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ABSTRACT

There had been a number of researches that investigated on the security market without transaction

costs. The focus of this research is in the area that when the security market with transaction costs

is fair and in such fair market how one chooses a suitable portfolio to optimize the financial goal.

The research approach adopted in this thesis includes linear algebra and elementary probability.

The thesis provides evidence that we can maximize expected utility function to achieve our goal

(maximize expected return under certain risk tolerance). The main conclusions drawn from this

study are under certain conditions the security market is arbitrage-free, and we can always find an

optimal portfolio maximizing certain expected utility function.

Keywords: portfolio optimization, arbitrage-free, transaction costs, utility function
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CHAPTER 1: INTRODUCTION

Suppose a person has an initial wealth, denoted by V (0), a certain dollar amount, at the current

moment t = 0. At a future time t = 1, the initial wealth will become V (1). We now look at how

the amount V (1) will be.

(i) Leave the initial wealth V (0) at home. By doing this, the amount will stay the same, i.e.,

V (1) = V (0).

(ii) Deposit the initial wealth V (0) in a bank. Suppose the interest rate for this period of time is r.

Then, at the end of this period, we have

V (1) = V (0)(1 + r).

(iii) Buy certain shares of a stock. Since the stock market is uncertain, we cannot predict the exact

price of this stock at t = 1. To illustrate, let us assume there are just three possible outcomes: the

stock price goes up a%, stays the same and drops down b%. Then the amount V (1) will be:

V (1) =


V (0)(1 + a%), if the stock price goes up a%,

V (0), if the stock price stays the same,

V (0)(1− b%), if the stock price drops down b%.

(iv) Deposit a portion, λV (0), into a bank and use the rest (1 − λ)V (0) to buy a stock. Where
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λ ∈ [0, 1]. Then the possible V(1) will be

V (1) =


λV (0)(1 + r) + (1− λ)V (0)(1 + a%), if the stock price goes up a%,

λV (0)(1 + r) + (1− λ)V (0), if the stock price stays the same,

λV (0)(1 + r) + (1− λ)V (0)(1− b%), if the stock price drops down b%.

In real financial market, there are thousands of stocks, and people can buy or short these stocks.

Also, the prices are uncertain in the future. A natural question is if it is possible to choose a

portfolio so that the future wealth V(1) will be greater than that if he initial amount V (0) is just

deposited in the bank? How one can measure and control the risk?

Related Literature

A large literature studies portfolio selection in the absence of transaction costs (for example, Pliska

(1997)). Constantinides (1986) considered a single risky asset with transaction costs. Later, many

treatments have been presented for problems with proportional costs. Optimal portfolio selection

given transaction costs is a complex problem. Even with only two assets, solving for optimal strat-

egy in a continuous time model involves a free boundary problem (for example, Davis and Norman

(1990) and Liu and Loewenstein (2002)). When there are more securities, the multi-asset contin-

uous time model has been solved only in the extreme case of uncorrelated returns and constant

absolute risk aversion (Liu (2004)) or with numerical or heuristic approximations (Leland (2000)

or Donohue and Yip (2003)). Most of them applied mean-variance theory which was originated by

Markowitz (1952), in which the variance is included in the program objective. Some studies state

that maximizing the expected return and at the same time taking care of minimizing the risk can

be approximately achieved by maximizing the expected utility for some proper utility function.

In Yong’s lecture note (2007), the optimal portfolio is determined by using utility function in the
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market with proportional costs. Under certain constraint (transaction costs are large enough), the

existence of optimal solution is proved. In this article, fairness of the market with transaction costs

is studied, which was not discussed in the literature. And we study the optimization problems

with both proportional and fixed costs in a more comfortable condition, and also try to find out the

exact optimal portfolio through maximizing the expected utility function under such comfortable

condition.

A Market Model

Consider two moments: t = 0, 1. At t = 0, one could expect to have m > 1 possible situations at

time t = 1. We call them events, denoted by ω1, ω2, ..., ωm, and define

Ω
.
= {ω1, ω2, ..., ωm},

which is the set of all possible situations at t = 1. At t = 0 we cannot tell which event will happen

at t = 1. A standard approach is to use probability to describe and measure the possibilities of

these events. We introduce a function: P : Ω→ (0, 1), having the following property:

m∑
j=1

P (ωj) = 1.

We call P a probability on Ω. Suppose there is a bank account with the interest rate r, we denote

B(1) = 1 + r,

which represents the bank account price at t = 1, if the bank account price at t = 0 is normalized

to B(0) = 1. Thus, if z0 dollars is deposited at time t = 0, then z0B(1) dollars will be received at
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time t = 1. There are two important features of the amount deposited in the bank: (i) The interest

rate r is known at t = 0, so the amount at t = 1 is known at t = 0. (ii) The interest rate r > 0,

so the amount received at t = 1 will be greater than the initial amount deposited at t = 0. These

two can be referred to as deterministic and riskless. Next, suppose there are n stocks in the market,

whose prices are certain at current time t = 0. We denote

S(0) ≡ (S1(0), S2(0), ..., Sn(0))T ∈ Rn, (1.1)

where Si(0) is the price of the i-th stock at t = 0. Viewing at time t = 0, the price of i-th stock at

t = 1 is a random variable, and it depends on which event will actually happen. Thus the price of

the i-th stock at t = 1 should be:

Si(1) ≡ (Si(1, ω1), Si(1, ω2), ..., Si(1, ωm))T ∈ Rm, (1.2)

where Si(1, ωj) is the price of i-th stock at t = 1 if event ωj happens. We denote:

S(1) ≡ (S1(1), S2(1), ..., Sn(1))

≡ (S(1, ω1), S(1, ω2), ..., S(1, ωm))T

≡



S1(1, ω1) S2(1, ω1) · · · Sn(1, ω1)

S1(1, ω2) S2(1, ω2) · · · Sn(1, ω2)

...
... . . . ...

S1(1, ωm) S2(1, ωm) · · · Sn(1, ωm)


∈ Rm×n, (1.3)

where S(1, ωj) is the prices of these stocks if event ωj happens. Now, we suppose an investor who

enters the market with z0 dollars deposited in the bank and zi shares of the i-th stock at t = 0.

