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ABSTRACT

A space of pseudoquotients can be described as a space of either single term quotients

(the injective case) or the quotient of sequences (the non-injective case) where the parent

sets for the numerator and the denominator satisfy particular conditions. The first part of

this project is concerned with the minimal conditions required to have a well-defined set of

pseudoquotients. We continue by adding more structure to our sets and discuss the effect

on the resultant pseudoquotient.

Pseudoquotients can be thought of as extensions of the parent set for the numerator

since they include a natural embedding of that set. We answer some questions about the

extension properties. One family of these questions involves assuming a structure (algebraic

or topological) on a set and asking if the set of pseudoquotients generated has the same

structure. A second family of questions looks at maps between two sets and asks if there

is an extension of that map between the corresponding pseudoquotients? And if so, do the

properties of the original map survive the extension?

The result of our investigations on the abstract setting will be compared with some

well-known spaces of pseudoquotients and Boehmians (a particular case of non-injective

pseudoquotients). We will show that the conditions discussed in the first part are satisfied

and we will use that to reach conclusions about our extension spaces and the extension maps.

The Fourier transform is one of the maps that we will continuously revisit and discuss.

Many spaces of pseudoquotients, Boehmians in particular, have been introduced where

the initial set is a particular class of functions on either locally compact groups R, [12],
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and RN,[14], or a compact group such as a sphere, [16]. The natural question is, can we

generalize the construction to any locally compact group. In [18] and [13] such construction

is discussed however here we go further. We use characters and define the Fourier transform

of integrable and square integrable Boehmians on locally compact group. Then we discuss

the properties of such transform. We also use the Fourier transform of a particular space of

pseudoquotients to characterize Lévy measures.
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CHAPTER ONE: INTRODUCTION

The construction of pseudoquotients is described in [10] and since then many such spaces

have been considered and discussed in various papers. Our goal here is to discuss the

construction of pseudoquotients with minimal conditions and study the properties by adding

more structure to the basic form. The construction of pseudoquotients requires a set pair

(X,G) which satisfies some conditions. The particular class of these set pairs that can

produce pseudoquotients will be called Σ-pairs and we will discuss them in CHAPTER

TWO. One of the main requirements for having a Σ-pair is for G to act on X. Depending

on a property of this action, construction of pseudoquotients parts in two types: The first

type is the injective case which is the construction resulted from a Σ-pair (X,G) where the

action of G is injective on X. We will discuss this type first and use that to build intuition.

The next case, an example for which is the construction of Boehmians, is the non-injective

or the general case. In this case G does not act injectively on X.

In CHAPTER TWO we will discuss the construction of both injective and non-injective

case. In each case, we will start with the case where X is just a set and gradually we add more

structure to X. We first discuss the algebraic properties and then the topological properties.

The repeating theme is the properties of the extensions, and the extension maps; for a Σ-pair

(X,G), we can think of the resultant set of pseudoquotients as an extension of X since we

will show there is a natural embedding of X into that set. One set of questions we would like

answered is, if X has particular algebraic or topological properties, will the pseudoquotients

also have those properties. We will show that most of our fundamental properties move
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nicely over the extension. Second group of questions involve the properties of the extension

map: Suppose (X,G) and (Y,H) are Σ-pairs. If we have a map between X and Y , can

we extend it to a map between the corresponding extensions? If so, what properties of the

maps will survive the extension and under what conditions? For the algebraic properties,

for example, If X and Y are groups, will their extension also be a group? And if so, will a

homomorphism between X and Y extend to a homomorphism between the extensions?

In CHAPTER THREE we will look at three examples of the injective case: One with the

functions on the positive real line, one with the functions defined on all of R, and one with a

particular class of functions (positive definite functions) defined on a locally compact group.

For the first example we will consider the extension of the Laplace transform whereas in the

other two examples we will look at the extension of the Fourier transform.

In CHAPTER FOUR we will look at four examples of non-injective pseudoquotients. The

first two sections of that chapter will focus on the construction of the space of integrable

and square integrable Boehmians on a locally compact group. We will define the Fourier

transform on these spaces as the extension map and study its properties in each case. In

the third section of CHAPTER FOUR we will describe the construction of pseudoquotients

on involutive algebras and discuss the Fourier transform of such objects. And finally in the

last section, we will discuss the space of pseudoquotients that extends the space of positive

definite functions on a locally compact group.

The inspiration for the generalizations specially those involving locally compact groups

and the Fourier transform has come from the recent work of P. Mikusiński and D. Atanasiu,

most notably those in [4], [5], and [6].
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CHAPTER TWO: THE CONSTRUCTION OF
PSEUDOQUOTIENTS

2.1 Σ-Pairs

To discuss the construction of pseudoquotients we first define a class of set pairs (X,G)

which we call Σ-pairs. These are the main ingredient for construction of pseudoquotients.

Definition 1. We say the pair (X,G) is a Σ-pair if X is a nonempty set and G is a

commutative semigroup acting on X. Here, by action of G on X we mean

1. For every x ∈ X and g ∈ G, gx ∈ X

2. For every f, g ∈ G, (fg)x = f(gx) for all x ∈ X.

Condition (2) simply states that the operation in G is actually composition of functions

when acting on X.

The pair (Z,N) is an example of a Σ-pair if we think of elements of the semigroup (N, ·)

of natural numbers acting on the set of integers, Z, by multiplication.

Having the objects Σ-pairs, we can define a mapping between two such objects.

Definition 2 (Σ-morphism). A map (µ, α) : X × G → Y × H, defined by (µ, α)(x, g) =

(µx, αg) is a Σ-morphism if µ : X → Y is a set map, α : G → H is a semigroup homomor-

phism, and the consistency condition α(f)µ(x) = µ(fx) is satisfied.
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What the consistency condition implies is that the following diagram commutes:

X
µ

- Y

X

f

? µ
- Y

α(f)

?

Although we will not get too deep into the categorical approach to pseudoquotients,

it is tempting to introduce the collection of Σ-pairs along with Σ-morphisms as a cate-

gory. For that we need to check that the composition of two Σ-morphisms is also a Σ-

morphism, check the existence of an identity morphism, and verify the associativity of the

morphisms: For the composition, suppose (µ, α) : (X,G) → (Y,H) and (ν, β) : (Y,H) →

(Z,K) are Σ-morphisms. We need to check the consistency condition for (ν, β) ◦ (µ, α) :

(X,G) → (Z,K). Let x ∈ X and f ∈ G. Notice (ν ◦ µ) (fx) = ν (µ(fx)) which implies

ν (α(f)µ(x)) = β (α(f)) ν (µ(x)) because (µ, α) and (ν, β) are Σ-morphisms. And of course,

β (α(f)) ν (µ(x)) = (β ◦ α) (f) (ν ◦ µ) (x).

For the identity morphism, notice (idX , idG) is a Σ-morphism. Finally it is a simple

verification that the associativity property is satisfied for Σ-morphisms.

We will use Σ-pairs to construct pseudoquotients.

2.2 Pseudoquotients: The Injective Case (Generalized Quotients)

In this section we will only consider injective Σ-pairs; we say a Σ-pair (X,G) is an injective

one if the elements of G act injectively on X. For example the pair (N,N) (defined similar

to (Z,N) mentioned earlier) is an injective Σ-pair. Notice the difference between the two N’s

in this pair: The first N is a set and the second N is a semigroup acting where the action is
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defined by the multiplication of natural number.

In order to stress this difference, we denote the action associated with every n ∈ N

by Mn. Hence instead of writing nm we write Mn(m). Our Σ-pair then can be written

as (N,MN), where MN is the semigroup of actions associated with natural numbers. The

construction of the space of pseudoquotients from an injective Σ-pair is very similar to

that of positive rational number from (N,MN). We discuss this construction to build some

intuition: Positive rational numbers can be described as the quotient space N × MN/ ∼

where (m,Mn) ∼ (m′,Mn′) if and only if Mn(m′) = Mn′(m) or simply put nm′ = n′m.

This construction extends the semigroup (N, .) of natural numbers to the group of positive

rational number with multiplication.

We look at some other examples to have a better feel for the construction: Consider the

Σ-pair (N, PN) where PN is the semigroup of actions on N defined by exponentiation, i.e.

Pn(m) = mn for all n,m ∈ N. With this action, the equivalence ∼ in N×PN can be defined

by (m,Pn) ∼ (m′, Pn′) if and only if Pn(m′) = Pn′(m) or mn′ = m′n. The resulting quotient

set N× PN/ ∼ is the set of natural numbers with all their natural roots.

It may be clearer if we look at a less familiar operation on natural numbers: define the

action on N by Fn(m) = m!n, where we define !n inductively by m!n = (m!)!n−1. (For

example, 3!2 = (3!)! = 6! = 720.) Further, we define F0 to be the identity operator. Notice

for every pair (n, Fm) ∈ N× FN, where FN is the semigroup of Fn’s for n ∈ {0, 1, 2, . . . }, the

two components are different objects and the action of Fm on n is not a direct operation

between n and m. We define ∼ by (m,Fn) ∼ (m′, Fn′) if and only if Fn(m′) = Fn′(m) or

m!n
′
= m′!n. The space of generalized quotients in this case is the quotient space N×FN/ ∼.
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An example of an element in this space is the equivalence class of
720

F2

which also includes

6

F1

and
3

F0

. To get a full extension we should use a generalized definition of factorial but

that is really not the purpose of this example.

The basic idea of the above examples is the same: We start with an injective Σ-pair

(X,G) and form the product space X × G. The extension is the quotient space X × G/ ∼

where ∼ is an equivalence that relies on the action of G on X. As in the aforementioned

examples, we define ∼ by

(x, g) ∼ (y, h)⇔ hx = gy.

Notice we always have for every f ∈ G, (x, g) ∼ (fx, fg) since fgx = gfx by commutativity

of G. We can check that ∼ defined in this way is an equivalence relation: It is clear that ∼ is

reflexive and symmetric. Hence all we need to check is that it is transitive. Let (x, f), (y, g),

and (z, h) be in (X × G) with (x, f) ∼ (y, g) and (y, g) ∼ (z, h). Since (x, f) ∼ (y, g)

then gx = fy and hgx = hfy which by commutativity of G implies ghx = fhy. Since

(y, g) ∼ (z, h), we have ghx = fgz or hx = fz which implies (x, f) ∼ (z, h).

Definition 3. The quotient space (X ×G)/ ∼ is the space of generalized quotients denoted

by B(X,G).

Similar to the representation of rational numbers, we will use quotients to denote elements

of B(X,G). Hence instead of [(x, g)] we write
x

g
or instead of [(x, g)] = [(fx, fg)] we write

x

g
=
fx

fg
.

There is a natural embedding of X into B(X,G) defined by x 7→ fx

f
, for any f ∈ G.

6



Lemma 1. The mapping ι : X → B(X,G) defined by ι(x) =
fx

f
is independent of the choice

of f and is injective.

Proof. For any other element g of G,
fx

f
=
gx

g
since gfx = fgx. The injectivity follows the

injectivity of elements of G acting on X.

Theorem 1. Action of G can be extended to a bijective action on B(X,G), defined by

g

(
x

f

)
=
gx

f
.

for every g ∈ G.

Proof. Let g ∈ G. Suppose
x

f
=

y

h
. We want to show g

(
x

f

)
= g

(y
h

)
or equivalently

gx

f
=
gy

h
. The latter is true because hgx = fgy by our hypothesis and the commutativity

and injectivity of G. For surjectivity, the g-preimage of every x
f
∈ B(X,G) is x

gf
∈ B(X,G)

since g
(
x
gf

)
= gx

gf
= x

f
. To check the compatibility of action of G on X and its action on

B(X,G) note that for every g ∈ G,

g(ι(x)) = g

(
fx

f

)
=
g(fx)

f
=
f(gx)

f
= ι(gx).

Finally for the injectivity, suppose
gx

f
=
gx′

f ′
. Then f ′(gx) = f(gx′) or g(f ′x) = g(fx′). But

since g acts injectively on X, f ′x = fx′ or x
f

= x′

f ′
.

Elements of G being bijections from B(X,G) to B(X,G) have inverses. Notice for every

f ∈ G, f−1x

g
=

x

fg
. Indeed, for every

x

g
,

f

(
f−1

(
x

g

))
= f

(
x

fg

)
=
fx

fg
=
x

g
,

7



and similarly

f−1

(
f

(
x

g

))
= f−1

(
fx

g

)
=
fx

fg
=
x

g
.

This shows that not only (B(X,G), G) is a Σ-pair, but it is in a sense nicer than (X,G):

Elements of G act bijectively on B(X,G).

G and G−1 = {f−1 : f ∈ G} are both subsets of a group of bijections on B(X,G). There

exists a smallest group G containing G ∪G−1 and we have G = G.

It is worth noting that since every element x of X can be thought of as the element
gx

g

of B(X,G), we have g−1x = g−1

(
gx

g

)
=

g−1gx

g
=

x

g
, which justifies using the quotient

notation. It is natural to ask if we can obtain more information about the embedding in

Lemma 1, if G is a group. Our next result answers that question.

Proposition 1. If G is a group then the embedding ι in Lemma 1 is a bijection.

Proof. If G is a group, then for any x
h
∈ B(X), h−1x is its preimage with respect to ι since

ι(h−1x) =
h(h−1x)

h
=
x

h
.

To add to our terminology, we say (X,G) is a Γ-pair if G is a group and (X,G) is a

Σ-pair.

Corollary 1. There is a bijection between B(X,G) and B(B(X,G), G).

Borrowing from the category theory language, we can say that there is a functor from

injective Σ-pairs (X,G) to injective Γ-pairs (B(X,G), G). Also notice that if (X,G) and
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(X, Ĝ) are Σ-pairs with G ⊂ Ĝ then B(X,G) ⊆ B(X, Ĝ). Hence we have the following

important theorem:

Theorem 2. B(X,G) is isomorphic to B(B(X,G), G).

Proof. Using Corollary 1 and Theorem 1 we have

B(X,G) ↪→ B(B(X,G), G) ⊆ B(B(X,G), G) = B(X,G) (2.1)

where the equal sign denotes a bijection.

This theorem shows that re-applying the extension method of pseudoquotients with the

same G does not generate a new space. For example, we showed that B(N,MN) is the

space of positive rational numbers Q+. Re-application of the extension produces the space

B(Q+,MN).

We can now extend the construction of B to product spaces.

Theorem 3. If (X,G) and (Y,H) are Σ-pairs then there is a bijection between B(X×Y,G×

H) and B(X,G)× B(Y,H).

Proof. We define the composition of two elements of G × H by (g, h)(g′, h′) = (gg′, hh′).

Clearly this operation is associative and commutative. Also, if G and H are semigroups,

so is G × H. The action of G × H on X × Y is defined by (g, h)(x, y) = (gx, hy). We see

that the elements of G×H are well-defined injections from X × Y to X × Y . We claim the

mapping ϕ defined by
(x, y)

(g, h)
7→
(
x

g
,
y

h

)
is a bijection: Let ((x, y), (g, h)) ∼ ((x′, y′), (g′, h′)),

which is the same thing as saying
(x, y)

(g, h)
=

(x′, y′)

(g′, h′)
. Then we have (gx′, hy′) = (g′x, h′y). In

9



other words, gx′ = g′x and hy′ = h′y, or equivalently (x, g) ∼ (x′, g′) and (y, h) ∼ (y′, h′).

