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ABSTRACT

The purpose of the present dissertation is to study model selection techniques which are

specifically designed for classification of high-dimensional data with a large number of classes.

To the best of our knowledge, this problem has never been studied in depth previously. We

assume that the number of components p is much larger than the number of samples n, and

that only few of those p components are useful for subsequent classification. In what follows,

we introduce two Bayesian models which use two different approaches to the problem: one

which discards components which have “almost constant” values (Model 1) and another

which retains the components for which between-group variations are larger than within-

group variation (Model 2). We show that particular cases of the above two models recover

familiar variance or ANOVA-based component selection. When one has only two classes and

features are a priori independent, Model 2 reduces to the Feature Annealed Independence

Rule (FAIR) introduced by Fan and Fan (2008) and can be viewed as a natural generalization

to the case of L > 2 classes. A nontrivial result of the dissertation is that the precision of

feature selection using Model 2 improves when the number of classes grows. Subsequently,

we examine the rate of misclassification with and without feature selection on the basis of

Model 2.
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CHAPTER 1
INTRODUCTION

It is a well-established result that addition of “uninformative” dimensions in data, by which

we mean any dimensions which do not improve the accuracy of a generic classifier, eventually

makes classification impossible even with just two groups or classes. Additional uninforma-

tive dimensions are especially problematic when the total number of dimensions exceeds the

number of samples in a data set, since geometrical methods (e.g. the principal component

analysis) no longer admit unique solutions. This is called the high-dimension, low sample

size (HDLSS) paradigm. The usual goal, then, is the replacement of D by D′, a new set of

dimensions n × p′ with p′ ≤ n. Here, we develop two new models, consider the accuracy of

selection in the second model, and consider the classification error of a simple classifier.

1.1 Classification in General

The general problem of classification is to assign a class identity to an individual. We

characterize an individual by a p-dimensional vector d ∈ <p. In practice, one is given

{di}ni=1, a set of n observed vectors from L possible classes. Here we organize the vectors

into

D = [d1, . . . ,dn]>

an n×p matrix. The columns of D are indexed by di and the rows, representing individuals,

by di. For convenience, we will assume that the n1 individuals from class 1 come first in D,
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then the n2 from class 2, etc., up to the nl individuals from class L. One then constructs a

classifier

ĉ : <p → [1, L]

such that ĉ(di) is by some measure close to l if di is from class l; e.g. one might choose to

minimize the misclassification rate. One hopes that the classifier will generalize outside of

the training set; i.e. given a new observation d from independent of {di}ni=1, it would be

useful if ĉ(d) = l.

We note that in almost all cases the majority of the work is in the conditioning of ĉ on the

training set; evaluation of ĉ will be relatively computationally cheap. Furthermore, it is not

necessarily the case that a perfect classifier exists; the individuals might not be discriminable

on the basis of the representation chosen or, in fact, discriminable at all. The class structure

is taken as given but it is worthwhile to acknowledge that the problem of clustering, or

creation of classes, is not itself closed. Finally, even when the individuals might admit a

perfect classifier on the basis of the representation chosen, there is no guarantee that the

training set {di}ni=1 properly represents the classes. Roughly, it is harder to construct a

classifier than evaluate one.

1.1.1 Construction of a Simple Classifier

To motivate the ideas of feature selection, we examine a simple classification problem. Recall

that we have n training vectors {di}ni=1 organized into D = [d1, . . . ,dn]>. Then let Yj ∈ <L

2



be such that Yji = 1 if dj is in class i, 0 otherwise; i.e. Yj is an indicator for the class of

individual j. Let

Y = [Y1, . . . ,Yn]>

be the n× l matrix of indicator variables. We consider the regression

Y = DB

where B is an p× l matrix of regression coefficients. If B is found exactly, we can construct

f̂(d) = (dB)>

ĉ(d) = argmaxl∈[1,L]f̂l(d)

i.e. d is assigned to the class for which the predicted indicator is the highest. However, this

regression problem rarely admits exact solutions, so we seek to find a matrix B̂ such that

Ŷ = DB̂

approximates Y in some sense. The most common approximation is the least-squares ap-

proximation; i.e. we seek to solve

min
B̂
||Y −DB̂||2

which, if the problem has a unique solution, yields

B̂ = (D>D)−1D>Y.

This last equation merits examination as it takes us directly into the core of the problem.

We note that D = [d1, . . . ,dn]> is n× p so that D>D is p× p but

rank(D>D) ≤ min(rank(D>), rank(D)) ≤ min(n,p).
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If n ≥ p, i.e. we have more training individuals than dimensions, then it can occur that

rank(D>D) = p and a unique B̂ exists. However, if the columns of D are linearly dependent,

rank(D>D) < p and an infinite number of B̂ minimize the least-squares error.

Finally, if n < p, we have that rank(D>D) < p necessarily so that D>D is never

invertible; i.e. if the dimensionality of the data is greater than the number of samples, no

unique least-squares approximation to the classification problem exists.

1.1.2 The Necessity of Dimension Reduction

The problem we consider here, namely that many analyses fail when the number of training

samples is less than the dimensionality of the data (n < p) will be common to all approaches

to classification. It manifests in two ways. Above we have seen an algebraic example - a

problem no longer admits a unique solution. However, statistical concerns (e.g. estimators

which are not consistent if p� n) are at least equally prohibitive.

As an example, Bickel and Levina[9] demonstrate that a particular Bayesian classifier

outperforms the Fisher linear discriminant rule under broad conditions, especially when the

dimensionality grows faster than the number of observations.

Specifically, let us try to discriminate between two classes with p-normal distributions

Np(µ0,Σ) and Np(µ1,Σ). If all the parameters are known and we have a new observation

d, then the optimal classifier (in the sense of classification error) is given by: d is assigned

4



to class 1 if

log
f1(d)

f2(d)
= ∆>Σ−1(d− µ) > 0

where

∆ = µ1 − µ0 µ =
1

2
(µ0 + µ1).

In general, however, the parameters will not be known and we will have some estimate Σ̂

of Σ and ∆̂ of ∆. If we use the usual MLE values, the rule obtained is Fisher’s linear

discriminant.

However, the authors suggest a new rule, the “naive Bayes” classifier, using Σ̂
′
= diag(Σ̂)

where Σ̂ is the MLE. Necessarily, Σ̂
′

will not be singular unless one of the dimensions is

entirely constant. The authors then demonstrate that asymptotically, specifically as p→∞,

Fisher’s linear discriminant is always no better than guessing but the naive Bayes classifier,

while never worse, is optimal in certain situations. However, we will examine a result of

Fan and Fan[22] who show that any projection method, including this naive Bayes classi-

fier, is eventually no better than guessing since estimates of the classwise means become

inconsistent.

These are the problems of high dimension, low sample size (HDLSS) and have become

more apparent as our ability to measure and retain large amounts of data has improved.

The usual goal, then, is the replacement of D by D′, a new set of dimensions n × p′ with

p′ ≤ n. We call this dimension reduction and find, despite the number and variety of dimen-

sion techniques, that there are three major categories of algorithms: synthetic dimension
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reduction, subset selection, and feature selection. We review the representative algorithms

in these categories and then describe a new method in the third.

1.2 Existing Methods

1.2.1 Synthetic Dimension Reduction

Again, the goal of dimension reduction is the replacement of D by D′, a data set of more

favorable dimensionality. In synthetic dimension reduction, each of the new columns of

data is a function of the old columns; none of the original data might be retained. The

notable advantage of synthetic dimension reduction algorithms is that the new vectors can

be designed to have properties not present in the original data set.

1.2.1.1 Projection Methods

Principal Component Analysis Many synthetic dimension reduction techniques are

based on the idea of Pearson’s Principal Component Analysis (PCA), first described in 1901

[45]. Given D, where here we assume the empirical mean has been subtracted from each

column, we construct the singular value decomposition of D

D = UΛV>
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where U (n × p) is orthogonal and contains the eigenvectors of DD>, and V (p × p) is

orthogonal and contains the eigenvectors of D>D, and Λ (p × p) is diagonal with singular

values arranged so that

Λ11 ≥ Λ22 ≥ . . . ≥ 0.

Then the principal components of D are given by the columns of the n× p matrix

P = DV = UΛV>V = UΛ.

We can view each individual’s principal components individually; i.e. Pi = diV yields a

1× p vector of principal components for individual i. We can interpret this as a projection

of di onto a subspace of <P spanned by the columns of V. We note that

P>P = (UΛ)>UΛ = ΛU>UΛ = Λ2

i.e. the principal components of D are orthogonal, a property very likely not originally

present in D itself. Also,

PV> = UΛV> = D

so that the transformation is invertible; i.e. no information has been lost. In fact, since D

is the same size as P no dimension reduction has taken place.

To assist in dimension reduction we seek an interpretation of the singular values Λii. We

note that DD> is an n× n covariance matrix for the individuals in D and have that

DD> = (UΛV>)(UΛV>)> = UΛV>VΛU> = UΛ2U>

so that

Λ2 = U>DD>U.
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Now,

tr(Λ2) = tr(U>DD>U) = tr(DD>) =
n∑

i=1

(di)>di =
n∑

i=1

Var(di)

and

tr(Λ2) =

p∑
i=1

Λ2
ii

so that
n∑
i=1

Var(di) =

p∑
i=1

Λ2
ii

i.e. we can view each singular value Λii as a measure of the variance in D which is retained

by the ith principal component.

Therefore, if we discard those columns of P which have low Λii, we can reduce the

dimension of P while retaining most of the variance originally observed in D. In fact, a

number of algorithms have arisen which differentiate themselves solely on the number of

dimensions retained after a principal component analysis. Most commonly, one might retain

p′ dimensions, where p′ is the smallest which satisfies

p′∑
i=1

Λ2
ii ≥ α

n∑
i=1

Var(di)

for some α ∈ (0, 1).

High-Dimension, Low Sample Size PCA Key in the calculation of the PCA is Σ =

D>D, a matrix which, recalling the assumption that each column has mean 0, contains the

covariances of the columns of D. For example, the square roots of the eigenvalues of this

matrix are the singular values and its eigenvectors are the columns of V. We note that if
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n < p, i.e. there are fewer individuals in the training set than dimensions in D, then Σ

will have 0 as an eigenvalue of multiplicity at least p − n so that Σ is singular. This fact

in itself is not problematic as we usually do not need the inverse of Σ. Even if this does

become necessary, modifications are possible; for instance, Torokhti and Friedland [56] use

pseudoinverses to construct a generic PCA, the best weighted linear estimator of the data

of a given rank.

Generalization and Alternatives to the PCA Even though PCA is used in dimension

reduction, it is not by itself a dimension reduction technique. It can be modified, however,

to discard dimensions of D before returning the principal components. For example, some

have used “shrinkage” methods, discounting or discarding the contribution of some of the

dimensions in the estimation of the covariance matrix.[17], [38], [50]

Shen and Huan [52] describe a family of algorithms in which low-rank approximations of

the SVD are used to construct estimators of the data which are functions of relatively few

dimensions. Specifically, one solves

min
u,v
||D− uv>||+ P(v;λ)

where u is n×1, v is p×1, P is a penalty on the number of nonzero components of v, and λ

is a tuning parameter. We can view u as the first principal component and v the coordinates

of D along that component. Therefore, by penalizing v we insist on an approximation of D

which is a function of relatively few dimensions. In the HDLSS setting, however, we are still

estimating (p+ n) > n quantities.
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Support Vector Machines, Data Piling, and Fisher’s Linear Discriminant We

consider the two-class classification problem, where we have the usual n× p matrix of data

D and a vector Y ∈ <n s.t. Yi = 1 if individual i is in class 1, Yi = −1 if class 2. We can

describe a hyperplane in <p by w, its normal vector, and β, its offset. Then we define the

vector of residuals

r = Y(Dw + βe)

where e is a vector of all 1s. We would like to find (w,β) so that all the residuals are positive;

i.e. the classes have been separated by the hyperplane. This might not be possible, however,

so we consider the perturbed residuals

r = Y(Dw + βe) + ξ

and seek to penalize the error term ξ. Specifically, we solve

min
w,β,ξ

w>w + Ce>ξ

where C is some constant, subject to ξ ≥ 0 and

Y(Dw + βe) + ξ ≥ e.

Under some regularity conditions, this problem admits solutions. In practice, it happens

that the solution depends only on certain rows of the data; i.e. there is usually a relatively

sparse subset of the individuals, which we call support vectors, which determine the solution

to the Support Vector Machine (SVM) problem. Geometrically, the solution minimizes the

distances between the convex hulls of the points when arranged by class and the support
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vectors are those which are closest to the dividing boundary. It is worthwhile to note that

SVM utilizes a sparse subset of the individuals, not a subset of the dimensions; therefore, it

is not necessarily especially suitable for the HDLSS setting.

In fact, Ahn, Marron, and Todd [40] demonstrate that in the HDLSS setting support

vectors are relatively numerous and that the projected data show data piling ; i.e. in the

projection, many of the components are exactly the same. Ahn and Marron [3] describe

a vector, the maximal data piling direction, onto which projections of two-class data have

only two values, one for each class. Specifically, given sample class means x̂, ŷ and (singular)

sample covariance matrix Σ̂, they define

vm = Σ̂
†
(x̂− ŷ)

where Σ̂
†

is the Moore-Penrose generalized inverse of Σ̂. This is a natural generalization of

Fisher’s linear discriminant[23] in which the vector of projection is given by

vm = Σ̂
−1

(x̂− ŷ).

In simulation studies the method does work well, especially when the data are highly corre-

lated, but it admits no clear generalization to the case of multiple classes.

However, data piling can be an artifact of the HDLSS setting and not a desirable property,

especially when considering the classification of new data. In defining Distance Weighted

Discrimination Optimization (DWDO) [40] the same authors seek to solve

min
r,w,β,ξ

∑
i

1

ri

+ Ce>ξ

11



subject to r, ξ ≥ 0 and w>w ≤ 1. The problem no longer admits a single-step solution

and the solution the authors describe is computationally complex, but by minimizing the

inverses of the residuals they avoid the problem of data piling and improve on their previous

result.

Regularized Projections and Truncated Nearest Neighbor For the two-class case

with new data d we can form the regularized classifier

δ(d) = (d− µ̂)>(Σ̂ + λI)−1(µ̂1 − µ̂0)

where λ is a positive constant and we assign d to class 1 if δ(d) ≥ 0. The addition of the

perturbation λI is akin to a Tikhonov regularization, which we will see again below in the

ridge regression. Notably, Σ̂ + λI is necessarily invertible if we use any nonnegative definite

estimate Σ̂ of Σ, so the quantity can be computed.