4



Then he has a initial wealth:

V (0) = V0 = z0 +
n∑
i=1

ziSi(0) = z0 + S(0)T z, (1.4)

where z = (z1, z2, ..., zn)T ∈ Rn. We call Z ≡ (z0, z1, z2, ..., zn)T ∈ Rn+1 a portfolio. Suppose

this investor holds such a portfolio between t = 0 and t = 1. Then, viewing at t = 0, the total

wealth at t = 1 will be:

V (1, ω, z)
∆
= z0B(1) +

n∑
i=1

ziSi(1, ω), ω ∈ Ω, (1.5)

which is a random variable. Also, using (1.4), (1.5) can be rewritten as:

V (1, ω, V0, z) = [V0 − S(0)T z]B(1) +
n∑
i=1

ziSi(1, ω). (1.6)

Using (1.1)–(1.3) we may write (1.6) as follows:

V (1, V0, z) =


V (1, ω1, V0, z)

...

V (1, ωm, V0, z)


= [V0 − S(0)T z]B(1)1 + S(1)z

= V0B(1)1 + [S(1)−B(1)1S(0)T ]z, (1.7)

where 1 = (1, 1, ..., 1)T ∈ Rm. In what follows, we call {(Ω, P ), S(0), S(1), r} a market without

transaction costs, denoted by M0.
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Fairness of the Market Without Transaction Costs

Intuitively, a market is not fair if someone could make a risk-free profit with zero initial wealth. In

another word, if some one comes to the market with nothing at hand, by borrowing some money

at t = 0 and investing it, at t = 1, he/she could get some positive amount after paying back the

borrowed amount together with the interest, no matter what event happens, then the market is not

fair. Therefore, a market is fair, if the above described thing does not exist. To rigorously study the

fairness of the market, we now introduce some relevant notations.

Definition 1.1. Let M0 ≡ {(Ω, P ), S(0), S(1), r} be given.

(i) The law of one price holds for the market M0 if any pairs (V0, z), (V0, z) ∈ R × Rn of initial

wealth and portfolio satisfying:

V (1, ω, V0, z) = V (1, ω, V0, z), ∀ω ∈ Ω, (1.8)

must lead to V0 = V0.

(ii) Portfolio z ∈ Rn is said to be dominant over portfolio z ∈ Rn if for some initial wealth V0 ∈ R,

V (1, ω, V0, z) > V (1, ω, V0, z), ∀ω ∈ Ω. (1.9)

When the above z and z exist, we say that the market M0 admits dominant strategies. Otherwise,

we say that the market has no dominant strategies.

(iii) Portfolio z ∈ Rn is called an arbitrage opportunity in M0 if the following holds:


V (1, ω, 0, z) ≥ 0, ∀ω ∈ Ω,

V (1, ωj, 0, z) > 0, for some ωj ∈ Ω.

(1.10)
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When the above z exists, we say that M0 admits arbitrage opportunities. Otherwise, we say that

the market is arbitrage-free, or has no arbitrage.

We also have some criteria helping us to determine whether the market has law of one price,

dominant trading strategy or arbitrage opportunities. (The theorem below is cited from [1]).

Theorem 1.2. Let market M0 be given.

(i) Law of one price holds for M0 if and only if there exists a vector µ ∈ Rm such that:

1Tµ = 1, (1.11)

and

B(1)S(0) = [S(1)]Tµ. (1.12)

(ii) Market M0 has no dominant strategies if and only if there exists a µ ∈ Rm
+ , such that: (1.11)–

(1.12) hold, where

Rm
+

∆
= {x ∈ Rm|x ≡ (x1, x2, ..., xm)T , xi ≥ 0, 1 ≤ i ≤ m}.

.

(iii) Market M0 is arbitrage-free if and only if there exists a µ ∈ Rm
+ , such that: (1.11)–(1.12)

hold, where

Rm
+

∆
= {x ∈ Rm|x ≡ (x1, x2, ..., xm)T , xi > 0, 1 ≤ i ≤ m}.

It is not hard to see that any µ ∈ Rm
+ satisfying (1.11) defines a probability measure. Let us denote

µ(·) by the following:

µ(ωj) = µj (1.13)
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Note that for any µ ∈ Rm
+ satisfying (1.11) the induced probability µ(·) defined by (1.13) is equiv-

alent to P (·), in the sense that µ(ωj) = 0 if and only if P (ωj) = 0.

From the above theorem, we can easily get the following results which gives the relationship among

the law of one price, dominant trading strategies and arbitrage opportunities: (The proposition

below is cited from [1]).

Proposition 1.3. For market M0, the following implications hold:

Market M0 is arbitrage-free ⇒ market M0 has no dominant strategies ⇒ the law of one price

holds for M0.

Here, we should notice that the converse of the above proposition is not true. The following are

some examples show that the converse does not hold:

Example 1.4. Let 
m = 2, n = 1, r = 1,

S1(0) = 10, S1(1, ω1) = 12, S1(1, ω2) = 10.

B(1)S(0) = 20, and [S(1)]T = (12, 10). Then from (1.11) and (1.12), we get:


µ1 + µ2 = 1

12µ1 + 10µ2 = 20

It is clear that µ = (5,−4), and µ ∈ R2 but µ /∈ R2
+. According to Theorem 1.2, we know that in
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this market law of one price holds, but it has dominant strategies. In fact, we note that (by (1.7)):

V (1, ω, V0, z1) = V0B(1) + z1[S1(1, ω)− S1(0)B(1)]

= 2V0 + Z1[S1(1, ω)− 20] =


2V0 − 8z1, ω = ω1

2V0 − 10z1, ω = ω2

Therefore, if we choose portfolio z1 < 0, z1 is always a dominant strategy over portfolio 0. From

the above, we can have a market where law of one price holds, admitting dominant strategies.

Example 1.5. Let 
m = 2, n = 1, r = 1,

S1(0) = 10, S1(1, ω1) = 20, S1(1, ω2) = 10.