Putting these new equalities in quotients notation, we get

x

g
=
x′

g′
and

y

h
=
y′

h′

or

(
x

g
,
y

h

)
=

(
x′

g′
,
y′

h′

)

which implies

ϕ
(x, y)

(g, h)
= ϕ

(x′, y′)

(g′, h′)

and thus we get ϕ is a well-defined map. Similarly we can show if ϕ (x,y)
(g,h)

= ϕ (x′,y′)
(g′,h′)

then we

have (x,y)
(g,h)

= (x′,y′)
(g′,h′)

which implies ϕ is injective. Surjectivity of ϕ is clear.

In Theorem 3, we showed that there is a bijection between two spaces B(X × Y,G×H)

and B(X,G)×B(Y,H). If we show there is a Σ-morphism from (B(X × Y,G×H), G×H)

to (B(X,G)× B(Y,H), G×H), that would imply that the following diagram commutes:

(X,G), (Y,H)
β

- (B(X,G), G), (B(Y,H), H)

(X × Y,G×H)

×

? β
- (B(X × Y,G×H), G×H) w (B(X,G)× B(Y,H), G×H)

×

?

Where β : Σ-pairs→ Σ-pairs is defined by (X,G) 7→ (B(X,G), G) and× as the cross-product

of Σ-pairs is defined by ((X,G), (Y,H)) 7→ (X × Y,G×H).
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Theorem 4. (B(X,G)×B(Y,H), G×H) is a Σ-pair and (ϕ, id) : (B(X×Y,G×H), G×H)→

(B(X,G) × B(Y,H), G ×H) is a Σ-morphism, where ϕ (x,y)
(g,h)

= (x
g
, y
h
) for all (x, g) ∈ (X,G)

and (y, h) ∈ (Y,H).

Proof. We define the operation of (g′, h′) ∈ G×H on

(
x

g
,
y

h

)
∈ B(X,G)× B(Y,H) by

(g′, h′)

(
x

g
,
y

h

)
=

(
g′
(
x

g

)
, h′
(y
h

))
=

(
g′x

g
,
h′y

h

)
.

The closure, injectivity, and commutativity of this action follows from those of elements of

G and H acting on X and Y , respectively. Next we show (ϕ, id) is a Σ-morphism:

id(g′, h′)ϕ
(x, y)

(g, h)
= (g′, h′)

(
x

g
,
y

h

)
=

(
g′x

g
,
h′y

h

)
= ϕ

(g′, h′)(x, y)

(g, h)
.

So the consistency condition holds and (ϕ, id) is a Σ-morphism.

The following theorem is an important result regarding the extension map.

Theorem 5. Suppose (µ, α) : (X,G)→ (Y,H) is a Σ-morphism. Then we have

1. The map µ̃ : B(X,G) → B(Y,H) defined by µ̃
(
x
f

)
= µ(x)

α(f)
is a unique extension of µ

such that (µ̃, α) : (B(X,G), G)→ (B(Y,H), H) is a Σ-morphism.

2. There exists a ᾱ : Ḡ → H̄ such that (µ̃, ᾱ) : (B(X,G), Ḡ) → (B(Y,H), H̄) is a Σ-

morphism.

3. If µ is an injection, then so is µ̃.

4. If µ and α are surjective, then so is µ̃.
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Proof. 1. First we need to show this map is well-defined. Suppose
x

f
=
y

g
in B(X,G).

Then fy = gx and µ(fy) = µ(gx). Since (µ, α) is a Σ-morphism and hence satisfies

the consistency condition we have α(f)µ(y) = α(g)µ(x). From this last equality we

have
µ(x)

α(f)
=
µ(y)

α(g)
. The consistency condition for (µ̃, α) holds because α(f)µ̃

(
x
g

)
=

α(f)µ(x)
α(g)

= α(f)µ(x)
α(g)

. Because (µ, α) is a Σ-morphism, this last quotient can be re-written

as µ(fx)
α(g)

= µ̃
(
fx
g

)
.

Next we show that µ̃ is an extension of µ. That is, µ̃
(
fx
f

)
= µ(x). Notice by the defi-

nition of µ̃ we have µ̃
(
fx
f

)
= µ(fx)

α(f)
. We can change the numerator by the consistency

condition and we get α(f)µ(x)
α(f)

= µ(x). For the uniqueness, suppose there is another

extension map µ̄ : B(X,G) → B(Y,H) for µ such that (µ̄, α) is a Σ-morphism. Then

we have for every x
f
∈ B(X,G),

α(f)µ̄

(
x

f

)
= µ̄(f

x

f
)

by the consistency condition and the fact that (µ̄, α) is a Σ-morphism. But since µ̄ is

an extension of µ, that is equal to

µ(x) = µ̃(x) = µ̃

(
fx

f

)
= α(f)µ̃

(
x

f

)
.

Thus we have

α(f)µ̄

(
x

f

)
= α(f)µ̃

(
x

f

)
.

Because α(f) ∈ H which acts injectively on B(Y,H), we get µ̄
(
x
f

)
= µ̃

(
x
f

)
for all x

f
.

2. Define ᾱ : Ḡ→ H̄ to be a homomorphism extension of α such that ᾱ(f−1) = (α(f))−1.

We need to show that the consistency condition is satisfied. Clearly it is true for f ∈ G.

12



It suffices to show that the condition holds for f−1, where f ∈ G. We have

ᾱ(f−1)µ̃

(
x

g

)
= (α(f))−1µ̃

(
fx

fg

)
= (α(f))−1α(f)µ̃

(
x

fg

)
= µ̃(f−1x

g
).

3. Suppose µ̃
(
x
f

)
= µ̃

(
y
h

)
, then by the definition of µ̃ we have µ(x)

α(f)
= µ(y)

α(h)
. By definition

of equivalence in B(Y,H) α(h)µ(x) = α(f)µ(y) which by the consistency condition

leads to µ(hx) = µ(fy). Since µ is an injection, hx = fy or x
f

= y
h
.

4. Let y
h
∈ B(Y,H). Then there exist x ∈ X and f ∈ G such that µ(x) = y and α(f) = h.

Hence µ̃
(
x
f

)
= µ(x)

α(f)
= y

h
. So µ̃ is a surjection.

Remark 1. Simply speaking, this theorem establishes the following important extension

property: Set properties such as injection and surjection for maps between sets X and Y

extend to the extension maps between B(X,G) to B(Y,H). As we will see this is also the case

for the general pseudoquotients. In the next section we will further show that the extension

map will preserve some algebraic and topological properties but for now the bijection will

suffice since our sets need not have any particular properties.

We can use Theorem 5 to prove the following corollary that shows the application of the

pseudoquotient construction to a set X and to gX, where g is an element of the acting set

G, does not produce different spaces.

Corollary 2. For every Σ-pair (X,G), B(X,G) = B(gX,G) for all g ∈ G.

Proof. We claim (g, idG) : (X,G) → (gX,G) is a Σ-morphism. All we need to show is the

13



consistency condition:

idG(f)g(x) = fgx = g(fx)

by commutativity of G. Because g is a bijection from X to gX, the extension to ḡ :

B(X,G)→ B(gX,G) is a bijection.

To better understand the construction of pseudoquotients, Σ-morphisms and an appli-

cation of Corollary 2 we look at an example. In this example we will use the traditional

definition of the Fourier transform of functions on R and we denote it by F or by ·̂.

Example 1. Let X be the space L2(R) of square integrable functions on R. If we let S(R)

denote the space of rapidly decreasing functions on R (i.e. S(R) is the space of all functions

ϕ such that for every m,n ∈ N, supm,n ||xmDnϕ||∞ < ∞), then let G = S0(R) = {ϕ ∈

S(R), supp ϕ̂ = R}. Let X̂ = {f̂ : f ∈ X} and Ĝ = {ϕ̂ : ϕ ∈ G}. (X,G) and (X̂, Ĝ) are

Σ-pairs where G acts on X by convolution and Ĝ acts on X̂ by pointwise multiplication.

(F ,F) : (X,G) → (X̂, Ĝ) is a Σ-morphism: For every f ∈ X and ϕ ∈ G, F(ϕ ∗ f) =

F(ϕ)F(f), so we have the consistency condition. By Theorem 5, there is a bijection between

B(X,G) and B(X̂, Ĝ). Hence instead of working with convolution quotients we can work with

regular fractions. (i.e. pointwise division of functions) Another interesting observation on

this example is that by Corollary 2 we can say that B(L2(R),S0(R)) = B(ϕ ∗L2(R),S0(R)).

The advantage is that elements of ϕ ∗ L2(R) are in C∞(R), which gives us a much better

space to work with.

Remark 2. In this example, we had to restrict ourselves to those elements of S(R) with

Fourier transforms that have support R. We need to do this because S(R) does not act
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injectively on L2(R) but S0(R) does. We can see that by choosing ϕ ∈ S(R) and f ∈ L2(R)

such that ϕ̂ and f̂ have disjoint supports. (Clearly ϕ∗f = ϕ̂f̂ = 0 without f being identically

zero.) But the restriction to S0(R) seems too strong. It would be nice if we could use all

S(R) especially because we have a nice property that Ŝ(R) = S(R).

We can demonstrate the same problem with a more elementary example. This example

was also mentioned in [14]:

Example 2. Let X = Lloc(R) and let G = L1
c(R), the space of integrable functions with

compact support. G acts on X by convolution ∗ defined by

(ϕ ∗ f)(x) =

∫
R
ϕ(t)f(x− t)dt

for every ϕ ∈ L1
c(R) and f ∈ Lloc(R). Clearly this is a well-defined action. This is an

interesting case and potentially a nice structure except there is a problem: The action is

not injective. For example, the convolution of the locally integrable function sin(x) with

χ[0,2π] (the characteristic function of [0, 2π]) is 0 without either one of the two functions be

identically 0.

To deal with the situations where the action of G on X is not injective we define the

construction of pseudoquotients more generally.

2.3 Pseudoquotients: The Non-injective Case

In cases where in a Σ-pair (X,G) the action of commutative semigroup G on X is not

injective, we define a more general space of pseudoquotients.
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Let I be an index set. Consider the sets XI and GI . We use maps x̄ : I → X and

f̄ : I → G to represent the elements of each set, respectively. Notice that in the case of

I = N, x̄ is a sequence: x̄ = (x1, x2, . . . ). Extending this notation to the case of other index

sets we denote x̄(i) by xi. The same notation will be used for elements of GI .

We define the following three operations:

1. For every ḡ ∈ GI and x̄ ∈ XI , we define ḡx̄ by (ḡx̄)(i) = gixi.

2. For every g ∈ G and x̄ ∈ XI , we define gx̄ by (gx̄)(i) = gxi.

3. For every ḡ ∈ GI and x ∈ X, we define ḡx by (ḡx)(i) = gix.

Notice that (2) and (3) are extensions of (1) where ḡ and x̄ are constant maps. Furthermore,

the operation in GI is defined by (f̄ ḡ)(i) = figi for all f̄ , ḡ ∈ GI . This operation is com-

mutative because it extends the commutative operation on G. Let X ⊂ XI be such that X

contains all the constant maps and f̄ x̄ ∈ X for all f̄ ∈ ∆ and all x̄ ∈ X . Clearly such a set

always exist since XI is one such set. We will call the pair (X ,∆) a ∆-extension of (X,G).

More concisely we have:

Definition 4 (∆-extension). For a Σ-pair (X,G) with index set I, we say (X ,∆) is a

∆-extension of (X,G) if

1. X ⊂ XI containing all constant maps.

2. ∆ ⊂ GI is a semigroup acting on X

3. For every f̄ ∈ ∆ and x̄ ∈ X , f̄ x̄ ∈ X .
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Clearly (X ,∆) is a Σ-pair. Without any extra conditions these Σ-pairs do not produce

interesting results. Hence we impose the extra condition of ∆ acting injectively on the

constant sets. Injectivity in this sense means for every x and y in X, f̄x = f̄y implies x = y.

Such ∆ may not exist, however a sufficient condition on G is the totality condition, as it was

called in [15], described the following way: if x and y are distinct elements in X then there

exists a f ∈ G such that fx 6= fy. With the injectivity condition we have the following:

Theorem 6. Suppose (µ, α) : (X,G) → (Y,H) is a Σ-morphism. We can extend the

operation of µ to µ : X → Y by (µx̄)(i) = µxi. Similarly, we can extend the operation of α to

α : ∆G → ∆H by (αf̄)(i) = αfi for all i ∈ I. Then the mapping (µ, α) : (X ,∆G)→ (Y ,∆H)

is a Σ-morphism. (Note that implicitly we are assuming α(∆G) ⊆ ∆H .)

Proof. We can verify that the consistency condition α(f̄)µ(x̄) = µ(f̄ x̄) is satisfied: For every

i ∈ I, (α(f̄)µ(x̄))(i) = (α(f̄))(i)(µ(x̄))(i) = α(fi)µ(xi). Because (µ, α) is a Σ-morphism, this

last expression is equal to µ(fixi) = µ((f̄ x̄)(i)) = (µ(f̄ x̄))(i).

What we have shown with this theorem is that the following diagram commutes:

X
µ

- Y

X

f̄

? µ
- Y

α(f̄)

?

Having the Σ-pair (X ,∆) we can continue with the construction of pseudoquotients: Let

A be defined by

A = {(x̄, f̄) ∈ X ×∆ : fixj = fjxi for all i, j ∈ I}.

17



The property fixj = fjxi for all i, j ∈ I is called the exchange property. We define the

relation ∼ on A by

(x̄, f̄) ∼ (ȳ, ḡ)⇔ gjxi = fiyj for all i, j ∈ I.

We can verify that ∼ is an equivalence on A: By the definition of A it is clear that ∼ is

reflexive and symmetric. We can verify the transitivity. Suppose

(x̄, f̄) ∼ (ȳ, ḡ) and (ȳ, ḡ) ∼ (z̄, h̄)

Then

gixj = fjyi and gkzl = hlyk

for all i, j, k, l ∈ I. For every k ∈ I we have

gkzi = hiyk

or

fjgkzi = fjhiyk,

where j ∈ I. Using the commutativity of G we get

fjgkzi = hifjyk

or

fjgkzi = higkxj.

Once again using the commutativity of G and the fact that ∆ is injective on X we get

fjzi = hixj.
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We define the space of pseudoquotients B(X ,∆) to be the quotient space A/ ∼. A typical

element of this space is denoted by
x̄

f̄
which represents the equivalence class [(x̄, f̄)] in A.

Similar to the injective case of pseudoquotients, we have the embedding ι : X → B(X ,∆)

defined by ι(x) =
f̄x

f̄
, for some f̄ ∈ ∆. To see that ι is independent of the choice of f̄ , note

that for any other ḡ ∈ ∆, f̄x
f̄

= ḡx
ḡ

since gj(fix) = fi(gjx) for all i, j ∈ I by the commutativity

of G. We have the following property of the embedding ι:

Lemma 2. If the embedding ι : X → B(X ,∆) is injective.

