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ABSTRACT 

Mean shift is an effective iterative algorithm widely used in image analysis tasks like 

tracking, image segmentation, smoothing, filtering, edge detection and etc. It iteratively 

estimates the modes of the probability function of a set of sample data points based in a region.  

Mean shift was invented in 1975, but it was not widely used until the work by Cheng in 

1995. After that, it becomes popular in computer vision. However the convergence, a key 

character of any iterative algorithm, has been rigorously proved only very recently, but with 

strong assumptions.  

In this thesis, the method of mean shift is introduced systematically first and then the 

convergence is established under more relaxed assumptions. Finally, generalization of the mean 

shift method is also given for the estimation of probability density function using generalized 

multivariate smoothing functions to meet the need for more real life applications.  
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CHAPTER 1: BACKGROUND 
 

In this thesis, we will focus on the properties of a method, referred to as the mean shift 

method, in computer vision. In particular, we will study its convergence property. Scientists in 

computer vision area did numerous researches and have made significant progress in mimicking 

the physiological process of visual system of human on computer. Due to the wide applications 

of computer vision systems in machine intelligence and homeland security, intensive researches 

and strong interests have emerged and are swarming into this promising field. Even a small step 

of improvement or refinement is possible to induce significant effect in the application. Today, 

with a huge supply of powerful algorithms, computers could achieve many abilities such as 

clustering, tracking, segmentation, smoothing and filtering, etc.    

 

1.1. Digital image representation[15,16] 

Digital photo is a well known example of two-dimensional digital image.  

The pixels are the smallest element of a digital image and they are often represented by 

squares. They are normally arranged in a two-dimensional grid and the whole of them represent 

the image. Since digital image are often rectangular, the pixels in it located by array and could be 

treated as a matrix. For gray image, it could be represented by a two dimensional matrix and the 

value of each elements in the matrix could be represented by a function ( , )f x y . The 

function ( , )f x y  is a two dimensional function, x  and y  are spatial coordinates and the value of 

( , )f x y  is proportional to the brightness of the image at that point. Thus, a digital image looks 

like this: 
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Take a simple gray image for example, Fig.1.1 is a gray image with 512 512  pixels and 

could be represented by a two-dimensional 512 512  matrix. The exact value of each element in 

this matrix could be obtained by transferring the image to data. Since this matrix contains 

512 512  entries, only the top left corner of this matrix is shown as table 1.1. We could see a 

digital image is composed by a certain number of data and it is easy to handle by playing with 

those data under some mathematic operations. 

 

Fig. 1. 1: Cameraman image 
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Table 1.1 Top left corner of cameraman image represented by matrix 

 

 

More information on the basics of digital images can be found in, for example, [15,16]. 

 

1.2. Statistical background[17,18] 

From section 1.1 above, we could see that a digital image is actually a matrix. For such a 

small gray image, it contains 512 512  elements and it is not easy to find out the explicit form of 

the function which could represent the value of the elements in it.  In order to obtain the 

underlying information from those large set of sample data of a digital image, an estimation of 

f(x,y) is given using the density estimation form statistics. 

 

1.2.1. Random variables, distribution and density functions 

Definition 1.1: A random variable is a function, which maps each event or outcome 

S   to real number  X  . If the mapping  X   is such that the random variable  X   takes 

on a finite or countable infinite number of values, then  X   is a discrete random variable; 
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whereas, if the range of  X   is an uncountable infinite number of points,  X   is a 

continuous random variable. 

Definition 1.2: The cumulative distribution function or cdf  of a random variable X , 

denoted by  

  ( )XF x P X x  , for all x . 

Definition 1.3: The probability density function or pdf  of a continuous random variable 

X  is (assuming the limit exists) 

 
0

( )
limX

P x X x
f x






  
 , for all x . 

From the properties of cumulative distribution, for continuous random variables, 

   ( ) X XP x X x F x F x        

So 

       
0

lim X X X
X

F x F x dF x
f x

dx




 
   

From the properties of the cdf s, we can infer several important properties of probability 

density function as follows: 

   1 0Xf x   

     
2 X

X

dF x
f x

dx
  

     3
x

X XF x f t dt


   

   4 1Xf t dt
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     5
b

Xa
f t dt P a X b     

1.2.2. Gaussian random variable 

In the study of image processing, the Gaussian random variable is the most important 

random variable and most commonly used in the computer vision research area.  

Definition 1.4: A Gaussian random variable is one whose probability density function 

can be written in the general form 

   2

22

1
exp

22
X

x m
f x



 
  

 
 

 

where m  is the mean and   is the standard deviation. In general, the Gaussian pdf  is centered 

about the point x m  and has a width that is proportional to  . This random variable is referred 

to as a normal random variable. Furthermore, for the special case when 0m   and 1  , it is 

called a standard normal.  

 

1.2.3. Conditional expected values 

As specified in Definition 1.5, the conditional expected value of a random variable is a 

weighted average of the values the random variable can take on, weighted by the conditional 

pdf  of the random variable. 

Definition 1.5: (conditional expected value) The expected value of a random variable X ,  

conditioned on some event A  is 
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Similarly, the expected value of a function  g X  of random variable X  ,  conditioned on 

some event A  is 

  
   
   

|

|

is continuous
|

 is discrete

X A

k X A k
k

g x f x dx X
E g X A

g x f x X






 





 

 

1.2.4. Density estimation 

The goal of density estimation is to obtain an estimation of distribution from the observed 

data. Probability density function represents the data in the whole sample space from that 

population. The density estimation methods are classified into parametric estimation and 

nonparametric estimation. If the distribution is known (up to the unknown parameters) in 

advance or is assumed to be an exact form, then the problem becomes the estimation of the 

parameters in the distribution. This is defined to be parametric estimation. Another approach is to 

estimate the distribution directly from the measured data which is known as nonparametric 

estimation. This method requires a large amount of observed data and requires intensive 

numerical computation.  
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1.3. Outline of Thesis 

The outline of this thesis will be as follows. 

The first chapter summarizes the background information and the basic definitions. 

The second chapter recalls the previous work in research and major achievements in the 

field of mean shift algorithm. 

The third chapter focused on the previous attempts and proofs of convergence, which is 

the key property of mean shift algorithm. 

The fourth chapter presents some new results and their proofs on the convergence of 

mean shift algorithm. It also contains further improvement and generalization of the mean shift 

proposed by this thesis. 

The fifth chapter gives the conclusion and the scope of future work.   
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CHAPTER 2: INTRODUCTION TO MEAN SHIFT METHOD 
 

The mean shift algorithm is an effective iterative statistical method to find the modes of 

the probability density function. It is a procedure for finding the local maximum of the 

probability density function of an unknown distribution by the given set of samples obeying that 

distribution. In 1975, Fukunaga and Hostetler[1] developed an algorithm, which they referred to 

as the mean shift algorithm, to estimate the zeros of the gradient of the probability density 

function by using the kernel based density estimation method. They also applied it to clustering 

and data filtering. Cheng[4] gave a more systematic study and generalized the mean shift 

algorithm in 1995. This is studied further by D. Comaniciu[5-9]. The following is an introduction 

to some important aspects of this algorithm. 

 

2.1. Original definition of mean shift 

In the 1975 paper by Fukunaga and Hostetler[1],they studied about the application of 

estimation of the gradient of density functions in pattern recognition. A key idea was introduced 

by estimating the gradient of density functions of a point was introduced by using the sample 

observations within a small region around it. In this process, a new term “mean shift” was 

introduced and a new algorithm named “mean shift algorithm” was given. 
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2.1.1. Probability density estimates 

In most image processing and pattern recognition problems, very little is known about the 

true probability density function or even the form of it. So the exact gradient of a density 

function could not be obtained directly from the real probability density function (pdf) of the 

sample data in most cases since the lack of knowledge about the explicit form of pdf  . A straight 

forward approach to estimate the density gradient would be to first approximate the probability 

density function and then take its gradient. 

Based on the idea above, a form of differentiable nonparametric multivariate estimators 

of the probability density functions introduced by Cacoullos’[3] (eq. 2.1) is adopted, which is an 

extension of Parzen’s[2] univariate kernel estimates.  

   
^ 1 1

1

( ( ))
N

n
j

j

f X Nh k h X X
 



                                                        Eq. 2.1 

where 1X , 2X ,…, NX  is a set of N independent and identically distributed n -dimensional 

random vectors defined as 

1

2

i

i
i

in

x

x
X

x

 
 
 
 
 
 

M
                                Eq. 2.2 

Function  k Y  satisfies 

 sup
nY R

k Y


                                                                         Eq. 2.3 

 
nR

k Y dY                                                                        Eq. 2.4 
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 lim 0
n

Y
Y k Y


                                                                Eq. 2.5 

  1
nR

k Y dY                                                                           Eq. 2.6 

and  h N  is a function of the sample size N . 

