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ABSTRACT

We attempted a mathematical model for expected prognosis of lung cancer patients based on

a multivariate analysis of the values of ER-interacting proteins (ERbeta) and a membrane

bound, glycosylated phosphoprotein MUC1), and patients clinical data recorded at the time

of initial surgery. We demonstrate that, even with the limited sample size available to use,

combination of clinical and biochemical data (in particular, associated with ERbeta and

MUC1) allows to predict survival of lung cancer patients with about 80% accuracy while

prediction on the basis of clinical data only gives about 70% accuracy. The present work can

be viewed as a pilot study on the subject: since results confirm that ER-interacting proteins

indeed influence lung cancer patients’ survival, more data is currently being collected.
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CHAPTER ONE: INTRODUCTION

Lung cancer is the most common cause of mortality from malignancy throught the world [6].

Despite advances in surgical and chemotherapy treatments, the survival time of lung cancer

patients in USA has not significantly improved in the past 25 years, remaining shorter than

the corresponding survival times for colon cancer, breast cancer and prostate cancer.

The objective of current work is to predict survival of the lung cancer patients, based on

variety of epidemiological and biochemical data. The biochemical data referred to expression

of two biochemical markers: Estrogen Receptor protein (ER) and MUC1 (membrane-bound

protein of the mucin family). Those two biomarkers have a long history of being associated

with cancer. In particular, ER is believed to be involved in some aspects of carciogenesis

[5] by either being activated by its ligand estrogen or by other pathways such as ligant-

independent receptor activation via growth factor receptor. As for MUC1, several studies

have suggested that 2 by a variety of mechanisms [7, 3, 10]. It may account for greater

metastatic ability and also prevents formation of conjugates with lymphokine-activated killer

cells and cytotoxic T-lymphocytes.

The motivation of our study of ER and MUC1 comes from the disparity between lung

cancer survival rates of males and females. The lung cancer death rate in women has doubled

over the past 25 years, while the male lung cancer death rate has continued to decline.

Although several lines of evidence suggest that women may be more susceptible to develop

tobacco-induced lung cancer than men, we lack definitive results related to gender disparity

in lung cancer survival.

We want to test hypothesis that estrogen through interaction with estrogen receptors

(ERs) may mediateactivity of ER-interacting proteins and affect their function in corre-

sponding cell signaling pathways. Potentially, it may modulate the DNA damage/repair

signaling network and lead to chromosomal instability and female lung cancer progression,
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that might be the reason for gender differences in lung cancer survival. There exists [11]

significant increases in expression of ERbeta and MUC1 in a subgroups of malignant tu-

mors compared to normal adjacent lung. Mathematical modeling and correlation analysis of

clinical data on differential lung cancer survival (after adjustment for patients gender, age,

race, histology type, tumor stage at diagnosis, follow-up for recurrence and smoking history)

with criteria of biomarkers cellular expression is presentewd. These data may open a new

way to look on mechanisms of chromosomal instability under estrogen control in female lung

cancer progression, and introduce an attractive, novel therapeutic targets. In particular, this

approach may help to indicate novel targets for personalized chemotherapy following surgery

to prevent lung cancer progression.

The objective of the study is to develop a mathematical model for expected prognosis of

lung cancer patients based on a multivariate analysis of the values of ER-interacting proteins

(ERbeta and MUC1), and patients clinical data recorded at the time of initial surgery. IN

particular, the goal of this model is to predict survival of the lung cancer patients withing a

4 year period starting from the date of diagnosis. For this purpose we divide all the patients

into two classes: long survival (more than 4 years) or short survival (less than 4 years) and

formulate the problem as a classification problem where a patients needs to be assigned to

one of these two classes on the basis of the clinical and biochemical record.
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CHAPTER TWO: BACKGROUND

2.1 Specimen preparation and scanning

After approval by the Institutional Review Board, archived blocks of lung tumor resected

from 33 individuals surgically treated for lung cancer, were provided by the Tissue Core of

the Moffitt Cancer Center. We selected a set of lung cancer specimens from individuals with

no prior chemotherapy. We obtained snap-frozen samples of the tumors; samples of formalin

fixed tumors were paraffin embedded, and sections cut at 3 m from 33 lung cancer cases. We

obtained correlative clinical information including gender, age, smoking history, tumor stage,

grade and histologic type. Private identifiable patient information has been removed from

these records in accordance with IRB and HIPAA regulations. Slides of paraffin sections

stained with H&E, that correspond with primary tumor were reviewed prior to inclusion

according to established morphological criteria [], and to assure presence of adjacent, un-

involved lung and pre-malignant lung lesions (peripheral AAH), as previously described [1, 1].

