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ABSTRACT 

Iteratively reweighted least squares (IRLS) algorithms provide an alternative to the more 

standard 1l -minimization approach in compressive sensing.  Daubechies et al. introduced a 

particularly stable version of an IRLS algorithm and rigorously proved its convergence in 2010.  

They did not, however, consider the case in which prior information on the support of the sparse 

domain of the solution is available.  In 2009, Miosso et al. proposed an IRLS algorithm that 

makes use of this information to further reduce the number of measurements required to recover 

the solution with specified accuracy.  Although Miosso et al. obtained a number of simulation 

results strongly confirming the utility of their approach, they did not rigorously establish the 

convergence properties of their algorithm.  In this paper, we introduce prior information on the 

support of the sparse domain of the solution into the algorithm of Daubechies et al.  We then 

provide a rigorous proof of the convergence of the resulting algorithm.   
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CHAPTER 1:  INTRODUCTION TO COMPRESSIVE SENSING 

Compressive sensing is a novel paradigm that has introduced many improvements over 

the more traditional methods in fields such as data compression, channel coding, inverse 

problems, and data acquisition.  For example, in signal recovery, Shannon’s theorem has defined 

the traditional approach.  According to this theorem, the sampling rate must be at least twice the 

maximum frequency rate present in the signal.  Compressive sensing asserts that certain signals 

can be recovered even if the original number of measurements is much smaller.  The defining 

property of such signals is sparsity.  In the field of signal recovery, a signal is sparse if it can be 

concisely expressed in a particular basis.   

  To make the presentation of the concepts more concrete, we will continue to restrict our 

exposition to the fields of signal recovery and data acquisition (relying on [4] ) until we present 

the mathematical formulation of our problem.  One of the most remarkable results in the field of 

compressive sensing is the following:  a sensor can efficiently capture the information in a sparse 

signal without having to acquire the entire data.  The signal can then be recovered from a small 

number of measurements.  In traditional methods, massive data acquisition is followed by 

compression, during which only the essential information is stored.  The typical example cited is 

that of a digital camera which has millions of sensors but stores the picture in only a few hundred 

kilobytes.  Compressive sensing approach allows one to obtain the essential information without 

preliminary massive data acquisition.  The main requirement pertains to the sparsity of the 

signal:  The sparser the signal, the fewer the number of measurements needed to recover it.   
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Another important idea in the field of compressive sensing is incoherence.  The 

mathematics of compressive sensing usually requires two matrices: one matrix is used for 

sensing and another is used for representation.  Each of these matrices consists of orthogonal 

bases arranged in matrix form.  The smaller the maximal correlation between the vectors from 

the ‘sensing’ basis with the vectors of the ‘representation’ basis, the larger the incoherence 

between these bases.  The larger the incoherence, the smaller the number of samples needed for 

recovery.    

Matrix 1 2[ ... ]nψ ψ ψΨ = , the columns of which are an orthogonal basis, is used to 

represent a signal f . Each n
iψ ∈ and Ψ is an N N×  matrix.  Hence we can write *f x= Ψ , 

where ,i ix f ψ= .  With the sensing matrix 'Φ ,  the coherence between the sensing basis 'Φ

and the representation basis Ψ is 
1 ,

( ', ) max ',k jj j n
nµ ϕ ψ

≤ ≤
Φ Ψ = ⋅ .  A commonly adapted strategy 

is to choose 'Φ  to be a random matrix.  Such matrices are largely incoherent with any fixed 

orthogonal basis Ψ .  Finally, we are ready to treat the problem mathematically. 

Let *'Φ = Φ Ψ , where *f x= Ψ and 'y f= Φ so that   

 x yΦ =  (1.1) 

with Φ an m N× matrix such that m N< .  Let : ( )N N= Φ be the null space of Φ  and 0x  a 

solution of (1.1).  Then the set 1( ) : ( )F y y−= Φ of all solutions of (1.1) is given by 0( ) :F y x N= + .  

The underdetermined system of equations (1.1) has infinitely many solutions, with the k-sparse 
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solutions of this system having only k nonzero components.  The support of vector x  consists of 

the nonzero components of x . Thus a sparse solution has a support of small cardinality.   

  Combinatorial methods can be used to find the k-sparse solutions of (1.1) directly, but 

these methods are numerically prohibitive.  Instead, 1l -minimization has been used in many 

disciplines to obtain the solutions of underdetermined systems.  If Φ  and y  in (1.1) satisfy 

certain conditions, and there is a k-sparse solution, then the unique solution to the 1l -

minimization problem 

 
1( )

: arg min Nl
z F y

x z
∈

=  (1.2) 

 is also the solution of (1.1). 

 The following theorem [3] illustrates the use of several concepts introduced above.   

Fix Nf ∈ and suppose that the coefficient sequence x of f in the basis Ψ is S-sparse.  Select m 

measurements in the 'Φ domain uniformly at random.  Then if  

 2 ( ', ) log( )m C S nµ≥ ⋅ Φ Ψ ⋅ ⋅  

for some positive constant C, the solution to (1.2) is exact with overwhelming probability.  More 

precisely, the probability of success exceeds 1 δ− if 2 ( ', ) log( / )m C S nµ δ≥ ⋅ Φ Ψ ⋅ ⋅  .    

Observe that the smaller the sparsity S and coherence µ , the fewer samples are needed for 

recovery.  It is likely that the number of random measurements will be far less than demanded by 

the signal size. Moreover, it is not necessary to know if f is S-sparse, neither must one know the 
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sparsity pattern.  If f is indeed S-sparse, it will be obtained as a solution to the convex 

optimization problem (1.2).   

 Next we introduce a widely-used property of matrix Φ .  Φ satisfies the restricted 

isometry property (RIP) of order L with constant (0,1)δ ∈  if for each vector z  with sparsity L, 

condition 

 
2 2 2

(1 ) (1 )N m Nl l l
z z zδ δ− ≤ Φ ≤ +  (1.3) 

holds.  This property requires that all subsets of S columns of Φ are nearly orthogonal.  Many 

theoretical results on 1l -minimization make use of (1.3) in order to draw conclusions about the 

nature of the solution recovered.  The following result due to Candes ([4]) illustrates this point.   

Assume that 2 2 1Sδ < − .  Then the solution *x  to (1.2) obeys  

 2 1

1 1

0

0

* /

*
Sl l

Sl l

x x C x x S and

x x C x x

− ≤ ⋅ −

− ≤ ⋅ −
 (1.4) 

for some constant 0C , where Sx is the vector x with all but the largest S components set to zero. 

This is a deterministic result relying only on the RIP property of a matrix.  If an S-sparse solution 

exists, then it will be obtained as a result of 1l -minimization.  Moreover, even if an S-sparse 

solution does not exist, but the matrix satisfies the RIP property, then S largest components of 

the solution will be identified.  Thus the reconstruction will include the most significant pieces of 

information even if no particular care was taken to measure those pieces beforehand.  Once 

again, this is perhaps the main purpose of compressive sensing.   
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 A legitimate question is, of course: how can we find matrices that satisfy the RIP?  

