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ABSTRACT

Given a convergence space X , a continuous action of a convergence semigroup S on X and

a compactification Y of X , under what conditions on X and the action on X is it possible to

extend the action to a continuous action on Y . Similarly, given a Cauchy space X , a Cauchy

continuous action of a Cauchy semigroup S on X and a completion Y of X , under what condi-

tions on X and the action on X is it possible to extend the action to a Cauchy continuous action

on Y .

We answer the first question for some particular compactifications like the one-point compact-

ification and the star compactification as well as for the class of regular compactifications. We

answer the second question for the class of regular strict completions. Using these results, we

give sufficient conditions under which the pseudoquotient of a compactification/completion

of a space is the compactification/completion of the pseudoquotient of the given space.
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CHAPTER 1: INTRODUCTION

The study of compactifications and completions already has a long history.1 Most of these stud-

ies have been carried out on a sundry of spaces, metric spaces being the most prominent ex-

ample. In the context of compactifications, there are two kinds of spaces that have received

attention since the 1970s, namely convergence spaces and topological G-spaces2 and the the-

ory of compactifications of these spaces is now quite mature.3 There has been some work on

generalizing the compactification theory of topological G-spaces to the context of topological

S-spaces, where instead of a topological group G we now have a topological semigroup S. This

generalization has its roots in the compactification theory of topological semigroups. A recent

survey of results in this direction is [18].

Probably the most “natural” direction in which to generalize the compactification theory of

convergence spaces and topological S-spaces is to convergence S-spaces. This is the direction

we take in this dissertation. It is organized as follows: In Chapter 2, we cover some of the nec-

essary background material needed to make sense out of everything else that follows. In Chap-

ter 3, we define the various notions that are needed to talk about S-spaces and S-extensions,

proving some useful facts about them along the way. In Chapter 4, we study the various condi-

tions that are necessary and sufficient for a convergence S-space to have an S-compactification,

which is what we call compactifications in this context. We carry out this study by mimicking

the compactification theory of convergence spaces as outlined in [13]. Most of the results are

concerned with the necessary and sufficient conditions required by a convergence S-space in

1See the articles Hausdorff Compactifications and Uniform, Proximal and Nearness Concepts in Topology in [1] for
historical surveys of these notions.

2Topological G-spaces are also called topological flows or G-flows, topological transformation groups or topologi-
cal dynamical systems.

3Two of the earliest papers on these spaces are [22] and [6]. See [13] for a summary of results regarding compacti-
fications of convergence spaces and [15] for topological G-spaces.
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order for it to have a smallest and largest S-compactification of some type.

Let us now switch from compactifications to completions. The completion theory of uniform

spaces is a well-established theory and has had numerous generalizations. The generalization

that is of interest to us is the completion theory of Cauchy spaces. Cauchy spaces were first

axiomatized in [8] and since then many results have been obtained regarding regular and strict

regular completions of Cauchy spaces, e.g. [7, 9, 14]. We generalize many of these results to the

setting of “Cauchy S-spaces”. This is the topic of Chapter 5.

In the last chapter, Chapter 6, we study the following problem: Suppose X is an S-space and Y

is an S-compactification or S-completion of X . Is it possible to find a compactification or com-

pletion of the pseudoquotient of X that is equivalent to the pseudoquotient of Y ? We answer

this question positively in both cases. This line of research was motivated by the papers [4, 5].
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CHAPTER 2: BACKGROUND

The point of this chapter is mainly to establish notation, nomenclature and other conventions

that will be used throughout this document as some of the definitions and symbolism used here

is different from what is seen in the literature. Also, at the end of some sections, we list some

results that will be referred to in other chapters.

Filters and Related Notions

We adopt most of the definitions about filters and related notions from Chapter 1 of [3]. Here

we review some of the definitions and concepts as well as list some of our own idiosyncratic

conventions.

A filter on a set X is a set F of subsets of X with the following properties:

1. F is not empty and does not contain the empty set.

2. F is closed under finite intersection.

3. F is upward closed, i.e. if A ⊆ B ⊆ X and A ∈F, then B ∈F.

If F is a filter on a set X and B is a subset of F such that for every F ∈ F, there is a B ∈B such

that B ⊆ F , then B is called a basis for F.

Given a subset A of a set X , we will write [A] or more specifically [A]X for the set of all supersets

of A in X . When dealing with singleton sets like {x}, we will write [x] instead of [{x}]. The set [x] is

actually a filter on X called a point filter . We will encounter point filters frequently throughout

this document.
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A set B of subsets of a set X is called a filter basis on X if

1. B is not empty and does not contain the empty set, and

2. for every A,B ∈B there is a C ∈B such that C ⊆ A∩B .

Notice how this definition resembles that of a basis for a topology. We will write [B] or more

specifically [B]X for the union of all [B ] such that B ∈B. The set [B] is in fact a filter on X and B

is a basis for this filter. A filter basis B is said to generate a filter F if B is a basis for F. The point

filter [x] for example is generated by the filter basis {{x}}.

We will denote the set of filters on a set X by F(X ). Let us mention a couple of things about F(X ):

The intersection of any family of filters is a filter so F(X ) is closed under intersection. The union

of two filters is not necessarily a filter, so F(X ) is not closed under union. The subset relation is

a partial order on F(X ): Given F, G in F(X ), we say that F is finer than G or that G is coarser than

F if G ⊆ F. Not all filters are comparable. There is a coarsest filter on X , namely [X ]. We will

write the least upper bound of F,G ∈ F(X ) as F∨G whenever it exists. Maximal filters in F(X )

are called ultrafilters . Ultrafilters come in two varieties: fixed and free. An ultrafilter is called

free if the intersection of all its elements is empty; otherwise, it is called fixed. It turns out that

a filter is a fixed ultrafilter if and only if it is a point filter. Explicit examples of free ultrafilters do

not exist as they are typically constructed using the axiom of choice.

Regarding filter bases, we say that B is coarser than B′ if and only if [B] ⊆ [B′]. Note that [B] ⊆
[B′] if and only if for every B ∈B there is a B ′ ∈B′ such that B ′ ⊆ B .

Given f : X → Y , F ∈ F(X ) and G ∈ F(Y ), we will write f [F] for the filter generated by { f (F ) : F ∈
F} and we will write f −1[G] for the filter generated by { f −1(G) : G ∈ G} whenever the latter does

not contain the empty set.

If X ⊆ Y and F is a filter on X , we will write [F] or [F]Y for the filter f [F], where f is the natural
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injection from X into Y . Note that [F]Y is just the filter generated on Y by F, considered as a

filter basis on Y . Given a filter G on Y , we will write G∩X for the trace of G on X , defined to be

the set {G ∩X : G ∈G}. Note that G∩X is a filter on X if and only if it does not contain ;, and in

either case it equals to f −1[G].

Given a family of sets (Xι) and a family of filters (Fι) where Fι ∈ F(Xι), the product filter
∏
Fι is

the filter on
∏

Xι generated by the filter basis consisting of sets of the form
∏

Fι, where Fι ∈ Fι

and Fι = Xι for all but finitely many ι.

Useful Results

There are many facts one can prove about filters. Here we list some of the ones that we will use

most often. We will take these facts for granted in proofs later on. Some of the proofs of these

facts are of the “follow-your-nose” kind, so we will not prove them.

Proposition 2.1. Let B and B′ be bases for the filters F and F′, respectively, on a set X . Then

(i) {B ∪B ′ : B ∈B,B ′ ∈B′} is a basis for F∩F′,

(ii) {B∩B ′ : B ∈B,B ′ ∈B′} is a filter basis as long as it does not contain the empty set, in which

case it generates F∨F′.

Proposition 2.2. Let f : X → Y be a function between two sets.

(i) If B is a basis for a filter F on X , then f [B] = f [F].

(ii) If B is a basis for a filter F on Y such that f −1[F] ∈ F(X ), then f −1[B] = f −1[F].

(iii) For all F ∈ F(X ), f −1[ f [F]] ⊆F with equality when f is injective.

(iv) f [F] is an ultrafilter whenever F ∈ F(X ) is an ultrafilter.

(v) If F ∈ F(Y ) and f −1[F] ∈ F(X ), then F ⊆ f [ f −1[F]] with equality when F is an ultrafilter or

when f is surjective.
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(vi) If f (X ) ∈F ∈ F(Y ), then f −1[F] ∈ F(X ) and F= f [ f −1[F]].

(vii) If F,G ∈ F(X ), then

(a) F⊆G implies f [F] ⊆ f [G],

(b) f [F∩G] = f [F]∩ f [G],

(c) if F∨G exists, then f [F]∨ f [G] exists and f [F]∨ f [G] ⊆ f [F∨G],

(d) if f is an injection and f [F]∨ f [G] exists, then f [F]∨ f [G] = f [F∨G].

(viii) If F,G ∈ F(Y ), then

(a) F⊆G implies f −1[F] ⊆ f 1[G],

(b) f −1[F∩G] = f −1[F]∩ f −1[G],

(c) if F∨G or f −1[F]∨ f −1[G] exists, then f −1[F]∨ f −1[G] = f −1[F∨G].

(ix) For all x ∈ X , f [[x]] = [ f (x)].

Proposition 2.3. The following propositions about F ∈ F(X ) are equivalent.

(i) F is an ultrafilter.

(ii) For all A ⊆ X , either A or its complement is in F.

(iii) A∪B ∈F implies A ∈F or B ∈F.

(iv) If A ⊆ X intersects every set in F, then A ∈F.

Also, using Zorn’s lemma, there is always an ultrafilter U ∈ F(X ) finer than F and in fact F is the

intersection of all ultrafilters finer than itself.

Proposition 2.4. Let f : X → Y be a function between two sets. Let F be a filter on X and let U

be an ultrafilter on Y finer than f [F]. Then there exists an ultrafilter V on X finer than F such

that f [V] =U.

Proof. Since f [F] ⊆U, we have that f −1[U] is a filter on X . We now prove that F∨ f −1[U] exists

by proving that F ∩ f −1(U ) is not empty for arbitrary F ∈F and U ∈U: Pick a y ∈ f (F )∩U . Such

6



a y exists since f [F] ⊆U. Since y ∈ f (F ), there exists an x ∈ F such that f (x) = y . Since f (x) ∈U ,

we have that x ∈ f −1(U ). Thus, x ∈ F ∩ f −1(U ), which means F∨ f −1[U] exists as claimed. Now

let V be any ultrafilter finer than F∨ f −1[U]. Since f [V] contains every element of U, it follows

that f [V] =U.

Proposition 2.5. Let X and Y be sets, let F,F′ be filters on X and let G,G′ be filters on Y . Then

F∨F′ and G∨G′ exist if and only if (F×G)∨ (F′×G′) exists as a filter on X ×Y .

Proof. The filter (F×G)∨(F′×G′) exists if and only if {(F ×G)∩(F ′×G ′) : F ∈F,F ′ ∈F′,G ∈G,G ′ ∈
G′} = {(F ∩F ′)× (G ∩G ′) : F ∈ F,F ′ ∈ F′,G ∈ G,G ′ ∈ G′} is a basis if and only if F∨F′ and G∨G′

exist.

Convergence Spaces

An excellent book about the theory of convergence spaces is [2]. We adopt most of the defini-

tions and results given there except for a few exceptions.

A preconvergence structure on a set X is a relation between the filters on X and the elements

of X , i.e. a collection of pairs of the form (F, x) where F is a filter on X and x is an element of

X . Given a preconvergence structure p on X , we indicate that the pair (F, x) belongs to p by

writing

F
p→ x or F→ x in (X , p) or F→ x in X or F→ x

and reading it as “F p-converges to x” or “F converges to x in (X , p)” or “F converges to x in X ”

or “F converges to x” or “x is a p-limit of F” or “x is a limit of F in (X , p)” or “x is a limit of F in

X ” or “x is a limit of F”.

A convergence structure on a set X is a preconvergence structure on X that satisfies the follow-

7



ing “axioms”:

Point filter axiom: Every point filter [x] converges to x.

Subfilter axiom: If F→ x and F⊆G, then G→ x.

Intersection axiom: If F→ x and G→ x, then F∩G→ x.

The pair (X , p), where X is a set and p is a convergence structure on X , is called a convergence

space . We will usually write X for the convergence space (X , p) unless confusion arises or

precision is needed with the notation. The elements of a convergence space will sometimes be

called points.

Given two convergence structures p, q on a set X , we say that q is finer than p or that p is

coarser than q if q-convergence implies p-convergence, i.e. if F
q→ x implies F

p→ x. The finest

convergence structure on X is called the discrete convergence structure on X . In this conver-

gence structure, F→ x if and only if F = [x], i.e. only point filters converge. The coarsest con-

vergence structure on X is called the indiscrete or trivial convergence structure on X . In this

convergence structure, every filter converges to every point. The relations is finer than and is

coarser than are actually partial orders on the set of convergence structures on X that make it a

complete lattice.

A function f : X → Y between convergence spaces is called

– continuous if F→ x in X implies f [F] → f (x) in Y ,

– a homeomorphism if it is a continuous bijection whose inverse is also continuous.

Note that these notions are exactly like those in topology.

The closure of a subset A of a convergence space (X , p) will be denoted by cl A or clX A or clp A

and it consists of all the points in X that are limits of filters containing A. The interior of A will

8



be denoted by int A or intX A or intp A and it consists of all the points x in A with the following

property: if F→ x in X , then A ∈ F. A point x ∈ X is said to be an adherent point (or a cluster

point or a limit point) of a filter F on X if there is a filter G on X finer than F that converges to

x. The set of adherent points of a filter F on X will be denoted by adhF or adhX F or adhp F

and will be called the adherence of F. We will write clF or clX F or clp F for the closure filter

{clF : F ∈F}. We will write U(x) or UX (x) or Up (x) for the intersection of all filters that converge

to x and we will call it the neighborhood filter of the point x. Other than the fact that the

interior/closure of a set is not necessarily open/closed, all these notions are just like those in

topology.

Just like there are initial and final topologies, there are initial and final convergence structures:

Let (Xι) be a family of convergence spaces and let X be a set. Given a family ( fι) of functions

the form fι : X → Xι, the initial convergence structure on X with respect to the family ( fι) is

the coarsest convergence structure on X making each fι continuous. Dually, given a family

( fι) of functions the form fι : Xι → X , the final convergence structure on X with respect to the

family ( fι) is the finest convergence structure on X making each fι continuous. Let us briefly

look at some of the typical examples of initial and final convergence structures, starting with

the subspace convergence structure.

Let Y be a convergence space and let X be a subset of Y . The subspace convergence structure

on X is the coarsest convergence structure on X making the natural injection of X into Y con-

tinuous. The set X equipped with the subspace convergence structure makes it into a subspace

of Y and a filter F on X converges to x ∈ X if and only if [F] → x in Y .

The dual notion of the subspace convergence structure is the quotient convergence structure.

It is defined as follows: Let X be a convergence space, let Y be a set and let f : X → Y be a

surjection. The quotient convergence structure on Y is the finest convergence structure on Y

9



making f continuous. The set Y equipped with the quotient convergence structure is called a

quotient space and a filter G on Y converges to y ∈ Y if and only if there exists a filter F on X

and an x ∈ X such that F→ x in X , f [F] =G and f (x) = y .

Let (Xι) be a family of convergence spaces and let X = ∏
Xι be their Cartesian product. The

product convergence structure on X is the coarsest convergence structure making each natural

projection πι : X → Xι continuous. The set X equipped with the product convergence structure

is called a product space and a filter F on X converges to x ∈ X if and only if πι[F] → πι(x) for

each index ι.

A subspace A of a convergence space X is dense if cl A = X and strictly dense if for every x ∈ X

and every filter F converging to x, there is a filter G on A such that [G] → x and cl[G] ⊆F. Note

that being strictly dense implies being dense. This concept of “strictly dense” will prove useful

latter on when we define extensions.

A convergence space and its convergence structure are called

– Hausdorff if no filter has two distinct limits,

– regular if clF→ x whenever F→ x,

– completely regular if it is regular and has the same ultrafilter convergence as a completely

regular topological space,

– compact if every ultrafilter converges,

– locally compact if every convergent ultrafilter has a compact set.

Unlike in topology, compact Hausdorff does not imply regular. This and the definition of com-

plete regularity are really the only topological notions in the theory of convergence spaces that

differ from the usual topological ones. Everything else remains the same: Subspaces and prod-

ucts of Hausdorff or regular or completely regular convergence spaces again have this property.
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Closed subsets of compact convergence spaces are compact. Compact subsets of Hausdorff

convergence spaces are closed. The image of a compact set with respect to a continuous func-

tion is compact. Products of compact convergence spaces are compact. Closed subsets of a

locally compact convergence space are locally compact and finite products of locally compact

convergence spaces are locally compact.

A convergence space is said to be

– pseudotopological if a filter F converges to x if and only if every ultrafilter finer than F

converges to x,

– pretopological if each neighborhood filter U(x) converges to x,

– topological if every neighborhood filter has a basis of open sets.

Subspaces and products of pseudotopological, pretopological and topological convergence spaces

again have this property. Note that topological convergence spaces are in fact just topological

spaces.

If (X , p) is a convergence space, then there is a finest convergence structure σp coarser than

p such that (X ,σp) is pseudotopological. The space (X ,σp) is denoted σX and is called the

pseudotopological modification of X . Similarly, one can define πX , the pretopological modi-

fication of X , and τX , the topological modification of X .

Useful Results

Proposition 2.6. The following results about a subspace A of a convergence space X are true.

(i) πA is the subspace of πX determined by A.

(ii) If X is compact, regular and Hausdorff, then πA is a Hausdorff topological space.
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(iii) A is open (closed) in X if and only if πA is open (closed) in πX .

(iv) If X and πX have the same ultrafilter convergence,1 then A is a compact (resp. locally

compact) subspace of X if and only if πA is a compact (resp. locally compact) subspace

of πX .

