            
            

    
      to form the density function 

            
         

                                                     

The posterior pdf of p is obtained using Bayes formula 

          
            

               
                                                

Substituting the binomial probability function and density function into the above gives 

        
  
 
              

 
    

         
  

   
 
               

 
    

         
      

                                 

After simplification we can arrive at 

       
    

            
  

     
            

     
                                                

Notice the denominator of equation 3.3.7 is a beta function.  Therefore, the posterior pdf of p is 
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of the form:   

    
            

  

     
           

   
                                                     

The lower and upper limits, [LJ(x), UJ(x)], of the         % equal-tailed Jeffreys 

prior interval are created by selecting the center of the interval to have       of the area with 

the two sides having     of the posterior probability.   

An adjustment is made to the lower limit, LJ(0) = 0, and a similar adjustment to the upper 

limit, UJ(n) = 1,  to avoid the intervals poor behavior at the boundaries. 

                 
        

                                         

and at x = 0 the lower limit is LJ(0) = 0 

The upper limit of the           equal-tailed Jeffreys prior interval is given as  

             
      

        
                                     

and at x = n the upper limit is UJ(n) = 1 

The actual endpoints of the Jeffreys interval have to be numerically computed.  Brown, 

Cai and DasGupta(2001) provide a table listing the limits for the Jeffreys interval for the values  

7 ≤ n ≤ 30.  The coverage of the Jeffreys interval is similar to the Wilson interval.  It however 

still has two steep downward spikes near 0 and 1.   

For this reason Brown, Cai and DasGupta (2001) suggested a modified Jeffreys interval 

to eliminate the downward spikes near 0 and 1, caused by Uj(0) being too small and LJ(n) being 

too large, new limits were chosen for the Jeffreys confidence interval.   

 UM-J(0) = pl  and  LM-J(n) = 1 – pl    
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where pl satisfies (1 – pl)
n
 =     which can be rewritten as              

 
  

 

 LM-J(1) = 0, otherwise LM-J = LJ 

 UM-J(n – 1) = 1, otherwise UM-J = UJ 
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CHAPTER FOUR:  CONFIDENCE INTERVALS IN THE CASE OF 

HYPERGEOMETRIC DISTRIBUTION 
 

 

4.1 – The Hypergeometric Distribution 

 

The hypergeometric distribution is the discrete distribution which can best be described 

using the urn scheme (Casella, 2002).  Suppose the urn is filled with N amount of identical 

marbles of two different colors for example k are white and N – k are yellow.  We randomly 

select n marbles from the urn (an example of sampling without replacement).  We want to know 

what is the probability that there is x amount of white marbles in the sample of n marbles.  The 

hypergeometric probability mass function is as follows 

               
  
 
     

   
 

  
 
 

                                                        

where  N  represents the total size of the population 

k represents the number of white marbles in the population 

N – k  represents the number of yellow marbles in the population 

n  represents the sample size 

x  represents the number of white marbles in the sample.   

In most cases, the known values are N, x and n.  The unknown quantity of interest is the 

proportion of white marbles in the population, given as     
 

 
.   

The hypergeometric distribution is also widely used in reliability theory where N can be 

considered as the size of the population of items and k is the unknown number of defective items 
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in the population.  When a sample of size n is drawn, the objective is to make inferences on the 

number of defectives items k. 

The mean of the hypergeometric distribution is 

    
  

 
                                                                              

The variance is 

       
            

        
        

   

   
                                   

 

 

4.2 – Approximation of Hypergeometric Distribution by Binomial Distribution 

 

 If the population size N is large and x and n are very small in comparison with N, then the 

hypergeometric distribution can be approximated by the binomial distribution.  To demonstrate 

this, let us begin by expanding the binomial coefficients of the hypergeometric distribution 

(4.1.1). 
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Let us rewrite the last term of the numerator in (4.2.3) as follows 

                            

After substituting  (4.2.1),( 4.2.2) and (4.2.3) into the hypergeometric distribution, (4.1.1)   yields 

the following  

              

              
  

                        
      

              
  

   

  
  

        
 
                                          

                                       

   
 
 
   

   

   

   

   

   
     

     

     

   

                                                                                                     

 

If                 then            Also, when j = x – 1 or j = n – x – 1   the value of j 

can be approximated to zero since x and n are very small. 
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Manipulate the fractions in the equation above by dividing each term by N and then using 

the approximation   j/N → 0: 