While, considering the combinatorial nature of the problem, determining if a given matrix 

satisfies the RIP is not plausible for large matrices, certain groups of matrices are known to 

satisfy the RIP with high probabilities.  Candes and Wakin [4] provide the following among 

examples of such matrices: i.) matrix Φ formed by uniformly sampling N column vectors at 

random on the unit sphere of m ; ii.) Φ formed by i.i.d. elements sampled from 1(0, )N
M

; iii.) 

Φ formed by i.i.d. elements taken from symmetric Bernoulli distribution.  Provided that 

 log( / )m C S n S≥ ⋅ ⋅ , (1.5) 

where C is an instance-specific constant, matrices in i.)-iii.) satisfy the RIP.  Moreover, if Ψ is an 

arbitrary orthobasis and Φ  is a matrix mentioned in i.)-iii.), then ΦΨ satisfies the RIP given 

(1.5),  with C being an instance-specific constant.   
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CHAPTER 2:  ITERATIVELY REWEIGHTED LEAST SQUARES 
MINIMIZATION 

 

 Among the alternative methods that can be both more efficient and simpler than (1.2) is 

iteratively reweighted least squares (IRLS) minimization.  The basic result is that if (1.2) has a 

solution *x  with no vanishing coordinates, then the unique solution of  

 
2

1*
1( )

( )
: arg min , : ( ,..., ) : ,N

w
N j jl w

z F y
x z where w w w and w x

−

∈
=    =  =  (2.1) 

coincides with *x .  The condition on non-vanishing coordinates is rather restrictive, and ad hoc 

solutions are necessary to handle the weight vectors not conforming to this condition.  When 

these solutions are implemented, the algorithm might not converge [8]. With weights defined in a 

particular manner, Daubechies et al. [6] proposed an algorithm that does not require this 

condition.  Daubechies et al. [6] also proved the convergence of their algorithm and examined its 

rate of convergence. 

 Another variation of an IRLS algorithm was put forth by Miosso et al. [9].  They 

considered a case in which prior information on the support of x  is available.  That is, there is 

information on the positions of the nonzero components.  More precisely, let ∆  be the subset of 

positions in { }1,2,... , N which are known to belong to the support of x, that is, 

 0kx k≠   ∀ ∈ ∆ . (2.2) 

The algorithm of Miosso et al. [9] relies on the observation that if the positions in ∆  are known, 

then the sparse solution can be obtained by minimizing the number of nonzero components in c∆ . 

The algorithm has certain desirable characteristics. First, the number of required measurements is 
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reduced by the cardinality of ∆ , denoted by ∆ .  Moreover, the number of iterations and the 

computation time required for convergence are reduced.  Finally, the algorithm is robust with 

respect to errors in prior information.  If incorrect prior information on the support is used in the 

algorithm, the correct solution can still be obtained if the number of measurements is increased.  

One of the purposes of this paper is to propose an algorithm that would have the advantages of 

both the algorithm of Daubechies et al. [6] and that of Miosso et al. [9]. 

The algorithm of Daubechies et al. [6] follows. 

Algorithm 1.  Let  

 

 2 2 1

1 1

1( , , ) : ( ) ,
2

N N
N

j j j j
j j

J z w z w w w zε ε −

= =

 
= + +    ∈ 

 
∑ ∑   (2.3) 

 Initialize 0 : (1,...,1)w =  and set 0 : 1ε = . Recursively define for n = 0, 1, . . . , 

 
2

1
( )

( ) ( )
: arg min ( , , ) arg min n

n n
n l w

z F y z F y
x J z w zε+

∈ ∈
= =  (2.4) 

and 

 
1

1
1

( ): min ,
n

K
n n

r x
N

ε ε
+

+
+

 
=  

 
, (2.5) 

where K is a fixed integer described later. Moreover, define 

 1 1
1

0
: arg min ( , , )n n

n
w

w J x w ε+ +
+

>
= . (2.6) 
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Stop the algorithm if 0nε = , in which case :j nx x= for j > n.  If 0nε ≠ , the algorithm will 

generate an infinite sequence ( )n
nx ∈ of distinct vectors.  

Each step of the algorithm requires the solution of a least squares problem. In matrix 

form, 

 1 1( )n T T
n nx D D y+ −= Φ Φ Φ . (2.7) 

Matrix Φ contains  

 
1/21 1 2 2

1( ) , 1,... , ,n n
j j nw x j Nε

−+ +
+ = +   =     (2.8) 

on the diagonal. 

Let the vector obtained from η  by setting all coordinates iη  for { }1,2,...,i S N∉ ⊂  equal 

to zero be denoted by Sη .  Φ  has the Null Space Property (NSP) of order L for γ > 0 if  

 
1 1

cT l T l
η γ η≤  (2.9) 

for all sets T of cardinality not exceeding L and all Nη ∈ .   It can be shown (see [6]) that if a 

matrix satisfies the restricted isometry property of order : 'L J J= +  for given (0,1)δ ∈ , where 

', 1J J ≥  are integers, then Φ  has the NSP of order J for 

 1:
1 '

J
J

δγ
δ

+
=

−
. 

 The main result of Daubechies et al [6] is the theorem that follows. 

Theorem 1. Let K (the same index as used in the update rule (2.5)) be chosen so that  Φ satisfies 
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the null space property (2.9) of order K, with γ < 1. Then, for each my ∈ , the output of 

Algorithm 1 converges to a vector ( )x F y∈ , with 1( ) limK nn
r x N ε+ →∞

= ⋅  and the following hold: 

(i) If : lim 0nn
ε ε

→∞
= = , then x  is K-sparse; in this case there is therefore a unique 1l -minimizer 

*,x  and *x x= .  Moreover, we have, for k K≤ , and any ( )z F y∈ , 

 
1

1

2(1 )( ) : .
1k ll

z x c z with c γσ
γ

+
− ≤     =

−
 (2.10) 

 (ii) If : lim 0nn
ε ε

→∞
= > , then x xε= . 

(iii) In this last case, if γ satisfies the stricter bound 21
2K

γ < −
+

,then we have, for all ( )z F y∈  

and any 2
1

k K γ
γ

< −
−

, that 

 
1

1

2(1 ) 3 / 2( ) , : .
1 2 / (1 )k ll

K kz x c z with c
K k

γσ
γ γ γ

 + − +
− ≤ ⋅     =  − − − − 

  (2.11) 

(iv) If ( )F y contains a vector z of sparsity 2
1

k K γ
γ

< −
−

, then 0ε = and * .x x z= =  

In order to prove their result, Daubechies et al. [6] used a weighted 2 ( )l w -norm.  If 

0jw >  for all { }1,...,j N∈ , 2 ( )l w is a Hilbert space with inner product  

 
1

, : .
N

j j jw
j

u w w u w
=

= ∑  (2.12) 

Moreover, they defined 
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2 ( )

( )
: arg min N

w
l w

z F y
x z

∈
= . (2.13) 

The minimizer in (2.13) is unique by strict convexity of the weighted norm.  By a well-known 

characterization of the best approximation on a Hilbert space, the minimizer satisfies 

 , 0 .w

w
x Nη η=   ∀ ∈  (2.14) 

Moreover, any element that satisfies (2.14) is equal to wx . 