 

2.1.2. Gradient estimates and their properties 

By taking the gradient of the proposed density estimates (eq. 2.1), the gradient estimates 

are 

   
^ 1 1

1

( ( ))
N

n
x x j

j

f X Nh k h X X
 



                                               Eq. 2.7 

Let 1( )jY h X X  , then 1
xY h  . Based on the chain rule, eq. 2.7 can be changed to                           

   
^ 11 1

1

( ( ))
N

n
x j

j

f X Nh k h X X
 



                                              Eq. 2.8 

where 

T

1 2

( ) ( ) ( )
( ) , ,...,

n

k Y k Y k Y
k Y

y y y

   
      

                                                 Eq. 2.9 

Some conditions on  k X  and  h N  are made in order to guarantee asymptotic 

unbiasedness, consistency, and uniform consistency of the gradient estimate.  

1. Asymptotically unbiased.  

An estimate is said unbiased if the distance between the average of the collection of 

estimates and the single parameter being estimated is zero. If the gradient estimate is 
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asymptotically unbiased, it means that the mean value of the estimate converges to the true 

value of the gradient as N→ ∞.This property is true when[1] 

 lim 0
N

h N


                                                                  Eq. 2.10 

2. Consistent in quadratic mean.  

This property means that for large N, the variance in the estimate is close to the true value. 

In order to content this property, in addition to eq.2.5, h must satisfy 

 lim n

N
Nh N


                                                              Eq. 2.11 

In addition to eq. 2.3 to 2.5, the kernel function is such that 

     'sup
n

i
Y R

k Y


                                                                 Eq. 2.12 

 '

n

i

R

k Y dY                                                                Eq. 2.13 

 'lim 0
n

i
Y

Y k Y


                                                          Eq. 2.14 

where 

 

   '
i

i

k Y
k Y

y





                                                               Eq. 2.15 

3. Uniform consistency.  

Meeting this property means that the estimate is of high probability close to the true value 

for large values of N. To satisfy this property, all the conditions for h mentioned above must 

be satisfied. 
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In conclusion, with those properties, Fukunaga and Hostetler proved that their estimate of 

gradient of density is quite accurately close to the true value of gradient. The proofs of properties 

of gradient estimate are given by Fukunaga and Hostetler[1] in the appendix of their paper. We 

will recall some of these properties in the next two subsections. 

 

2.1.3. Mean shift gradient estimates 

Since the function k can be any kernel function satisfying eq.2.3 to eq.2.6, Fukunaga and 

Hostetler[1] choose the Guassian kernel function which is a well known differentiable 

multivariate kernel function and satisfying those conditions to be k. The Guassian kernel function 

is 

    / 2 T1
2 exp( )

2
n

k X X X                                                     Eq. 2.16 

We know 

 

1

2T 2 2 2
1 2 1 2, ,..., n n

n

x

x
X X x x x x x x

x

 
 
     
 
 
 

L
M

                             Eq. 2.17 

Let T( )g X X X , then  
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1
1

2T
2

2

2
2

2

x x

n

n

g

x
x

g
x

xX X g X

x
g

x

 
    
   
           
   
    
  

M
M

                                     Eq. 2.18 

so  

   

 

 

/ 2 T

/ 2 T

/ 2 T

1
2 exp( )

2
1 1

2 ( ) 2 exp( )
2 2

1
2 exp( )

2

n

x x

n

n

k X X X

X X X

X X X













   

    

   

                                     Eq. 2.19 

Substitute it into eq.2.7 for  xk X  to get 

   

         

           

^ 1 1

1

1 T/ 2

2 2
1

T1 / 22

2
1

( ( ))

1 1
2 exp

2

1
2 exp

2

N
n

x x j
j

N
nn

j j j
j

N
nn

j j j
j

f X Nh k h X X

Nh X X X X X X
h h

N X X h X X X X
h





 



 



  



   

        

       







  Eq. 2.20 

For convenience, change j to i in the above result and get the general form of estimate of 

the density gradient 

             
^ 1 / 2 T2

2
1

1
2 exp

2

N
nn

x i i i
i

f X N X X h X X X X
h

  



        
         Eq. 2.21 
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This result is very familiar since it is similar to  
1

1 N

i
i

X X
N 

   
 

 , which is just the mean 

of the iX X . In this function, iX X  is defined as “shift” of each point from X. Therefore the 

term “shift” is a noun at the beginning. Fukunaga and Hostetler also defined 

       / 2 T2

2

1
2 exp

2
nn

i ih X X X X
h

        
 as “weighting factor”.  

The same general form will result if the kernel function is of the form 

  T( )k X g X X                                                              Eq. 2.22 

A simple kernel with this form is 

   T T

T

1 , 1

0, 1

c X X X X
k X

X X

   


                                      Eq. 2.23 

where 

 / 2 2 2

2 2
n n n

c           
   

                                                         Eq. 2.24 

Taking the gradient of eq.2.23 and substituting to eq.2.8, we obtain the gradient estimate 

as 

      

   

   

^ 11 1

( )

11 1

( )

12

( )

2

2

i h

i h

i h

n
x i

X S X

n
i

X S X

n
i

X S X

f X Nh k h X X

Nh ch X X

Nh c X X

 



 







   

 

 







                                      Eq. 2.25 

where 

      T 2:hS X Y Y X Y X h                                                      Eq. 2.26 
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Note that  hS X is a small neighborhood around, that contains all points Y such that the 

Euclidean distance  ,d Y X  between Y and X is less than or equal to h. Then we could know the 

volume of this neighborhood is  

 
 

/ 2

2
2

h

n n

h

S X

h
X dY

n
  
  

 

                                                              Eq. 2.27 

Substituting eq.2.24 and eq.2.26 into eq.2.25, we obtain as the gradient estimate, 

     

   

    

   

   

^ 12

( )

12 / 2

( )

/ 2 2
( )

2
( )

2
( )

2

2 2
2

2 2

2 / 2 2

1 2

2 1

i h

i h

i h

i h

i h

n
x i

X S X

n n
i

X S X

in n
X S X

i
X S Xh

i
X S Xh

f X Nh c X X

n n
Nh X X

n n
X X

h Nh

n
X X

X Nh

k n
X X

N X h k













 









  

         
   

   
   
 


  


  











         Eq. 2.28 

In eq.2.28,    
( )

1

i h

h i
X S X

M X X X
k

   is the sample mean shift of the observations in 

the small region  hS X around X.  
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2.1.4. Mean shift normalized gradient estimates 

Comparing eq.2.28 and eq.2.1, we could see that the term in eq.2.28, which is
 h

k

N X
, 

is identical to eq.2.1 if k is uniform over the regions  hS X . So we let    h

k
f X

N X
  and take 

it to the left side of eq.2.28, we get 

 
   2

2x
h

f X n
M X

f X h

 
                       Eq. 2.29 

We also know  

 
 
   lnx

x

f X
f X

f X


                                            Eq. 2.30 

Hence from eq.2.29 and eq.2.30, we get 

   2

2
lnx h

n
f X M X

h


                                           Eq. 2.31 

This shows that the estimation of normalized gradient is simple and easy to calculate 

based on the mean-shift method.  

 

2.1.5. Earliest applications 

After mean shift between data points in a small region and X is used to estimate gradient 

of probability density, the earliest applications of it began. Those applications focused on mode 

clustering and data filtering. 

Assume that a point in a pattern or a signal could be represented by a vector Xi, 



 17

1

2

i

i
i

in

x

x
X

x

 
 
 
 
 
 

M
                                         Eq. 2.32 

First, the gradient at the observation point could be estimated base on a selected region of 

data points as described in the previous subsection. Then, the observation point is moved, or 

called shifted (here shift is a verb), in the direction of gradient of this sample to the mode. This 

process is continued iteratively until no substantial shift of points occurs. This is based on the 

precondition that the estimation is convergent. The proof of its convergence as a crucial problem 

as it is was left unsolved and it is one of our research tasks in this thesis. 

In conclusion, Fukunaga and Hostetler[1] in their illustrious paper invented the term 

“mean-shift” and defined the original meaning of it, and they also introduced weighting factor 

which is an important topic that is investigated later by many researchers. But this algorithm did 

not cause sufficient attention for a long time until twenty years later when Cheng[4] in another 

classical paper gave a systematic study of the mean shift algorithm, which will be introduced in 

next section. 