In this experiment, we used the following methodologies:

a) Clinical tissue specimens and patient information: Moffitt Tumor Tissue Bank pro-

vided surgically removed tumors from which we chose specimens of lung cancer patients

without prior chemotherapy. We acquired samples of snap-frozen and formalin-fixed tumors

in order to verify the pathologic diagnoses;

b) Immunohistochemistry (IHC)- we optimized this procedure on formalin fixed paraffin-

embedded LC tissue sections (thickness:4 microns), the subsequent tissue sections were used

for IHC for MUC1 and ERs followed by quantitative image analysis of biomarker expression.

Estrogen receptor immunohistologic staining: consecutive sections from the same tissue

blocks described above were used for staining with antibodies to ER-alpha and ER-. We op-
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timized procedure for immunostaining of ER- with mouse monoclonal antibody to Oestrogen

R-beta 1, MCA1974 (Serotec, UK). Deparaffinized sections underwent antigen retrieval in

citrate buffer under microwaves (700 W), blocking with avidin/biotin and then incubation

with primary antibody at 1:400 dilution, applied overnight at 4C in a humid chamber. IHC

was completed on the DAKO autostainer

PX Mouse detection and DAB chromogen. ER- immunohistologic staining on tissue

sections was performed after antigen retrieval described above, and with application of the

standard Ventana test (anti-ER-, clone 6F11). The positive control for ER-alpha and ER-

were breast cancer and uterus tissues; in the negative control primary antibodies were re-

placed with PBS, following secondary antibody detection technique.

Histology slides were scanned using the Aperio (Vista, CA) ScanScope XT with a 200x/0.8NA

objective lens at a rate of 2 minutes per slide via Basler tri-linear-array. Image analysis was

performed using an Aperio Positive Pixel Count v9.1 algorithm with the following customized

thresholds [Hue Value =.2; Hue Width =.6; Color Saturation Threshold =0.05; IWP(High)

= 210; Iwp(Low)=Ip(High) = 160; Ip(low) =Isp(High) =80 Isp(Low) =0] . The algorithm

was applied to the entire scanned slide image to detect regions of increased ER and MUC1

expression by detecting pixels that satisfy the color and intensity specification defined above.

2.2 Description of the data

Our analysis was based on the data for 33 patients: 13 females and 20 males. For each

of the patients, we had clinical and biochemical data. Epidemiological data was derived

from the Florida Cancer Data System (FCDS) while the biochemical data was obtained as

described above. The epidemiological data are listed in the Table 1. The patients in the

group were ages 57 to 84 with average age at diagnostic for females being 68 years, and for

males 71.5 years. Out of 24 patients, at the moment of recording, 11 patients were alive

and 22 were dead. In terms of smoking history all patients were divided in the following
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Table 2.1: Epidemiological variables

Variable Name Meaning Type Range

Age Age at diagnosis Numerical 57-84

Gender Gender Categorical m or f

Status Vital Status Categorical dead or alive

Time Survival time in months Numeric 1 -177

Site Primary location of tumor Categorical 5 sites

Hist Hitological type of cancer Categorical 7 types

Seq Sequence Number Categorical 5 numbers

TNM TNM Mixed Stage Categorical 7 stages

Smoking History of tobacco use Categorical 4 categories

Treat methods of treatment Categorical 5 methods

groups: non-smokers, history of smoking, light, moderate or heavy smoking, non-specified

or unknown.

The biochemical data were extracted from cancer and adjacent normal cells and referred

to two types of biomarkers: ER and MUC1. While ER is activated in the nucleus of the

cells, the MUC1 marker is located in the membranes.

