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ABSTRACT

This dissertation originates from a classical result that the `p-stability of the convolution

operator associated with a summable sequence are equivalent to each other for 1 ≤ p ≤ ∞.

This dissertation is motivated by the recent result by C. E. Shin and Q. Sun (Journal of

Functional Analysis, 256(2009), 2417–2439), where the `p-stability of infinite matrices in

the Gohberg-Baskakov-Sjöstrand class are proved to be equivalent to each other for different

1 ≤ p ≤ ∞.

In the dissertation, for an infinite matrix having certain off-diagonal decay, its weighted

`p-stability for different 1 ≤ p ≤ ∞ are proved to be equivalent to each other and hence a

result by Shin and Sun is generalized.
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CHAPTER ONE: HISTORICAL ORIGIN

The origin of this dissertation comes from the classical result that the `p-stability of the

convolution operator associated with a summable sequence are equivalent to each other for

1 ≤ p ≤ ∞ (Theorem 1.3.1), see [2, 5, 6] and the references therein for further discussion on

the stability of convolution operators.

1.1 Convolution Operator

In this section, we define the sequence space `p, 1 ≤ p ≤ ∞, and the convolution operator

Ca associated with a summable sequence a, and we also recall the conclusion that any

convolution operator Ca associated with a summable sequence a is a bounded operator on

`p.

Definition 1.1.1 For 1 ≤ p ≤ ∞, let

`p(Z) =
{
c := (c(j))j∈Z

∣∣∣ ‖c‖`p <∞
}
, (1.1.1)

where

‖c‖`p =


(∑

j∈Z |c(j)|p
)1/p

if 1 ≤ p <∞,

supj∈Z |c(j)| if p = ∞.

(1.1.2)

A sequence in `p(Z) is said to be p-summable, while for the special case p = 1, a sequence

in `1(Z) is said to be summable. We observe that a sequence belongs to `∞(Z) if and only if

it is a bounded sequence. In this dissertation, I also use `p instead of `p(Z) for brevity.
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Definition 1.1.2 Let a = (a(j))j∈Z be a summable sequence. Define the convolution oper-

ator Ca associated with the sequence a by

Ca : `p(Z) 3 (b(j))j∈Z 7−→

(∑
k∈Z

a(j − k)b(k)

)
j∈Z

∈ `p(Z), (1.1.3)

where 1 ≤ p ≤ ∞.

The convolution operator associated with a summable sequence defines a bounded oper-

ator on `p(Z) for all 1 ≤ p ≤ ∞.

Proposition 1.1.1 Let a = (a(j))j∈Z be a summable sequence. Then the convolution opera-

tor Ca associated with the sequence a defines a bounded operator on `p(Z) for all 1 ≤ p ≤ ∞.

Furthermore its operator norm is bounded by the `1 norm of the sequence a.

Proof. Take 1 ≤ p <∞ and b = (b(j))j∈Z ∈ `p(Z). Then

‖Cab‖`p =

(∑
j∈Z

∣∣∣∑
k∈Z

a(j − k)b(k)
∣∣∣p)1/p

≤

(∑
j∈Z

(∑
k∈Z

|a(j − k)||b(k)|p
)
×
(∑

k∈Z

|a(j − k)|
)p−1

)1/p

= ‖a‖(p−1)/p

`1

(∑
j∈Z

∑
k∈Z

|a(j − k)||b(k)|p
)1/p

= ‖a‖(p−1)/p

`1

(∑
k∈Z

(∑
j∈Z

|a(j − k)|
)
|b(k)|p

)1/p

= ‖a‖`1‖b‖`p ,

where we have used the Hölder inequality to obtain the inequality. This proves the conclusion

for 1 ≤ p <∞.
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For p = ∞ and b = (b(j))j∈Z ∈ `∞(Z), it follows that

‖Cab‖`∞ = sup
j∈Z

∣∣∣∑
k∈Z

a(j − k)b(k)
∣∣∣

≤ sup
k∈Z

|b(k)| × sup
j∈Z

∑
k∈Z

|a(j − k)|

= ‖a‖`1‖b‖`∞ ,

which proves the desired conclusion for p = ∞.

1.2 `p-stability of Convolution Operators

In this section, we define the `p-stability of a linear operator on `p, and we characterize the

`p-stability for a convolution operator associated with a summable sequence.

Definition 1.2.1 Let 1 ≤ p ≤ ∞ and T be a linear operator on `p(Z). We say that the

linear operator T has `p-stability if there exist positive constants A and B such that

A‖c‖`p ≤ ‖Tc‖`p ≤ B‖c‖`p for all c ∈ `p. (1.2.1)

Clearly a linear operator T has `p-stability if and only if it is a bounded operator on `p

and has bounded inverse on `p.

For any convolution operator associated with a summable sequence, its `p-stability can

be characterized via the Fourier series of that summable sequence.

Proposition 1.2.1 Let 1 ≤ p ≤ ∞, a = (a(j))j∈Z be a summable sequence, and Ca be the

convolution operator associated with the sequence a. Then Ca has `p-stability if and only if

â(ξ) 6= 0 for all ξ ∈ R (1.2.2)
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where â(ξ) :=
∑

j∈Z a(j)e
−ijξ.

To prove Proposition 1.2.1, we recall the following result, which is known as the classical

Wiener’s lemma ([10]).

Lemma 1.2.2 If â(ξ) =
∑

j∈Z a(j)e
−ijξ for some summable sequence a := (a(j))j∈Z, and

â(ξ) 6= 0 for all ξ ∈ R, then

1

â(ξ)
=
∑
j∈Z

b(j)e−ijξ

for some summable sequence b = (b(j))j∈Z.

Now we start to prove Proposition 1.2.1, the characterization of `p-stability of a convo-

lution operator.

Proof of Proposition 1.2.1.

(=⇒) First we prove the conclusion for p = ∞. Suppose on the contrary that â(ξ0) = 0

for some ξ0 ∈ R. Then for the bounded sequence eξ0 = (eijξ0)j∈Z, we have that ‖eξ0‖`∞ = 1

but

Caeξ0 =
(∑

k∈Z

a(j − k)eikξ0
)

j∈Z

=
(
eijξ0 â(ξ0)

)
j∈Z

= 0. (1.2.3)

This is a contradiction.

Now we prove the conclusion for 1 ≤ p <∞. Suppose on the contrary that â(ξ0) = 0 for

some ξ0 ∈ R. Let N ≥ 1 and define the sequence eN,ξ0 = (eN,ξ0(j))j∈Z where eN,ξ0(j) = eijξ0

if |j| ≤ N and eN,ξ0(j) = 0 otherwise. Then

‖eN,ξ0‖`p = (2N + 1)1/p (1.2.4)
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and

‖CaeN,ξ0‖`p =
( ∞∑

j=−∞

∣∣∣ N∑
k=−N

a(j − k)e−ikξ0
∣∣∣p)1/p

≤
( ∑
|j|≥N+N1/2

∣∣∣ N∑
k=−N

a(j − k)e−ikξ0
∣∣∣p)1/p

+
( ∑
|j|≤N−N1/2

∣∣∣ N∑
k=−N

a(j − k)e−ikξ0
∣∣∣p)1/p

+
( ∑

N−N1/2<|j|<N+N1/2

∣∣∣ N∑
k=−N

a(j − k)e−ikξ0
∣∣∣p)1/p

≤
( ∑
|j|≥N+N1/2

( N∑
k=−N

|a(j − k)|
)p)1/p

+
( ∑
|j|≤N−N1/2

∣∣∣( ∞∑
k=j+N

+

j−N∑
k=−∞

)
a(k)e−ikξ0

∣∣∣p)1/p

+
( ∑

N−N1/2<|j|<N+N1/2

∣∣∣ N∑
k=−N

|a(j − k)|
∣∣∣p)1/p

≤
( ∑
|k|≥N1/2

|a(k)|
)(p−1)/p( ∑

|j|≥N+N1/2

N∑
k=−N

|a(j − k)|
)1/p

+
( ∑
|k|≥N1/2

|a(k)|
)(p−1)/p( ∑

|j|≤N−N1/2

( ∞∑
k=j+N

+

j−N∑
k=−∞

)
|a(k)|

)1/p

+
(∑

k∈Z

|a(k)|
)
×
( ∑

N−N1/2<|j|<N+N1/2

1
)1/p

≤ 2(2N + 1)1/p
( ∑
|k|≥N1/2

|a(k)|
)(p−1)/p(∑

k∈Z

|a(k)|
)1/p

+(4N1/2 + 2)1/p
(∑

k∈Z

|a(k)|
)
. (1.2.5)
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The above two estimates, together with the assumption that a ∈ `1, imply that

0 ≤ lim sup
N→∞

‖CaeN,ξ0‖`p

‖eN,ξ0‖`p

≤ lim sup
N→∞

( ∑
|k|≥N1/2

|a(k)|
)(p−1)/p(∑

k∈Z

|a(k)|
)1/p

+ lim sup
N→∞

(4N1/2 + 2

2N + 1

)1/p(∑
k∈Z

|a(k)|
)

= 0, (1.2.6)

which contradicts to the `p-stability of the convolution operator Ca.