 Certain other constructions are also useful.  First is the 1l -error 
1

( )j lzσ .  Let kΣ be the set 

of all Nx ∈ with support that has cardinality at most k. For any Nz ∈ and any 1,..., ,j N=  let 

 
1 1

( ) : inf N
j

j l lw
z z wσ

∈Σ
= − . (2.15) 

Note that 
1

( ) ( )j l vv j
z r zσ

>
= ∑ . 

Second is the following functional used in the proof of convergence: 

 2 2 1/2

1
( ) : ( )

N

j
j

f z zε ε
=

= +∑ . (2.16) 

The unique minimizer of this strictly convex functional is  

 
( )

: arg min ( )
z F y

x f zε
ε

∈
= . (2.17) 
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   CHAPTER 3:  CONVERGENCE OF IRLS 

In this chapter, we present the main steps in the proof of convergence of IRLS, with more 

elaborated proofs in many cases. For ease of reference, we will adopt the lemma and theorem 

numbers of Daubechies et al. [6]. The proof of Theorem 1 relies on a number of lemmas, most of 

which establish certain inequalities.  The following lemma implies that if Φ has full rank, then 

unique 1l -minimizers are k -sparse for some k m≤ .  

Lemma 2.1 An element ( )x F y∈ has minimal 1l -norm among all elements ( )z F y∈  if and only 

if 

 
0 0

( )
i i

i i i
x x

sign x Nη η η
≠ =

≤   ∀ ∈∑ ∑ .                                            (2.18) 

Moreover,𝑥 is unique if and only if we have strict inequality in (2.18) for all Nη ∈  which are 

not identically zero. 

Proof :  Assume that ( )x F y∈  is a minimum 1l -norm element.   Since ( )g t x tη= +  is 

continuous, for any Nη ∈ and any t ∈ , 

 
1 1

N N

i i i
i i

x t xη
= =

+ ≥∑ ∑ . (2.19) 

Now break up the summation into a part for which 0ix =  and a part for which 0,ix ≠ then 

choose t of an appropriate sign.  More precisely, for a fixed Nη ∈ and for a sufficiently small t ,  

i ix tη+  , and ix will have the same sign : ( )i is sign x= whenever 0ix ≠ .  Hence (2.19) can be 

written as  
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0 0

0
i i

i i i
x x

t s tη η
≠ =

+ ≥∑ ∑ .  

The above inequality implies (2.18) if 𝑡 is chosen to have an appropriate sign.  If x  is unique, 

(2.19), and thus (2.18) hold with  strict inequalities for all { }\ 0Nη ∈ . 

For the other direction, the idea is to add and subtract i isη , use (2.18), then use the 

definition of absolute value ( ( ) ( ) ( )i i i i i i i is x s x xη η η+ = + = + ).  More precisely, for each 

Nη ∈ , 

 1 0 0 0

0 0 1

( )

( )

i i i

i i

N

i i i i i i i i
i x x x

N

i i i i i i
x x i

x s x s x s

s x x

η η

η η η

= ≠ ≠ ≠

≠ = =

= = + −

≤ + + ≤ +

∑ ∑ ∑ ∑

∑ ∑ ∑
. (2.20) 

Thus ix  has minimal norm among the elements in ( )F y .  If we assume that strict inequality 

holds in (2.18), then  we have a strict inequality in (2.20).  In this case, 𝑥 must be unique.             

  

The following lemma shows that the behavior of the rearrangements and approximation 

errors is ‘controlled’.  The lemma plays a crucial role in the proof of the main convergence 

result.   

Lemma 4.1  The map ( )z r z is Lipschitz continuous on ( , )N
l∞

  with Lipschitz constant 1; 

i.e., for any , ' Nz z ∈ ,  
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 ( ) ( ') '
l l

r z r z z z
∞ ∞

− ≤ − . (2.21) 

Moreover, for any j, we have 

 
1 1 1

( ) ( ') 'j l j l l
z z z zσ σ− ≤ − , (2.22) 

and for any J > j, we have 

 
11

( ) ( ) ' ( ')J j ll
J j r z z z zσ− ≤ − + . (2.23) 

Proof: To prove that ( ) ( ') '
l l

r z r z z z
∞ ∞

− ≤ − , use the definition of ( )r ⋅  and the triangle 

inequality on the l∞ -norm.  The details follow.  Pick z and 'z , and any { }1,... ,j N∈  .  Let the set 

of indices corresponding to 1j −  largest elements in 'z be denoted by Λ .  Then 

 
( ) max max ' max ' max ' '

( ') '
c c c cj i i i i li i i i

j l

r z z z z z z z z

r z z z
∞

∞

∈Λ ∈Λ ∈Λ ∈Λ
≤ ≤ + − ≤ + −

= + −
. (2.24) 

Reverse the roles of z and 'z to complete the proof of (2.21). 

To prove that 
1 1 1

( ) ( ') 'j l j l l
z z z zσ σ− ≤ − , use the definition of 

1
( )j lzσ  and the triangle 

inequality as follows 

 
1 1 1 1 1

11

( ) inf ' '

' ( ') .
j

j l l l l lu

j ll

z z u z u z z z u

z z z

σ

σ
∈Σ

= − ≤ − ≤ − + −

= − +
 (2.25) 

 Reverse the roles of z and 'z to complete the proof of (2.22).                                                       
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The next lemma establishes an approximate reverse triangle inequality.  If two points 

, ' ( )z z F y ∈  have close 1l -norms and one of them is close to a sparse vector, then the two points 

are close to each other.  In the proof of the main convergence result, it is used once explicitly and 

twice implicitly (through Lemma 4.3). 

Lemma 4.2 Assume that NSP holds for some L  and 1γ < .  Then for any , ' ( )z z F y∈ , we have 

 
11 1 1

1' ( ' 2 ( ) )
1 L ll l l

z z z z zγ σ
γ

+
− ≤ − +

−
. (2.26) 

Outline of the Proof: [ ] [ ]1 1 1..... ............T T
L L N Nz w z z z z w w+− =   ..... − , where 𝑤 can be chosen 

arbitrarily as long as it has at most L nonzero components.  Choose 𝑤 that is equal to 𝑧 at the 𝐿 

largest entries of 𝑧.  Thus, 
111

inf ( )Nc
L

L llT l w
z z w zσ

∈Σ
= − = .  This fact and a clever rearrangement 

of terms, aided by the addition of zero, allow us to use Lemma 4.1 to obtain the desired 

inequality.   