Proof. The proof of (i) can be found in [2] as the proof of Proposition 1.3.18. The proof of (ii)

can be found in [10] as the proof of Proposition 3. The proof of (iii) follows from the fact that

clX = clπX (this is Proposition 1.3.17 in [2]) and the fact that a set is open (resp. closed) if and

only if its complement is closed (resp. open). The proof of (iv) goes as follows: A is a compact

subspace of X if and only if every ultrafilter on X containing A converges in X to something in

A if and only if every ultrafilter on X containing A converges in πX to something in A (using

the fact that X and πX have the same ultrafilter convergence) if and only if πA is a compact

subspace of πX . The locally compact version follows from the fact that A and πA have the same

ultrafilter convergence.

Proposition 2.7. If X is a convergence space, thenπX = τX if and only if clX is idempotent (i.e.

the closure of any subset of X is always closed).

Proof. The statement of this proposition is essentially the same as Proposition 1.3.21 in [2] and

the proof is contained therein.

Proposition 2.8. If X is a compact regular Hausdorff convergence space, then σX = πX = τX

and clX is idempotent.

1Two convergence structures p, q on a set X are said to have the same ultrafilter convergence if for every ultra-

filter U on X and every x ∈ X , U
p→ x if and only if U

q→ x. In general, we say two convergence spaces have the
same ultrafilter convergence if they have the same underlying set and their convergence structures have the same
ultrafilter convergence.

12



Proof. For a proof, see the proof of Theorem 1.4.16 in [2]. For a different proof that clX is idem-

potent, see the proof of Proposition 1 in [10].

Proposition 2.9. Let X and Y be two convergence spaces. If Y is a locally compact Hausdorff

topological space, then τ(X ×Y ) = τX ×τY .

Proof. For a proof of this, see Theorem 4.2 in [12].

Proposition 2.10. Let X be a dense subset of Y and let V be an ultrafilter on Y . Then there

exists an ultrafilter U on X such that clY [U] ⊆V.

Proof. Given y ∈ Y −X , let Uy be an ultrafilter converging to y (such an ultrafilter exists in X is

dense in Y ). Given a subset A of X , let A′ = A∪ {y ∈ Y −X : A ∈Uy }. Let U= {A ⊆ X : A′ ∈V}. We

claim that clY [U] ⊆V.

First, we prove that U is a filter. Since ;=;′ 6∈V, U does not contain ;. Let A,B ⊆ X be arbitrary.

Since {y ∈ Y −X : A∩B ∈Uy } = {y ∈ Y −X : A ∈Uy }∩{y ∈ Y −X : B ∈Uy }, it follows that (A∩B)′ =
A′∩B ′. Thus, if A,B ∈U, then A′,B ′ ∈V, hence A′∩B ′ = (A∩B)′ ∈V, hence A∩B ∈U. If A ⊆ B ,

then every Uy that contains A also contains B , hence A′ ⊆ B ′. Thus, if A ∈ U and A ⊆ B , then

A′ ∈V, hence B ′ ∈V, hence B ∈U.

Now we prove that U is an ultrafilter. Note that it suffices to prove that (A ∪B)′ = A′∪B ′ for all

A,B ⊆ X because if A ∪B ∈ U, then (A ∪B)′ = A′∪B ′ ∈ V, hence either A′ or B ′ is in V since V

is an ultrafilter, hence either A or B is in U. The proof that (A ∪B)′ = A′∪B ′ follows from the

fact that {y ∈ Y − X : A ∪B ∈ Uy } ⊆ {y ∈ Y − X : A ∈ Uy }∪ {y ∈ Y − X : B ∈ Uy } since the Uy are

ultrafilters.

Finally, we prove that clY [U] ⊆ V. Let A ∈ U be arbitrary. Then A′ ∈ V and since A′ ⊆ clY A by

definition of A′, it follows that clY A ∈ V. Since A is an arbitrary element of U, it follows that
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clY [U] ⊆V.

A continuous function f : X → Y is called a proper map if for all y ∈ Y and all and all ultrafilters

U on X such that f [U] → y , there is an x ∈ f −1({y}) such that U→ x.

Proposition 2.11. Proper maps preserve closure.

Proof. Let f : X → Y be a proper map between two convergence spaces and let A be a non-

empty proper subset of X . The theorem states that f (clX A) = clY f (A). Since f is continuous,

we already have that f (clX A) ⊆ clY f (A). To prove the reverse inclusion, pick a y ∈ clY f (A).

Then there is an ultrafilter V on Y that contains f (A) and converges to y . Since V contains f (A),

it contains f (X ), hence f −1[V] is a filter on X . We claim that f −1[V]∨[A] exists: Pick a V ∈V and

a z ∈V ∩ f (A). Then there is an x ∈ A such that f (x) = z ∈V , which means x ∈ f −1(V )∩ A. This

proves that f −1(V )∩ A is not empty, which means f −1[V]∨ [A] exists. Now pick an ultrafilter U

on X finer than f −1[V]∨ [A]. Then f [U] = f [ f −1[V]∨ [A]] ⊇ f [ f −1[V]]∨ f [[A]] =V∨ [ f (A)] =V.

Thus U is an ultrafilter such that f [U] = V → y , and since f is proper, there is an x ∈ X such

that U→ x and f (x) = y . Since U contains A by construction, it follows that x ∈ clX A and that

f (x) = y ∈ f (clX A).

Proposition 2.12. Let f : X → Y be a continuous function between two convergence spaces. If

X is compact and Y is Hausdorff, then f is proper.

Proof. Pick a y ∈ Y , an ultrafilter V on Y that converges to Y and an ultrafilter U on X such that

f [U] = V. Since X is compact, U converges to some x ∈ X . Since f is continuous f [U] → f (x).

Since V= f [U] → y and Y is Hausdorff, it follows that f (x) = y , so x ∈ f −1({y}). This proves that

f is proper.
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Cauchy Spaces

To the author’s knowledge, there is no standard reference text regarding Cauchy spaces. The

majority of the theory is scattered in research articles. In this section, we present the definitions

and results about Cauchy spaces that will be useful for our purposes.

A collection C of filters on a set X is called a Cauchy structure on X if it satisfies the following

“axioms”:

Point filter axiom: Every point filter is in C .

Subfilter axiom: If F ∈C and F⊆G, then G ∈C .

Intersection axiom: If F,G ∈C and F∨G exists, then F∩G ∈C .

Any pair of the form (X ,C ), where X is a set and C is a Cauchy structure on X , is called a Cauchy

space . We will typically write X for the Cauchy space (X ,C ) and refer to the filters in C as the

Cauchy filters on X .

If C and D are Cauchy structures on a set X , then we say that C is coarser than D or that D

is finer than C if D ⊆C . The finest Cauchy structure on X consists of just the point filters; the

coarsest one consists of all the filters.

A function f : X → Y between Cauchy spaces is called Cauchy continuous if it maps Cauchy

filters on X to Cauchy filters on Y . If f : X → Y is a bijective Cauchy continuous function whose

inverse is also Cauchy continuous, then f is called a Cauchy homeomorphism and we say that

X and Y are Cauchy homeomorphic.

Every convergence structure C on a set X induces a convergence structure p on X , where p

is defined so that F
p−→ x if and only if F∩ [x] ∈ C . Conversely, every Hausdorff convergence

structure p on X induces a Cauchy structure C on X , where C is defined so that F ∈ C if and
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only if F p-converges.

We will sometimes regard a Cauchy space X as a convergence space equipped with the conver-

gence structure induced by the Cauchy strucutre as specified in the prior paragraph. By doing

this, we will be able to talk about a subset of a Cauchy space being open or closed or dense or

compact or locally compact and so on. Note that with this convention, every convergent filter

on a Cauchy space is Cauchy and every Cauchy continuous function is continuous.

A Cauchy space X and its Cauchy structure are called

– Hausdorff if X as a convergence space is Hausdorff,

– regular if the closure filter of every Cauchy filter is Cauchy,

– complete if every Cauchy filter on X converges,

– totally bounded if every ultrafilter is Cauchy.

Note that if X is a regular Cauchy space, then X is a regular convergence space, but the converse

is not true in general. Also note that every complete totally bounded Cauchy space is compact,

just like with metric spaces.

Initial and final Cauchy structures are defined in an analogous way as initial and final conver-

gence structures. Here, we review the typical ones that we will be using.

Let X be a subset of a Cauchy space Y . The subspace Cauchy structure on X is the coarsest

Cauchy structure on X making the natural injection from X into Y Cauchy continuous. The set

X equipped with the subspace Cauchy structure is called a Cauchy subspace of Y and a filter

F on X is Cauchy if and only if the filter [F] on Y is Cauchy. We remark that if X is a Cauchy

subspace of Y , then X is a subspace of Y .

Whenever the least upper bound of two Cauchy filters exists, we say that these two Cauchy
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filters are linked . If F1,F2, . . . ,Fn are Cauchy filters and if there is a permutation j1, j2, . . . , jn of

the indices such that F j1 ,F j2 are linked, F j2 ,F j3 are linked, F j3 ,F j4 are linked, etc. we say that

F1,F2, . . . ,Fn are linked. This notion is needed to define the Cauchy quotient structure.

Let X be a Cauchy space, let Y be a set and let f : X → Y be a surjection. The quotient Cauchy

structure on Y is the finest Cauchy structure on Y making f Cauchy continuous. The set Y

equipped with the quotient Cauchy structure is called a Cauchy quotient space and a filter G

on Y is Cauchy if there are Cauchy filters G1,G2, . . . ,Gn on X such that f [G1], f [G2], . . . , f [Gn] are

linked and f [G1]∩ f [G2]∩·· ·∩ f [Gn] ⊆F. It is not necessarily true that a Cauchy quotient space

is a convergence quotient space (see Proposition 2.13 for some sufficient conditions).

Products of Cauchy spaces are defined as follows: Given a family of Cauchy spaces (Xι), the

product Cauchy structure on X =∏
Xι is the coarsest Cauchy structure on X making each of the

natural projectionsπι : X → Xι Cauchy continuous. The set X together with the product Cauchy

structure is called a Cauchy product space and a filter F on X is Cauchy if and only if πι[F] is

Cauchy for every ι. Note that if X = ∏
Xι is a Cauchy product space, then it is a convergence

product space.

Useful results

Proposition 2.13. Let X be a Cauchy space, let Y be a set and let f : X → Y be a surjection. Let

p be the quotient convergence structure on Y and let C be the quotient Cauchy structure on Y .

(i) p is finer than the convergence structure q induced by C .

(ii) If q is Hausdorff, then so is p and consequently the Cauchy structure D induced by p is

finer than C .

(iii) If X is complete and p is Hausdorff, then C =D , p = q and C is complete.
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Proof.

(i) Suppose G p-converges to y . By definition of p, there is a filter F on X and an x ∈ X

such that F→ x in X , f [F] = G and f (x) = y . Since F→ x in X , F∩ [x] is a Cauchy filter

on X , which means that f [F∩ [x]] = f [F]∩ [ f (x)] = G∩ [y] ∈ C be definition of C (the

filter f [F∩ [x]] is vacuously linked). Since G∩ [y] ∈C , by definition of q , it follows that G

q-converges to y .

(ii) Suppose G is a filter on Y that p-converges to y , y ′. Since p is finer than q by (i), it follows

that G q-converges to y and y ′. Since q is Hausdorff, y = y ′. This proves that p is Haus-

dorff. Since p is Hausdorff, D is well-defined, and if G ∈ D , then G p-converges, which

means G q-converges by (i), which means G ∈C .

(iii) By (ii), we already have that D ⊆ C . For the reverse inclusion, note that C is the finest

Cauchy structure on Y making f Cauchy continuous. Thus, if D is a Cauchy structure

on Y making f Cauchy continuous, it will follow that D is coarser than C , i.e. C ⊆ D .

Indeed, given a Cauchy filter F on X , since X is complete, F → x for some x ∈ X , hence

f [F] p-converges to f (x), hence f [F] ∈D by definition of D .

By (i), we know that p is finer than q , so all we have to do is prove that q is finer than p. If

G q-converges to y , then by definition of C , G∩ [y] ∈ C , and since C = D , it follows that

G∩ [y] ∈D , which means G p-converges to y since the convergence structure induced by

D is exactly p.

Finally, since C =D and D is complete since p is Hausdorff, it follows that C is complete.
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CHAPTER 3: S-SPACES

Basic Notions

We now proceed to generalize two concepts: that of a topological group and that of a contin-

uous action of a topological group on a topological space. The generalizations are straight-

forward.

A convergence semigroup is a semigroup equipped with a convergence structure making its

binary operation a jointly continuous function. A convergence group is a group equipped with

a convergence structure making its binary operation jointly continuous and the function that

maps elements to their inverses continuous.

For notational convenience and unless stated otherwise all semigroups will be multiplicative.

If a semigroup has an identity element, it will be denoted by e. Given subsets A and B of a

semigroup, we will write AB for the set {ab : a ∈ A,b ∈ B} and A−1 for the set {a−1 : a ∈ A}. Given

filters F and G of a semigroup, we will write FG for the filter generated by {FG : F ∈F,G ∈G} and

F−1 for the filter generated by {F−1 : F ∈F}.

A left action of a semigroup S on a set X is a function α : S ×X → X such that

1. α(ss′, x) =α(s,α(s′, x)) for all s, s′ ∈ S and x ∈ X ,

2. if S has an identity element e, then α(e, x) = x for all x ∈ X .

Right actions are defined in an analogous manner. For notational convenience and unless

stated otherwise all actions will be left actions.

Ifα is an action of a semigroup S on a set X and ifα is the only action of S on X being considered,
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we will adopt the following notation: Given s ∈ S and x ∈ X , we will write α(s, x) as sx. Given

A ⊆ S and B ⊆ X , we will write α(A ×B) as AB . Given a filter F on S and a filter G on X , we will

write α[F×G] as FG.

If S is a semigroup acting on a set X , then X is called an S-set and a subset A of X is called

an S-subset of X if S A ⊆ A. A function f : X → Y between two S-sets is called an S-map if

f (sx) = s f (x) for all s ∈ S and x ∈ X . A bijection that is also an S-map is called an S-isomorphism

and two S-sets are called S-isomorphic if there is an S-isomorphism between them.

If a convergence semigroup/group S acts on a convergence space X and if the action of S on X

is a jointly continuous function, then S is said to act continuously on X , the action of S on X is

said to be a continuous action and X is called a convergence S-space .

Notions like S-subspace, product S-space, quotient S-space, S-homeomorphism, S-embedding,

etc. are defined in the obvious manner. By replacing the word “convergence” with “Cauchy”

and “continuous” with “Cauchy continuous” in the latter definitions, we obtain the notions of

Cauchy semigroup/group , Cauchy continuous action , Cauchy S-space , etc. Note that Cauchy

semigroups are convergence semigroups, Cauchy continuous actions are continuous actions,

etc. Convergence S-spaces and Cauchy S-spaces will be collectively called S-spaces.

The trivial semigroup {e} is both a convergence semigroup and a Cauchy semigroup in the ob-

vious way and every convergence and Cauchy space X is an {e}-space with respect to the trivial

action, namely the one defined by ex = x for all x ∈ X . Thus, any facts that we prove about

convergence and Cauchy S-spaces will hold for convergence and Cauchy spaces in particular.

Any notion with an “S-” prefix has a corresponding notion without an “S-” prefix. To avoid un-

necessary repetitiveness, we will omit defining the notions without the “S-” prefix. For example,

in the next section we will define what S-extensions are, but we will not define what extensions
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are since these are implicitly defined: just omit the “S-” prefixes found in the definition of an

S-extension to get the definition.

Useful Results

Proposition 3.1. If F is a filter on a semigroup S and G is a filter on an S-set X and U is an

ultrafilter finer than FG, then there exists an ultrafilter V finer than G such that FV⊆U.

Proof. Letα : S×X → X be the action on X . By Proposition 2.4, there is an ultrafilter W on S×X

finer than F×G such that α[W] =U. Let V be the projection of W on X . Then V is an ultrafilter

on X , V is finer than G and F×G⊆F×V⊆W, which means FV=α[F×V] ⊆α[W] =U.

Proposition 3.2. If X is an S-set and A,B ⊆ S and C ,D ⊆ X , then

(i) A(C ∩D) ⊆ AC ∩ AD ,

(ii) A(C ∪D) = AC ∪ AD ,

(iii) (A∩B)C ⊆ AC ∩BC ,

(iv) (A∪B)C = AC ∪BC ,

(v) A ⊆ B and C ⊆ D imply AC ⊆ BD .

Proof.

(i) If a ∈ A and x ∈C∩D , then x ∈C and x ∈ D , so ax ∈ AC and ax ∈ AD , hence ax ∈ AC∩AD .

(ii) If a ∈ A and x ∈ C ∪D , then either x ∈ C and x ∈ D , so ax ∈ AC or ax ∈ AD , hence ax ∈
AC ∪ AD . If x ∈ AC ∪ AD , then either x = ac for some a ∈ A and c ∈C or x = a′d for some

a′ ∈ A and d ∈ D , and since c,d ∈C ∪D , in either case we have that x ∈ A(C ∪D).

(iii) If s ∈ A ∩B and c ∈ C , then s ∈ A and s ∈ B , which means sc ∈ AC and sc ∈ BC , hence

sc ∈ AC ∩BC .
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(iv) If s ∈ A ∪B and c ∈C , then s ∈ A or s ∈ B , hence sc ∈ AC or sc ∈ BC , hence sc ∈ AC ∪BC .

If x ∈ AC ∪BC , then either x = ac for some a ∈ A and c ∈C or x = bc ′ for some b ∈ B and

c ′ ∈C , and since a,b ∈ A∪B , in either case we have that x ∈ (A∪B)C .