(⇐=) By the classical Wiener’s lemma (Lemma 1.2.2),

1

â(ξ)
=
∑
j∈Z

b(j)e−ijξ (1.2.7)

for some summable sequence b = (b(j))j∈Z. Let Cb denote the convolution operator associated

with the sequence b. Then Cb is a bounded operator on `p by Proposition 1.1.1. By (1.2.7),

we have that

1 =
(∑

k∈Z

a(k)e−ikξ
)
×
(∑

j∈Z

b(j)e−ijξ
)

=
∑
n∈Z

( ∞∑
k=−∞

a(k)b(n− k)
)
e−inξ.

This implies that

∞∑
k=−∞

a(k)b(n− k) = δn (1.2.8)

where δn is the Kronecker delta defined by

δn :=


1 if n = 0,

0 if 0 6= n ∈ Z.
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Thus

CbCa =
(∑

k∈Z

b(i− k)a(k − j)
)

i,j∈Z

=
(∑

k∈Z

a(k)b((i− j)− k)
)

i,j∈Z

=
(
δi−j

)
i,j∈Z. (1.2.9)

This shows that Cb is the inverse of the convolution operator Ca, that is,

CbCac = c for all c ∈ `p. (1.2.10)

By (1.2.10) and Proposition 1.1.1, we have

‖Cac‖`p ≤ ‖a‖`1‖c‖`p (1.2.11)

and

‖c‖`p = ‖CbCac‖`p ≤ ‖b‖`1‖Cac‖`p for all c ∈ `p. (1.2.12)

Then the `p-stability of the convolution operator Ca follows from (1.2.11) and (1.2.12).

1.3 Historical Origin

Now we state precisely the classical result from which this dissertation originates.

Theorem 1.3.1 Let a be a summable sequence, and Ca be the convolution operator (1.1.3)

associated with the sequence a. Then Ca has `p-stability for some 1 ≤ p ≤ ∞ if and only if

it has `q-stability for all 1 ≤ q ≤ ∞.

Proof. Clearly it suffices to prove the sufficiency. By Proposition 1.2.1 and the assump-

tion that Ca has `p-stability, the Fourier series â(ξ) does not vanish on the whole line, which

in turn implies that the convolution operator Ca has `q-stability by Proposition 1.2.1.
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CHAPTER TWO: MOTIVATION

In [8], Shin and Sun gave a new proof of Theorem 1.3.1, the `p-stability of a convolution

operator associated with a summable sequence for different 1 ≤ p ≤ ∞, without using

Proposition 1.2.1. Furthermore they showed that the `p-stability of infinite matrices in

the Gohberg-Baskakov-Sjöstrand class are equivalent to each other (Theorem 2.3.1). This

motived me to consider the equivalence of weighted `p-stability for infinite matrices in the

weighted Gohberg-Baskakov-Sjöstrand class for different 1 ≤ p ≤ ∞, see next chapter for

details.

2.1 Schur Class

In this section, we introduce the Schur class of infinite matrices, define every infinite matrix

in the Schur class as a bounded operator on `p, and also show that the Schur class is the

smallest class of linear operators that are bounded on `p for all 1 ≤ p ≤ ∞.

Definition 2.1.1 Let

A =
{
A := (a(j, j′))j,j′∈Z

∣∣∣ ‖A‖A <∞} (2.1.1)

be the Schur class of infinite matrices A = (a(j, j′))j,j′∈Z, where

‖A‖A := max
(

sup
j∈Z

∑
j′∈Z

|a(j, j′)|, sup
j′∈Z

∑
j∈Z

|a(j, j′)|
)
. (2.1.2)
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An infinite matrix A = (a(j, j′))j,j′∈Z in the Schur class can be thought as a bounded

operator on `p, 1 ≤ p ≤ ∞, which is defined by

A : `p 3 (c(j))j∈Z 7−→

(∑
j′∈Z

a(j, j′)c(j′)

)
j∈Z

∈ `p. (2.1.3)

Proposition 2.1.1 Let 1 ≤ p ≤ ∞. If A = (a(i, j))i,j∈Z is an infinite matrix in the Schur

class A, then A defines a bounded operator on `p. Furthermore

‖Ac‖`p ≤ ‖A‖A‖c‖`p for all c ∈ `p. (2.1.4)

Proof. Clearly it suffices to establish (2.1.4).

First we prove (2.1.4) for p = ∞. For any sequence c = (c(j))j∈Z ∈ `∞,

‖Ac‖`∞ = sup
j∈Z

∣∣∣∑
k∈Z

a(j, k)c(k)
∣∣∣

≤ sup
k∈Z

|c(k)| × sup
j∈Z

(∑
k∈Z

|a(j, k)|
)

≤ ‖A‖A‖c‖`∞ (2.1.5)

and (2.1.4) for p = ∞ follows.

Now we prove (2.1.4) for 1 ≤ p <∞. For any sequence c = (c(j))j∈Z ∈ `p,

‖Ac‖`p =
(∑

j∈Z

∣∣∣∑
k∈Z

a(j, k)c(k)
∣∣∣p)1/p

≤
(∑

j∈Z

(∑
k∈Z

|a(j, k)|
)p−1

×
(∑

k∈Z

|a(j, k)||c(k)|p
))1/p

≤ ‖A‖(p−1)/p
A ×

(∑
j∈Z

∑
k∈Z

|a(j, k)||c(k)|p
)1/p

≤ ‖A‖A‖c‖`p . (2.1.6)

This proves (2.1.4) for 1 ≤ p <∞ and completes the proof.
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In the next result, we show that the converse of the conclusion in Proposition 2.1.1 holds,

which implies that the Schur class is the smallest class of linear operators that are bounded

on `p for all 1 ≤ p ≤ ∞.

Proposition 2.1.2 If T is a bounded linear operator bounded on `p for all 1 ≤ p ≤ ∞ then

T = A for some infinite matrix A in the Schur class A.

Proof For any k ∈ Z, let ek = (δj−k)j∈Z where δn is the Kronecker delta. Then ek ∈ `1

and Tek := (a(i, k))i∈Z ∈ `1 by the assumption. By the `1 boundedness of the operator T ,

we conclude that

‖Tek‖`1 =
∑
i∈Z

|a(i, k)| ≤ ‖T‖1‖ek‖`1 = ‖T‖1 for all k ∈ Z,

or equivalently,

sup
k∈Z

∑
i∈Z

|a(i, k)| ≤ ‖T‖1, (2.1.7)

where ‖T‖p, 1 ≤ p ≤ ∞, is the linear operator norm of the operator T on `p.

Let T ∗ be the conjugate operator of the operator T on `2. Note that

〈T ∗ei, ek〉 = 〈ei, T ek〉 = a(i, k)

for any i, k ∈ Z. Therefore

T ∗ei = (a(i, j))j∈Z for all i ∈ Z. (2.1.8)

By the `∞ boundedness of the operator T , and by the dual property between sequence spaces

`∞ and `1, the conjugate operator T ∗ is a bounded operator on `1 and

‖T ∗‖1 = ‖T‖∞. (2.1.9)

10



Similar to the argument in establishing (2.1.7), we obtain from (2.1.8) and (2.1.9) that

sup
i∈Z

∑
j∈Z

|a(i, j)| ≤ ‖T ∗‖1 = ‖T‖∞, (2.1.10)

Therefore the infinite matrix A = (a(i, j))i,j∈Z belongs to the Schur class by (2.1.7) and

(2.1.10).