Proof: Let 𝑇 be the set of indices corresponding to the 𝐿 largest entries in 𝑧.  Then 

 

1 11 1 1 1

1 11 1 1 1 1 1

11 1 1 1

11 1 1

( ' ) ' ' '

' ' ( ) ' ' ( )

' ' 2 ( )

( ' ) ' 2 ( )

c c c cTl lT T T Tl l l l

T L l T L ll l l l l l

T T L ll l l l

T L ll l l

z z z z z z z

z z z z z z z z

z z z z z

z z z z z

σ σ

σ

σ

− ≤ + = − +

= − + = + − − +

= − + − +

≤ − + − +

 (2.27)             

Since 0, ' ( ) :z z F y x N∈ = +  , ( ')z z N− ∈ , hence by the null space property and (2.27), 
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 ( )
1 1

11 1 1

( ' ) ( ' )

( ' ) ' 2 ( )

T Tl l

T L ll l l

z z z z

z z z z z

γ

γ σ

− ≤ −

≤ − + − + .
 (2.28) 

Rearrange (2.28) to obtain 

 ( )11 1 1
( ' ) ' 2 ( )

1T L ll l l
z z z z zγ σ

γ
− ≤ − +

−
. (2.29) 

In order to make the following rearrangement more transparent, let 
11 1

: ' 2 ( )L ll l
S z z zσ= − + .   

Then from (2.27) and (2.29), 

 

( )
( ) ( )

( ) ( )

1 11

1 11 1 1 1 1

1 1 11 1 1 1 1 1

1 11 1 1 1

' ( ' ) ( ' )

( ' ) ' 2 ( ) ' 2 ( )
1

' 2 ( ) ' 2 ( ) ' 2 ( )
1 1

11 ' 2 ( ) ' 2 ( )
1 1 1

c Tl lT l

T L l L ll l l l l

L l L l L ll l l l l l

L l L ll l l l

z z z z z z

z z z z z z z z

z z z z z z z z z

z z z z z z

γσ σ
γ

γ γσ σ σ
γ γ

γ γ γσ σ
γ γ γ

− = − + − =

≤ − + − + + − +
−

≤ − + + − + + − +
− −

  +
= + + − + = − + − − − 

, (2.30) 

which completes the proof.                                                                                                             

If Φ satisfies the null space property and the solution set contains an L-sparse vector, this 

vector is the unique 1l -minimizer as the following result states. 

Lemma 4.3 Assume that NSP holds for some L  and 1γ < .  Suppose that ( )F y contains an L-

sparse vector.  Then this vector is the unique 1l -minimizer in ( )F y ; denoting it by x*, we have, 

moreover, for all ( )v F y∈ , 
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11

1* 2 ( )
1 L ll

v x vγ σ
γ

+
− ≤

−
. (2.31) 

Proof: The idea is to choose an arbitrary solution ν and apply Lemma 4.1 in view of the fact that 

sx is L-sparse.  In this case, 
1

( ) 0L s lxσ = , and sinceν is arbitrary, (2.26) implies that sx  is an 1l -

minimizer.  Choose another minimizer and argue uniqueness from (2.26).  The details follow. 

Let sx be the L-sparse vector in ( )F y .  Note that 
1 1

( ) : inf N
L

L s l s lv
x x vσ

∈Σ
= − , with LΣ

containing all Nx ∈ with support of cardinality at most L.  Clearly, LΣ also contains the L-

sparse vector x, and hence 
1

( ) 0L s lxσ = .  In view of this, apply (2.26) with 'z v=  and sz x=  to 

obtain 

 
1 1 1

1
1s sl l l

v x v xγ
γ

+  − ≤ − −
. 

Since v is arbitrary, the 
1 1

0 sl l
v x≤ − for all ( )v F y∈ , implying that sx is an 1l -minimizer .  

To show uniqueness, suppose that there is another 1l -minimizer in ( )sx F y∈ .  Clearly, 

1 1
' sl l

x x= and thus  

 
1 1 1

1' ' 0
1s sl l l

x x x xγ
γ

+  − ≤ − = −
. 

Since 
1

' 0s l
x x− = , we have ' sx x= . 
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For the ‘moreover’ part, let ' *z x=  and z ν= in (2.26).  Since *x  is the unique 1l -

minimizer, 
11

*
ll

x ν≤ and (2.31) follows.                                                                                                                                                                                 

Daubechies et al. [6] established certain useful results concerning the functional J .  

Substitute (2.8) into (2.3) to obtain  

 
1/2

1 1 1 2 2
1 1

1
( , , ) ( )

N
n n n

n j n
j

J x w xε ε+ + +
+ +

=

 = + ∑ . (2.32) 

Moreover, J obeys the following monotonicity property for 0n ≥  

 1 1 1 1
1 1( , , ) ( , , ) ( , , ) ( , , )n n n n n n n n

n n n nJ x w J x w J x w J x wε ε ε ε+ + + +
+ +≤ ≤ ≤ . (2.33) 

The first inequality follows from the minimization property (2.6), the second from inequality 

from 1n nε ε+ ≤ , and the third inequality from the minimization property (2.4).   

Lemma 4.4  For each 1n ≥ , we have 

 
1

1 0
0( , , ) :n

l
x J x w Aε≤ =  (2.34) 

and 

 1,n
jw A j = 1,...,N.−≥     (2.35) 

Proof: By monotonicity of J, 

 ( )
1

1/22 2 1 0
0

1 1
( ) ( , , ) ( , , )

N N
n n n n n

j j nl
j j

x x x J x w J x wε ε ε
= =

= ≤ + = =∑ ∑ , 
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 ( )1/21 2 2 1 0
0( ) ( ) ( , , ) ( , , )n n n n

j j nw x J x w J x w Aε ε ε− = + ≤ ≤ = , 

implying (2.35).                                                                                                                                                                                                                               

The following lemma states that the iterations of the algorithm eventually ‘stay close’. 

Lemma 5.1 Given any my ∈ , the nx satisfy  

 
2

2
1 2

1
2n n

n l

x x A
∞

+

=

− ≤∑  (2.36) 

where A is the constant of Lemma 4.4.  In particular, we have  

 1lim( ) 0n n

n
x x +

→∞
− = . (2.37) 

Outline of the Proof: Use monotonicity of J and the fact that 1n nx x+ − ∈ Ν .  Sum over 1n ≥  to 

arrive at the desired result. 

Proof: For each 𝑛 = 1,2, …,  

 

1 1
1

1
1

2 1 2
1 1

2 2 1/2
1

1 1 1 1

1 1

1 2

2 ( , , ) ( , , )

2 ( , , ) ( , , )

(( ) ( ) )
, ,

(( ) )

, , , ,

,

( )

nn

n n n n

n

n n n n
n n

n n n n
n n

n nN
j j n n n n

n w w
j j n

n n n n n n n n

w w w w

n n n n

w

n n n
j j j

j

J x w J x w

J x w J x w

x x
x x x x

x

x x x x x x x x

x x x x

x x w

ε ε

ε ε

ε

+ +
+

+
+

+
+ +

=

+ + + +

+ +

+

 − 
 ≥ − 

−
= = −

+

= + − −

= − −

= −

∑

2

21 1

1

N
n n
j j l

A x x− +

=

≥ −∑
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where the fifth equality relies on the fact that 1 1, 0n

n n n

w
x x x+ +− =  (note that 1n nx x N+ − ∈ and 

use (2.14)).  Observe that 1 1
1( , , )J x w Aε ≤  and sum over 1n ≥  to arrive at (2.36).                       