 

2.2.  Improved mean shift algorithm 

Fukunaga and Hostetler[1] proposed the mean shift algorithm as a cluster analysis method, 

and their intuition that mean shift is a gradient ascent need to be verified, the convergence of 

mean shift need to be proved, and its relationship with other similar algorithms needs to be 

illuminated. 
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2.2.1. Introduction of Cheng’s generalization 

In 1995, Cheng[4] testified the intuition and established that mean shift is a gradient 

ascent in a formal and rigorous proof. He also studied the convergence of the algorithm based on 

the Gaussian kernel as well as a specified general form of the probability density function. He 

improved and generalized this algorithm in the following three aspects.  

First, he introduced several different forms of kernels, which include non-flat kernels 

such as Gaussian kernel, Epanechnikov kernel, and biweight kernel. 

Second, points in data can be weighted. So the contribution of each sample data is 

allowed to be different, which extends the real applications of mean shift algorithm in computer 

vision. 

Third, the (generalized) algorithm could be performed on any subset of X. The original 

data points themselves were kept constant. Another set, a copy of the original data set, was 

allowed to move around in the Euclidean space.  

Cheng also introduced the concept “shadow” of a kernel in order to clarify the 

relationships between different kernels. He proved that mean shift on any kernel is equivalent to 

the gradient ascent on the density estimated with its shadow[4]. 

In addition to the above contribution, he showed some particular behaviors of mean shift 

in clustering and studied how the probability strategy can be applied in weight assignment. He 

also studied the global optimization application of mean shift and gave specific examples. 

Furthermore, he suggested that some computational obstacles should be resolved to enable the 

widely application of mean shift.  
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2.2.2. Introduction of D.Comaniciu’s applications and proofs of mean shift 

D.Comaniciu and his co-workers[5-9] made mean shift algorithm popular by successfully 

applying the algorithm to feature space analysis and achieving many good application results in 

image smoothing, segmentation, real-time object tracking, etc. They realized the application of 

this useful algorithm and enabled its benefit to us through its wide application in computer vision 

area.  

Moreover, they indicated that under some specifically assumptions, mean shift algorithm 

will convergent to the nearest density gradient of feature space. This is concluded in a theorem as 

follows which will be very useful for later proofs. 

Theorem: If the kernel K  has a convex and monotonically decreasing profile, the sequences 

 
^

{ , 1, 2,...}jf y j  and { , 1,2,...}jy j  converge, and  
^

{ , 1, 2,...}jf y j  is monotonically 

increasing. 

The above theorem itself is correct and the proof method of this theorem provided in their 

papers is ingenious. In addition, this theorem guarantees the application of mean shift application 

under the above specified conditions.  

However, in their discussion of the convergence of { , 1, 2,...}jy j  , they made several 

mathematical mistakes which are not easy to be detected.  

 First, in Refs. [6,7], their proofs were essentially based on the inaccurate conclusion 

which says  , 1, 2,...jy j   converges when 1j jy y   converges to zero as j  goes to infinite . 
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As is well known and also pointed out by Li[10], this is incorrect. This will be discussed later in 

next chapter and the counterexamples will be provided. 

Another mistake appeared in Ref. [8] where a key step of the proof in Ref. [8] is 

2 2 2

1 1j m j m j j j m jy y y y y y         L , 

which does not hold in general. This is also proved and the counterexample will be shown in 

Chapter 3. 

Those mistakes were pointed out by Li et al[10], they also provided corrections. However, 

there are still some gaps exist. The detail of their proofs, defections and our corrections for their 

proofs will be shown in next chapter. 

 

2.3. Basic ideas and steps of mean shift algorithm 

First, feature space is considered as a probability density function   , mf X X R . Let 

 ,1iX i N  be an independently and identically distributed sample data set. If  f X  is 

estimated by  

   
^

1

N

i i
i

f X w K X


                                                                Eq. 2.33 

where 
1

1
N

i
i

w


 , K is kernel function . If a kernel function is specified. It will be easy to figure 

out its gradient 

 
^

1

N

i i
i

f X w K


                             Eq. 2.34 
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If the kernel function is specified as 

  2
( )i iK X ck X X -                          Eq. 2.35 

Then 

    
^ 2'

1 1

2
N N

i i i i i
i i

f X w K w ck X X X X
 

                     Eq. 2.36 

Let 

   2'2i i iL X w ck X X                      Eq. 2.37 

We have 

          
1

^

1 1 1 1

N N N N

i i i i i i
i i i i

f X L X X X L X L X L X X X


   

        
   

       Eq. 2.38 

In the right side of the above equation, the part    
1

1 1

N N

i i i
i i

L X L X X X


 

   
 
   is defined 

as mean shift vector. Substitute X  by iy  . ( 1, 2,3...)jy j  represents the iterative point that used 

calculate the gradient of probability density and the mean shift vector in every iterative step. 1y  

is the initial iterative point. Then the mean shift vector would be written as 

     
1

1 1

N N

k j i j i j i j
i i

ms y L y L y X y


 

   
 
                  Eq. 2.39 

Then the mean shift procedure could be simplified as the following four steps: 

1. Compute mean shift vector by eq.2.39, 

2.   Translate the Kernel window 
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1

1
1 1

N N

j j k j i j i j i
i i

y y ms y L y L y X



 

     
 
    ,                   Eq. 2.40 

3.   Recalculate the new mean shift vector, 

4.   Repeat till the result is convergent.  

The result get from the above process will reach the local maximum of the probability 

density function of the feature space.  
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CHAPTER 3:  CONVERGENCY OF MEAN SHIFT ALGORITHM 
 

3.1. Background 

We briefly review the definitions of the concepts of sequence, convergence, and Cauchy 

sequences that will be important to our discussion. 

3.1.1. Sequence and its convergence 

Sequence 

A sequence is an ordered list of objects. Like a set, a sequence contains members (also 

called elements or terms of the sequence). The number of terms (possibly infinite) in a sequence 

is called the length of the sequence. Unlike a set, order matters, and exactly the same elements 

can appear multiple times at different positions in the sequence. A sequence can be reviewed as 

a discrete function. For example, (C, R, Y) is a sequence of letters that differs from (Y, C, R), as 

the ordering matters. Sequences can be finite, as in this example, or infinite, such as the sequence 

of all even positive integers (2, 4, 6,...). In this work, we will consider sequences of real numbers 

or points from the Euclidean space NR . For convenience, we will write {xn} for a sequence x1, 

x2, … 

Definition of convergence for a sequence 

The limit of a sequence {xn} is, intuitively, the unique number or point l (if it exists) such 

that the terms of the sequence become arbitrarily close to l for "large" values of n. If the limit 

exists, then we say that the sequence is convergent and that it converges to l. This can be 

http://en.wikipedia.org/wiki/Set_(mathematics)�
http://en.wikipedia.org/wiki/Element_(mathematics)�
http://en.wikipedia.org/wiki/Discrete_mathematics�
http://en.wikipedia.org/wiki/Function_(mathematics)�
http://en.wikipedia.org/wiki/Finite_set�
http://en.wikipedia.org/wiki/Infinite_set�
http://en.wikipedia.org/wiki/Even_and_odd_numbers�
http://en.wikipedia.org/wiki/Positive_and_negative_numbers�
http://en.wikipedia.org/wiki/Integer�
http://en.wikipedia.org/wiki/Limit_(mathematics)�
http://en.wikipedia.org/wiki/Sequence_(mathematics)�
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described more precisely as: the sequence {xn} has limit l if for every positive real number ε, 

there is a positive integer N such that for all natural numbers m > N, mx l   . 

3.1.2. Cauchy sequence 

A Cauchy sequence is a sequence whose elements become arbitrarily close to each 

other as the sequence progresses. To be more precise, given any positive number, we can always 

drop some terms from the start of the sequence, so that the maximum of the distances between 

any two of the remaining elements is smaller than that number.  

For Real numbers R  

A sequence 1, 2, 3x x x ,…of real numbers is called Cauchy, if for every positive real 

number ε, there is a positive integer N such that for all natural numbers m, n > N, m nx x   . In 

a similar way one can define Cauchy sequences of complex numbers. Cauchy formulated such a 

condition by requiring m nx x  be infinite small for every pair of infinite m, n. 