While not specifically a projection method, the nearest shrunken centroid (NSC) method

of Tibshirani et al.[55] bears discussion here, as it supersedes the regularized projection in

precisely the same way that the lasso superseded ridge regression. Specifically, if c ∈ <p is

the centroid of a class, we define the soft thresholding rule

c′i = sign(ci)(|ci| −∆)+

where ∆ is some constant. Notably, a number of the components might be set to 0, specif-

ically when |ci| ≤ ∆. If it happens that two centroids have the same components set to 0

(as will often be the case in practice), then we have essentially excluded the dimension from

consideration.
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We note that soft thresholding takes its name from the fact that c′i is a continuous

function of ci, which is generally a desirable property. The alternative is hard thresholding ;

e.g. we might define c′i = ciI(|ci| ≥ ∆) and note that small changes in ci can produce large

changes in c′i.

Asymptotic Results for Projection Methods In conclusion, we follow the direction of

Fan and Fan [22] who demonstrate that all projection methods are asymptotically no better

than guessing. Specifically, we assume that α is a p-dimension uniformly distributed unit

random vector on a (p − 1)-dimensional sphere. Let λ1, . . . , λp be the eigenvalues of the

covariance matrix Σ. We suppose that

lim
p→∞

1

p2

p∑
j=1

λ2
j <∞

lim
p→∞

1

p

p∑
j=1

λj = τ

where τ is some positive constant. Also, assume that p−1α>α→ 0 as p→∞. Then, given

new data d we form the classifier

δ̂α(d) = (α>d−α>µ̂)(α>µ̂1 −α>µ̂2)

where µi is the empirical mean for class i, but note that

P (δ̂α(d) ≤ 0|d ∈ class 2)→ 1

2
as p→∞.
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1.2.1.2 Neural Networks

We avoid too deep a consideration of the history of neural networks, but it is worthwhile to

acknowledge the analogy to biological neural networks. To some degree of approximation, a

brain can be viewed as a large network of neurons, specialized electrically excitable cells. A

neuron receives electrical impulses from other neurons and, depending on the total impulse

received, can itself send out an electrical impulse. Though simple to describe, such networks

can be large and facilitate complex behaviors; the human brain, for instance, contains on

the order of 1011 neurons and 1015 connections between neurons.[43]

In an artificial neural network, a neuron is a node and represents a function. The impulse

received by a neuron is a weighted linear combination of the node or function’s inputs; i.e.

if the node is connected to m other nodes, each of which contributes an impulse xi, the total

impulse received by the node is
m∑
i=1

wixi

for some set of weights {wi}mi=1. In the modeling of biological neural networks, it is most

commonly assumed that the firing of a neuron is a binary event; i.e. if the impulse received

is above some threshold, then the neuron transmits an impulse, but does not otherwise. In

an artificial neural network, however, it is convenient to assume that a node’s output is a

differentiable function of its inputs. Specifically, the new output is given by

x = f

(
m∑
i=1

wixi

)

14



where f is some function that “looks like” the Heaviside function; i.e. f is some differentiable,

monotonically increasing and bounded function such as f(x) = arctan(x), tanh(x), 1
1+e−x

.

It has been shown recently by Auer et al. [6] that even very simple neural networks

can approximate arbitrarily closely any bounded continuous on a compact set. However,

finding the approximation is nontrivial. “Learning” for a given set of nodes n is essentially

a regression. Given m inputs {xi}mi=1 and targets {yi}mi=1, we most often seek to minimize

ε(n,w) =
m∑
i=1

||f(n,w)(xi)− yi||

for some norm || · ||. It is not necessarily the case that the norm is differentiable with respect

to the weights; when neural networks are used for classification, for instance, we could choose

to count the number of misclassifications.

However, when the norm and scaling functions are continuously differentiable, gradient

methods can be applied; the simplest is gradient descent. We temporarily view n, the node

structure as fixed, so that ε(n,w) = ε(w) is a function of the weights alone. Given a set of

weights w0, we define

wi+1 = wi − η∇ε(wi)

where η is some tuning parameter. Then we note that

ε(wi+1)− ε(wi) = −ηεw(wi)∇ε(wi) +
η2

2
∇ε(wi)>εww(ξ)∇ε(wi)

for some ξ on the line segment between wi and wi+1. This suggests that if η is sufficiently

small, the first term will dominate the second so that ε(wi+1) < ε(wi); i.e. we have found an

improved set of weights for the network.
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Gradient descent is analytically and computationally simple. However, it usually only

suffices for the simplest problems. For instance, η is usually taken to decrease monotonically

in i so that the weights will converge to, not oscillate around minima. The performance of the

training algorithm is heavily dependent on the rate of decrease, yet there is no comprehensive

theory of optimum rate. Furthermore, even with appropriate η’s, weights can converge to

local minima so the selection of initial weights is itself a key problem. Finally, we have

treated n, the network structure, as given, but it is known that the performance of a network

depends heavily on its structure. In summary, the construction and training of a neural is

highly nontrivial. In the following, however, we assume some effective solution exists for the

given application.

Autoencoders are a type of neural network pertinent to dimension reduction. Given a

set of m individuals di of dimension p, we seek a neural network (n,w) which minimizes

ε =
m∑
i=1

||f(n,w)(di)− di||2

where we constrain the number of nodes and nonzero weights in (n,w); essentially, we seek

a low-rank approximation to the identity. If (n,w) is constructed with a small inner layer,

the network can be split in half so that f(n,w) can be factored as

f(n,w) = d(n,w) ◦ e(n,w)

where p′ � p,

e(n,w) : <p → <p′
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is an encoder and

d(n,w) : <p′ → <p

is a decoder. Therefore, an individual di can be encoded in only p′ dimensions as d′i =

e(n,w)(di) and, with error depending on ε, decoded as d̂i = d(n,w)(d
′
i).

It has been demonstrated by Hinton and Salakhutdinov [34] that autoencoders can in

general reproduce a PCA on HDLSS data yet tend to yield more efficient encodings. In fact,

Demartines and Herault [19] showed that neural networks could discover efficient projec-

tions onto manifolds, recovering nonlinear generalizations to PCA. Due to their structure,

the training of autoencoders is computationally expensive and they typically admit no in-

terpretation. Encodings, for instance, are usually highly nonlinear functions of the inputs.

However, when the network can be trained offline and no interpretation is necessary, neural

networks present a plausible dimension reduction solution.

1.2.2 Subset Selection

A key in the success of synthetic dimension reduction techniques in the HDLSS setting has

been the idea of sparsity. Instead of insisting on extracting all meaningful variance from

every dimension in D, some are simply discarded from consideration. Ideally, we might want

to examine all 2p combinations of dimensions to determine which best describes the data

but this is computationally intensive; i.e. we would like to find the best subset. The “leaps

and bounds” procedure of Furnival and Wilson [24] has for a third of a century made this
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feasible for p < 50 and, with increases in computing power, this limit has grown. However,

we note that in modern applications p regularly exceeds 1,000 and no exhaustive method ever

seems plausible. We note, however, that approximations to the best subset can be obtained

through penalized regressions.

Specifically, given a set of training data {di,yi}ni=1 with di ∈ Rp,yi ∈ <, we seek to solve

(α̂, β̂) = argmin

[
n∑
i=1

ε(di,yi,α,β) + λp(β)

]

where α can be understood as the intercept, β ∈ <p the regression coefficients, ε some

measure of error, p some penalty term, and λ a tuning parameter. In the two techniques we

consider here,

ε(d,y,α,β) = ||y − (α+ β>d)||22

where || · ||p is the Lp norm. We consider ridge regression (or Tikhonov regularization) and

Tibshirani’s lasso [54] in which, respectively,

p(β) = ||β||22, ||β||1.

1.2.2.1 Unpenalized Regression

To understand the influence of the various penalty terms, we first consider an unpenalized

regression with intercept 0; i.e. α, λ = 0. We can rewrite the problem as

β̂u = arg min
β
||Dβ −Y||22
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where D is the n× p matrix of data and Y the vector of n targets. We have already noted

that when p < n and rank(D) = p, then

β̂u = (D>D)−1D>Y

is the unique solution to the unpenalized regression problem. If we assume that the columns

of D form an orthonormal set, i.e. D>D = I, then

β̂u = D>Y.

Notably, β̂u = 0 only accidentally, if it occurs that a column of D is orthogonal to Y. In

general we should not expect that many (if any) of the coefficients in such a regression should

be 0. It is not immediately clear why this might be problematic.

Accumulation of Errors in Unpenalized Regressions We have observed above that

even when the data are observed directly, that is to say, without error, geometrical consider-

ations make the HDLSS case problematic. In practice, there is an additional complication:

we do not observe the data directly, but only have perturbed measurements; e.g. instead of

D, we observe

D′ = D + ε

where ε is some error term. The more columns of D′ we retain for classification, the more

columns of ε and therefore the more error we introduce into our model; i.e. these errors

accumulate. Specifically, Ververidis and Kotropoulos[57] show that the classification rate of

any k-means classifier goes to 50% as the dimensionality, p, increases, and attribute this to

inaccurate estimates of the Mahalanobis distance between group centroids.
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1.2.2.2 Ridge Regression

Using the same hypotheses, including specifically that the columns of D form an orthonormal

set, we seek to solve

β̂r = arg min
β
||Dβ −Y||22 + λ||β||22.

Then we note that

δ

δβ

[
||Dβ −Y||22 + λ||β||22

]
= 2(Dβ −Y)>D + 2λβ> = 0

which implies that

β̂r =
D>Y

1 + λ

is a critical point of the penalized error function. The second derivative is 2(1 + λ)I which

is positive definite as long as λ > −1; i.e. β̂r minimizes the penalized error. We then note

that

β̂r =
β̂u

1 + λ
.

Then (β̂r)i = 0 iff (β̂u)i = 0, implying that ridge regression gives no dimension reduction;

i.e. if a dimension “contributes” to an unpenalized regression, then it will contribute in the

ridge regression.

It is a well-established result, beginning in the statistical literature with Hoerl [35], that

the ridge regression stabilizes the unpenalized regression. We recall that if D is not orthonor-

mal, we have the unpenalized regression

β̂u = (D>D)−1D>Y.
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If we solve the ridge regression problem without the assumption of orthonormality, we obtain

the solution

β̂r = (D>D + λI)−1D>Y.

We note that the eigenvalues of D>D are all nonnegative, since if

(D>D)u = νu⇒

||Du||2 = u>(D>D)u = νu>u = ν||u||2.

However, it may be the case that an eigenvalue ν of D>D is near 0, in which case (D>D)−1

will have a large eigenvalue ν−1. Small variations in the data, such as perturbation by

measurement error, will have large impacts on the estimates β̂r if they happen to correlate

with the eigenvector corresponding to ν. However, we note that the corresponding eigenvalue

of (D>D + λI)−1 will only be (ν + λ)−1 so that an error will be magnified by a factor of at

most λ−1.

1.2.2.3 LASSO

In Tibshirani’s lasso (where it is noteworthy that Tibshirani himself has not settled the

question of capitalization) we seek to solve

β̂t = arg min
β
||Dβ −Y||22 + λ||β||1

where we note the change in the exponent of the error term. Whereas ||β||22 is a differentiable

function of the regression coefficients, ||β||1 is not, so this problem must in general be solved
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by iterative methods. Originally, solution through quadratic optimization was suggested,

but later work has shown least-angle regression (LAR) to be far more efficient.[21]

In the lasso, it is often the case that

(β̂l)i = 0 6= (β̂u)i

i.e. while the ridge regression performs only shrinkage, the lasso performs shrinkage and sets

some coefficients to 0; namely those that fall below some threshold depending on λ.

1.2.2.4 Dantzig Selector

Candes and Tao [12] consider the problem

min ||β̂d||1 subject to ||Dr||∞ ≤ (1 + t−1)σ
√

2 log p

where β̂d is the vector of regression coefficients, r the vector of residuals, and t some positive

scalar. If the vector β is truly sparse and the data obey an uncertainty principle, relating

the meaningful variance in the vector to error, then with very large probability

||β̂d − β||22 ≤ 2C2 log p

(
σ2 +

∑
i

min(β2
i , σ

2)

)

for a known constant C. Notably, this is not an asymptotic result and the solution can be

obtained by linear programming.

Families of Selectors James, Radchenko, and Lv [36] discuss situations in which the lasso

and Dantzig selectors are identical, so that the bounds on the error of the Dantzig selector
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might be in certain cases extended to the lasso. Specifically, if the data are orthonormal or

Σ̂ = D>D = ρee> for some ρ, then the solutions are the same. Meinshausen et al. [41] gave

a less strict condition on (D>D)−1, but this quantity cannot be considered in the HDLSS

case. These results give the indication that there is a large number of selectors, some of

which remain unexplored, which on certain data report the same selections, yet specialize to

particular applications; we do not try to make an exhaustive review of the possibilities.

1.2.2.5 Information Criteria

First described by Akaike in 1971 and named in 1974 [4], the Akaike Information Criterion

(AIC) can be understood as the goodness of fit of a model. Specifically,

AIC = 2k − 2 lnL

where k is the number of parameters in the model and L is the maximized likelihood value

for the estimated model; the model with the lowest AIC is considered best. This can be used

to search through subsets of the dimensions of D for the best description of the data. As an

example, if we assume that models errors are iid normal, then the AIC becomes

AIC = 2k + n ln(n−1RSS) + C

where RSS is the sum of squared errors of the model, and C is some constant, the same for

all such models. If we assume that the RSS is a decreasing function of k, which is merely
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the statement that additional data does not make our model less accurate, then

AIC = 2k + n ln(RSS) + C ′

where C ′ does not depend on k, might have a global minimum and the AIC can indicate

some model with simultaneously small k and RSS.

We also consider the closely related Bayesian Information Criterion (BIC), the most

notable proponent of which has been Schwarz [51]. We define

BIC = k lnn− 2 lnL.

The essential difference from the AIC is of course the penalty term; so long as lnn > 2, the

BIC places a heavier penalty on the number of free parameters in the model, but this is the

statement that there have been more than just 7 observations. Again, we prefer models with

smaller BIC. Using the assumptions of the example above, we obtain

BIC =
k

n
lnn+ ln(σ2)

where σ2 is the variance of the errors.

One might wonder if these are not a sufficient solution to the problem of model selection.

First, with a naive approach the criteria must be applied exhaustively to all 2p combinations

of subsets to find the best subset, but only the best subset according to that IC. The

existence of two information criteria differing only in penalty, however, implies that the

choice of penalty is not necessarily given by the problem itself and that improvements might

yet exist.
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1.2.3 Feature Selection

Feature selection differs from subset selection in that feature selection algorithms consider

each dimension separately, so that one need only make p rather than 2p considerations.