   

   
  

 
   

 
 

 
   

 
  

  

 
 
 

                                                       

 

     

     
  

 
  

 
   

 
 

 
  

 
   

 
  

  
  

 
 

 
                                           

 

Replacing these two simplified fractions, 4.2.5 and 4.2.6 into the equation 4.2.4 gives the 

following equation which can be rewritten using exponential notation to represent the binomial 

distribution 

               
 
 
   

   

   

   

   

   
     

     

     

   

 

   
 
 
    

   

   

      

     

   

 

  
 
 
                                                                                 

If the experimenter knows that the values of x and n are relatively small,                 

then the binomial distribution can be used as an estimate for the hypergeometric distribution. 
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4.3 – Confidence Interval Based on Normal Approximation 

 

Using standard normal approximation to create a confidence interval based on normal 

approximation for the hypergeometric distribution we have                  the mean and 

variance are given in 4.1.2 and 4.1.3  

                
   

   
                                                      

To create a two-sided (1 – α) confidence interval, we estimate by    
 

 
, so that  

    

               
   

                                                                  

The interval is obtained by solving the inequality for p:   

  
  

 
    

               
   

     
  

 

Since   
  

       
  
  we can rewrite the last inequality using the absolute value  

 

    

               
   

 
    

  
                                                          

Using the estimate,      
 

 
  in the radical, we can rewrite the expression as  

 

    

   
 
     

 
       

   

 
    

  
                                                 

The last expression can then be reduced and modified to the following  
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The confidence interval using standard normal approximation is  

     
  
 

           
      

 
      

     
  
 

           
      

 
                          

 

 

4.4 – The Confidence Interval based on Analog of Wilson Interval 

 

The Wilson interval is an alternate interval which uses the exact standard error 

      
 

      
    instead of the estimated standard error          

 
      

  .  For the 

hypergeometric distribution, the inequality to solve is of the following form 

  
    

             
   

        
  
                                                

Clearing the denominator and squaring both sides to clear the radical gives the following 

                 
   

  
 
            

   
                                 

Distributing the terms on the right hand side of the inequality, we obtain 

               
  

   
  

   
                                           

Rewriting the inequality (4.4.3) by grouping the terms 
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To solve for p, we can use the quadratic formula.  The terms to be used in the quadratic formula 

would then be 

A = 
  

   
  

   
            ,  B = 

  
   

  

   
             ,  and C =     

  
              

  
 

 
           

  
 

 

          
           

  
               

           

  
                              

Then            is the         confidence interval for p based on the analog of the Wilson 

interval: 

   
           

  
      

           

  
                                        

 

 

4.5 – Bayesian Estimation for Hypergeometric Distribution  

 

Dyer and Pierce examined prior distributions for hypergeometric sampling (1993).  They 

looked at four different families of prior distributions developed by a Bayesian approach.  We 
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shall look at their recommended prior distribution, Polya (beta-binomial) when no prior 

information is available.   

 Dyer and Pierce (1993) described the hypergeometric sampling as taking a sample of size 

n drawn without replacement from a population of size N.  Let k be the number of failures and   

N – k be the number of successes.  The sampling distribution of X, the number of failures in the 

sample is the hypergeometric distribution with the pdf 

        
 
 
 
  

   
   

 

 
 
 
 

                                               

The prior distribution is of the form g(k;ω) where ω is a hyperparameter.  The prior provides a 

priori information which can be limited or not available about the true value of k which is 

combined with the sample data to produce the posterior distribution for k 

          
 
 
 
  

   
   

       

  
 
 
  

   
   

            
   

                                      

where    is the scalar vector parameter of the prior.  The posterior is used to make inferences 

about the unknown quantity, k.  A concern of statisticians about the selection of a prior 

distribution is the extra information that may be contained in the prior distribution (Dyer, 1993).  

As a method of avoiding this issue, many authors have developed non-informative priors.  The 

confidence interval for k is of the form           ,  where    and    are such that 
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4.5.1 – Bayesian Estimation with Binomial Prior 

 

 One of the possibilities is to impose the binomial prior distribution on k.  If a population 

of size N is drawn at random, where each item has an unknown probability θ of being defective.  