Then from (1.11) and (1.12), we get:


µ1 + µ2 = 1

20µ1 + 10µ2 = 20

It is clear that µ = (1, 0), and µ ∈ R2
+ but µ /∈ R2

+. According to theorem 1.2, we know that in

the market has no dominant trading strategies, but has arbitrage opportunities. In fact, we note that

(by (1.7)):

V (1, ω, 0, z1) = z1[S1(1, ω)− S1(0)B(1)]

= z1[S1(1, ω)− 20] =


0, ω = ω1

−10z1, ω = ω2

Hence, any z1 < 0 is an arbitrage opportunity, but there are not dominant trading strategies.
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To be complete, we present the following example which shows that the law of one price might

fail in M0.

Example 1.6. Let 
m = 2, n = 1, r = 1,

S1(0) = 10, S1(1, ω1) = S1(1, ω2) = 12.

Then for initial wealth V0 ∈ R and z1 ∈ R, we have:

V (1, ω, V0, z1) = B(1)[V0 − S1(0)z1] + S1(1, ω)z1

= 2V0 + [12− 20]z1 = 2V0 − 8z1.

Consequently, by choosing

z1 =
2V0 − λ

8

for any λ ∈ R one has

V (1, ω, V0, z1) = λ,

which is independent of V0. This means that in this market, the law of one price fails.
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CHAPTER 2: FAIRNESS OF THE MARKET WITH TRANSACTION

COSTS

In reality, expenses, called transaction costs, incur when people buy or sell securities. Because

the transaction costs are always positive, they diminish returns. If we do not take into account the

transaction costs in real life, a seemingly profitable portfolio would cause serious loss when the

transaction costs are high or we have a very big trading volume. So it is necessary to discuss a

market with transaction costs. Here, we assume that a market just only have brokers commissions

which include proportional transaction cost and fixed transaction cost (or entrance fee).

Market Model with Transaction costs

Let a market M be given. Suppose an investor has an initial position (z0, z) ∈ R × Rn. The

corresponding market value of the position is

V0(z0, z) = z0 + S(0)T z, (2.1)

where z0 is the amount deposited in the bank, and z = (z1, z2, ...zn)T with zi being the share

number of the i-th stock. Viewing at t = 0, this portfolio in the future moment t = 1 will have

market value

V (1, z0, z) = z0B(1)1 + S(1)z (2.2)

If at t = 0, a transaction is made, so that the position becomes (z0, z+y), where y = (y1, y2, ..., yn)T

with yi being the transacted share number of the i-th stock, then under self-financing condition 1,

1A portfolio is self-financing if there is no exogenous infusion or withdrawal of money; the purchase of a new asset
must be financed by the sale of an old one.
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it is necessary that

z0 = z0 − S(0)Ty −
n∑
i=1

(λiSi(0) |yi|+ ci1{yi 6=0}), (2.3)

where λi ∈ [0, 1) is the transaction cost rate for the i-th stock and ci ∈ [0,∞) is the fixed cost for

the i-th stock when we have a transaction on this stock. We can rewrite (2.3):

z0 = z0 − S(0)Ty − ‖y‖λ −
〈
c,1{y}

〉
, (2.4)

where

‖y‖λ =
n∑
i=1

λiSi(0) |yi|, c =


c1

...

cn

 , 1{y} =


1{0}c(y1)

...

1{0}c(y1)

 , {0}c = R\{0}.

Then the market value of this new portfolio at t = 1 becomes:

V (1, z0, z + y) = z0B(1)1 + S(1)(z + y)

= [z0 − S(0)Ty − ‖y‖λ −
〈
c,1{y}

〉
]B(1)1 + S(1)(z + y) (2.5)

≡ V (1, z0, z, y). (2.6)

Componentwise, we have

V (1, ω, z0, z + y) = [z0 − S(0)Ty − ‖y‖λ −
〈
c,1{y}

〉
]B(1) + S(1, ω)(z + y) (2.7)

≡ V (1, ω, z0, z, y), ∀ω ∈ Ω. (2.8)
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Hereafter, we denote

M(λ, c) = {M0, λ, c}

≡ {(Ω, P ), S(0), S(1), r, λ, c} (2.9)

to be the market with transaction costs. Thus, by identifying M0 = {M0, 0, 0}, we have M(0, 0) =

M0.

Fairness of the Market with Transaction Costs

The following proposition is from [1].

Proposition 2.1. In the market M0, the following are equivalent:

(i) Market M0 admits dominant strategies.

(ii) There exists a portfolio z ∈ Rn, such that

V (1, ω, 0, z) ≡ (−S(0)T z)B(1) +
n∑
i=1

ziSi(1, ω) > 0, ∀ω ∈ Ω. (2.10)

The above proposition tells us that if there exists a portfolio z ∈ R, such that

[∆S(ωj)]z ≡ [S(1, ωj)− S(0)TB(1)]z

= V (1, ωj, 0, z) > 0, for 1 ≤ j ≤ m. (2.11)

where ∆S(ωj) = S(1, ωj)− S(0)TB(1), then the market M0 admits a dominant trading strategy.

So if a market has dominant trading strategies, one, starting with zero initial wealth, can earn a

positive profit by choosing this dominant strategy no matter which event will happen in the future.

13



This is risk-less.

Similarly, in the market M(λ, c), if one, starting with zero initial wealth, can always earn a positive

profit in the future without taking any risk, we say the market M(λ.c) admits dominant trading

strategies. Mathematically, we have:

Definition 2.2. A portfolio y ∈ Rn is said to be a dominant trading strategy in M(λ, c), if

V (1, ωj, 0, 0, y) > 0, for all 1 ≤ j ≤ m. (2.12)

When the above y exists, we say that the market M(λ, c) admits dominant trading strategies.

Otherwise, we say there is no dominant trading strategies in this market.

From (2.5), it is not hard to see (2.12) is equivalent to:

[∆S(ωj)]y > [‖y‖λ +
〈
c,1{y}

〉
]B(1) for 1 ≤ j ≤ m. (2.13)

From Definition 1.1, we see that when the market M0 has arbitrage opportunities, one, starting

with zero initial wealth, will not have any risk of losing money, and when some events happen,

he/she will have a positive profit by choosing the arbitrage opportunity as his/her portfolio. Here,

in the market M(λ, c) , we have the modified definition of arbitrage opportunity.