(v) If s ∈ A and x ∈C , then s ∈ B and x ∈ D , hence sx ∈ BD .

Proposition 3.3. If F,F′ are filters on a semigroup S and G,G′ are filters on an S-set X , then

(i) F(G∩G′) =FG∩FG′,

(ii) (F∩F′)G=FG∩F′G,

(iii) (F∩F′)(G∩G′) ⊆FG∩F′G′,

(iv) F(G∨G′) ⊇FG∨FG′ whenever G∨G′ exists,

(v) F⊆F′ and G⊆G′ implies FG⊆F′G′.

Proof.

(i) Since {F (G ∪G ′) : F ∈ F,G ∈ G,G ′ ∈ G′} is a basis of F(G∩G′) and since {FG ∪FG ′) : F ∈
F,G ∈G,G ′ ∈G′} is a basis of FG∩FG′ and since F (G ∪G ′) = FG ∪FG ′ (by Proposition 3.2),

it follows that F(G∩G′) =FG∩FG′.

(ii) The proof is mutatis mutandis the same as (i).

(iii) Pick an F ∈F∩F′ and a G ∈G∩G′. Since F ∈F and G ∈G, we have that FG ∈FG. Similarly,

FG ∈F′G′. The result follows.

(iv) If G∨G′ exists, a basis for F(G∨G′) is {F (G∩G ′) : F ∈F,G ∈G,G ′ ∈G′}, and since F (G∩G ′) ⊆
FG ∩FG ′, it follows that FG∨FG′ exists and is coarser than F(G∨G′).

(v) This is a direct consequence of (v) of Proposition 3.2.

Proposition 3.4. If f : X → Y is an S-map, then

(i) f (AB) = A f (B) for every A ⊆ S and B ⊆ X , and

(ii) f [FG] =F f [G] for every filter F on S and G on X .
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(iii) If f is a bijection, then f −1 is also an S-map.

Proof. (i) Since f is an S-map, f (AB) = { f (sx) : s ∈ A, x ∈ B} = {s f (x) : s ∈ A, x ∈ B} = A f (B). (ii) A

basis for f [FG] is { f (FG) : F ∈F,G ∈G} = {F f (G) : F ∈F,G ∈G}, and since this latter set is a basis

for F f [G], it follows that f [FG] = F f [G]. (iii) If f is a bijection, then for given s ∈ S and y ∈ Y ,

we have that f (s f −1(y)) = s f ( f −1(y)) = s y = f ( f −1(s y)), and since f is injective, it follows that

s f −1(y) = f −1(s y).

Proposition 3.5. If S is a semigroup, then [s][s′] = [ss′] for all s, s′ ∈ S.

Proof. A basis for [s][s′] is {{s}{s′}} = {{ss′}} and this latter set is a basis for [ss′], hence [s][s′] =
[ss′].

Proposition 3.6. If X is an S-set, then [s]U is an ultrafilter on X for every s ∈ S and every ultra-

filter U on X .

Proof. Pick an s ∈ S and define f : X → X by f (x) = sx. If U is an ultrafilter on X , then f [U] is an

ultrafilter on X . Now note that f [U] = [s][U.

Proposition 3.7. Let f : X → Y be a continuous function between two convergence S-spaces.

If A ⊆ S and B ⊆ X , then f (A clX B) ⊆ clY f (AB). Consequently, if F is a filter on S and G is a filter

on X , then clY f [FG] ⊆ f [FclX G].

Proof. Let s ∈ A and x ∈ clX B . Since x ∈ clX B , there is a filter F on X that contains B and

converges to x, and since AB ∈ [s]F → sx, it follows that sx ∈ clX (AB). Since f is continuous,

f (sx) ∈ f (clX (AB)) ⊆ clY f (AB).

Proposition 3.8. Let X be an S-subset of an S-set Y . If F be a filter on S and G be a filter on Y

such that G∩X ∈ F(X ), then FG∩X ⊆F(G∩X ).
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Proof. Follows from the fact that F (G ∩X ) ⊆ FG ∩F X ⊆ FG ∩X for all F ∈F and G ∈G.

S-Extensions

An S-extension of a convergence S-space X is a convergence S-space Y together with a dense

S-embedding f of X in Y ; and if, in addition, f (X ) is strictly dense in Y , we say that Y is a strict

S-extension of X . S-extensions of Cauchy S-spaces are defined in an analogous manner. For

simplicity and notational convenience, we will normally treat an S-extension of an S-space X

as if it were a superset of X .

A compact Hausdorff S-extension is called an S-compactification . A complete Hausdorff S-

extension is called an S-completion . Notice that these notions are required to be Hausdorff,

primarily because we want to take advantage of the theorems below and these theorems require

the extensions to be Hausdorff.

Let Y , Z be two S-extensions of a convergence S-space X . We say that Y is larger or greater

than Z if there is a continuous surjective S-map f : Y → Z whose restriction on X is the identity

function on X . We say that Y is equivalent to Z if there is an S-homeomorphism f : Y → Z

whose restriction on X is the identity function on X . These two relations, adjusted accordingly,

also apply to S-extensions of Cauchy S-spaces.

Theorem 3.9. If Y , Z are Hausdorff S-extensions of an S-space X , then Y is equivalent to Z if

and only if Y is larger than Z and Z is larger than Y .

Proof. The forward implication is easy, so we focus on proving the reverse implication. Suppose

f : Y → Z and g : Z → Y are continuous or Cauchy continuous surjective S-maps such that

f (x) = g (x) = x for all x ∈ X . We need to show that f and g are inverses of each other, so we
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need to prove that f ◦ g is the identity function on Z and g ◦ f is the identity function on Y .

Consider f ◦ g . Since X is dense in Y and Y is Hausdorff and since the identity function on Z

and f ◦g are continuous extensions of the identity function on X , these two extensions must be

the same. A similar argument applies to g ◦ f , thus finishing the proof.

The relation “is larger than” is a preorder on the collection of Hausdorff S-extensions of a given

S-space. The above theorem essentially says that we can think of this preorder as a partial order

if we agree not to distinguish between equivalent S-extensions. Since equivalent S-extensions

are S-homeomorphic, it makes sense not to distinguish them.

Theorem 3.10. Let Y , Z be two S-extensions of a convergence S-space X and let f : Y → Z be

a continuous function such that f (x) = x for all x ∈ X . If Z is Hausdorff, then

(i) f is an S-map and

(ii) f (Y −X ) ⊆ f (Z −X ),

and if in addition Y is compact, then

(iii) f is onto and consequently Y is greater than Z ,

(iv) f (Y −X ) = Z −X , and

(v) X is open in Y if and only if X is open in Z .

Proof.

(i) Since f is the identity function on X , f (sx) = sx = s f (x) for all s ∈ S and x ∈ X . Let s ∈ S

and y ∈ Y be arbitrary. Since X is dense in Y , there is a filter F on X such that [F]Y → y

in Y , hence [s]F→ s y in Y , and since f is continuous, we have that f [[s]F] → f (s y) in Z ,

f [F] → f (y) in Z and [s] f [F] → s f (y) in Z . Since {s f (F ) : F ∈F} is a basis for [s] f [F] and

since { f (sF ) : F ∈F} is a basis for f [[s]F] and since s f (F ) = f (sF ) for all F ∈F (because f
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is an S-map on X ), it follows that [s] f [F] = f [[s]F]. Since Z is Hausdorff and since f (s y)

and s f (y) are limits of [s] f [F] = f [[s]F], it follows that f (s y) = s f (y).

(ii) Let y ∈ Y − X . Suppose f (y) = x for some x ∈ X . Since clY X = Y , there is an ultrafilter

U on X such that [U]Y → y in Y . Since f is continuous, f [U] → f (y) = x in Z . Since f is

the identity on X , the trace of f [U] on X is just U, and since f [U] → x in Z , it follows that

U→ x in X . But this implies that [U]Y → x in Y , which means that [U] converges to two

distinct limits in Y , namely x and y . But this is a contradiction since Y is Hausdorff. Ergo,

f (y) ∈ Z −X , and since y is an arbitrary point in Y −X , it follows that f (Y −X ) ⊆ Z −X .

(iii) Since X = f (X ) ⊆ f (Y ) and X is dense in Z , it follows that clZ f (Y ) = Z . Since f is contin-

uous and Y is compact, f (Y ) is compact, and since Z is Hausdorff, f (Y ) is closed in Z .

Thus, f (Y ) = Z .

(iv) Since f is onto, f (Y ) = Z , and since f (X ) = X and f (Y −X ) ⊆ Z −X , it follows that f (Y −
X ) = Z −X .

(v) Assume that X is open in Y . Then Y −X is closed and therefore compact since Y is com-

pact. Since f (Y −X ) = Z −X and f is continuous, Z −X is compact and therefore closed

since Z is Hausdorff. It follows that X is open in Z . Now suppose X is not open in Y .

Then Y −X is not closed, which means there is a x ∈ X and a filter F on Y that converges

to x and contains Y − X . By the continuity of f , f [F] → f (x) = x in Z , and by (ii), f [F]

contains f (Y −X ) = Z −X . This means that Z −X is not closed and that X is not open in

Z .

Theorem 3.11. Let Y be a regular Hausdorff strict extension of a convergence S-space X that

has the following property:

(P) For every convergent filter F on S and every filter G on X such that [G] converges in Y , the

filter [FG] converges in Y .
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Then there is a continuous action of S on Y making Y into a regular strict S-extension of X .

Proof. If X = Y , there is nothing to do. Otherwise, extend the action of S from X to Y as follows:

(A) Given s ∈ S and y ∈ Y −X , let s y be the limit in Y of the filter [FG], where F is any filter on

S converging to s in S and G is any filter on X such that [G] converges to y in Y .

Let us check that this is well-defined. Let s ∈ S, let y ∈ Y − X and let F be any filter on S con-

verging to s (e.g. [s]). Since X is dense in Y , there is a filter G on X such that [G] → y in Y . By

(P), [FG] converges in Y and by (A) s y is the limit of [FG]. Now suppose F′ is another filter on

S converging in S to s and G′ is another filter on X such that [G′] → y in Y . Then F∩F′ → s

in S and [G]∩ [G′] = [G∩G′] → y in Y . By (P), [(F∩F′)(G∩G′)] → s y in Y . By Proposition 3.3,

(F∩F′)(G∩G′) ⊆ FG∩F′G′, hence [FG∩F′G′] → s y in Y . Since Y is Hausdorff and [FG∩F′G′]

is a subset of both [FG] and [F′G′], both [FG] and [F′G′] must converge in Y to the same limit,

namely s y .

We now check that the given action of S on Y is indeed an action: Let s, s′ ∈ S, let y ∈ Y − X ,

and let G be a filter on X such that [G] → y in Y . By (A), [[s]G] → s y . Since [s′][s] = [s′s] and

since [s′s] → s′s in S, by (A) we have that [[s′s]G] → (s′s)y in Y . To show that (s′s)y = s′(s y),

we consider two cases. (i) Suppose s y = x for some x ∈ X . Then since X is a subspace of Y

and [[s]G] → s y = x in Y , we have that [s]G→ x in X , hence [s′]([s]G) = [s′s]G→ s′x = s′(s y) in

X , hence [[s′s]G] → s′(s y) in Y , hence s′(s y) = (s′s)y since Y is Hausdorff and [[s′s]G] → (s′s)y .

(ii) Suppose s y = y ′ for some y ′ ∈ Y − X . By (A), [[s′][s]G] → s′y ′ = s′(s y), and since [[s′][s]G] =
[[s′s]G] → (s′s)y and Y is Hausdorff, it follows that s′(s y) = (s′s)y . Lastly, if e ∈ S, then by (A)

[[e]G] → e y , but since [[e]G] = [G] → y and Y is Hausdorff, it follows that e y = y .

Before we prove S acts continuously on Y , we will need the following result:
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Lemma. For every A ⊆ S and every B ⊆ X , A clY B ⊆ clY AB . Consequently, for every

filter F on S and every filter G on X , clY [FG] ⊆FclY [G].

Proof. Let s ∈ A and y ∈ clY B . Suppose y = x for some x ∈ X . Then x ∈ clX B . Since

A clX B ⊆ clX (AB) by Proposition 3.7 and since clX (AB) ⊆ clY (AB), it follows that

s y ∈ clY (AB). Now suppose y ∈ Y − X . Since y ∈ clY B , there is a filter F on Y that

contains B and converges to y in Y . Since F contains B , it contains X , hence the

trace G of F on X is a filter on X such that [G] → y in Y . By (A), [[s]G] → s y in Y .

Since [[s]G] = [s][G] = [s]F and AB ∈ [s]F→ s y , it follows that s y ∈ clY (AB).

We are now ready to prove that S acts continuously on Y . LetF→ s in S and letG→ y in Y . Since

Y is a strict extension of X and G→ y in Y , there exists a filter H on X such that [H] → y in Y

and clY [H] ⊆G. We consider two cases. (i) Suppose y = x for some x in X . Since X is a subspace

of Y and [H] → x in Y , we have that H→ x in X , hence FH→ sx in X since X is a convergence

S-space, hence [FH] → sx in Y . Since Y is regular, clY [FH] → sx in Y . Using the lemma above

and the fact that clY [H] ⊆ G, we have that clY [FH] ⊆ FclY [H] ⊆ FG, hence FG→ sx in Y . (ii)

Suppose y ∈ Y − X . By (A), [FH] → s y in Y , and since Y is regular, clY [FH] → s y in Y . Using

the lemma above and the fact that clY [H] ⊆ G we have that clY [FH] ⊆ FclY [H] ⊆ FG, hence

FG→ s y in Y .

Since S acts continuously on Y and Y is a regular strict extension of X , it follows that Y is a

regular strict S-extenions of X .

Remainder-Invariant S-Extensions

If Y is an S-extension of an S-space X , then the complement Y − X is called the remainder of

the extension. An S-extension with a one-point remainder is called a one-point extension .
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An S-extension Y of an S-space X is called remainder invariant whenever the remainder is an

S-subset of Y .

If Y is an S-extension of an S-space X and S is a group, then Y is remainder invariant: if for

some s ∈ S and y ∈ Y −X we have that s y ∈ X , then s−1s y = y ∈ X , which is a contradiction. This

observation implies that any result that we prove about remainder-invariant S-extensions will

hold for S-extensions where S is a convergence group.

The following theorem essentially says that the collection of Hausdorff remainder-invariant S-

extensions of a given S-space is partially ordered if we agree not to distinguish between equiv-

alent S-extensions.

Theorem 3.12. If Y and Z are S-extensions of an S-space X and Y is larger than Z , then Y is

remainder invariant if and only if Z is remainder invariant.

Proof. Since Y is larger than Z , there exists a continuous or Cauchy continuous surjective S-

map f : Y → Z such that f (x) = x for all x ∈ X . By Theorem 3.10, f (Y − X ) = Z − X . Suppose Y

is remainder invariant and z ∈ Z −X . Since f (Y −X ) = Z −X , there exists a y ∈ Y −X such that

f (y) = z. Since Y is remainder invariant, s y ∈ Y − X for all s ∈ S, and since f (Y − X ) = Z − X ,

it follows that f (s y) = s f (y) = sz ∈ Z − X for all s ∈ S. Thus, Z is remainder invariant. Now

suppose Z is remainder invariant and y ∈ Y − X . Since f (Y − X ) = Z − X and Z is remainder

invariant, f (s y) = s f (y) ∈ Z −X for all s ∈ S. Since f (X ) = X , for any s ∈ S, it is impossible for s y

to be in X , hence s y must be in Y −X . This proves that Y is remainder invariant.
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Adherence-Restrictive S-Spaces

A convergence S-space X is called adherence restrictive if for all convergent filters F on S and

all filters G on X with empty adherence, the filter FG has empty adherence. A Cauchy S-space X

is called adherence restrictive if for every convergent filter F on S and every Cauchy filter G on

X with empty adherence, the filter FG has empty adherence. Note that compact convergence

S-spaces and complete Cauchy S-spaces are vacuously adherence restrictive.

The theorem below shows that adherence-restrictive S-spaces are a generalization of those

spaces that have convergence or Cauchy groups acting on them.

Theorem 3.13. If X is an S-space and S is a convergence or a Cauchy group, then X is adher-

ence restrictive.

Proof. Let F→ s in S and let G be a filter or a Cauchy filter on X with empty adherence. By way

of contradiction, suppose x is an adherent point of FG. Let U be an ultrafilter finer than FG that

converges to x (afforded to us by the fact that x ∈ adhFG) and let V be an ultrafilter finer than

G such that FV⊆U (afforded to us by Proposition 3.1). Since S is a convergence/Cauchy group,

F−1 → s−1 and consequently F−1U→ s−1x. We now prove that F−1U∨V exists. This will lead

to a contradiction since it implies that V ⊆ F−1U∨V→ s−1x, contradicting that adhG =;. Let

F−1U ∩V be an arbitrary basis element of F−1U∨V. Since FV⊆U, the set U ∩FV is not empty

and contains a point x. Since x = u for some u ∈U and x = sv for some s ∈ F and v ∈V , we have

that u = sv , and since S is a group, s−1u = v , and consequently, s−1u = v ∈ F−1U ∩V .

Theorem 3.14. If Y is a compact or complete Hausdorff S-extension of an S-space X , then Y

is remainder invariant if and only if X is adherence restrictive.