In a metric space M  

To define Cauchy sequences in any metric space, the absolute value m nx x  is replaced 

by  ,m nd x x , which is the distance function between mx and nx . If for every positive real 

number ε > 0, there is a positive integer N such that for all natural numbers m , n , the distance 

 ,m nd x x  . Roughly speaking, the terms of the sequence are getting closer and closer together 

in a way that suggests that the sequence ought to have a limit in M . Nonetheless, such a limit 

http://en.wikipedia.org/wiki/Positive_and_negative_numbers�
http://en.wikipedia.org/wiki/Integer�
http://en.wikipedia.org/wiki/Sequence�
http://en.wikipedia.org/wiki/Metric_(mathematics)�
http://en.wikipedia.org/wiki/Positive_and_negative_numbers�
http://en.wikipedia.org/wiki/Integer�
http://en.wikipedia.org/wiki/Infinitesimal�
http://en.wikipedia.org/wiki/Real_number�
http://en.wikipedia.org/wiki/Real_number�
http://en.wikipedia.org/wiki/Integer�
http://en.wikipedia.org/wiki/Limit_of_a_sequence�
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does not always exist within M . A special metric space that we will mainly consider is the 

Euclidean space NR  where the distance function is given by the Euclidean distance:  

2

1

( , ) || || ( )
N

k k
k

d x y x y x y


                                                                        Eq. 3.1 

 

Not every sequence is convergent. The following important theorem tells us when a 

sequence in R  and NR  is convergent. 

Theorem: A sequence of points in R  or NR  has the Cauchy property if and only if it is 

a convergent sequence. 

 

3.2. Previous proofs of convergence and their mistakes 

As we know, convergence is a prerequisite for any iterative algorithm. Otherwise, the 

computing will not end. The proof of convergence of mean shift sequence  , 1, 2,...jy j   

deduced by Cheng[4] is base on the following assumptions: 

(1)  
2

xk x e .                                                        

(2) The density of random variable x is  
22

,xf x e     . 

However, it is difficult to guarantee the second assumption in real applications since the 

true value of   is unknown. Hence, its applicability is confined to some area. 

Comanniciu, Ramesh and Meer[6-8]attempted to prove the convergence of mean shift 

sequence  , 1, 2,...jy j   under the more general assumption that  k x  is convex and 
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monotonically decreasing, and 1/iw N . However, the proofs in Refs.[6-8] contain 

mathematical mistakes as we mentioned before in Chapter 2. First, in Refs. [6,7], their proofs 

were essentially based on the inaccurate conclusion which says  , 1, 2,...jy j   converges when 

1j jy y   converges to zero as j  goes to infinite . As is well known and also pointed out by 

Li[10] in the following example, this is incorrect. 

Example 1 

Let 
1
1/

j

j i
y i


 ,then 1

1
0( ).

1j jy y j
j    


 However, it is well known that 

 , 1, 2,...jy j   does not converge.  

This well-known example is not very appropriate for a counterexample for the proofs in 

Refs.[6,7] since the sequence  , 1, 2,...jy j   is bounded there while the sequence in above 

example is not. We provide the following counterexample: 

Example 2 

We give an intuitive example of a bounded sequence { }jy  that is not convergent, while 

the sequence satisfies 0
1

1
|||| 1 


 j

yy jj as .j  

We could generate an infinite sequence { }jy  based on the idea by “folding” a sequence 

that goes to infinity through letting the jy ’s move back and forward between a bounded area 
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while the distance between jy  and 1jy   becomes closer as j  gets bigger. But jy  get 

accumulated near the lower bound and the super bound, hence { }jy  is not convergent. 

For example, in the case of a sequence of real numbers, the first 1000 members of this 

sequence could be obtained by the following algorithm, 

x(1)=1, y(1)=0,  
  for j=1:1000 
      if  (((y(j)+x(j)/j)>=0)&&((y(j)+x(j)/j)<=1)) 
          y(j+1)=y(j)+x(j)/j 
          x(j+1)=x(j) 
      else 
          y(j+1)=y(j)-x(j)/j 
          x(j+1)=-x(j) 
      end 
  end 
 

The first few elements of the sequence }{ jy  are:   

0    1.0000    0.5000    0.1667    0.4167    0.6167    0.7833    0.9262    0.8012    0.6901    0.5901    

0.4992    0.4158    0.3389 …  

This sequence could be easily shown by the algorithm above that the distance between 

jy  and 1jy   is no more than 
j

1
 which tends to 0 as j   , whereas the sequence itself is not 

convergent. These properties are shown on Figure 3.1. 
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Fig. 3. 1: First 1000 members of sequence{ }jy   

 

Another mistake appeared in Ref. [8] where a key step of the proof in Ref. [8] is 

2 2 2

1 1j m j m j j j m jy y y y y y         L  

which does not hold in general. The following is an example provided by Ref. [10]. 

Example 3 

Let 2m  , then 

   

2 2

2 2 1 1

T2 2

2 1 1 2 1 12

j j j j j j

j j j j j j j j

y y y y y y

y y y y y y y y

   

     

    

      
 

We also know    T

2 1 1 0j j j jy y y y     from Theorem 2 in Ref.[8], hence 

2 2 2

2 2 1 1j j j j j jy y y y y y         

It is conflict with
2 2 2

1 1j m j m j j j m jy y y y y y         L  as claimed in Ref. [8].  
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Therefore, due to the mistakes mentioned above, the convergence of the sequence of mean shifts 

was not verified for general kernels before Ref. [10] provided a correct proof under some 

restrictive assumptions. The next section will discuss the statements and proofs given in Ref. 

[10]. 

3.3. Corrected convergence results and their proofs 

3.3.1. Assumptions and preliminaries 

We follow the treatment given in Ref. [10], there are some assumptions and preliminaries 

we should know before stating the results and proofs of convergence. 

Definition 1. Function  k x  is called a bounded kernel if , on[0, ) , it satisfies: 

(1) (positivity)   0k x  .                                                        

(2) (decreasing)    1 2 1 2,0k x k x x x     . 

(3) (integrability)  
0

k x dx


  .                                                        

(4) (boundedness)  0 0k   . 

Given a bounded kernel function  k x , the density estimation of random variable X is 

defined as 

 
         ^ 1T2

1T2
1

1N

i i ii
i

i ii

f X w k h X X X X
k h X X X X dX






   
 

 


          Eq. 3.2 

where  0h   is a fixed constant to control the size of the window (region of sample), the matrix 

1

i

 is a positive definite matrix to represent the local structure around iX , iw  is the prior 
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probability for iX , which is also called the weight of sample iX .  Hence
1

1
N

i
i

w


 , 0iw  , 

i=1,2,…,N. 

Write 

   
^

1

N

i i
i

f X w K X


                                                  Eq. 3.3 

where 

   2

i
i i H

K X ck X X   

   2 T

i
i i i iH

X X X X H X X     

1 2/i i
H h


  ,    ,1iH H i N    

Then, we could find that 
    12

1
T

i ii

c
k h X X X X dX




 
> 0 is a constant to 

ensure that  iK X is a probability density function.  

Assume that k is differentiable, from eq.3.3,  we could get the gradient of probability 

density  

 

   

^

1

2'

1

( )

2
i

N

i i
i

N

i i i iH
i

f X w K X

w ck X X H X X





  

  




                                Eq. 3.4 

Eq.3.4 could be simplified as  
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^

1

1 1

N

i i
i

n n

i i i
i i

f X L X X X

L X X L X X



 

  

 



 
                                             Eq. 3.5 

where 

   2'2
i

i i i iH
L X w ck X X H                                                      Eq. 3.6 

From the decreasing property of  k x , we know that  ' 0k x  . So  iL X  should also be 

positive definite and invertible. Then the eq.3.5 could be rewritten as 

     

     

^

1 1

1

1 1 1

N N

i i i
i i

N N N

i i i i
i i i

f X L X X L X X

L X L X L X X X

 



  

  

     
   

 

  
                           Eq. 3.7 

Then we get a term      
1

1 1

N N

k i i i
i i

ms X L X L X X X


 

   
 
  , which represents the mean 

shift vector. Let X be jy  above: 

     
1

1 1

N N

k j i j i j i j
i i

ms y L y L y X y


 

   
 
                                             Eq. 3.8 

Then we get the iterative procedure of mean shift algorithm 

     
1

1
1 1

N N

j j k j i j i j i
i i

y y ms y L y L y X



 

     
 
                                    Eq. 3.9 
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3.3.2. Proofs 

We now discuss the results and proofs of Ref. [10] on the convergence of the mean shift 

algorithms. We will present the proofs in such a manner that best suits for our later extension to 

be given in next chapter. Much more detail is added in the presentation and some necessary 

clarifications are also provided. In particular, the end of the proof of Theorem 2 is augmented to 

fill a small technical gap in the original proof given in Ref. [10]. 

Indeed, we will prove that both the estimation of the probability density sequence 

 
^

{ , 1, 2,...}jf y j   and the iterative sequence  , 1, 2,...jy j   are convergent.  To obtain these 

results for general kernels, Li, Hu, and Wu in Ref. [10] assume some more properties on the 

kernel functions. 