From the definition of the matrix A, we see that Tek = Aek for any k ∈ Z. For any

c = (c(j))j∈Z ∈ `p, define cn = (cn(j))j∈Z, n ≥ 1, where cn(j) = c(j) if |j| ≤ n and cn(j) = 0

if |j| > n. Then for all n ≥ 1 we have that cn ∈ `p (in fact, ‖cn‖`p ≤ ‖c‖`p), and that

Tcn =
∑
|k|≤n

ckTek =
∑
|k|≤n

ckAek = Acn. (2.1.11)

Therefore from (2.1.7), (2.1.10), and (2.1.11) it follows that

〈ek, T c〉 = lim
n→∞

〈ek, T cn〉 = lim
n→∞

〈ek, Acn〉 = 〈ek, Ac〉 for all k ∈ Z.

This proves that

Tc = Ac for all c ∈ `p. (2.1.12)

Combining (2.1.7), (2.1.10) and (2.1.12) completes the proof.

2.2 Gohberg-Baskakov-Sjöstrand Class

In this section, we recall the Gohberg-Baskakov-Sjöstrand class of infinite matrices and show

that for every matrix A in the Gohberg-Baskakov-Sjöstrand class, its band-truncation As

converges as the band s tends to infinity (Proposition 2.2.2).
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Definition 2.2.1 Let

C =
{
A := (a(j, j′))j,j′∈Z

∣∣∣ ‖A‖C <∞} (2.2.1)

be the Gohberg-Baskakov-Sjöstrand class of infinite matrices A = (a(j, j′))j,j′∈Z, where

‖A‖C :=
∑
k∈Z

sup
i−j=k

|a(i, j)|. (2.2.2)

Any infinite matrix A in the Gohberg-Baskakov-Sjöstrand class C belongs to the Schur

class.

Proposition 2.2.1 If A ∈ C, then A ∈ A. Furthermore

‖A‖A ≤ ‖A‖C for all A ∈ C. (2.2.3)

Proof. Let A = (a(i, j))i,j∈Z ∈ C and set r(k) = supi−j=k |a(i, j)| for any k ∈ Z. Then

‖A‖A = max
(

sup
i∈Z

∑
j∈Z

|a(i, j)|, sup
j∈Z

∑
i∈Z

|a(i, j)|
)

≤ max
(

sup
i∈Z

∑
j∈Z

r(i− j), sup
j∈Z

∑
i∈Z

r(i− j)
)

=
∑
k∈Z

r(k) = ‖A‖C. (2.2.4)

This proves (2.2.3) and completes the proof.

For any s ≥ 0 and any infinite matrix A = (a(i, j))i,j∈Z, we define the band-truncation

matrix

As = (as(i, j))i,j∈Z (2.2.5)

where

as(i, j) =


a(i, j) if |i− j| < s,

0 otherwise.
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Clearly

lim
s→∞

as(i, j) = a(i, j) for all i, j ∈ Z.

Moreover for infinite matrices A in the Gohberg-Baskakov-Sjöstrand class, As tends to A in

the norm ‖ · ‖C of the Gohberg-Baskakov-Sjöstrand class.

Proposition 2.2.2 Let A ∈ C and for s ≥ 0 define As as in (2.2.5). Then

lim
s→∞

‖A− As‖C = 0. (2.2.6)

Proof. Let A = (a(i, j))i,j∈Z and define

r(k) = sup
i−j=k

|a(i, j)| for all k ∈ Z.

Then

∑
k∈Z

r(k) = ‖A‖C <∞. (2.2.7)

From the definition of the truncation matrix As, we have that

‖A− As‖C =
∑
k∈Z

sup
i−j=k

|a(i, j)− as(i, j)|

=
∑
|k|≥s

sup
i−j=k

|a(i, j)| =
∑
|k|≥s

r(k). (2.2.8)

Combining (2.2.7) and (2.2.8) proves (2.2.6).

We remark that the truncation matrix As may not tend to A for infinite matrices in the

Schur class. The infinite matrix (δi+j)i,j∈Z is such an infinite matrix in the Schur class.

Let

ψ0(x) =


1 if |x| ≤ 1,

2− |x| if 1 < |x| < 2,

0 if |x| ≥ 2.

(2.2.9)
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be a cut-off function. Define the multiplication operator ΨN
n : `p → `p by

ΨN
n c =

(
ψ0

(j − n

N

)
c(j)

)
j∈Z

for c = (c(j))j∈Z ∈ `p. (2.2.10)

The multiplication operator ΨN
n is a diagonal matrix diag(ψ0((j−n)/N))j∈Z in the Gohberg-

Baskakov-Sjöstrand class C.

Proposition 2.2.3 Let A ∈ C, and the truncation matrices AN and the multiplication op-

erator ΨN
n be defined as in (2.2.5) and (2.2.10) respectively. Then

‖ANΨN
n −ΨN

n AN‖C ≤ inf
0≤s≤N

‖A− As‖C +
s

N
‖A‖C (2.2.11)

for all N ≥ 1 and n ∈ Z.

Proof. Let A = (a(i, j))i,j∈Z and set r(k) = supi−j=k |a(i, j)| for k ∈ Z. Then

‖ANΨN
n −ΨN

n AN‖C =
∑
k∈Z

sup
i−j=k

|aN(i, j)||ψ0((i− n)/N)− ψ0((j − n)/N)|

= inf
0≤s≤N

∑
|k|<s

sup
i−j=k

|a(i, j)||ψ0((i− n)/N)− ψ0((j − n)/N)|

+
∑

N>|k|≥s

sup
i−j=k

|a(i, j)||ψ0((i− n)/N)− ψ0((j − n)/N)|

≤ inf
0≤s≤N

1

N

∑
|k|<s

|k|r(k) +
∑
|k|≥s

r(k)

≤ inf
0≤s≤N

s

N
‖A‖C + ‖A− As‖C,

where in the first inequality we have used the following properties:

0 ≤ ψ0(x) ≤ 1 for all x ∈ R

and

|ψ0(x)− ψ0(y)| ≤ |x− y| for all x, y ∈ R
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for the cut-off function ψ0.

The above property for the commutator between the multiplication operator and trun-

cated infinite matrices in the Gohberg-Baskakov-Sjöstrand class plays essential role in [8] to

establish the equivalence of the `p stability for infinite matrices in the Gohberg-Baskakov-

Sjöstrand class.

2.3 `p-stability of Infinite Matrices

In this section, we restate Shin and Sun’s result on the `p-stability of infinite matrices in the

Gohberg-Baskakov-Sjöstrand class ([8]) and give a sketch of the proof.

Theorem 2.3.1 Let 1 ≤ p, q ≤ ∞ and A ∈ C. If A has `q-stability, then A has `p-stability.

This generalizes the conclusion in Theorem 1.3.1 for convolution operators, because the

convolution operator Ca associated with the summable sequence a := (a(j))j∈Z is the same

as an infinite matrix A = (a(i − j))i,j∈Z in the Gohberg-Baskakov-Sjöstrand class C with

‖A‖C = ‖a‖`1 <∞.

Now we give a sketch of the proof of Theorem 2.3.1 as we will follow those steps to prove

the equivalence of weighted `p-stability in the next chapter.

Proof of Theorem 2.3.1. Given 1 ≤ p, q ≤ ∞ and N ≥ 1, define a new norm ‖ · ‖p,q,N

on `p as follows:

‖c‖p,q,N =


(∑

n∈NZ ‖ΨN
n c‖

p
`q

)1/p

if 1 ≤ p <∞,

supn∈NZ ‖ΨN
n c‖`q if p = ∞,

(2.3.1)
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for any c ∈ `p, where ΨN
n is the multiplication operator defined in (2.2.10). For this new

norm ‖ · ‖p,q,N on `p, the following claims hold true:

Claim 1: Given 1 ≤ p ≤ ∞, there exists a positive constant C independent of N ≥ 1

such that

‖c‖`p ≤ ‖c‖p,p,N ≤ C‖c‖`p (2.3.2)

hold for all c ∈ `p.

