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ABSTRACT

This dissertation originates from a classical result that the ¢P-stability of the convolution

operator associated with a summable sequence are equivalent to each other for 1 < p < oo.

This dissertation is motivated by the recent result by C. E. Shin and Q. Sun (Journal of
Functional Analysis, 256(2009), 2417-2439), where the (P-stability of infinite matrices in
the Gohberg-Baskakov-Sjostrand class are proved to be equivalent to each other for different

1 <p< oo

In the dissertation, for an infinite matrix having certain off-diagonal decay, its weighted
(P-stability for different 1 < p < oo are proved to be equivalent to each other and hence a

result by Shin and Sun is generalized.
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CHAPTER ONE: HISTORICAL ORIGIN

The origin of this dissertation comes from the classical result that the ¢P-stability of the
convolution operator associated with a summable sequence are equivalent to each other for
1 < p < oo (Theorem 1.3.1), see [2, 5, 6] and the references therein for further discussion on

the stability of convolution operators.

1.1 Convolution Operator

In this section, we define the sequence space #,1 < p < oo, and the convolution operator
C, associated with a summable sequence a, and we also recall the conclusion that any

convolution operator C, associated with a summable sequence a is a bounded operator on

28
Definition 1.1.1 For 1 <p < o0, let

(Z) = {e:= (ei))sez

lell < 00} (L.11)

where

N\ 1/P
(Zjez |C(J)’p) v if 1<p<oo,
lleller = (1.1.2)
sup;ez, [¢(j)] if p=oo.
A sequence in (P(Z) is said to be p-summable, while for the special case p = 1, a sequence

in (1(Z) is said to be summable. We observe that a sequence belongs to (°*°(Z) if and only if

it is a bounded sequence. In this dissertation, I also use ¢? instead of ¢?(Z) for brevity.



Definition 1.1.2 Let a = (a(j)),ez be a summable sequence. Define the convolution oper-

ator C, associated with the sequence a by
Co: P(Z) 3 (b())) ez (Za j— ) e ("(Z), (1.1.3)
JET
where 1 < p < o0.

The convolution operator associated with a summable sequence defines a bounded oper-

ator on (P(Z) for all 1 <p < 0.

Proposition 1.1.1 Let a = (a(j))jez be a summable sequence. Then the convolution opera-
tor C, associated with the sequence a defines a bounded operator on (P(Z) for all 1 < p < oco.

Furthermore its operator norm is bounded by the ¢* norm of the sequence a.

Proof. Take 1 < p < oo and b = (b(j))jez € *(Z). Then

|Cabller = (%‘%a(j—k)b(k) p) "
(Z(ZVM— )|[b(k) ) (Zya]_ )1>1/p

<
JEZ k€L kEZ
/p
= Nal & (325 Jat — WIBEP)
JET keZ
1/p
1)/
= el (Z(Zm— )1 Ib >\)
keZ  jeEZ
= lalla el

where we have used the Holder inequality to obtain the inequality. This proves the conclusion

for 1 < p < 0.



For p = oo and b = (b(j)),ez € (*(Z), it follows that

ICablles = sup| S aj — k)b(k)|
JEL " yex

sup |b(k)| X su alj —k
sup ()| sup Y [a(j = b)

J€L Ye7

IN

= llalle[blle,

which proves the desired conclusion for p = oc.

1.2 (P-stability of Convolution Operators

In this section, we define the ¢P-stability of a linear operator on /P, and we characterize the

(P-stability for a convolution operator associated with a summable sequence.

Definition 1.2.1 Let 1 < p < 0o and T be a linear operator on (P(Z). We say that the

linear operator T has (P-stability if there exist positive constants A and B such that

Allcller < || T¢ller < Bllc|ler for all ¢ € ¢P. (1.2.1)

Clearly a linear operator 1" has (P-stability if and only if it is a bounded operator on ¢

and has bounded inverse on /P.

For any convolution operator associated with a summable sequence, its ¢P-stability can

be characterized via the Fourier series of that summable sequence.

Proposition 1.2.1 Let 1 < p < 00, a = (a(j)) ez be a summable sequence, and C, be the

convolution operator associated with the sequence a. Then C, has (P-stability if and only if

a(§) 0 forall £€R (1.2.2)



where a(§) 1= 3.5 a(j)e .

To prove Proposition 1.2.1, we recall the following result, which is known as the classical

Wiener’s lemma ([10]).