The effects of ER and MUC1 are represented by the grey level of the image (of the

nuclei for ER and of the membranes for the MUC1) and is subsequently divided into four

categories (3+, 2+, 1+ and 0+). In particular, the ER data is represented by the following

characteristics: percentages and numbers of cells in each of the four the categories and

intensity score (the most represented intensity). The MUC1 data is represented by the

following characteristics: percentages and numbers of cells in each of the four the categories,

percentage of the membrane stained, the number and the percentage of the total number of
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cells and the complete cells.

The total number of epidemiological characteristics for each patient is 11 while the total

number of biochemical characteristics is 26. Therefore, the total number of features, 37,

exceeds the sample size (even if the male and the female patients are bundled together for

classification purposes). In addition, many of the characteristics are redundant (e.g., the

percentage and the number of cells with certain intensity). This fact makes it necessary

to reduce dimensionality of the data via the model selection process, i.e. by selecting the

features which are useful for classification purposes and discarding the rest of them.

2.3 Description of the methods

2.3.1 Multiple linear regression with stepwise choice of predictors

Multiple liner regression attempts to model the relationship between several explanatory

variables and a response variable by fitting a linear equation to observed data. A general

form of a multiple linear regression model ( see for example [2]) is given by :

yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + εi

or in matrix form :

~y = X~β + ~ε

where:

~yT = (y1, y2, . . . , yN) is a response variable,

~βT = (β0, β1, β2, ..., βp) are the regression coefficients,and

X =



1 x1,1 . . . x1,p

. . . . . .

. . . . . .

. . . . . .

1 xN,1 . . . xN,p
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is the matrix of explanatory (independent) variables, and finally ~εT = (ε1, . . . , εN) is the

vector of random errors which are assumed to have zero mean and are independently sampled

from the same distribution which has a finite variance σ2.

The regression coefficients are estimated using the least squares principle. If the matrix

X is of full column rank, the ordinary least square estimator for~β exists and given by

~β = (XTX)−1XT~y.

Note that in our case the assumption of the full column rank is violated since N < p.

In this situation, it is desirable to select a subset of variables as predictors (explanatory)

variables. A linear regression model with more variables may not always perform better

than the regression model with fewer variables since inclusion of extra variables leads to

the increase in the variance of the total prediction (over fitting). The method of testing

all possible subsets of variables is infeasible when the number of possible predictors p is

large, since it requires testing 2p − 1 possible subsets. A common alternative in this case

is to apply a stepwise algorithm. There are three types of stepwise procedures available:

backward elimination, forward addition, and stepwise search. It all of these approaches,

variables are added into or deleted from the model in an iterative manner, one at a time.

Below we will give a short description of the each of the methods.

Backward Elimination Starting with fitting the whole model than includes all N predic-

tors. For each predictor X the F test statistic is computed that compares the whole model

with the reduced model that excludes X. Using preassigned threshold significance level, the

least significant predictor being removed. The remaining model contains N-1 predictors and

again the least significant predictor is identified and may be removed be examining the F

test statistics and their p-values. The procedure is repeated till all p-values in the model

are less than preassigned value. The resultant model is then claimed as the final model.The

major problem with backward elimination is that a dropped variable has no more chance
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to re-enter the model. However, a variable that has been excluded in an earlier stage may

become significant after dropping other predictors. Due to specifics of our case backward

elimination is not useful since the model will be instantly over fitted as soon there are the

same number of linearly independent variables as there are observation.

Forward addition Forward addition works in reverse fashion with respect to backward

elimination (see [9]). Starting with the simple regression model that has the only one pre-

dictor which has the biggest sample correlation in absolute value with the response variable

Y , we add to the model the predictor which meets three equivalent criteria:

1. it has the highest sample partial correlation in absolute value with the response, ad-

justing for the the predictors in the equation already;

2. adding the variable will increase R2 more than any other single variable;

3. the variable added would have the largest t− or F-statistics of any of the variables that

are not already in the model

Thus starting with a subset of size 1, and, at each step we add another variable to the model.