The following lemma provides a characterization of 
( )

arg min ( )
z F y

x f zε
ε

∈
 .   This 

characterization is crucial in establishing the convergence of the algorithm if 0ε > . 

Lemma 5.2 Let 0ε > and ( )z F y∈  . Then z xε= if and only if 

  ( , )
, 0 ,

w z
z N

ε
η η=   ∀ ∈  (2.38) 

where  2 2 1/2( , ) ( ) , 1,..., .i iw z z i Nε ε −= +  =  

Proof: Construct a function ( ) ( ) ( )G t f z t f zε ε εη+ − .  It is analytic, (0) 0Gε = , and if z xε= , 

( ) 0G tε ≥  t∀ ∈ .  That is, ( )Gε ⋅  is nonnegative and equal to zero at 0t = , and in view of the 

fact that it is analytic, it must either have a saddle point at 0t =  or be equal to zero around 0t = .  

Thus ' (0) 0Gε = .  Differentiate ( )Gε ⋅  using chain rule and use the definition of weighted inner 

product (2.6) to arrive at  

 
'

1/2 ( , )2 21
(0) ,

N
i i

w z
i i

zG z
z

ε ε

η η
ε=

= =
 + 

∑ , (2.39) 

implying (2.38). 
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Now assume that ( )z F y∈  and  ( , )
, 0

w z
z

ε
η =  Nη∀ ∈ .  Consider 

1/22 2( )g u u ε +  .  

Since 2 2 2 3/2"( ) ( ) 0g u u u ε −= + ≥ , ( )g ⋅  is convex.  Hence for an arbitrary 0u , the line segment 

passing through 0u  and tangent to ( )g ⋅  is below ( )g ⋅ .  This is expressed by  

 
1/2 1/2 1/22 2 2 2 2 2

0 0 0 0( )u u u u u uε ε ε
−

     + ≥ + + + −      . (2.40) 

The N -dimensional version of this inequality produces 

 


2 2 1/2

1

( , )

( ) ( ) ( ) ( )

( ) , ( )

N

i i i i
i

w z

f v f z z z v z

f z z v z f z

ε ε

ε εε

ε −

=

≥ + + −

= + − =

∑ , (2.41) 

where the last inequality follows from (2.14) since ( )v z N− ∈ .  Since 𝑣 is arbitrary, z xε= .      

We are now ready to provide the proof of the main result of Daubechies et al. [6] . 

Proof of Theorem 1: 

(i) Consider the case when 0ε = . 

If 0ε = , then either 
0

0nε = for some 0n or
0

0nε >  but 0nε → . 

If 
0

0nε =  for some 0n , the algorithm stops and 0nx x= .  Since 
0

0nε = , (1.7) implies that 

0
1( ) 0n

Kr x + = and hence 0
_

nx x=  is K-sparse.  By Lemma 4.3, this solution is the unique 1l -

minimizer and *.x x=  
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If
0

0nε >  and 0nε → , there is an increasing sequence of indices ( )in such that 1i in nε ε −<  

for all i  (otherwise there is a contradiction).  Since 1i in nε ε −< , definition (2.5) implies that 

( )inr x N  is being chosen when 
inε is updated.  Thus 1( )i

i

n
nr x Nε −<  i∀ .  Since ( )n

n
x

∈
is a 

bounded sequence (by Lemma 4.4), it contains a convergent subsequence (Bolzano-Weierstrass) 

with indices ( )j jp ∈  out of ( )in .  Let  ( )x F y∈ be the limit of ( )jp

j
x

∈
.  By Lemma 4.1, since 

( ) jp

j
x x

∈
→


, 

1 1( ) ( )jp
K Kr x r x+ +→ .  Inequality  

 
11 1( ) lim ( ) lim 0j

j

p
K K pj j

r x r x Nε
−+ +→∞ →∞

= ≤ =  (2.42) 

 immediately follows in view of the previous observation that 1( )i

i

n
nr x Nε −< .  Thus x  is K-

sparse.  By Lemma 4.3,  *x x= , the unique 1l -minimizer.   

We have shown that ( ) jp

j
x x

∈
→


, and it only remains to show that nx x→ .  Since 

( ) jp

j
x x

∈
→


 and 0

jpε → , (2.32) implies that 
1

( , , ) *j j

j

p p
p l

J x w xε → .  By monotonicity 

property (2.33), 
1

( , , ) *n n
n l

J x w xε → .  From (2.32), 

 
1

2 2 1/2 2 2 1/2

1 1 1
( , , ) (( ) ) (( ) 2 ) .

N N N
n n n n n n n

n j j j j lj j j
J x w x x x x x Nε ε ε ε ε ε

= = =
= Σ + ≤ Σ + + = Σ + = +  (2.43) 

This observation, together with the previous deduction that 
1

( , , ) *n n
n l

J x w xε →  imply (2.43), 

which in turn means that *nx x→ . Invoke Lemma 5.2 to show that *nx x→ .  



 

22 
 

 (2.10) follows from (2.31) of Lemma  4.3 and the observation that '( ) ( )n nz zσ σ≥  for 'n n≤ . 

(ii) Consider the case when 0ε > .  Let ( ) ( )inx x F y→ ∈ be any convergent subsequence of ( )nx

(which exists by Bolzano-Weierstrass theorem).   First we show that x xε= .   Since 

 
1/22 2 1( )n n

j j jw x ε ε
− − = + ≤  , 

    1/22 2lim ( ) ( , ) : (0, ), 1,... ,in
jj j ji

w x w x w j Nε ε
−

→∞
 = + = = ∈ ∞   =     

with the notation of Lemma 5.2. Moreover, by (2.37), 1lim in

i
x x+

→∞
= .  Since  ( )inx F y∈ for every 𝑖 

and every Nη ∈ ,  1, 0i
ni

n

w
x η+ =   by (2.14), and hence 

 


1, lim , 0i
ni

n

ww i
x x Nη η η+

→∞
= =   ∀ ∈ . (2.44) 

Lemma 5.2 and (2.44) imply that x xε= .   Thus ( )n
nx x xε
∈ → =

, a unique limit. 

(iii) (Error Estimate) 

 
11

( ) ( )
ll

x f x f z z Nε ε
ε ε ε≤ ≤ ≤ + , (2.45)                                                                                      

where the first inequality follows from (2.16), the second from (2.17), and the third from a 

calculation identical to the one done in (2.43).  Thus 
11 ll

x z Nε ε− ≤  and Lemma 4.2 implies  

 
11

1 2 ( ) , ,
1 k ll

x z N z k Kε γ ε σ
γ

+  − ≤ +  ≤ −
 (2.46) 
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 in view of the fact that '( ) ( )n nz zσ σ≥  for  'n n≤  .  