Lemma 1.2.2 If a(§) = .., a(j)e "¢ for some summable sequence a = (a(j))jez, and

JEZL

a(&) #0 for all £ € R, then

Q>

g - D

jEz
for some summable sequence b = (b(j));ez.
Now we start to prove Proposition 1.2.1, the characterization of (P-stability of a convo-
lution operator.
Proof of Proposition 1.2.1.
(=) First we prove the conclusion for p = co. Suppose on the contrary that a(§,) =0
for some & € R. Then for the bounded sequence eg, = (%) ez, we have that ||eg, ||s~ = 1

but

Cotgy = <Za(j—k:)eikf°>

ez
keZ I€

- (eij%(go)) ~0. (1.2.3)
JET

This is a contradiction.
Now we prove the conclusion for 1 < p < co. Suppose on the contrary that a(§,) = 0 for

some & € R. Let N > 1 and define the sequence eng¢, = (eng,(j))jez where ey, (j) = €<

if |j] < N and eyg,(j) = 0 otherwise. Then

lengoller = (2N + 1) (1.2.4)



and

HCaeN,EoHeP = (Z ‘ Z a(j—k)e_ikfo p
S |3 ke

lj|>N+N/2 k=-N

)/p
(X |3 - pee

p) 1/p
\j\SN—Nl/Q k=—N

(T | S a-ne

N—N1/2<|j|<N+N1/2 k=—N

(X (zm— vl))"”

lj|>N+N1/2 k=

(X (5 atne

JISN—-NV2  k=j+N  k=—o0

. p)l/p
LD DI S lalG— B)

’ p) 1/p
N—-N/2<|j|<N+N1/2 k=-N

( >, \a(k)!)(p_l)/p( > XN: |a(j—k)|)1/p

IN

p) 1/p
0

IN

<
|k|>N1/2 li|=N+N1/2 k=—N
(p—1)/p i =N 1/p
X aw)” (X (X X )la)
|k|>N1/2 lj|SN-N1/2  k=j+N  k=—oco

H(h)< (% )"

N—N1/2<|j|<N+N1/2

< 2(2N +1) 1/p( Z la(k > p—l)/p<z |a(k:)|>1/p
|k|>N1/2 keZ
+(4N1/2 + 2)1/p<2 |a(k)|>. (1.2.5)



The above two estimates, together with the assumption that a € ¢!, imply that

0 < hmsupw
N—oo  |lengller
. (r—1)/p 1/p
< timswp (Y0 k) (D lak))
N=eo % >N/ kEZ
_ 4NY2 4 2\1/p
Fimew (Syrr) (35 19)
= 0, (1.2.6)

which contradicts to the ¢P-stability of the convolution operator C,.

(«<=) By the classical Wiener’s lemma (Lemma 1.2.2),

= b(j)e (1.2.7)

JEZ

Q>

for some summable sequence b = (b(j)),ez. Let C, denote the convolution operator associated
with the sequence b. Then C is a bounded operator on ¢* by Proposition 1.1.1. By (1.2.7),

we have that

- ()« (5

keZ JEZ

_ Z( f: a(k)b(n — k))e—mf.

neZ k=—o0

This implies that

o0

> alk)b(n — k) =6, (1.2.8)

k=—0o0
where §,, is the Kronecker delta defined by

1 if n=0,
Op =

if 0#n € Z.



Thus

CoCa = (D0l = kyalk— )

= (Za(k)b((l B ]) - k))i,jGZ
) ((Z;j)i’jez (1.2.9)

This shows that Cj is the inverse of the convolution operator C,, that is,

CyCoc=c forall c e (P (1.2.10)
By (1.2.10) and Proposition 1.1.1, we have

[Cacller < [lal|ex]lcler (1.2.11)
and

llcller = [|CoCocller < ||B]|er]|Cacller for all ¢ € . (1.2.12)

Then the (P-stability of the convolution operator C, follows from (1.2.11) and (1.2.12).

1.3 Historical Origin

Now we state precisely the classical result from which this dissertation originates.

Theorem 1.3.1 Let a be a summable sequence, and C, be the convolution operator (1.1.3)
associated with the sequence a. Then C, has (P-stability for some 1 < p < oo if and only if

it has (1-stability for all 1 < g < 0.

Proof. Clearly it suffices to prove the sufficiency. By Proposition 1.2.1 and the assump-
tion that C, has (P-stability, the Fourier series a(£) does not vanish on the whole line, which

in turn implies that the convolution operator C, has (?-stability by Proposition 1.2.1.