Definition 2.3. A portfolio y ∈ Rn is said to be an arbitrage opportunity in M(λ, c), if


V (1, ω, 0, 0, y) ≥ 0, ∀ω ∈ Ω,

V (1, ωj, 0, 0, y) > 0, for some ωj ∈ Ω.

(2.14)

When the above y exists, we say that the market M(λ, c) admits arbitrage opportunities. Other-

wise, we say the market is arbitrage-free.
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From (2.5), it is not hard to see that (2.14) is equivalent to:


[∆S(ω)]y ≥ [‖y‖λ +

〈
c,1{y}

〉
]B(1) , ∀ω ∈ Ω,

[∆S(ωj)]y > [‖y‖λ +
〈
c,1{y}

〉
]B(1) , for some ωj ∈ Ω.

(2.15)

We have the following result:

Proposition 2.4. Suppose M(λ, c) has no dominant trading strategies (or is arbitrage-free), then

the property remains in M0.

Proof. Suppose a market M(λ, c) admits a dominant trading strategy y ∈ Rn. Then (2.13) holds,

which is the same as:

[∆S(ωj)]y > [‖y‖λ +
〈
c,1{y}

〉
]B(1) > 0, for 1 ≤ j ≤ m. (2.16)

Clearly y is also a dominant trading strategy in M0. The proof for the case of arbitrage-free is

similar.

Various Conditions for the Market being Arbitrage-free

Proposition 2.5. In the market M(λ, c), suppose

|E[∆Si]| ≤ λiSi(0)B(1), ∀1 ≤ i ≤ n. (2.17)

Then M(λ, c, ) is arbitrage-free.

Proof. Suppose (2.17) holds. If y ∈ Rn is an arbitrage opportunity in M(λ, c), then for each

15



1 ≤ j ≤ m,

V (1, ωj, 0, 0, y) = ∆S(ωj)y −
n∑
i=1

(λiSi(0)|yi|+ ci1{yi 6=0})B(1)

=
n∑
i=1

(∆Si(ωj)yi − λiSi(0)B(1)|yi| − ci1{yi 6=0}B(1)) ≥ 0,

and the strict inequality holds for some j0. Thus,

0 < E[V (1, 0, 0, y)]

=
n∑
i=1

{E[∆Si]yi − λiSi(0)B(1)|yi| − ci1{yi 6=0}B(1)}

≤
n∑
i=1

{|E[∆Si]||yi| − λiSi(0)B(1)|yi| − ci1{yi 6=0}B(1)}

=
n∑
i=1

{[|E[∆Si]| − λiSi(0)B(1)]|yi| − ci1{yi 6=0}B(1)} < 0,

which is a contradiction. Thus, M(λ, c) is arbitrage-free.

Proposition 2.6. Let c ∈ Rn
+, suppose there exists a ω ∈ Ω such that

|∆Si(ω)| ≤ λiSi(0)B(1), for each i = 1, 2, ..., n. (2.18)

Then the market M(λ, c) is arbitrage-free.
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Proof. Suppose (2.18) holds for some ω ∈ Ω. Then for any y ∈ Rn we have:

V (1, ω, 0, 0, y) =
n∑
i=1

{∆Si(ω)yi − λiSi(0)B(1)|yi| − ci1{yi 6=0}B(1)}

≤
n∑
i=1

{|∆Si(ω)||yi| − λiSi(0)B(1)|yi| − ci1{yi 6=0}B(1)}

=
n∑
i=1

{[|∆Si(ω)| − λiSi(0)B(1)]|yi| − ci1{yi 6=0}B(1)} < 0.

Thus there does not exist a y ∈ Rn, that satisfies (2.16). So the market M(λ, c) is arbitrage-free.

Proposition 2.7. In the market M(λ, c), if for every (ε1, ε2, ..., εn) ∈ {−1, 1}n, there exists an

ω(ε1, ε2, ..., εn) ∈ Ω, such that:

max{ε1∆S1(ω)− λ1S1(0)B(1), ..., εn∆Sn(ω)− λnSn(0)B(1)} < 0 (2.19)

Then the market M(λ, c) is arbitrage-free.

Proof. For any y ∈ Rn, by (2.19), there exists an ω ∈ Ω, such that

V (1, ω, 0, 0, y) =
n∑
i=1

{∆Si(ω)yi − λiSi(0)B(1)|yi| − ci1{yi 6=0}B(1)}

=
∑
yi>0

{∆Si(ω)yi − λiSi(0)B(1)yi − ci1{yi 6=0}B(1)}

+
∑
yi<0

{∆Si(ω)yi + λiSi(0)B(1)yi − ci1{yi 6=0}B(1)}

<
∑
yi 6=0

[|∆Si(ω)| − λiSi(0)B(1)]|yi| ≤ 0.

Thus the market M(λ, c) is arbitrage-free.
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Proposition 2.8. If the market M(λ, c) is arbitrage-free, then for each i = 1, 2, ..., n, there at least

exists a j = 1, 2, ...,m depending on i, such that:

∆Si(ωj) < λiSi(0)B(1) + ciB(1). (2.20)

Proof. Suppose there exists a stock i, such that:

∆Si(ωj) ≥ λiSi(0)B(1) + ciB(1), for 1 ≤ j ≤ m. (2.21)

Then taking y = (0, 0, ..., yi, 0, ..., 0) ∈ Rn, where yi > 0. Because we have:

V (1, ωj, 0, 0, y) =
n∑
i=1

{∆Si(ωj)yi − λiSi(0)B(1)yi − ci1{yi 6=0}B(1)}

= ∆Si(ωj)yi − λiSi(0)B(1)yi − ciB(1)

> ∆Si(ωj)yi − λiSi(0)B(1)yi − ciyiB(1) > 0.

Thus such y is an arbitrage opportunity, a contradiction.