Definition 2: A function  : 0,k R   is smoothly convex if a bounded and 

continuous 'k  exists and satisfies 

      '
2 1 1 2 1 1 2 1 2, 0, 0,k x k x k x x x x x x x                                Eq. 3.10 

Remark. The above definition is taken directly from Ref. [10]. The phrase “a bounded 

and continuous 'k  exists” could be rephrased as “ k  has bounded and continuous derivative”. 

Indeed, Definition 2 basically says (equivalently): a function  : 0,k R   is smoothly convex 

if and only if k  is convex and has bounded and continuous derivative. 

 

Based on the definition above, two theorems are given in Ref.[10], one for the 

convergence of   
^

{ , 1, 2,...}jf y j  , the other }{ jy .  
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Theorem 1: If the kernel  k x  is smoothly convex, then the sequence  
^

{ , 1, 2,...}jf y j   

converges and monotonically increases to its limit. 

Proof: 

From Definition 1, kernel  k x  is bounded. Therefore, from eq.3.3, we also know 

 
^

{ , 1, 2,...}jf y j   are bounded. To prove the theorem, we need only to verify that it is non-

decreasing. Let 1,2,...j   

(1). If 1j jy y  , then it is evident that    
^ ^

1j jf y f y  . 

(2). If 1j jy y  , then from eq.3.3, we have 

       

   
   

  

^ ^

1 1
1

2 2

1
1

2 2

1
1

( .3.10) 2 2 2'
1

1

i i

i i

i i i

N

j j i i j i j
i

N

i j i j iH H
i

N

i j i j iH H
i

Neq

i j i j i j iH H H
i

f y f y w K y K y

w ck y X ck y X

w c k y X k y X

w ck y X y X y X

 











    

      

      

    









    Eq. 3.11 

Let    'g x k x  , the above inequality equation becomes 

      ^ ^ 2 2 2

1 1
1 i i i

N

j j i j i j i j iH H H
i

f y f y w cg y X y X y X 


                   Eq. 3.12 

Since 

   

2 2

1 1

T2 2

1 12

i i

i i

j i j j j iH H

j j j i j j i j iH H

y X y y y X

y y y X y y H y X
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Then we could get  

   T2 22

1 1 12
i i i

i i j i j j j j i j iH H H
y X y X y y y y H y X                    Eq. 3.13 

Hence from eq.3.12 and eq.3.13, we have 

         
^ ^ T2 2

1 1 1
1

2
i i

N

j j i j i j j j j i j iH H
i

f y f y w cg y X y y y y H y X  


               Eq. 3.14 

From eq.3.9 

                    
1

1
1 1

N N

j i j i j i
i i

y L y L y X



 

 
  
 
                Eq. 3.15 

So we have 

   1
1 1

N N

i j j i j i
i i

L y y L y X
 

   
 
          Eq. 3.16 

Then by eq.3.6, 

   2 2' '
1

1 1

2 2
i i

N N

i j i i j i j i i iH H
i i

w ck y X H y w ck y X H X
 

     
             Eq. 3.17 

Multiply both sides by  T

1 / 2j jy y   from left, 

     T T2 2' '
1 1 1

1 1i i

N N

i j i j j i j i j i j j i iH H
i i

w ck y X y y H y w ck y X y y H X  
 

       
   Eq. 3.18 

So we get 
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T2'
1

1

T T2 2' '
1 1

1 1

T T2 2' '
1 1 1

1 1

T2'
1 1

1

i

i i

i i

i

N

i j i j j i j iH
i

N N

i j i j j i i i j i j j i iH H
i i

N N

i j i j j i i i j i j j i jH H
i i

N

i j i j j i j jH
i

i

w ck y X y y H y X

w ck y X y y H y w ck y X y y H X

w ck y X y y H y w ck y X y y H y

w ck y X y y H y y

w c




 
 

  
 

 


  

     

     

   

 



 

 



 
 

2 2'
1

1

2 2

1
1

i i

i i

N

j i j jH H
i

N

i j i j jH H
i

k y X y y

w cg y X y y







 

  





 Eq. 3.19 

Hence, the right side in eq.3.14 is 

     

      

   
 

T2 2

1 1
1

T2 2 2

1 1
1 1

2 2 2 2

1 1
1 1

2

1

2

2

2

i i

i i i

i i i i

i

N

i j i j j j j i j iH H
i

N N

i j i j j i j i j j i j iH H H
i i

N N

i j i j j i j i j jH H H H
i i

i j i j jH H

w cg y X y y y y H y X

w cg y X y y w cg y X y y H y X

w cg y X y y w cg y X y y

w cg y X y y

 


 
 

 
 



        

       

 
         

  



 

 
2

1 i

N

i


  Eq. 3.20 

Thus, inequality equation eq.3.14 becomes  

     ^ ^ 2 2

1 1
1 i i

N

j j i j i j jH H
i

f y f y w cg y X y y 


                      Eq. 3.21 

From the assumption on  k x , we know  ' 0k x  , which means   0g x  . We also 

know 0c  , 0iw  , 
1

i

 is a positive definite matrix and 
1 2/i i

H h


  , so 



 36

 2 2

1
1 i i

N

i j i j jH H
i

w cg y X y y


   should be positive, thus the following inequality holds when 

1j jy y  : 

   
^ ^

1 0j jf y f y                                                 Eq. 3.22 

Therefore, the theorem is proved. 

Theorem 2: If the  k x  is smoothly convex, and the number of critical points of  
^

jf y  is finite 

on    
^ ^

0 1S y f y f y
  

 
, then the iterative sequence  , 1, 2,...jy j   converges. 

X

0S

X

 f X

 1f y

1y

 

Fig. 3. 2:    
^ ^

0 1S y f y f y
  

 
 



 37

Remark: Li, Wu and Hu[10] stated that “the number of critical points of  
^

jf y  is finite 

on    
^ ^

0 1S y f y f y
  

 
” can always be satisfied in practice as the critical points usually 

represent the modes or classes in real applications. One of the goals of this thesis is to remove or 

reduce this technical assumption. Our results are presented and proved in the next chapter. 

Proof:   

As for the iterative sequence  , 1, 2,...jy j  , if there exists 0 0j   such that
0 0 1j jy y  , it 

can be easily seen that 
0 0 01 2j j jy y y   L from eq.3.9. Therefore,  , 1, 2,...jy j  converges in 

this case. 

Assume 1j jy y   for any 0j  , and let a  be the minimal eigenvalue of the positive 

definite matrices{ }jH , then 0a   and
2 2

1 1
i

j i j iH
y X a y X    . Because  k x  is smoothly 

convex and decreasing from Definition 1 and 2, we have  ' 0k x  . We also know that 

0c  , 0iw  , 
1

i

 is a positive definite matrix and 
1 2/i i

H h


  . Therefore, there exists 0b   

such that 

   2 2'

1 1
i i

N N

i i i iH H
i i

w cg y X w ck y X b
 

      , for all 0y S     Eq. 3.23 

Hence, from inequality eq.3.21 
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^ ^ 2 2

1 1
1

2 2

1
1

2

1

i i

i

N

j j i j i j jH H
i

N

i j i j jH
i

j j

f y f y w cg y X y y

a w cg y X y y

ab y y

 







   

  

 



  

Therefore, from Theorem 1, we have 

2

1 0( )j jy y j                                                      Eq. 3.24 

From Definition 2, we know  'k x  is bounded and from eq.3.6 

   2'2
i

i i i iH
L X w ck X X H   ，  1

N

i ji
L y

  is also bounded. Therefore, from eq.3.7 to eq.3.9, 

       

  

1
^

1 1 1

1
1

0 ( )

N N N

j i j i j i i j j
i i i

N

i j j j
i

f y L y L y X L y y

L y y y

j



  




  
    

   

 

 

  

                                   Eq. 3.25 

Because the number of critical points of  
^

f X  is finite on    
^ ^

0 1S y f y f y
  

 
, 

without loss of generality, assume that there are 0m critical points in 0S :  '
0,1kX k m  . Of 

course, we have  
^

'
00,1kf X k m     and  

^

00,f X X S    but  '
0,1kX X k m   . 