Proof. Suppose Y is a compact Hausdorff S-extension of a convergence S-space X . If Y = X ,
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then Y is vacuously remainder-invariant and X is vacuously adherence-restricted, so we as-

sume that Y 6= X . Suppose Y is remainder invariant. By way of contradiction, suppose X is not

adherence restrictive, i.e. suppose there is a convergent filterF on S and a filterG on X such that

adhG=; and FG has an adherent point x. Let U be an ultrafilter finer than FG that converges

to x in X and let s be a limit of F. Since FG⊆U and U is an ultrafilter, by Proposition 3.1 there

is an ultrafilter V on X finer than G such that FV ⊆ U. Since adhG = ;, the filter V does not

converge in X , hence [V] converges in Y to some y ∈ Y − X (using the fact that X ⊂ Y and that

Y is compact). This means that F[V] → s y in Y , and since FV ⊆ U, [U] → s y in Y . Since Y is

remainder invariant, s y ∈ Y −X , but this means x and s y are distinct limits of [U], contradicting

that Y is Hausdorff.

Now suppose Y is not remainder invariant. Then for some x ∈ X , y ∈ Y − X and s ∈ S, s y = x.

Since X is dense in Y , y is a point of closure of X , which means that there is some ultrafilter

V on Y containing X that converges to y . The trace U of V on X is therefore an ultrafilter on

X that does not converge in X , for otherwise V would have two limits in Y , contradicting that

Y is Hausdorff. Using Proposition 3.4, we have that [[s]U] = [s][U] = [s]V→ s y = x in Y , hence

[s]U→ x in X . Since U is a filter on X with empty adherence, it follows that X is not adherence

restrictive.

The proof when Y is a complete Hausdorff S-extension of a Cauchy S-space X is basically the

same: just use completeness wherever compactness is used and use Cauchy filters instead of

filters where appropriate.

Theorem 3.15. If a convergence S-space X has a compact Hausdorff S-extension, then X is

adherence restritive if and only if for every non-convergent ultrafilter U on X and every s ∈ S,

[s]U does not converge.

Proof. The forward implication follows from the definition of being adherence restrictive, so
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we focus on proving the reverse implication, which we will prove by proving the contrapositive

statement. Suppose X is not adherence restrictive. Then there exists a convergent filter F on

S and a filter G on X with empty adherence such that adhFG 6= ;. Pick an x ∈ adhFG. Then

there is an ultrafilter U finer than FG that converges to x and by Proposition 3.1 there exists an

ultrafilter V on X finer than G such that FV ⊆ U. Let Y be a compact Hausdorff S-extension

of X . Then [U] → x in Y and [V] converges to some y in Y . Let s be a limit of F in X . Then

F[V] → s y in Y and since F[V] ⊆ [U] and Y is Hausdorff, it follows that s y = x. By Proposition

3.6, [s]V is an ultrafilter on X and it either converges in X or it doesn’t. We claim that it does,

for otherwise, [s][V] would converge to something in Y −X , contradicting that [s][V] → s y = x.

This completes the proof.
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CHAPTER 4: S-COMPACTIFICATIONS

Compactifications of Convergence Spaces - A Review

We now review some results about compactifications in the theory of convergence spaces. We

will generalize some of these results in subsequent sections. These results are taken from [13].

Theorem 4.1. Let X be a non-compact Hausdorff convergence space. LetωX = X ∪{ω}, where

ω 6∈ X , and define a preconvergence structure on ωX as follows:

(a) A filter F on ωX converges to a point x of X if there is a filter G on X that converges to x

and [G] ⊆F.

(b) A filter F on ωX converges to ω if there is a filter G on X with empty adherence such that

[G]∩ [ω] ⊆F.

ThenωX equipped with this preconvergence structure is a compactification of X called the Rao

compactification of X and it is equal to the Alexandrov one-point compactification when X is

locally compact and topological.

Theorem 4.2. Let X be a non-compact Hausdorff convergence. For A ⊆ X , let A′ denote the

set of non-convergent ultrafilters on X containing A and let A∗ = A ∪ A′. Given a filter F on X ,

let F∗ denote the filter on X ∗ generated by {F∗ ⊆ X ∗ : F ∈F}. Define a preconvergence structure

on X ∗ as follows:

(a) A filter F on X ∗ converges to a point x of X if there is a filter G on X that converges to x

such that G∗ ⊆F.

(b) A filter F on X ∗ converges to an ultrafilter U ∈ X ′ if U∗ ⊆F.

Then X ∗ with the above preconvergence structure is a compactification of X , which we will call
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the star compactification X .

Theorem 4.3. The following statements about be a Hausdorff convergence space X are equiv-

alent.

(i) X has finitely many non-convergent ultrafilters.

(ii) X is open in each of its compactifications.

(iii) X has a smallest compactification (equivalent to ωX when X is not compact)

(iv) X has a largest compactification (equivalent to X ∗ when X is not compact).

Theorem 4.4. If Y is a regular compactification of a convergence space X , then πY is a regular

topological compactification πX .

Proof. Every ultrafilter on Y converges in Y and hence converges in πY , which means πY is

compact. Since Y = clY X = clπY X and since πX is a subspace of πY and πY is Hausdorff and

topological (by Proposition 2.6), it follows that πY is a topological compactification of πX . Now

recall that compactifications of topological spaces are always regular.

Theorem 4.5. The following statements about a Hausdorff convergence space X are equiva-

lent.

(i) X is completely regular.

(ii) X and πX agree on ultrafilter convergence and πX is a completely regular topological

space.

(iii) X has a regular compactification.

(iv) X has a largest regular compactification.

The largest regular compactification of a completely regular Hausdorff convergence space X

is called the Stone-Čech regular compactification and it is denoted βX . The smallest regular

34



compactification of a non-compact completely regular Hausdorff convergence space X is ωX .

Both of these compactifications, when they exist in this context, are strict.

Theorem 4.6. The follows statements about a completely regular Hausdorff convergence space

X are equivalent.

(i) X has a smallest regular compactification (equivalent to ωX when X is not compact).

(ii) πX is a locally compact topological space.

(iii) X is a locally compact convergence space.

(iv) X is open in each of its regular compactifications.

From Compactifications to S-Compactifications

This section contains some results that generalize those corresponding results from the previ-

ous section. We start with the one-point compactification ωX .

The Rao S-Compactification

Theorem 4.7. Let X be a non-compact Hausdorff convergence S-space and let ωX be as in

Theorem 4.1. Extend the action of S toωX by letting sω=ω for all s ∈ S. ThenωX is a one-point

remainder-invariant S-compactification of X if and only if X is adherence restrictive.

Proof. Some algebra shows that the action of S on ωX is well-defined. We now prove that the

action is continuous. Let F→ s in S and let G be a filter on ωX . We consider two cases. (i) If G

converges to a point x of X , there is a filter H on X such that H → x and H ⊆ G. This means

that FH ⊂ FG and since FH→ sx, it follows that FG→ sx. (ii) If G→ ω, there is a filter H on

X such that adhH = ; and [H]∩ [ω] ⊆ G. Since X is adherence restrictive, adhFH = ;. By
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Proposition 3.3, F([H]∩ [ω]) = F[H]∩F[ω]. Since {F {ω} : F ∈ F} is a basis for F[ω] and since

F {ω} = {sω : s ∈ F } = {ω}, we have that F[ω] = [ω]. By Proposition 3.4 we have that F[H] = [FH].

SinceG⊇ [H]∩[ω], we have thatFG⊇F([H]∩[ω]) = [FH]∩[ω], and since adhFH=;, it follows

that FG → ω. We have thus shown that if G converges to some arbitrary point y of ωX , then

FG→ s y , which means the action is continuous and that ωX is an S-space. By construction,

ωX is remainder-invariant S-extension of X . This fact together with Theorem 4.1 prove that

ωX is a one-point remainder-invariant S-compactification of X .

Conversely, ifωX is a one-point remainder-invariant S-compactification of X , then by Theorem

3.14, X is adherence restrictive.

Henceforth, the default action onωX is the one specified in the aforementioned theorem.

Theorem 4.8. A non-compact Hausdorff convergence S-space X has a smallest remainder-

invariant S-compactification if and only if it is adherence restrictive and open in each of its

remainder-invariant S-compactifications. Moreover, if X has a smallest remainder-invariant

S-compactification, it is equivalent to ωX .

Proof. Suppose X has a smallest remainder-invariant S-compactification Y . By Theorem 3.14,

X is adherence restrictive, hence by Theorem 4.7, ωX as is a one-point remainder-invariant S-

compactification of X . SinceωX is larger than Y and X is open inωX , by Theorem 3.10, Y has a

one-point remainder, X is open in Y and therefore X is open in each of its remainder-invariant

S-compactifications.

Now suppose X is adherence restrictive and open in each of its remainder-invariant S-compact-

ifications. Then by Theorem 4.7, ωX is a one-point remainder-invariant S-compactification of

X . We now prove that ωX is the smallest remainder-invariant S-compactification of X : Let

Y be any remainder-invariant S-compactification of X and define f : Y → ωX so that f is the
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identity on X and everything in the remainder of Y gets mapped to ω. First, we prove that f is

continuous: Let F be a filter on Y . We consider two cases: (i) Suppose F converges to a point

x of X . Since X is open in Y and F → x, it follows that X ∈ F. This implies that F has a trace

G on X which converges to x and that G is a basis on Y for F. Since G→ x in X , [G]ωX → x in

ωX . Since G is a basis for F, f [F] = f [G], and since G is a filter on X and f is the identity on

X , f [G] = [G]ωX . Thus, f [F] → x = f (x) in ωX . (ii) Now suppose F converges to some point

y of Y − X . If Y − X ∈ F, then f [F] = [ω] → ω = f (y). Otherwise, the intersection of any two

sets in F must contain elements of X , which means that F has a trace G on X . We claim that G

has empty adherence: Suppose not, i.e. suppose there is an ultrafilter U on X finer than G that

converges to some point x of X . Since F ⊆ [G]Y ⊆ [U]Y and since [U]Y → x and F → y , [U]Y

has two distinct limits, namely x and y , contradicting that Y is Hausdorff. We now claim that

[G]ωX ∩ [ω] ⊆ f [F], proving that f [F] →ω = f (y): Pick an arbitrary basis element f (F ) of f [F].

Since f (F ) = f ((F ∩X )∪ (F −X )) = f (F ∩X )∪ f (F −X ) ⊆ (F ∩X )∪ {ω} and since (F ∩X )∪ {ω} is

an arbitrary basis element of [G]ωX ∩[ω], it follows that [G]ωX ∩[ω] ⊆ f [F] as claimed. This com-

pletes the proof that f is continuous. All that is left to prove is that f is an S-map: Pick an s ∈ S,

an x ∈ X and a y ∈ Y − X . Since f is the identity function on X , f (sx) = sx = s f (x). Since Y is

remainder-invariant, s y ∈ Y −X , and since f (Y −X ) = {ω}, we have that f (s y) =ω= sω= s f (y).

Example 4.9. Let X = [0,1) and S = (0,1] be equipped with their usual topologies, let the op-

eration on S be multiplication and let S act on X via multiplication. With this setup, X is an

S-space. Let Y = [0,1] be equipped with its usual topology and let the action of S on X be multi-

plication. In this way, Y is also an S-space, and in fact it is a one-point S-compactification of X .

However, Y is not remainder invaraint: if s = 1
2 and y = 1, then s y = 1

2 ∈ X even though y ∈ Y −X .

Letting ω= 1, let us now consider ωX . It is homeomorphic to Y but it is not S-homeomorphic

to Y because it is not even an S-space since the action of S on ωX is not continuous at (s,ω)
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for every s 6= 1. For example, if F is the elementary filter on ωX corresponding to the sequence

whose nth term is n
n+1 , then [ 1

2 ]F→ 1
2 , but if the action of S on ωX were continuous, we should

have [ 1
2 ]F→ 1. It follows from Theorem 4.7 that X is not adherence restrictive.

Example 4.10. Let X = [0,∞) and let S be the multiplicative group (0,∞). Let S act on X via

multiplication and equip X and S with their usual topologies. Then X is an S-space and ωX =
[0,∞] with its usual topology is an S-compactification X . Note that since S is a group, X is

adherence restrictive and ωX is remainder invariant.

The Star S-Compactification

Theorem 4.11. Let X be a non-compact Hausdorff S-space and suppose that the convergence

structure on S is discrete and that X is adherence restrictive. Then there is an action of S on the

star compactification X ∗ of X making it a remainder-invariant S-compactification of X .

Proof. Recall that X ∗ = X ∪ X ′, where X ′ consists of all the non-convergent ultrafilters on X .

Extend the action of S to X ∗ by letting sU = [s]U for each U ∈ X ′ and each s ∈ S. Let us check

that this is well-defined. Fix an s ∈ S and a U ∈ X ′. Since X is adherence restrictive, [s]U does

not converge in X . By Proposition 3.6, [s]U is a ultrafilter. Thus, [s]U ∈ X ′, which means that

sU ∈ X ∗. A little algebra shows that this action is a valid action on X ∗ making it remainder

invariant.

Let us now prove that this action is continuous. Let F→ s in S and let G be a filter on X ∗. Since

S has the discrete convergence structure, F= [s]. Suppose G→ x ∈ X . Then there is a filter H on

X that converges to x such that H∗ ⊆ G. We now claim that ([s]H)∗ ⊆ [s]H∗. This follows from

the following lemma.
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Lemma. Let s ∈ S and A ⊆ X be arbitrary. Then s A′ ⊆ (s A)′ and consequently s A∗ ⊆
(s A)∗.

Proof. Let U ∈ A′. Then A ∈ U and U is non-convergent. Since X is adherence

restrictive, [s]U is non-convergent. By Proposition 3.6, [s]U is a ultrafilter. Since

s A ∈ [s]U, it follows that [s]U ∈ (s A)′.

Since [s]H→ sx in X and ([s]H)∗ ⊆ [s]H∗ ⊆ [s]G, it follows that [s]G→ x in X ∗. Now suppose

G→U ∈ X ′. Then U∗ ⊆G. Since [s]U ∈ X ′ and ([s]U)∗ ⊆ [s]U∗ ⊆ [s]G, it follows that [s]G→ [s]U=
sU in X ∗. This concludes the proof that S acts continuously on X ∗.

We have thus proved that X ∗ is an S-space and since it is a compactification of X , it follows that

it is an S-compactification of X .

Henceforth, the action on X ∗ will be the one given in the prior theorem. Note that this action

only makes sense when X is adherence restrictive. Using Theorem 4.3, we obtain the following

result.

Theorem 4.12. Let X be a non-compact Hausdorff S-space and suppose that the convergence

structure on S is discrete and that X is adherence restrictive. If X ′ is finite, then X ∗ is the largest

S-compactification of X .

Regular S-Compactifications

Theorem 4.13. Every convergence S-space with a regular S-compactification has a strict reg-

ular S-compactification.

Proof. Let Y be a regular S-compactification of a convergence S-space X . Let ρY denote the
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modification of Y with the following preconvergence structure: F→ y in ρY if and only if there

is a filter G on X such that [G] → y in Y and clY [G] ⊆F. We will prove that ρY is a strict extension

of X .

We first prove that ρY is a convergence space. Pick an x ∈ X . Since [[x]X ]Y = [x]Y → x in Y

and since clY [x]Y ⊆ [x]Y , it follows that [x]Y → x in ρY . Pick a y ∈ Y − X . Since X is dense

in Y there exists a filter G on X such that [G] → y in Y . Since [G] → y , we have that y ∈ clY G

for all G ∈ G, hence clY [G] ⊆ [y], hence [y] → y in ρY . If F → y in ρY and F ⊆ G, then there is

a filter H on X such that [H] → y in Y and clY [H] ⊆ F ⊆ G, hence G → y in ρY . If F and F′

are filters on Y that converge to y in ρX , then there are filtes G and G′ on X such that [G] and

[G′] converge to y in Y , clY [G] ⊆ F and clY [G′] ⊆ F′, and since [G∩G′] = [G]∩ [G′] → y in Y and

clY [G∩G′] = clY [G]∩clY [G′] ⊆F∩F′, it follows that F∩F′ → y in ρY . This concludes the proof

that ρY is a convergence space.

Next, note that convergence in ρY implies convergence in Y : If F → y in ρY , then there is a

filter G on X such that [G] → y in Y and clY [G] ⊆F, and since Y is regular, clY [G] → y in Y and

consequently F→ y in Y .

Now let us prove that Y and ρY agree on ultrafilter convergence. Suppose V is an ultrafilter on

Y that converges to y in Y . By Proposition 2.10, clY [U] ⊆ V for some ultrafilter U on X . Since

Y is compact and [U] is an ultrafilter on Y , [U] converges to some y ′ ∈ Y . Since Y is regular,

clY [U] → y ′, and since clY [U] ⊆ V and Y is Hausdorff, y ′ = y . Thus, U is a filter on X such that

[U] → y in Y and clY [U] ⊆V, which means V→ y in ρY . Now suppose that V→ y in ρY . Since

convergence in ρY implies convergence in Y , it follows that V→ y in Y .

Since Y and ρY agree on ultrafilter convergence, it follows that

(i) ρY is compact Hausdorff since Y Hausdorff compact,
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(ii) clY = clρY because for any A ⊆ Y we have that y ∈ clY A if and only if A ∈ V→ y in Y for

some ultrafilter V on Y if and only if A ∈ V→ y in ρY for some ultrafilter V on Y if and

only if y ∈ clρY A,

(iii) X is a strictly dense subspace of ρY by the definition of ρY and the fact that X is a sub-

space of Y , and

(iv) ρY is regular because if F → y in ρy , then there is a filter G on X such that [G] → y in

Y and clY [G] ⊆ F, hence clY [G] = clρY [G] → y in ρY . By Proposition 2.8, clY = clρY is

idempotent. Since clρY [G] ⊆ F and clρY is idempotent, clρY clρY [G] = clρY [G] ⊆ clρY F,

hence clρY F→ y in ρY .

We have thus proved that ρY is a regular strict compactification of X . We now prove that S

acts continuously on ρY . This will prove that ρY is an S-space and thus a regular strict S-

compactification of X . LetF→ s in S andG→ y inρY . SinceG→ y inρY , there is a filterH on X

such that [H] → y in Y and clY [H] ⊆G. Since the S acts continuously on Y , [FH] =F[H] → s y in

Y . By Proposition 3.7, clY F[H] ⊆FclY [H] ⊆FG. Thus, FH is a filter on X such that [FH] → s y

and clY [FH] ⊆FG, which means FG→ s y in ρY .