Theorem 2.9. Let λi > 0, ci > 0 for each i = 1, 2, ..., n. The market M(λ, c) is arbitrage-free if

and only if

sup
‖η‖=1

[ min
1≤j≤m

∆S(ωj)η − λ̂Tη+B(1)] ≤ 0, (2.22)

where

λ̂ = (λ1S1(0), λ2S2(0), ..., λnSn(0))T , (2.23)

and

η+ = (|η1|, |η2|, ..., |ηn|)T , ∀η = (η1, η2, ..., ηn) ∈ Rn. (2.24)

Proof. First of all, the market is arbitrage-free if and only if for any y ∈ Rn \ {0}, there exists an
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j ∈ {1, 2, ...,m}, depending on y such that

[∆S(ωj)]y <
n∑
i=1

(λiSi(0) |yi|+ ci1{y 6=0})B(1). (2.25)

Now for any y ∈ Rn \ {0}, y
‖y‖ ∈ ∂B1(0) ≡ {η ∈ Rn| ‖η‖ = 1}. Thus by (2.20), we have some

1 ≤ j ≤ m, such that:

[∆S(ωj)]y = ‖y‖ [∆S(ωj)]
y

‖y‖
≤ ‖y‖λT (

y

‖y‖
)+B(1)

= ‖y‖λB(1)

< (‖y‖λ +
〈
c,1{y}

〉
)B(1)

≡
n∑
i=1

(λiSi(0) |yi|+ ci1{y 6=0})B(1).

Thus, the market is arbitrage-free.

Conversely, if the market is arbitrage-free, then for any η ∈ Rn with ‖η‖ = 1, and α > 0, we have

jα ∈ {1, 2, ....,m}, such that

α[∆S(ωj)]η < αλ̂Tη+B(1) + ci1{y 6=0}B(1). (2.26)

Thus, dividing by α and sending α → ∞, we may assume that jα = j (along a sequence, if

necessary) and

[∆S(ωjα)]η ≤ λ̂Tη+B(1). (2.27)

Hence,

min
1≤j≤m

[∆S(ωj)] ≤ λ̂Tη+B(1), ∀η ∈ ∂B1(0). (2.28)

Then, (2.22) follows.
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Let us look at an interesting special case of the above theorem.

Corollary 2.10. When n = 1 and m > 1, (2.22) is equivalent to the following:

min{σ1η, σ2η, ..., σmη} ≤ λS(0)B(1), η = ±1, (2.29)

where

σj = ∆S(ωj), 1 ≤ j ≤ m. (2.30)

The above is equivalent to

min{σ1, σ2, ..., σm} ≤ λS(0)B(1), max{σ1, σ2, ..., σm} ≥ −λS(0)B(1). (2.31)
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CHAPTER 3: OPTIMIZATION PROBLEMS IN SINGLE PERIOD

MARKETS

In a market M(λ, c), the return is defined to be the difference between the final wealth and the

initial wealth. Since, viewing at current time at t = 0, the final wealth in the future at t = 1 is

uncertain, we need use expected return to measure the uncertain profit. People regard such kind of

uncertainty as a risk. Risk is an uncertainty of gain-loss in some future time. Variance of the return

rate is one of the common risk measurements.

When a rational person enters a security market, he/she always hopes to maximize the expected

return and minimize the risk. We call this behavior risk aversion. Risk aversion is the reluctance

of a person to accept a bargain with an uncertain payoff rather than another bargain with a more

certain, but possibly lower, expected payoff. For example, a person who is very risk-averse would

like to deposit his/her money into the bank with a risk-less but low interest rate, rather than buy

some stocks with high expected return, but embedded a chance of losing value. Our goal of choos-

ing portfolio is to maximize the expected return with a risk tolerance level, or minimize the risk

for a given expected return level. These two problems are dual each other in some sense.

Utility Function

We now introduce a function u(·) as follows

(i) strictly increasing:

u(x) > u(y), ∀x, y ∈ D(u), x > y, (3.1)

where, u : D(u) ⊆ R −→ R,D(u) is an interval of form (a,∞), for some a ∈ R, called the
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domain of u.

(ii) marginal decrease:

u(x+ ∆)− u(x) ≤ u(y + ∆)− u(y), ∀x, y ∈ D(u), y < x,∆ > 0. (3.2)

We can also express such properties in the following way when u ∈ C2

u′(x) ≥ 0, u′′(x) ≤ 0, ∀x ∈ [D(u)]o ≡ the interior of D(u). (3.3)

We call such a function a utility function, which can be used to measure people’s satisfaction.

For example, u(x) = log x and u(x) =
√
x are utility functions. Besides these properties, utility

function also has some convenient properties for explaining people’s risk aversion. Since the shape

of utility function is concave, the difference between u(x) and u(x−y) is greater than the difference

between u(x + y) and u(x), for y > 0. Thus, the greater the y, the greater the risk or uncertainty,

and the more satisfaction is reduced by the difference between u(x) and u(x− y) than satisfaction

added by the difference between u(x + y) and u(x). For example, if a people’s utility function

is u(x) = log(x), and he has half chance to earn 100 + x dollars and another half chance to earn

100− x dollars, where x is positive and the expected earn 100 is fixed. Then we want to maximize

the expected utility function, e.g.

max
x∈(0,100)

{1

2
log(100− x) +

1

2
log(100 + x)}.

It is not hard to check that when x = 0 the expected utility function is maximized. And x = 0

means the risk is minimized. In more general case, If the expected return is fixed, say W , and

totally we have m events, say ω1, ω2, ..., ωm. The probability for event ωj happens is Pj and the
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earn when event ωj happens is W + xj . Since the expected return is W , we have:

P1(W + x1) + P2(W + x2) + ...+ Pm(W + xm) = W

P1x1 + P2x2 + ...+ Pmxm = 0 (3.4)

Our goal is to maximize the expected utility function E[u(x)] = E[log(x)], e.g.


max P1 log(W + x1) + P2 log(W + x2) + ...+ Pm log(W + xm)

subject to P1x1 + P2x2 + ...+ Pmxm = 0

(3.5)

Using Lagrange method:

Let F = P1 log(W + x1) + P2 log(W + x2) + ...+ Pm log(W + xm)

+λ(P1x1 + P2x2 + ...+ Pmxm)

(3.6)

Solve: 
Fx1 = P1

W+x1
+ λP1 = 0

...