We recall that the first essential difficulty in dimension reduction was the estimation of

the covariance matrix of the dimensions; feature selection, by considering each dimension

individually, does away with this at the cost that we might still retain a number of highly

correlated vectors after selection.

1.2.3.1 Ad Hoc Feature Selection

Selection by Variance We noted above in the analysis of the PCA that one can often

retain p′ principle components where p′ is the smallest s.t.

p′∑
i=1

Λ2
ii ≥ α

n∑
i=1

Var(di)

for some α ∈ (0, 1); i.e. it is often the case that one tries to retain (100α)% of the variance

of the original data, based on the assumption that the meaningful variance in the data,

which can be understood as the signal, will be large compared to the error, or noise. This

has motivated a number of ad hoc techniques for the use of variance in feature selection.

Essentially, each dimension is retained or discarded based on some function of its variance.

The idea suffers from two main flaws. First, variance does not take into account classwise

structure. Secondly, variance is necessarily scale variant.
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Selection by ANOVA Analysis of variance (ANOVA) is the partitioning of a dimension’s

variance into components. In the case of classwise data, for instance, we can write

Var(di) = [between-class variance] + [within-class variance]

where, for example, we might choose to explain variance in human height as dependent upon

biological gender, which gives two classes. Then the difference between the average male and

female heights would explain a large portion of the variance in the original data while, for

example, differences in nutrition and health history might explain the within class variance.

We can then create a statistic proportional to the between class variance, e.g.

ξi =
[between-class variance]

[within-class variance]
or

[between-class variance]

[total variance]
.

If we have that ξi is large for some dimensions and small for others, then we suspect that

the dimensions with larger ξi are better for classification and can retain a number of these

based on some criterion or threshold.

Fan and Fan[22] generalize on the idea of the ANOVA and show that it can select mean-

ingful vectors with probability tending to one. Specifically, we consider a single vector

containing data for two classes of sizes n1, n2, with means µ1,µ2 and covariance matrices

Σ1,Σ2. We only observe sample means µ̂1, µ̂2 and sample variances σ̂2
1, σ̂

2
2. Then we form

the statistic

Tj =
µ̂1j − µ̂2j√
σ̂2
1

n1j
+

σ̂2
2

n2j

which, intuitively, represents the ratio of the between-class variance to the within-class vari-

ance.
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We assume that α = µ1 − µ2 is sparse; i.e. only the first s components are nonzero.

This is the statement that after s dimensions, any additional dimension adds only noise;

therefore, there are s (out of p) informative dimensions. Then assume that s is such that

log(p− s) = o(nγ)

log s = o(n1/2−γβn)

for some βn → ∞, 0 < γ < 1
3
. These statements assure that the number of informative

dimensions, s, remains comparable to n but need not grow linearly. Furthermore, we assume

that

min
1≤j≤s

|Tj| = n−γβn

which is the statement that the signal in the informative components does not vanish with

respect to the noise. Finally, if we assume that x ∼ cnγ/2 for some positive constant c, then

we have we have

P

(
min
j≤s
|Tj| ≥ x and max

j<s
|Tj|
)
→ 1 as n→∞

i.e. in the limit, the difference between the t-statistic of an informative and uninformative

dimension will be significant. However, we note that this is an asymptotic result and not

necessarily applicable to the finite case.
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1.2.3.2 The FAIR of Fan and Fan

Fan and Fan[22] define the Features Annealed Independence Rule (FAIR)

δ̂b(d) =

p∑
j=1

α̂j(dj − µ̂j)1{|α̂j| > b}

where b is some constant and we recall that the vector α̂ is an approximation of α = µ1−µ2,

which is supposed to be only sparsely nonzero. Notably, this is a hard thresholding rule, not a

soft thresholding or shrinkage rule; vectors are discarded or retained, not transformed. Also,

we note that when the data are independent, FAIR is similar to a t-test on each dimension

yet selects an optimal number of retained features.

The authors present an upper bound error estimate, which we omit here, but note that

in practical studies FAIR produces a sparser and more accurate set of dimensions than does

the NSC method of Tibshirani et al.[55]

1.2.4 Bayesian Feature Selection

As an example of the Bayesian approach to dimension reduction, we consider the results of

Ambramovich and Angelini[1]. Specifically, we can consider feature selection as a multiple

hypothesis test. Given di ∈ <p from i = 1, · · · , n where

di ∼ fi(di|Θi)

28



where Θi is some set of parameters, we consider the hypothesis tests

H0i : Θi ∈ Ωi vs. H1i : Θi ∈ Ωc
i i = 1, · · · , n.

For instance, we may assume that the null hypothesis represents a vector which is not useful

for classification; say, perhaps, the vector is constant except for measurement error. However,

in what follows we are generally agnostic as to the nature of the parameter spaces and can

treat this as a multiple testing problem, not dimension reduction specifically.

1.2.4.1 The Problem of Multiple Testing

We note that in many applications, the goal of hypothesis testing is to control the familywise

error (FWE), the probability of making even a single Type I error in a series of n tests. In

this case, suppose that fi = f,Ωi = Ω for all i for some distribution function f , some set

of parameters Ω; i.e. the hypothesis test is the same in all cases. Then, if we assume the

hypotheses are determined independently, for some ε1 we have

P (Type I Error) = P (reject H0i|H0i) = ε1 i = 1, · · · , n.

Then we note that

N = [number of Type I errors made] ∼ B(ε1, n)

so that we must have

FWE = P (N ≥ 1) = 1− P (N = 0) = 1− (1− ε1)n ⇒
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ε1 = 1− (1− FWE)1/n.

For instance, if we choose FWE = .75 and have n = 1000 hypotheses, insisting that one time

in four we expect to have no Type I errors, we must have that ε1 ≤ .0014. However, this

implies that for each individual test, we can only make a Type I error with probability less

than .0014; we will have to accept the null hypothesis nearly indiscriminately to achieve to

this rate.

Rather, Ambramovich and Angelini appeal to the false discovery rate (FDR) of Ben-

jamini and Hochberg[7] which controls the expected proportion of Type I errors among the

hypotheses being rejected. Suppose in addition to ε1 we have r1, the probability of rejecting

a null when the null is false, and α, the proportion of false nulls among the n hypotheses.

Then we can calculate

E[number of hypotheses rejected] = (αr1 + (1− α)ε1)n

E[number of Type I errors] = (1− α)ε1n

so that, to some degree of approximation,

FDR ≈ E[number of Type I errors]

E[number of hypotheses rejected]
=

(1− α)ε1
αr1 + (1− α)ε1

=
1

1 + αr1
(1−α)ε1

.

For instance, if α = .10 (the null is usually true), r1 = .95 (we can usually recognize it

when it is not), and FDR = .10 (nine out of ten our of discoveries should be true), then any

ε1 ≤ .011 suffices. While still relatively strict (this corresponds to a p-value of around 1%

for a single test), this metric leads to a feasible methodology.
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1.2.4.2 Hierarchical Prior Model

Arguing that it is not feasible to calculate the odds on individual tests, especially when the

hypotheses might not be determined independently, the authors suggest that there could

nevertheless be some intuition on the total proportion of hypotheses that come from the

nulls and alternatives. For instance, we could know that the alternatives in the data should

be sparse (i.e. the alternative is only rarely true) but we might not be able to calculate the

probability that any specific alternative might be true.

Therefore, we construct a n-dimensional vector x where

xi = I(H1i is true) i = 1, · · · ,n

i.e. xi = 0 if the null is true, 1 if the alternative is true. Again, the authors argue that we

cannot usually ascertain the a priori probability P (xi = 1) but that we can discuss the prior

distribution π(k) of

k =
n∑
i=1

xi = x>x.

Then, as we are unable to discriminate between any two x when they contain the same

number of ones, we have

P

(
x|

n∑
i=1

xi = k

)
=

(
n

k

)−1

.

We then assume that

(Θi|xi = 0) ∼ p0i(Θi) and (Θi|xi = 1) ∼ p1i(Θi)
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for densities on Ωi and Ωc
i respectively. The authors then calculate the full model

π(x,k|D) ∝
(

n

k

)−1

π(k)I{
n∑

i=1

xi = k}
n∏

i=1

(B−1
i )xi

where Bi is the Bayes factor of H0i

Bi =

∫
Ωi
fi(di|Θi)p0i(Θi)dΘi∫

Ωci
fi(di|Θi)p0i(Θi)dΘi

.

1.2.4.3 Testing Procedure

A common approach to testing is to select the most likely configuration of true and false

null hypotheses according to the posterior mode π(x,k|D). Normally, this would require a

consideration of all 2n configurations of x, but in this case, as we have the Bayes factors, we

only need to consider n+ 1 configurations.

Specifically, we order the Bayes factors so that B1 ≤ · · · ≤ Bn and find k̂ that maximizes

π̂k = π(k|D) ∝
(
n

k

)−1

π(k)
k∏
i=1

B−1
i .

If k̂ = 0, then accept all the null hypotheses. If k̂ > 0, accept the first k̂ hypotheses

corresponding to B1, · · · , Bk̂. Therefore, we retain the k̂ vectors for which the null is rejected;

i.e. for which xi = 1.

Related Procedures The procedures of Kass and Raferty[37] and Berger and Pericchi[8]

consider each of the combinations of hypotheses as disjoint partitions of the larger parameter

space ⊕ni=1Ωi, which requires a generally prohibitive search through 2n combinations. We

also note the stepwise procedure of Sarkar and Chen[49] which differs in the choice of priors.
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1.2.5 MCMC Feature Selection and Estimation

Suppose we have a random variable R with a probability distribution function (pdf) fR or

distribution function FR which is unknown, difficult to integrate (e.g. for the purpose of

finding confidence intervals), or difficult to maximize (e.g. for finding MLEs). If we are

able to instead generate n independent, random draws {ri}ni=1 from the distribution, we can

consider the empirical cumulative distribution function (ecdf) for arbitrary c:

F̂n(c) =
number of ri ≤ c

total number of ri generated
.

Under certain circumstances, we expect Fn(c) to converge to the value at c of the actual

distribution function of the random variable.

The usual method of generating pseudorandom variables, however, is not useful here. If

we are able to generate a sequence of independent pseudorandom variables ui ∼ U [0, 1], uni-

form on [0,1], then we can calculate ri = F−1
R (ui) and we have a sequence of pseudorandom,

independent draws from R. By assumption, however, neither FR nor its inverse are available.

A MCMC algorithm is an algorithm which produces a sequence of pseudorandom numbers

that, if designed correctly, converges in distribution to a desired target distribution. In our

application, the target random variable can be anything from a single parameter to the

entire set {xi}pi=1 of indicator variables. We allow the algorithm to produce a large number of

samples from which we can draw estimates; e.g. maximum a posteriori estimates, confidence

intervals, etc.
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Whether the ecdf converges to the cdf and what speed at which it does so are discussed

at length in [48], though an early result which is sufficient for many applications is given in

[42]. We discuss one algorithm below.

1.2.5.1 Random Walk MCMC

Suppose we wish to estimate the distribution of a random variable x, which has pdf function

f . Let Gi be a sequence of iid symmetric random variables, with pdf g, its transition kernel.

Given an estimate xi, we generate a new proposal yi = xi + gi. In other words, the next

value we consider is a small perturbation of the previous value of the chain. We then define

xi+1 =


yi with probability min

(
1, f(yi)

f(xi)

)
xi otherwise

The probability that yi is accepted, i.e. xi+1 = yi, is the acceptance probability.

This approach is useful for exploring local regions of the space. If, for instance, it is

believed that a random variable has the majority of its “mass” in a connected subset of

the space, the random walk MCMC will very likely map that random variable well; i.e. its

ecdf will converge quickly to the variable’s actual cdf. However, for the same reason, if the

random variable is for example bimodal, there is a possibility the random walk MCMC will

never in finite simulations visit significant portions of the variable’s support.

There is also the consideration of step size. In this toy example, we seek to simulate a

standard normal variable and use the transition gi ∼ N(0, σ2). Let x0 = 0 be the first value
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in the MCMC chain. Then we calculate

log
f(y0)

f(x0)
= log

f(x0 + g0)

f(x0)
=

1

2
(x2

0 − (x0 + g0)2)

where we have substituted the pdf of the standard normal. Multiplying by (−2) and substi-

tuting in the value x0 = 0 we obtain

−2 log
f(y0)

f(x0)
= g2

0 ∼ σ2χ2
1

since gi ∼ N(0, σ2) by hypothesis.

If this value is large then the probability of accepting the new proposal is small, and vice

versa. For example, if σ2 = 6, we have

E

[
−2 log

f(y0)

f(x0)

]
= 6Eχ2

1 = 6,

which implies that

f(y0)

f(x0)
= e−3 ≈ .05.

is roughly the acceptance probability in this case. In other words, by the fifth step of the

MCMC algorithm there is a 77% chance we will still be at x5 = 0. The ecdf might converge

to the cdf but it will do so slowly. This is the problem of tuning; selection of the distribution

used in the MCMC to simulate the target distribution.

1.2.5.2 Simulation Example

Suppose as an example that we have a sequence of N = 250 iid random variables

(Yi|ρ2) ∼ (1 + ρ2)χ2
10
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where ρ2 = 4. This example is not arbitrary; c.f. (3.1) below, which is a mixture, but is

handled in the same manner. We would like to recover an estimate of ρ2.

We analyze the data with the random walk MCMC described above, with the gaussian

transition kernel Gi ∼ N(0, .05). Our initial estimate is ρ̂2 = 1. The variance of the kernel

and the initial estimate are both chosen poorly to illustrate what is known as the “burn-in

period,” as in the figure below. The estimates of ρ2 are all eventually in a neighborhood of

its actual value of 4, but there is a substantial period in which they are not. This period,

here approximately 150 samples, is usually discarded and considered the cost of a poor initial

guess.

Figure 1.1: Plot of MCMC estimates of ρ2

Depending on the number of parameters being estimated (we have only considered one

here, though MCMC can handle an arbitrary number just as easily) and the tuning of the

transition kernel, convergence can take a while. If instead we use the transition kernel
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Gi ∼ N(0, .5) and first guess ρ̂2 = 4.2, there is no visible burn-in period and we can retain

all the generated data. Figure 1.2 shows 5000 iterations of this random walk MCMC and

1.3 its ecdf after those 5000 iterations.