CHAPTER TWO: MOTIVATION

In [8], Shin and Sun gave a new proof of Theorem 1.3.1, the ¢P-stability of a convolution
operator associated with a summable sequence for different 1 < p < oo, without using
Proposition 1.2.1. Furthermore they showed that the ¢P-stability of infinite matrices in
the Gohberg-Baskakov-Sjostrand class are equivalent to each other (Theorem 2.3.1). This
motived me to consider the equivalence of weighted ¢P-stability for infinite matrices in the
weighted Gohberg-Baskakov-Sjostrand class for different 1 < p < oo, see next chapter for

details.

2.1 Schur Class

In this section, we introduce the Schur class of infinite matrices, define every infinite matrix
in the Schur class as a bounded operator on /P, and also show that the Schur class is the

smallest class of linear operators that are bounded on 7 for all 1 < p < oo.

Definition 2.1.1 Let

A={4:=(@.7)ye

1A]l4 < oo} (2.1.1)

be the Schur class of infinite matrices A = (a(j, 7)), ez, where

| A4 := max (sup S al )l sup S |a(j,j’)\). (2.1.2)
JEZ JEL ez

/€L



An infinite matrix A = (a(j,J'));jez in the Schur class can be thought as a bounded

operator on /7,1 < p < oo, which is defined by

Az 3 (c()))jez — (Z a(]k]”)@(]")) c . (2.1.3)

'€z
Proposition 2.1.1 Let 1 < p < oco. If A= (a(i,}))ijez is an infinite matriz in the Schur

class A, then A defines a bounded operator on (P. Furthermore
|Acllew < [|Al|allc]ler for all c € £P. (2.1.4)
Proof. Clearly it suffices to establish (2.1.4).

First we prove (2.1.4) for p = co. For any sequence ¢ = (c(j));ez € £*°,

|Acllp= = sup Za(j,k)c(k)‘
I€L " ez
< sup] |><sup<Z\a], )
keZ
< [Aflallclle (2.1.5)

and (2.1.4) for p = oo follows.

Now we prove (2.1.4) for 1 < p < oco. For any sequence ¢ = (¢(j)) ez € ,

lcle = (X[ atmem)|)”

JEZ k€L
< (X (T haGRl) = (Slatplietr)) "
< A1 (LYl wllwr)”
< [[Allalleller- (2.1.6)

This proves (2.1.4) for 1 < p < oo and completes the proof.

9



In the next result, we show that the converse of the conclusion in Proposition 2.1.1 holds,
which implies that the Schur class is the smallest class of linear operators that are bounded

on /P for all 1 < p < oo.

Proposition 2.1.2 If T is a bounded linear operator bounded on ¥ for all 1 < p < oo then

T = A for some infinite matriz A in the Schur class A.

Proof For any k € Z, let e, = (§;_k)jez where 6, is the Kronecker delta. Then e, € ¢*
and Tey := (a(i, k))iez € (' by the assumption. By the ¢! boundedness of the operator T

we conclude that

ITelle =Y la(@ k)| < [ Tlllela = | TIh for all k € Z,

i€z
or equivalently,
sup Y _la(i, k)| < |71, (2.1.7)
L ez,

where ||T|,,1 < p < o0, is the linear operator norm of the operator 7" on ¢?.

Let T* be the conjugate operator of the operator 7" on £2. Note that

(T*e;,ex) = (e, Tex) = a(i, k)

for any i, k € Z. Therefore

T e; = (a(i,j))jez  for all i € Z. (2.1.8)

By the /> boundedness of the operator T', and by the dual property between sequence spaces
(> and ¢!, the conjugate operator T* is a bounded operator on ¢! and

1T = 1T co- (2.1.9)

10



Similar to the argument in establishing (2.1.7), we obtain from (2.1.8) and (2.1.9) that

sup » [a(i, 5)| < 1T = ||, (2.1.10)

i€z S
Therefore the infinite matrix A = (a(7,J)):jez belongs to the Schur class by (2.1.7) and
(2.1.10).