Theorem 4.14. Let S be a Hausdorff convergence semigroup acting continuously on a Haus-

dorff convergence space X and let Y be a regular strict compactification of X . Declare a filter

on S to be Cauchy if it converges and declare a filter F on X to be Cauchy if [F] converges in Y .

Then there is an action of S on Y making it a regular strict S-compactification of X if and only if

S acts Cauchy-continuously on X . Moreover, if Y = βX and S acts Cauchy-continuously on X ,

then there is an action of S on βX making it the largest regular S-compactification of X .

Proof. First note that the collections of Cauchy filters on S and on X are valid Cauchy structures:

Since [s] → s for every s ∈ S, [s] is Cauchy. For every x ∈ X , [x]X → x in X , hence [x]Y = [[x]X ]Y →
x in Y since Y is an extension of X , hence [x]X is Cauchy. Let F be a Cauchy filter on S and let G
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be a Cauchy filter on X . Then F→ s for some s ∈ S and [G] → y in Y for some y ∈ Y . If F′ is finer

than F and G′ is finer than G, then F′ → s and [G′] → y in Y , so F′ and G′ are Cauchy. If F,F′ are

Cauchy filters on S such that F∨F′ exists, then F and F′ converge, and since F∨F′ is finer than

F andF′, F∨F′ converges to both the limit ofF and the limit ofF′, and since Y is Hausdorff, the

limits of F, F′ and F∨F′ must be the same, hence F∩F′ converges to this limit, which means

that F∩F′ is Cauchy. If G,G′ are Cauchy filters on X such that G∨G′ exists, then [G] and [G′]

converge in Y , and since [G∨G′] = [G]∨[G′] is finer than [G] and [G′], [G]∨[G′] converges to both

the limit of [G] and the limit of [G′], and since Y is Hausdorff, the limits of [G], [G′] and [G]∨ [G′]

must be the same, hence [G]∩ [G′] = [G∩G′] converges to this limit, which means that G∩G′ is

Cauchy.

Suppose there is an action of S on Y making it a regular strict S-compactification of X . Let F be

a Cauchy filter on S and let G be a Cauchy filter on X . Then F→ s in S for some s ∈ S and [G] → y

in Y for some y ∈ Y . Since S acts continuously on Y , F[G] = [FG] → s y in Y , which means FG is

a Cauchy filter on X by definition. This proves that S acts Cauchy-continuously on X .

Now suppose S acts Cauchy-continuously on X . Then for every F → s in S and every filter G

on X such that [G] → y in Y , the filter [FG] converges in Y since F and G are Cauchy filters

by definition and FG is a Cauchy filter since the action on X is Cauchy continuous. Thus, Y

satisfies property (P) of Theorem 3.11, hence there is an action of S on Y making it a regular

strict S-compactification of X . If Y = βX , then since βX is a regular strict compactification of

X , it follows the action of S on βX given by (A) in the proof of Theorem 3.11 makes βX into a

regular strict S-compactification of X . We claim that it is the largest regular S-compactification

of X . Let Z be a regular S-compactification of X . Since βX is the Stone-Čech regular com-

pactification of X and Z is compact regular Hausdorff space, the identity function idX : X → Z

has a continuous extension f : βX → Z . We claim that f is an S-map. Clearly, it is an S-map

on X since it is the identity function on X . Let s ∈ S and y ∈ Y − X be arbitrary. Since X is
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dense in y , there is a filter G on X such that [G] → y in Y . Since f is continuous, f [G] → f (y)

in Z . By (A), [[s]G] = [s][G] → s y , and since f is continuous, f [[s]G] → f (s y). Since S acts

continuously on Z , [s] f [G] → s f (y). Since f is the identity function on X , f [G] = [G]Z and so

[s] f [G] = [s][G]Z = [[s]G]Z = f [[s]G], and since Z is Hausdorff, f (s y) = s f (y). We have proved

that f is a continuous S-map from βX to Z such that f (x) = x for all x ∈ X . By Theorem 3.10,

it follows that βX is larger than Z . Since Z is an arbitrary regular S-compactification of X , it

follows that βX is the largest regular S-compactification of X .

Theorem 4.15. If X be a completely regular Hausdorff convergence S-space, then statements

(i) – (iii) are equivalent and (iii) implies (iv).

(i) ωX is a one-point remainder-invariant regular S-compactification of X .

(ii) X is locally compact, non-compact and adherence restrictive.

(iii) X has a remainder-invariant regular S-compactification and it is open in each of its remainder-

invariant regular S-compactification.

(iv) X has a smallest remainder-invariant regular S-compactification.

Proof. (i) =⇒ (ii): Suppose ωX is a one-point remainder-invariant regular S-compactification

of X . Then X is non-compact and by Theorem 3.14 X adherence restrictive. By Theorem 4.4,

π(ωX ) is a one-point topological compactification of πX , which means πX is locally compact.

Since X is completely regular, by Theorem 4.5,πX and X agree on ultrafilter convergence. Since

πX is locally compact, it follows by Theorem 2.6 that X is locally compact.

(ii) =⇒ (i) and (iii): Assume X is locally compact, non-compact and adherence restrictive. Since

X is locally compact, by Theorem 4.6, ωX is the smallest regular compactification of X . Since

X is adherence restrictive, by Theorem 4.7, ωX is a one-point remainder-invariant regular S-

compactification of X . Again, by Theorem 4.6, X is open in each of its regular compactifications,

including its remainder-invariant regular S-compactifications.
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(iii) =⇒ (ii) and (iv). Assume X has a remainder-invariant regular S-compactification and it

is open in each of its remainder-invariant regular S-compactification. Let Y be an arbitrary

remainder-invariant regular S-compactification of X . By Theorem 4.4, πY is a topological com-

pactification ofπX . Since X is open in Y , by part (iii) of Proposition 2.6, πX is open inπY . Since

a dense subset of a compact Hausdorff topological space is locally compact if and only if it is

open, and since πX is an open dense subset of πY and πY is a compact Hausdorff topological

space, it follows that πX is locally compact. Since X is completely regular, by (ii) of Theorem

4.5, πX and X agree on ultrafilter convergence, and so by part (iv) of Theorem 2.6, X is locally

compact. By Theorem 3.14, X is adherence restrictive, so by Theorem 4.7, ωX is a one-point

remainder-invariant S-compactification of X . Since X is locally compact, by Theorem 4.6, ωX

is the smallest regular compactification of X and in particular it smallest remainder-invariant

regular S-compactification of X .

It is an open question whether the statement (iv) of the above theorem is equivalent to any of

the other statements. In other words, it is an open question whether ωX is always the smallest

remainder-invariant regular S-compactification.

Theorem 4.16. If a convergence S-space X has a regular S-compactification, then it has a

largest regular S-compactification.

Proof. Let (Yι) be a family consisting of all the regular S-compactifications of X , let Y denote

the product convergence space
∏
ιYι and for each index ι let πι be projection map of Y onto Yι.

Define an action of S on Y so that for s ∈ S and y ∈ Y , s y satisfies πι(s y) = sπι(y) for each index

ι. Let us prove that this action is a valid action on Y : Let s, s′ ∈ S and y ∈ Y be arbitrary. Then

πι(s(s′y)) = sπι(s′y) = ss′πι(y) =πι((ss′)y) for every index ι, hence s(s′y) = (ss′)y . Finally, if e ∈ S,

then πι(e y) = eπι(y) =πι(y) for every index ι, hence e y = y .
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We now prove that the action on Y is continuous: Let F→ s in S and G→ y in Y . Then πι[G] →
πι(y) and since the action on Yι is continuous, it follows that Fπι[G] → sπι(y). Since Fπι[G] =
πι[FG] by Proposition 3.4 and since sπι(y) = πι(s y), we have that πι[FG] → πι(s y). Since this is

true for every ι ∈ A, it follows that FG→ s y .

Since the given action on Y is continuous and Y is the product of compact regular Hausdorff

convergence spaces, it follows that Y is a compact regular Hausdorff convergence S-space.

Define f : X → Y so that πι( f (x)) = x for all x ∈ X and all indices ι. This is well defined since

X is a subspace of each Yι. We claim that f is an S-embedding of X in Y . By definition, f is

one-to-one. To see that it is an S-map, note that for every s ∈ S and x ∈ X and every index ι,

πι( f (sx)) = sx = sπι( f (x)) =πι(s f (x)), where this last equality follows from the definition of the

action on Y . Suppose that F → x in X . Since πι[ f [F]] = [F]Yι → x in Yι for every index ι, it

follows that f [F] → f (x) in Y . Now suppose that f [F] → f (x) in Y for some filter F on X and

some x ∈ X . Then πι[ f [F]] = [F]Yι →πι( f (x)) = x in Yι for each ι, and since X a subspace of each

Yι, it follows that F→ x in X . This concludes the proof that f is an S-embedding of X in Y .

We now prove that cl f (X ) is a regular S-compactification of X . First note that cl f (X ) is an S-

subspace of Y since S cl f (X ) ⊆ cl(S f (X )) by Proposition 3.7 and cl(S f (X )) = cl( f (SX )) ⊆ cl f (X ).

Since Y is compact, regular and Hausdorff, the closure operator on Y is idempotent by Proposi-

tion 2.8, which means cl f (X ) is closed, which means cl f (X ) is compact (and of course regular

and Hausdorff). Moreover, since f (X ) is automatically dense in cl f (X ), it follows that cl f (X ) is

a regular S-compactification of X .

Finally, since the restriction of πι to cl f (X ) is a continuous S-map from cl f (X ) to Yι such that

πι( f (x)) = x for all x ∈ X , it follows from Theorem 3.10 that cl f (X ) is larger than Yι. Since this

is true for every Yι, and since (Yι) consists of all the regular S-compactifications of X , it follows

that cl f (X ) is the largest regular S-compactification of X .
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CHAPTER 5: S-COMPLETIONS

Completions of Cauchy Spaces - A Review

In this section, we outline some of the main results regarding completions of Cauchy spaces,

which we will generalize in the next section to the context of Cauchy S-spaces.

Let X be a Cauchy space with Cauchy structure C . Define a relation ∼ on C so that F ∼ G if

and only if F∩G ∈ C . The relation ∼ is an equivalence relation on C and two filters F,G ∈ C

are called equivalent if F ∼ G. (In terms of sequences, the relation ∼ can be thought of as an

equivalence relation between Cauchy sequences such that two Cauchy sequences are equiva-

lent if when you interleave them you get a Cauchy sequence.) Given F ∈ C , we will write 〈F〉
for the equivalence class containing F. Note that the intersection of any two filters in 〈F〉 is

again in 〈F〉, and if G ∈ 〈F〉, then every filter finer than G is also in 〈F〉. We will use these facts

repeatedly and implicitly in many of the proofs later on. We will use X ∗ to denote the set of

equivalence classes of equivalent Cauchy filters on X . Note that X is “contained” in X ∗ via the

correspondence φ : X → X ∗ given by φ(x) = 〈[x]〉 .

A completion Y of Cauchy space X is in standard form if Y = X ∗, φ is the dense embedding

and φ[F] →〈F〉 for every F ∈C . Basically, a completion is in standard form if its points consist

of equivalence classes of equivalent Cauchy filters.

Theorem 5.1 (Theorem 5 in [21]). Every completion of a Cauchy space is equivalent to one in

standard form.

We know that in the setting of metric spaces and more generally uniform spaces, every Haus-

dorff space has a completion. The same is true in this setting. In fact, there are many possible
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completions of a Hausdorff Cauchy space (cf. Theorem 3 of [21]).

Hausdorff plus complete does not imply regular in the setting of Cauchy spaces, so it makes

sense to talk about regular completions. In [11], the authors introduce the so-called Σ operator

in order to construct regular completions. It is defined as follows:

For every subset A of a Cauchy space X , define ΣA to be the set of equivalence classes 〈F〉 ∈ X ∗

that contain a Cauchy filter G that contains A, and for every F ∈ C , let ΣF be the filter on X ∗

generated by {ΣF : F ∈ F} (see Proposition 5.4 for a proof that this is indeed a basis). Let ΣC

denote the collection of filters on X ∗ defined so that H ∈ ΣC if and only if H is finer than ΣF

for some F ∈C and let ΣX = (X ∗,ΣC ) . In general, ΣX fails to be a Cauchy space. However, we

have the following theorem.

Theorem 5.2 (Corollary 1.6 in [11]). If a Cauchy space has a regular strict completion in stan-

dard form, then the completion must be equal to ΣX .

There is another kind of completion available for Cauchy spaces that satisfies a property that

is stronger than Hausdorff. The completions are constructed via the use of the Γ operator . It

is related to the Σ operator and it works as follows: Given a subset A of a Cauchy space X , let

ΓA =φ(A)∪ (ΣA −φ(X )). Note that 〈F〉 ∈ ΓA if and only if either F→ x for some x ∈ A or F ∼ G

for some non-convergent Cauchy filter G on X that contains A. We now prove a sundry of facts

regarding the Σ and Γ operators.

Proposition 5.3. The following statements are true about any two subsets A and B of a Cauchy

space X .

(i) φ(A) ⊆ ΓA ⊆ΣA with equality when A is a singleton set.

(ii) A ⊆ B implies ΣA ⊆ΣB and ΓA ⊆ ΓB .

(iii) Σ(A∩B) ⊆ΣA∩ΣB and Γ(A∩B) ⊆ ΓA∩ΓB .
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(iv) Σ(A∪B) =ΣA∪ΣB and Γ(A∪B) = ΓA∪ΓB .

(v) ΣA∩φ(X ) =φ(cl A) and φ(cl A)∪ΓA =ΣA.

(vi) φ−1(ΓA) = A and φ−1(ΣA) = cl A.

Proof.

(i) The first inclusion follows from the definition. The second inclusion follows from the

fact that φ(A) ⊆ ΣA: Since φ(A) consists of all those equivalence classes 〈[x]〉 such that

x ∈ A, it follows that A ∈ [x] for every 〈[x]〉 ∈φ(A), hence 〈[x]〉 ∈ΣA. Now suppose A = {x}.

Then 〈F〉 ∈ Σ{x} if and only if there is a Cauchy filter G on X such that {x} ∈ G ∼ F if and

only if [x] ∼ F if and only if 〈F〉 = 〈[x]〉 = φ(x). This proves that φ({x}) = Σ{x} and since

φ({x}) ⊆ Γ{x} ⊆Σ{x}, it follows that φ({x}) = Γ{x} =Σ{x}.

(ii) If 〈F〉 ∈ΣA, then there is a G∼F such that A ∈G, and since A ⊆ B , it follows that B ∈G and

that 〈F〉 ∈ΣB . Also, since A ⊆ B , φ(A) ⊆φ(B) and ΣA−φ(X ) ⊆ΣB −φ(X ) by what we have

just shown, hence ΓA ⊆ ΓB .

(iii) Follows from (ii).

(iv) The reverse inclusions, Σ(A∪B) ⊇ΣA∪ΣB and Γ(A∪B) ⊇ ΓA∪ΓB , follow from (ii). Sup-

pose 〈F〉 ∈Σ(A∪B). Then there is a G∼F such that A∪B ∈G, Let U be an ultrafilter finer

thanG. Then G∼U and so F∼U since ∼ is transitive. Furthermore, U contains either A or

B , which means that 〈F〉 belongs to either ΣA or ΣB and hence to ΣA∪ΣB . Now suppose

〈F〉 ∈ Γ(A ∪B). If F→ x in X for some x ∈ A ∪B , then 〈F〉 belongs to either ΓA or ΓB and

hence to ΓA ∪ΓB . Otherwise, F ∼ G for some non-convergent Cauchy filter G on X that

contains A ∪B . Let U be an ultrafilter finer than G. Then G ∼ U and so F ∼ U since ∼ is

transitive. Furthermore, U contains either A or B , which means that 〈F〉 belongs to either

ΓA or ΓB and hence to ΓA∪ΓB .

(v) The proof that ΣA∩φ(X ) =φ(cl A) goes as follows: 〈[x]〉 ∈ΣA∩φ(X ) if and only if there is
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a Cauchy filter G on X such that A ∈G→ x if and only if x ∈ cl A if and only if φ(x) = 〈[x]〉 ∈
φ(cl A). Now sinceΣA∩φ(X ) =φ(cl A), it follows thatφ(cl A)∪ΓA = (ΓA∪ΣA)∩(ΓA∪φ(X )).

Now note that ΓA∪ΣA = ΓA∪φ(X ) =ΣA.

(vi) By definition of ΓA we have thatφ−1(ΓA) =φ−1(φ(A))∪φ−1(ΣA−φ(X )) = A∪;= A. Since

φ(cl A)∪ΓA =ΣA, we have that φ−1(ΣA) =φ−1(φ(cl A))∪φ−1(ΓA) = cl A∪ A = cl A.

Proposition 5.4. The following are true statements about a Cauchy filter F on a Cauchy space

X .

(i) If B is basis for B, then {ΣB : B ∈B} and {ΓB : B ∈B} are bases for filters on X ∗ denoted

ΣF and ΓF, respectively.

(ii) ΣF⊆ ΓF⊆φ[F] with equality when F is a point filter.

(iii) F=φ−1[ΓF] and clF=φ−1[ΣF] and φ[clF]∩ΓF=ΣF and ΣF⊆ [〈F〉].
(iv) If F→ x, then Γ(F∩ [x]) ⊆ [〈F〉] = [φ(x)]. If F does not converge, then ΓF⊆ [〈F〉].

Proof.