Claim 2: Given 1 ≤ p, q1, q2 ≤ ∞, there exists a positive constant C independent of

N ≥ 1 such that

C−1Nmin(1/q2−1/q1,0)‖c‖p,q1,N ≤ ‖c‖p,q2,N ≤ CNmax(1/q2−1/q1,0)‖c‖p,q1,N (2.3.3)

for all c ∈ `p.

Claim 3: Given 1 ≤ p, q ≤ ∞, there exists a positive constant C independent of N ≥ 1

such that

‖c‖p,q,N ≤ ‖c‖p,q,6N ≤ C‖c‖p,q,N (2.3.4)

for all c ∈ `p.

Claim 4: There exists a positive constant C independent of N ≥ 1 such that

‖Ac‖p,q,N ≤ C‖A‖C‖c‖p,q,N for all c ∈ `p. (2.3.5)

Now we can prove our desired result: the `p stability for infinite matrix A. Take any

c ∈ `p. By the `q-stability of the infinite matrix A, there exists an absolute positive constant

C0 (independent of N ≥ 1, n ∈ Z and c ∈ `p) such that

‖AΨN
n c‖`q ≥ C0‖ΨN

n c‖`q . (2.3.6)

16



By (2.2.3) and Proposition 2.1.1, we have

‖(A− AN)ΨN
n c‖`q ≤ ‖A− AN‖C‖ΨN

n c‖`q . (2.3.7)

By Proposition 2.2.3, we have

‖(ANΨN
n −ΨN

n AN)c‖`q = ‖(ANΨN
n −ΨN

n AN)Ψ6N
n c‖`q

≤
(

inf
0≤s≤N

s

N
‖A‖C + ‖A− As‖C

)
‖Ψ6N

n c‖`q . (2.3.8)

Combining (2.3.6), (2.3.7) and (2.3.8), we get

‖ΨN
n ANc‖`q ≥

(
C0 − ‖A− AN‖C

)
‖ΨN

n c‖`q

−
(

inf
0≤s≤N

s

N
‖A‖C + ‖A− As‖C

)
‖Ψ6N

n c‖`q , (2.3.9)

for any N ≥ 1 and n ∈ Z, which implies that

‖ANc‖p,q,N ≥
(
C0 − ‖A− AN‖C

)
‖c‖p,q,N

−
(

inf
0≤s≤N

s

N
‖A‖C + ‖A− As‖C

)
‖c‖p,q,6N . (2.3.10)

This together with Claim 3 and Claim 4 yields

‖Ac‖p,q,N ≥
(
C0 − C1‖A−AN‖C − C2

(
inf

0≤s≤N

s

N
‖A‖C + ‖A−As‖C

))
‖c‖p,q,N , (2.3.11)

where C1 and C2 are positive constants independent of N ≥ 1. Recall from Proposition 2.2.2

that

lim
s→∞

‖A− As‖C = 0.

Therefore there exists a sufficiently large integer N0 such that

C1‖A− AN0‖C + C2

(
inf

0≤s≤N0

s

N0

‖A‖C + ‖A− As‖C
)

≤ (C1 + C2)‖A− A√N0
‖C + C2N

−1/2
0 ‖A‖C

≤ C0/2. (2.3.12)
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Thus by (2.3.10) and (2.3.12) we have

‖Ac‖p,q,N0 ≥
C0

2
‖c‖p,q,N0 (2.3.13)

for any c ∈ `p. Therefore the desired `p stability from from (2.3.13), Claim 1, and Claim 2.
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CHAPTER THREE: WEIGHTED `P -STABILITY FOR
LOCALIZED INFINITE MATRICES

In this chapter, I show that the weighted `p-stability of infinite matrices in the weighted

Gohberg-Baskakov-Sjöstrand class are equivalent to each other for different 1 ≤ p ≤ ∞.

Please see Theorem 3.3.1 for the details.

3.1 Weighted `p Space

In this section, we introduce the weighted `p space of sequences with the standard norm

‖ · ‖`p
w

and its equivalent norm ‖ · ‖p,q,N,w.

Definition 3.1.1 A weight is a continuous function w : Rd 7−→ [1,∞). A weight w is said

to be submultiplicative if there exists a positive constant C such that

w(x+ y) ≤ Cw(x)w(y) for all x, y ∈ Rd. (3.1.1)

A typical example of submultiplicative weight is the power weight (1 + |x|)α with α ≥ 0,

which becomes the trivial weight w ≡ 1 when α = 0.

We consider the infinite matrices of the form (a(λ, λ
′
))λ∈Λ,λ

′∈Λ
′ having certain off-diagonal

decay.

Definition 3.1.2 A discrete subset Λ of Rd is called relatively-separated if

R(Λ) = sup
x∈Rd

∑
λ∈Λ

χλ+[0,1)d(x) < ∞. (3.1.2)
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As usual, an infinite matrix A = (a(λ, λ
′
))λ∈Λ,λ′∈Λ′ in the Gohberg-Baskakov-Sjöstrand

class C(Λ,Λ
′
) defines a bounded operator from `p(Λ

′
) to `p(Λ),

A : lp(Λ
′
) 3 (c(λ

′
))λ′∈Λ′ := c 7→ Ac :=

∑
λ′∈Λ′

a(λ, λ
′
)c(λ

′
)


λ∈Λ

∈ `p(Λ), (3.1.3)

where 1 ≤ p ≤ ∞.

Definition 3.1.3 For n ∈ Zd and N ∈ N, the cut-off function is defined as

ψ(x) = min(max(2− ||x||∞, 0), 1) for x ∈ Rd, (3.1.4)

here ‖x‖∞ = max1≤i≤d |xi| for x = (x1, ..., xd) ∈ Rd.

Definition 3.1.4 The multiplication operator ΨN
n : `p(Λ) → `p(Λ) is defined by

ΨN
n c =

(
ψ(
λ− n

N
)c(λ)

)
λ∈Λ

for c = (c(λ))λ∈Λ ∈ `p, (3.1.5)

where Λ is a relatively-seperated subset of Rd.

Proposition 3.1.1 The cut-off function ψ(x) is Lipschitz continuous, that is,

|ψ(x)− ψ(y)| ≤ ||x− y||∞ for x, y ∈ Rd. (3.1.6)
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Proof. By Definition 3.1.4, we have

|ψ(x)− ψ(y)| = min(max(2− ||x||∞, 0), 1)−min(max(2− ||y||∞, 0), 1)

=



| ‖x‖∞ − ‖y‖∞| if 1 ≤ ‖x‖∞ ≤ 2, 1 ≤ ‖y‖∞ ≤ 2;

|2− ‖x‖∞| if 1 ≤ ‖x‖∞ ≤ 2, ‖y‖∞ ≥ 2;

|2− ‖y‖∞| if 1 ≤ ‖y‖∞ ≤ 2, ‖x‖∞ ≥ 2;

|1− ‖x‖∞| if 1 ≤ ‖x‖∞ ≤ 2, ‖y‖∞ ≤ 1;

|1− ‖y‖∞| if 1 ≤ ‖y‖∞ ≤ 2, ‖x‖∞ ≥ 2;

1 if ‖x‖∞ ≤ 1, ‖y‖∞ ≥ 2;

1 if ‖x‖∞ ≤ 1, ‖y‖∞ ≥ 2;

0 otherwise.

≤ ‖x− y‖∞ for x, y ∈ Rd. (3.1.7)

Proposition 3.1.2 Let A = (a(λ, λ
′
))λ∈Λ,λ′∈Λ′ be an infinite matrix in the Gohberg-Baskakov-

Sjöstrand class C(Λ,Λ
′
) and AN be the truncation matrix. The mutiplication operator ΨN

n is

defined by (3.1.5). Then

ANΨN
n −ΨN

n AN = (ANΨN
n −ΨN

n AN)Ψ6N
n (3.1.8)

for all N ≥ 1 and n ∈ Zd.