Since r(.) is Lipschitz continuous (by Lemma 4.1), (2.46) and (1.7) imply that 

 1 1lim lim ( ) ( )n
n K Kn n

N N r x r xεε ε + +→∞ →∞
= ≤ = . (2.47) 

Together with (4.4) of Lemma 4.1, (2.47) implies that 

 
1 1

1( 1 ) 2 ( ) ( )
1 k l k lK k N N z zγε ε σ σ

γ
+  + − ≤ + + −

. (2.48) 

Collect Nε on the left-hand side and use assumptions to get 

1 2((( ) 1 ) (( ) )
1 1

N K k N K kγ γε ε
γ γ

+
− + − = − −

− −
. 

Moreover, note that 

1 1 1

1 32 ( ) ( ) ( )
1 1k l k l k lz z zγ γσ σ σ

γ γ
+ +  + = − −

  and 4 33
1 1

γ γ
γ γ

+
+ =

− −
. 

The above results imply that (5.21) yields 

 
1

3 4 1 ( )
( ) 2 1 k lN z
K k

γ γε σ
γ γ

+ −
≤

− − −
. (2.49)                                                                          

Straightforward substitution of (5.22) in (5.19) yields (5.13). 
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(iv)  Suppose that 0ε > .  If the solution set contains a 𝑘-sparse vector 𝑧 (so that 
1

( ) 0k lzσ = ) with 

2
1

k K γ
γ

< −
−

,  then 0Nε ≤ , which is a contradiction.  Hence the presence of 𝑘-sparse solution 

implies that 0ε = .                                                                                                                               
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 CHAPTER 4:  NEW IRLS ALGORITHM WITH PRIOR INFORMATION 

In this chapter, we present the new results of this thesis. We integrate prior information 

on the support of the sparse domain into the algorithm of Daubechies et al. [6].  We assume that 

this information is perfectly accurate.  For the purposes of the algorithm and the proofs that 

follow, let x∆ be the vector derived from x  by setting all the components with j ∉ ∆ equal to 

zero.  Moreover, let #supp(x )M ∆=  and #supp(x )cL
∆

= , implying that vector 𝑥 is 𝐾 = 𝑀 + 𝐿 

sparse.   

Algorithm 2.  Let  

 

2 2 2 1

1

6 2

1( , , ; ) : ( ) , ,
2

1
10 10

N
N

j j j j
j

j

J z w z w w z

if j
where

fixed number between and if j

ε τ ε τ

τ

−

=

−  −

 
= + +    ∈ 

 
 ∉ ∆

  =           ∈ ∆

∑ 

.

 (3.1) 

 Initialize  

 (0)
6 2

1
10 10j

if j
w

fixed number between and if j−  −

 ∉ ∆
=           ∈ ∆

 

and set 0 : 1ε = . For n = 0, 1, . . . , recursively define  

 
2

1
( )

( ) ( )
: arg min ( , , ; ) arg min n

n n
n l w

z F y z F y
x J z w zε τ+

∈ ∈
= =  (3.2) 

and 

 
1

1
1

(( ) )
: min , c

n
L

n n

r x
N

ε ε
+

+∆
+

 
=   

 
, (3.3) 
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where K is a fixed integer. Moreover, define 

 1 1
1

0
: arg min ( , , ; )n n

n
w

w J x w ε τ+ +
+

>
= . (3.4) 

Stop the algorithm if 0nε = , in which case :j nx x= for j > n.  If 0nε ≠ , the algorithm will 

generate an infinite sequence ( )n
nx ∈ of distinct vectors.  

Each step of the algorithm requires the solution of a least squares problem. In matrix form, 

 1 1( )n T T
n nx D D y+ −= Φ Φ Φ . (3.5) 

Matrix Φ contains  

 
1/21 1 2 2

1( ) , 1,... ,n n
j j j nw x j Nτ ε

−+ +
+ = +   =     (3.6) 

on the diagonal. 

 Lemma 2.1, Lemma 4.1, Lemma 4.2, and Lemma 4.3 do not rely on the form of the 

functional J  and hence hold without change.  Equation  (2.32) becomes 

 
1/2

1 1 1 2 2
1 1

1
( , , ) ( )

N
n n n

n j j n
j

J x w xε τ ε+ + +
+ +

=

 = + ∑ . (3.7) 

Equation (2.33)  still holds by identical reasoning.  This equation implies that nx is bounded from 

below by 0 and from above by 1 0
0( , , )J x w ε .  Moreover, it implies that 

1

1 0 1 2
0

1
( , , ) ( ) 1

N

n jl
j

x J x w xε
=

≤ ≤ +∑ , and hence nx is also bounded from above.   
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Lemma 4.4  For each 1n ≥ , we have 

 
1

1 0
0( ) ( , , ) : ,c

n

l
x J x w Aε

∆
≤ =  (3.8) 

 
1

1( ) ( ) ,n
jl

x Aτ −
∆ ∈∆≤  (3.9) 

and 

 1, ,n
jw A j−≥    ∉ ∆  (3.10) 

 1 1(( )) ( ) .n
j jw Aτ− −

∆ ∈∆≤  (3.11) 

Proof: By monotonicity of J, 

If j ∉ ∆ , 

 ( )
1

1/22 2 1 0
0( ) ( ) ( , , ) ( , , ) ,c

c c

n n n n n
j j nl

j j

x x x J x w J x wε ε ε
∆

∈∆ ∈∆

= ≤ + ≤ ≤∑ ∑  

 ( )1/21 2 2 1 0
0(( )) (( )) ( , , ) ( , , )c c

n n n n
j j nw x J x w J x w Aε ε ε−

∆ ∆
= + ≤ ≤ = , 

implying (2.35).                                               

If j ∈ ∆ , 

 
( )

1

1/22 2 1 0
0( ) ( ) ( , , ) ( , , )n n n n n

j j j j j nl
j j

x x x J x w J x wτ τ τ ε ε ε∈∆ ∆ ∈∆
∈∆ ∈∆

= ≤ + ≤ ≤∑ ∑ , 

 ( )1/21 1 2 2 1 1 1 0 1
0(( )) ( ) (( )) ( ) ( , , ) ( ) ( , , ) ( )n n n n

j j j j n j jw x J x w J x w Aτ ε τ ε τ ε τ− − − − −
∆ ∈∆ ∆ ∈∆ ∈∆ ∈∆= + ≤ ≤ = . 
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Lemma 5.1 Given any my ∈ , the nx satisfy  

 
2

2
1 2

1
( ) ( ) 2 ,c c

n n

n l

x x A
∞

+
∆ ∆

=

− ≤∑  (3.12)
 

 
2

2 2
1

1

2( ) ( ) ,n n

n l

Ax x
τ

∞
+

∆ ∆
=

− ≤∑  (3.13) 

where A is the constant of Lemma 4.4.  In particular,  

 1lim( ) 0n n

n
x x +

→∞
− = . (3.14) 

Main Idea of the Proof: Use monotonicity of J  and the fact that 1n nx x+ − ∈ Ν .  Sum over 1n ≥  to 

arrive at the desired result. 