(i) Both {ΣB : B ∈B} and {ΓB : B ∈B} are not empty since B is not empty. Both {ΣB : B ∈B}

and {ΓB : B ∈B} do not contain the empty set since φ(B) is not empty for all B ∈B and

φ(B) ⊆ ΓB ⊆ ΣB by (i) of Proposition 5.3. And by (iii) of that same proposition, it follows

that both {ΣB : B ∈B} and {ΓB : B ∈B} are bases.

(ii) Follows from (i) of Proposition 5.3.

(iii) By (vi) of Proposition 5.3, we immediately have that F =φ−1[ΓF] and that φ−1[ΣF] = clF;

also φ[clF]∩ΓF = ΣF follows automatically from (v) of that same proposition. Since F ∈
F∼F for every F ∈F, it follows that 〈F〉 ∈ΣF for every F ∈F, hence ΣF⊆ [〈F〉].

(iv) If F→ x, then F∩[x] is Cauchy, which means F∼ [x], which means 〈F〉 = 〈[x]〉 =φ(x), and

sinceφ(x) = 〈[x]〉 ∈φ(F∪{x}) ⊆ Γ(F∪{x}) for every F ∈F, it follows thatΓ(F∩[x]) ⊆ [φ(x)] =
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[〈F〉]. If F does not convergence, then for every F ∈F we have that 〈F〉 ∈ΣF −φ(X ), which

means 〈F〉 belongs to every element of ΓF, which means ΓF⊆ [〈F〉].

Given a Cauchy space X with Cauchy structure C , we will write ΓC for the set of filters on X ∗

defined so that F ∈ ΓC if and only if ΓG ⊆ F for some G ∈ C . We will also write ΓX for the pair

(X ∗,ΓC ) .

We say that a Cauchy space, resp. its Cauchy structure, is separated if for every two Cauchy

filters F, G, if ΓF∨ΓG exists, then F∩G is Cauchy (which means F∼G and 〈F〉 = 〈G〉).

Theorem 5.5. The following statements are true about a separated Cauchy space X .

(i) ΓX is a complete Hausdorff Cauchy space.

(ii) ΓX is a completion of X in standard form.

(iii) ΓX is totally bounded whenever X is totally bounded.

(iv) If X is regular, then ΣX = ΓX .

Proof.

(i) Let C be the Cauchy structure on X . By part (iv) of Proposition 5.4, ΓC contains all the

point filters on X ∗. By definition of ΓC , if H ∈ ΓC and H′ is finer than H, then H′ ∈ ΓC .

Now suppose that H and H′ are two filters in ΓC such that H∨H′ exists. By definition,

there are two filters F and F′ in C such that ΓF ⊆H and ΓF′ ⊆H′. Since H∨H′ exists,

so does ΓF∨ΓF′. Since X is separated, F∩F′ ∈ C , which means Γ(F∩F′) ∈ ΓC . By

(iv) of Proposition 5.3, Γ(F∩F′) = ΓF∩ΓF′ and since ΓF∩ΓF′ ⊆H∩H′, it follows that

H∩H′ ∈ ΓC . This completes the proof that ΓC is a Cauchy structure on X ∗, hence ΓX is

a Cauchy space.

Before we prove that ΓX is Hausdorff, we will need the following three lemmas.
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Lemma 1. If H is a filter on ΓX that converges to 〈F1〉 and 〈F2〉, then there is a

Cauchy filter G on X such that ΓG⊆H∩ [〈F1〉]∩ [〈F2〉].

Proof. Since H converges to 〈Fi 〉, H∩ [〈Fi 〉] ∈ ΓC , which means there is some

Gi ∈C such that ΓGi ⊆H∩ [〈Fi 〉]. Since H is finer than each ΓGi , it follows that

ΓG1 ∨ΓG2 exists, and since X is separated, G1 ∩G2 ∈ C . By (iv) of Proposition

5.3 we have that Γ(G1 ∩G2) = ΓG1 ∩ΓG2 ⊆H∩ [〈F1〉]∩ [〈F2〉]. Thus, G= G1 ∩G2

is Cauchy filter on X such that ΓG⊆H∩ [〈F1〉]∩ [〈F2〉].

Lemma 2. For every Cauchy filter G on X and every x ∈ X , if ΓG ⊆ [φ(x)], then

〈G〉 =φ(x).

Proof. Since ΓG⊆ [φ(x)], for every G ∈G, we have that φ(x) ∈ ΓG , and since this

implies that x ∈ G by definition of ΓG , we conlude that G ⊆ [x], which means

G∩ [x] is Cauchy, which means 〈G〉 =φ(x).

We are now ready prove that ΓX is Hausdorff: Let H be a filter on ΓX . We consider three

cases. (i) Suppose H converges to φ(x) and φ(y). By Lemma 1, there is a Cauchy filter G

on X such that ΓG ⊆H∩ [φ(x)]∩ [φ(y)]. Since ΓG is coarser than both [φ(x)] and [φ(y)],

by Lemma 2 it follows that 〈G〉 = φ(x) = φ(y). (ii) Suppose H converges to φ(x) and to

〈F〉, where F ∈ C is a non-convergent. By Lemma 1, there is a Cauchy filter G on X such

that ΓG ⊆ H∩ [φ(x)] ∩ [〈F〉]. By Lemma 2, 〈G〉 = φ(x). By part (iv) of Proposition 5.4,

ΓF ⊆ [〈F〉], and since ΓG ⊆ [〈F〉], it follows that ΓF∨ΓG exists, which means 〈G〉 = 〈F〉
since X is separated. Thus, 〈G〉 = φ(x) = 〈F〉. (iii) Suppose H converges to 〈F1〉 and 〈F2〉,
where each Fi ∈ C is non-convergent. By Lemma 1, there is a Cauchy filter G on X such

that ΓG ⊆H∩ [〈F1〉]∩ [〈F2〉]. By part (iv) of Proposition 5.4, ΓFi ⊆ [〈Fi 〉], and since ΓG ⊆
[〈Fi 〉], it follows that ΓFi ∨ΓG exists, which means 〈G〉 = 〈Fi 〉 since X is separated. Thus,

〈G〉 = 〈F1〉 = 〈F2〉.
Finally, we prove that ΓX is complete. The proof follows from the following lemma since
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every Cauchy filter on ΓX is finer than some ΓG.

Lemma 3. For every G ∈C , ΓG→〈G〉 in ΓX .

Proof. We want to show that ΓG∩ [〈G〉] ∈ ΓC . If G is non-convergent, then by

part (iv) of Proposition 5.4, ΓG ⊆ [〈G〉] so ΓG∩ [〈G〉] ∈ ΓC . If G → x for some

x ∈ X , then by part (iv) of Proposition 5.4, Γ(G∩ [x]) ⊆ [φ(x)], which means

Γ(G∩ [x])∩ [〈G〉] ∈ ΓC , which means ΓG∩ [〈G〉] ∈ ΓC .

(ii) Let us first prove that φ is an Cauchy embedding. If F ∈C , then ΓF ∈ ΓC by definition of

ΓC , and since ΓF⊆φ[F] by (ii) of Proposition 5.4, it follows that φ[F] ∈ ΓC . Now suppose

φ[F] ∈ ΓC for some F ∈ F(X ). Then there is a G ∈ C such that ΓG ⊆ φ[F], hence F =
φ−1[φ[F]] ⊇φ−1[ΓG] =G, where the last equality follows from (iii) of Proposition 5.4. Now

we prove that φ(X ) is dense in ΓX and conclude that ΓX is in standard form: For every

Cauchy filter F on X , ΓF→〈F〉 in ΓX by Lemma 3. Since ΓF ⊆φ[F] by (ii) of Proposition

5.4, it follows that φ[F] →〈F〉 in ΓX .

(iii) Suppose X is totally bounded and let V be an ultrafilter on X ∗. For each 〈F〉 ∈ X ∗−φ(X ),

pick an ultrafilter U〈F〉 ∈ 〈F〉. Given A ⊆ X , letΨA =φ(A)∪ {〈F〉 : A ∈U〈F〉}.

(a) Ψ(A ∩B) =ΨA ∩ΨB for all A,B ⊆ X : Follows from the fact that φ(A ∩B) = φ(A)∩
φ(B) (since φ is one-to-one) and the fact that {〈F〉 : A ∩B ∈U〈F〉} = {〈F〉 : A ∈U〈F〉}∩
{〈F〉 : B ∈U〈F〉}.

(b) Ψ(A∪B) =ΨA∪ΨB for all A,B ⊆ X : Follows from the fact thatφ(A∪B) =φ(A)∪φ(B)

and the fact that {〈F〉 : A∪B ∈U〈F〉} = {〈F〉 : A ∈U〈F〉}∪ {〈F〉 : B ∈U〈F〉} since the U〈F〉

are ultrafilters.

(c) ΨA ⊆ ΓA for all A ⊆ X : This follows from the fact that {〈F〉 : A ∈U〈F〉} ⊆ΣA−φ(X ).

(d) U := {A ⊆ X : ΨA ∈V} is an ultrafilter on X : SinceΨX = X ∗ ∈V, U is not empty. Since

Ψ;=;, U does not contain the empty set. IfA⊆ B ⊆ X , thenΨA ⊆ΨB by (b), hence

A ∈U implies B ∈U. If A,B ∈U, then A∩B ∈U by (a). If A∪B ∈U, then by (b) either
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A ∈U or B ∈U.

(e) {ΨA : A ∈ U} is a basis for a filter on X ∗, which we denote ΨU: Since U contains X

but not the empty set, {ΨA : A ∈U} is not empty and does not contain the empty set.

By (a), it follows that {ΨA : A ∈U} is a basis.

(f) ΓU⊆ΨU⊆V: First note that {ΨA : A ∈U} = {ΨA : ΨA ∈V} ⊆V, henceΨU⊆V. Since

{ΓA : A ∈ U} = {ΓA : ΨA ∈ V} and {ΨA : ΨA ∈ V} is finer than {ΓA : A ∈ U} by (c), it

follows that ΓU⊆ΨU.

Since X is totally bounded and U is an ultrafilter on X , U is Cauchy, hence ΓU is Cauchy,

and since ΓU⊆V, it follows that V is Cauchy.

(iv) Let C be the Cauchy structure on X and let H ∈ ΣC . Then H is finer than ΣF for some

Cauchy filter F ∈ C . Since X is regular, clF ∈ C , so φ[clF] ∈ ΓC . Since φ[clF] ⊆ φ[F]

and ΓF ⊆ φ[F] by (ii) of Proposition 5.4, it follows that φ[clF]∨ΓF exists, which means

φ[clF]∩ΓF ∈ ΓC . By (iii) of Proposition 5.4, φ[clF]∩ΓF = ΣF, hence ΣF ∈ ΓC , hence

H ∈ ΓC . This proves that ΣC ⊆ ΓC . For the reverse inclusion, if H ∈ ΓC , there is a G ∈C

such that ΓG ⊆ H and since ΣG ⊆ ΓG by (iii) of Proposition 5.4, it follows that H ∈ ΣC .

Thus, ΣC = ΓC and consequently ΣX = ΓX .

Part (i) of the above theorem implies that separated Cauchy spaces are Hausdorff and by part

(iv) we see being separated and regular is slightly stronger than being Hausdorff and regular.

We will say that a Cauchy space, resp. its Cauchy structure, is precompact if it is totally bounded

and has a regular completion.

Theorem 5.6. If X is a precompact Cauchy space, then ΣX is a regular strict completion of X .

Proof. Since X is precompact, it has a regular completion, which means that X is regular and

Hausdorff. We now prove thatΣX is a completion. First, we prove thatΣX is a Cauchy space. Let
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C be the Cauchy structure on X . By (iii) of Proposition 5.4, ΣC contains every point filter on X ∗

so it satisfies the point filter axiom. By definition of ΣC , it automatically satisfies the subfilter

axiom. Before we prove that ΣC satisfies the intersection axiom, we will need the following

lemma.

Lemma 1. IfF,G ∈C andΣF∨ΣG exists, thenF∩G ∈C and consequentlyΣF∩ΣG ∈
ΣC .

Proof. Since X is precompact, it has a regular completion Y , and by Theorem 5.1,

we assume that Y is in standard form. By Proposition 1.5 in [11], ΣA = clY φ(A) for

all A ⊆ X . Thus, since ΣF∨ΣG= clY φ[F]∨clY φ[G] exists, it follows that clY φ[F]∩
clY φ[G] = clY φ[F∩G] is a Cauchy filter on Y , which means φ[F∩G] is a Cauchy

filter on Y , which means F∩G is a Cauchy filter on X since Y is in standard form.

By (iv) of Proposition 5.3, Σ(F∩G) ⊆ΣF∩ΣG and since Σ(F∩G) ∈ΣC , it follows that

ΣF∩ΣG ∈ΣC .

Now we are ready to prove that ΣC satisfies the intersection axiom: Suppose H,H′ ∈ ΣC and

H∨H′ exists. By definition of ΣC , there are G,G′ ∈ C such that ΣG ⊆H and ΣG′ ⊆H′. Since

H∨H′ exists, so does ΣG∨ΣG′. By Lemma 1, ΣG∩ΣG′ ∈ ΣC and since ΣG∩ΣG′ ⊂H∩H′, it

follows that H∩H′ ∈ ΣC since ΣC satisfies the subfilter axiom. This concludes the proof that

ΣC is Cauchy structure and that ΣX is a Cauchy space.

Now we prove that ΣX is complete: Let H ∈ ΣC be arbitrary. Pick a G ∈ C such that ΣG ⊆
H. We claim that H → 〈G〉 in ΣX , i.e. H∩ [〈G〉] ∈ ΣC . This follows immediately from (iii) of

Proposition 5.4, for it says thatΣG⊆ [〈G〉], henceΣG⊆H∩[〈G〉] and consequentlyH∩[〈G〉] ∈ΣC

by definition of ΣC .

Next, we prove that φ : X → ΣX is a Cauchy embedding: Suppose F ∈ C . By (ii) of Proposition
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5.4, ΣF ⊆ φ[F], hence φ[F] ∈ ΣC . Now suppose φ[F] ∈ ΣC for some F ∈ F(X ). Since ΣX is

complete, φ[F] → 〈G〉 in ΣX for some G ∈ C . This means that φ[F]∩ [〈G〉] ∈ ΣC , which means

there is an H ∈ C such that ΣH ⊆ φ[F]∩ [〈G〉]. Since ΣH ⊆ φ[F], by (iii) of Proposition 5.4,

clH=φ−1[ΣH] ⊆F. Since X is regular, clH and consequently F are in C .

Next, we prove that φ[F] →〈F〉 in ΣX for all F ∈C . Since φ[F] ∈ ΣC , there is a G ∈C such that

ΣG⊆φ[F]. By (iii) of Proposition 5.4,ΣG⊆ [〈G〉], henceΣG⊆φ[F]∩[〈G〉], henceφ[F]∩[〈G〉] ∈ΣC

since ΣG ∈ ΣC . This means that φ[F] → 〈G〉 in ΣX . Since φ[F] is an upper bound of both ΣF

and ΣG, it follows that ΣF∨ΣG exists, which by Lemma 1 means that F∩G ∈ C , i.e. 〈F〉 = 〈G〉.
Thus, φ[F] →〈F〉 in ΣX .

Before we continue proving stuff about ΣX , we will need the following lemma.

Lemma 2. For all A ⊆ X , clΣX φ(A) = ΣA. Consequently, for all F ∈ C , clΣX φ[F] =
ΣF.

Proof. If 〈F〉 ∈ΣA, then A ∈G∼F for someG ∈C , and sinceφ(A) ∈φ[G] →〈G〉 inΣX ,

it follows that 〈F〉 = 〈G〉 ∈ clΣX φ(A). This proves that ΣA ⊆ clΣX φ(A). For the reverse

inclusion, let 〈F〉 ∈ clΣX φ(A). Then there is an H ∈ΣC such that φ(A) ∈H→〈F〉 in

ΣX . Since φ(A) ∈H, we have that φ(X ) ∈H, which means that G :=φ−1[H] ∈ F(X ).

Since φ[G] = H → 〈F〉 in ΣX and φ[F] → 〈F〉 in ΣX , it follows that φ[G]∩φ[F] =
φ[G∩F] → 〈F〉 in ΣX . Thus, φ[G∩F] ∈ ΣC , which means G∩F ∈ C since φ is a

Cauchy embedding, which means G∼F. Since A ∈G∼F, it follows that 〈F〉 ∈ΣA.

Now we can prove that φ(X ) is strictly dense: Suppose H→ 〈F〉 in ΣX . Pick a G ∈ C such that

ΣG⊆H∩ [〈F〉]. By Lemma 2, ΣG= clΣX φ[G] ⊆H∩ [〈F〉], hence clΣX φ[G] ⊆H. Since ΣG⊆ [〈F〉],
it follows that ΣG∩[〈F〉] ∈ΣC , hence ΣG→〈F〉 in ΣX . Since ΣG= clΣX φ[G] ⊆φ[G], we also have

thatφ[G] →〈F〉 inΣX . This concludes the proof thatφ(X ) is strictly dense and thatΣX is a strict
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completion of X .

The next order of business is to prove that ΣX is Hausdorff. Before we do so, we make the

following observation: Since X is precompact, it has a regular completion Y , and by Theorem

5.1, we assume that Y is in standard form. Let CY be the Cauchy structure on Y . By Proposition

1.5 in [11] clY φ(A) = ΣA for all A ⊆ X . By Lemma 2, it follows that clY φ[F] = clΣX φ[F] = ΣF
for all F ∈C . Since Y is a regular completion, clY φ[F] ∈CY for every F ∈C , hence ΣF ∈CY for

every F ∈C , hence ΣC ⊆CY . Now suppose that H→〈Fi 〉 in ΣX for some Fi ∈C , i = 1,2. Then

H∩ [〈Fi 〉] ∈ΣC ⊆CY , which means H→〈Fi 〉 in Y since Y is complete. Since Y is Hausdorff, it

follows that 〈F1〉 = 〈F2〉.