Let 

 ' '
0 0min ,1j kd X X j k m


                                             Eq. 3.26 

 '
, 0,i iS X X X X S     , 01 i m  , where 00 / 3d  .                     Eq. 3.27 
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From Definition 2 and eq.3.25, we know  
^

f X  is continuous and  
^

0f X  on the 

bounded closed set
0

0 0 ,
1

m

i
i

V S S


 U . Therefore,  
0

^

min 0X V f X   ，and there exists 0c   

satisfying 

 
^

f X c   , 0X V                                                   Eq. 3.28 

From eq.3.24 and eq.3.25, there exists 0N   satisfying the following two inequalities 

simultaneously 

1 ,j jy y j N                                                       Eq. 3.29 

 
^

,jf y c j N                                                      Eq. 3.30 

From eq.3.28 and eq.3.30,  0,jy j N V  , we also have 
0

0 0 ,
1

m

i
i

V S S


 U  , then we 

could get  


0

,
1

,
m

j i
i

y j N S 


 U .                  Eq. 3.31 

We now use mathematical induction to show that  ,jy j N  all lie in the same ,iS  for 

some i. Assume that we have two consecutive points jy and 1jy    in two different ,iS : 

1,j iy S and 
21 ,j iy S  for some j N , 1 2 01 i i m   . 

（1）If j N  , then from eq.3.26 and eq.3.27 
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2 2 1 1

2 1 2 1

1 2 2 1

1 1

' ' ' '
1

' ' ' '
1

' ' ' '
1

0

min max max

3

j j N N

N i i i i N

i i N i i N

i i N i i N

y y y y

y X X X X y

X X y X X y

X X y X X y

d

 

 

 

 

 
  


 







  

     

     

     

  
  


          Eq. 3.32 

which contradicts eq.3.29. Thus, Ny

and 1Ny

 
can only lie inside the same neighborhoods 

0,iS  

defined around a critical point
0

'
iX . 

（2）Assume that for m N  , Ny


,…, my  all lie in the same 
0,iS but 

01 ,m iy S  . 

Assume that 
11 , mm iy S   . Then we have   

1 1 0 0

1 0 1 0

1 0 1 0

' ' ' '
1 1

' ' ' '
1

' ' ' '
1

0

min max max

m m

m m

m m

m m m i i i i m

i i m i i m

i i m i i m

y y y X X X X y

X X y X X y

X X y X X y

d  


 

 

 

 





      

     

     

  


              Eq. 3.33 

This is a contradiction again since we know 1m my y     for m N  according to 

eq.3.29. Hence 1my   should be also inside
0,iS . 

Thus, by induction, all  ,jy j N , *
j jy X  can only lie inside one of the neighborhoods 

0,iS  defined around a critical point
0

'
iX and

0

'
j iy X    for j N . That 

means  , 1, 2,...jy j  is convergent.  Theorem 2 is proved. 
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Remark. Between “
0

'
j iy X    for j N ” and the sentence “ That means 

 , 1, 2,...jy j   is convergent. ” at the end of the previous proof, there is a gap: Is 0i   independent 

of  ? The proof itself only shows that for every 0  , there is an 0i  and an N  such that 

0

'
j iy X    for j N  . There is no information on how 0i  depends on 0  . The following 

simple argument shows that once one such 0i  is found, for an 0 / 3d  , the same 0i  works for 

all '  with 0 '   :  

Claim: Let 0i  be the one index found in the previous proof and let 0 '   , then there 

is an 'N N   such that 
0

' 'j iy X    for 'j N .  

Proof of the claim: As the previous proof shows, for the given ' 0  , there is an *
0i  and 

an ' 1N   such that *
0

' 'j i
y X    for 'j N . We need to show that *

0 0i i . Assume, to the 

contrary, that *
0 0i i . Then, let 'j N N   . We have 

                     
0

'
j iy X    and *

0

' 'j i
y X                Eq. 3.34 

Therefore, 

                     * *
0 00 0

' ' ' '
0' 2i i j ji i

X X X y y X d                      Eq. 3.35 

contradicting the definition of 0d . 

 This proves the claim. 
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CHAPTER 4: NEW RESULTS 
 

4.1. Need for improvement on the convergence of the sequence of mean shifts 

In Theorem 2, a result stated and proved in Ref. [10] and discussed in Chapter 3, there is 

an additional condition that “the critical points of  
^

jf y  is finite on    
^ ^

0 1S y f y f y
  

 
”, 

however, it is really difficult to make sure whether the critical point of  
^

jf y  is finite or not, 

and it is not easy for us to count the number of it anyway. Even though Li, Hu, and Wu argued in 

Ref. [10] that this assumption could be satisfied in many applications, we do have examples in 

applications where the critical points could be a whole curve. Hence we need to prove that the 

iterative sequence  , 1, 2,...jy j   converges without this restrictive condition. In this section, we 

will give a convergence result that allows 0S  contain infinitely many critical points  ' , 1iX i   of 

 
^

f X . 

4.2. A new result on the convergence 

Theorem 3: If the kernel function  k x  is convex, and if    
^ ^

0 1S y f y f y
  

 
contains 

possibly infinitely many critical points  ' , 1iX i   of  
^

f X  with at most one accumulation 

point '
0X , then the iterative sequence  , 1, 2,...jy j   converges. 
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Proof:  Similarly to the proof of Theorem 2, if 1j jy y   for any 0j  , then the iterative 

sequence  , 1, 2,...jy j  will be a constant sequence, therefore, convergent. 

Assume 1j jy y   for any 0j  . If there are only finitely many critical points in 0S , then 

the same proof given for Theorem 2 establishes the convergence. Now, assume that there are 

infinitely many critical points ' , 1iX i   of  
^

f X  in 0S and there is one accumulation point. For 

convenience, we will assume the whole sequence is convergent and ' '
0lim i

i
X X


 . Then we have 

 
^

' 0if X   and  
^

0f X   for 0X S ,  ' , 1iX X i  . Since ' '
0lim i

i
X X


 , for any 0  , 

there exists an integer 0N   such that for any i N , ' '
0iX X   .  So, there are only finitely 

many i such that ' '
0iX X   . For convenience, assume ' '

0iX X    for all 1 i N  . Let  

 ' '
0 min ,1 0j kd X X j k N



       

 ' '
1 0min ,1 0id X X i N 


       

  0 10 min{ / 3, / 2}d d    

 '
0, ,1i iS X X X X S i N       

 '
,0 0 0,S X X X X S      
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'
0X

'
iX

'
iX

iS ,0S

,1 i N 

, i N

,1 i N 

  



 

Fig.4. 1: iS , ,0S , '
iX  and '

0X . 

Let 1N N  , we know  
^

f X  is continuous and  
^

0f X  on the bounded closed 

set 0 0 ,0
1

N

i
i

V S S S


  U . Therefore,  
0

^

min 0X V f X   ， and there exists 0c   

satisfying  
^

f X c   for 0X V .  From Theorem 2, we know 1 0( )j jy y j     

and  
^

0( )jf y j   . So there exists an integer 0M    such that 1 ,j jy y j M     

and  
^

,jf y c j M    . Hence  0,jy j M V  , then we could get ,0
1

N

j i
i

y S S


 U  for 

j M  . Now, we show that  ,jy j M   is contained in a single iS for some i with 0 i N  . 

If we have two consecutive points jy  and 1jy   in two different iS , 1 i N  . We will get 

a contradiction as in the proof of Theorem 2. Next, we show that jy  and 1jy   could not be 

located separately as one in iS  while another in ,0S . We give the proof for such case only. 

（1）For j M   , and if 1j iy S  ,1 i N  but ,0jy S  
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1 1

' ' ' '
1 0 0

' ' ' '
0 1 0

' ' ' '
0 1 0

1

min

2

j j M M

M i i M

i M i M

i M i M

y y y y

y X X X X y

X X y X X y

X X y X X y

d

 

 

 

 

  
 


 







  

     

     

     

   
 


 

contradicts 1j jy y    , j M  . So if My


is in ,0S , then 1My
 

 must be also in ,0S . 

（2）Assume that for m M  ， Ny


,…, my  all lie in ,0S , we assume 1 ,0my S   but 

1m iy S   for 1 i N  , then 

' ' ' '
1 1 0 0

' ' ' '
0 1 0

' ' ' '
0 1 0

1

min

2

m m m i i m

i m i m

i m i m

y y y X X X X y

X X y X X y

X X y X X y

d   
 


 





      

     

     

   
 


 

This result is contradicted with 1 ,j jy y j M     , hence 1 ,0my S  , by induction, 

( )jy j M   will all stay in ,0S .  

The above process is not enough to show the iterative sequence  , 1, 2,...jy j  is 

convergent to '
0X  or '

iX  since there are infinite many critical points '
iX  near the accumulation 

point '
0X  in ,0S . The iterative sequence may still converge to any one  '

iX i N  inside the 
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neighborhood ,0S  or may not converge at all. Hence, a further step is needed to make sure the 

sequence  , 1, 2,...jy j   is either convergent to '
iX  or '

0X . We only need to consider two cases:  

Case 1: If jy (  j M   ,   is indeed dependent on  ) all stay in ( 1)iS i  , then the 

argument given after the proof of Theorem 2 shows that the sequence  , 1, 2,...jy j  must 

converge to '
iX .  