Proof. First we prove that for all λ ∈ Λ, λ
′ ∈ Λ

′
, we have

aN(λ, λ
′
)

(
ψ

(
λ
′ − n

N

)
− ψ

(
λ− n

N

))(
1− ψ

(
λ
′ − n

6N

))
= 0 (3.1.9)

(Case 1:) If |λ′ − λ| ≥ N , by definition we have aN(λ, λ
′
) = 0.

(Case 2:) If |λ′ − λ| < N and |λ′ − n| ≤ 3N , by definition we have ψ
(

λ
′−n
6N

)
= 1. So
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1− ψ
(

λ
′−n
6N

)
= 0.

(Case 3:) If |λ′ − λ| < N and |λ′ − n| > 3N , by definition we have ψ
(

λ
′−n
N

)
= 0. Since

|λ− n| ≥ |λ′ − n| − |λ′ − λ| > 3N −N = 2N , we have |λ−n|
N

> 2 which implies ψ
(

λ−n
N

)
= 0.

So we get ψ
(

λ
′−n
N

)
− ψ

(
λ−n
N

)
= 0.

Then we finish prove (3.1.9). From (3.1.9), for all λ ∈ Λ, λ
′ ∈ Λ

′
,

aN(λ, λ
′
)

(
ψ

(
λ
′ − n

N

)
− ψ

(
λ− n

N

))
= aN(λ, λ

′
)

(
ψ

(
λ
′ − n

N

)
− ψ

(
λ− n

N

))
ψ

(
λ
′ − n

6N

)

(ANΨN
n −ΨN

n AN) = ANΨN
n −ΨN

n AN

=

∑
λ′∈Λ′

aN(λ, λ
′
)ψ

(
λ
′ − n

N

)
λ∈Λ

−

ψ(λ− n

N

) ∑
λ′∈Λ′

aN(λ, λ
′
)


λ∈Λ

=

∑
λ′∈Λ′

aN(λ, λ
′
)

(
ψ

(
λ
′ − n

N

)
− ψ

(
λ− n

N

))
λ∈Λ

(3.1.10)

and

(ANΨN
n −ΨN

n AN)ψ6N
n = ANΨN

n Ψ6N
n −ΨN

n ANΨ6N
n

=

∑
λ′∈Λ′

aN(λ, λ
′
)

(
ψ

(
λ
′ − n

N

)
− ψ

(
λ− n

N

))
ψ

(
λ
′ − n

6N

)
λ∈Λ

. (3.1.11)

Therefore from (3.1.9), (3.1.10) and (3.1.11), we can get (3.1.8).

Proposition 3.1.3 The cut-off function ψ(x) is defined by (3.1.4). Then for all N ≥ 1,

n ∈ Zd and λ
′ ∈ Λ

′
we have

∑
j∈Zd

∣∣∣∣ψ(λ′ − n

6N

)∣∣∣∣ ∣∣∣∣ψ(λ′ − n

N
− 2j

)∣∣∣∣ =
∑

j∈Zd with ||j||∞≤6

∣∣∣∣ψ(λ′ − n

6N

)∣∣∣∣ ∣∣∣∣ψ(λ′ − n

N
− 2j

)∣∣∣∣ .
(3.1.12)
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Proof. Clearly (3.1.12) is equivalent to

∑
j∈Zd with ||j||∞>6

∣∣∣∣ψ(λ′ − n

6N

)∣∣∣∣ ∣∣∣∣ψ(λ′ − n

N
− 2j

)∣∣∣∣ = 0. (3.1.13)

By the definition of ψ(x), we know that ψ(x) = 0 if ||x||∞ ≥ 2. So if ||λ
′−n
6N

||∞ ≥ 2 which is

||λ
′−n
N
||∞ ≥ 12, ψ(λ

′−n
6N

) = 0. If ψ(λ
′−n
6N

) 6= 0, ||λ
′−n
N
||∞ < 12. For ||j||∞ > 6, we have∥∥∥∥λ′ − n

N
− 2j

∥∥∥∥
∞
≥
∣∣∣∣ ∥∥∥∥λ′ − n

N

∥∥∥∥
∞
− ||2j||∞

∣∣∣∣ = ||2j||∞ −
∥∥∥∥λ′ − n

N

∥∥∥∥
∞
≥ 14− 12 = 2.

So ψ(λ
′−n
N

− 2j) = 0. This finishes the proof of (3.1.13), and hence (3.1.12).

Definition 3.1.5 For 1 ≤ p ≤ ∞ and a weight w, let

`pw(Λ) =
{
‖c‖`p

w(Λ) < +∞
}

(3.1.14)

be the weighted `p space of all sequences on Λ, where

‖c‖`p
w(Λ) := ‖cw‖`p(Λ) for all c ∈ `pw(Λ). (3.1.15)

We also use `pw instead of `pw(Λ) for brevity. From the definition of the weighted `p space,

we have that

‖c+ d‖`p
w
≤ ‖c‖`p

w
+ ‖d‖`p

w
for all c, d ∈ `pw. (3.1.16)

In fact, `pw is a Banach space for all 1 ≤ p ≤ ∞ and weights w.

To establish our desired equivalence of weighted `p-stability for different 1 ≤ p ≤ ∞, we

need another norm ‖ · ‖p,q,N,w on `pw, where

‖c‖p,q,N,w =


(∑

n∈NZd ‖ΨN
n c‖

p
`q
w

)1/p

if 1 ≤ p <∞

supn∈NZd ‖ΨN
n c‖`q

w
if p = ∞.

(3.1.17)
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The next result shows that the new norm ‖ · ‖p,q,N,w is equivalent to the standard norm

‖ · ‖`p
w

on `pw.

Proposition 3.1.4 Let 1 ≤ p, q1, q2 ≤ ∞ and w be a submultiplicative weight. Then there

exists a positive constant C independent of N ≥ 1 such that the following hold for all c ∈ `pw :

2d/p‖c‖`p
w
≤ ‖c‖p,p,N,w ≤ 4d/p‖c‖`p

w
; (3.1.18)

C−1(R(Λ)Nd)min(1/q2−1/q1,0)‖c‖p,q1,N,w ≤ ‖c‖p,q2,N,w

≤ C(R(Λ)Nd)max(1/q2−1/q1,0)‖c‖p,q1,N,w; (3.1.19)

and

‖c‖p,q,N,w ≤ ‖c‖p,q,6N,w ≤ C‖c‖p,q,N,w. (3.1.20)

Proof. First we prove (3.1.18). For p = ∞ and c ∈ `∞w ,

‖c‖∞,∞,N,w = sup
n∈NZd

sup
λ∈Λ

ψ((λ− n)/N)|c(λ)|w(λ) ≤ sup
n∈NZd

sup
λ∈Λ

|c(λ)|w(λ) = ‖c‖`∞w

and

‖c‖∞,∞,N,w = sup
n∈NZd

sup
λ∈Λ

ψ((λ− n)/N)|c(λ)|w(λ)

≥ sup
λ∈Λ

sup
n∈NZd

χ[−1,1]d(
λ− n

N
)|c(λ)|w(λ) = ‖c‖`∞w .

Hence the estimate in (3.1.18) follows for p = ∞.

For 1 ≤ p <∞ and c ∈ `pw,

‖c‖p,p,N,w =
( ∑

n∈NZd

∑
λ∈Λ

|ψ((λ− n)/N)|p|c(λ)|p(w(λ))p
)1/p

≤
( ∑

n∈NZd

∑
λ∈Λ

χ[−2,2)d((λ− n)/N)|c(λ)|p(w(λ))p
)1/p

≤ 4d/p
(∑

λ∈Λ

|c(λ)|p(w(λ))p
)1/p

= 4d/p‖c‖`p
w
,

24



and

‖c‖p,p,N,w =
( ∑

n∈NZd

∑
λ∈Λ

|ψ((λ− n)/N)|p|c(λ)|p(w(λ))p
)1/p

≥
( ∑

n∈NZd

∑
λ∈Λ

χ[−1,1)d((λ− n)/N)|c(λ)|p(w(λ))p
)1/p

= 2d/p
(∑

λ∈Λ

|c(λ)|p(w(λ))p
)1/p

= 2d/p‖c‖`p
w
.

Therefore the estimate in (3.1.18) follows for 1 ≤ p <∞.