From the definition of the matrix A, we see that Te, = Ae, for any k € Z. For any
c=(c(j))jez € P, define ¢, = (¢, (j))jez,n > 1, where ¢,(j) = c(j) if |j] < n and ¢,(j) =0

if |j| > n. Then for all n > 1 we have that ¢, € 7 (in fact, ||c,|lee < ||c||er), and that

Tc, = Z c.Te, = Z cpAe, = Ac,,. (2.1.11)
[k|<n lk|<n
Therefore from (2.1.7), (2.1.10), and (2.1.11) it follows that
(eg, Tc) = lim (e, Tc,) = lim (ex, Acy,) = (ex, Ac) for all k € Z.
This proves that

Tc=Ac for all c € (P, (2.1.12)

Combining (2.1.7), (2.1.10) and (2.1.12) completes the proof.

2.2 Gohberg-Baskakov-Sjostrand Class

In this section, we recall the Gohberg-Baskakov-Sjostrand class of infinite matrices and show
that for every matrix A in the Gohberg-Baskakov-Sjostrand class, its band-truncation A,

converges as the band s tends to infinity (Proposition 2.2.2).

11



Definition 2.2.1 Let

C = {A = (a(j,5"))jjez

[Alle < oo} (2.2.1)

be the Gohberg-Baskakov-Sjostrand class of infinite matrices A = (a(j, j')); ez, where

IAllc =) sup Ja(i, )| (2.2.2)

kez * 71T

Any infinite matrix A in the Gohberg-Baskakov-Sjostrand class C belongs to the Schur

class.
Proposition 2.2.1 If A € C, then A € A. Furthermore
A4 < ||Alle for all Ae€eC. (2.2.3)
Proof. Let A = (a(i, j))ijez € C and set (k) = sup;_;_; |a(4, j)| for any k € Z. Then

L y .
Al max(sup%\a(z,migzpzIa(mﬂ)

€2 i€l
< max (suer(i - j),SUPZT(i —j)>
i€EZ jez JEL ic7Z
- Zr(/f) = ||A]lc- (2.2.4)
keZ

This proves (2.2.3) and completes the proof.
For any s > 0 and any infinite matrix A = (a(i, j)); jez, we define the band-truncation

matrix

Ay = (as(i,7))i ez (2.2.5)

where

o JaGg) i<
as(i,j) =
0 otherwise.

12



Clearly
lim as(i,j) = a(i,j) for all i,j € Z.
Moreover for infinite matrices A in the Gohberg-Baskakov-Sjostrand class, A, tends to A in

the norm || - ||¢ of the Gohberg-Baskakov-Sjostrand class.
Proposition 2.2.2 Let A € C and for s > 0 define A as in (2.2.5). Then
Sli_glo |A — Aglle = 0. (2.2.6)
Proof. Let A = (a(,7)); jez and define

r(k) = sup l|a(i,j)| for all k € Z.

i—j=k

Then

> (k) =||Alle < 0. (2.2.7)

keZ

From the definition of the truncation matrix A,, we have that

1A= Adle = > sup la(i,j) — as(i, )]
kez Ik

= > sup fa(i, )| = (k). (2.2.8)
A

k| >s i—j=k

>s
Combining (2.2.7) and (2.2.8) proves (2.2.6).

We remark that the truncation matrix A, may not tend to A for infinite matrices in the

Schur class. The infinite matrix (6;1;); jez is such an infinite matrix in the Schur class.

Let
(
1 if o[ <1,
Yo(@) =9 2— |z if 1<]|z|<2, (2.2.9)
0 if |z| > 2.
\

13



be a cut-off function. Define the multiplication operator WY : (P — (P by

Uhe = (zﬂo(j ]_Vn)c(j))jez for c=(c(j))jen € . (2.2.10)

The multiplication operator U2 is a diagonal matrix diag(o((j —n)/N));ez in the Gohberg-

Baskakov-Sjostrand class C.

Proposition 2.2.3 Let A € C, and the truncation matrices Ay and the multiplication op-

erator U be defined as in (2.2.5) and (2.2.10) respectively. Then
: s
AN Y ~ WY Axle < inf 4~ Alfle + Al (.2.11)
for all N > 1 and n € Z.
Proof. Let A = (a(i, j))ijez and set r(k) = sup;_;_y |a(i, j)| for k € Z. Then

AN =W Axlle = > sup lan(i, j)l[do((i = n)/N) = vo((j = n)/N))|

kez "Ik
= dnf ) sup |a(z, 7)[|¥o((i = n)/N) = ho((j — n)/N)|
DT

+ 3 sup la(i)lleo((i = n)/N) = o(( —n)/N)|

N>[k|>s IR

1
< oy 2 B+ 2 v
|k|<s |k|>s
. S
< dnf Sl Alle + 14 = Aslle,

where in the first inequality we have used the following properties:

0<y(x) <1 forallzeR

and

[Yo(z) = ¢o(y)| < |z —yl| for all 2,y € R

14



for the cut-off function ).