Case 2: If  ( )jy j M    all stay in ,0S , then we have to repeat the proof of the first half 

of this proof to the subsequence   ,jy j M   with   replaced by / 2  to obtain that 

  2,jy j M    all lie in one of iS  (with the corresponding (smaller)  2  ) or /2,0S , which 

is the neighborhood of '
0X . Again, we need to consider two cases: (i)  if it is iS  for some i > 0, 

then the sequence converges to '
iX ; (ii) if it is /2,0S , we have to repeat the argument for a sub-

subsequence    4,jy j M   with / 2 replaced by / 4 .  

By continuing in this fashion, we will arrive at the conclusion that either the subsequence 

is contained in iS  for some i > 0 and therefore must converge to '
iX  (please note that   must be 

decreased every time as well) or it is contained in 
/2 ,0nS


. If we have to continue forever, then the 

sequence must satisfy the property that   / 2 ,0/ 2
, nnjy j M S

 

  


for every n=1,2,…, which 

implies that the sequence { }jy  converges to '
0X . This completes our proof of Theorem 3. 
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4.3. Generalizations of mean shifts and their convergence 

In this section, we give some generalizations of the mean shifts and establish their 

convergence. Our main idea is to make the choice of kernel functions more adaptive and more 

multidimensional.  

(1) Note that the same kernel function is used for different sample points in the definition 

of the kernel estimation of the density. Hence the difference and the anisotropy of different 

samples was not taken into account during the prove process. 

(2) No sufficient attention has been paid to the difference of sample contributions. As we 

know, the peripheral samples are less reliable since they are often more influenced by noise. 

Hence, different samples in different location should be ideally treated differently. 

4.3.1. Multi-kernels 

Assumptions and preliminaries 

We assume all kernel functions  ik x  1i  satisfy the requirements in Definition 1 in 

Chapter 3. Recall that we have 

(1) (positivity)   0ik x  .                                                        

(2) (decreasing)    1 2 1 2,0i ik x k x x x     . 

(3) (integrability)  
0 ik x dx


  .                                                        

(4) (boundedness)  0 0ik   . 
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Given many bounded kernel function  ik x , the density estimation of random variable x 

is defined as 

   ^ 2

1
i

N

i i i H
i

f X w k X X


 -                                                Eq. 4.1 

Where 

   2 T

i
i i i iH

X X X X H X X    , 

1 2/i i
H h


 ,    ,1iH H i n   , 

0h   is a fixed value to ensure the size of the window (region of sample), iw  is the prior 

probability for ix , which is also called the weight of sample iX .  Hence
1

1
n

i
i

w


 , 0iw  . The 

matrix 
1

i

 is a positive definite matrix to represent the local structure around iX . The only 

difference is that a single kernel is replaced by n kernels. This allows us to mix different types of 

kernels in the density estimation. We found that all arguments used in Chapter 3 can be modified 

to this more general model and we now describe all the important steps in our verification. 

Assume that  ik x  is differentiable, from eq.4.1, we could get the gradient of probability 

density  

     
^ 2'

1

2
i

N

i i i i iH
i

f X w k X X H X X


                                        Eq. 4.2 

Eq.4.2 could be simplified as  
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^

1

1 1

N

i i
i

N n

i i i
i i

f X L X X X

L X X L X X



 

  

 



 
                                               Eq. 4.3 

where 

   2'2
i

i i i i iH
L X w k X X H                                                      Eq. 4.4 

From the definition of  k x , we could know  ' 0ik x   for 1i   . So  iL X  should also 

be positive definite and invertible. Then the eq.4.3 could be rewritten as 

     

     

^

1 1

1

1 1 1

N N

i i i
i i

N N N

i i i i
i i i

f X L X X L X X

L X L X L X X X

 



  

  

     
   

 

  
                             Eq. 4.5 

Then we get a term      
1

1 1

:
N N

k i i i
i i

ms X L X L X X X


 

   
 
  , which represents the mean 

shift vector. Let X be jy  above: 

     
1

1 1

N N

k j i j i j i j
i i

ms y L y L y X y


 

   
 
                                           Eq. 4.6 

Then we get the iterative procedure of mean shift algorithm 

     
1

1
1 1

N N

j j k j i j i j i
i i

y y ms y L y L y X



 

     
 
                                    Eq. 4.7 

Note that we have the same appearance (except that a single kernel is replaced by 

multiple kernels). 
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Proofs 

We will prove that both the estimation of the probability density sequence 

 
^

{ , 1, 2,...}jf y j   and the iterative sequence  , 1, 2,...jy j   are convergent. 

By Definition 2, if all  ik x  are smoothly convex, there exists ' ( )ik x  that is bounded and 

continuous and satisfies  

      '
2 1 1 2 1 1 2 1 2, 0, 0,i i ik x k x k x x x x x x x                                Eq. 4.8 

Theorem 4: If all  ik x  are smoothly convex, then the sequence  
^

{ , 1, 2,...}jf y j  converges 

and monotonically increases to its limit. 

Proof: 

From Definition 1, kernel  ik x  is bounded. Therefore, from eq.4.1, we also know 

 
^

{ , 1, 2,...}jf y j   are bounded.  

For any 1,2,...j   

(1). If 1j jy y  , then it is clear that    
^ ^

1j jf y f y  . 

(2). If 1j jy y  , then from eq.4.1 and eq.4.8, we have 

       
  

^ ^ 2 2

1 1
1

2 2 2'
1

1

i i

i i i

N

j j i i j i i j iH H
i

N

i i j i j i j iH H H
i

f y f y w k y X k y X

w k y X y X y X

 





       

    




 

Let    '
i ig x k x  , the above inequality equation becomes 
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      ^ ^ 2 2 2

1 1
1 i i i

N

j j i i j i j i j iH H H
i

f y f y w g y X y X y X 


                 Eq. 4.9 

We know that 

   

2 2

1 1

T2 2

1 12

i i

i i

j i j j j iH H

j j j i j j i j iH H

y X y y y X

y y y X y y H y X

 

 

    

      
      Eq. 4.10 

Then we could get  

   T2 22

1 1 12
i i i

i i j i j j j j i j iH H H
y X y X y y y y H y X                     Eq. 4.11 

Hence from eq.4.9 and eq.4.11, we have 

         
^ ^ T2 2

1 1 1
1

2
i i

N

j j i i j i j j j j i j iH H
i

f y f y w g y X y y y y H y X  


              Eq. 4.12 

From eq.4.7 

   
1

1
1 1

N N

j i j i j i
i i

y L y L y X



 

 
  
 
                                     Eq. 4.13 

So we have 

   1
1 1

N N

i j j i j i
i i

L y y L y X
 

   
 
                    Eq. 4.14 

Then by eq.4.4, 

   2 2' '
1

1 1

2 2
i i

N N

i i j i i j i i j i i iH H
i i

w k y X H y w k y X H X
 

     
              Eq. 4.15  

Multiply both sides by  T

1 / 2j jy y   from left, 

     T T2 2' '
1 1 1

1 1i i

N N

i i j i j j i j i i j i j j i iH H
i i

w k y X y y H y w k y X y y H X  
 

       
      Eq. 4.16 
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So we get 

    

     

     

    

T2'
1

1

T T2 2' '
1 1

1 1

T T2 2' '
1 1 1

1 1

T2'
1 1

1

i

i i

i i

i

N

i i j i j j i j iH
i

N N

i i j i j j i i i i j i j j i iH H
i i

N N

i i j i j j i i i i j i j j i jH H
i i

N

i i j i j j i j jH
i

i

w k y X y y H y X

w k y X y y H y w k y X y y H X

w k y X y y H y w k y X y y H y

w k y X y y H y y

w k




 
 

  
 

 


  

     

     

   

 



 

 



 
 

2 2'
1

1

2 2

1
1

i i

i i

N

i j i j jH H
i

N

i i j i j jH H
i

y X y y

w g y X y y







 

  





         Eq. 4.17 

Hence, the right side in eq.4.12 is 

     

      

   
 

T2 2

1 1
1

T2 2 2

1 1
1 1

2 2 2 2

1 1
1 1

2

1

2

2

2

i i

i i i

i i i i

i

N

i i j i j j j j i j iH H
i

N N

i i j i j j i i j i j j i j iH H H
i i

N N

i i j i j j i i j i j jH H H H
i i

i i j i j jH H

w g y X y y y y H y X

w g y X y y w g y X y y H y X

w g y X y y w g y X y y

w g y X y y

 


 
 

 
 



        

       

 
         

  



 

 
2

1 i

N

i


  Eq. 4.18 

Thus, inequality equation eq.4.12 becomes  

     ^ ^ 2 2

1 1
1 i i

N

j j i i j i j jH H
i

f y f y w g y X y y 


                            Eq. 4.19 

From the assumption on  ik x , we know  ' 0ik x  , which means   0ig x  . We also 

know 0iw  , 
1

i

 is a positive definite matrix and 
1 2/i i

H h


 , so 
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 2 2

1
1 i i

N

i i j i j jH H
i

w g y X y y


   should be positive, thus the following inequality holds when 

1j jy y  : 

   
^ ^

1 0j jf y f y                                                       Eq. 4.20 

Therefore, the theorem is proved. 