This procedure is repeated until a stopping rule is met. The possible stopping rules are:

• Stop with a subset with predetermined size

• Stop if the F-test for each of the variables not yet entered would be less than some

predetermined number (F in)

• Stop when the addition of the next predictor will make the set of predictors too close

to collinear. This is called a tolerance check and is usually related to the square of the

multiple correlation between the next predictor to be added and the predictor already

included in the equation

The problem associated with forward addition is that once added, a variable would stay in

the final model, even if it will become insignificant after including other predictors.
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Stepwise Search The stepwise search method is intended to avoid the problems with both

backward elimination and forward addition so that variables already in the model may be

removed due to insignificance and variables excluded may be added later on when it becomes

significant. The procedure itself is more similar to the forward addition algorithm. As in

forward addition, the most significant variable is added to the model at each step, it its

corresponding F test is significant at the level of entry. Before the next variable is added,

however, the stepwise search method takes an additional look-back step to check all variables

included in the current model and deletes any variable that has a p-value greater than the

level of stay. Only after the necessary deletions are accomplished can the procedure move to

the next step of adding another variable into the model.

2.3.2 Principal component analysis

Principal component analysis (PCA) is the method of dimension reduction [8] that works as

follows:

• for the data set covariance matrix is computed

• for the covariance matrix the eigenvectors and eigenvalues are being found

• by ordering the eigenvectors according the eigenvalues starting with the larger one, the

orthogonal basis is formed

• the matrix composed of eigenvectors is used to transform the original data vector , the

components of the transformed vector in the orthogonal basis are called the principal

components

It is usually happens that only first few components will accumulate almost all variation of

the data set. Subsequently, one can either carry out the change of variables (setting new

variables to be the principal components), or choose predictors to be the variables which

appear with the largest coefficients in the first few principal compponents.

9



Figure 2.1: General 2 layers ANN

2.3.3 Artificial Neural Network classification

Artificial neural networks (ANN) provide a robust approach to approximating functions.

The study of ANNs has been inspired in part by the observation that biological learning

systems are built of very complex webs of interconnected neurons. ANNs consists of a

pool of simple processing units with communicate by sending signals to each other over a

large number of weighted connections ( ref here) Each unit performs a simple job: receive

input from neighbours or external sources and use this to compute an output signal which

is propagated to other units. From the multitude of network designs we will consider the

simplest one , sometimes called the single hidden layer back-propagation network. Within

the neural system there are three types of units : input units which receive data from outside

the neural network, output units which send data out of the neural network, and hidden units

whose input and output signals remain within the neural network.

The neural network is represented by a diagram in Figure 1. There is a network for

K-class classification, there are K output units[8]. Derived features Hm are created from

linear combinations of the inputs Ip and the outputs are modelled as a function of linear

10



combinations of the Hm.

Hm = α0m + αT
mI, m = 1, ...,M

Ok = σ(β0k + βT
kH), k = 1, . . . , K,

where H = (H1, H2, ..., HM), and O = (O1, O2, ..., OK). The output function σ is typically

chosen to be sigmoid function σ(x) = 1/(1 + e−x), identity or hyperbolic tangent function.

ANN training is finding so called weights which will fit data the best. The complete set of

weights for the network on Fig ??. consists of:

{αpm; p = 0, 1, . . . , P m = 1, 2, . . . ,M} M(P + 1) weights,

where αpm is the weight for the mth input to hidden neuron p

{βmk; m = 0, 1, . . . ,M k = 1, 2, . . . , K} K(M + 1) weights

where βmk is the weight for the kth input to output neuron m.

We use use sum-of-squared errors (SSE) as a measure of fit:

R =
1

2

K∑
k=1

(Ok − Tk)2

where ~T is the vector of target values

The generic approach to minimizing R) is by the version of the gradient descent algorithm

called back-propagation. The gradient can be easily derived by using simple differentiation.

Upon taking derivatives, a gradient descent update at the (r + 1)-st iteration is carried out

as follows ( see Fig. ??):

• Rule for output weights:

β
(r+1)
mk = β

(r)
mk − γr

dR

dβ
(r)
mk

11



Figure 2.2: Derivation of back -propagation rules

where

dR

dβmk

= (Ok − Tk)σ′(β0k + βT
kH)Hm

• Rule for input weights:

α
(r+1)
kp = α

(r)
kp − γr

dR

dα
(r)
kp

where

dR

dαkp

=
K∑
k=1

(Ok − Tk)σ′(β0k + βT
kH)Ip

Here, γr is the so-called learning rate which is usually set to be a constant, or can be

optimized to minimize the error function at each update.