Figure 1.2: Plot of MCMC estimates of ρ2

There is a subtle difficulty in interpretation. We know from the construction of the

data set that ρ2 ∼ δ(4). However, in construction of the random walk MCMC, we have

insisted only that ρ2 be finite. The MCMC approach creates an a posteriori distribution

for ρ2 which is not the point mass we might expect and its ecdf will never converge to a

δ-distribution. Is this necessarily the wrong approach? In fact, in practice, the a posteriori

estimates (including not only point estimates but also confidence intervals) might be more

robust against measurement error than analytic estimates.
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Figure 1.3: Plot of ecdf of estimates of ρ2

This particular approach is not meant to be a recommendation. Obviously, the problem

we present here can be solved analytically with a MLE. This is merely a demonstration that

a naive MCMC algorithm can be easily coded (≈ 30 lines of code) and casually applied to

data with reasonable results. In practice, there can be a variety of reasons to use the MCMC

approach over analytic estimates, and there is a large literature around doing this correctly.

1.2.5.3 Notes on MCMC methods

It is worthwhile to note that MCMC algorithms will produce distributions with relatively

unusual properties. There is, for example, a nonzero probability that particular values will

be reproduced in the sequence, i.e. xi = xi+1, whereas two independent draws from the

distribution of x will almost surely not have the same value. In fact, the sequence produced
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by the random walk MCMC will be auto-correlated, whereas independent draws from the

distribution of x will not be. Finally, if the initial estimate is far from the main body of the

distribution, it might take some time, as we saw above, for the estimates to evolve towards

the mean of x.

It must be kept in mind that the ecdf of the sequence produced by the algorithm converges

pointwise to the cdf of the parameter being estimated; this is one of the weakest forms of

convergence. However, it should be remembered that even a poorly considered random walk

MCMC can yield useful point estimates of local likelihood maxima. As long as the likelihood

under the new proposal is greater than the likelihood under the old value of the parameter,

the algorithm will always accept the proposed likelihood. This is not a recommendation of

sloppiness, of course, but a note that MCMC algorithms can be more robust than analytic

estimates when the underlying structures of the data are not known and therefore cannot

be used to justify precise calculations.

1.3 Real Data Application

Subject

Animals use a variety of media to communicate their species, intentions, fitness, etc. Here,

our concern is the first; can individuals from a group of electric fish be classified into species

based on their signals alone? Specifically, some of the freshwater electric fishes of Africa
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Figure 1.4: Centered, normalized fish signals

(Mormyriformes) and the Neotropics (Gymnotiformes) generate remarkably consistent sig-

nals, which they use for navigation and communication.[11] For our purposes, these may be

visualized as strings of repeated pulses, such as those portrayed here.

These signals have relatively high dimension. Even when a single pulse is isolated, which

is itself a form of dimension reduction, there were 211 samples per pulse after resampling, yet

there were only 263 individuals from five species. Therefore, there will be no unique LDA

on the data unless the data are subjected to dimension reduction.
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Methods

All signals were converted to a common length (2048 samples), sample rate (96 kHz), and

root-mean-square normalized amplitude. All pulses were aligned at their global maximum,

yielding, for instance, this sample of pulses from various species.

The data were then subjected to a variety of transforms; we recall that the principal

component analysis is often used before dimension reduction to reduce the number of cor-

related variables in the data. Here, noting that because of the dimensionality there exists

no unique PCA, we used the Fourier transform, the spectral density, the windowed Fourier

transform (gaussian with varying variances), the discrete wavelet transform with a variety

of wavelets, and a landmark-based procedure, which located a number of maxima, minima,

turning points, etc.

The columns of data were then ranked by four metrics, namely the variance, the coefficient

of variation, ANOVA, and pairwise ANOVA and a subset of size p′ was chosen. A random

subset of the individuals was chosen as a training set to condition a linear discriminant

analysis (LDA) and the misclassification rate of the LDA on the whole data set served as

the primary metric. Notably, this is not a Bayesian analysis and the analysis recommends

no p′. Due to this, p′ was varied exhaustively.
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Transforms

Here we seek to understand the ideas behind the transforms chosen. While all transforms

were applied in their discrete form, here we investigate their continuous forms for convenience.

Fourier Transform Given a signal f : < → < we define its Fourier transform

[F ]f(ω) =

∫
<
f(x)e−2πiωxdx

if the integral exists. Under certain conditions, the transform may be inverted with

f(x) =

∫
<

[F ]f(ω)e2πiωdω.

We can approximate this last integral with a Riemann sum

f(x) =
∞∑

n=−∞

[F ]f(ωn)e2πiωn∆n

which implies that we may view f as the sum of an infinite number of sinusoids. If f ∈ L1,

then the Riemann-Lebesgue lemma states that [F ]f(ω) → 0 as ω → ∞, so that f might

be well approximated by the inverse transform of the restriction [F ]f(ω)|C where C is some

compact set. This is useful in dimension reduction, as it implies we should be able to “cut

off” [F ]f(ω) after some point, ignoring frequencies above some ω0, yet still retain most of

the information in f . This is especially true if f can be represented faithfully as a sum of

sinusoids.
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Spectral Density The spectral density is defined as [S]f(ω) = |[F ]f(ω)| and has the same

motivations as the Fourier transform. Since the Fourier transform usually yields complex

numbers, the spectral density is more easily visualized.

Windowed Fourier Transform We define the Windowed Fourier Transform (WFT)

[WF ]f(x, ω) =

∫
<
f(t)g(t− x)e−2πitdt

where g : < → < is some window function. Typically, g is nonnegative with g(x) small when

x is far from 0. In our application, we used the Gaussian

g(x) ∝ e
−x

2

γ2

where γ determines the width of the “window.” Essentially, the WFT performs a Fourier

transform on small time scales over the length of the signal. The spectrogram is defined as

the absolute value of the WFT and can be more easily visualized.

Wavelets Wavelets are sets of orthonormal bases of functions [0, 1] generated by a mother

wavelet ψ : < → < which has its support on [0, 1]. Then we define

ψa,b =
1√
a
ψ

(
t− b
a

)
.

We then define the wavelet transform

[W ](a, b;ψ)f =

∫
<
ψa,b(x)f(x)dx.

As a complete basis, any particular mother wavelet will suffice to completely represent that

data, but certain choices may be more amenable to efficient representation; i.e. [W ](a, b;ψ1)f
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may be zero more often than [W ](a, b;ψ2)f . These transforms are similar to the WFT in

that they “examine” the function over short periods of time.

Results

While the analysis did recommend particular transform and dimension reduction techniques,

these results are secondary to the observation that an exhaustive search through the dimen-

sionality p′ will be infeasible for most applications and that a Bayesian approach is recom-

mended. The computations themselves were intensive and occasionally required more than

a day to complete; regardless of computing time, we have no precise estimates of the human

time involved but believe it to be on the order of hundreds of hours.

This approach was admittedly intended to be excessively exhaustive; we suspected and

proved that a particular wavelet respresentation would be most efficient out of the transforms

we sampled. It was in addition fruitful; see for example [18], [15], [5]. However, in actual

applications that do not intend to show the supremacy of an approach or transform, it can

hardly be recommended.

We should however note that selection by (pairwise-)ANOVA showed far better perfor-

mance, as was expected, than selection by variance. We therefore adopted a Bayesian ap-

proach to avoid the difficulties of exploring the dimensionality of the reduced set and adopted

something like selection by ANOVA. This, then, was the major result of these studies, as it

informs all of what follows.
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CHAPTER 2
TWO MODELS

We introduce two Bayesian models for feature selection in high dimensional data, specifically

for the purpose of classification. After Bayesian inference is implemented, we use Bayesian

multiple testing procedure of Abramovich and Angelini[1]. We point out that although the

inference is based on the known testing procedure, the Bayesian model formulation is entirely

new.

2.1 General Framework

For convenience, we arrange row vectors

D> = [d1,d2, · · · ,dn]

yielding the (n × p) matrix D and denote its columns by di ∈ <n, i = 1, · · · , p. The

objective is to select a sparse subset of these p vectors which enable classification of vectors

d1,d2, · · · ,dn into classes ω1, · · · , ωL. For this purpose, we introduce a binary vector x ∈ <p

with xi = 1 if vector component di is “informative” and should be retained in subsequent

discriminatory analysis, or xi = 0 if di should be discarded. The goal of the analysis, then,

is to draw conclusions about vector x on the basis of matrix D.

We introduce the following notations. Matrices and vectors are denoted in bold while

their components are not. Let e ∈ <n be a column vector with unit components and gl ∈ <n,
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l = 1, · · · , L, be column vectors with the j-th components (gl)j = 1 if it corresponds to class

l, i.e. if

n1 + · · · , nl−1 + 1 ≤ j ≤ n1 + · · · , nl−1 + nl,

and (gl)j = 0 otherwise. We also define G ∈ <n×L with columns gl, l = 1, · · · , L.

In what follows, we consider Bayesian setup. Let di be a noisy measurement of the “true”

i-th component µi, i.e.

di = µi + εi (2.1)

where εi are multivariate normal εi ∼ N(0, σ2
i In). The distribution of µi depends on whether

µi is informative (xi = 1) or not (xi = 0). We assume a priori that x1, · · · , xp are identically

distributed and that the number of informative components

X =

p∑
i=1

xi

is such that

P (X = k) = p(k) ≥ 0 and

p∑
k=0

p(k) = 1.

If x1, · · · , xp are also independent with P (xi = 1) = π, then X has the binomial distribution

with parameters π and p. In general, we assume that p(k) depends on parameter π, i.e.

p(k) = pπ(k).
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2.1.1 VARSEL (Model 1)

In VARSEL (Model 1), we assume that constant vectors are uninformative, i.e. for some

scalar values mi one has

µi = n−1/2mie + wi, i = 1, · · · ,p, (2.2)

where e>wi = 0 and

mi ∼ N(0, σ2
i τ

2),

(wi|xi = 0) ∼ δ(0), (2.3)

(wi|xi = 1) ∼ N(0, σ2
i Σw).

Matrix Σw here characterizes correlation among the informative columns. Let SC = Span(e)

be the linear subspace of constant vectors and SN = <n \ SC its complement in <n. Then,

matrices

PC = n−1e>e, and PN = In −PC (2.4)

are projection matrices for spaces SC and SN , respectively, and Σw = PNΣPN where σ2
iΣ

is the covariance matrix of vector µi given xi = 1, i = 1, · · · , p.
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2.1.2 CONFESS (Model 2)

In CONFESS (Model 2), we search for the vectors which are constant within but vary

between the classes. In particular, let SG = Span(g1, · · · ,gL) and let S1 = SG \ SC and

S0 = <n \ SG, so that <n = SC ⊕ S0 ⊕ S1. Then

µi = n−1/2mie + ui + vi, i = 1, · · · ,p, (2.5)

where ui ∈ S1 and vi ∈ S0. We assume that

mi ∼ N(0, σ2
i τ

2),

(ui|xi = 0) ∼ δ(0),

(ui|xi = 1) ∼ N(0, σ2
i Σu) (2.6)

vi ∼ N(0, σ2
iΣv),

where inclusions ui ∈ S1 and vi ∈ S0 are enforced by covariance matrices Σu and Σv. Note

that matrix

PG = G(G>G)−1G>

projects an arbitrary vector into SG. Define matrices

P0 = In −PG, P1 = PG −PC. (2.7)

Lemma 1 Matrices PC, P0 and P1 are projection matrices for linear spaces SC, S0 and

S1, respectively, so that Σu = P1ΣP1 and Σv = P0ΣP0 where σ2
iΣ is the covariance matrix

of the vector µi given xi = 1, i = 1, · · · , p.
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Proof By construction as orthogonal projections, matrices PC and PG are symmetric,

idempotent, and identities on their respective subspaces SC and SG. Then PGPC = PC

since SC ⊆ SG. Also,

P1e = PGe−PCe = e− e = 0

since e ∈ SC,SG. Finally,

P1P0 = P0P1 = (In −PG)(PG −PC) = PG −PC −PGPG + PGPC = 0.

To complete the proof of the lemma, observe that P1ui = ui since ui ∈ S1. 2

2.2 Inference

To select “informative” vectors di, one needs to evaluate P (xi = 1|D), i = 1, · · · , p. However,

for each i = 1, · · · , p, only a part of each vector di carries information about xi, in particular,

the part associated with wi ∈ SN for VARSEL (Model 1) and with ui ∈ S1 for CONFESS

(Model 2). Therefore, one needs to extract “informative” parts from vectors di. For this

purpose, one needs to construct matrices R ∈ <n×n and Q ∈ <n×n with the following

properties. Matrix R has n−1/2e> as its first row and matrix HN ∈ <(n−1)×n as its next

(n − 1) rows. Matrix Q ∈ <n×n has n−1/2e> as its first row, matrix H1 ∈ <(L−1)×n as its

next (L− 1) rows and matrix H0 ∈ <(n−L)×n as its last (n− L) rows.

In what follows, we extract yi = HNdi Model 1 or yi = H1di and zi = H0di for Model

2, and show that model selection is carried out on the basis of vectors yi only. For this to
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be true, one needs matrices R and Q for Models 1 and 2, respectively, with the properties

stated below.

Proposition 1 Let matrix R ∈ <n×n described above be such that RR> = In and also

H>NHN = PN. Let

yi0 = n−1/2e>di

yi = HNdi

Then, under conditions (2.1), (2.2) and (2.3), yi0 and yi are independent with

yi0 ∼ N(0, σ2
i (1 + τ 2)),

(yi|xi = 0) ∼ N(0, σ2
i In−1), (2.8)

(yi|xi = 1) ∼ N(0, σ2
i (In−1 + HNΣH>N)).

Also, yi0 is independent of yi, i = 1, · · · , p.

Proof Note that R>R = In implies that matrix HN satisfies (2.12). Then, for any i, one

has

yi = HNwi + HNεi

where

HNεi ∼ N(0, σ2
i HNH>N) ∼ N(0, σ2

i In−1)

Similarly,

yi0 = mi + n−1/2 e>εi
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n−1/2 e>εi ∼ N(0, σ2
i )

Validity of formulae (2.8) can be checked by direct calculations. Also, we have the covariance

between yi0 and yi

Cov(yi0,yi) = E(yi0yi) = n−1/2 e>E(did
>
i )HN = 0,

and since the vector yi0,yi is normally distributed, yi0 and yi are independent. 2

Proposition 2 Let matrix Q ∈ <n×n described above be such that

QQ> = In

H>1 H1 = P1

H>0 H0 = P0

Let

yi0 = n−1/2e>di

yi = H1di

zi = H0di

Then, under conditions (2.1), (2.5) and (2.6), one has

yi0 ∼ N(0, σ2
i (1 + τ 2)),

(yi|xi = 0) ∼ N(0, σ2
i IL−1), (2.9)

(yi|xi = 1) ∼ N(0, σ2
i (IL−1 + H1ΣH>1 )),

zi ∼ N(0, σ2
i (In−L + H0ΣH>0 )),
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Also, yi0, yi and zi are independent, i = 1, · · · , p.