The above property for the commutator between the multiplication operator and trun-
cated infinite matrices in the Gohberg-Baskakov-Sjostrand class plays essential role in [8] to
establish the equivalence of the /7 stability for infinite matrices in the Gohberg-Baskakov-

Sjostrand class.

2.3 (P-stability of Infinite Matrices

In this section, we restate Shin and Sun’s result on the ¢P-stability of infinite matrices in the

Gohberg-Baskakov-Sjostrand class ([8]) and give a sketch of the proof.
Theorem 2.3.1 Let 1 <p,qg<oo and A € C. If A has {9-stability, then A has (P-stability.

This generalizes the conclusion in Theorem 1.3.1 for convolution operators, because the
convolution operator C, associated with the summable sequence a := (a(j)) ez is the same
as an infinite matrix A = (a(i — j)); jez in the Gohberg-Baskakov-Sjostrand class C with

[Alle = llalle < oo

Now we give a sketch of the proof of Theorem 2.3.1 as we will follow those steps to prove
the equivalence of weighted ¢P-stability in the next chapter.
Proof of Theorem 2.3.1. Given 1 < p,q < oo and N > 1, define a new norm || - ||, 4.~

on /P as follows:

1/p
(Soenz lwell) " if1<p<oo,

lellpqn = (2.3.1)

SUPpenz || W5 clles if p= o0,

15



for any ¢ € (P, where WY is the multiplication operator defined in (2.2.10). For this new
norm || - ||,.4~ on €7, the following claims hold true:
Claim 1: Given 1 < p < oo, there exists a positive constant C' independent of N > 1

such that
eller < lcllppn < Clicller (2.3.2)

hold for all ¢ € ¢7.
Claim 2: Given 1 < p,q,q2 < 00, there exists a positive constant C' independent of

N > 1 such that
CHlem(l/qQ_1/(11’0)||C||p7q1,N < ||C||p7q2,N < CNmaX(l/qu/%O)||C||p7q1,N (2.3.3)

for all c € /7.
Claim 3: Given 1 < p,q < oo, there exists a positive constant C' independent of N > 1

such that

[ellpgn < llellpgen < Cllellpqn (2.3.4)

for all ¢ € /P,

Claim 4: There exists a positive constant C' independent of N > 1 such that
|Aclpan < CllAllcl|cllpqgn for all c € 7. (2.3.5)

Now we can prove our desired result: the (7 stability for infinite matrix A. Take any
c € (P. By the ¢4-stability of the infinite matrix A, there exists an absolute positive constant

Cy (independent of N > 1,n € Z and ¢ € ¢?) such that

[AD cllea > Col| 3 el (2.3.6)

16



By (2.2.3) and Proposition 2.1.1, we have
I(A = An) T el < [[A = Anllel Ty clles.
By Proposition 2.2.3, we have

(AN Ty — U AN)clle = [[(AnvTy — T AN) TNl

. S
< (,inf TlAlle+ 14— Adie) 15Nl

0<s<N
Combining (2.3.6), (2.3.7) and (2.3.8), we get
|9 Aweller = (Co— 1A= Awlle) 1% elle

e s _ 6N
(,nf S l4lle + 114 = Adlle) w2V elln,

for any N > 1 and n € Z, which implies that

lAnellpan = (Co— A= Axlle) lelan

. S
~(inf Al + 1A = Adlle) lellpgon

0<s<N [N

This together with Claim 3 and Claim 4 yields

(2.3.7)

(2.3.8)

(2.3.9)

(2.3.10)

. S
[ Aclqn > (Co— Cill A= Axlle = o inf Sl Alle + 4= Aylle) ) ellpans (2:311)

where (' and C5 are positive constants independent of N > 1. Recall from Proposition 2.2.2

that

lim ||A — Aglle = 0.
Therefore there exists a sufficiently large integer Ny such that

. S
CullA = Anglle +Co((nf = l1Alle + 14 - Adlle)

IN

(Cy+ o) A = Aypglle + CoNg || Alle
< Go/2.