Proof. Suppose
f̄x

f̄
=
f̄y

f̄
, then we have for every i, j ∈ I, fj(fix) = fi(fjy) = fj(fiy). Since

∆ is injective on X, x = y.

Example 3 (The space of B(R)). The space of Boehmians on R for the first time was

introduced in [10]. Here we describe this construction: Let X = C(R) and let G = C+
c (R)

(continuous non-negative functions with compact support over the real line). Action of G

on X is convolution ∗. Note that (G, ∗) is a commutative semigroup. Next we define ∆ be

the set of delta-sequences ; we say a sequence {ϕn} of functions in C+
c (R) is a delta-sequence

if it satisfies the following conditions:

1.
∫

R ϕndµ = 1,

2. For every neighborhood U of 0 there exists n0 ∈ N such that for every n ≥ n0,∫
Uc ϕndµ = 0.

Using the language introduced in the construction of pseudoquotients, we have

A = {(f̄ , ϕ̄) : fn ∈ X,ϕn ∈ G,ϕn ∗ fm = ϕm ∗ fn,∀m,n ∈ N}

19



and the equivalence ∼ on A is defined by

(f̄ , ϕ̄) ∼ (ḡ, ψ̄)⇔ ψn ∗ fm = ϕm ∗ gn ∀m,n ∈ N.

The space of Boehmians on R denoted by B(C(R), G), or by just B(R), is the quotient space

A/ ∼.

Taking a closer look at the construction of pseudoquotient in this general sense, we notice

a not so subtle discrepancy with the injective case. For the construction of B(X,G), we start

with a Σ-pair (X,G) where G acts on X injectively. However, in the general case the ∆ of

the Σ-pair (X ,∆) does not act injectively on all of X and we only require it to act injectively

on constant sequences (i.e. on X). The reasoning for this not so natural restriction is that in

the former case, if we force ∆ be injective as actions on X , then the construction reduces to

the injective case. On the other hand if we take away the injection requirement the relation

∼ will not be an equivalence (the transitivity will fail). Bringing up this point about our

definition of general pseudoquotients is not to say it is a handicap. In fact this definition

fits many of our examples nicely. However the discrepancy is a technical point that is worth

noting.

Comparing the two structure of pseudoquotients, the injective and the general case, we

see that the injective case is a special case of the general case where I = {1}. The natural

question here would be, how many of the set properties we showed for the injective case will

generalize.

One of the properties we are interested in is the one involving the re-application of

the construction with the same ∆. We first show that this process can be done. The
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operation of G : X → X can be extended to G : B(X ,∆) → B(X ,∆): For every g ∈ G

we defined g

(
x̄

f̄

)
=

gx̄

f̄
. Note that

gx̄

f̄
∈ B(X ,∆) since for every i, j ∈ I, we have

fj(gxi) = g(fjxi) = g(fixj) = fi(gxj). We can also verify that this action is well-defined:

suppose
x̄

f̄
=
ȳ

h̄
which means for every i, j ∈ I, hjxi = fiyj which implies ghjxi = gfiyj or

gx̄

f̄
=
gȳ

h̄
. Using this extension of G we can say ∆ acts on (B(X ,∆))I . We should verify

that ∆ is injective on B(X ,∆). Suppose for every k ∈ I we have
gkx̄

f̄
=
gkȳ

h̄
. Fix k, then

from the definition of equivalence in B(X ,∆) we have gkhjxi = gkfiyj for every i, j ∈ I. We

can say this for every k ∈ I and since hjxi and fiyj are in X, and ∆ acts injectively on X,

we have hjxi = fiyj or
x̄

f̄
=
ȳ

h̄
. As before we let

A = {(F̄ , f̄) ∈ (B(X ,∆))I ×∆ : fiFj = fjFi ∀ i, j ∈ I}.

We define the equivalence in A by: (F̄ , f̄) ∼ (Ḡ, ḡ) if and only if for every i, j ∈ I, giFj =

fjGi. Clearly this relation is reflexive and symmetric. For transitivity, suppose

(F̄ , f̄) = (Ḡ, ḡ) and (Ḡ, ḡ) = (H̄, h̄)

note that by the second equality we have for all i, j ∈ I, hjGi = giHj. Fix some i and j.

Then we have for every k ∈ I

fkhjGi = fkgiHj.

Using the first equality we get

hjgiFk = fkgiHj.

This is true for every i and ∆ acts on X injectively so we get

hjFk = fkHj
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or

(F̄ , f̄) = (H̄, h̄)

Define B(B(X ,∆),∆) = A/ ∼. To avoid unnecessary complications with the notation we

drop the power and instead of B((B(X ,∆))I ,∆) we just simply write B(B(X ,∆),∆). Clearly

B(X ,∆) can be embedded in B(B(X ,∆),∆) by an extension of the map ι discussed in the

construction of pseudoquotients.

As a demonstration of how we work with elements of B(B(X ,∆),∆) we show that the

action of G on B(B(X ,∆),∆), where g

(
F̄

f̄

)
=
gF̄

f̄
for all g ∈ G, is associative: Suppose

F̄

f̄
=

F̄ ′

f̄ ′
which means f ′jFi = fiF

′
j or gf ′jFi = gfiF

′
j . Using commutativity of G, we get

gF̄

f̄
=
gF̄ ′

f̄ ′
. Finally, for every g, h ∈ G,

g(h
F̄

f̄
) = g

(
hF̄

f̄

)
=
g(hF̄ )

f̄

which by associativity of G on B(X ,∆) is equal to
(gh)F̄

f̄
= (gh)

F̄

f̄
.

A reasonable question is, by re-application of the construction of pseudoquotients, do

we get a bigger set or can we say there is a bijection between B(X ,∆) and B(B(X ,∆),∆).

In general we cannot say much. However, if ∆ satisfies certain conditions we can show the

bijection. One of these conditions is ∆ having the diagonal property :

Definition 5 (The diagonal property). We say a set ∆ has the diagonal property if for every

set {ᾱi} of elements in ∆ there exist an injection p : I → I such that γ̄, defined by γi = ᾱp(i)i

for all i ∈ I, is in ∆.

Theorem 7. If ∆ has the diagonal property, then B(X ,∆) and B(B(X ,∆),∆) are isomor-

phic.
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Proof. We showed that we have the injection ι : B(X ,∆) → B(B(X ,∆),∆). Suppose

F ∈ B(B(X ,∆),∆) then there exist a {fi} ∈ ∆ such that for every i ∈ I, fiF ∈ B(X ,∆).

Similarly, for each i ∈ I there exists {gi,j} such that for every j ∈ I, gi,j(fiF ) ∈ X. Since

∆ has the diagonal property, there exists an injection p : I → I such that {gp(i),i} ∈ ∆. Let

ḡ be such that gi = gp(i),i. We have for every i ∈ I, (gi fi)F ∈ X. Let hi = gi fi. There

is xi ∈ X such that hiF = xi. We claim the mapping κ defined by F 7→ x̄

h̄
is the inverse

of ι. Hence we show κ is an injection from B(B(X ,∆),∆) to B(X ,∆) such that ι ◦ κ = id.

We first check
x̄

h̄
∈ B(X ,∆), to verify that we need to show for every i, j ∈ I, hixj = hjxi;

Notice

hixj = hi(hjF ) = hj(hiF ) = hjxi.

Next we show the well-definedness: Suppose F = G in B(B(X ,∆),∆). If
x̄

h̄
= κ(F ) and

x̄′

h̄′
= κ(G) we want to show h′jxi = hix

′
j for all i, j ∈ I. We have

h′jxi = h′j(hiF ) = hi(h
′
jF ) = hi(h

′
jG) = hix

′
j.

And finally to check that it is an injection, suppose
x̄

h̄
and

x̄′

h̄′
are as before and

x̄

h̄
=
x̄′

h̄′
which

is the same thing as saying h′jxi = hix
′
j or h′j(hiF ) = hi(h

′
jG) for all i, j ∈ I. Since this is

true for all i ∈ I and ∆ acts on B(X ,∆) injectively, h′jF = h′jG for all j and since ∆ acts on

B(B(X ,∆),∆) injectively, we have F = G. Finally to show ι ◦ κ = id notice ι(κF ) = ι
( x̄
h̄

)
and since xi = hiF , we get

ι(κF ) = ι
( x̄
h̄

)
= ι

(
x̄

ḡf̄

)
=
ḡ x̄
ḡf̄

ḡ
=

ḡx̄
ḡf̄

ḡ
=

x̄
f̄

ḡ
=

h̄F
f̄

ḡ
=

ḡf̄F
f̄

ḡ
=
ḡF

ḡ
= F.
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Remark 3. The diagonal property may seem like a very strong requirement, but in our

basic example B(R), ∆ which is the set of delta-sequences has this property. Notice, if we

have a sequence δ̄n in ∆, then we can construct a sequence δ̄′ the following way: Let δ′1 = δ11.

For every natural number n > 1, let m be such that supp δnm ⊂ supp δ′n−1 and let δ′n = δnm.

Clearly δ̄′ is a delta-sequence.

The semigroup of delta-sequences used in the construction of Boehmians is not the only

example. In fact we have the following theorem:

Theorem 8. If s : G → [0,∞) has the property s(fg) ≤ s(f) + s(g) for all f, g ∈ G and

∆ ⊂ GN is defined to be all sequences (fn) with the property s(fn) → 0, then ∆ has the

diagonal property.

Proof. Suppose we have (f̄n) a sequence of elements of ∆. To construct the diagonal that is

also in ∆, let g1 = f11. For every n > 1, let gn = fnm, where m is a large enough number

so that we have s(fnm) < s(gn−1). We can do this since for each n, s(fnm)→ 0 as m→∞.

Clearly (gn) is in ∆.

In the case of the delta-sequences, s is the support number of the functions in the se-

quence. (For a function ϕ ∈ Cc(R), a positive real number a is called the support number of

ϕ if a is the smallest number such that supp (ϕ) ⊂ [−a, a].)

Another condition under which the reapplication of the construction of pseudoquotients

does not produce a new set is the common denominator property:

Definition 6 (The common denominator property). We say (B(X ,∆))I has the common

denominator property if for every F̄ ∈ (B(X ,∆))I there exist a f̄ ∈ ∆ such that for every
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i, j ∈ I, fiFj ∈ X

Theorem 9. If (B(X ,∆))I has the common denominator property, then there is a bijection

between B(X ,∆) and B(B(X ,∆),∆).

Proof. The proof follows similar outline as the proof of Theorem 7. All we need to show

is that there exists injective κ : B(B(X ,∆),∆) → B(X ,∆) such that ι ◦ κ = id. Let

F ∈ B(B(X ,∆),∆). Then there exists f̄ ∈ ∆ such that for every i, fiF ∈ B(X ,∆). As an

element of (B(X ,∆))I , f̄F can be written with the same denominator, say ḡ ∈ ∆. That is

we have for every i, j ∈ I, gi(fjF ) ∈ X. Let hi = gifi and xi = hiF . The rest of the proof is

identical to that of Theorem 7.

At this point let us revisit Theorem 5 and prove a similar result for the general case.

Theorem 10. Suppose (µ, α) : (X,G)→ (Y,H) is a Σ-morphism. Then

1. The map µ̃ : B(X ,∆G) → B(Y ,∆H) defined by µ̃
(
x̄
f̄

)
= µ(x̄)

α(f̄)
is a unique extension of

µ to a Σ-morphism (µ̃, α) : (B(X ,∆G), G)→ (B(Y ,∆H), H).

2. If µ is an injection, then so is µ̃.

Proof. 1. We can verify that µ̃ is well-defined: Suppose x̄
f̄

= ȳ
ḡ

which means for every

i, j ∈ I, we have

fiyj = gjxi.

Applying µ to both sides we get

µ(fiyj) = µ(gjxi)
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which, using the consistency condition, can be written as

α(fi)µ(yj) = α(gj)µ(xi)

or

µ(x̄)

α(f̄)
=
µ(ȳ)

α(ḡ)
or µ̃

(
x̄

f̄

)
= µ̃

(
ȳ

ḡ

)
.

In order for µ̃ to be an extension of µ we should have µ(x) = µ̃
(
f̄x
f̄

)
, for every x ∈ X

and f̄ ∈ ∆. For all x ∈ X, we have µ̃
(
f̄x
f̄

)
= µ(f̄x)

α(f̄)
which by the consistency condition

is equal to α(f̄)µ(x)

α(f̄)
= µ(x). To show (µ̃, α) is a Σ-morphism, notice

α(g)µ̃(
x̄

f̄
) = α(g)

(
µ(x̄)

α(f̄)

)
=
α(g)µ(x̄)

α(f̄)
.

Using the consistency condition since (µ, α) is a Σ-morphism, we have

α(g)µ(x̄)

α(f̄)
=
µ(gx̄)

α(f̄)
= µ̃

(
gx̄

f̄

)
= µ̃

(
g
x̄

f̄

)
.

For uniqueness, suppose µ̄ is an extension of µ such that (µ̄, α) is a Σ-morphism from

(B(X ,∆G), G) to (B(Y ,∆H), H). Let x̄
f̄

be an element of B(X ,∆G). Then µ̄
(
x̄
f̄

)
= ȳ

h̄

for some ȳ
h̄

in B(Y ,∆H). Because µ̄ is an extension of µ we have for every j ∈ I,

µ(xj) = µ̄(xj) = µ̄

(
fj
x̄

f̄

)
= α(fj)µ̄

(
x̄

f̄

)
= α(fj)

ȳ

h̄
.

What these equalities show is that for every j ∈ I,

µ(xj) = α(fj)
ȳ

h̄

which implies

µ̄

(
x̄

f̄

)
=
ȳ

h̄
=
µ(x̄)

α(f̄)
= µ̃

(
x̄

f̄

)
.
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2. Suppose µ is injective and

µ(x̄)

α(f̄)
=
µ(ȳ)

α(ḡ)
.

This equivalence means for every i, j ∈ I,

α(gj)µ(xi) = α(fi)µ(yj)

which by the consistency condition implies

µ(gjxi) = µ(fiyj).

Because µ is injective we have

gjxi = fiyj

for all i, j which is the same as saying x̄
f̄

= ȳ
ḡ
.

It is a rather interesting point that even though there is no Σ-morphisms from (X,G)

to (X ,∆) or from (X ,∆) to (B(X ,∆), G), we do have a Σ-morphism from (X,G) to

(B(X ,∆), G).

2.4 Algebraic Properties

We start this section by considering Σ-pairs (X,G) in which (X,⊕) is a group (⊕ not

necessarily a commutative operation) and G is a commutative semigroup of homomorphisms

acting on X. We define the ⊕ operation on XI by (x̄ ⊕ ȳ)(i) = xi ⊕ yi for all i ∈ I. We

investigate the algebraic properties of the space of pseudoquotients and the extension map
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µ̃ defined in Theorem 10. As we mentioned in the last section, the injective case is a special

case of general pseudoquotients so all the demonstrations will be for the general case. Let X

and ∆ be as described in the last section with additional condition that (X ,⊕) is a group.