Now we prove (3.1.19). Clearly it suffices to prove the second inequality in (3.1.19). Let

c ∈ `pw. If q2 ≥ q1, recalling from ‖d‖`
q2
w
≤ ‖d‖`

q1
w

for any d ∈ `q1
w that

‖ΨN
n c‖`

q2
w
≤ ‖ΨN

n c‖`
q1
w

(3.1.21)

for all n ∈ NZd. If q2 < q1 and 1 ≤ q1 <∞, then

‖ΨN
n c‖`

q2
w

=
(∑

λ∈Λ

|ψ((λ− n)/N)|q2|c(λ)|q2(w(λ))q2

)1/q2

≤
(∑

λ∈Λ

|ψ((λ− n)/N)|q1|c(λ)|q1(w(λ))q1

)1/q1

×
( ∑
‖λ−n‖∞≤2N

1
)1/q2−1/q1

≤ C(R(Λ)Nd)1/q2−1/q1‖ΨN
n c‖`

q1
w
. (3.1.22)

If q2 < q1 and q1 = ∞, then

‖ΨN
n c‖`

q2
w

=
(∑

λ∈Λ

|ψ((λ− n)/N)|q2|c(λ)|q2(w(λ))q2

)1/q2

≤ sup
λ∈Λ

|ψ((λ− n)/N)||c(λ)|w(k)×
( ∑
‖λ−n‖∞≤2N

1
)1/q2

≤ C(R(Λ)Nd)1/q2‖ΨN
n c‖`∞w . (3.1.23)

Combining (3.1.21), (3.1.22) and (3.1.23), we obtain that

‖ΨN
n c‖`

q2
w
≤ C(R(Λ)Nd)max(1/q2−1/q1,0)‖ΨN

n c‖`
q1
w

for all c ∈ `pw, (3.1.24)
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where n ∈ NZd and 1 ≤ N ∈ Z. Then the second inequality in (3.1.19) follows.

Finally we prove (3.1.20). Noting that for any λ ∈ Λ, n ∈ NZd and N ≥ 1,

ψ
(k − n

N

)
≤ ψ

(k − n

6N

)
and

ψ
(λ− n

6N

)
≤ χ

[−12N,12N)d
(λ− n) =

5∑
j=−6

χ
[−N,N)d

(λ− n− (2j + 1)N)

≤
5∑

j=−6

ψ
(λ− n− (2j + 1)N

N

)
,

we have

‖ΨN
n c‖`q

w
≤ ‖Ψ6N

n c‖`q
w
≤

5∑
j=−6

‖ΨN
n+(2j+1)Nc‖`q

w
(3.1.25)

for any n ∈ NZd and N ≥ 1. Therefore

‖c‖p,q,N,w ≤ ‖c‖p,q,6N,w ≤ 12‖c‖p,q,N,w

and (3.1.20) is proved.

3.2 Weighted Gohberg-Baskakov-Sjöstrand Class

In this section, we introduce the weighted Gohberg-Baskakov-Sjöstrand class of infinite ma-

trices and provide some of its properties such as norm estimate for the truncation and the

commutator with the multiplication operator, and the boundedness on weighted sequence

spaces.
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Definition 3.2.1 For a weight w, let

Cw(Λ,Λ
′
) =

{
A := (a(λ, λ

′
))λ∈Λ,λ′∈Λ′

∣∣∣ ‖A‖Cw(Λ,Λ′ ) <∞
}

(3.2.1)

be the weighted Gohberg-Baskakov-Sjöstrand class of infinite matrices A = (a(λ, λ
′
))λ∈Λ,λ′∈Λ′ ,

where

‖A‖Cw(Λ,Λ′ ) :=
∑
k∈Zd

w(k) sup
λ∈Λ,λ′∈Λ′

|a(λ, λ′)|χk+[0,1)d(λ− λ
′
). (3.2.2)

We use Cw instead of Cw(Λ,Λ
′
) and ‖A‖Cw instead of ‖A‖Cw(Λ,Λ′ ) for brevity. Similar to

the argument in the proofs of Propositions 2.2.2 and 2.2.3, we have the following properties

for the weighted Gohberg-Baskakov-Sjöstrand class Cw.

Definition 3.2.2 For an infinite matrix A = (a(λ, λ
′
))λ∈Λ,λ′∈Λ′ and any s ≥ 0, the trunca-

tion matrix is defined as

As = (as(λ, λ
′
))λ∈Λ,λ′∈Λ′ (3.2.3)

where as(λ, λ
′
) = a(λ, λ

′
) if ||λ− λ

′||∞ < s and as(λ, λ
′
) = 0 otherwise.

Proposition 3.2.1 Let w be a weight, A ∈ Cw, and As, s ≥ 0, be as in (3.2.3).Then

lim
s→∞

‖A− As‖Cw = 0. (3.2.4)

Proof. Let A = (a(λ, λ
′
))λ∈Λ,λ

′∈Λ
′ and define

r(k) = w(k) sup
λ∈Λ,λ

′∈Λ
′
|a(λ, λ′)|χk+[0,1)d(λ− λ

′
) (3.2.5)

By Definition 3.2.1 we have

∑
k∈Zd

r(k) = ‖A‖Cw <∞, (3.2.6)
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and

‖A− As‖Cw =
∑
k∈Zd

w(k) sup
λ∈Λ,λ

′∈Λ
′
|a(λ, λ′)− as(λ, λ

′
)|χk+[0,1)d(λ− λ

′
)

≤
∑

k∈Zd and ‖k‖∞≥s−1

w(k) sup
λ∈Λ,λ′∈Λ′

|a(λ, λ′)|χk+[0,1)d(λ− λ
′
)

=
∑

k∈Zd and ‖k‖∞≥s−1

r(k). (3.2.7)

Combining (3.2.6) and (3.2.7) proves (3.2.4).

Proposition 3.2.2 Let w be a weight, A ∈ Cw, and the truncation matrices AN and the

multiplication operator ΨN
n be defined as in (3.2.3) and (3.1.5) respectively. Then

‖ANΨN
n −ΨN

n AN‖Cw ≤ inf
0≤s≤N

‖A− As‖Cw +
s

N
‖A‖Cw (3.2.8)

for all N ≥ 1 and n ∈ NZd.

Proof. Let A = (a(λ, λ
′
))λ∈Λ,λ′∈Λ′ . We have

‖ANΨN
n −ΨN

n AN‖Cw

=

∥∥∥∥∥
(
a(λ, λ

′
)

(
ψ

(
λ
′ − n

N

)
− ψ

(
λ− n

N

)))
λ∈Λ,λ′∈Λ′

∥∥∥∥∥
Cw

≤ inf
0≤s≤N

∥∥∥∥∥
((

a(λ, λ
′
)− as(λ, λ

′
)
)(

ψ

(
λ
′ − n

N

)
− ψ

(
λ− n

N

)))
λ∈Λ,λ′∈Λ′

∥∥∥∥∥
Cw

+

∥∥∥∥∥
(
as(λ, λ

′
)

(
ψ

(
λ
′ − n

N

)
− ψ

(
λ− n

N

)))
λ∈Λ,λ′∈Λ′

∥∥∥∥∥
Cw

≤ inf
0≤s≤N

‖A− As‖Cw +
s

N
‖A‖Cw . (3.2.9)

In the next theorem we show that an infinite matrix in the weighted Gohberg-Baskakov-

Sjöstrand class Cw defines a bounded operator on `pw.
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Proposition 3.2.3 Let 1 ≤ p ≤ ∞ and w be a submultiplicative weight. Then any infinite

matrix A in the weighted Gohberg-Baskakov-Sjöstrand class Cw defines a bounded operator

on `pw. Furthermore there exists a positive constant C (independent of A) such that

‖Ac‖`p
w
≤ C(R(Λ

′
))

p−1
p (R(Λ))

1
p‖A‖Cw‖c‖`p

w
for all c ∈ `pw. (3.2.10)

Proof. Clearly it suffices to prove (3.2.10).