Proof: For each n=1,2,…,  

 

1 1
1

1

2 1 2 2 2 1 1

1 1

2 1 2
1 1

2 2 1/2
1

1

2 ( , , ) ( , , )

2 ( , , ) ( , , )

(( ) ( ) ) ( ) ( )

(( ) ( ) )
, ,

(( ) )

, ,

nn

n n

n n n n
n n

n n n n
n n

N N
n n n
j j j n j n j

j j

n nN
j j n n n n

j n w w
j j n

n n n n

w w

J x w J x w

J x w J x w

x x w w w w w

x x
x x x x

x

x x x x x

ε ε

ε ε

ε ε

τ
ε

+ +
+

+

+ − −

= =

+
+ +

=

+

 − 
 ≥ − 

= − + − + −

−
= = −

+

= + −

∑ ∑

∑

2

1 1 1

1 1 1 1

2
1 2 1 2 1 1

1

, ,

, ,

( ) ( ) ( ) ( )

n n

n n

c c
c

n n n n

w w

n n n n n n n n

w w
N

n n n n n n n n
j j j j j j j jj j lj j

x x x

x x x x x x x x

x x w x x w A x x

+ + +

+ + + +

+ + − +
∈∆ ∈∆

= ∈∆

−

= + − = − −

= − ≥ − ≥ −∑ ∑

, (3.15) 
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where the fifth equality relies on the fact that 1 1, 0n

n n n

w
x x x+ +− =  (note that 1n nx x N+ − ∈ and 

use (2.14)).  Observe that 1 1
1(( ) , , )cj

J x w Aε
∈∆

≤  and sum over 1n ≥  to arrive at (2.36).    

For j ∈Φ ,  follow the same steps as in (3.15) but change the last line as follows 

 
2

1 1
1

21 2 1 2 1

1

2 2 ( , , ) ( , , )

( ) ( ) ( ) ( )

n n n n
n n

N
n n n n n n n n
j j j j j j j j j j l

j j

A J x w J x w

x x w x x w x x
A

ε ε

τ

+ +
+

+ + +
∈∆ ∈∆

= ∈∆

 ≥ − 

≥ − ≥ − ≥ −∑ ∑
.               

 

                   

Re-define ( )f zε in (2.16) as 

 2 2 1/2

1
( ) : ( )

N

j j
j

f z zε τ ε
=

= +∑ . (3.16) 

In lemma 5.2, equation (2.39) becomes 

 
'

1/2 ( , )2 21
(0) ,

N
i i i

w z
i i

zG z
z

ε ε

τ η η
ε=

= =
 + 

∑ , (3.17) 

hence the “only if” part holds. 

For the “if” part, equation (2.40) becomes  

 
1/2 1/2 1/22 2 2 2 2 2

0 0 0 0( )u u u u u uτ ε τ ε τ ε
−

     + ≥ + + + −       

and equation (2.41) becomes 
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

2 2 1/2

1

( , )

( ) ( ) ( ) ( )

( ) , ( ) .

N

i i i i i
i

w z

f v f z z z v z

f z z v z f z

ε ε

ε εε

τ ε −

=

≥ + + −

= + − =

∑

 

This completes the proof.                                                                                                                 

Now, we state and prove the main result of the thesis.  

Theorem2. Let K (the same index as used in the update rule (2.5)) be chosen so that  Φ satisfies 

the null space property (2.9) of order K, with γ < 1. Then, for each my ∈ , the output of 

Algorithm 2 converges to a vector ( )x F y∈ , with 1( ) limK nn
r x N ε+ →∞

= ⋅  and the following hold: 

(i) If : lim 0nn
ε ε

→∞
= = , then x  is K-sparse; in this case there is therefore a unique 1l -minimizer *x  

*x x= .  Moreover,  for k K≤  and any ( )z F y∈ , 

 
1

1

2(1 )( ) : .
1k ll

z x c z with c γσ
γ

+
− ≤     =

−
 (3.18) 

 (ii) If : lim 0nn
ε ε

→∞
= > , then x xε= . 

(iii) In this last case, if γ satisfies the stricter bound 21 ,
2K

γ < −
+  

then for all ( )z F y∈  and any 

2 ,
1

k K γ
γ

< −
−

 

 
1

1

# # 2(1 ) 3 / 2( ) , : .
1 2 / (1 )k ll

K kz x c z with c
K k

γσ
γ γ γ

 + − +
− ≤ ⋅     =  − − − − 

  (3.19) 

(iv) If ( )F y contains a vector z of sparsity 2
1

k K γ
γ

< −
−

, then 0ε = and * .x x z= =  
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Proof:  

 (i) Case 0ε = . 

If 0ε = , then either 
0

0nε = for some 0n or
0

0nε >  but 0nε → . 

If 
0

0nε =  for some 0n , the proof stays the same. 

If
0

0nε >  and 0nε → , there is an increasing sequence of indices ( )in such that 1i in nε ε −<  

for all i  (otherwise there is a contradiction).  Since 1i in nε ε −< , definition (1.7) implies that 

(( ) )i
c

nr x N
∆  is being chosen when 

inε is updated.  Thus 1( )i

i

n
nr x Nε −<  i∀ .  Since ( )n

n
x

∈
is a 

bounded sequence (by Lemma 4.4), it contains a convergent subsequence (by Bolzano-

Weierstrass theorem) with indices ( )j jp ∈  out of ( )in .  Let ( ) ( )x F y∈ be the limit of ( )jp

j
x

∈
.  

By Lemma 4.1, since ( ) ( )jp

j
x x

∈
→


, 

1 1( ) ( )jp
K Kr x r x+ +→ , using the definition of ( )r ⋅ that 

applies to the entire vector.  Inequality  

 
11 1( ) lim ( ) lim 0j

j

p
K K pj j

r x r x Nε
−+ +→∞ →∞

= ≤ =  (3.20) 

 immediately follows in view of the previous observation that 1( )i

i

n
nr x Nε −< .  Thus vector x  is 

K-sparse.  By Lemma 4.3,  *x x= , the unique 1l -minimizer. 
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Consider the case in which j ∉ ∆ .  We have shown that ( ) 
,

( )j
cc

p

j
x x

∆∈ ∆
→


, and it only 

remains to show that  ( ) ( )c c
nx x

∆ ∆
→ .  Since ( ) 

,
( )j

cc

p

j
x x

∆∈ ∆
→


 and 0

jpε → , (2.33) implies that 

1
(( ) , , ) ( *)j j

c cj

p p
p l

J x w xε
∆ ∆

→ .    