Using updates for the weights, the back propagation algorithm searches the space of possible

hypotheses to iteratively reduce the error of the fit to the training examples in the network.

Gradient descent algorithm converges to a local minimum of the training error with respect

to the network weights. The advantage of the back-propagation algorithm is its simple, local

nature. In the back propagation algorithm, each hidden unit passes and receives information
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only to and from units that share a connection. The one of the intriguing properties of the

back-propagation is its ability to invent new features that are not explicit in the input of the

network. For example, the hidden layer learns to represent intermediate features that are

useful for learning the target function and that are only implicit in the network inputs.

2.3.4 Validation and sensitivity analysis

In order to evaluate precision of the variable selection algorithms and subsequent classifica-

tion we use Monte Carlo simulation procedures.

In particular, we randomly partition our data into two parts: the training set and the

evaluation set. Data in the training set is used for variable selection and construction of a

classification rule. After that, this classification rule is tested on the evaluation set and the

percentage of mis-classified cases is recorded. The process is repeated many times and results

are averaged. Results of this calculations allows to predict how classification algorithms will

work on a new data.

In addition, we evaluate how much classification precision will be lost if biochemical

characterisitcs are not available and classification is carried out entirely on the basis of

epidemiological data. The latter allows to calibrate how much advantage is received by

employing biomarkers for prediction of the patient’s survival time.

2.4 Application to the data set

Our objective is to classify patients according to survival times, in particular, to reveal

relationship between biomarkers (ER and MUC1) characteristics and survival time.

We partitioned the patients into two classes: a class containing patients whose survival

was less than 4 years and another one, containing patients with more than 4 years survival

time. Our analysis was based on the data for 33 patients, 13 females and 20 males, with

about 60 variables per patient. The high number of covariates compared to the sample size

13



Table 2.2: Coding the histological type of cancer (categorical variable).

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
Histological type of cancer

Dummy variables
h1 h2 h3 h4 h5 h6

Squamous cell carcinoma nos 0 0 0 0 0 0

Adenocarcinoma nos 1 0 0 0 0 0

Large cell carcinoma nos 0 1 0 0 0 0

Carcinoma nos 0 0 1 0 0 0

Squamous cell carcinoma keratinizing nos 0 0 0 1 0 0

Bronchiolo-alveolar adenocarcinoma nos 0 0 0 0 1 0

Mucin-producing adenocarcinoma 0 0 0 0 0 1

(the total number of patients) made variable selection (dimension reduction) a matter of

uttermost importance.

2.4.1 Linear regression approach

In order to successfully deal with variable selection in the presence of categorical variables,

we need to record those variables as a collection of dummy variables as it is presented in the

following tables. Other categorical variables were coded similarly. Coding of ordinal variables

is displayed in Table 2.5. For computations, we were using software packet PASW 18 (former

SPSS). Monte Carlo simulations confirm that classification results are more accurate if the

data is split by gender before variable selection is carried out. Simultaneous variable selction

for both genders immediately produces over-fitted solution which is of no use for prediction