Proof The proof is very similar to the proof of Proposition 1. 2

Note that matrices R and Q carry out orthogonal transformation of the data di, i =

1, · · · , p, replacing vectors di by yi0 and yi for Model 1 and yi0, yi and zi for Model 2,

i = 1, · · · , p. It follows from Propositions 1 and 2 that vectors yi alone contain information

about xi. With some abuse of notation, denote

I = In−1, Σy = HNΣH>N, zi = 0

and Σz = 1 for Model 1 and

I = IL−1, Σy = H1ΣH>1 , Z = {z1, · · · , zp}

Σz = In−L + H0ΣH>0

for Model 2. Let Ω be a diagonal matrix

Ω = diag(σ2
1, σ

2
2, · · · , σ2

p).

Then, since all configurations of zeros and ones in vector x are a priori equally likely, the

joint pdf of

Y0 = (y10,y20, · · · ,yp0)

Y = {y1, · · · ,yp}

Z = {z1, · · · , zp}
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and x is of the form

p(Y0,Y,Z,x|Ω,Σy,Σz, τ, π) =

(
p

k

)−1

I(X = k)pπ(k) (2π)−np/2(1 + τ2)−p/2|Ω|−n/2|I + Σy|−k/2

× |Σz|−p/2 exp

{
−

p∑
i=1

1

2σ2
i

[
(1 + τ 2)−1y2

i0 + xi y
>
i (I + Σy)−1yi + (1− xi)y

>
i yi + z>i Σ−1

z zi

]}
.

The posterior distribution of each configuration x is

p(x,k|Y,Ω,Σy, π) ∝
(

p

k

)−1

I(X = k)pπ(k) |I+Σy|−k/2 exp

{
−

p∑
i=1

1

2σ2
i

xi y
>
i (I + Σ−1

y )−1yi

}
,

and is independent of Y0 and Z. Following Abramovich and Angelini[1], we apply a max-

imum a posteriori (MAP) rule to choose the most likely configuration of zeros and ones in

vector x. The MAP rule implies that, for a given value of k, x̂i = 1 for the k largest values

of ∆i where

∆i = σ−2
i y>i (I + Σ−1

y )−1yi, i = 1, · · · ,p, (2.10)

and x̂i = 0 otherwise. Let ∆(i) be the i-th largest value, i.e. ∆(1) ≥ ∆(2) ≥ · · · ≥ ∆(p). Then,

denoting the chosen configuration by x̂(k), we derive the MAP value of k:

k̂ = arg max
k

[
2

(
ln

(
p

k

)−1

+ ln pπ(k)− k ln |Σy + I|

)
+

k∑
i=1

∆(i)

]
. (2.11)

In order to carry out model selection according to (2.10) and (2.11), one needs to construct

matrices R and Q described above and estimate unknown parameters σ2
1, σ

2
2, · · · , σ2

p, π and

unknown matrix Σy.
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2.2.1 Construction of Matrices R and Q

To construct matrices HN, H1 and H0 satisfying Propositions 1 and 2, we need to construct

matrix HN for Model 1 and matrices H1 and H0 for Model 2 with the following properties

HNe = 0, HNH>N = In−1, H>NHN = PN (2.12)

H1e = 0, H0e = 0, H1H
>
0 = 0, H1H

>
1 = IL−1, H0H

>
0 = In−L, H>1 H1 = P1, H>0 H0 = P0,

(2.13)

Since the first rows of both matrices, R and Q, is n−1/2e>.

For this purpose, we introduce diagonal n × n matrices ΛN , Λ1 and Λ0 where ΛN has

(n − 1) consecutive ones and a zero on the diagonal, Λ1 has (L − 1) consecutive ones and

(n − L + 1) zeros on their diagonal and, finally, Λ0 has (L − 1) consecutive zeros followed

by (n−L) consecutive ones and then a zero on the diagonal. Introduce also matrices TN ∈

<(n−1)×n with In−1 in its first (n−1) columns, the rest being identically zero, T1 ∈ <(L−1)×n

with IL−1 in its first (L−1) columns, the rest being identically zero, and T0 ∈ <(n−L)×n with

(L − 1) first columns being identically zero, then matrix In−L in the next (n − L) columns

and the last column being zero. By construction, we have

TNT>N = In−1, T1T
>
1 = IL−1, T0T

>
0 = In−L,

(2.14)

T>NTN = ΛN , T>1 T1 = Λ1, T>0 T0 = Λ0.
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Now, recall that PN is a symmetric, idempotent matrix of rank (n − 1); hence, there

exists an orthogonal matrix U such that PN = U>ΛNU. Let

HN = TNU. (2.15)

Then,

HNH>N = TNUU>T>N = In−1

H>NHN = U>T>NTNU = PN

due to (2.14). Also, observe that

‖HNe‖2 = e>H>NHNe = ‖PNe‖2 = 0,

so that HNe = 0, and HN satisfies all conditions of Proposition 1.

To construct matrices H1 and H0, note that according to formula (2.7) and Lemma

1, matrices P1 and P0 are symmetric idempotent matrices of ranks (L − 1) and (n − L),

respectively, and commute pairwise, i.e. P1P0 = P0P1 = 0. For this reason, matrices P0

and P1 are simultaneously diagonalizable (see for example [46] pg. 192) and there exists an

orthogonal matrix V such that

P1 = V>Λ1V, P0 = V>Λ0V.

Construct matrices H1 and H0 as

H1 = T1V, H0 = T0V. (2.16)
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Then, the last four equalities in (2.13) can be verified using (2.14) in a manner similar to

the proof for HN. To show that the first two equalities in (2.13) hold, recall that

PG e = PC e = e

so that

‖H1e‖2 = e>P1e = e>PG e− e>PC e = 0

and similarly, ‖H0e‖2 = 0. Now, the remaining equality H1H
>
0 = 0 follows directly from

T1T
>
0 = 0, and, hence, matrices P1 and P0 satisfy all conditions of Proposition 2.

We should mention here that some versions of matrices R and Q can be constructed

explicitly. In particular, matrix R can be the n-dimensional Helmert matrix, so that the

HN = H(n) with elements (H(n))ji of the form

(Π(n))ji =


[j(j + 1)]−1/2, 1 ≤ j ≤ n, 1 ≤ i ≤ j,

−[j/(j + 1)]1/2, 1 ≤ j ≤ n, i = j + 1,

0, 1 ≤ j ≤ n, j + 2 ≤ i ≤ n.

Matrix H0 can be constructed as a block matrix with matrix H(n1) in the first (n1 − 1)

rows, H(n2) in the next (n2 − 1) rows and so on. Matrix H1 can be recovered by direct

Gram-Schmidt orthogonalization. Set n0 = 0. Then, elements of matrix H1 are of the form:

(H1)ji =


0, 1 ≤ i ≤ n1 + · · ·+ nj−1,

hjj, n1 + · · ·+ nj−1 + 1 ≤ i ≤ n1 + · · ·+ nj,

hj,j+1, i > n1 + · · ·+ nj, 1 ≤ j ≤ L− 1.
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Here,

hjj =
√

(n− n1 − · · · − nj)/[nj(n− n1 − · · · − nj−1)], 1 ≤ j ≤ L− 1, l = j,

hj,j+1 =
√
nj/[(n− n1 − · · · − nj)(n− n1 − · · · − nj−1)], 1 ≤ j ≤ L− 1, j + 1 ≤ l ≤ L.

Note that formulae (2.15) and (2.16) deliver some orthogonal transformations of the explicit

forms mentioned above.

2.3 Estimation of Parameters

Observe that both models reduce to

yi0 ∼ N(0, σ2
i (1 + τ 2)),

(yi|xi = 0) ∼ N(0, σ2
i Im),

(yi|xi = 1) ∼ N(0, σ2
i (Im + Σy)),

zi ∼ N(0, σ2
i (Ir + Σz)), (2.17)

where m = n− 1, Σy = HNΣH>N, zi = 0 and r = 0 for Model 1, and m = L− 1, r = n−L,

Σy = H1ΣH>1 and Σz = H0ΣH>0 for Model 2. To apply the model selection procedure

described above, one needs to estimate unknown parameters σ2
i , i = 1, · · · , p, matrix Σy

and parameter π associated with the prior pπ(k). Note that for model selection one does not

need to know τ or Σz.

Since vector x is unknown, a single-step estimation of the parameters is usually in-

tractable. Therefore, we treat vector x a the latent variable in an EM algorithm, alter-
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nating between computing the expectation of log-likelihood, given transformed data yi,

i = 1, · · · , p, and values of parameters (E-step), and estimating parameters by maximiz-

ing the expected value of the log-likelihood (M-step). The algorithm begins with initial

values σ2
i,[0], i = 1, · · · , p, matrix Σy,[0] and parameter π[0].

Then, given values of unknown parameters, σ2
i,[h], i = 1, · · · , p, Σy,[h] and π[h] at the

h-th iteration of the algorithm, at an E-step, one needs to find the posterior expectation

of the latent vector x given the data y. If the number k of nonzero components of vectors

x has binomial distribution (and, thus, components xi are independent), then, following

Abramovich and Angelini[1], one can find posterior expectations x̂i of xi given yi as x̂i =

(1 +Bi(yi))
−1 where Bi(yi) are Bayes factors

Bi(yi) =
p(yi|xi = 0)(1− π[h])

p(yi|xi = 1)π[h]

= |Im + Σy,[h]|1/2 exp

{
−

y>i (I + Σ−1
y,[h])

−1yi

2σ2
i,[h]

}
.

Alternatively, if pπ(k) is not binomial, following George and Foster[25], one can replace the

posterior mean estimators of xi’s by the posterior mode, which leads to choosing xi = 1 for

k largest values of ∆i and then estimating k by (2.11).

At an M-step, one needs to maximize the log-likelihood of the entries σ2
i , i = 1, · · · , p of

the diagonal matrix Ω, of matrix Σy and parameter π given the data and the latent vector

x:

l(Ω,Σy, π; Y,x) = const + log pπ(k)− log

(
p

k

)
+ log I(

∑
xi = k)− k

2
log |Im + Σy|

−
p∑
i=1

[
n log(σ2

i )

2
+
xiy

>
i (Im + Σ−1

y )−1yi + (1− xi)y
>
i yi

2σ2
i

]
. (2.18)
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Since the general model is too diverse and includes a very large number of parameters, we

consider two special cases of the general model above, Case 1: all σi’s are equal to each

other: σi = σ, i = 1, · · · , p, and Case 2: matrix Σ is proportional to identity: Σ = ρ2In.

Case 1: σi = σ, i = 1, · · · , p. If k << p, then one can estimate σ by a variety of

methods; e.g. the median of the absolute deviations of yi divided by 0.6745 (Donoho and

Johnstone[20]). If assumption k << p does not hold, then σ2 can be estimated by

σ̂2 =
1

mp

p∑
i=1

[
x̂iy

>
i ((Im + Σ̂y)−1yi

]
.

Then, matrix Σy is estimated by

Σ̂y =

(
1

k σ̂2

p∑
i=1

x̂iyiy
>
i − Im

)
+

.

For now, it can be assumed that (A)+ is a positive semidefinite matrix close to A in way

we will describe later. However, if Σy is assumed to be diagonal, then its diagonal entries

are estimated by

(Σ̂y)ii = (k−1σ̂−2

p∑
i=1

x̂iy
>
i yi − 1)+ (2.19)

where t+ = max(t, 0) for any t ∈ <.

Case 2: Σ = ρ2 In. It follows from Propositions 1 and 2 that Im + Σy = (1 + ρ2)Im.

Hence, in Model 1, maximization of (2.18) with respect to σ2
i and ρ yields

σ̂2
i =

y>i yi

n− 1

[
xi

1 + ρ̂2
+ (1− xi)

]
where ρ̂ is the solution of the equation

ρ2 =

(
1

k

p∑
i=1

xi(1 + ρ2)

xi + (1 + ρ2)(1− xi)
− 1

)
+

.
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In Model 2, one can use the separate portion of likelihood associated with zi, for esti-

mation of αi = (1 + ρ2)σ2
i , i = 1, · · · , p. Since zi ∼ N(0, αiIn−L), one can estimate αi by

α̂i = (n−L)−1z>i zi. Then, ρ2 can be estimated by plugging α̂i, i = 1, · · · , p, into (2.18) and

maximizing (2.18) with respect to ρ for a given vector x. Therefore,

ρ̂ =

(
p∑
i=1

α̂−1
i (1− xi)y>i yi

) (
(L− 1)(p− k)−

p∑
i=1

α̂−1
i (1− xi)y>i yi

)
+

.

Then, σ2
i are estimated by

σ̂2
i = [(1 + ρ̂2)(n− L)]−1 z>i zi. (2.20)

After Ω and Σy are estimated, parameter π can be found as a solution of the following

optimization problem

π̂ = arg max
π

l(Ω̂, Σ̂y, π; y, x̂),

where l(Ω,Σy, π; Y,x) is defined in (2.18).
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CHAPTER 3
MODEL SELECTION IN CONFESS

Assume we have data generated according to CONFESS, in which σi = σj for all i, j, Σ = ρ2I,

and all parameters but xi are known. Note that the assumption that Σ is diagonal. This is

not merely for convenience; we recall the naive Bayes classifier of Bickel and Levina[9]. Let

i be some column number. We return to (2.17) and define

Yi =
||yi||2

σ2
i (1 + ρ2)

.

Then, since in this model

(yi|xi = 0) ∼ N(0, IL−1)

(yi|xi = 1) ∼ N(0, (1 + ρ2)IL−1)

we conclude that

(Yi|xi = 0) ∼
χ2
L−1

1 + ρ2

(Yi|xi = 1) ∼ χ2
L−1. (3.1)

Now, since ρ2 ≥ 0, we have (Yi|xi = 1) ≥ (Yi|xi = 0) in the stochastic sense; i.e. for all λ we

have

P (Yi ≤ λ|xi = 1) ≤ P (Yi ≤ λ|xi = 0).

If there were to exist a λ for which the supports of Yi under the two cases xi = 0, 1 were on

separate sides of λ, we could immediately recover xi from an observation and model selection
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would be trivial; i.e. if Yi ≥ λ, then we would correctly conclude that xi = 1. However, we

note that under either hypothesis, xi = 0, 1, Yi has support on all of [0,∞). This implies

that there exists no λ which completely separates the two cases.

3.1 Separability

We consider a set of data sets {Dp} generated according to CONFESS in which p→∞. All

parameters are known but are allowed to evolve with p. We will often suppress the indices

for clarity. For each data set we define the random variables

Up = max{Yi|xi = 0}p0i=1

Vp = min{Yi|xi = 1}p1i=1.