Using (3) of Theorem 2.2 in [11], ΣX is regular. This completes the proof that ΣX is a regular

strict completion of X .

A well-known result from the theory of uniform spaces is that there is a one-to-one correspon-

dence between the set of totally bounded uniformities on a completely regular Hausdorff topo-

logical space X and the set of Hausdorff compactifications of X . Theorem 5.7 below is a general-

ization of this result. To make sense of the statement of the theorem, we will need the following

notions:

Given a convergence space X , we say that a Cauchy space Y induces X if Y regarded as a conver-

gence space is equal to X (i.e. Y and X are the same set with the same convergence strucutre).

The set of all Cauchy spaces that induce a given convergence space X can be ordered in the

following way: If X1 and X2 are Cauchy spaces that induce X , we will say that X1 is greater than

X2 if and only if the Cauchy structure on X1 is finer than that of X2. Note that if X1 is greater

than X2 and X2 is greater than X1, then X1 = X2.

Theorem 5.7 (Theorem 4.2 in [11]). If X is a completely regular Hausdorff convergence space,
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then there is an isomorphism between the ordered set of precompact Cauchy structures on X

that induce X and the ordered set of regular strict compactifications of X .

S-Completion Theory

We now proceed to generalize some of the results from the previous section. Let X be a Cauchy

S-space and let S act on X ∗ as follows: Given s ∈ S and 〈F〉 ∈ X ∗, let s〈F〉 = 〈[s]F〉. This action

on X ∗ is well-defined: Suppose 〈F〉 = 〈G〉 and let s ∈ S be arbitrary. Then s〈F〉 = 〈[s]F〉 and

s〈G〉 = 〈[s]G〉. Since F∩G is Cauchy, so is [s](F∩G) = [s]F∩ [s]G, hence 〈[s]F〉 = 〈[s]G〉. It is also

a valid action on X ∗: Let s, s ∈ S and 〈F〉 ∈ X ∗ be arbitrary. Then (ss′)〈F〉 = 〈[ss′]F〉 = 〈[s][s′]F〉 =
s〈[s′]F〉 = s(s′〈F〉). Also, if e ∈ S, then e〈F〉 = 〈[e]F〉 = 〈F〉.

Henceforth, the default action on X ∗ will be the one given above. We now ask ourselves under

what conditions on X is this action above a Cauchy continuous action onΣX andΓX . To answer

this question, we first make some observations about how the action behaves with respect to

the injection φ, the sigma operator Σ and the gamma operator Γ. This is the subject of the

following lemma.

Lemma 5.8. If X is a Cauchy S-space, then

(i) φ is an S-map,

(ii) A(ΣB) ⊆Σ(AB) for all A ⊆ S and B ⊆ X ,

(iii) if X is adherence restrictive, then A(ΓB) ⊆ Γ(AB) for all A ⊆ S and B ⊆ X , and

Proof.

(i) Given s ∈ S and x ∈ X , φ(sx) = 〈[sx]〉. Since [sx] = [s][x], it follows that 〈[sx]〉 = 〈[s][x]〉 =
s〈[x]〉 = sφ(x) where the second-to-last equality follows from the definition of the action
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on X ∗.

(ii) Let s ∈ A and 〈F〉 ∈ ΣB be arbitrary. Then there is a G in 〈F〉 that contains B , hence sB ∈
[s]G. Since [s]G ∈ 〈[s]F〉 and [s]G contains sB , it follows that 〈[s]F〉 ∈Σ(sB) ⊆Σ(AB).

(iii) Let s ∈ A and 〈F〉 ∈ ΓB be arbitrary. We consider two cases. (i) Suppose F → x in X for

some x ∈ B . Then 〈F〉 = φ(x) ∈ φ(B) and consequently s〈F〉 = 〈[s]F〉 = sφ(x) = φ(sx) ∈
φ(AB) ⊆ Γ(AB). (ii) Suppose there is a non-convergent Cauchy filter G on X such that

B ∈ G∼F. Since X is adherence-restritive, [s]G does not converge. Since F∩G is Cauchy,

so is [s](F∩G) = [s]F∩ [s]G, hence 〈[s]F〉 = 〈[s]G〉. Thus, [s]G is non-convergent Cauchy

filter on X such that AB ∈ [s]G∼ [s]F, which means s〈F〉 = 〈[s]F〉 ∈ Γ(AB).

Theorem 5.9. If X is a Cauchy S-space, then

(i) if ΣX is a Cauchy completion of X , then it is also an S-completion of X ,

(ii) if X is adherence restrictive and ΓX is a Cauchy completion of X , then ΓX is also an S-

completion of X .

Proof. By (i) of Lemma 5.8, φwill be a dense Cauchy S-embedding, so all we have to do is verify

that the action on ΣX and ΓX is Cauchy continuous.

(i) Let F be a Cauchy filter on S and let H be a Cauchy filter on ΣX . Since H is Cauchy, there

is a Cauchy filter G on X such that ΣG ⊆H. By (ii) of Lemma 5.8, Σ(FG) ⊆ F(ΣG) ⊆ FH,

and since Σ(FG) is Cauchy, it follows that FH is Cauchy.

(ii) Let F be a Cauchy filter on S and let H be a Cauchy filter on ΓX . Since H is Cauchy, there

is a Cauchy filter G on X such that ΓG ⊆H. By (iii) of Lemma 5.8, Γ(FG) ⊆ F(ΓG) ⊆ FH,

and since Γ(FG) is Cauchy, it follows that FH is Cauchy.

The following theorem generalizes the result of Theorem 5.7. Note: when a Cauchy S-space Y

induces a convergence S-space X , it also means that the actions of S on X and Y are the same.
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Theorem 5.10. Let X be a completely regular Hausdorff convergence space and let S be a com-

plete Cauchy semigroup. Suppose that S acts continuously on X . Then there is an isomorphism

between the ordered set of precompact Cauchy S-space that induce X and the ordered set of

regular strict S-compactifications of X .

Proof. Let X be the set of all precompact Cauchy S-spaces that induce X and let K denote the

set of regular strict S-compactifications of X , ordered in the usual way. Note that we will not

distinguish between isomorphic objects in X and K.

Let X1 ∈X. By Theorems 5.6 and 5.9, ΣX1 is a regular strict S-completion of X . We claim that

ΣX1 is a regular strict S-compactification of X1: Since ΣX1 is regular as a Cauchy space, it is

regular as a convergence space. SinceΣX1 is a Hausdorff strict S-extension in the Cauchy sense,

it is automatically a Hausdorff strict S-extension in the convergence space sense. All we must

show now is that ΣX1 is compact: Pick an ultrafilter V on ΣX1 and letφ1 be the dense Cauchy S-

embedding of X1 in ΣX1. By Proposition 2.10, there is an ultrafilter U on X such that clφ1[U] ⊆
V. Since X1 is precompact,U is Cauchy, henceφ1[U] is Cauchy, and sinceΣX1 is regular, clφ1[U]

is Cauchy and consequently V is Cauchy. We have thus shown that ΣX1 ∈ K and with this in

mind, we claim that the operator Σ : X1 7→ΣX1 is the claimed isomorphism between X and K.

First, we prove that Σ is injective. Let X1, X2 ∈ X be arbitrary. For i = 1,2, let 〈F〉i denote the

equivalence class of Cauchy filters on Xi containing F and let φi be the embeddding of Xi

into ΣXi . Suppose ΣX1 and ΣX2 are equivalent S-compactifications of X . We want to show

that X1 and X2 have the same Cauchy filters. Since ΣX1 and ΣX2 are equivalent, there is an

S-homeomorphism f : ΣX1 → ΣX2 such that f ◦φ1 = φ2. If F is a Cauchy filter on X1, then

φ1[F] → 〈F〉1 in ΣX1, hence f [φ1[F]] = φ2[F] → f (〈F〉1) in ΣX2, hence φ2[F] is a Cauchy filter

on ΣX2, which means F is a Cauchy filter on X2. This proves that every Cauchy filter on X1 is a

Cauchy filter on X2. Since f is a homeomorphism, the same argument with the roles of X1 and
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X2 swapped proves that every Cauchy filter on X2 is a Cauchy filter on X1.

Next, we prove that Σ is surjective. Let Y ∈ K, let C1 be the Cauchy structure on X defined so

that F ∈ C1 if and only if [F] converges in Y and let X1 = (X ,C1). Since Y is Hausdorff and S is

complete, we can and will regard Y as a complete Cauchy S-space. Moreover, by definition of

X1, Y is a regular strict completion of X1. We now proceed to prove that X1 ∈X. First, we prove

that the action of S on X1 is Cauchy continuous: Let F be a Cauchy filter on S and let G be a

Cauchy filter on X1. Since S and Y are complete, there is an s ∈ S and a y ∈ Y such that F→ s in

S and [G] → y in Y . Since [s][G] = [[s]G] → s y in Y , it follows that [s]G is a Cauchy filter on X1.

This proves that the action of S on X1 is Cauchy continuous and that X1 is a Cauchy S-space.

Since Y is a compactification, every ultrafilter on X1 is automatically Cauchy by definition of

X1 and since Y regular completion of X1, it follows that X1 is precompact. Lastly, we prove that

X1 induces X : Given a Cauchy filter G on X1 and a point x ∈ X1, then G∩ [x]X is Cauchy if and

only if [G∩ [x]X ] = [G]∩ [x]Y converges in Y if and only if [G] → x in Y if and only if G→ x in X .

This concludes the proof that X1 ∈ X. To finish the proof that Σ is surjective, just note that by

Theorems 5.1 and 5.2, ΣX1 with ΣC1 as the Cauchy structure is equivalent to Y .

Finally, we prove that Σ is order preserving. Pick X1, X2 ∈X and suppose X1 is greater than X2,

i.e. suppose every Cauchy filter on X1 is a Cauchy filter on X2. We want to prove that ΣX1 is

greater than ΣX2, i.e. we want to prove that there is a continuous surjective S-map h : ΣX1 →
ΣX2 such that h ◦φ1 = φ2. Actually, in light of Theorem 3.10, we only need to prove there is a

continuous function h : ΣX1 → ΣX2 such that h ◦φ1 = φ2. With this in mind, define h : ΣX1 →
ΣX2 by h(〈F〉1) = 〈F〉2 and let Σi denote the Σ operator on ΣXi , i = 1,2. First, we prove that h is

well-defined: Suppose F and G are Cauchy filters on X1 and that 〈F〉1 = 〈G〉1. We want to check

that h(〈F〉1) = h(〈G〉1) or equivalently that 〈F〉2 = 〈G〉2. Since 〈F〉1 = 〈G〉1, it follows that F∩G is

a Cauchy filter on X1, and since every Cauchy filter on X1 is a Cauchy filter on X2, it follows that

F∩G is a Cauchy filter on X2, which means that 〈F〉2 = 〈G〉2. Next we check that h ◦φ1 = φ2:
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Pick an x ∈ X . Then h(φ1(x)) = h(〈[x]〉1) = 〈[x]〉2 =φ2(x). To prove that h is continuous and we

prove that h is Cauchy continuous since Cauchy continuity implies continuity. We will need the

following result: for every A ⊆ X , we have that h(Σ1 A) ⊆ Σ2 A. The proof of this result goes like

this: Pick an 〈F〉1 ∈ Σ1 A. Then there is a G ∈ 〈F〉1 such that A ∈ G . Since 〈G〉1 = 〈F〉1, it follows

that h(〈F〉1) = h(〈G〉1), i.e. 〈G〉2 = 〈F〉2. Thus, A ∈ G ∈ 〈F〉2, which means 〈F〉2 ∈ Σ2 A. This ends

the proof of the result and using it we can now prove that h is Cauchy continuous: Pick a Cauchy

filter H on ΣX1. Then by definition of ΣX1, there is a Cauchy filter G on X1 such that Σ1G⊆H.

By the result we just proved, Σ2G⊆ h[Σ1G] ⊆ h[H], which means h[H] is a Cauchy filter on ΣX2.

61



CHAPTER 6: APPLICATIONS TO PSEUDOQUOTIENTS

Pseudoquotients, also known as generalized quotients, are abstractions of the quotient field

construction of an integral domain. It is a construction that arose and is primarily used in the

area of generalized functions. For a review of the history and application of pseudoquotients,

the reader is referred to [19, 20]. In this chapter, we answer the following question in many par-

ticular instances: When is the pseudoquotient of an S-compactification or S-completion of an

S-space X equivalent to the S-compactification or S-completion, respectively, of the pseudo-

quotient of X ? This chapter can be seen as a continuation of the papers [4, 5].

Preliminaries

Pseudoquotients are defined in the following manner:

Let S be a commutative monoid acting on a set X from the right. Suppose that that the action

on X is right-cancellative, i.e. suppose that xs = y s implies x = y for all s ∈ S and x, y ∈ X . Define

a binary relation ∼ on X ×S so that (x, s) ∼ (y, t ) if and only if xt = y s. Then ∼ is an equivalence

relation on X × S and the collection of equivalence classes of ∼ is called the pseudoquotient

of X with respect to (the action of) S. The pseudoquotient is typically denoted B(X ,S) in the

literature, but we will simplify this and write the pseudoquotient as Q(X ). We will write the

equivalence class in Q(X ) containing the element (x, s) as x/s. There is an obvious right action

of S on Q(X ), namely the one defined by (x/s)t = xt/s .

Henceforth, S will denote a commutative monoid and every action of S will be a right-can-

cellative action.

62



For notational convenience, we adopt the following notations: Given A ⊂ S and B ⊂ X , we will

write B/A for the set {x/s : x ∈ B , s ∈ A}. Given filters F on S and G on X , we will write G/F for

the filter generated by {G/F : G ∈G,F ∈F}.

Let us make an observation about Q(X ) that will be useful later on. Given A ⊆ S and B ⊆ X , then

x/s ∈ B/A if and only if there are elements s′ ∈ A and x ′ ∈ B such that x ′/s′ = x/s. Given A ⊆ S

and B ,C ⊆ X , then (B ∪C )/A = B/A∪C /A and (B ∩C )/A ⊆ B/A∩C /A.

If X is an S-subset of an S-set Y , then it is not necessarily true that Q(X ) ⊆Q(Y ) since for x ∈ X

and s ∈ S, the equivalence class x/s in Q(X ) will generally have fewer elements than x/s in Q(Y ).

Proposition 6.1. If X is an S-subset of an S-set Y , then Y −X is an S-subset of Y if and only if

Q(X ) ⊆Q(Y ).

Proof. Suppose Q(X ) is not a subset of Q(Y ). Then for some x ∈ X and s ∈ S, the equivalence

class x/s in Q(Y ) must contain an element of the form (y, t ) where t ∈ S and y ∈ Y − X . This

means that x/s = y/t , hence xt = y s ∈ X , hence Y − X is not an S-subset of Y . Conversely, if

Y −X is not an S-subset of Y , then for some y ∈ Y −X and t ∈ S, we have that y t ∈ X . Now fix an

s ∈ S and let x = y t . Then xs = y t s = y st and so x/t = y s/s in Q(Y ), which means x/t in Q(Y )

contains (y s, s), which means that x/t in Q(X ) is a proper subset of x/t in Q(Y ), which means

Q(X ) is not a subset of Q(Y ).

Pseudoquotient S-Spaces

If X is a convergence space, then we will treat Q(X ) as a quotient convergence space where the

convergence structure is defined as follows: A filter H on Q(X ) converges to a point x/s of Q(X )

if and only if there are filters F on S and G on X and points s′ ∈ S and x ′ ∈ X such that F → s′
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in S, G→ x ′ in X , x ′/s′ = x/s and G/F ⊆H . If X is a Cauchy space, then we will treat Q(X ) as

a Cauchy quotient space where the Cauchy structure is defined as follows: A filter G on Q(X ) is

Cauchy if and only if there are Cauchy filters F1,F2, . . . ,Fn on S and Cauchy filters G1,G2, . . . ,Gn

on X such that the filters in {Gi /Fi : i = 1,2, . . . ,n} are linked and
n⋂

i=1
Gi /Fi ⊆G .

Theorem 6.2. If X is an S-space, then

(i) Q(X ) is an S-space,

(ii) if X is a Hausdorff convergence S-space, then so is Q(X ), and

(iii) if X is a complete Hausdorff Cauchy S-space and S is complete, then Q(X ) is a complete

Hausdorff Cauchy S-space and convergence in Q(X ) is given by the quotient convergence

structure.

Proof.

(i) Suppose X is a convergence S-space. Let F → t in S and let G→ x/s in Q(X ). We want

to prove that GF → xt/s. Since G → x/s in Q(X ), there are filters F′ on S and G′ on X

such that F′ → s′ for some s′ ∈ S, G′ → x ′ for some x ′ ∈ X , x ′/s′ = x/s and G′/F′ ⊆ G.

Since G′F→ x ′t and F′ → s′ and x ′t/s′ = xt/s, it follows that G′F/F′ → xt/s. Finally, since

G′F/F′ = (G′/F′)F⊆GF, we get that GF→ xt/s in Q(X ).

Now suppose X is a Cauchy S-space. Let G be a Cauchy filter on Q(X ) and let F be a

Cauchy filter on S. We want to prove that GF is Cauchy. Since G is Cauchy, there are

Cauchy filters F1,F2, . . . ,Fn on S and Cauchy filters G1,G2, . . . ,Gn on X such that the filters

in {Gi /Fi : i = 1,2, . . . ,n} are linked and
n⋂

i=1
Gi /Fi ⊆ G. By part (iv) of Proposition 3.3, the

filters in {GiF/Fi : i = 1,2, . . . ,n} are linked, and since
n⋂

i=1
GiF/Fi ⊆ GF, it follows that GF

is Cauchy.