purposes.
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Table 2.3: Coding

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
TNMCS/Mixed Stage

Dummy variables
m1 m2 m3 m4 m5 m6

1B 0 0 0 0 0 0

1A 1 0 0 0 0 0

2B 0 1 0 0 0 0

1 0 0 1 0 0 0

2A 0 0 0 1 0 0

3A 0 0 0 0 1 0

3B 0 0 0 0 0 1

Table 2.4: Coding the tumor location (categorical variable).

````````````````````````
Tumor Location

Dummy variables
s1 s2 s3 s4

Lung upper lobe 0 0 0 0

Lung lower lobe 1 0 0 0

Lung nos 0 1 0 0

Lung overlapping lesion 0 0 1 0

Lung middle lobe 0 0 0 1
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Table 2.5: Coding of ordinal variables

Coding Variable Description

N2PN Norm2PercentNuclei % of nuclei with intensity score

2+ in normal region (ER)

T2PN Tum2PercentNuclei % of nuclei with intensity score

2+ in tumor region (ER)

T3PN Tum3PercentNuclei % of nuclei with intensity score

3+ in tumor region (ER)

TAPI TumAveragePositiveInt average positive stain intensity

in tumor cell nuclei (ER)

TIS TumIntensityScore prevalent intensity score in tu-

mor cells (ER)

NPCO NormPercentComplete % of cells with membrane

affected in normal region

(MUC1)

N2PC Norm2PercentCells % of membranes with inten-

sity score 2+ in normal cells

(MUC1)

N3PC Norm3PercentCells % of membranes with inten-

sity score 3+ in normal cells

(MUC1)
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In order to efficiently classify the patients according to their survival times and to re-

duce the number of variables, we used the stepwise variable selection for linear regression

and the PCA approaches described in Sections 2.3.1 and 2.3.2, respectively. In regression

model selection, we employed forward addition algorithm. Subsequently, we applied linear

regression and the neural network-based machine learning described in Sections 2.3.1 and

2.3.3 to predict survival times.

In order to test the accuracy of variable selection and the precision of the subsequent

classification, we carried out Monte Carlo simulation algorithm. In particular, we randomly

divided all patients into a training set containing 75% and an evaluation set containing 25%

of total data. proportion 75%/25%. At each run of the simulations (i.e., for each of the splits

of the data) we evaluated percentage of the incorrectly classified patients and then averaged

those percentages over all runs.

We repeated this process 100 times with female patients and 100 times with male patients

and recorded the percentage of models in which each of the variables appeared (separately,

for males and females). Subsequently, all variables were ranked and variables with the low

rankings were eliminated from the final model. Tables 3.1 and 3.2 show the higher ranked

variables for female and male patients, respectively. Table 3.4 displays the means and the

variances of the regression coefficients for the variables in the models chosen over 100 runs.

Those tables confirm that the coefficients are indeed have relatively low variability and,

therefore, the model selection is reliable.
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CHAPTER THREE: RESULTS

We have arranged this section in the same way as we did for the previous one. First, we

describe the models obtained separately for male and female patients using linear regression

and, after that, results obtained using the PCA and the ANN classification.

3.1 Results Obtained by Liner Regression Approach

There were 13 records for female and 20 records for male patients. We arranged training

set sizes to be 10 and 15 records and evaluation sets - 3 and 5 records for female and male

patients, respectively.

In order to choose variables which should appear in classification rule, variable were

ranked according to the percentage of times of they appear in the suitable regression models.

Selection of suitable regression models was based on the number of classification errors

appearing in the training set. In particular, if the number of classification errors in the

training set exceeded four, the model was discarded. Otherwise, the variables appearing in

the model were recorded. Then, the probability of appearing in the model was averaged over

50 suitable models Tables 3.1 and 3.2 present the list of the variables which appear in the

majority of regression models for female and male patients, respectively.

Here, m1, m2 and s2 are epidemiological categorical variables appearing in Tables 2.2

and 2.3, respectively, AgeDiag is the age of the patient at the moment of diagnostics, Vari-