Fxm = Pm
W+xm

+ λPm = 0

Fλ = P1x1 + P2x2 + ...+ Pmxm = 0

(3.7)

Then we have: 
x1 = − 1

λ
−W

...

xm = − 1
λ
−W

P1x1 + P2x2 + ...+ Pmxm = 0

(3.8)
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Plug x1, x2, .., xm into the last equation, we get:

−P1

λ
− P2

λ
− ...− Pm

λ
= W

−1

λ
= W

So x1 = x2 = ... = xm = 0, and (0, 0, ..0) is the only critical point. It is not hard to check at this

point, the expected utility function has maximum value. When x1, x2, ...xm are all zero, we know

the uncertainty is minimized (Variance is zero). It is similar to check u(x) =
√
x.

Thus, maximizing the expected return for certain risk, or minimizing the risk for certain expected

return can be achieved by maximizing the expected utility function log x or
√
x.

Optimization Problems with Transaction Costs for One Stock

Let us now consider the case with transaction costs, we use the utility function below:


u(x) =

√
x, x ≥ 0,

u(x) = −∞, x < 0.

(3.9)

This utility function can describe a risk-averse people who does not want to take any chance to

make him/her in debt. If this happens, his/her utility will become −∞.

In the case of one stock and m events, we denote the expected utility function

f(y) = E[u(V (1, z0, z, y))]

= P1

√
(z0 − S(0)y − λS(0)|y| − c1y 6=0)B(1) + S(1, ω1)(z + y)

+P2

√
(z0 − S(0)y − λS(0)|y| − c1y 6=0)B(1) + S(1, ω2)(z + y) + ...

+Pm

√
(z0 − S(0)y − λS(0)|y| − c1y 6=0)B(1) + S(1, ωm)(z + y),
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where z0 is the initial amount deposited in the bank, z is the initial share number of this stock, y
is the number of shares transacted at t = 0, S(0) is the current price of this stock at t = 0 and
S(1, ωj) is the stock price at t = 1 when j-th event happens. We can rewrite f(y) in the form of
below:

f(y) = E[u(V (1, z0, z, y))]

= P1

√
(∆S(ω1)y − λS(0)B(1)|y|+ z0B(1) + S(1, ω1)z − c1{y 6=0}B(1)

+P2

√
(∆S(ω2)y − λS(0)B(1)|y|+ z0B(1) + S(1, ω2)z − c1{y 6=0}B(1) + ...

+Pm

√
(∆S(ωm)y − λS(0)B(1)|y|+ z0B(1) + S(1, ωm)z − c1{y 6=0}B(1),

where ∆S(ωj) = S(1, ωj) − S(0)B(1). In reality, we can safely assume z0 > c, because if a

person’s tolerance is no debt, then he/she must have a certain amount of initial wealth, at least

enough to pay the transaction costs. If we assume that before transaction the investor did not short

any stocks (z > 0), then under condition z0 >
n∑
i=1

ci, one has

Kj ≡ z0B(1) + S(1, ωj)z − c1{y 6=0}B(1) > 0, ∀1 ≤ j ≤ m. (3.10)

So f(y) becomes

f(y) = E[u(V (1, z0, z, y))]

= P1

√
∆S(ω1)y − λS(0)B(1)|y|+K1

+P2

√
∆S(ω2)y − λS(0)B(1)|y|+K2 + ...

+Pm
√

∆S(ωm)y − λS(0)B(1)|y|+Km (3.11)

If there exists an event j ∈ {1, 2, ...m}, such that

∆S(ωj)y − λS(0)B(1)|y|+Kj < 0. (3.12)

The investor’s utility will become −∞, and he/she does not hope that happens. So from (3.12),
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when y > 0 we should have:

(∆S(ωj)− λS(0)B(1))y ≥ −Kj, ∀1 ≤ j ≤ m. (3.13)

When y < 0 we should have:

(∆S(ωj) + λS(0)B(1))y ≥ −Kj, ∀1 ≤ j ≤ m. (3.14)

Proposition 3.1. In market M(λ, c), if there exist j0, j0 ∈ {1, 2, ...,m}, such that:

∆S(ωj0)− λS(0)B(1) < 0, (3.15)

∆S(ωj0) + λS(0)B(1) > 0. (3.16)

Then, any feasible y is bounded.

Proof. Let j0, j0 ∈ {1, 2, ...,m} such that (3.15)–(3.16) hold, we must have:

y ≤ −Kj0

∆S(ωj0)− λS(0)B(1)
(3.17)

and

y ≥
−Kj0

∆S(ωj0) + λS(0)B(1)
(3.18)

Define

0 < M = min
1≤j≤m

{ −Kj

∆S(ωj)− λS(0)B(1)
|∆S(ωj)− λS(0)B(1) < 0} (3.19)

and

0 > m = max
1≤j≤m

{ −Kj

∆S(ωj) + λS(0)B(1)
|∆S(ωj) + λS(0)B(1) > 0} (3.20)

So, y is bounded by M and m.
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Theorem 3.2. In market M(λ, c), if there exist j0, j0 ∈ {1, 2, ...,m}, such that:


∆S(ωj0)− λS(0)B(1) < 0,

∆S(ωj0) + λS(0)B(1) > 0.

(3.21)

Then the market admits an optimal portfolio.

Proof. From Proposition 2.7, we know the market M(λ, c) is arbitrage-free. From (3.11), when

y > 0,

f ′(y) =
P1(∆S(ω1)− λS(0)B(1))

2
√

∆S(ω1)y − λS(0)B(1)y +K1

+
P2(∆S(ω2)− λS(0)B(1))

2
√

∆S(ω2)y − λS(0)B(1)y +K2

+ ...

+
Pm(∆S(ωm)− λS(0)B(1))

2
√

∆S(ωm)y − λS(0)B(1)y +Km

(3.22)

And it is not hard to see f ′′(y) < 0, since

(Pj

√
∆S(ωj)y − λS(0)B(1)y +Kj)

′′
< 0, ∀1 ≤ j ≤ m. (3.23)

If lim
y→0+

f ′(y) < 0, then

max
y≥0

f(y) = f(0)
∆
=

m∑
j=1

Pj(z0B(1) + S(1, ωj)z), (3.24)

since f(0) > lim
y→0+

f(y).
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If lim
y→0+

f ′(y) > 0, from Proposition 3.1, we know y is bounded above by M . Without loss of

generality, we can assume:

M =
−Kj0

∆S(ωj0)− λS(0)B(1)
(3.25)

As y →M ,
Pj0(∆S(ωj0)− λS(0)B(1))

2
√

∆S(ωj0)y − λS(0)B(1)y +Kj0

→ −∞. (3.26)

Because, lim
y→0+

f ′(y) <∞ and (3.25) holds, we must have :

lim
y→M

f ′(y)→ −∞. (3.27)

And f ′(y) is continuous on the interval (0,M), we must have and only have a y ∈ (0,M) such

that

f ′(y) = 0. (3.28)

So

max
y≥0

f(y) = max{f(0), f(y)}. (3.29)

The proof when y < 0 is almost the same.