Further, we can define ⊕ : B(X ,∆)× B(X ,∆)→ B(X ,∆) by

x̄

f̄
⊕ ȳ

ḡ
=

(ḡx̄)⊕ (f̄ ȳ)

f̄ ḡ
. (2.2)

Since it is usually clear where the operation is taking place, we use ⊕ to denote the operation

on both X and B(X ,∆). We can verify that ⊕ is well-defined: Suppose
x̄

f̄
=
x̄′

f̄ ′
. Then we

have

x̄

f̄
⊕ ȳ

ḡ
=
ḡx̄⊕ f̄ ȳ
f̄ ḡ

=
f̄ ′ḡx̄⊕ f̄ ′f̄ ȳ

f̄ ′f̄ ḡ
=
ḡf̄ ′x̄⊕ f̄ f̄ ′ȳ

f̄ f̄ ′ḡ

=
ḡf̄ x̄′ ⊕ f̄ f̄ ′ȳ

f̄ f̄ ′ḡ

=
x̄′

f̄ ′
⊕ ȳ

ḡ

Theorem 11. If (X,⊕) and (X ,⊕) are groups then so is B(X ,∆) with ⊕ defined as in

(2.2).

Proof. The closure under ⊕ is clear. For associativity let x̄
f̄
, ȳ
ḡ
, z̄
h̄
∈ B(X ,∆) then we have

x̄

f̄
⊕
(
ȳ

ḡ
⊕ z̄

h̄

)
=
x̄

f̄
⊕
(
h̄ȳ ⊕ ḡz̄
ḡh̄

)
=
ḡh̄x̄⊕ f̄ h̄ȳ ⊕ f̄ ḡz̄

f̄ ḡh̄
=
h̄(ḡx̄⊕ f̄ ȳ)⊕ f̄ ḡz̄

f̄ ḡh̄
=

(
x̄

f̄
⊕ ȳ

ḡ

)
⊕ z̄
h̄
.

For the identity let e be the identity in X. We claim the embedding of e in B(X ,∆) is the

identity. Note that this element will have the form
e

f̄
for some f̄ ∈ ∆ and we also have, for

any other ḡ ∈ ∆,
e

f̄
=
e

ḡ
. Let

x̄

ḡ
∈ B(X ,∆). Then

e

f̄
⊕ x̄

ḡ
=
ḡe⊕ f̄ x̄
f̄ ḡ

=
f̄ x̄

f̄ ḡ
=
x̄

ḡ
.
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Similarly we can show
x̄

ḡ
⊕ e

f̄
=
x̄

ḡ
. Finally the inverse of each

x̄

ḡ
is
ȳ

ḡ
where yi is the inverse

of xi in X for all i ∈ I.

In the above theorem, if X is commutative, then so is B(X ,∆).

Theorem 12. Let (X,G), (Y,H) be Σ-pairs with the Σ-morphism (µ, α) : (X,G)→ (Y,H).

Suppose X and Y are groups. Then if µ is a group homomorphism then so is µ̃ : B(X ,∆G)→

B(Y ,∆H) defined by

µ̃(
x̄

f̄
) =

µ(x̄)

α(f̄)
.

Proof. To show that µ̃ is a group homomorphism, let
x̄

f̄
,
ȳ

h̄
∈ B(X ,∆), then we have

µ̃

(
x̄

f̄
⊕ ȳ

ḡ

)
= µ̃

(
ḡx̄⊕ f̄ ȳ
f̄ ḡ

)
=
µ(ḡx̄⊕ f̄ ȳ)

α(f̄ ḡ)
=
µ(ḡx̄)⊕ µ(f̄ ȳ)

α(f̄)α(ḡ)

since µ is a homomorphisms and by the definition of Σ-morphism we know α is a semigroup

homomorphism. By the consistency condition this last expression is equal to

α(ḡ)µ(x̄)⊕ α(f̄)µ(ȳ)

α(f̄)α(ḡ)
=
µ(x̄)

α(f̄)
⊕ µ(ȳ)

α(ḡ)
= µ̃

(
x̄

f̄

)
⊕ µ̃

(
ȳ

ḡ

)
.

Next we give X more structure: Let X be a vector space over a field F . We can define the

scalar multiplication on XI by (λx̄)(i) = λxi for all i ∈ I and λ ∈ F . Furthermore, we say G

acts linearly on X if for every f ∈ G, x, y ∈ X, and λ, λ′ ∈ F , f(λx+λ′y) = λ(fx) +λ′(fy).

Theorem 13. If X and X are vector spaces and G acts linearly on X, then B(X ,∆) is also

a vector space.
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Proof. The group properties extend to B(X ,∆). The only missing part is the scalar multi-

plication which we can define by

λ
x̄

f̄
=
λx̄

f̄

where λ ∈ F . To see this operation is well-defined, let x̄
f̄

= x̄′

f̄ ′
in B(X ,∆). Then we have

λ(f̄ ′x̄) = λ(f̄ x̄′) or f̄ ′(λx̄) = f̄(λx̄′) which is the same thing as λx̄
f̄

= λx̄′

f̄ ′
.

Theorem 14. If X and X are vector spaces over a field F , with G acting linearly on X,

then the embedding ι : X → B(X ,∆) is linear.

Proof. For every x, y ∈ X and λ ∈ F we have

ι(x+ y) =
f̄(x+ y)

f̄
=
f̄x+ f̄y

f̄
=
f̄(f̄x+ f̄y)

f̄ f̄
=
f̄x

f̄
+
f̄y

f̄
= ι(x) + ι(y)

and

ι(λx) =
f̄(λx)

f̄
=
λf̄x

f̄
= λ

(
f̄x

f̄

)
= λι(x).

Let (X,+, ·) be a ring and G a semigroup of ring homomorphisms. As in the case of ⊕

we can extend + to XI . We can also extend the · operation to XI and define it for every

x̄, ȳ ∈ XI by (x̄ · ȳ)(i) = xi · yi for all i ∈ I. Let X be such that (X ,+, ·) is a ring. We like

to see if B(X ,∆) is also a ring with + and some extension of ·. We have two choices for

defining · : B(X ,∆) → B(X ,∆). One way is to use similar definition as for ⊕: For every

x
f
, y
g
∈ B(X ,∆) we define:

x

f
· y
g

=
gx · fy
fg

.
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Showing · is well-defined and (B(X ,∆),+, ·) is a ring are straightforward calculations. (The

process follows almost exact steps as in for ⊕.) The other choice for · is similar to multiplying

fractions. The following theorem describes all the necessary details.

Theorem 15. If (X,+, ·) is a ring and for every f̄ ∈ ∆ and x̄, ȳ ∈ X ,

f̄(x̄ · ȳ) = (f̄ x̄) · ȳ,

then B(X ,∆) is also a ring with operations + defined in (2.2) and · defined by:

x̄

f̄
· ȳ
ḡ

=
x̄ · ȳ
f̄ ḡ

. (2.3)

Proof. By Theorem 11 we know that B(X ,∆) is a group. We first verify that · is a well-

defined operation: Suppose x̄
f̄

= x̄′

f̄ ′
. Then we have

x̄

f̄
· ȳ
ḡ

=
x̄ · ȳ
f̄ ḡ

=
f̄ ′(x̄ · ȳ)

f̄ ′f̄ ḡ
=

(f̄ ′x̄) · ȳ
f̄ ′f̄ ḡ

=
(f̄ x̄′) · ȳ
f̄ ′f̄ ḡ

=
f̄(x̄′ · ȳ)

f̄ ′f̄ ḡ
=
x̄′ · ȳ
f̄ ′ḡ

=
x̄′

f̄ ′
· ȳ
ḡ
.

The associativity of · follows those of · on X and the operation in G. The verification of

distributivity of · over addition is just an elementary calculation. The identity in B(X ,∆)

with respect to · is the embedding of 1, the ·-identity in X, hence has the form f̄
f̄
.

Corollary 3. Let X be an algebra over a field F , and X be a subalgebra of XI . If elements

of G are algebra homomorphisms on X then B(X ,∆) is also an algebra.

Proof. The proof is the direct consequence of Theorem 14 and Theorem 15.
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2.5 Topological Properties

2.5.1 The Injective Case

To discuss the topological properties of either the injective case or the general case of pseu-

doquotients we consider the Σ-pair (X,G) in which X and G are topological spaces. We

start with the injective case and in the next section we will get inspiration from these results

to show similar topological properties for the general case.

The first topology we will consider is the quotient topology, denoted by τQ, where our

quotient map q : X ×G→ B(X,G) is defined by q(x, f) = x
f

and the topology on X ×G is

the product topology.

Theorem 16. The embedding ι : X → B(X,G), where ι(x) = fx
f

is as described in the con-

struction of generalized quotients and elements of G are continuous maps, is τQ-continuous.

Proof. Notice that for every x ∈ X, the map x 7→ fx is continuous on X and the map

fx 7→ (fx, f) is continuous from X to X ×G where the topology on X ×G is the product

topology. Finally, the quotient map which takes (fx, f) 7→ fx
f

is continuous. Thus ι being a

composition of these three maps is continuous.

As we discussed in the previous section, if we have a Σ-morphism (µ, α) : (X,G) →

(Y,H), then we can uniquely extend µ to µ̃ : B(X,G) → B(Y,H). Under some simple

conditions which we discussed earlier, µ̃ inherits some of the set map properties of µ such as

injection and surjection, and some algebraic properties such as being a group homomorphism.

A natural question would be, does µ̃ inherit continuity if B(X,G) and B(Y,H) are equipped
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with the quotient topology? To show this we need the following theorem which can be found

in [17].

Theorem 17. Let q : X → Y be a quotient map. Let Z be a space and let g : X → Z be

a map that is constant on each set q−1({y}), for y ∈ Y . Then g induces a map f : Y → Z

such that f ◦ q = g. The induced map f is continuous if and only if g is continuous.

Now our main theorem:

Theorem 18. Suppose (X,G) and (Y,H) are Σ-pairs and let B(X,G) and B(Y,H) have

the quotient topology. If (µ, α) : (X,G) → (Y,H) is a Σ-morphism with µ : X → Y

and α : G → H continuous and α a surjection, then µ̃ : B(X,G) → B(Y,H), defined by

µ̃(x
f
) = µ(x)

α(f)
is continuous.

Proof. Let q : (X,G) → B(X,G) and q′ : (Y,H) → B(Y,H) be quotient maps. To use

Theorem 17 we first need to show that q′ ◦ (µ, α) is constant on each set q−1(x
g
), for x

g
∈

B(X,G). Let x
g
∈ B(X,G). q−1(x

g
) = [(x, g)] ∈ (X,G). If (x, g) ∼ (x′, g′) then we have

q′ ◦ (µ, α)(x, g) = q′(µ(x), α(g)) = µ(x)
α(g)

and similarly q′ ◦ (µ, α)(x′, g′) = µ(x′)
α(g′)

. Finally we

have µ(x)
α(g)

= µ(x′)
α(g′)

. Next we need to show that q′ ◦ (µ, α) is continuous: Let U ⊂ B(Y,H)

be an open set and (x, g) ∈ (X,G) be such that q′ ◦ (µ, α)(x, g) ∈ U . If there is no such

(x, g) then that implies the preimage is the empty set which is open. Otherwise, (q′)−1U =⋃
i Ui × Hi where Ui ⊂ Y and Hi ⊂ H are open. Now applying (µ, α)−1 to

⋃
i Ui × Hi we

get
⋃
i µ
−1Ui × α−1Hi which is open in X × G because µ and α are continuous maps, and

for some n, (x, g) ∈ µ−1Ui × α−1Hi.

While the quotient topology is the topology usually associated with quotient spaces, it
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has the drawback of making convergence difficult to characterize. For this reason, we wish

to consider an alternate topology on B(X,G) in which convergent sequences have a simple

characterization. This can be done by first defining a convergence and then inducing a

topology from it. Here is the convergence we will use:

Definition 7. Let Fn, F ∈ B(X,G). We define P -convergence to be: Fn
P→ F if there exist

f ∈ G such that fFn, fF ∈ X, and fFn → fF in X.

In what follows, we will write xn :∈ A to indicate that the sequence (xn) is eventually in

A, i.e., there exists an N0 such that xn ∈ A for all n > N0.

P -convergence is similar to type I convergence discussed in [7]. The difference is that

type I convergence is defined for the field of Mikusiński operators. Speaking with quotient

notation in mind, this convergence means, a sequence of quotients converges if all quotients

can be written with the same “denominators” and the “numerators” converge. The P -

convergence is not topological however we can use it to define a topology we call the natural

topology.

Definition 8. We say U ⊂ B(X,G) is open in the natural topology (or U ∈ τN) if Fn
P→

F ∈ U implies Fn :∈ U .

Topology τN defines a convergence which we call the natural (or N -) convergence and

denote it by
N→. In general this convergence is not the same as the P -convergence. However

we have the following:

Theorem 19. Let Fn, F ∈ B(X,G) for all n ∈ N. If every subsequence of Fn has a subse-

quence which is P -convergent to F then Fn
N→ F .
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Proof. Suppose every subsequence of Fn has a subsequence P -convergent to F . Let U ⊂

B(X,G) be τN open containing F . If Fn is not eventually in U , then there is a subsequence of

Fn with all the elements outside of U . But that subsequence has a subsequence P -converging

to F with all the elements outside of U which is a contradiction since U is a τN -open set and

every P -convergent sequence must eventually be in U .

Even though τN makes defining convergence easier than τQ, defining elements of τN is

not intuitive.

In the following theorems we compare the two topologies. We will see that under a mild

assumption they are equal. We also present an example to show that in general this is not

necessarily true.

Theorem 20. τN is a finer topology than τQ. That is, τQ ⊂ τN .

Proof. Let U ∈ τQ. To show that U ∈ τN , we need to show that

Fn
P→ F ∈ U ⇒ Fn :∈ U,

Suppose Fn
P→ F ∈ U . Then we can write Fn = xn

f
, F = x

f
, where xn → x ∈ X. Then

(x, f) ∈ q−1(U). In fact, (x, f) ∈ Ux × Vf , for open sets Ux ⊂ X and Vf ⊂ G, which is an

open subset of q−1(U). Because of the P -convergence, (xn, f) :∈ Ux × Vf ⊂ q−1(U). Thus

Fn :∈ U which makes U a τN open set.

Theorem 21. If X first-countable, then τQ is finer than τN .
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Proof. Let U ∈ τN , and suppose U /∈ τQ. Then q−1(U) is not open in X × G. But X is

first countable, so we can construct a sequence xn in X such that (x, f) ∈ q−1(U), for some

f ∈ G with (xn, f) → (x, f) and (xn, f) /∈ q−1(U). This implies xn

f
P -converges to x

f
but

everyxn

f
is outside U which is a contradiction.

Corollary 4. If X first-countable, then τQ = τN .

The following example demonstrates a case where τQ and τN are not equal: Let X be the

real line with the countable complement topology, and let G consists of the identity map.

Then B(X,G) = X, and the quotient topology is the same as the topology on X. Since

there are only trivial convergent sequences in X, the natural topology on B(X,G) is discrete

and thus τN 6= τQ.