ables N2PN, NPPN, TIC, T2PN and TAPI are biochemical characteristics associated with

ER biomarker (see Table 2.5 for coding). The following table presents the set of variables

which appeared in the highest percentage of models over the 50 runs.
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Table 3.1: Variables appearing in the highest percentage of models for females.

Variable Description Percentage of models

m2 Categorical, TNMCS- Large cell carcinoma nos 44%

s2 Categorical, Tumor location - Lung Nos 28%

N2PN ER data for normal cells 28%

NPPN ER data for normal cells 17%

TIS ER data for cancer cells 13%

Table 3.2: Variables appearing in the highest percentage of models for males.

Variable Description Percentage of models

AgeDiag Age at diagnostic 67%

T2PN ER data for cancer cells 56%

m1 Categorical, for Ademocarcinoma nos 30%

TAPI ER data for cancer cells 25%

s2 Categorical,Lung nos 16%
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Table 3.3: Average percentage of classification errors in the training and evaluation sets with

and without biomarker ER data (over 100 runs).

Females Males

training set evaluation set training set evaluation set

With ER data 5% 19% 10% 20%

Without ER data 6.3% 28% 11% 31%

Using the top three of those variables for females and five for males, we carried out

100 runs with the randomly partitioned sample, keeping 10 and 15 observations as training

samples and 3 and 5 as evaluation sets for females and males, respectively, and recorded

percentage of classification errors and regression coefficients. In order to assess the advan-

tage we receive by using biochemical variable, we also constructed classification rules in the

absence of ER data and evaluated average percentage of misclassified cases. Table 3.3 below

presents the average percentage of classification errors in the training and evaluation sets,

with and without biomarker ER data (over 100 runs). Table 3.4 reports the means and the

standard deviations of the regression coefficients confirming validity of the models for female

and male patients.

We have also computed the regression models based on the the whole data sets. The

resulting equations for females and males, respectively, are
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Table 3.4: The means and the standard deviations of the regression coefficients (over 100

runs).

Females Males

Variable mean st. deviation Variable mean st. deviation

Constant 1.12 0.22 Constant 8.4 2.07

m2 -0.61 0.22 AgeDiag -0.057 0.006

s2 -0.90 0.08 T2PN -0.0217 0.0062

N2PN -0.007 0.004 m1 0.547 0.108

TAPI -0.02 0.01

s2 -1.01 0.18

Females : SC = 1.099− 0.601m2− 0.919s2− 0.005N2PN,

Males : SC = 0.812− 0.057AgeDiag− 1.008h2 + 0.551

− 0.022T2PN − 0.016TAPI, (3.1)

Model (3.1) has 7% prediction error rate for males and 15% prediction error rate for

females.

3.2 ANN classification Results

AS an alternative to linear regression technique, we used ANN as a classification technique

in conjuction with PCA variable selection as a model selection methodsince PCA is known

to work well together with ANN. We use PCA separately to choose ER and MUC1-related

variables. Results are presented in Table 3.5 with coding of the ordinal variables displayed

in Table 2.5.
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Table 3.5: Most influential MUC1 and ER-related variables.

Gender MUC1 ER

Males N3PC; NPCO T3PN; TIS

Females TMA ; N2PC TAPI ; T2PN

ANN classification has been implemented using MatLab 2007. For each gender a simple

“feed forward” ANN has been built with 15 hidden layers of neurons and the number of

inputs which is dependent on the number of variables. We included 22 variables for males

and 17 variables for females which were found by the PCA algotithm. After that, we ran-

domly split cases in proportion 75%-25% and carried out Monte-Carlo simulations. In order

to evaluate the advantage provided by using bio-chemical variables, we also repeated ANN

classification in the absense of bio-chemical data. Table 3.6 displays the means and the

standard deviations of the correctly classified cases in the evaluation and training sets over

100 runs. Table 3.6 shows that the prediction accuracy increases when biochemical variables

are used.
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Table 3.6: Percentage of cases correctly classified by ANN averaged over 100 runs. Standard

deviations are presented in paretheses.

Gender Variables evaluation set training set

Males with bio 78% (5%) 79% (5%)

without bio 73% (21%) 74% (6%)

Females with bio 83% (18%) 89% (5%)