So, max
m≤y≤M

f(y) exists, and it is not on its bound M or m.

From the theorem above, we see in market M(λ, c), the optimal portfolio exists, and we can find

out the optimal portfolio, it is either at y, where f ′(y) = 0, or at y = 0. We now present some

examples:
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Example 3.3. Let


m = 3, n = 1, r = 0, λ = 0.1, c = 1, z0 = 10, z = 1,

S(0) = 10, S(1, ω1) = 10, S(1, ω2) = 12, S(1, ω3) = 8,

P1 = P2 = 2
5
, P3 = 1

5
.

(3.30)

Then by proposition 2.7 the market is arbitrage-free. Now, we use utility function u(·) as follows:


u(x) =

√
x, x ≥ 0,

u(x) = −∞, x < 0.

(3.31)

Hence, we need to maximize the following function:

f(y) =
2

5

√
−|y|+ 20− 1{y 6=0} +

2

5

√
2y − |y|+ 22− 1{y 6=0} +

1

5

√
−2y − |y|+ 18− 1{y 6=0}

(3.32)

Note that:

f(y) =



2
5

√
−y + 19 + 2

5

√
y + 21 + 1

5

√
−3y + 17, y > 0,

2
5

√
20 + 2

5

√
22 + 1

5

√
18 ≈ 4.51, y = 0,

2
5

√
y + 19 + 2

5

√
3y + 21 + 1

5

√
−y + 17, y < 0.

(3.33)

When y > 0,

f ′(y) =
1

10
(− 2√

19− y
+

2√
21 + y

− 3√
17− 3y

) (3.34)

as y → 0+, we have

lim
y→0+

f ′(y) =
1

10
(− 2√

19
+

2√
21
− 3√

17
) ≈ −0.075 < 0. (3.35)
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Thus,

max
y≥0

f(y) = f(0) ≈ 4.51. (3.36)

When y < 0,

f ′(y) =
1

10
(

2√
y + 19

+
6√

3y + 21
− 1√

17− y
) (3.37)

as y → 0−, we have:

lim
y→0−

f ′(y) =
1

10
(

2√
19

+
6√
21
− 1√

17
) ≈ 0.15 > 0. (3.38)

Thus,

max
y≤0

f(y) = f(0) ≈ 4.51. (3.39)

Hence,

max
y∈R

f(y) = f(0) ≈ 4.51. (3.40)

Example 3.4. Let


m = 3, n = 1, r = 0, λ = 0.1, c = 1, z0 = 10, z = 1,

S(0) = 10, S(1, ω1) = 10, S(1, ω2) = 14, S(1, ω3) = 8,

P1 = P2 = 2
5
, P3 = 1

5
.

(3.41)

We still use utility function as (3.31). Hence we need to maximize the following function:

f(y) =
2

5

√
−|y|+ 20− 1{y 6=0} +

2

5

√
4y − |y|+ 24− 1{y 6=0} +

1

5

√
−2y − |y|+ 18− 1{y 6=0}

(3.42)
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Note that:

f(y) =



2
5

√
−y + 19 + 2

5

√
3y + 23 + 1

5

√
−3y + 17, y > 0,

2
5

√
20 + 2

5

√
24 + 1

5

√
18 ≈ 4.60, y = 0,

2
5

√
y + 19 + 2

5

√
5y + 23 + 1

5

√
−y + 17, y < 0.

(3.43)

When y > 0,

f ′(y) =
1

10
(− 2√

19− y
+

6√
3y + 23

− 3√
17− 3y

) (3.44)

as y → 0+, we have

lim
y→0+

f ′(y) =
1

10
(− 2√

19
+

6√
23
− 3√

17
) ≈ 0.0065 > 0. (3.45)

Solve for y, when f ′(y) = 0,

0 = f ′(y) =
1

10
(− 2√

19− y
+

6√
3y + 23

− 3√
17− 3y

). (3.46)

We get y = 0.41, and f(0.41) = 4.50. Thus,

max
y≥0

f(y) = max{f(0), f(0.41)} = f(0) = 4.60. (3.47)

When y < 0,

f ′(y) =
1

10
(

2√
y + 19

+
10√

5y + 23
− 1√

17− y
) (3.48)

as y → 0−, we have:

lim
y→0−

f ′(y) =
1

10
(

2√
19

+
10√
23
− 1√

17
) ≈ 0.23 > 0. (3.49)
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Thus,

max
y≤0

f(y) = f(0) ≈ 4.60. (3.50)

Hence,

max
y∈R

f(y) = f(0) ≈ 4.60. (3.51)

Example 3.5. Let


m = 3, n = 1, r = 0, λ = 0.1, c = 1, z0 = 10, z = 1,

S(0) = 10, S(1, ω1) = 10, S(1, ω2) = 16, S(1, ω3) = 8,

P1 = P2 = 2
5
, P3 = 1

5
.

(3.52)

We still use utility function as (3.31). Hence we need to maximize the following function:

f(y) =
2

5

√
−|y|+ 20− 1{y 6=0} +

2

5

√
6y − |y|+ 26− 1{y 6=0} +

1

5

√
−2y − |y|+ 18− 1{y 6=0}

(3.53)

Note that:

f(y) =



2
5

√
−y + 19 + 2

5

√
5y + 25 + 1

5

√
−3y + 17, y > 0,

2
5

√
20 + 2

5

√
26 + 1

5

√
18 ≈ 4.677, y = 0,

2
5

√
y + 19 + 2

5

√
7y + 25 + 1

5

√
−y + 17, y < 0.