Write A = (a(λ, λ
′
))λ∈Λ,λ′∈Λ′ and set s(k) = supλ∈Λ,λ′∈Λ′ |a(λ, λ

′
)|χk+[0,1)d(λ − λ

′
) for

k ∈ Zd. Then

∑
k∈Zd

s(k)w(k) = ‖A‖Cw <∞. (3.2.11)

Let p = ∞ and take any c ∈ `∞w . Then we obtain from (3.2.11) that

‖Ac‖`∞w = sup
λ∈Λ

w(λ)
∣∣∣ ∑

λ
′∈Λ

′

a(λ, λ
′
)c(λ

′
)
∣∣∣

≤ sup
λ∈Λ

w(λ)
∑

λ′∈Λ′

|a(λ, λ′)| |c(λ′)|

≤ C sup
λ∈Λ

∑
λ′∈Λ′

|a(λ, λ′)|w(λ− λ
′
)|c(λ′)|w(λ

′
)

= C‖c‖`∞w sup
λ∈Λ

∑
λ
′∈Λ

′

|a(λ, λ′)|w(λ− λ
′
), (3.2.12)

where C is the constant in the definition of the submultiplicative weight w. Note that

∑
λ
′∈Λ

′

|a(λ, λ′)|w(λ− λ
′
)

=
∑
k∈Zd

∑
λ′∈Λ′

|a(λ, λ′)|w(λ− λ
′
)χk+[0,1)d(λ− λ

′
)

≤ C
∑
k∈Zd

s(k)w(k)
∑

λ′∈Λ′

χk+[0,1)d(λ− λ
′
) ≤ CR(Λ

′
)‖A‖Cw , (3.2.13)
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for any λ ∈ Λ and

∑
λ∈Λ

|a(λ, λ′)|w(λ− λ
′
)

=
∑
k∈Zd

∑
λ∈Λ

|a(λ, λ′)|w(λ− λ
′
)χk+[0,1)d(λ− λ

′
)

≤ C
∑
k∈Zd

s(k)w(k)
∑
λ∈Λ

χk+[0,1)d(λ− λ
′
) ≤ CR(Λ)‖A‖Cw (3.2.14)

for any λ
′ ∈ Λ

′
, where C is a positive constant independent of λ ∈ Λ and λ

′ ∈ Λ
′
. Combining

(3.2.12) and (3.2.13) proves (3.2.10) for p = ∞.

Let 1 ≤ p <∞ and take any c ∈ `pw. By (3.2.13) and (3.2.14) we have

‖Ac‖p
`p
w

=
∑
λ∈Λ

w(λ)
∣∣∣ ∑

λ′∈Λ′

a(λ, λ
′
)c(λ

′
)
∣∣∣p

≤
∑
λ∈Λ

w(λ)
∣∣∣ ∑

λ′∈Λ′

|a(λ, λ′)||c(λ′)|
∣∣∣p

≤ Cp
∑
λ∈Λ

∣∣∣ ∑
λ′∈Λ′

|a(λ, λ′)|w(λ− λ
′
)|c(λ′)|w(λ

′
)
∣∣∣p

≤ Cp
∑
λ∈Λ

( ∑
λ′∈Λ′

|a(λ, λ′)|w(λ− λ
′
)(|c(λ′)|w(λ

′
))p
)

×
( ∑

λ′∈Λ′

|a(λ, λ′)|w(λ− λ
′
)
)p−1

≤ Cp(R(Λ
′
))p−1‖A‖p−1

Cw

∑
λ′∈Λ′

(|c(λ′)|w(λ
′
))p
∑
λ∈Λ

|a(λ, λ′)|w(λ− λ
′
)

= Cp(R(Λ
′
))p−1R(Λ)‖A‖p

Cw
‖c‖p

`p
w
, (3.2.15)

where C is a positive constant independent of Λ, Λ
′
, A and Cw. Hence the inequality in

(3.2.10) for 1 ≤ p <∞ follows.

To prove Theorem 3.3.1, we also need the following uniform boundedness result on

the equivalent norm ‖ · ‖p,q,N,w for any infinite matrix in the weighted Gohberg-Baskakov-

Sjöstrand class Cw.
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Proposition 3.2.4 Let 1 ≤ p, q ≤ ∞, 1 ≤ N ∈ Z, w be a submultiplicative weight. Then

there exists a positive constant C (independent of A and N ≥ 1) such that

‖Ac‖p,q,N,w ≤ C(R(Λ
′
))

p−1
p (R(Λ))

1
p‖A‖Cw‖c‖p,q,N,w for all c ∈ `pw. (3.2.16)

Proof. Write A = (a(λ, λ
′
))λ∈Λ,λ′∈Λ′ and set

s(k) = sup
λ∈Λ,λ′∈Λ′

|a(λ, λ′)|χk+[0,1)d(λ− λ
′
)

for k ∈ Zd. Then

∑
k∈Zd

s(k)w(k) = ‖A‖Cw <∞. (3.2.17)

Take any c ∈ `pw. For any n ∈ NZd and N ≥ 1,

‖ΨN
n Ac‖`∞w = sup

λ∈Λ
w(λ)ψ

(λ− n

N

)∣∣∣ ∑
λ′∈Λ′

a(λ, λ
′
)c(λ

′
)
∣∣∣

≤ sup
λ∈Λ

w(λ)ψ
(λ− n

N

) ∑
λ′∈Λ′

|a(λ, λ′)| |c(λ′)|

≤ C
∑

n′∈NZd

sup
λ∈Λ

ψ

(
λ− n

N

) ∑
λ′∈Λ′

|a(λ, λ′)|w(λ− λ
′
)

×ψ
(
λ
′ − n+ n′

N

)
χ[−2,2)d

(
λ
′ − n+ n′

N

)
|c(λ′)|w(λ

′
)

≤ C
∑

n′∈NZd

‖ΨN
n−n′c‖`∞w

× sup
λ∈Λ

ψ

(
λ− n

N

) ∑
λ
′∈Λ

′

|a(λ, λ′)|w(λ− λ
′
)χ[−2,2)d

(
λ
′ − n+ n′

N

)
≤ C

∑
n′∈NZd

‖ΨN
n−n′c‖`∞w

× sup
λ∈Λ

ψ

(
λ− n

N

) ∑
λ′∈Λ′ and ‖λ−λ′−n′‖∞≤4N

|a(λ, λ′)|w(λ− λ
′
)
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≤ C
∑

n′∈NZd

‖ΨN
n−n′c‖`∞w

∑
k∈Zd and ‖k−n′‖∞≤6N

s(k)w(k)

× sup
λ∈Λ

ψ

(
λ− n

N

) ∑
λ′∈Λ′

χ[−4,4)d

(
λ− λ

′ − n
′

N

)
χk+[0,1)d(λ− λ

′
)

≤ CR(Λ
′
)
∑

n′∈NZd

‖ΨN
n−n′c‖`∞w

×
∑
k∈Zd

s(k)w(k)χ[−6N,6N ]d(k − n
′
), (3.2.18)

and for 1 ≤ q <∞,

‖ΨN
n Ac‖`q

w
=

∑
λ∈Λ

w(λ)ψ

(
λ− n

N

) ∣∣∣∣∣∣
∑

λ′∈Λ′

a(λ, λ
′
)c(λ

′
)

∣∣∣∣∣∣
q1/q

≤ C
(∑

λ∈Λ

( ∑
n′∈NZd

ψ

(
λ− n

N

) ∑
λ′∈Λ′

|a(λ, λ′)|w(λ− λ
′
)

×ψ
(
λ
′ − n+ n′

N

)
χ[−2,2)d

(
λ
′ − n+ n′

N

)
|c(λ′)|w(λ

′
)
)q)1/q

≤ C
∑

n′∈NZd

(∑
λ∈Λ

(
ψ
(λ− n

N

) ∑
λ′∈Λ′

|a(λ, λ′)|w(λ− λ
′
)

×ψ
(
λ
′ − n+ n′

N

)
χ[−2,2)d

(
λ
′ − n+ n′

N

)
|c(λ′)|w(λ

′
)
)q)1/q

≤ C
∑

n′∈NZd

(∑
λ∈Λ

(
ψ
(λ− n

N

) ∑
λ′∈Λ′

|a(λ, λ′)|w(λ− λ
′
)χ[−2,2)d

(λ′ − n+ n′

N

))q−1

×
( ∑

λ′∈Λ′

|a(λ, λ′)|w(λ− λ
′
)