2.5.2 The General Case

In this section we discuss different possible topologies for the space of pseudoquotients in the

general case. The standard way of defining a topology on a space B(X ,∆) is by inducing a

topology on B(X ,∆) from the topologies of X and G the following way: Let X and G be

topological spaces with G possibly having the discrete topology, then the topologies of X

and G induce product topologies on XI and GI and we can restrict those topologies to X

and ∆. The space X ×∆ will have the product topology and finally X ×∆/ ∼ or B(X ,∆)

will have the quotient topology. With this topology we have the following property for the

embedding ι : X → B(X ,∆) defined by ι(x) = f̄x
f̄

(as we described in the construction

section).

36



Theorem 22. The embedding ι : X → B(X ,∆) is continuous with respect to the quotient

topology provided elements of G are continuous on X.

Proof. Notice the mapping defined by x 7→ f̄x is continuous since elements of G are contin-

uous. Also the mapping defined by f̄x 7→ (f̄x, f̄) is obviously continuous. And finally the

quotient map taking (f̄x, f̄) to f̄x
f̄

is continuous. Thus ι being the composition of these three

continuous maps is continuous.

Theorem 23. Let (µ, α) : X ×G→ Y ×H be a Σ-morphism with α : G→ H a continuous

surjection. If µ is continuous, then the extension map µ̃ : B(X ,∆G)→ B(Y ,∆H), defined by

µ̃
(
x̄
f̄

)
= µ(x̄)

α(f̄)
, is continuous with respect to the quotient topology on B(X ,∆G) and B(Y ,∆H).

Proof. Once again we use Theorem 17. Suppose q : XI × GI → B(X ,∆G) and q′ : Y I ×

HI → B(Y ,∆H) be quotient maps. Let the g in Theorem 17 be the composition map

g = q′ ◦ (µ, α). To check that g is constant on q−1
(
x̄
f̄

)
for every x̄

f̄
, note that q−1

(
x̄
f̄

)
=

[(x̄, f̄)] and if (x̄, f̄) ∼ (x̄′, f̄ ′) in B(X ,∆G), q′ ◦ (µ, α)(x̄, f̄) = q′(µ(x̄), α(f̄)) = µ(x̄)

α(f̄)
and

q′ ◦ (µ, α)(x̄′, f̄ ′) = q′(µ(x̄′), α(f̄ ′)) = µ(x̄′)
α(f̄ ′)

. Since for every n,m ∈ I we have α(fm)µ(x′n) =

µ(fmx
′
n) = µ(f ′nxm) = α(f ′n)µ(xm) the quotients µ(x̄′)

α(f̄ ′)
and µ(x̄)

α(f̄)
are equivalent. And to show

the continuity of g we need to show the continuity of the general form of (µ, α) : XI ×GI →

Y I ×HI . For an open set U ⊂ Y I we have U = ΠiUi where Ui = Y for but finitely many i’s

and open sets in Y for the rest. Since µ is a continuous map, µ-preimage of U is the product

of copies of X and finitely many open sets which is open in XI . Similarly we can show the

preimage of an open set V in HI is open in GI using continuity of α. Hence (µ, α)−1U × V

is open in XI ×GI . Thus g being the composition of two continuous functions is continuous
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and that implies µ̃ is continuous.

Although this way of defining a topology on the quotient space B(X ,∆) is intuitive,

as in the injective case it is not easy to define convergence using this topology. Hence we

take similar steps as for the generalized quotients and first define a convergence and then

using the convergence we define a topology. In [11] P. Mikusiński described two choices for

defining convergence on B(X ,∆). We will not use these in future sections but for the sake

of completeness, we will mention them here.

We start by describing δ-convergence in B(X ,∆).

Definition 9. Suppose Fn, F ∈ B(X ,∆) for all n ∈ N. We say Fn
δ→ F if there exist f̄ ∈ ∆

such that for every k ∈ I, fkFn → fkF in X as n→∞.

For example consider the space of Boehmians B(R) described in the previous section. In

this example, X = C(R), G = C+
c (R), and the index set is N. Here the action of G on X is

defined by convolution. Additionally, ∆ in this case is the set of delta sequences. We say

a sequence of Boehmians Fn converges to Boehmian F if there exists a delta-sequence (δn)

such that for every k ∈ N, δk ∗ Fn → δk ∗ F in C(R).

Recalling the common denominator property described in the construction of pseudoquo-

tients and using Theorem 2.6 of [11] we can conclude that a set of δ-convergent pseudoquo-

tients has the common denominator property. δ-convergence is not a topological convergence

however we can use this convergence to define ∆-convergence which we will see is topological.

Definition 10. Suppose Fn, F ∈ B(X ,∆) for all n ∈ N. We say Fn
∆→ F if each subsequence

of (Fn) contains a subsequence which is δ-convergent to F .
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Remembering the Urysohn’s condition we know that under some mild conditions (i.e. the

uniqueness of the limits, convergence of constant sequences, and convergent subsequences

converging to the same limit), we have a convergence is topological if every subsequence of

a convergent sequence has a subsequence that is also convergent to the same limit. Hence

we have ∆-convergence is a topological convergence and the topology induced is called ∆-

topology and is denoted by τ∆.
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CHAPTER THREE: SOME EXAMPLES OF GENERALIZED
QUOTIENTS

3.1 The Space B(CL, G) and The Laplace Transform

In [19], K. Yosida introduces a space of generalized quotients over the positive real line.

Although the process may seem elementary, this construction is a very good example for

injective pseudoquotients we described in CHAPTER TWO. Not to repeat what has already

been done in [19], we will use a different, less trivial function to generate the semigroup G.

In the next section we will generalize this construction to the whole real line.

The space of continuous Laplace transformable functions defined on [0,∞), denoted by

CL, with pointwise addition and the convolution operation defined by

g ∗ f(t) =

∫ t

0

g(t− u)f(u)du

is a commutative ring. Let g ∈ CL be the function e−
1
t on (0,∞) and 0 at 0. The action of

g on f is g ∗ f which is

g ∗ f(t) =

∫ t

0

e
1

u−tf(u)du.

Let G = {gn, n ∈ N}. Here the power is the convolution power, i.e. g2 = g ∗ g and

gn = g ∗ gn−1. So far we have a commutative semigroup (G, ∗) acting on a set CL. We need

to check G acts injectively on C.

Lemma 3. The action of G on CL is injective.
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Proof. For this we use Laplace transform: First we show g ∗f = 0 implies f = 0. If g ∗f = 0

then L{g ∗ f} = 0 which implies L{g}L{f} = 0. But notice

L{g}(s) =

∫ ∞
0

e−ste−
1
t dt =

∫ ∞
0

e−st−
1
t dt > 0.

Thus L{f} = 0 which implies f = 0. In general if we have gn ∗ f = 0 then g ∗ (gn−1 ∗ f) = 0

which implies gn−1 ∗ f = 0. Using inductive argument we get f = 0.

On CL ×G we can introduce the relation ∼ by

(f, k) ∼ (f̃ , k̃) if and only if k̃ ∗ f = k ∗ f̃ .

From CHAPTER TWO we have such relation is an equivalence, since G is a commutative

semigroup of injections on CL. We define the space of generalized quotients B(CL, G) to

be the quotient space CL × G/ ∼. We will denote elements of B(CL, G) using the quotient

notation and we use “=” for equivalence. B(CL, G) is a ring with + and ∗ operations defined

by:

f

k
+
f̃

k̃
=
k̃ ∗ f + k ∗ f̃

k ∗ k̃

and

f

k
∗ f̃
k̃

=
f ∗ f̃
k ∗ k̃

.

We have shown that + defined this way is well-defined and since for every g ∈ G and

f, f̃ ∈ CL, g ∗ (f ∗ f̃) = (g ∗ f) ∗ f̃ , the ∗ operation is well-defined on B(CL, G). Furthermore

g
g
, where g can be replaced with any k ∈ G, acts as an identity on B(CL, G) since for any

f

k̃
∈ B(CL, G),

g

g
∗ f
k

=
g ∗ f
g ∗ k

=
f

k
,
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where the last equality follows from k ∗ (g ∗ f) = (g ∗ k) ∗ f , by the commutativity of

convolution on CL. We will denote g
g

by δ.

We can define scalar multiplication on B(CL, G) by

α · f
k

=
αf

k
,

where α ∈ C. Hence B(CL, G) is an algebra. We define the embedding ι : CL → B(CL, G) by

ι(f) = g∗f
g

for all f ∈ CL. As we saw in the general construction chapter, this embedding is

well-defined and independent of g. Hence we will identify every f with g∗f
g

if needed.

3.1.1 The Generalized Derivative

We first define the derivative of elements of B(CL, G):

Definition 11. For every f
k
∈ B(CL, G), we define the derivative of f

k
to be g′

g
∗ f
k
.

It can be verified that g′

g
is well-defined. For a differentiable function f in CL we have

(g′ ∗ f)(t)

g(t)
=

∫ t
0
g′(t− x)f(x)dx

g(t)

=
f(0)g(t) + (g ∗ f ′)(t)

g(t)

= f(0)δ +
(g ∗ f ′)(t)
g(t)

.

In the case where f(0) = 0 the general form reduces to the classical definition of derivatives.

3.1.2 The Laplace Transform

We will first define the Laplace transform for the functions in B(CL, G) and then demonstrate

its consistency.
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Definition 12. For a f
k
∈ B(CL, G), we define the Laplace transform of f

k
to be L{f

k
} = L{f}

L{k} .

Because for every k ∈ G we have k = gn for some n ∈ N and the exponent is convolution

power, then the denominator is reduced to L{k} = L{gn} = (L{g})n, where the exponent

n here is a multiplicative power.

Theorem 24. The Laplace transform is well-defined.

Proof. Suppose B ∈ B(CL, G) has two representation f
gn and f̃

gm . Since these two represen-

tations are equivalent we have

gm ∗ f = gn ∗ f̃

We can take the Laplace of both sides in the traditional sense

(L{g})mL{f} = (L{g})nL{f̃}

which implies

L{f}
(L{g})n

=
L{f̃}

(L{g})m
.

3.2 The Space B(Cexp(R), E) and The Fourier Transform

Here we will extend results presented above to a particular subset of continuous functions.

Let E(t) = e−|t| and let Cexp(R) be the set of all continuous functions f such that fE is

integrable. On this set we define convolution of two functions f and g by

f ∗ g(t) =

∫ ∞
−∞

f(t− x)g(x)dx
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whenever the integral exists. Let E be defined by

E = {En : n = 1, 2, . . . }.

where the power here is a convolutive power (i.e. E2 = E ∗E, and En = E ∗En−1). (E , ∗) is

a commutative semigroup. Further, we can show that E acts on on Cexp(R) by convolution.

We can show this action injective:

Theorem 25. For all n ∈ N, if En ∗ f = 0 for f ∈ Cexp(R) then f is the zero function.

Proof. We prove by induction on n. Suppose E ∗ f = 0. Then we have∫ t

−∞
ex−tf(x)dx+

∫ ∞
t

et−xf(x)dx = 0

or

e−t
∫ t

−∞
exf(x)dx+ et

∫ ∞
t

e−xf(x)dx = 0

Multiplying both sides by et we get∫ t

−∞
exf(x)dx+ e2t

∫ ∞
t

e−xf(x)dx = 0

After differentiating both sides, by the fundamental theorem of calculus we get:

etf(t) + 2e2t

∫ ∞
t

e−xf(x)dx− e2te−tf(t) = 0

Canceling the first and third term we get

2e2t

∫ ∞
t

e−xf(x)dx = 0

or ∫ ∞
t

e−xf(x)dx = 0.
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Hence

−e−tf(t) = 0

which implies f ≡ 0. Now if we have E2∗f = 0, that is the same thing as saying E∗(E∗f) = 0

which implies E ∗ f ≡ 0 or f ≡ 0. By induction we get En ∗ f = 0 implies f ≡ 0.

Continuing with the construction of quotients we say (f1, k1) ∼ (f2, k2) or f1
k1

= f2
k2

, where

f1, f2 ∈ Cexp(R) and k1, k2 ∈ E , if and only if k2 ∗ f1 = k1 ∗ f2. Since E acts injectively, ∼ is

an equivalence. Let B(Cexp(R), E) = Cexp(R)× E/ ∼. B(Cexp(R), E) is a ring with operations

+ and ∗ defined by

f1

k1

+
f2

k2

=
k2 ∗ f1 + k1 ∗ f2

k1 ∗ k2

and

f1

k1

∗ f2

k2

=
f1 ∗ f2

k1∗2

.

which are well-defined. We embed Cexp(R) in B(Cexp(R), E) by the mapping f 7→ E∗f
E

. E
E

is

the identity and is a representation of Dirac delta.

3.2.1 The Generalized Derivative

We have

E ′(t) =


−e−t if t ≤ 0

et if t > 0

The equivalence class of E′

E
is called the differentiation operator and we define the generalized

derivative of f ∈ Cexp(R) by E′

E
∗ f or equivalently E′∗f

E
. We can verify that the action of E′

E

on differentiable functions amounts to the derivative of the function.
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Theorem 26. For a differentiable function f ∈ Cexp(R), E′∗f
E

= f ′.

Proof. First we calculate the numerator E ′ ∗ f .

E ′ ∗ f(t) =

∫ ∞
−∞

E ′(t− x)f(x)dx

= −
∫ t

−∞
ex−tf(x)dx+

∫ ∞
t

et−xf(x)dx

= −e−t
∫ t

−∞
exf(x)dx+ et

∫ ∞
t

e−xf(x)dx

Integrating by parts we get

= −f(x) + e−t
∫ t

−∞
exf ′(x)dx+ f(t) + et

∫ ∞
t

e−xf ′(x)dx

= e−t
∫ t

−∞
exf ′(x)dx+ et

∫ ∞
t

e−xf ′(x)dx

=

∫ t

−∞
ex−tf ′(x)dx+

∫ ∞
t

et−xf ′(x)dx

=

∫ ∞
−∞

e−|t−x|f ′(x)dx = E ∗ f ′(t).

Thus we have E′∗f
E

= E∗f ′
E

which is f ′.

Furthermore we can define the derivative of elements of Cexp(R) that are not differentiable

everywhere. In order to do that, we analyze the action of E′

E
on two particular types of

functions.

Theorem 27. Let f ∈ Cexp(R) be positive on (0,∞) and 0 everywhere else with possible

discontinuity at 0. Then the generalized derivative of f is

E ′ ∗ f
E

= f(0)δ0 +
E ∗ f ′

E
.
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Proof. We calculate the numerator first.

E ′ ∗ f(t) =

∫ ∞
−∞

E ′(t− x)f(x)dx =

∫ ∞
0

E ′(t− x)f(x)dx.

We consider the two cases t > 0 and t < 0. When t > 0 we get

=

∫ t

0

−ex−tf(x)dx+

∫ ∞
t

et−xf(x)dx

= −e−t
∫ t

0

exf(x)dx+ et
∫ ∞
t

e−xf(x)dx

after integrating by parts we get

= −f(t) + e−tf(0) + e−t
∫ t

0

exf ′(x)dx+ f(t) + et
∫ ∞
t

e−xf ′(x)dx

= e−tf(0) + E ∗ f ′(t) = Ef(0) + E ∗ f ′(t).