without bio 73% (23%) 78% (7%)
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CHAPTER FOUR: DISCUSSION

The results obtained shows that however biochemical data definitely increase the accuracy

of the prediction of the survival of the cancer patients but there are not enough evidence

to support the hypothesis that estrogen leads to chromosomal instability and female lung

cancer progression, that might be the reason for gender differences in lung cancer survival.

On contrary we have more evidence supporting the point of view that estrogen affects male

patients more than females - this can be concluded comparing the size of ”biochemical”

coefficients in regression equations (see page 13). Still, the data support the conclusion

that the expression of ER receptor leads higher mortality. The more representative number

of patient records needed for more precise conclusion. As for the methods ,the prediction

accuracy of ANN yields to that of linear regression, but still is accurate for the number of

cases we had.
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APPENDIX: PASW CODE
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A.1 Forward regression

This program performs random selection from the loaded dataset predefined number of

records - 15 in this example and then performs forward regression for the SC variable (Sur-

vival class) over the all descriptors

compute scramble=uniform(1).\** the variable for permutation

sort cases by scramble.

COMPUTE temp=\$casenum.

compute selectvar = temp LE 15.

REGRESSION

/SELECT = selectvar EQ 1

/MISSING LISTWISE

/STATISTICS COEFF R

/CRITERIA=PIN(.06) POUT(.10)

/NOORIGIN

/DEPENDENT SC

/METHOD=FORWARD SequenceNumber AgeatDiagnosis etc.

/SAVE pred (mypred).

COMPUTE newpred=0.

if (mypred GE .5) newpred =1.

COMPUTE newvar = ABS(newpred-SC).

compute err= 100*newvar/14.

list newpred SC newvar err .

DElETE VARIABLES mypred newpred newvar err selectvar scramble temp.
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A.2 Monte Carlo

This code idea borrowed from [4].

DEFINE !doit(nbvar=!TOKENS(1)) \* MACRO starts

* Save the regression parameters of each case in a separate file.

!DO !cnt=1 !TO !nbvar

compute scramble=uniform(1).

sort cases by scramble.

COMPUTE temp=\$casenum.

compute selectvar = temp LE 15.

REGRESSION

/SELECT= selectvar EQ 1

/MISSING LISTWISE\\

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.07) POUT(.10)

/NOORIGIN

/DEPENDENT SC

/METHOD=ENTER AgeatDiagnosis s2 m1 Tum@2PercentNuclei TumAveragePositiveIntensity

/OUTFILE=COVB(!QUOTE(!CONCAT(’C:/Users/param’,!cnt,’.sav’)))

/SAVE pred (mypred).

COMPUTE newpred=0.

if (mypred GE .5) newpred =1.

COMPUTE newvar = ABS(newpred-SC).

compute err= 100*newvar/20.

list newpred SC newvar err .

DElETE VARIABLES mypred newpred newvar err selectvar scramble temp.
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!DOEND \* end of MACRO

* Get all parameters in the same file; keep only the parameters estimates.

GET FILE= ’C:/Users/param1.sav’.

!DO !cnt=2 !TO !nbvar

ADD FILES FILE=* /FILE=!QUOTE(!CONCAT(’C:/Users/param’,!cnt,’.sav’)).

!DOEND

SELECT IF RTRIM $(rowtype_)$= "EST".

* then add them to the original data file.

MATCH FILES /FILE=*

/RENAME $(depvar_ rowtype_ varname_ = d0 d1 d2)$

/FILE=’C:/Users/mydata.sav’

/DROP= d0 d1 d2.

EXECUTE.

!ENDDEFINE.

!doit nbvar=100.
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APPENDIX B: MATLAB CODE
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Function trainset used to prepare random training and testing sets of given size from

the given data ( mydata)

function [traindata,simdata,train_truth,sim_truth] = trainset (mydata,percent)

% define what is true value

[ vsego, compon]=size$(mydata);

skolko=round(percent*vsego);

vibor=randperm$(vsego)$;

truth=mydata(:,compon);

mydata=mydata(:,1:compon-1);

for i = 1:vsego

if(i<=skolko)

traindata(i,:)=mydata(vibor(i),:);

train-truth$(i)$=truth$(vibor(i))$;

else\\

simdata$(i-skolko,:)$=mydata$(vibor(i),:)$;

sim-truth$(i-skolko)$=truth$(vibor(i))$;

end;

end;

Function start used to train and simulate network for gives training set of data and report

the results

function [acc_tr,acc_test] = start$(network,data, n_attemp,percent)

for i=1:n-attemp

[st,ss,tt,ts]$=trainset$(data,percent);

train(network,st’,tt);

a=sim(network,ss’);

b=sim(network,st’);
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[attemp,acc_test(i)]= pred(a,ts);

[attemp1,acc_tr(i)]= pred(b,ts);

end;

[acc1,acc2]$=start$( network1,fornet, 100,.8);
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