×
(
ψ

(
λ
′ − n+ n′

N

)
χ[−2,2)d

(
λ
′ − n+ n′

N

)
|c(λ′)|w(λ

′
)
)q))1/q

≤ C
∑

n′∈NZd

‖ΨN
n−n′c‖`q

w

∑
k∈Zd

s(k)w(k)χ[−6N,6N ]d(k − n
′
)

×
(∑

λ∈Λ

χk+[0,1)d(λ− λ
′
)
( ∑

λ′∈Λ′

χk+[0,1)d(λ− λ
′
)
)q−1

)1/q

≤ C(R(Λ
′
))

q−1
q (R(Λ))

1
q

×
∑

n′∈NZd

‖ΨN
n−n′c‖`q

w

∑
k∈Zd

s(k)w(k)χ[−6N,6N ]d(k − n
′
), (3.2.19)
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where C is a positive constant independent of C ∈ `qw and N ≥ 1. Therefore for any

1 ≤ q ≤ ∞ it follows from (3.2.17), (3.2.18) and (3.2.19) that

‖Ac‖∞,q,N,w = sup
n∈NZd

‖ΨN
n Ac‖`q

w

≤ C(R(Λ
′
))

q−1
q (R(Λ))

1
q sup

n∈NZd

∑
n′∈NZd

‖ΨN
n−n′c‖`q

w

∑
k∈Zd

s(k)w(k)χ[−6N,6N ]d(k − n
′
)

≤ C(R(Λ
′
))

q−1
q (R(Λ))

1
q ‖c‖∞,q,N,w

∑
n′∈NZd

∑
k∈Zd

s(k)w(k)χ[−6N,6N ]d(k − n
′
)

≤ C(R(Λ
′
))

q−1
q (R(Λ))

1
q ‖c‖∞,q,N,w‖A‖Cw , (3.2.20)

and for 1 ≤ p <∞,

‖Ac‖p
p,q,N,w =

∑
n∈NZd

‖ΨN
n Ac‖

p
`q
w

≤ C
(
(R(Λ

′
))

q−1
q (R(Λ))

1
q

)p ∑
n∈NZd

( ∑
n′∈NZd

‖ΨN
n−n′c‖`q

w

∑
k∈Zd

s(k)w(k)χ[−6N,6N ]d(k − n
′
)

)p

≤ C
(
(R(Λ

′
))

q−1
q (R(Λ))

1
q

)p ∑
n∈NZd

( ∑
n′∈NZd

‖ΨN
n−n′c‖

p
`q
w

∑
k∈Zd

s(k)w(k)χ[−6N,6N ]d(k − n
′
)

)

×

( ∑
n′∈NZd

∑
k∈Zd

s(k)w(k)χ[−6N,6N ]d(k − n
′
)

)p−1

≤ C
(
(R(Λ

′
))

q−1
q (R(Λ))

1
q

)p

‖A‖p−1
Cw
‖c‖p

p,q,N,w

∑
n′∈NZd

∑
k∈Zd

s(k)w(k)χ[−6N,6N ]d(k − n
′
)

≤ C
(
(R(Λ

′
))

q−1
q (R(Λ))

1
q

)p

‖A‖p
Cw
‖c‖p

p,q,N,w, (3.2.21)

where C is a positive constant which could be different at different occurrence. Thus the

conclusion (3.2.16) follows from (3.2.20) and (3.2.21).

3.3 Weighted `p-stability

In this section, we establish the equivalence of the weighted `p-stability for infinite matrices

in the Gohberg-Baskakov-Sjöstrand class.
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Definition 3.3.1 Let 1 ≤ p ≤ ∞, w be a weight, and T be a linear operator on `pw. We say

that T has `pw-stability if there exist positive constants A and B such that

A‖c‖`p
w
≤ ‖Tc‖`p

w
≤ B‖c‖`p

w
for all c ∈ `pw. (3.3.1)

The following result generalizes Theorem 2.3.1 on `p-stability as the trivial weight w ≡ 1

is a submultiplicative weight.

Theorem 3.3.1 Let 1 ≤ p, q ≤ ∞, w be a submultiplicative weight, and A be an infinite

matrix in the Gohberg-Baskakov-Sjöstrand class Cw. If A has `qw-stability, then A has `pw-

stability.

Proof. Take any c ∈ `qw. By the `qw-stability of the infinite matrix A, there exists an

absolute positive constant C0 (independent of N ≥ 1, n ∈ NZd and c ∈ `qw) such that

‖AΨN
n c‖`q

w
≥ C0‖ΨN

n c‖`q
w

(3.3.2)

By Propositions 3.2.2 and 3.2.3, we have

‖(ANΨN
n −ΨN

n AN)c‖`q
w

= ‖(ANΨN
n −ΨN

n AN)Ψ6N
n c‖`q

w

≤ C1(R(Λ
′
))

q−1
q R(Λ)

1
q

(
inf

0≤s≤N

s

N
‖A‖Cw + ‖A− As‖Cw

)
‖Ψ6N

n c‖`q
w
, (3.3.3)

and

‖(A− AN)ΨN
n c‖`q

w
≤ C1(R(Λ

′
))

q−1
q R(Λ)

1
q ‖A− AN‖Cw‖ΨN

n c‖`q
w
, (3.3.4)
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where C1 is a positive constant independent of N ≥ 1 and n ∈ NZd. Combining (3.3.2),

(3.3.3) and (3.3.4), we get

‖ΨN
n ANc‖`q

w
≥

(
C0 − C1(R(Λ

′
))

q−1
q R(Λ)

1
q ‖A− AN‖Cw

)
‖ΨN

n c‖`q
w
− C1(R(Λ

′
))

q−1
q R(Λ)

1
q

×
(

inf
0≤s≤N

s

N
‖A‖Cw + ‖A− As‖Cw

)
‖Ψ6N

n c‖`q
w
, (3.3.5)

for any N ≥ 1 and n ∈ Zd. This implies that

‖ANc‖p,q,N,w ≥
(
C0 − C1(R(Λ

′
))

q−1
q R(Λ)

1
q ‖A− AN‖Cw

)
‖c‖p,q,N,w − C1(R(Λ

′
))

q−1
q R(Λ)

1
q

×
(

inf
0≤s≤N

s

N
‖A‖Cw + ‖A− As‖Cw

)
‖c‖p,q,6N,w. (3.3.6)

Noting that

‖A− AN‖Cw ≤ ‖A− As‖Cw for all 0 ≤ s ≤ N,

we then obtain from (3.1.20), (3.2.16) and (3.3.6) that

‖Ac‖p,q,N,w ≥
(
C0−C2(R(Λ

′
))

q−1
q R(Λ)

1
q
(

inf
0≤s≤N

s

N
‖A‖Cw +‖A−As‖Cw

))
‖c‖p,q,N,w, (3.3.7)

where C2 is a positive constant independent of N ≥ 1. Recalling from Proposition 3.2.1 that

lim
s→∞

‖A− As‖Cw = 0,

we can find a sufficiently large integer N0 such that

C2(R(Λ
′
))

q−1
q R(Λ)

1
q

(
inf

0≤s≤N0

s

N0

‖A‖Cw + ‖A− As‖Cw

)
≤ C2(R(Λ

′
))

q−1
q R(Λ)

1
q

(
‖A− A√N0

‖Cw +N
−1/2
0 ‖A‖Cw

)
≤ C0/2. (3.3.8)

Thus by (3.3.7) and (3.3.8) we have

‖Ac‖p,q,N0,w ≥
C0

2
‖c‖p,q,N0,w (3.3.9)
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for any c ∈ `pw. Combining (3.1.18), (3.1.19) and (3.3.9), we have

C0(2C
2)−1(R(Λ)Nd

0 )−|1/q−1/p|2−d/p‖c‖`p
w
≤ ‖Ac‖`p

w
, (3.3.10)

where C0 is a positive constant dependent on N0 and C is a positive constant independent

on N0 for all c ∈ `pw. Therefore the desired `pw-stability follows from (3.2.10) and (3.3.10).
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