When t < 0 we get

E ′ ∗ f(t) =

∫ ∞
0

et−xf(x)dx

= et
∫ ∞

0

e−xf(x)dx

= et
(
f(0) +

∫ ∞
0

e−xf ′(x)dx

)
= etf(0) +

∫ ∞
0

et−xf ′(x)dx = Ef(0) + E ∗ f ′(t).

So we have

E ′ ∗ f
E

= f(0)δ0 +
E ∗ f ′

E
.

Following similar steps as in the proof of Theorem 27 we have
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Theorem 28. Let f ∈ Cexp(R) be positive on (−∞, 0) and 0 everywhere else with possible

discontinuity at 0. Then the generalized derivative of f is

E ′ ∗ f
E

= −f(0)δ0 +
E ∗ f ′

E
.

3.2.2 The Fourier Transform

We define the Fourier transform of an element f
k

of B(Cexp(R), E) by

F
(
f

k

)
=
f̂

k̂
.

We can verify F is well-defined: Suppose f
En = g

Em . Then we have En ∗ g = Em ∗ f . By

taking the Fourier transform of both sides we get Ênĝ = Êmf̂ or f̂

Ên
= ĝ

Êm
.

Through straightforward calculation we get Ê(s) = 2
1+s2

. Hence for every f
En ∈ B(Cexp(R), E)

we have the Fourier transform is
(

1+s2

2

)n
f̂ . Furthermore, remembering the differentiation

property of the Fourier transform where F(f ′)(s) = isf̂(s), we get

F
(
E ′ ∗ f
E

)
(s) =

Ê ′(s)f̂(s)

Ê(s)
=
isÊ(s)f̂(s)

Ê(s)
= isf̂(s).

3.3 Pseudoquotients With Positive Definite Functions

We start this section with some basic definitions:

A topological space G is locally compact if every x ∈ G has a compact neighborhood.

(G, ·, τ) is a topological group if (G, ·) is a group, τ is a Hausdorff topology on G, and the

maps x 7→ x−1 and (x, y) 7→ x · y are continuous on G with respect to τ . If we have the

group structure, we can say a topological space is locally compact if it has a compact basis
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at the origin. It is clear that R with addition and the standard topology is a locally compact

group.

A non-zero Radon measure µ on a locally compact group G is a left Haar measure if for

every Borel set U ⊂ G, µ(xU) = µ(U). Similarly we can define right Haar measure as having

the property that µ(Ux) = µ(U). In Proposition 2.9 in [9], it is shown that the definition of

left Haar measures is equivalent to saying for every f ∈ Cc(G), and α ∈ G, we have

∫
G
f(αx)dµ(x) =

∫
G
f(x)dµ(x).

In the same proposition, we see that a necessary and sufficient condition for a measure µ to

be a left Haar measure is for µ̃ defined by µ̃(U) = µ(U−1) to be a right Haar measure. For

an Abelian G, we can verify that the left and right Haar measures are the same.

The following two theorems concerning the existence and uniqueness of a Haar measure

on a locally compact group can be found in [9].

Theorem 29. Every Abelian locally compact group G possesses a Haar measure.

Theorem 30. If µ and λ are Haar measures on a locally compact group G, then there exists

c ∈ (0,∞) such that µ = cλ.

Using Theorem 30 and the definition of Haar measures we can say that if µ is a Haar

measure on a Abelian locally compact group G then for every f ∈ Cc(G), and α ∈ G, we have

∫
G
f(α + x)dµ(x) =

∫
G
f(x)dµ(x) =

∫
G
f(−x)dµ(x)

where −x is the inverse of x with respect to the commutative operation + in G. Simply

speaking, a Haar measure is translation and reflection invariant. For example the Lebesgue
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measure is a Haar measure on R with addition. As another example, the measure µ defined

by µ(A) =
∫
A

1
t
dt is a Haar measure on R+, positive real numbers, with multiplication: All

we need to show is that this measure is a left Haar measure, note that for A = (a, b) and

x ∈ R+ we have

µ(xA) =

∫ xb

xa

1

t
dt = ln(xb)− ln(xa) = ln(x)+ ln(b)− ln(x)− ln(a) = ln(b)− ln(a) = µ(A).

3.3.1 The Space of Integrable Functions on G

Consider the set of integrable functions L1(G) with the associated norm ||f || =
∫
G |f(x)|dµ(x).

The convolution product of two L1(G) functions f and g is defined by

f ∗ g(x) =

∫
G
f(y)g(y−1x)dµ(y). (3.1)

In the case where G is Abelian, we may use −y instead of y−1 in (3.1). L1(G) is closed under

∗ and the inequality ||f ∗ g|| ≤ ||f || ||g|| holds.

Next, we define characters and use them to define the Fourier transform of an integrable

function. We say a continuous homomorphism ω is a character on a locally compact group

G, if it maps G into the unit circle group in C. Ĝ denotes the set of all characters of G. We

define the Fourier transform of a function f ∈ L1(G) to be

F(f)(ω) = f̂(ω) =

∫
G
ω(x−1)f(x)dµ(x) or

∫
G
ω(x)f(x)dµ(x). (3.2)

This transform has the property that if (Lyf)(x) = f(xy−1) then

(Lyf )̂(ω) = ω(y)f̂(ω).

A note-worthy result, which can be found in [9], is that the Fourier transform of a function

in L1(G) is in C(Ĝ): Suppose ωn → ω in Ĝ, that is supK |ωn − ω| → 0 for all compact sets
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K ⊂ G. Then we have:

|f̂(ωn)− f̂(ω)| ≤
∫
G
|f(x)||ωn(x)− ω(x)|dµ(x).

Let K ⊂ G be a compact set such that
∫
x∈Kc |f(x)||ωn(x)−ω(x)|dµ(x) < ε

2
. This is possible

since |ωn(x)− ω(x)| ≤ 2 and f is integrable. So we can write:∫
G
|f(x)||ωn(x)− ω(x)|dµ(x) =

∫
x∈Kc

|f(x)||ωn(x)− ω(x)|dµ(x)

+

∫
x∈K
|f(x)||ωn(x)− ω(x)|dµ(x)

<
ε

2
+

∫
x∈K
|f(x)||ωn(x)− ω(x)|dµ(x).

On the other hand, sinceK is a compact set and Ĝ has the topology of uniform convergence on

compact sets, we can find N such that for all n > N we have
∫
x∈K |f(x)||ωn(x)−ω(x)|dµ(x) <

ε
2
.

3.3.2 Positive Definite functions

In this section we review some basics about positive definite functions. We start by defining

measures of positive type.

Definition 13. We say a Radon measure ν is of positive type or is positive definite if for

every f ∈ Cc(G) we have∫
G

¯̌f ∗ fdν ≥ 0. (3.3)

where f̌(x) = f(−x).

We say a function p : G → C is positive definite if

n∑
i,j=1

cicjp(xi − xj) ≥ 0 (3.4)
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for all c1, . . . , cn ∈ C and x1, . . . , xn ∈ G where n is an arbitrary positive integer.

We can use positive definite measures to define positive definite functions: A bounded

continuous function p is positive definite if, the measure ν = p · µ is positive definite for the

Haar measure µ on G. To show this is consistent with (3.4), notice if we expand expression

on the left side of (3.3) and substitute p · µ for ν we get∫
G

∫
G
f(x− s)f(−s)p(x)dµ(s)dµ(x) ≥ 0

which by change of variable −s to s and because µ is a Haar measure we get∫
G

∫
G
f(x+ s)f(s)p(x)dµ(s)dµ(x) ≥ 0.

Now if we do the change of variable again but this time x to x− s we get∫
G

∫
G
f(x)f(s)p(x− s)dµ(s)dµ(x) ≥ 0

which has a form similar to (3.4). Indeed, Proposition 3.35 in [9] says that a bounded

continuous function p is positive definite if and only if∫
G
(f̌ ∗ f)p dµ ≥ 0.

Positive definite function on a locally compact group G form a cone which we will denote by

P (G).

Here we mention a version of Bochner’s theorem as stated in [9].

Theorem 31 (Bochner’s theorem). If p is a positive definite function then there exists a

unique positive measure µp on Ĝ such that

p(x) =

∫
Ĝ
ω(x)dµp(ω).
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Let P(G) denote the space generated by P (G), i.e. for every p ∈ P(G) we have p =

p1− p2 + ip3− ip4 for p1, p2, p3, p4 ∈ P (G). By Bochner’s theorem, we have every element of

P (G) can be associated with a bounded positive measure. Extending this theorem we can

say that each element of P(G) can be associated with an arbitrary bounded measure.

In [8], J. Dieudonné presents a proof to the theorem that shows for every f ∈ L1(G)

and p ∈ P(G), f ∗ p ∈ P(G). We give a slightly different presentation of the proof which

is hopefully more clear to the general reader than the original: Remember the anti-Fourier

transform of a function f ∈ L1(G) is defined by

F(f)(ω) =

∫
G
ω(x)f(ω)dµ(x)

The following lemma will be used in our presentation of the theorem.

Lemma 4. Let f ∈ L1(G) and p ∈ P. Then we have∫
G
f(x)p(x)dµ(x) =

∫
Ĝ
Ff(ω)dµp(ω). (3.5)

Proof. By Bochner’s theorem we have

p(x) =

∫
Ĝ
ω(x)dµp(ω)

for a bounded positive measure µ′ on Ĝ. Then looking at the left hand side of (3.5) we get∫
G
f(x)p(x)dµ(x) =

∫
G
f(x)

∫
Ĝ
ω(x)dµp(ω)dµ(x)

=

∫
Ĝ

∫
G
f(x)ω(x)dµ(x)dµp(ω)

=

∫
Ĝ
Ff(ω)dµp(ω),

by Fubini’s theorem.
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We now continue with the presentation of the proof: Because the space of bounded

measures contains integrable functions, and every bounded measure can be written as a

linear combination of four positive definite measures, it is sufficient to show for every positive

definite function p and positive definite measure ν we have the convolution p ∗ ν is positive

definite. That is, we want to show for every continuous function g on G with compact support

we have:

∫
G
(p ∗ ν)¯̌g ∗ gdµ ≥ 0. (3.6)

Notice we have

p ∗ ν(x) =

∫
G
p(x− s)dν(s). (3.7)

By substituting from (3.7) in the left hand side of the inequality (3.6) we get:

∫
G

∫
G

∫
G
p(x− s)g(y)¯̌g(x− y)dµ(x)dµ(y)dν(s).

Changing the variable from x− s to x we get

∫
G

∫
G

∫
G
p(x)g(y)¯̌g(s+ x− y)dµ(x)dµ(y)dν(s)

and by changing y to s+ y we get

∫
G

∫
G

∫
G
p(x)g(s+ y)¯̌g(x− y)dµ(x)dµ(y)dν(s)

or

∫
G
p(x)

(∫
G
g(s+ y)¯̌g(x− y)dµ(y)

)
dµ(x)

∫
G
dν(s) (3.8)
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Observe that the expression in the parenthesis is equal to Lsg ∗ ¯̌g and the function defined

by x 7→ (Lsg ∗ ¯̌g)(x) is an integrable function. Furthermore, We have:

F (g(s+ y) ∗ ¯̌g(y)) = F (g(s+ y))F (¯̌g(y))

= ω(s)F(g)

∫
G

¯̌g(y)ω(y)dµ(y)

= ω(s)F(g)

∫
G
g(−y)ω(y)dµ(y)

= ω(s)F(g)

∫
G
g(−y)ω(−y)dµ(y)

= ω(s)F(g)

∫
G
g(−y)ω(−y)dµ(y)

= ω(s)F(g)

∫
G
g(y)ω(y)dµ(y)

= ω(s)F(g)F(g)

= ω(s) |F(g)|2.

And so by Lemma 4, we can simplify (3.8) to

∫
G

(∫
Ĝ
ω(s) |F(g)(ω)|2dµ′(ω)

)
dν(s)

which by Fubini’s theorem is equal to

∫
Ĝ

(∫
G
ω(s) dν(s)

)
|F(g)(ω)|2dµ′(ω)

The quantity inside the parenthesis is the Fourier transform of ν which is a positive definite

measure so its Fourier transform is a positive function. Thus the whole integral is positive

and our initial p ∗ ν is a positive definite function.
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3.3.3 The Construction

Having covered the basic definitions, we can now continue with the construction of B(P(G), G).

The result in this section are established in [3] but here we mention them with more details

as an example of the construction of generalized quotients.

Let

G = {ϕ ∈ L1(G) : ϕ̂(ω) > 0 ∀ω ∈ Ĝ}.

We can show that as long as Ĝ is σ-finite, G is nonempty: From the σ-finiteness we get

there are open sets A1, A2, . . . of finite measure in Ĝ whose union is Ĝ and are mutually

disjoint. For every n ∈ N let ϕn ∈ L2(G) be such that ϕ̂n = χAn which is square integrable

on Ĝ. We claim we can find a sequence (an) of positive real numbers such that

1.
∑∞

n=1 anϕn ∈ L2(G)

2.
∑∞

n=1 anϕ̂n ∈ L1(Ĝ)

Notice an = min
(

1
2n||ϕn||2 ,

1
2n||ϕ̂n||1

)
is one such sequence. We can verify that

ϕ = ϕ1

∞∑
n=1

anϕn

is in G: ϕ1 ∈ L2(G) and
∑∞

n=1 anϕn ∈ L2(G) so the product is in L1(G). Finally to check

that ϕ̂ > 0, note that

ϕ̂ = ϕ̂1 ∗
∞∑
n=1

anϕ̂n.

ϕ̂ is always greater than 0 becuase ϕ̂1 ≥ 0 and
∑∞

n=1 anϕ̂n is always strictly positive. Also,

because we are actually assuming that G is an Abelian σ-compact locally compact group,

(G, ∗) is a commutative semigroup.
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Proposition 2. Action of G on P(G) defined by convolution is injective.

We have already demonstrated a version of the proof for ϕ ∗ f ∈ P(G) for ϕ ∈ L1(G) and

f ∈ P(G) from [8]. For injection, suppose ϕ ∗ f = 0 for ϕ ∈ G and f ∈ P(G). Then taking

the Fourier transform we get ϕ̂f̂ = 0. But since ϕ ∈ G, its Fourier transform is always

positive so f = 0.

All the preconditions are satisfied so we define B(P(G), G) to be the space of generalized

quotients as described in CHAPTER TWO where X = P(G) and for each f
ϕ
, g
ψ
∈ B(P(G), G)

we have f
ϕ

= g
ψ

if and only if ψ ∗ f = ϕ ∗ g. We can extend the Fourier transform defined on

P(G) to one on B(P(G), G). We define the Fourier transform of f
ϕ
∈ B(P(G), G) by

F
(
f

ϕ

)
=
f̂

ϕ̂
.

This operation is well-defined since it is the extension of the Fourier transform and the

consistency condition is satisfied (i.e. ϕ̂f̂ = ϕ̂ ∗ f .) We have the following characterization

theorem for the Fourier transform of B(P(G), G) which simply put says that the Fourier

transform is a bijection between B(P(G), G) and the space of all Radon measures (not only

bounded anymore) on Ĝ.

Theorem 32. If Ĝ is σ-compact, then the Fourier transform is an isomorphism from

B(P(G), G) onto M(Ĝ) (the set of Radon measures on Ĝ).