17
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Thus by (2.3.10) and (2.3.12) we have
Co
[ Acllpqne = 7||C||p,q,No (2.3.13)

for any ¢ € (7. Therefore the desired ¢ stability from from (2.3.13), Claim 1, and Claim 2.
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CHAPTER THREE: WEIGHTED ¢”-STABILITY FOR
LOCALIZED INFINITE MATRICES

In this chapter, I show that the weighted ¢P-stability of infinite matrices in the weighted
Gohberg-Baskakov-Sjostrand class are equivalent to each other for different 1 < p < oc.

Please see Theorem 3.3.1 for the details.

3.1 Weighted ¢ Space

In this section, we introduce the weighted (¥ space of sequences with the standard norm

| - |l and its equivalent norm || - ||p.q.nw-

Definition 3.1.1 A weight is a continuous function w : R — [1,00). A weight w is said

to be submultiplicative if there exists a positive constant C' such that
w(z +y) < Cw(x)w(y) for all z,y € RY, (3.1.1)

A typical example of submultiplicative weight is the power weight (1 4 |z|)® with a > 0,

which becomes the trivial weight w =1 when a = 0.

We consider the infinite matrices of the form (a(A, X)) cx v en having certain off-diagonal

decay.

Definition 3.1.2 A discrete subset A of R? is called relatively-separated if

R(A) = sup Zx,\+[071)d(:c) < 00. (3.1.2)

d
zeR AEA
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As usual, an infinite matrix A = (a(A, /\/))/\GA’/\IGA/ in the Gohberg-Baskakov-Sjostrand

class C(A, A") defines a bounded operator from ¢?(A") to £7(A),

’

A PP(N) 3 (c\))yen =c Aci= | Y a(X N)e(X) € (P(A), (3.1.3)
NeN AEA
where 1 < p < 0.
Definition 3.1.3 Forn € Z¢ and N € N, the cut-off function is defined as
Y(z) = min(max(2 — ||7||ss,0),1) for z € R?, (3.1.4)

here ||2]|oo = maxi<i<q |7;] for z = (71, ...,24) € R

Definition 3.1.4 The multiplication operator WY : (P(A) — (P(A) is defined by

Ve = (w()\]:fn)c()\)))\ fore= (e(N))ren € 27, (3.1.5)

where A is a relatively-seperated subset of RY.

Proposition 3.1.1 The cut-off function (z) is Lipschitz continuous, that is,

[W(x) =) <z = ylloo for z,y € R (3.1.6)
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Proof. By Definition 3.1.4, we have

() =) = min(max(2 — |[z]s,0), 1) — min(max(2 - [|y[|-, 0), 1)

[lzlloo = lylloe]  if 1< [lzfle <2, 1< lylloc <2;
12 = [zl ] if 1< lzlloe <2, [yl > 2
12— lyllo] if 1< [ylloo <2, ll2floo = 25

_ ) il if 1< zlloe €20 Iyl < 15
1= llylloo if 1< yllo <2, ll2floo = 2;
1 if 2o <1, Yyl = 25
1 if 7]l <1, [yl > 2;

\ 0 otherwise.
< |z =yl for z,y € R% (3.1.7)

Proposition 3.1.2 Let A = (a(), )\/))/\E/\)\/GA/ be an infinite matriz in the Gohberg-Baskakov-
Sjéstrand class C(A,A") and Ay be the truncation matriz. The mutiplication operator WY is

defined by (3.1.5). Then

ANUY — UV Ay = (AUY — UN AN wENY (3.1.8)
for all N > 1 and n € Z°.
Proof. First we prove that for all A € A, A € A’, we have

RO GRG0 R

(Case 1:) If [\ — A| > N, by definition we have ay(),\) = 0.

(Case 2) If [N — A| < N and [\ — n| < 3N, by definition we have ¢ (u> ~ 1. So

6N
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1o (%) = 0.
(Case 3:) If [\ — A\l < N and |\ —n| > 3N, by definition we have (A'];") — 0. Since

IA=n|>|N —n| = |\ = A > 3N — N = 2N, we have % > 2 which implies ¢ (232) = 0.

So we get ¥ (’\,T’") —w(’\’T”) =0.

Then we finish prove (3.1.9). From (3.1.9), for all A € A, X € A,

o () (5 ot (5 (50 ()
(AN} — U Ay) = Ay — U Ay

_ (Z an(\ N )0 (XN”)) - (*” (5") 2w X))

Nen Nen
; (z<> () o ;)))m o

and

(AnTy = U AN )Y = AU Oy — AN TN

(S () s () () o

X e’

Therefore from (3.1.9), (3.1.10) and (3.1.11), we can get (3.1.8).