Again, Up and Vp have support on all of [0,∞), so there is no λ that separates them. However,

we call {Dp} separable if there exists a sequence {λp} such that

lim
p→∞

P (Up ≤ λp) = 1

lim
p→∞

P (Vp ≤ λp) = 0.

If a set of data sets is separable, the probability of both types of errors goes to 0. In

applications no data set will be of infinite dimensionality, but for “large” data sets, which

will be quantified later, the idea of separability can imply that the probability of either type

of errors is small.

62



Lemma 2 The conditions for separability in CONFESS are

limp→∞ p0(1− FL−1((1 + ρ2)λ)) = 0

limp→∞ p1FL−1(λ) = 0

where FL−1(x) is the CDF of the χ2 at x with L− 1 degrees of freedom written as

FL−1(x) =
γ
(
L−1

2
, x

2

)
Γ
(
L−1

2

) (3.2)

where γ(., .) is the (lower) incomplete gamma function

γ(a, z) =

∫ z

0

ta−1e−tdt

Proof Assume first that the data are separable. We note that

FVp(λ) = P (Vp ≤ λ) = P (max{Yi|xi = 0}p0i=1 ≤ λ)

=

p0∏
i=1

P (Yi ≤ λ|xi = 0)

= FL−1((1 + ρ2)λ)p0 . (3.3)

Similarly,

FUp(λ) = P (Up ≤ λ) = P (min{Yi|xi = 1}p1i=1 ≤ λ)

= 1− P (min{Yi|xi = 1}p1i=1 > λ)

= 1−
p1∏
i=1

P (Yi > λ|xi = 1)

= 1− (1− FL−1(λ))p1 . (3.4)
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By the definition of separability, the conditions in this case are:

lim
p→∞

FL−1((1 + ρ2)λ)p0 = 1

lim
p→∞

(1− FL−1(λ))p1 = 1.

We note that these are equivalent to

lim
p→∞

p0 lnFL−1((1 + ρ2)λ) = 0

lim
p→∞

p1 ln(1− FL−1(λ)) = 0

i.e. the previous conditions hold iff these conditions hold. Now, we recall that

ln(1− x) = −
∞∑
n=1

xn

n

for all |x| < 1 and |FL−1(λ)| < 1 necessarily, so that

p1 ln(1− FL−1(λ)) = −
∞∑
n=1

p1(FL−1(λ))n

n

Now, by hypothesis,

p1 ln(1− FL−1(λ))→ 0

so that
∞∑
n=1

p1(FL−1(λ))n

n
→ 0

as well. Now, since all the summands are positive, each summand must also go to 0, so that

p1FL−1(λ)→ 0 as p→∞. The same argument applies when xi = 0, writing

FL−1((1 + ρ2)λ) = 1− (1− FL−1((1 + ρ2)λ))
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where necessary.

Then the formal definition of separability implies that

lim
p→∞

p0(1− FL−1((1 + ρ2)λ)) = 0 (3.5)

lim
p→∞

p1FL−1(λ) = 0 (3.6)

i.e. these two limits are necessary if the data are separable.

Assume next that both (3.5) and (3.6) hold. Necessarily FL−1(λ) < 1 so that

∞∑
n=1

(FL−1(λ))n−1

n
<∞

since it is dominated by a convergent geometric series. Then we have

p1FL−1(λ)
∞∑
i=1

(FL−1(λ))n−1

n
=
∞∑
n=1

p1(FL−1(λ))n

n
→ 0

as p→∞. However, this is the statement that limp→∞ p1 ln(1−FL−1(λ)) = 0 and we obtain

the formal definition of separability by exponentiating. The same argument can be applied

to the case in which xi = 0. 2

3.1.1 Asymptotic Expansion of the Logarithm of Gamma Func’s

It follows from (3.2) that FL−1(λ) and FL−1((1 + ρ2)λ) can be expressed via the gamma

function and the incomplete gamma function. Were either L and λ fixed, we could easily

apply the l’Hospital rule (or standard expansion of Fn(x)) and obtain some list of situations

in which (3.5) and (3.6) held. We need an expansion Fn(x) valid for both n, x → ∞, since

p1, L, λ and ρ all evolve with p.
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Since (3.2) can be represented as a fraction in recognizable functions, we seek to under-

stand its logarithm. Therefore, in the following sections we consider asymptotic expansions

of the incomplete and regular gamma function.

3.1.1.1 Asymptotic Expansion of the Logarithm of the Gamma Function

The denominator in formula (3.2) is expressed via the gamma function of the large argument.

An asymptotic expression for ln Γ(a) as a→∞ is given by formula 8.327.3 of [28]

ln Γ(a) ∼
(
a− 1

2

)
ln a− a+

1

2
ln(2π) +

1

12a
− 1

360z3
+ ... (3.7)

valid for a→∞, | arg a| < π.

3.1.1.2 Asymptotic Expansion of the Logarithm of the Gamma Function

The numerator in formula (3.2) is expressed via the incomplete gamma function γ(a, z)

where both arguments are large. This situation calls for different asymptotic expansions in

comparison with the standard case where a is assumed to be fixed and the value of z is

growing. Below, we follow the approach of Paris in [44] who studied asymptotic expansions

of the incomplete gamma functions

γ(a, z) =

∫ z

0

ta−1e−tdt and Γ(a, z) =

∫ ∞
z

ta−1e−tdt
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as a→∞ and z →∞. These asymptotic expansions depend on the relation between z and

a and the variable

χ = (z − a)/
√
z.

In particular, adopting asymptotic expansions in Paris [44] to the case of real z and a, we

obtain

Γ(a, z) = za−1/2e−z
[
d0(χ)− z−1/2d3(χ)

+ O(|z|−1)
]
, z > a,

γ(a, z) = za−1/2e−z
[
d0(−χ) + z−1/2d3(−χ)

+ O(|z|−1)
]
, z < a,

if |χ| → ∞, and

Γ(a, z) = za−1/2e−z
[
d0(χ)(1− z−1/2(χ/2 + χ3/6)) + (1/3 + χ2/6)z−1/2

+ O(|z|−1)
]
, z > a,

γ(a, z) = za−1/2e−z
[
d0(−χ)(1− z−1/2(χ/2 + χ3/6))− (1/3 + χ2/6)z−1/2

+ O(|z|−1)
]
, z < a,

when |χ| is bounded. Here, dk(χ) is the parabolic cylinder function (see, e.g. Sections

9.24-9.25 of [28]) which has the following asymptotic properties:

1. dk(χ) is bounded when χ is bounded;

2. dk(χ) = χ−(k+1)(1 +O(χ−2)) if χ→∞
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The last property yields

d0(χ) = χ−1(1 +O(χ−2)), χ→∞. (3.8)

Taking into account the expressions above, we can write

ln Γ(a, z) = (a− 1/2) ln z − z + ∆Γ(a, z), z > a,

ln γ(a, z) = (a− 1/2) ln z − z + ∆γ(a, z), z < a.

Since z → ∞ and z−1/2d3(|χ|) = o(d0(|χ|)), no matter whether χ is bounded or χ → ∞, it

is easy to show that

∆Γ(a, z) = O(ln d0(|χ|)), ∆γ(a, z) = O(ln d0(|χ|)). (3.9)

Combination of (3.8) and (3.9) imply that

∆Γ(a, z) ∼ ∆γ(a, z) ∼ − ln(|χ|) = − ln(|z − a|) + 1/2 ln z.

Therefore, as z →∞ and a→∞, one has

ln Γ(a, z) = a ln z − z − ln(|z − a|) +O(1), z > a, (3.10)

ln γ(a, z) = a ln z − z − ln(|z − a|) +O(1), z < a. (3.11)

Combining equations (3.10) and (3.11) with the asymptotic expansion (3.7) of ln Γ(a) as

a→∞, we derive

ln[Γ(a, z)/Γ(a)] = (a− 1/2) ln(z/a)− (z − a) + 1/2 ln z − ln(|z − a|)

+ O(1), z > a, (3.12)

ln[γ(a, z)/Γ(a)] = (a− 1/2) ln(z/a)− (z − a) + 1/2 ln z − ln(|z − a|)

+ O(1), z < a. (3.13)
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3.1.2 The Lambert W Function

Since it will be useful in what follows, we introduce here the Lambert W Function, which is

most often defined as the principal branch (W (x) ≥ −1) of the solutions to x = W (x)eW (x).

Since this problem is ubiquitous, the solution has arisen in a variety of contexts; it is only

recently that a notation has been settled; see for example [16]. For our purposes, it is enough

to know that

1. W (x) is defined for all x ≥ −1
e

2. W (x) increases monotonically in its domain

3. W (x) ∼ ln(x)− ln ln(x) as x→∞

The first property can be understood by inspecting the graph of f(x) = xex which attains

its global minimum −1
e

at x = −1. To establish the second property, note that for arbitrary

x, we have

(f−1)′(x) =
1

f ′(f−1(x))
.

Since f ′(x) = (1 + x)ex, the derivative of the inverse of f (which is W (x)) is nonnegative

wherever f−1(x) ≥ −1, i.e. on the branch W (x) ≥ −1. For the third property, see [16]. Here,

we use the approximation W (x) ∼ ln(x) not for actual calculations, but to demonstrate how

some of the following cases relate to each other.

Since it will arise several times in the following discussion, we seek to solve the following

inequality.
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Proposition 3 Let α > 0, β be arbitrary. Then the solution to

αx+ lnx ≥ β

is given by

x ≥ α−1W (eβα)

where W is the Lambert W function.

Proof We note that the exponential function is monotonically increasing. Therefore,

eαx+lnx ≥ eβ

which implies that

xeαx ≥ eβ

=⇒ αxeαx ≥ αeβ.

Hence, since W is also monotonically increasing

αx ≥ W (αeβ)

=⇒ x ≥ α−1W (αeβ)

where in this last step we note the necessity of the requirement that α be positive. 2
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3.1.3 Final Separability Requirements

For convenience, in advance we define three terms and two functions that will be useful.

Denote

ν = p1/p (3.14)

τ =
L− 1

λ

τρ =
1 + ρ2

τ
=

(1 + ρ2)λ

L− 1
(3.15)

F1(τ, L, p, ν) = (L− 1)(τ−1 + ln τ − 1) + ln(L− 1) + 2 ln(1− τ−1)− 2 ln p1

F2(τ, ρ, L, p, ν) = (L− 1)(τρ − ln τp − 1) + ln(L− 1) + 2 ln(τρ − 1)− 2 ln p0.

Where appropriate, we will still write p0, p1 but it should be understood that p1 = νp,

p0 = (1− ν)p.

Now, since the error term in (3.12) is bounded, we can ignore it in the limit:

limp→∞ p1
γ(α, z)

Γ(α)
= 0

limp→∞ ln p1 + a ln z − z − ln(a− z)− (a− 1

2
) ln a+ a = −∞.

We multiply the limit by (-2) and substitute in our own variables:

lim
p→∞

λ− (L− 1) + (L− 2) ln(L− 1) + 2 ln(L− 1− λ)− (L− 1) lnλ− 2 ln p1 =∞

and substitute in τ :

lim
p→∞

(L− 1)(τ−1 + ln τ − 1) + ln(L− 1) + 2 ln(1− τ−1)− 2 ln p1 =∞.
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The requirement becomes

lim
p→∞

F1(τ, L, p, ν) =∞. (3.16)

A similar calculation on (3.5) yields the condition

limp→∞ (L− 1)(τρ − ln τp − 1) + ln(L− 1) + 2 ln(τρ − 1)− 2 ln p0 =∞

limp→∞ F2(τ, ρ, L, p, ν) =∞. (3.17)

Hence (3.16) and (3.17) are precisely equivalent to (3.5) and (3.6); i.e. these are not

approximations of the conditions, even if we obtained them through approximations.

3.2 Finding Separation Constants

To clarify a potentially confusing aspect of the above calculations, we note first that p, p0, p1, ρ,

and L are given by the data set itself. We note, then, that selection of any one of λ, τ, τρ

fixes all the others. It is easiest to accomplish the following calculations in τ . Secondly, we

recall that we are seeking a sequence of separating λ (though again the calculations will be

carried out in τ); we suppress the subscripts here for convenience.

For separability we require both (3.16) and (3.17) to tend to ∞. We define

τ ∗ = arg max
τ

min(F1(τ, L, p, ν), F2(τ, ρ, L, p, ν))

i.e. we seek the smallest of the two functions and maximize it; if we can find the conditions

under which this function goes to ∞, then the other will as well. We begin by defining τ̂ as
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the solution to

F1(τ, L, p, ν)− F2(τ, ρ, L, p, ν) = 0

which simplifies to

(L− 1)(ln(1 + ρ2)− ρ2τ−1) + 2 ln
(

τ−1
(1+ρ2)−τ

)
+ 2 ln

(
1−ν
ν

)
= 0. (3.18)

We note immediately that 1 < τ̂ < 1 + ρ2 necessarily; any τ̂ that satisfies this requirement

will be called permissible. The equation does not admit a recognizable solution as it is

written. We keep in mind that permissibility is not a necessary condition; there could be

τ outside this range for which the data are separable. Here with permissibility we begin

seeking sufficient conditions.

To help in the interpretation of what follows, we borrow from signal processing a useful

piece of vocabulary. The signal-to-noise ratio (SNR) is a relative measurement of the strength

of the signal (here, the between-class variation) to the noise (here, the error term, the within-

class variation). Here, then, we can refer to ρ2 as the SNR. We consider two cases: the SNR

is small (ρ is fixed) or moderate (ρ→∞).

We also need the idea of sparsity. We recall the definition (3.15). We say that the data

are sparse when ν is small. This is shorthand - we really mean that informative columns

are relatively few among the uninformative columns. If the data are not sparse, we say that

they are dense. There are therefore four cases we would like to consider:

1. SNR small, dense data (ρ, ν fixed)

2. SNR moderate, dense data (ρ→∞, ν fixed)
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3. SNR small, sparse data (ρ fixed, ν → 0)

4. SNR moderate, sparse data (ρ→∞, ν → 0)

First, however, it seems intuitive that larger ρ makes separation “easier.” The following

proposition makes this explicit.

Proposition 4 Let data be generated according to CONFESS in which ρ1 is fixed. Let {λp}

be a sequence of separating constants; i.e.

lim
p→∞

P (Up ≤ λp) = 1

lim
p→∞

P (Vp ≤ λp) = 0.

Then consider the same data set but with ρ2 > ρ1. Then this exact {λp} separates this new

set as well.

Proof We note that one of the conditions for separability (3.6) remains unchanged, as it

does not rely on ρ. However, the other, (3.5), does:

lim
p→∞

p0(1− FL−1((1 + ρ2
1)λ)) = 0.