Proof. It suffices to show that F is surjective. Let K1, K2, . . . ⊂ Ĝ be a sequence of compact

sets such that ∪∞n=1Kn = Ĝ and V Kn ⊂ Kn+1 for some neighborhood V of ê and for all

n ∈ N. Define

gn = χKn and σ = χV . (3.9)
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Note that supp (gn ∗ σ) ⊂ Kn+1 for all n ∈ N.

Let µ ∈ M(Ĝ). Since (gn ∗ σ)µ is a bounded Radon measure on Ĝ, there exist positive

numbers a1, a2, . . . such that

∞∑
n=1

an(gn ∗ σ)µ

defines a bounded Radon measure on Ĝ. By Bochner’s theorem, there exists an f ∈ P(Ĝ)

such that

f̂ =
∞∑
n=1

an(gn ∗ σ)µ.

Without loss of generality, we can assume that the numbers a1, a2, . . . are chosen so that

∞∑
n=1

an‖F−1(gn ∗ σ)‖1 <∞.

Let

ϕ =
∞∑
n=1

anF−1(gn ∗ σ).

Clearly, ϕ ∈ G. Moreover,
∑∞

n=1 an(gn ∗ σ)µ = ϕ̂µ and thus

F
(
f

ϕ

)
=
f̂

ϕ̂
=
ϕ̂µ

ϕ̂
= µ.

58



CHAPTER FOUR: SOME EXAMPLES OF
PSEUDOQUOTIENTS

In this chapter we look at some of the examples of spaces of pseudoquotients defined on

locally compact groups. The first of such spaces is that of integrable Boehmians. In what

follows, (G, ·, τ) is a σ-compact locally compact group with a Haar measure µ. Later to assure

the existence of a commutative semigroup of delta-sequences we will additionally require G

to be first countable and Abelian.

4.1 Integrable Boehmians

In [12], P. Mikusiński describes the space of integrable Boehmians on the real line and in

[16] a similar construction is described for Boehmians on a sphere. A natural question would

be if we can generalize this construction to functions on any locally compact group. In [13]

the basics of such construction is discussed. Dennis Nemzer, in his doctoral dissertation

discusses this general construction in more details however he does not implement the idea

of characters, or define the Fourier transform.

For the construction of Boehmians we need the commutative semigroup ∆ for which we

are going to use delta-sequences. In [13] a definition for delta-sequences on a locally compact

group is given. We will adopt a similar definition.

Definition 14. A sequence (δn) of real valued functions in the center of (L1(G), ∗) is called

a delta-sequence if

1.
∫
G δn(n)dµ(x) = 1 for every n ∈ N
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2. δn ≥ 0 for all x ∈ G, n ∈ N

3. For every symmetric compact set U containing the identity e,
∫
Uc δn(x)dµ(x) → 0 as

n→∞

The existence of such delta-sequence is discussed in [13]. In that paper a B-group is

defined as a locally compact group that admits a delta-sequence. A sufficient condition for a

first countable locally compact group G to be a B-group is G being Abelian, like the locally

compact group (R,+), or compact, like the compact group of a sphere with rotations. As

discussed earlier, from this point on we will assume that G is first countable and Abelian.

Let ∆ be the collection of all delta-sequences. It is straightforward calculation that ∆ with

the convolution operation ∗ is a semigroup. We also have the following:

Delta-sequences have the follwoing property. This is a standard result so we just mention

the theorem.

Theorem 33. For every delta-sequence (δn) we have δ̂n → 1 uniformly on compact sets.

We define the relation ∼ on (L1(G))N ×∆ by (fn, δn) ∼ (f ′n, δ
′
n) if and only if δn ∗ f ′m =

δ′m ∗ fn. We showed in CHAPTER TWO that if ∆ is a commutative semigroup and its

action is injective on, in this case, L1(G), then ∼ defined this way is an equivalence relation.

By the definition of delta-sequences we have the commutativity in ∆. Also, if δ̄ ∗ f = 0 for

an integrable function f , then for every n ∈ N, δn ∗ f = 0 which implies δ̂nf̂ = 0. Since

δ̂n → 1, f̂ = 0 which means f = 0 and hence the injectivity. We define the space of integrable

Boehmians on G to be B(L1(G),∆) = (L1(G))N×∆/ ∼. B(L1(G),∆) is a convolution algebra
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where scalar multiplication and + are defined by:

λ
f̄

δ̄
=
λf̄

δ̄
,

f̄

δ̄
+
f̄ ′

δ̄′
=
δ̄′ ∗ f̄ + δ̄ ∗ f̄ ′

δ̄ ∗ δ̄′
.

Once again, since ∆ satisfies the conditions mentioned in CHAPTER TWO, (it is a com-

mutative semigroup acting injectively on L1(G)) these operations are well-defined. There we

also introduced two choices for the multiplication (∗ in this case) of two pseudoquotients.

Since for every f, f ′, δ ∈ L1(G), δ ∗ (f ∗ f ′) = (δ ∗ f) ∗ f ′, we define the operation ∗ on

B(L1(G),∆) by

f̄

δ̄
∗ f̄
′

δ̄′
=
f̄ ∗ f̄ ′

δ̄ ∗ δ̄′
,

which we also showed is well-defined. We can embed L1(G) into B(L1(G),∆) continuously

using ι defined in CHAPTER TWO.

Next we extend the Fourier transform to B(L1(G),∆). We do this by introducing the

Fourier transform of Boehmians as the extension of the Fourier transform of integrable

function on G. We define the Fourier transform of f̄
δ̄
∈ B(L1(G),∆) by

F
(
f̄

δ̄

)
=

¯̂
f
¯̂
δ
.

To match this with our notation of the extension map from CHAPTER TWO, the Fourier

transform F : B(L1(G),∆) → B(C(Ĝ), ∆̂) is the µ̃ and the map F : L1(G) → C(Ĝ) is both

µ, and α. To verify that this is actually an extension, we need to check the consistency

condition: Indeed F(δ)F(f) = F(δ ∗ f).
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Since the Fourier transform is a continuous map on L1(G), its extension to the integrable

Boehmians is also a continuous map with respect to the quotient topology. Additionally,

since the numerator of the Fourier transform of an integrable Boehmian is a continuous

function and the Fourier transform of the denominator – the Fourier transform of a delta-

sequence – converges to 1 uniformly, then for every open set we can find n such that δ̂n 6= 0

on that set and hence the quotient is always a continuous function. Actually we can do

better than that. We can characterize that function. To do so we follow similar steps as

presented in [12] for integrable Boehmians on R.

Lemma 5. If f̄
δ̄
∈ B(L1(G),∆), then the sequence f̂n converges uniformly on each compact

set in Ĝ.

Proof. For every compact set K in Ĝ, since δ̂n → 1 uniformly on K as n → ∞, δ̂k 6= 0 for

almost all k ∈ N and on K we have

f̂n = f̂n
δ̂k

δ̂k
=
f̂nδ̂k

δ̂k
=

(fn ∗ δk )̂
δ̂k

=
(fk ∗ δn)̂

δ̂k
=
f̂k

δ̂k
δ̂n.

Hence f̂n converges to f̂k

δ̂k
uniformly on compact sets.

Using above lemma, for every f̄
δ̄
∈ B(L1(G),∆), the Fourier transform can be defined by

F
(
f̄

δ̄

)
=

¯̂
f
¯̂
δ

= lim
n→∞

f̂n

in the space of continuous functions on G.

The following lemma shows that the Fourier transform on B(L1(G),∆) is consistent with

the Fourier transform of functions in L1(G).

Lemma 6. For every f ∈ L1(G), F(ι(f)) = f̂ .
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Proof. Let δ̄ ∈ ∆. Then we have

F
(
δ̄ ∗ f
δ̄

)
= limn→∞(δn ∗ f )̂ = limn→∞δ̂nf̂ = f̂ .

One of the properties of the Fourier transform concerns the effect of the shift operator.

First we need to describe what we mean by shifting a Boehmian or pseudoquotients in

general. Let Ly, y ∈ G, be the shift operator on L1(G) as defined before. Obvious choices

for extension of Ly to the Boehmians are to shift both the numerator and the denominator,

only the numerator, or only the denominator. Notice our first option does not produce a

new object. If we shift both top and bottom, we will get the exact same quotient. On

the other hand if we define the shift operator so it only changes the denominator, we will

lose the consistency with the shift in L1(G): On one hand we have Ly(f) = δ̄Ly(f)

δ̄
and on

the other hand, if we let Ly δ̄ be the sequence (Lyδn) we have Ly(f) = Ly

(
δ̄f
δ̄

)
= δ̄f

Ly(δ̄)

and δ̄Ly(f)

δ̄
6= δ̄f

Ly(δ̄)
in general. Hence the way we will define the shift operator is for the

translation to act on the numerator: For a Boehmian f̄
δ̄
, we define the left shift operator by

Ly

(
f̄
δ̄

)
= Ly f̄

δ̄
. This is a well-defined operation and consistent with translation of integrable

functions on G. In the case of the Fourier transform of elements of B(L1(G),∆), we have the

following:

Theorem 34. For every ω ∈ Ĝ and y ∈ G, we have F
(
Ly

(
f̄
δ̄

))
(ω) = ω(y)F

(
f̄
δ̄

)
Proof. The proof follows directly from the definition of the Fourier transform: For every
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fixed y ∈ G,

F
(
Ly

(
f̄

δ̄

))
(ω) = F

(
Lyf̄

δ̄

)
(ω)

= lim
n→∞

(Lyfn)̂(ω)

= lim
n→∞

ω(y)f̂n(ω)

= ω(y) lim
n→∞

f̂n(ω)

= ω(y)F
(
f̄

δ̄

)
(ω).

Notice that since for every integrable function f , f̂ is a continuous function, the Fourier

transform of elements of B(L1(G),∆), being uniform limit of continuous functions, are in

C(Ĝ). We next explore the algebraic properties of the Fourier transform.

Theorem 35. The Fourier transform is a linear operator from B(L1(G),∆) to C(Ĝ).

Proof. Let λ, λ′ ∈ C and f̄
δ̄
, f̄
′

δ̄′
∈ B(L1(G),∆). The result is obtained from the following

sequence of equalities:

F
(
λ
f̄

δ̄
+ λ′

f̄ ′

δ̄′

)
= F

(
δ̄′ ∗ λf̄ + δ̄ ∗ λ′f̄ ′

δ̄ ∗ δ̄′

)
= lim

n→∞
(δ′n ∗ λfn + δn ∗ λ′f ′n)̂

= lim
n→∞

(δ′n ∗ λfn)̂ + lim
n→∞

(δn ∗ λ′f ′n)̂

= lim
n→∞

(δ̂′nλf̂n) + lim
n→∞

(δ̂nλ
′f̂ ′n)

= lim
n→∞

(λf̂n) + lim
n→∞

(λ′f̂ ′n)

= λF
(
f̄

δ̄

)
+ λ′F

(
f̄ ′

δ̄′

)
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As a consequence of the extension property of maps, we have:

Theorem 36. The Fourier transform is an injective map from B(L1(G),∆) to C(Ĝ).

Proof. All we need to show is that the Fourier transform is injective on L1(G), i.e. f̂ = 0

implies f = 0 which is clearly true.

Using the extension property of the extension maps, since the Fourier transform is a

homomorphism from L1(G) to C(G) then its extension is also a homomorphism and we have:

Theorem 37. The Fourier transform is a homomorphism from (B(L1(G),∆), ∗) to (C(Ĝ), ·).

4.2 Square-integrable Boehmians

Consider the space L2(G) of square-integrable functions on an Abelian first countable (to

guarantee the existence of delta-sequences) locally compact group G. Let convolution of two

L2(G) functions and the Fourier transform be defined as in (3.1) and (3.2), respectively,

whenever the integrals exist. Using the Plancherel Theorem, we have that the Fourier

transform can be extended to an isomorphism from the space L2(G) with the convolution ∗

to the space L2(Ĝ) with the multiplication ·.

In constructing the space of square-integrable Boehmians, we will use ∆, the semigroup

of delta-sequences, as described in Section 4.1. We verify the requirements for construct-

ing pseudoquotients: By the definition of the delta-sequences, clearly ∆ is a commutative

semigroup. The action of ∆ on L2(G) is defined by convolutions, i.e. (δn) ∗ f = (δn ∗ f)
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for every (δn) ∈ ∆ and f ∈ L2(G). To see that the sequence (δn ∗ f) is indeed in (L2(G))N

note that for every n ∈ N by Proposition 2.39 of [9] we have δn ∗ f ∈ L2(G). For injectivity,

suppose δn ∗ f = 0 for every n ∈ N. Then we have δ̂nf̂ = 0 for all n. But since δ̂n converges

uniformly to 1 on compact sets, then f̂ = 0 which implies f = 0. We continue with the

construction by defining the relation ∼ as before but this time on (L2(G))N × ∆: We say

(fn, δn) ∼ (f ′n, δ
′
n) if and only if for every n,m ∈ N, δn ∗ f ′m = δ′m ∗ fn. From CHAPTER

TWO we have that ∼ is an equivalence. We define the space of square-integrable Boehmians

to be B(L2(G),∆) = (L2(G))N ×∆/ ∼.

The Fourier transform of a square-integrable Boehmian is the extension of the Fourier

transform of a square-integrable functions. What that means is that for every f̄
δ̄
∈ B(L2(G),∆),

F
(
f̄

δ̄

)
=

¯̂
f
¯̂
δ
.

Clearly the consistency condition is satisfied. The continuity with respect to the quotient

topology and injectivity of the Fourier transform of these Boehmians follows that of the

transform on L2(G). We have a nice characterization of the Fourier transform of square-

integrable functions. It would be nice if we could say something about the range of the

extension of this transform. Next theorem addresses this matter.

Theorem 38. The Fourier transform of a square-integrable Boehmian is a locally square-

integrable function.

Proof. Let F = f̄
δ̄

be in B(L2(G),∆). Then we have F̂ =
¯̂
f
¯̂
δ
. Since δ̂n → 1 for every compact

set K there exists a δj such that δ̂j 6= 0 on K. Notice on K, F̂ δ̂j = f̂j and so F̂ δ̂j must be a

square-integrable function and F̂ a locally square-integrable function.
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In fact, under some mild conditions, we can actually fully characterize the range of the

Fourier transform. We first define weak delta-sequences. We say a sequence (δ′n) of functions

in L1(G) is a weak delta-sequence if for all n ∈ N, δ̂′n has a compact support and δ̂n → 1

uniformly on compact set in Ĝ. We denote the collections of weak delta-sequences by ∆′.

We can show ∆′ is not empty if Ĝ is σ-compact.

Lemma 7. If Ĝ is σ-compact then ∆′ is not empty.

Proof. Let V be a symmetric open set in G with compact closure. Suppose f ∈ L1(G) is

such that supp f ⊂ V and

∫
V

f(x)dµ(x) = 1.