For given θ, the sampling distribution for k, the number of defectives in the sample of size N, is 

binomial  

         
 
 
                                                      

The unconditional marginal distribution of k is then given as follows 

             
 

 

                                             

     
 
 
           

 

 

                                                           

The prior distribution for    can be used to obtain a marginal distribution which can be a prior 

distribution for k.   

 In this case, the marginal distribution of x (for a given value of θ) takes the form 

         
 
 
 
  

   
 
 
  

   
   

  
 
 
           

     

   

                               

Observe that the binomial coefficients can be expanded and simplified by multiplying the 

numerator and denominator by n!(N – n)! 
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Therefore, using k – x = j, j = 0, 1, … , N – n, we derive the following marginal distribution 

         
 
 
 
  

   
 
 
  

 
 
  

   
   

           

     

   

 

    
 
 
   

   
   

           

     

   

 

    
 
 
   

   
 

               

   

   

 

    
 
 
             

   
 

             

   

   

 

    
 
 
                                                                                         

         
   

 
             

   

   

   

Therefore, in this case, the marginal distribution of x given   is Binomial (n,  ).  Then the 

posterior distribution of k given x is of the form 
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Using the previous observation about the binomial coefficients in equation 4.5.1.4 the numerator 

can be rewritten and we arrive at 

  
 
 
 
  

 
 
  

   
   

           

 
 
 
  

 
 
           

 

   
   
   

                                                                   

So the posterior distribution of k has a binomial distribution given x and  . 

 We can note that since x given   has a binomial distribution, one can use all previously 

considered methodology for derivation of the confidence interval for          .  Then, the 

confidence interval for k can be drawn as           if N is large or by using posterior 

distribution          for moderate values of N.  

 

 

4.5.2 – Bayesian Estimation with Polya (Beta-Binomial) Prior 

 

 Suppose that θ varies across the process according to a prior distribution for θ represented 

by          where ω is a hyperparameter.  The unconditional distribution of K is given by 

             
 

 

                 
 
 
           

 

 

                                 

We suggest the use of the Polya (beta-binomial) distribution as a prior.  This distribution results 

from hierarchical model where k given θ is assumed to have a binomial distribution. 
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and   has the beta distribution with parameters           The Polya distribution uses the beta 

distribution which is commonly used with binomial sampling to create a closed form marginal 

distribution for k.  The pdf for the beta distribution is 

          
 

      
                                                          

where         
        

      
  with α > 0 and β > 0.   Therefore, the marginal distribution of k is 

obtained by integrating out    from the joint distribution of k and  : 

                      
 

 

           

    
 
 
           

 

 

 

      
               

 
 
 
 
 

      
                   

 

 

                                                     

Simplifying this expression by rewriting the integral as the beta function              

we obtain 

           
 
 
 
             

      
 

Rewriting the beta functions via gamma functions we can simplify the fraction: 
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This is the Polya distribution with parameters        , which can be used as a prior 

distribution for hypergeometric sampling (Dyer 1993). 

 Then, by integration we obtain a marginal distribution for x, the number of defectives in 

the sample of size n.  The resulting pdf is 

             
 

 

              

     
 
 
           

 

 

 

      
                

 
 
 
 
 

      
                   

 

 

    

    
 
 
  

                    

                
                                      

 

The posterior distribution for k is  

                
 
 
 
 
                         

                     

 
 
 
 
                      

                  

 

After simplifying the fraction and combining the binomial coefficients we arrive at the posterior 

                
   
   

 
                      

                      
    

                                          

Note that the posterior distribution for k – x is also the Polya distribution with parameters (N – n,  

α + x, n + β – x). The Polya distribution is then the conjugate prior distribution for 

hypergeometric sampling. 
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Then, the posterior on    
 

 
 is found by replacing k with 
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CHAPTER FIVE:  CONCLUSIONS  
 

In the present thesis, we considered construction of confidence intervals for the binomial 

and the hypergeometric distributions.  Confidence intervals for the binomial proportion, p, has 

coverage issues when p is near the boundaries 0 or 1 due to the discreteness of the binomial data.  

Although, to the best of our knowledge, no one studied systematically confidence intervals in the 

case of the hypergeometric distribution, similar issues will arise.  In this situation, if the 

population size is large, one can either reduce the case to the binomial confidence intervals or 

credible sets. Otherwise, methods described above can be applied. 
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