 By monotonicity property (4.14), 
1

(( ) , , ) ( *)c c
n n

n l
J x w xε

∆ ∆
→ .  From (3.7) ,   

 

1

2 2 1/2 2 2 1/2(( ) , , ) (( ) ) (( ) 2 )

( ) ( ) .

c c c

cc

n n n n n
n j n j j n nj j

n n
j n nlj

J x w x x x

x x N

ε ε ε ε

ε ε

∆ ∈∆ ∈∆

∆∈∆

= Σ + ≤ Σ + +

= Σ + ≤ +
 (3.21) 

This observation implies that  

 
1

(( ) , , ) ( ) (( ) , , )n n n n n
n n nl

J x w N x J x wε ε ε∆ ∆ ∆− ≤ ≤ , (3.22) 

which,  together with the previous deduction that 
1

(( ) , , ) ( *)c c
n n

n l
J x w xε

∆ ∆
→  implies 

that 
1 1

( ) ( *)c c
n

l l
x x

∆ ∆
→ .  Invoke Lemma 4.2 with ' ( ) c

nz x
∆

= and ( *) cz x
∆

= : 

 
1 1 1

1limsup ( ) ( *) (lim ( ) ( *) ) 0
1c c c c

n n

l l lnn
x x x xγ

γ∆ ∆ ∆ ∆→∞→∞

+
− ≤ − =

−
, (3.23) 

which implies that ( ) ( *)c c
nx x

∆ ∆
→ .  
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If j ∈ ∆ , we have shown that ( ) 
,

( )jp

j
x x ∆

∈ ∆
→


, and it only remains to show that 

( ) ( )nx x∆ ∆→ .   Since ( ) 
,

( )jp

j
x x ∆

∈ ∆
→


 and 0

jpε → , (2.33) implies that 

1
(( ) , , ) ( *)j j

j

p p
p j l

J x w xε τ∆ ∈∆ ∆→ .   Moreover, (3.21) becomes 

 

1

2 2 1/2 2 2 1/2(( ) , , ) ( ) (( ) ) ( ) (( ) 2 )

( ) ( ) ( ) ( )

n n n n n
n j j n j j j n nj j

n n
j j n j n jlj

J x w x x x

x x N

ε τ ε τ ε ε

τ ε τ ε τ

∆ ∈∆ ∈∆∈∆ ∈∆

∈∆ ∈∆ ∆ ∈∆∈∆

= Σ + ≤ Σ + +

= Σ + ≤ +
, (3.24) 

and (3.22) becomes  

 
1

2 2 1/2 2 2 1/2( ) (( ) ) ( ) ( ) ( ) (( ) )n n n
j j n n j j j j nlj j

x N x xτ ε ε τ τ τ ε∈∆ ∈∆ ∈∆ ∆ ∈∆∈∆ ∈∆
Σ + − ≤ ≤ Σ + , (3.25) 

which simplifies to  

 
1

1 1( ) (( ) , , ) ( ) ( ) (( ) , , )n n n n n
j n n j nl

J x w N x J x wτ ε ε τ ε− −
∈∆ ∆ ∆ ∈∆ ∆− ≤ ≤ . (3.26) 

 This observation, together with a previous deduction (
1

( , , ) *n n
n l

J x w xε → ), imply that 

*nx x→ . Invoke Lemma 4.2 to show that *nx x→ .  

(3.18) follows from (2.31) of Lemma 4.3 and the observation that '( ) ( )n nz zσ σ≥  for 'n n≤ . 

(ii) Case 0ε > .  Note that 

 
1/22 2 1( )n n

j j j j jw xτ ε τ ε
− − = + ≤  , 
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    1/22 2lim ( ) ( , ) : (0, ), 1,... , ,in
jj j j ji

w x w x w j Nτ ε ε
−

→∞
 = + = = ∈ ∞   =     

in the notation of Lemma 5.2.  The rest of the proof is identical to that of Daubechies et al. 

(2010). 

(iii) Error estimate 

Let #
1 1 2 2: ( , ,..., )N Ny y y yτ τ τ= for any vector y.  Then for any ( )z F y∈ , 

 
1 1

# #( ) ( ) ( )
l l

x f x f z z Nε ε
ε ε ε≤ ≤ ≤ + , (3.27) 

where the first inequality follows from (3.16), the second from (2.17), and the third from a 

calculation identical to the one done in (3.24).  Thus 
1 1

# #( )
l l

x z Nε ε− ≤  and since

'( ) ( )n nz zσ σ≥  for ',n n≤  Lemma 4.2 with 
#1 1

# # #( ) : inf N
j

j l lw
z z wσ

∈Σ
= − implies that  

 
11

# # #1( ) 2 ( ) , .
1 k ll

x z N z k Kε γ ε σ
γ

+  − ≤ +  ≤ −
 (3.28) 

 Moreover, Since r(.) is Lipschitz-continuous (Lemma 4.1),   (3.28) and (3.3) imply that 

 # #
1 1lim lim (( ) ) (( ) )n

n K Kn n
N N r x r x εε ε + +→∞ →∞

= ≤ =
.
 (3.29)                                                                    

Together with (4.4) of Lemma 4.1, (3.29) implies that            

 
1 1

# #1( 1 ) 2 ( ) ( ) .
1 k l k lK k N N z zγε ε σ σ

γ
+  + − ≤ + + −

 (3.30) 
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Collect Nε on the left side and use assumptions to get 

 1 2((( ) 1 ) (( ) )
1 1

N K k N K kγ γε ε
γ γ

+
− + − = − −

− −
.                                   (3.31) 

Moreover, note that 

                           
1 1 1

# # #1 32 ( ) ( ) ( )
1 1k l k l k lz z zγ γσ σ σ

γ γ
+ +  + = − −

  and 4 33
1 1

γ γ
γ γ

+
+ =

− −
. 

The above results substituted into (3.30) yield 

 
1

#3 4 1 ( )
( ) 2 1 k lN z
K k

γ γε σ
γ γ

+ −
≤

− − −
.                                              (3.32) 

Straightforward substitution of (3.32) in (3.28) yields (3.19). 

(iv)  Suppose that 0ε > .  If the solution set contains a k-sparse vector z  (so that 
1

( ) 0k lzσ = ) 

with 2
1

k K γ
γ

< −
−

, then z is equal to the unique k-sparse 1l -minimizer by Lemma 4.3.   Note 

that since (0,1]jτ ∈ , 
1 1

#( ) ( )k l k lz zσ σ≤ , and 0Nε ≤  from (3.32) , which is a contradiction to 

0ε > . Hence the presence of a k-sparse solution implies that 0ε = .                                             

                                                                                                                                                                                                         
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CHAPTER 5:  CONCLUSION 

We have developed a new IRLS algorithm based on the ideas of Daubechies et al. [6] and 

Miosso et al. [9].  The work of Daubechies et al. [6] aided us in proving the convergence of our 

IRLS algorithm, which makes use of prior information on the support of the sparse domain of the 

solution.  This is precisely the type of prior information considered by Miosso et al. [9]. We have 

thus proposed an algorithm that has the advantages of each algorithm employed by these authors, 

namely, it is an algorithm that includes prior information on the support of the sparse domain of 

the solution and it is an algorithm with proven convergence properties.   We have not yet 

supported our work by numerical experiments. This is perhaps the main weakness of our paper, 

and we hope that it will be remedied in the future.   
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