Finally consider the characteristic function χ[K−V ] for some compact set K. Notice that we

have

f ∗ χ[K−V ](t) =

∫
V

f(x)χ[K−V ](t− x)dµ(x)

When t ∈ K, χ[K−V ](t− x) = 1 and hence f ∗χ[K−V ](t) =
∫
V
f(x)dµ(x) = 1. For all other t,

χ[K−V ](t− x) = 0 and so f ∗χ[K−V ](t) = 0. It is clear that f ∗χ[K−V ] ∈ L1(G). To construct

our sequence, notice that since G is first countable, we can find a sequence Kn of compact

set in G such that K1 ⊂ K2 ⊂ . . . and ∪nKn = G. Define fi := f ∗χ[Ki−V ]. Let g, hi ∈ L2(Ĝ)

for all i ∈ N be such that ĝ = f and ĥi = χ[Ki−V ]. The former is possible since f is an

integrable function on a bounded domain and hence is in L2(G) and the latter is possible

since χ[Ki−V ] is in L2(G). If we let ϕi = ghi then we have

δ̂′i = F(ghi) = f ∗ χ[Ki−V ] = fi (4.1)

67



which converges uniformly to the constant function 1.

Theorem 39. For a locally compact group G, if Ĝ is σ-compact then the Fourier transform

is a bijection from the space of square-integrable Boehmians with weak delta-sequences in the

denominator to the space of locally square integrable functions.

Proof. Let g be a locally square-integrable function. We need to find f̄
δ̄
∈ B(L2(G),∆′) such

that
¯̂
f
¯̂
δ

= g. Since Ĝ is σ-compact, there exist compact sets K1 ⊂ K2 ⊂ . . . such that

∪nKn = Ĝ. By Lemma 7 We can construct a weak delta-sequence (δn) such that for every

n ∈ N, δ̂n 6= 0 on Kn and supp (δ̂n) ⊂ Kn+1. This way for every n, f̂n = gδ̂n is a square

integrable function. Thus g =
¯̂
f
¯̂
δ

= F
(
f̄
δ̄

)
. Of course, by construction, f̄

δ̄
∈ B(L2(G),∆′).

4.3 Pseudoquotients On Involutive Algebras

In this section we will provide a particular example for pseudoquotient with numerators being

elements of an involutive algebra. The inspiration for this part comes from [4], but although

we seem to be using a similar outline our work is noticeably different. A big difference is

that [4] focuses on semigroups instead of involutive algebras.The results of this section are

also in [2].

For a commutative algebra A with the unitary element e, and a norm || · || satisfying

||xy|| ≤ ||x||||y||, we define the involution to be an automorphism defined by x 7→ x∗ having

the properties: (x + y)∗ = x∗ + y∗, (λx)∗ = λ̄x∗, (xy)∗ = x∗y∗, and x∗∗ = x, for λ ∈ C, and

x, y ∈ A. For a bounded linear functional f : A → C, we say f is of positive type if for

every x ∈ A, f(xx∗) ≥ 0. We denote the space of bounded linear functions of positive type

on A by Cp(A). A character on A is defined to be a continuous homomorphisms ρ : A→ C
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satisfying ρ(e) = 1 and ρ(x∗) = ρ(x). Let Â denote the set of characters on A and

Γ = {ρ ∈ Â : ∀ x, y ∈ A, |ρ(x)| ≤ ||x||, ρ(xy) = ρ(x)ρ(y)}.

Notice by Tychonoff’s theorem the set of continuous functionals having the magnitude at x

less than or equal to ||x|| is compact. Also the set of functions preserving the multiplication

( ρ(xy) = ρ(x)ρ(y)) and addition (ρ(x+ y) = ρ(x) + ρ(y)) is a closed set with respect to the

pointwise convergence. Hence, Γ being the intersection of a compact set and a closed set, is

a compact topological space.

In [1] it is shown that f ∈ Cp(A) if and only if

f(x) =

∫
Γ

ρ(x)dµf (ρ) (4.2)

for every x ∈ A and a positive Radon measure µf unique to f . µf is called the Fourier

transform of f and is denoted by f̂ .

We define the translation Ey on Cp(A) by Eyf(x) = f(xy). For every ρ ∈ Γ, Eyρ(x) =

ρ(xy) = ρ(x)ρ(y) and for any f ∈ Cp(A),

Eyf(x) =

∫
Γ

ρ(xy)dµf (ρ) =

∫
Γ

ρ(x)ρ(y)dµf (ρ). (4.3)

Let

G = {yy∗, y ∈ A}.

G is a commutative semigroup with multiplication. Additionally, G acts on Cp(A) by trans-

lation (i.e. y(f(x)) = Eyf(x)). We will however write Ey instead of y whenever necessary

to avoid confusion. Reflecting on (4.3) we call the map defined by ρ 7→ ρ(y) the Fourier
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transform of y and denote it by ŷ. In other words, for every ρ ∈ Γ and y ∈ A, ŷ(ρ) = ρ(y).

Hence we can rewrite (4.3) as

Eyf(x) =

∫
Γ

ρ(x)ŷ(ρ)dµf (ρ)

A quick observation is that x̂y(ρ) = ρ(xy) = ρ(x)ρ(y) = x̂ŷ for every ρ ∈ Γ and x, y ∈ A.

Let I be an index set and

A = {(f̄ , x̄) : ∀i, j ∈ I, fi ∈ Cp(A), xi ∈ G, and Exi
fj = Exj

fi}.

For any x̄ ∈ Gi we define

M(x̄) = {ρ ∈ Γ : ρ(xi) = 0 ∀i ∈ I}.

Since every x̂i is continuous, M(x̄) is a closed set in Γ. Let M be all the pairs (f̄ , x̄) in A

with the same M(x̄) = M . We define the relation ∼ on M the following way: For every

(f̄ , x̄), (ḡ, ȳ) ∈ M, (f̄ , x̄) ∼ (ḡ, ȳ) if and only if for every i, j ∈ I, Exi
gj = Exj

fi. We can

verify that ∼ is an equivalence on M because the semigroup {x̄ : (f̄ , x̄) ∈M, for some f̄ ∈

(Cp(A))I} acts injectively on Cp(A).

Theorem 40. For every (f̄ , x̄) and (ḡ, ȳ) in M, (f̄ , x̄) ∼ (ḡ, ȳ) if and only if x̂iĝj = ŷj f̂i for

all i, j ∈ I.

Proof. From (4.2) we have for every i, j ∈ I, there exist positive Radon measures µi and νj

such that

fi(x) =

∫
Γ

ρ(x)dµi(ρ)
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and

gj(x) =

∫
Γ

ρ(x)νj(ρ).

Hence (f̄ , x̄) ∼ (ḡ, ȳ) means for all i, j ∈ I,

∫
Γ

ρ(x)x̂i(ρ)dνj(ρ) =

∫
Γ

ρ(x)ŷj(ρ)dµi(ρ). (4.4)

Since x̂i, ŷj ≥ 0, x̂iνj and ŷjµi are positive Radon measures on Γ. Thus because (4.4) holds

for all x ∈ A, we can say x̂iνj = ŷjµi or x̂iĝj = ŷj f̂i.

Conversely, if we have x̂iĝj = ŷj f̂i for all i, j ∈ I we get

Eyj
fi(x) =

∫
Γ

ρ(x)ŷj(ρ)df̂i(ρ)

=

∫
Γ

ρ(x)x̂i(ρ)dĝj(ρ)

= Exi
gj(x).

We define the space of pseudoquotient B(Cp(A),M) = M/ ∼. Further, we can define

the Fourier transform on B(Cp(A),M) by

F
(
f̄

x̄

)
=

¯̂
f
¯̂x
. (4.5)

Theorem 41. The Fourier transform is well-defined on B(Cp(A),M).

Proof. Suppose (f̄ , x̄) ∼ (ḡ, ȳ). Let Ui = {ρ ∈ Γ : x̂i(ρ) > 0} and similarly Vi = {ρ ∈ Γ :

ŷi(ρ) > 0}. for i, j ∈ I. Then (f̄ , x̄) ∼ (ḡ, ȳ) implies

f̂i
x̂i

=
ĝj
ŷj
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on Ui ∩ Vj for every i, j ∈ I. Because M c =
⋃
i,j∈I Ui ∩ Vj it is clear

¯̂
f
¯̂x

=
¯̂g
¯̂y
.

We claim for every f̄
x̄
, F

(
f̄
x̄

)
is a measure. To see this, let f̄

x̄
∈ B(Cp(A),M) and for

every i ∈ I,

Ui = {ρ ∈ Γ : x̂i > 0}.

Clearly we have Ui is an open subset of M c. The quotient f̂i

x̂i
defines a measure on Ui and

intersecting Ui and Uj we have

f̂i
x̂i

=
f̂j
x̂j

on Ui ∩ Uj. We define a measure λ on M c by λ = f̂i

x̂i
on Ui.

Theorem 42. For every f̄
x̄
∈ B(Cp(A),M), f̂i = x̂iλ on M c, for every i ∈ I.

Proof. All we need to show is that for every j ∈ I, f̂i = x̂iλ on Uj. But that is true since

f̂i =
x̂j f̂i
x̂j

=
x̂if̂j
x̂j

= x̂iλ on Uj.

Theorem 43. The Fourier transform defined in (4.5) is an injection.

Proof. Suppose
¯̂
f
¯̂x

=
¯̂g
¯̂y

we need to show Eyj
fi = Exi

gj. By Theorem 42 we have

fi(x) =

∫
Mc

ρ(x)x̂i(ρ)dλ(ρ) +

∫
M

ρ(x)dµfi
(ρ) (4.6)
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Using (4.6) we get

Eyj
fi(x) =

∫
Mc

ρ(x)ŷj(ρ)x̂i(ρ)dλ(ρ) +

∫
M

ρ(x)ŷj(ρ)dµfi
(ρ)

=

∫
Mc

ρ(x)ŷj(ρ)x̂i(ρ)dλ(ρ)

=

∫
Mc

ρ(x)x̂i(ρ)ŷj(ρ)dλ(ρ) +

∫
M

ρ(x)x̂i(ρ)dµfj
(ρ)

= Exi
fj(x).

We can actually characterize the Fourier transform of B(Cp(A),M) using Lévy measures.

We first give the definition of these measures as stated in [4].

Definition 15. A positive Radon measure λ on M c is called a Lévy measure associated with

x̄ if x̂i ∈ L1(M c, λ) for every i ∈ I.

Theorem 44. The Fourier transform defined by (4.5) is a bijection between B(Cp(A),M)

and Lévy measures on M c.

Proof. We have shown the injection. All we need to show is the surjection. Let λ be a Lévy

measure on M c associated with x̄. We need to find a pseudoquotient in B(Cp(A),M) whose

Fourier transform is λ. For every i ∈ I let µi be a Radon measure on M(x̄) and define fi by

fi(x) =

∫
M

ρ(x)dµi(ρ) +

∫
Mc

ρ(x)x̂i(ρ)dλ(ρ).

Using (4.2) we see that fi is in Cp(A). We need to check f̄
x̄
∈ B(Cp(A),M). We will check

that Exj
fi = Exi

fj. Notice

Exj
fi(x) =

∫
Mc

ρ(x)x̂j(ρ)x̂i(ρ)dλ(ρ) +

∫
M

ρ(x)x̂j(ρ)dµi(ρ)
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The second integral is zero so we can replace it with another zero integral and we get

Exj
fi(x) =

∫
Mc

ρ(x)x̂j(ρ)x̂i(ρ)dλ(ρ) +

∫
M

ρ(x)x̂i(ρ)dµj(ρ) = Exi
fj(x).

4.4 The Space B(P(G),Z)

Our next example, as the example in Section 3.3 is mentioned in [3]. However, it provides

a good example for the non-injective case and is a nice final example. In Section 3.3 we de-

scribed a space of generalized quotients (the injective pseudoquotients) the Fourier transform

of which was isomorphic to the space of Radon measures. In that construction we needed

to find an integrable function on G that had a positive Fourier transform everywhere. In

this section we use the power of pseudoquotients to show similar isomorphism but with the

Fourier transform of B(P(G),Z), where Z denotes the semigroup of approximate identities .

Definition 16. A sequence (ϕn) of integrable function on G is called an approximate identity

if ϕ̂n → 1 uniformly on compact sets in Ĝ. We denote the semigroup of approximate identities

by Z.

Let P(G) be the space of positive definite functions on G as described before. it is

clear that Z acts injectively on P(G). Hence we can define the space of pseudoquotients

B(P(G),Z) as quotients of the form f̄
ϕ̄

, with fn ∈ P(G) for every n ∈ N and ϕ̄ ∈ Z, having

the exchange property.

We define the Fourier transform of elements of B(P(G),Z) by

F
(
f̄

ϕ̄

)
=

¯̂
f
¯̂ϕ
.
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F is clearly well-defined. Notice the Fourier transform of elements of B(P(G),Z) are

quotient of sequences where the sequence in the numerator is the Fourier transform of el-

ements of P(G), and thus in the space Mb(Ĝ) of bounded Radon measures on Ĝ, and the

sequence in the denominator is the Fourier transform of an element of Z which therefore is

a sequence of continuous functions with compact support converging to 1. Additionally just

by using the properties of the Fourier transform these quotients have the exchange property.

This quotients hence form a space of pseudoquotients. Notice that in this case the fraction

line represents regular division. We claim this transformed space is isomorphic to the space

of all Radon measures.

Theorem 45. The spaces B(Mb(Ĝ), Ẑ) and M(Ĝ) of Radon measures are isomorphic.

Proof. Let F = f̄
ϕ̄
∈ B(P(G),Z). We claim F̂ is a Radon measure. To do that we look at

its action on elements of the space Cc(Ĝ) of continuous functions with compact support. Let

α ∈ Cc(Ĝ). There exists an n ∈ N such that ϕ̂n 6= 0 on the support of α. Then we can define

〈
F̂ , α

〉
=

〈
f̂n
ϕ̂n
, α

〉
=

〈
f̂n,

α

ϕ̂n

〉
,

which since f̂n is a bounded measure and ϕ̂mf̂n = ϕ̂nf̂m for all m,n ∈ N, 〈F, α〉 is well-defined

and the defined functional is continuous.

For surjection, suppose µ ∈ M(Ĝ). Let K1, K2, . . . ⊂ Ĝ, gn, and σ be as in the proof

of Theorem 32. Then gn, σ, gn ∗ σ ∈ L2(Ĝ) and thus F−1gn,F−1σ,F−1(gn ∗ σ) ∈ L2(X).

Define ϕn = F−1(gn ∗ σ). Since ϕn = F−1gnF−1σ, we have ϕn ∈ L1(X). Moreover, ϕ̂n → 1

uniformly on compact subsets of Ĝ and thus ϕ̄ ∈ Z. Since, for every n ∈ N, ϕ̂nµ ∈ Mb(Ĝ),

there exists fn ∈ P(G) such that f̂n = ϕ̂nµ. Clearly, fn

ϕn
∈ B(P(G),Z). Moreover, for any
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α ∈ Cc(Ĝ), we have〈
f̂n
ϕ̂n
, α

〉
=

〈
f̂n,

α

ϕ̂n

〉
=

〈
ϕ̂nµ,

α

ϕ̂n

〉
= 〈µ, α〉 .
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[14] Mikusiński, P., Generalized Functions and convolution, Cubo Mathemática Educacional
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