Necessarily,

1− FL−1((1 + ρ2
2)λ)) ≤ 1− FL−1((1 + ρ2

1)λ))

74



since λ is nonnegative, as a separating sequence, and FL−1 is monotonically increasing, as a

cdf. However, this means that

0 = lim
p→∞

p0(1− FL−1((1 + ρ2
1)λ))

> lim
p→∞

p0(1− FL−1((1 + ρ2
2)λ)).

Hence,

lim
p→∞

p0(1− FL−1((1 + ρ2
2)λ)) = 0

and this old sequence {λp} separates the new data set. 2

If we are only seeking separability conditions, cases 2 and 4 are not strictly necessary,

as we can extract results from cases 1 and 3. However, using cases 2 and 4, we can obtain

better estimates of the constants when ρ2 is large in finite data sets.

SNR small, dense data

Here, we seek a τ̂ that satisfies (3.18) when ρ, ν are fixed constants. In this case, the first

term of (3.18) dominates all other terms as they are logarithmic. We therefore approximate

(3.18) by discarding all but the first term and solving

(L− 1)(ln(1 + ρ2)− ρ2τ−1) ≈ 0

which implies that

τ̂ = τ̂1 =
ρ2

ln(1 + ρ2)
(3.19)
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i.e. we have τ̂ = τ̂1 in this first case. We know that for all x > −1

x

1 + x
≤ ln(1 + x) ≤ x

so that

1

1 + ρ2
≤ ln(1 + ρ2)

ρ2
≤ 1

since ρ2 is nonnegative. This implies, however, that 1 ≤ τ̂1 ≤ 1 + ρ2; i.e. τ̂1 is permissible,

regardless of the underlying parameters.

Since the SNR is small and the data dense in this case, it is reasonable to assert that

ρ2, ν are simply constant. This is not possible when either of these assumptions is violated;

e.g. calculations with ν = 0 are not possible, even if ν does converge to 0 as p→∞. Since

ρ2 is fixed, τ̂1 is fixed. We note then that we can view

F1(τ̂1, L, p, ν) = (L− 1)(τ̂−1
1 + ln τ̂1 − 1) + ln(L− 1) + 2 ln(1− τ̂−1

1 )− 2 ln p1

as a function in L and p.

If τ̂1 = 1, then λ = L − 1, but comparison to (3.1) shows that this is not a separating

λ; i.e. the mean of (Yi|xi = 1) is less than the mean of any individual χ2
L−1 = L − 1, so if

λ = L − 1, it is greater than the mean of (Yi|xi = 1) and cannot possibly separate the two

hypotheses. Hence, outright we reject τ̂1 = 1. Regardless, this τ̂1 is not even permissible.

We would like to apply Proposition 3 here. We claim that as long as τ̂1 6= 1, the coefficient

of (L− 1) in F1(τ̂1, L, p, ν), namely

τ̂−1
1 + ln τ̂1 − 1
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is strictly positive. To show this, we first note that its first derivative is

ln τ̂1 =


< 0 if τ̂1 > 0

> 0 if τ̂1 < 0

i.e. the coefficient is decreasing monotonically in τ̂1 until it reaches its minimum at τ̂1 = 1,

then increasing monotonically in τ̂1. The unique global minimum of this coefficient is achieved

then at τ̂1 = 1.

Since we have chosen a τ̂ , everything in the model is now fixed. Is there separation in the

model? Here, we seek a sufficient condition. Let c ∈ [0, 1) be arbitrary. If it is eventually

true for this c that

(L− 1)(τ̂−1
1 + ln τ̂1 − 1) + c ln(L− 1) ≥ 2 ln p (3.20)

then we have separation; i.e. if as p→∞ this inequality is violated only a finite number of

times, then the data are separable. We demonstrate this as follows. Assume that such a c

exists; i.e. we assert that it is eventually true that

(L− 1)(τ̂−1
1 + ln τ̂1 − 1) + c ln(L− 1) ≥ 2 ln p.

Then

(L− 1)(τ̂−1
1 + ln τ̂1 − 1) + (ln(L− 1) + (c− 1) ln(L− 1))

+2 ln(1− τ̂−1
1 )− 2 ln p1 ≥ 2 ln(1− τ̂−1

1 ) + 2 ln p− 2 ln p1.

However, this implies that

F1(τ̂1, L, p, ν) ≥ 2 ln(1− τ̂−1
1 ) + 2 ln ν + (1− c) ln(L− 1).
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Since τ̂1 6= 1 and ν are fixed, the right hand side of the inequality will tend to ∞ if L→∞.

We apply Proposition 3 to (3.20) and obtain the sufficient condition

L− 1 ≥ c

(τ̂−1
1 + ln τ̂1 − 1)

W

(
exp

(
2 ln p

τ̂−1
1 + ln τ̂1 − 1

+ ln
τ̂−1

1 + ln τ̂1 − 1

c

))

i.e. L → ∞ by hypothesis. We can find a weaker but more comprehensible sufficient

condition by setting c = 0, in which case we obtain

L− 1 ≥ 2 ln p

τ̂−1
1 + ln τ̂1 − 1

(3.21)

i.e. L− 1 grows according to ln p if we are to satisfy the requirements of separability in this

case. If L satisfies this inequality, then we have separability.

SNR moderate, dense data

Here, we seek a τ̂ that satisfies (3.18) when ν is a fixed constant but ρ→∞. Here we note

that the second term of (3.18) can be written

2 ln

(
τ − 1

(1 + ρ2)− τ

)
= −2 ln

(
ρ2

τ − 1
− 1

)
≈ −2 ln

(
ρ2

τ − 1

)
≈ −2 ln

(
1 + ρ2

τ

)

and we seek to solve

(L− 1)(ln(1 + ρ2)− ρ2τ−1)− 2 ln

(
1 + ρ2

τ

)
= 0.
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Rearranging, we obtain

(L− 1)ρ2τ−1 + 2 ln τ−1 = (L− 3) ln(1 + ρ2).

By a modification of Proposition 3, replacing the inequality with an equality when nec-

essary, we calculate

τ̂2 =
(L− 1)ρ2

2

1

W
(
exp

(
1
2
(L− 3) ln(1 + ρ2)

)) . (3.22)

It is not immediately clear how this relates to the τ̂1 in the case above. If we take the

first term of the asymptotic expansion of W (·) from [16], i.e. W (x) ≈ lnx, then

τ̂2 =
L− 1

L− 3

ρ2

ln(1 + ρ2)
≈ ρ2

ln(1 + ρ2)
= τ̂1

i.e. it is comparable to the case above. We do not claim that this should be done in any sort

of application if either W exactly or a more appropriate approximation is available; this is

merely a demonstration that allowing ρ2 →∞ does not change its effect on τ̂ considerably.

However, we do note that when L is large, τ̂ = τ̂1 is probably acceptable for most applications

and Proposition 4 indicates this choice is sufficient.

SNR small, sparse data

Here, we seek a τ̂ that satisfies (3.18) when ρ is a fixed constant but ν → 0. In this case,

the first term and third terms of (3.18) dominate. We also note that ln(1 − ν) ≈ 0, so we
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can solve directly:

τ̂3 =
ρ2

ln(1 + ρ2)

1

1− 2 ln ν
(L−1) ln(1+ρ2)

=
τ̂1

1− 2 ln ν
(L−1) ln(1+ρ2)

. (3.23)

While we note the connection with τ̂1, we note that − ln ν could be very large; i.e. τ̂3 = τ̂1

is not acceptable. For the permissibility of τ̂3 we should have

1 ≤ τ̂3 ≤ 1 + ρ2.

We take reciprocals and distribute:

1

1 + ρ2
≤ τ̂−1

3 ≤ 1

1

1 + ρ2
≤ ln(1+ρ2)

ρ2

(
1− 2 ln ν

(L−1) ln(1+ρ2)

)
≤ 1

1

1 + ρ2
≤ ln(1+ρ2)

ρ2
− 2 ln ν

ρ2(L−1)
≤ 1.

We investigate the upper inequality; we temporarily ignore the lower bound. Multiplying by

ρ2 and rearranging implies we should have

0 ≤ −2 ln ν

L− 1
< ρ2 − ln(1 + ρ2)

where the lower bound here comes from the fact that L and −2 ln ν are nonnegative. We

recall that in this case, ρ2 is bounded, which implies that L should grow at a particular rate:

L− 1 >
−2 ln ν

ρ2 − ln(1 + ρ2)
(3.24)

We recall the requirement for permissibility (3.24) in this case. For these calculations to

even be possible, L must be at least proportional (for a specific constant) to ln ν. Assume

that

− ln ν

L− 1
→ k
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for some constant k. Then from (3.23) we note that

τ̂3 =
τ̂1

1− 2 ln ν
(L−1) ln(1+ρ2)

→ τ̂1

1− 2k
ln(1+ρ2)

= k′τ̂1

for some nonzero constant k′ and we recover the calculations for the first case. Hence, it is

sufficient that L grow as ln ν and ln p, for some known constants of proportionality.

SNR moderate, sparse data

Here, we seek a τ̂ that satisfies (3.18) when ρ→∞ and ν → 0. In this case, we can discard

no terms of (3.18). The solution is essentially no different than τ̂2 and we obtain

τ̂4 =
(L− 1)ρ2

2

1

W
(
ν−1 exp

(
1
2
(L− 3) ln(1 + ρ2)

)) .
This is a useful estimate computationally, but it makes finding separability conditions diffi-

cult. However, by Proposition 4, we do not need to; the previous case suffices.

3.3 Summary of Cases

Proposition 5 Let data be generated according to CONFESS. For every combination of

τ, ρ, p, ν there exist constants c > 0, d ≤ 0 for which the data are separable if

L− 1 ≥ c ln p
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L− 1 ≥ d ln ν

except for a finite number of p.

We have what we need above. In the first case, when ρ, ν are nonasymptotic, d = 0 (i.e.

there is no growth in ln ν since ν is fixed) and the constant c is given by (3.21):

c =
2

τ̂−1
1 + ln τ̂1 − 1

where we recall that τ̂1 is defined in (3.19) as a function of ρ and is fixed in this case. In the

third case, when ρ is fixed and ν → 0 we appeal to (3.24) and note that

d =
−2

ρ2 − ln(1 + ρ2)
.

Here, we invoke Proposition 4 to show that, in fact, these expressions suffice in cases 2 and

4. In other words, if ρ → ∞, it suffices to fix a ρ0 and calculate and fix the c, d above.

As long as L grows accordingly, the data are separable. It can occur, however, that L may

grow more slowly and the data still be separable; we recall that we are seeking sufficient

conditions.

Simulations

We can also answer the question of separability through simulation. For each value of ρ2

we generated 1000 data sets according to CONFESS with 10 groups, 10 informative and 10

uninformative vectors; i.e. ν = 1
2
. We used

τ̂1 =
ρ2

ln(1 + ρ2)
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as the separation constant. The results are visualized in Figure 3.1.

Figure 3.1: Example of separation probabilities in a finite data set, function of ρ2

Even though the situation is essentially symmetric - there are equal numbers of informa-

tive and uninformative vectors, the probability of retaining an uninformative vector is nearly

twice the probability of accidentally discarding an informative vector when ρ2 = 10. When

ρ2 = 5, we can expect to retain about 8 informative vectors and 4 uninformative vectors; i.e.

after dimension reduction we have an effective ν ≈ 2
3
.

For each value of L between 2 and 50, we generated 1000 data sets according to CONFESS

with 10 groups, 10 informative and 10 uninformative vectors; i.e. ν = 1
2
, and ρ2 = 5. We

used the same separation constant. The results are visualized in Figure 3.2.
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Figure 3.2: Example of separation probabilities in a finite data set, function of L

Of course, as the number of groups increases, the difficulty of classification might increase,

regardless of the improved model selection. Below, we develop the framework in which this

question can be considered.
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CHAPTER 4
MISCLASSIFICATION RATE OF CONFESS

Assume we have data generated according to CONFESS in which all parameters but xi are

known. We have a new observation o which actually resides in the first class. Specifically,

let c be an arbitrary column number. We have

oc = n−
1
2mc + uo + vo + εo

= [constant term] + [between-class variation] + [within-class variation] + [gaussian noise]

dic = n−
1
2mce+ uc

= [constant term] + [between-class variation]

where the subscripts on oc indicate that these are the components of the new sample. Com-

pare this for instance to (2.5); in this best-case scenario, we are able to observe class means

without any within-class variation. This can be compared to the situation in which the

number of observations per class is large.

Here we define the simple classifier

l̂ = arg min
i=1,...,L

Ti

where

Ti = ||(
√

Σ)−1(o− di)||2

and di is the actual (row-wise) mean of class i. This is in fact the Mahalanobis distance; see

for example [39]. T1 measures the distance of the new sample from the mean of class 1 and
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T2 measures the distances from the mean of class 2. We classify the sample into whichever

class it is closest to.

We recall that the sample to be classified is in the first class, so we can calculate the

probability of a misclassification; i.e.

P (misclassification) = P (T1 > min{Ti}Li=2). (4.1)

Let Ai be the event T1 > Ti. Then we can rewrite (4.1) as

P (misclassification) = P (∩Li=2Ai) ≤
L∑
i=2

P (Ai)

by the subadditivity of the measure. Since all of the classwise contributions are distributed

identically in (2.5), the distribution of T2 is the same as any Ti for i 6= 1. Hence, we can

rewrite the previous inequality as

P (misclassification) ≤
L∑
i=2

P (A2) = (L− 1)P (A2) = (L− 1)P (T2 − T1 < 0). (4.2)

We therefore define the random variable E = T2 − T1. We note that if E < 0, then we have

misclassified, since the distance from class 2 is smaller than the distance from the class 1

mean. Hence we need to calculate FE(0), which is the probability of a misclassification into

class 2.

Lemma 3 The random variable E = T2 − T1 has characteristic function

ΦE(t) = πpγp11 γ
p0
0 [(t− iα1)2 + β2

1 ]−
1
2
p1 [t2 + β2

0 ]−
1
2
p0 (4.3)
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where

γ1 =
1

2π
√

4ρ2 + 3

α1 =
ρ2

2(4ρ2 + 3)

β1 =

√
(ρ2 + 1)(ρ2 + 3)

2(4ρ2 + 3)

γ0 =
1

2π
√

3

β0 =
1

2
√

3
.

Proof We accomplish this in several steps. First, we write E as a sum of Ec over the

columns of data. Next, we represent each Ec in a way that facilitates the calculation of its

characteristic function; specifically, we consider the product of two correlated normals rather

than the difference of two correlated random variables. Finally, we combine the characteristic

functions of Ec to obtain the characteristic function of E.