Proposition 3.1.3 The cut-off function ¢ (x) is defined by (3.1.4). Then for all N > 1,

neZand N € N we have

() [ ()= =

JELE with ||j]|s0<6

ool ()|

2

jez
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Proof. Clearly (3.1.12) is equivalent to

> v </\6]_Vn>’ ‘w (AJ; = - 2j>‘ =0. (3.1.13)

JEZL with ||j]|eo>6
By the definition of ¥ (z), we know that ¢ (z) = 0 if ||z||c > 2. So if HA(;—]’V”HOO > 2 which is

o ’\6&”)7&0, ||’\—A_,”Hoo<12. For ||j]|ec > 6, we have

1220l > 12, d(X=2) = 0. If 4

’

A —n

/

—nNn

> 14-12=2.

o0

N —n
— 29 >
|77 -] > ||

So (2" — 2j) = 0. This finishes the proof of (3.1.13), and hence (3.1.12).

) ) A
—Hzmoo\ _ szuoo—H

[e.o]

Definition 3.1.5 For 1 < p < 0o and a weight w, let

2(8) = {llelgny < +oo} (3.1.14)
be the weighted (P space of all sequences on A, where

lclle ay == llewllewny — for all c € 5 (A). (3.1.15)

We also use 2 instead of /£ (A) for brevity. From the definition of the weighted 7 space,

we have that
le+dlle, < llelle, + ldller,  for all ¢,d € &, (3.1.16)
In fact, /£ is a Banach space for all 1 < p < oo and weights w.

To establish our desired equivalence of weighted ¢P-stability for different 1 < p < oo, we

need another norm || - |4~ o0 £, where

1/p
(Sewallwelly) " if 1<p <00
’ (3.1.17)

ellp.gvw =

SUPpenzd ||‘I/7ZLVC||£§U if p=o0.
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The next result shows that the new norm || - ||, .~ 1S equivalent to the standard norm
- e, on £

Proposition 3.1.4 Let 1 < p,q1,q2 < 00 and w be a submultiplicative weight. Then there

exists a positive constant C' independent of N > 1 such that the following hold for all ¢ € (% :

27|/, < llellpp, v < 477l (3.1.18)

CTH RN e O], g v < lellpgov

IN

C(R(AN) N mxV@=t/aD el o nw; (3.1.19)
and

lellpanw < lellpgone < Cllellpgnw- (3.1.20)

Proof. First we prove (3.1.18). For p = oo and ¢ € £5°,

[elloo,00,8w = sup sup (A —n)/N)|c(A)|w(A) < sup sup[c(A)[w(A) = [[c]le
nENZI ANeA neENZI AeA

and
[¢lloo,00.nw = sup sup (A —n)/N)[e(A)|w(N)
neNZE AeA

S <)\ —-n
Z Sup Sup X[-i,1)¢
AEA neNZ4 - N

Ne)w(X) = llelle-
Hence the estimate in (3.1.18) follows for p = oc.

Forl1<p<oocandce®,

el = (3 31— /W) PleFw)?)

neNZI NeA
< (X X el - myMePwy)
neNZI XeA
< (S0 Pw?) " = 1el.
AEA
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and

lelppre = (32 SO =n/N PP @?)”
> (2 3 e O = w/Nerwr)
= 2 (S lePw)?) = 2 el

Therefore the estimate in (3.1.18) follows for 1 < p < oc.

Now we prove (3.1.19). Clearly it suffices to prove the second inequality in (3.1.19). Let

ce b If ¢ > q, recalling from ||d||,2 < [|d||,a for any d € (2 that
1 el < 193 el

for all n € NZ®. If ¢» < ¢; and 1 < ¢ < oo, then

el = (3 R(O=mM o))
AEA
< (X =mmmem o) < (%
AEA [[A=nllcc<2N

< C(RA)NDYeVe | wife] o
If g < ¢4 and ¢; = oo, then

1/g2
JoNelle = (D2 (O = n)/N)[2le(n)[= (w(X)*»)
AEA
1/q2

< sup [9(( = m)/N)leWhw(k) x (3

[A—nlloo<2N

< C(RANDYR| Tl s
Combining (3.1.21), (3.1.22) and (3.1.23), we obtain that

[ cl|g < C’(R(A)Nd)max(l/qu/ql’0)||\If,]yc||d} forall ce %,

25

(3.1.21)

1/q2—1/q1

(3.1.22)

(3.1.23)

(3.1.24)



where n € NZ¢ and 1 < N € Z. Then the second inequality in (3.1.19) follows.