(3.54)

When y > 0,

f ′(y) =
1

10
(− 2√

19− y
+

10√
5y + 25

− 3√
17− 3y

) (3.55)

as y → 0+, we have

lim
y→0+

f ′(y) =
1

10
(− 2√

19
+

10√
25
− 3√

17
) ≈ 0.081 > 0. (3.56)
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Solve for y, when f ′(y) = 0,

0 = f ′(y) =
1

10
(− 2√

19− y
+

10√
5y + 25

− 3√
17− 3y

). (3.57)

We get y = 3.06, and f(3.06) = 4.70. Thus,

max
y≥0

f(y) = max{f(0), f(3.06)} = f(3.06) = 4.70. (3.58)

When y < 0,

f ′(y) =
1

10
(

2√
y + 19

+
14√

7y + 25
− 1√

17− y
) (3.59)

as y → 0−, we have:

lim
y→0−

f ′(y) =
1

10
(

2√
19

+
14√
25
− 1√

17
) ≈ 0.46 > 0. (3.60)

Thus,

max
y≤0

f(y) = f(0) ≈ 4.677. (3.61)

Hence,

max
y∈R

f(y) = f(3.06) = 4.70. (3.62)

From Theorem 3.2 we can see that when λ and c equal to 0 (the market does not have transaction

costs), we have the proposition below:

Proposition 3.6. In market M0, if there exist j0, j0 ∈ {1, 2, ...,m}, such that:


∆S(ωj0) < 0,

∆S(ωj0) > 0.

(3.63)
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Then the market admits an optimal portfolio.

Optimization Problems with n Stocks

In the case of n stocks and m events, we still use the utility function u(·) stated in (3.9). So from

(2.5) we denote the expected utility function

f(y) = E[V (1, z0, z, y)]

=
m∑
j=1

Pj

√
[z0 − S(0)Ty − ‖y‖λ −

〈
c,1{y}

〉
]B(1) + S(1, ωj)(z + y). (3.64)

f(y) can also be written as:

f(y) =
m∑
j=1

Pj

√√√√ n∑
i=1

∆Si(1, ωj)yi −
n∑
i=1

λiSi(0)B(1)|yi|+Kj, (3.65)

where

Kj = z0B(1) + S(1, ωj)z −
〈
c,1{y}

〉
B(1). (3.66)

As we discussed in the case of one stock, an investor who enters the security market, must have a

certain amount of money that is enough to pay the fixed costs. And suppose the investor did not

short stocks before transaction. So we have Kj > 0.

Theorem 3.7. In market M(λ, c), if the condition in Proposition 2.7 is satisfied, then the market

admits optimal solution.

Proof. We just prove the case when n = 2, the proof for n > 2 is almost the same.
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Our goal is to maximize

f(y1, y2)
∆
=

m∑
j=1

Pj

√
α1jy1 + α2jy2 − β1|y1| − β2|y2|+Kj (3.67)

where αij = ∆Si(1, ωj) , and βi = λiSi(0)B(1).

When y1 > 0, y2 > 0, we have

f(y1, y2) =
m∑
j=1

Pj

√
(α1j − β1)y1 + (α2j − β2)y2 +Kj (3.68)

and since (2.19) holds, there exists a ωj′ ∈ Ω such that:

α1j′ − β1 < 0 , α2j′ − β2 < 0.

Here, for convenience, denote θij = αij − βi, and we assume y2 = γy1, where γ > 0. Then, (3)

becomes:

f(y1) =
m∑
j=1

Pj

√
(θ1j + θ2jγ)y1 +Kj (3.69)

Then we have:

f ′(y1) =
m∑
j=1

Pj(θ1j + θ2jγ)

2
√

(θ1j + θ2jγ)y1 +Kj

(3.70)

It is not hard to see f ′′(y1) < 0, since

(Pj

√
(θ1j + θ2jγ)y1 +Kj)

′′ < 0, ∀1 ≤ j ≤ m. (3.71)

There exists a ωj′ , such that θ1j′ < 0 and θ2j′ < 0. As y → −Kj′
θ1j′+θ2j′γ

, f ′(y1)→ −∞.

This tells us that the maximum value, when y1, y2 > 0, is not on the bound θ1j′y1+θ2j′y2+Kj′ = 0.
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If there exists y10 , y20 > 0, such that:


∂f(y1,y2)

∂y1
= 0

∂f(y1,y2)
∂y2

= 0

(3.72)

Then y = (y10 , y20) is the extreme point when y10 , y20 > 0.

When y1 > 0, y2 = 0, we have

f(y1, 0) =
m∑
j=1

Pj

√
θ1jy1 +Kj + c2B(1). (3.73)

If there exists y11 > 0, y2 = 0, such that:

f ′(y11 , 0) = 0. (3.74)

Then y = (y11 , 0) is the unique extreme point when y11 > 0, y2 = 0.

When y1 = 0, y2 > 0, we have

f(0, y2) =
m∑
j=1

Pj

√
θ2jy2 +Kj + c1B(1). (3.75)

If there exists y1 = 0, y21 > 0, such that:

f ′(0, y21) = 0. (3.76)

Then y = (0, y21) is the unique extreme point when y1 = 0, y21 > 0. When y1 = y2 = 0, we have:

f(0, 0) =
m∑
j=1

Pj

√
Kj + c1B(1) + c2B(1). (3.77)
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Then

max
y1≥0,y2≥0

f(y1, y2) = max{f(0, 0), f(y11 , 0), f(0, y21), f(y10 , y20)}. (3.78)

Similarly, we can find the maximum value when (y1 ≤ 0, y2 ≥ 0), (y1 ≤ 0, y2 ≤ 0) and (y1 ≥

0, y2 ≤ 0).

From Theorem 3.7 we can see that when λ and c equal to 0 (the market does not have transaction

costs), we have the proposition below

Proposition 3.8. In the market M0, if for every (ε1, ε2, ..., εn) ∈ {−1, 1}n, there exists an ω(ε1, ε2, ..., εn) ∈

Ω, such that:

max{ε1∆S1(ω), ε2∆S2(ω), ..., εn∆Sn(ω)} < 0. (3.79)

Then the market admits an optimal portfolio.
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