Without loss of generality, we can write Σ = I, in which case (
√

Σ)−1 = I and

E = T2 − T1 = ||(o− d2)||2 − ||(o− d1)||2

=

p∑
c=1

|oc − d2
c |2 − |oc − d1

c |2

=

p∑
c=1

Ec.

We can consider each component Ec of the sum distance separately, since each data column is

independent of the rest. Let c be some arbitrary column number. Without loss of generality,

assume that xc = 1; we can recover the case xc = 0 by setting ρ2 = 0.
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We note that oc−d1
c and oc−d2

c are correlated as they both include oc; we cannot simply

find the distribution of each and subtract. This is the essential difficulty in this calculation.

We note however that

oc − d1
c = vc + εc1

oc − d2
c = (uc1 − uc2) + vc0 + εc2

i.e. the distance from class 2 of the new sample is increased by the between-class variation

uc1 − uc2; compare to (2.5). The larger this between-class variation, the larger is Ec, which

increases E, which makes misclassification less likely. Now, we have

εc1 ∼ N(0, 1)

εc2 ∼ N(0, 1)

vc0 ∼ N(0, 1)

uc1 ∼ N(0, ρ2)

uc2 ∼ N(0, ρ2)

where all of the above random variables are by hypothesis independent. It is worth noting

here that if we had not assumed that Σ had a particular structure, it is at this point that all

the calculations would become the same. By normalizing by Σ or by assuming that Σ = I,

we obtain these same distributions.
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We then note that oc− d1
c and oc− d2

c , as the linear combination of normals, are normal.

Hence, stacked together as a vector they are a 2-normal. Specifically, we can write oc − d1
c

oc − d2
c

 ∼ N

0,

 2 1

1 2(1 + ρ2)




by calculating the covariances of each term individually. Call this covariance matrix M.

We note that M admits a Cholesky decomposition M = UU> where

U =
1√
2

 2 0

1
√

4ρ2 + 3

 =
1√
2

 2 0

1 ρ̂


where we have defined ρ̂ =

√
4ρ2 + 3 for convenience. This implies that oc − d1

c

oc − d2
c

 =
1√
2

 2 0

1 ρ̂


 N1

N2


where N1, N2 are iid N(0, 1).

It might not be immediately clear what we have accomplished. We have written the two

components of this multivariate normal each as a linear combination of two independent

standard normals. Then we can write

Ec = |oc − d2
c |2 − |oc − d1

c |2

=
1

2
(N1 + ρ̂N2)2 − 1

2
(2N1)2

=
1

2
[3N1 + ρ̂N2][−N1 + ρ̂N2]

where we have factored the previous line as a difference of squares. There is no unique

factorization; e.g. where do we place the 1
2
? In fact, any choice suffices.
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In what follows, we determine the joint distribution of these factors. Next, we find the

distribution of their product. Specifically, we define random variables R, S as the two factors R

S

 =

 3
2

ρ̂
2

−1 ρ̂


 N1

N2

 .
This transformation has inverse N1

N2

 =

 1
2

−1
4

1
2ρ̂

3
4ρ̂


 R

S

 .
The determinant of this inverse transformation matrix is 1

2ρ̂
; i.e. the Jacobian of this trans-

formation is

|J | =
∣∣∣∣ 1

2ρ̂

∣∣∣∣ =
1

2ρ̂

Then for arbitrary r, s we have the joint distribution

FR,S(r, s) = FN1

(
1

2
r − 1

4
s

)
FN2

(
1

2ρ̂
r +

3

4ρ̂
s

)
|J |

=
1

4πρ̂
exp

(
−1

2

((
1

2
r − 1

4
s

)2

+

(
1

2ρ̂
r +

3

4ρ̂

)2
))

. (4.4)

Next, we define  Ec

S

 =

 RS

S


where S is to be discarded. This transformation has inverse R

S

 =

 Ec
S

S

 .
This inverse has Jacobian

|J | = 1

|S|
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Hence, for arbitrary z, w we have

FEc,Z(z, s) = FR,S

(z
s
, s
)
|J |

=
1

4πρ̂
exp

(
4z(ρ̂2 − 3)

32ρ̂2

)
× 1

|s|
exp

(
− 1

32ρ̂2

[
4z2

s2
(ρ̂2 + 1) + s2(ρ̂2 + 9)

])
(4.5)

where we have factored the pdf into a product, the first part of which does not depend on s.

We then calculate the pdf of Ec by integrating out S:

fEc(z) = g(z)

∫ ∞
−∞

h(z, s)dz

=
1

2π
√

4ρ2 + 3
exp

(
ρ2z

2(4ρ2 + 3)

)
K0

(
|z|

2(4ρ2 + 3)

√
(ρ2 + 1)(ρ2 + 3)

)
(4.6)

where K0 is the modified Bessel function of the second kind with ν = 0. The essential

calculation is ∫ ∞
0

xν−1e−
β
x
−γxdx = 2

(
β

γ

) ν
2

Kν(2
√
βγ).

See for example [28], 3.471.9, p.368. We note that this also holds when xc = 0, which we

obtain from the above by asserting that ρ2 = 0.

Now, since E =
∑
Ec, we calculate the characteristic function of Ec. We have

ΦEc(t) =

∫ ∞
−∞

eitzfEc(z)dz

=

∫ ∞
−∞

eitz × γeαzK0(β|z|)dz

= γ

∫ ∞
−∞

eiz(t−iα)K0(β|z|)dz

=
πγ√

(t− iα)2 + β2
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where we have made the obvious substitutions for clarity; see for example formula 17.34.9

in [28]. There are two cases, xc = 1, 0, and we have the variables γ1, α1, β1 and γ0, α0, β0 for

the two cases respectively:

γ1 =
1

2π
√

4ρ2 + 3

α1 =
ρ2

2(4ρ2 + 3)

β1 =

√
(ρ2 + 1)(ρ2 + 3)

2(4ρ2 + 3)

γ0 =
1

2π
√

3

α0 = 0

β0 =
1

2
√

3
.

Now, we recall that Ec is the sum over the c columns of data. Since there are p1 of these

with xc = 1 and p0 of these with xc = 0, we can calculate the characteristic function of Ec

as the product of the respective characteristic functions:

ΦE(t) = πpγp1γp00 [(t− iα1)2 + β2
1 ]−

1
2
p1 [t2 + β2

0 ]−
1
2
p0 . (4.7)

2

We note that the exponential term in (4.6) provides positive skew of the Ec when xc = 1.

As ρ2 increases, T2 becomes larger than T1 and, as far as the contribution of this one Ec is

concerned, misclassification becomes less likely. For example, we generated data with ρ2 = 5

in the figure below. Whenever ρ2 = 0, however, the distribution is symmetric around 0 and

inclusion only increases the variance of E.
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Figure 4.1: Comparison of generated Ec and calculated distribution function

Now that we have the characteristic function of the error of the classifier, presumably we

can calculate the misclassification rate. Alternatively, given an acceptable rate of misclassi-

fication, call it ℵ, using (4.2), one can tolerate up to

L− 1 ≥ ℵ
FE(0)

groups before expecting to exceed a misclassification rate of ℵ in repeated trials.

4.1 Numerical Inversion of the Characteristic Function

It is true that when p0, p1 are even, (4.7) is a rational function with only four singularities. In

this case, we can in theory invert the characteristic function by the Cauchy residue theorem.

However, this calculation is only tractable for small and definite p0, p1; the residues are
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rational functions of all the above variables. Series methods and partial fractions suffer from

the same limitation. Regardless, we do not need the cdf in general, only FE(0).

According to the theorem of Gil-Pelaez [26],

FE(z) =
1

2
− 1

π

∫ ∞
0

1

t
Im
[
e−itzΦE(t)

]
dt

FE(0) =
1

2
− 1

π

∫ ∞
0

1

t
Im [ΦE(t)] dt. (4.8)

A closed-form integral does not seem possible, especially since the real part of ΦE(0) is

nonzero; i.e. we cannot swap the order of the operator Im and the integral, as the integral

of the real part diverges.

Numerical integration of (4.8), however, can give an idea of the behavior. We used the

simple rectangle method with ∆t = 10−4 to calculate various values of FE(0); i.e.

F̂E(0) =
1

2
− 1

π

M∑
t=0

1

t
Im [ΦE(t∆t)]

for some suitably large M, since the integrand decays quickly. We used M∆t = 20, but

we note that ImΦE(t) changes sign frequently near the origin, especially as p1 grows. More

sophisticated methods will be necessary for actual application; see for example [58].

Regardless, here we found this sort of calculation sufficiently close to generated data for

small p1. For instance, when we generated data according to CONFESS with p0 = 2, p1 = 3

and various values of ρ2, 2,000 E generated per ρ2, we find the expected match in Figure

4.2.
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Figure 4.2: Comparison of generated and predicted FE(0) for various values of ρ2

4.2 Single Limit Lemmas

Lemma 4 If ρ, L, p1 are held constant, then

lim
p0→∞

FE(0) =
1

2
(4.9)

Proof Consider a data set generated according to CONFESS, with p0 uninformative vari-

ables. For clarity, we rewrite (4.8) as

FE(0) =
1

2
− 1

π

∫ ∞
0

I(p0)dt.

Then the claim is equivalent to

lim
p0→∞

∫ ∞
0

I(p0)dt = 0.
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Let p0 be arbitrary. We note that
∫∞

0
I(p0)dt <∞ necessarily. Then let m be some natural

number and consider the data set with p0 +m uninformative variables. We calculate∫ ∞
0

I(p0 +m)dt = πmγm0

∫ ∞
0

1

(t2 + β2
0)

m
2

I(p0)dt(∫ ∞
0

I(p0 +m)dt

)2

≤ π2mγ2m
0

∫ ∞
0

1

(t2 + β2
0)m

dt

∫ ∞
0

(I(p0))2dt

by the Cauchy-Schwarz inequality. Next, by formula 3.241.4 in [28] we can evaluate the first

integral exactly:

= π2m+ 1
2γ2m

0 β1−2m
0

Γ
(
m− 1

2

)
2Γ(m)

∫ ∞
0

(I(p0))2dt

=
√
πβ0

Γ
(
m− 1

2

)
2Γ(m)

∫ ∞
0

(I(p0))2dt.

We next note that ∫ ∞
0

(I(p0))2dt <∞

since I(p0) is bounded by a constant and eventually small; i.e. (I(p0))2 is dominated even-

tually by I(p0). Next,

lim
m→∞

Γ
(
m− 1

2

)
Γ(m)

= 0

by formula 8.328.2 in [28]. Hence,

lim
m→∞

∫ ∞
0

I(p0 +m)dt = 0

and we have the result. 2

The interpretation is straightforward - addition of uninformative variables to a CONFESS

model reduces the accuracy of the classifier, and eventually the classification is no better than

guessing.
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Lemma 5 If ρ, L, p0 are held constant and ρ2 > 0,

lim
p1→∞

FE(0) = 0 (4.10)

Proof Due to the difficulty in the Gil-Pelaez inversion, we turn to a less precise method.

We note that

ΦE(t) = πpγp1γp00 [(t− iα1)2 + β2
1 ]−

1
2
p1 [t2 + β2

0 ]−
1
2
p0

which implies that

µE =
1

i

d ln ΦE

dt
(0) =

α1p1

(β2
1 − α2

1)

= 2p1ρ
2

σ2
E = −1

2

d2 ln ΦE

dt2
(0) =

p1

4

(
4α2

1

(β2
1 − α2

1)2
+

2

β2
1 − α2

1

)
+

p0

2β2
0

= p1(8ρ4 + 4ρ2 + 3) + 12p0.

Now, for large p1, we note that we are adding a large number of iid random variables of finite

variance; i.e. we can consider a central limit theorem approximation. Instead of formally

approximating the actual probability, it suffices to calculate the distance of the mean from

0; i.e. we define

z =
µE − 0

σE

=
2p1ρ

2√
p1(8ρ4 + 4ρ2 + 3) + 12p0

. (4.11)

97



The result follows whenever z →∞, e.g. by Chebyshev’s inequality. Note that

P (E < 0) = P

(
E − µE
σE

< −µE
σE

)
≤ P

(∣∣∣∣E − µEσE

∣∣∣∣ > ∣∣∣∣µEσE
∣∣∣∣)

≤ P

(∣∣∣∣E − µEσE

∣∣∣∣ > z

)
≤ 1

z2

which converges to 0 as z →∞, but this is the statement that ρ2 > 0 and p1 →∞. 2

The interpretation is straightforward - addition of informative variables to a CONFESS

model improves the accuracy of the classifier, until it is almost surely able to differentiate

between two groups.

We do note that the CLT approximation is not completely inappropriate for calculation

of probabilities. For instance, when we generate data according to CONFESS, with ρ2 = 2,

p0 = 5, p1 = 20, we obtain a fairly close match. Keeping in mind that we are mostly

interested in distributions when either p0 or p1 is large, this gives a good theoretical tool

even if certain applications need greater precision.
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Figure 4.3: Comparison of generated data and CLT approximation
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4.3 Discussion

In the present dissertation we considered a novel problem of model selection which is specif-

ically designed for classification of high-dimensional data with a large number of classes. To

the best of our knowledge, this problem has never been studied in depth previously and poses

new challenges. The problem has been motivated by classification of animal communication

signals, in particular, electric signals recorded from 21 groups of tropical South American

electric knife fishes.

In the paper, we introduced two Bayesian models for feature selection in high dimensional

data, specifically designed for the purpose of classification. We use two approaches to the

problem: one which discards the components which have “almost constant” values (Model

1) and another which retains the components for which variations in-between the groups are

larger than those within the groups (Model 2). We assume that p >> n, i.e. the number

of components p is much larger than the number of samples n, and that only few of those p

components are useful for subsequent classification. We showed that particular cases of the

above two models recover familiar variance or ANOVA-based component selection. When

one has only two classes and features are a priori independent, Model 2 reduces to to the

Feature Annealed Independence Rule (FAIR) introduced by Fan and Fan (2008) and can be

viewed as a natural generalization of FAIR to the case of L > 2 classes.

One of the nontrivial results of the dissertation is that precision of feature selection using

Model 2 improves when the number of classes grows. In particular, it is known that when p
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is large and the number of classes is small, e.g., L = 2, one needs the difference between the

mean vectors of two classes to be large. We showed that when L is also large, separation is

possible even if the differences between each of the two classes are relatively small.

Subsequently, we examined the rate of misclassification with and without feature selection

on the basis of Model 2; we have only very rough asymptotic results, however. Our study of

classification precision is not yet complete: while we have the characteristic function of the

random variable associated with misclassification, we have not been able to invert it. Future

work will involve investigation of the rate of misclassification when the number of classes

grows.
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