Theorem 5: If all  ik x  is smoothly convex, and the number of critical points of  
^

jf y  is finite 

on    
^ ^

0 1S y f y f y
  

 
 or infinite but with one accumulation point, then the iterative 

sequence  , 1, 2,...jy j   converges.  

The proof method is similar to the proof of Theorem 2 and Theorem 3. Hence, to save 

space, we will not present the detailed proofs again. 

4.3.2. Multivariate kernel functions 

In the previous proofs, the probability density function is restricted as a specialized form. 

This is not reasonable and could not be satisfied in real application. Hence we generalize a 

function that could represents most forms of probability density function, then the property of 

convergence of this iterative method could be easily shown and allow the estimations of 

probability density function to have different compositions. 
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Assumptions and preliminaries 

There are some assumptions and preliminaries we should know before the proof of 

convergence. 

Definition 3: A continuously differentiable function of multivariable N( ) :f x S  R R  

is convex if 

        T

2 1 1 2 1f x f x f x x x     

Definition 4. Function  1 2, , , NK t t tL  is bounded on[0, ) , satisfies: 

(1) (positivity)  1 2, , , 0NK t t t L .                                                        

(2) (decreasing for every variable) 

   * *
1 1, , , , , , , , ,1 ,0i N i N i iK t t t K t t t i N t t      L L L L . 

(3) (integrability)  1 20
, , , N iK t t t dt


  L , 1 i N   .                                                       

(4) (boundedness)  1 20 , , , NK t t t  L . 

Assume that we have a sample of size N . We estimate the density of random variable X  

as  

   
1 2

^ 2 2 2

1 2, ,...,
N

NH H H
f X K X X X X X X                                   Eq. 4.21 

where 

   2 T

i
i i i iH

X X X X H X X     

1 2/i i
H h


  

http://en.wikipedia.org/wiki/Continuously_differentiable�
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Assume that : nK R R  is differentiable, from eq.4.21, we could get the gradient of 

probability density  

   
^

1

1 1

D 2

D 2 D 2

N

i i i
i

N N

i i i i i
i i

f X K H X X

K H X K H X



 

   

   



 
                                         Eq. 4.22 

where Di
i

K
K

t





. From the definition of  1 2, , , NK t t tL , we know that D 0i K   since for every 

variable  1 2, , , NK t t tL  is decreasing. Eq.4.22 could be written as  

 
^

1 1

1

1 1 1

D 2 D 2

D 2 D 2 D 2

N N

i i i i i
i i

N N N

i i i i i i i
i i i

f x K H X K H X

K H K H K H X X

 



  

    

         
   

 

  
                Eq. 4.23 

Then we get a term  
1

1 1

D 2 D 2
N N

k i i i i i
i i

ms X K H K H X X


 

 
    
 
  , which represents the 

mean shift vector. Let X be jy  in  kms X  above: 

 
1

1 1

D 2 D 2
N N

k j i i i i i j
i i

ms y K H K H X y


 

 
    
 
                              Eq. 4.24 

Then we get the iterative procedure of mean shift algorithm 

 
1

1
1 1

D 2 D 2
N N

j j k j i i i i i
i i

y y ms y K H K H X



 

      
 
                        Eq. 4.25 
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Proofs 

We now prove that both the estimation of the probability density sequence 

 
^

{ , 1, 2,...}jf y j   and the iterative sequence  , 1, 2,...jy j   are convergent. 

Theorem 6: If  1 2, , , NK t t tL  is smoothly convex, the sequence  
^

{ , 1, 2,...}jf y j  converges 

and monotonically increases to its limit. 

Proof: 

From Definition 4, kernel K  is bounded. Therefore, from eq.4.21, we also know 

 
^

{ , 1, 2,...}jf y j   is bounded.  

For any 1,2,...j   

(1) If 1j jy y  , then it is evident that    
^ ^

1j jf y f y  . 

(2) If 1j jy y  , then from eq.4.21, and by Definition 3, we have 

                             
^ ^ 2 2

1 1
1

D
i i

N

j j i j i j iH H
i

f y f y K y X y X 


                       Eq. 4.26 

We know that 

   

2 2

1 1

T2 2

1 12

i i

i i

j i j j j iH H

j j j i j j i j iH H

y X y y y X

y y y X y y H y X

 

 

    

      
    Eq. 4.27 

Then we could get  

   T2 22

1 1 12
ii i

j i i i j j j j i j iHH H
y X y X y y y y H y X                  Eq. 4.28 

Hence from eq.4.26 and eq.4.28, we have 
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^ ^ T2

1 1 1
1

D 2
i

N

j j i j j j j i j iH
i

f y f y K y y y y H y X  


                  Eq. 4.29 

From eq.4.25 

1

1
1 1

D 2 D 2
N N

j i i i i i
i i

y K H K H X



 

    
 
                                       Eq. 4.30 

So we have 

1
1 1

D 2 D 2
N N

i i j i i i
i i

K H y K H X
 

    
 
                                        Eq. 4.31 

Multiply both sides by  T

1 / 2j jy y   from left 

   T T
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D D
N N
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           Eq. 4.32 

So we get 
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     Eq. 4.33 

Hence, the right side in eq.4.29 is 
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        Eq. 4.34 

Thus, inequality equation eq.4.29 becomes  
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^ ^ 2

1 1
1

D
i

N

j j i j j H
i

f y f y K y y 


                                            Eq. 4.35 

Since D 0i K  , we also know
1

i

 is a positive definite matrix and 
1 2/i i

H h


 , so 

2

1
1

D
i

N

i j j H
i

K y y


    should be positive, thus the following inequality holds when 1j jy y  : 

   
^ ^

1 0j jf y f y                                                         Eq. 4.36 

Therefore, the theorem is proved. 

Theorem 7: If  1 2, , , NK t t tL  is smoothly convex, and the number of critical points of  
^

jf y  is 

finite on    
^ ^

0 1S y f y f y
  

 
 or infinite but with one accumulation point, then the iterative 

sequence  , 1, 2,...jy j   converges.  

The proof method is similar to the proof of Theorem 2 and Theorem 3. Hence we will 

not present the detailed proofs again.  

 

 



 59

CHAPTER 5: CONCLUSIONS AND FUTURE WORK 
 

5.1. Major Contributions 

The major contributions in this thesis are summarized as follows. 

1. Fill a small gap in the argument of Ref. [10] on the convergence of the sequence of mean 

shifts (end of proof of Theorem 2) 

2. Give a new result when the assumption of “finitely many” critical points is replaced by 

“infinitely many” but with only one accumulation point in the convergence of the mean 

shifts (Theorem 3 and its proof) 

3. Give two generalization of the mean shifts to multi-kernels and to multivariate kernels 

and verified the convergence results (Theorems 4 and 5) 

 

Other minor contributions include providing detailed proofs and giving a counterexample 

of a divergent bounded sequence whose difference of consecutive terms tends to zero.  

5.2. Future Work 

The promising results presented here warrant future investigation. Suggested future work 

is as follows: 

1. The assumption of the “at most one accumulation points” in Theorem 3 on the 

convergence of the mean shifts is a good starting point when considering infinitely many 

critical points in 0S . One interesting problem is to see if we can remove this assumption 

altogether. 
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2. It is of interest to study the limit of the sequence of sets 

   
^ ^

1 , 1, 2...j jS y f y f y j

   
 

. From Theorem 2, this sequence is monotone (getting 

smaller) as j  increases. It is also known that each set is closed and bounded. How is the 

limit of this sequence related to the set of all modes of the density function? 

3. Numerical experiments need to be performed. In particular, with the multi-kernel and 

multivariate kernel generalizations, applications that require these extensions should be 

treated and compared with the single kernel case. 
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