(ii) Suppose X is a Hausdorff convergence S-space. Let H be a filter on Q(X ) and suppose
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it has two limits: x1/s1 and x2/s2. Then for i = 1,2 there are filters Fi on S and Gi on X

and elements s′i ∈ S and x ′
i ∈ X such that Fi → s′i in S, Gi → x ′

i in X , x ′
i /s′i = xi /si and

Gi /Fi ⊆H. If x ′
1/s′1 = x ′

2/s′2, then x1/s1 = x2/s2 and we are done, so suppose x ′
1/s′1 6= x ′

2/s′2.

Since H is an upper bound of Gi /Fi for i = 1,2, it follows that G1/F1 ∨G2/F2 exists. Since

G1 → x ′
1 in X and F2 → s′2 in S, it follows that G1F2 → x ′

1s′2 in X . Similarly we have that

G2F1 → x ′
2s′1 in X . Since x ′

1/s′1 6= x ′
2/s′2, we have that x ′

1s′2 6= x ′
2s′1. Since X is Hausdorff,

it follows that G1F2 ∨G2F1 does not exist. This means that for some Fi ∈ Fi and Gi ∈ Gi ,

G1F2 ∩G2F1 =;. We now claim that G1/F1 ∩G2/F2 =;, contradicting that G1/F1 ∨G2/F2

exists: If y/t ∈ G1/F1 ∩G2/F2, then there are ti ∈ Fi and yi ∈ Gi such that y/t = yi /ti , i =
1,2. Since y1/t1 = y2/t2, it follows that y1t2 = y2t1 ∈G1F2 ∩G2F1, which is a contradiction.

Thus, G1/F1 ∩G2/F2 = ; as claimed and the resulting contradiction implies that x ′
1/s′1 6=

x ′
2/s′2 is false.

(iii) By (ii), Q(X ) with the quotient convergence structure is Hausdorff. Since X and S are

complete, so is X ×S, and since Q(X ) with the quotient convergence structure is Haus-

dorff, by (iii) of Proposition 2.13, Q(X ) is complete and convergence in Q(X ) with respect

to the quotient Cauchy structure is given by the quotient convergence structure.

Proposition 6.3.

(i) If Y is a convergence S-space and X and Y −X are S-subspaces of Y , then

(a) H→ x/s in Q(X ) implies [H] → x/s in Q(Y ), and

(b) if F is a filter on S and G is a filter on X , then clX G/F ⊆ clY [G]/F∩Q(X ), where

clY [G]/F∩Q(X ) is the trace of clY [G]/F on Q(X ).

(ii) Let X and Y be Cauchy S-spaces and let f : X → Y be a Cauchy S-embedding of X in

Y . Define g : Q(X ) →Q(Y ) by g (x/s) = f (x)/s. Then g is an injective Cauchy continuous

S-map.
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Proof.

(i) (a) Since H→ x/s in Q(X ), there are filters F on S and G on X such that F→ s′ for some

s′ ∈ S, G → x ′ for some x ′ ∈ X , x ′/s′ = x/s and G/F ⊆ H. Since [G] → x ′ in Y and

[G]/F⊆ [H], it follows that [H] → x/s in Q(Y ).

(b) Let G ∈ G and F ∈ F be arbitrary and let y1/s1 ∈ clY G/F ∩Q(X ). Then there exists

a y2 ∈ clY G and an s2 ∈ F such that y1/s1 = y2/s2. Since y1/s1 = y2/s2, it follows

that y1s2 = y2s1. Since y1/s1 ∈ Q(X ), y1 = x1 for some x1 ∈ X . Since x1s2 = y2s1 and

Y −X is an S-subspace of Y , y2 = x2 for some x2 ∈ X . Since x2 ∈ clY G , there is a filter

G2 on Y that contains G and converges to x2, and since G ⊆ X , this filter must also

contain X . Thus, X ∈G2 → x2 ∈ X in Y and since X is a subspace of Y , it follows that

G2 ∩ X → x2 in X , hence x2 ∈ clX G and consequently x2/s2 = x1/s1 ∈ clX G/F . This

proves that clY G/F ∩Q(X ) ⊆ clX G/F and thus clX G/F⊆ clY [G]/F∩Q(X ) as claimed.

(ii) Let us first prove that g is injective: Suppose g (x/s) = g (y/t ). Then f (x)/s = f (y)/t , which

means f (x)t = f (y)s. Since f is an S-map, this latter equality becomes f (xt ) = f (y s), and

since f is injective, it follows that xt = y s and that x/s = y/t .

Now we prove that g is an S-map: g ((x/s)t ) = g (xt/s) = f (xt )/s = f (x)t/s = ( f (x)/s)t =
g (x/s)t .

Finally, we prove that g is Cauchy continuous: Let G be a Cauchy filter on Q(X ). Then

there are Cauchy filters F1,F2, . . . ,Fn on S and Cauchy filters G1,G2, . . . ,Gn on X such

that the filters in {Gi /Fi : i = 1,2, . . . ,n} are linked and
n⋂

i=1
Gi /Fi ⊆ G. Since g is injective

and Gi /Fi ∨Gi+1/Fi+1 exists, g [Gi /Fi ∨Gi+1/Fi+1] = g [Gi /Fi ]∨g [Gi+1/Fi+1] = f [Gi ]/Fi ∨
f [Gi+1]/Fi+1 exists. Thus, the filters in { f [Gi ]/Fi : i = 1,2, . . . ,n} are linked and since

g

[
n⋂

i=1
Gi /Fi

]
=

n⋂
i=1

g [Gi /Fi ] =
n⋂

i=1
f [Gi ]/Fi ⊆ g [G]
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it follows that g [G] is Cauchy.

S-Compactifications

Theorem 6.4. If X is a non-compact Hausdorff adherence-restrictive S-space and S is com-

pact, then Q(ωX ) is a one-point S-compactification of Q(X ).

Proof. Since ωt = ωs = ω for all s, t ∈ S we have that ω/s = ω/t for all s, t in S. Since {ω} is an

S-subset of ωX , it follows by Proposition 6.1 that Q(X ) is an S-subset of Q(ωX ). Thus, Q(ωX )−
Q(X ) = {ω/e}.

We now prove that Q(X ) is a subspace of Q(ωX ). In light of Proposition 6.3, we must only show

that if H is a filter on Q(X ) such that [H] → x/s in Q(ωX ), then H → x/s in Q(X ). To this

end, suppose [H] → x/s in Q(ωX ). Then there are filters F on S and G on ωX and there are

points x ′ ∈ωX and s′ ∈ S such that F→ s′ in S, G→ x ′ in ωX , x ′/s′ = x/s and G/F ⊆ [H]. Since

x ′/s′ = x/s, we have that x ′s = xs′. Since X is adherence restrictive, ωX is remainder invariant,

hence x ′s ∈ X , hence x ′ ∈ X . Since G→ x ′ ∈ X , then there is a filter G′ on X such that G′ → x ′ in

X and [G′] ⊆ G. Since [G′/F] = [G′]/F ⊆ G/F ⊆ [H], it follows that G′/F ⊆H. Since G′ → x and

F→ s and x ′/s′ = x/s, it follows that H→ x/s in Q(X ).

Now we prove that Q(X ) is dense in Q(ωX ). Note that it suffices to prove that there is a filter H

on Q(X ) such that [H] → ω/e in Q(ωX ). Since X is not compact, there is an ultrafilter U on X

with empty adherence such that [U] →ω in ωX . Since [U] →ω we have that [U]/[e] = [U/[e]] →
ω/e in Q(ωX ). Thus, H :=U/[e] is a filter on Q(X ) such that [H] →ω/e.

Finally, since S is compact and ωX is compact, Q(ωX ) is compact.

Theorem 6.5. Let X be an adherence-restrictive S-space, let Y be a regular strict S-compactifi-
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cation of X and suppose that S is compact and regular. Then Q(Y ) is a regular S-compactification

of Q(X ).

Proof. Note that since X is adherence restrictive, Y is remainder invariant, whence Q(X ) is an

S-subset of Q(Y ).

We now prove that Q(X ) is a subspace of Q(Y ). In light of Proposition 6.3, we must only show

that if H is a filter on Q(X ) such that [H] → x/s in Q(Y ), then H → x/s in Q(X ). To this end,

suppose [H] → x/s in Q(Y ). Then there are filters F on S and G on Y and there are points y ∈ Y

and t ∈ S such that F → t in S, G → y in Y , y/t = x/s and G/F ⊆ [H]. Since Y is strict, there

exists a filter G′ on X such that [G′] → y in Y and clY [G′] ⊆ G. By Proposition 6.3, clX G′/F ⊆
clY [G′]/F∩Q(X ), and since clY [G′]/F∩Q(X ) ⊆G/F∩Q(X ) ⊆H, we have that clX G′/F ⊆H. We

now prove that H→ x/s, proving that Q(X ) is a subspace of Q(Y ). Recall that y/t = x/s and that

[G′] → y in Y . Since Y is remainder invariant and y s = xt , it follows that y = x ′ for some x ′ in

X . Since [G′] → x ′ and X is a subspace of Y , G′ → x ′ in X . Since Y is regular, X is regular and so

clX G′ → x ′ in X . Thus, we have that clX G′ → x ′ in X , F → t in S, x ′/t = x/s and clX G′/F ⊆H,

which means H→ x/s in Q(X ).

So far we have proved that Q(X ) is an S-subspace of Q(Y ). We now need to prove that Q(Y ) is

compact and that Q(X ) is dense in Q(Y ). Compactness follows from the fact that S and Y are

compact and the quotient map Y ×S →Q(Y ) is continuous. To prove the “dense” part, just note

that for a given y/s ∈ Q(Y ), there exists a filter G on X such that [G] → y in Y (since X is dense

in Y ), and since [s] → s, it follows that [G]/[s] → y/s in Q(Y ).

Finally, we prove that Q(Y ) is regular. Let H→ y/s in Q(Y ). Then there are filters F on S and

G on Y and points s′ ∈ S and y ′ ∈ Y such that F → s′ in S, G→ y ′ in Y , y ′/s′ = y/s and G/F ⊆
H. Since S and Y are compact, Q(Y ) is Hausdorff, the quotient map (y, s) 7→ y/s is proper
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and preserves closures by Propositions 2.12 and 2.11. This means that clQ(Y )G/F = clY G/clS F.

Since S and Y are regular, clS F→ s′ in S and clY G→ y ′ in Y and so clQ(Y )G/F = clY G/clS F→
y/s in Q(Y ). Since G/F ⊆H, it follows that clQ(Y )G/F ⊆ clQ(Y )H, and since clQ(Y )G/F→ y/s, it

follows that clQ(Y )H→ y/s. This concludes the proof that Q(Y ) is regular.

Corollary 6.6. Let X be an convergence S-space that is not compact, locally compact, com-

pletely regular, Hausdorff and adherence restrictive. If S is compact and regular, then Q(ωX ) is

a one-point regular S-compactification of Q(X ).

Proof. Since X is not compact, locally compact, completely regular and Hausdorff, by Theorem

4.6, ωX is a one-point regular strict compactification of X . By Theorem 6.5, Q(ωX ) is a one-

point regular S-compactification of Q(X ).

Corollary 6.7. Let X be an adherence-restrictive convergence S-space and suppose that S is

a compact Hausdorff topological space. Let Y be a topological S-compactification of X . Then

τQ(X ) and τQ(Y ) are topological S-spaces and τQ(Y ) is a topological S-compactification of

τQ(X ).

Proof. Since S is a compact Hausdorff topological space, by Proposition 2.9, both τQ(X ) and

τQ(Y ) are topological S-spaces and are the pseudoquotients of τX and τY , respectively. Since

τY is a topological S-compactification, it is strict and regular, hence by Theorem 6.5, τQ(Y ) is a

regular S-compactification of τQ(X ).

S-Completions

Theorem 6.8. If X is a Hausdorff Cauchy S-space with pseudoquotient Q(X ) and Y is a regular

remainder-invariant strict S-completion of X and S is complete, then Q(Y ) is an S-completion
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of Q(X ).

Proof. Since Y is a complete Hausdorff S-space, by (iii) of Theorem 6.2, Q(Y ) is a complete

Hausdorff S-space and convergence in Q(Y ) is given by the quotient convergence structure.

The burden of the proof now is in showing that Q(X ) is a dense Cauchy S-subspace of Q(Y ).

First we prove that Q(X ) is an S-subspace of Q(Y ). Since Y is remainder invariant, by Proposi-

tion 6.1, Q(X ) ⊆ Q(Y ). By (ii) of Proposition 6.3, to prove that Q(X ) is a Cauchy S-subspace of

Q(Y ), we must only show that if H is a filter on Q(X ) such that [H] is Cauchy in Q(Y ), then H is

Cauchy in Q(X ). Thus, suppose H is a filter on Q(X ) and [H] is a Cauchy filter on Q(Y ). Since

Q(Y ) is complete, [H] converges to some y/s ∈ Q(Y ). Thus, there are filters F on S and H′ on

Y and elements t ∈ S and y ′ ∈ Y such that F→ t in S, H′ → y ′ in Y , y ′/t = y/s and H′/F ⊆ [H].

Since Y is strict and regular, there exists a filter G on X such that clY [G] → y ′ and clY [G] ⊆H′.

Thus, clY [G]/F ⊆ [H], and by (b) of (i) of Proposition 6.3, clX G/F ⊆H. Since clY [G] → y ′ in Y ,

clY [G] and consequently [G] are Cauchy. Since X is a Cauchy subspace of Y and [G] is a Cauchy

filter on Y , G is a Cauchy filter on X . Since X is regular (as Y is regular), clX G is Cauchy. Since

F is a convergent filter on S, F is Cauchy. Since clX G and F are Cauchy, clX G/F is Cauchy, and

since clX G/F ⊆H, it follows that H is Cauchy. This concludes the proof that Q(X ) is a Cauchy

S-subspace of Q(Y ).

Now we prove that Q(X ) is dense in Q(Y ): Given y/s ∈ Q(Y ), there exists a filter G on X such

that [G] → y in Y (since X is dense in Y ), and since [s] → s in S, it follows that [G]/[s] → y/s in

Q(Y ).

Theorem 6.9. If X is an adherence-restritive separated Cauchy S-space with pseudoquotient

Q(X ) and S is complete, then Q(ΓX ) is an S-completion of Q(X ).

Proof. Since X is separated, by (ii) of Theorem 5.5, ΓX is a completion of X in standard form.
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Since X is adherence restrictive and ΓX is a completion of X , by (ii) of Theorem 5.9, ΓX is an

S-completion of X . Since ΓX is a complete Hausdorff S-space and S is complete, by Theorem

6.2, Q(ΓX ) is a complete Hausdorff S-space and convergence in Q(ΓX ) is given by the quotient

convergence structure. Define ϕ : Q(X ) →Q(ΓX ) so that ϕ(x/s) =φ(x)/s. We want to show that

ϕ is a dense Cauchy embedding.

By Proposition 6.3, ϕ is a injective Cauchy continuous S-map. Thus, to prove that ϕ is an em-

bedding, we must only show that if H is a filter on Q(X ) such that ϕ[H] is a Cauchy filter on

Q(ΓX ), then H is a Cauchy filter on Q(X ). Thus, suppose H is a filter on Q(X ) and ϕ[H] is

a Cauchy filter on Q(ΓX ). Since Q(ΓX ) is complete, ϕ[H] converges to some 〈G〉/s ∈ Q(ΓX ).

Thus, there are filters F on S and H′ on ΓX and elements t ∈ S and 〈G′〉 ∈ ΓX such that F → t

in S, H′ → 〈G′〉 in ΓX , 〈G′〉/t = 〈G〉/s and H′/F ⊆ ϕ[H]. Since H′ → 〈G′〉 in ΓX , H′∩ [〈G′〉] is a

Cauchy filter on ΓX , which means there is a Cauchy filter G0 on X such that ΓG0 ⊆H′∩ [〈G′〉].
Thus, ΓG0 ⊆H′, which means ΓG0/F ⊆H′/F ⊆ϕ[H]. We claim that G0/F ⊆H. To see this, pick

a G ∈G0 and an F ∈F. We want to find an H ∈H such that H ⊆G/F . Since ΓG0/F⊆ϕ[H], there

is an H ∈H such that ϕ(H) ⊆ ΓG/F . Since H ∈ Q(X ), it follows that ϕ(H) ⊆ φ(X )/S, and since

ϕ(H) ⊆ ΓG/F = (φ(G)∪(ΣG−φ(X )))/F =φ(G)/F ∪(ΣG−φ(X ))/F , it follows thatϕ(H) ⊆φ(G)/F .

Thus, if x/s ∈ H , then ϕ(x/s) = φ(x)/s ∈ φ(G)/F , which means there is a y ∈G and a t ∈ F such

that φ(x)/s =φ(y)/t , which means φ(x)t =φ(xt ) =φ(y)s =φ(y s), which means xt = y s, which

means x/s ∈ G/F . This proves that H ⊆ G/F and that G0/F ⊆H. Since G0 and F are Cauchy, it

follows that H is Cauchy. This concludes the proof that ϕ is an embedding.

Finally, we proof that ϕ(Q(X )) is dense in Q(ΓX ). Let 〈G〉/s in Q(ΓX ) be arbitrary. By Lemma 3

in Theorem 5.5, ΓG→〈G〉 in ΓX . And since [s] → s in S, it follows that ΓG/[s] →〈G〉/s in Q(ΓX ).

71



LIST OF REFERENCES

[1] AULL, C. E., AND LOWEN, R. Handbook of the History of General Topology, vol. 2. Kluwer

Academic Publishers, 1998.

[2] BEATTIE, R., AND BUTZMANN, H. P. Convergence Structures and Applications to Functional

Analysis. Springer, 2002.

[3] BOURBAKI, N. General Topology: Chapters 1–4, 18. Springer, 1998.
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