Finally we prove (3.1.20). Noting that for any A € A,n € NZ? and N > 1,

and
A—n 5 |
V(Tx) S N A=) = 20X A= (25 D)
j=-6
5 .
A—n— (2 +1)N
<
< > - )
j=—6
we have
5
”\IJQ[CH% = “\Pchu% = Z ||‘I’nN+(2j+1)NC||£qw (3.1.25)

j=—6

for any n € NZ¢ and N > 1. Therefore

HCHp,q,Nﬂu < ”CHp,q,GN,w < 12Hcl|p,q,N,w

and (3.1.20) is proved.

3.2 Weighted Gohberg-Baskakov-Sjostrand Class

In this section, we introduce the weighted Gohberg-Baskakov-Sjostrand class of infinite ma-
trices and provide some of its properties such as norm estimate for the truncation and the
commutator with the multiplication operator, and the boundedness on weighted sequence

spaces.
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Definition 3.2.1 For a weight w, let

Cw(AaA,) = {A = (a(A, X)),\eA,XeA’ ||A”cw(A,A’) < OO} (3.2.1)

be the weighted Gohberg-Baskakov-Sjéstrand class of infinite matrices A = (a(A\, X)) e AN €A

where

”AHCw(A,A’) = Z w(k) sup |a(A, >\/)|Xk+[0,1)d()\ - )\/)~ (3.2.2)

kezd AeAN eN

We use C,, instead of C,(A,A") and ||A||¢, instead of [ All¢, (a,a7y for brevity. Similar to
the argument in the proofs of Propositions 2.2.2 and 2.2.3, we have the following properties

for the weighted Gohberg-Baskakov-Sjostrand class C,,.

Definition 3.2.2 For an infinite matriz A = (a(\, X))/\EA,XGA’ and any s > 0, the trunca-

tion matriz is defined as

As = (as(A, /\/)))\GA,/\’eA’ (3.2.3)
where a;(\, ) = a(M\A) if [IA =Nl < 5 and as(\,\') = 0 otherwise.
Proposition 3.2.1 Let w be a weight, A € C,, and As, s >0, be as in (3.2.3). Then

sh—>nolo |A = Aglle, = 0. (3.2.4)
Proof. Let A = (a(X\, X)) ennen and define

Pk = w(k) sup Ja(h N)esoe(r — X) (325)

AeAN e’

By Definition 3.2.1 we have

> (k) = Alle, < oo, (3.2.6)

kezd
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and

1A= Adle, = D wk) sup  Ja(hA) = ag(A N ) xeso e (A = A)

kezd AeA N eN
< Z w(k) sup la(A, X)|Xk+[0’1)d()\ _ )\’)
k€Zd and ||koo>s—1 AEAN €A

= > r(k). (3.2.7)

k€Zd and ||k|loco>s—1

Combining (3.2.6) and (3.2.7) proves (3.2.4).
Proposition 3.2.2 Let w be a weight, A € C,, and the truncation matrices Ay and the
multiplication operator WY be defined as in (3.2.3) and (3.1.5) respectively. Then
N N . S
_ < - — 2.
1ANTy — Ty Anlle, < inf 1A = Adfle, + 7 llAlle. (3.2.8)
for all N > 1 andn € NZ2.

Proof. Let A = (a(A, X))/\EA,XGA" We have

[ANTY — Ul An|e,

o () = C5)) .
(0 -000) (+(55) =0 () v,
e (5 - B3

. S
< Aot 1A= Adle, + 5 llAlle.- (3.2.9)

0<s<N

< inf
0<s<N

w

In the next theorem we show that an infinite matrix in the weighted Gohberg-Baskakov-

Sjostrand class C,, defines a bounded operator on /2.
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Proposition 3.2.3 Let 1 < p < oo and w be a submultiplicative weight. Then any infinite
matrix A in the weighted Gohberg-Baskakov-Sjostrand class C,, defines a bounded operator

on (¥ . Furthermore there exists a positive constant C' (independent of A) such that

p—1

1Acll, < C(R(A)) 7 (RA))7 ([ Alle, lleller,  for all e € £, (3.2.10)

Proof. Clearly it suffices to prove (3.2.10).
Write A = (a(A,)\'))AeA’/\/eA/ and set s(k) = Supycy ven’ |la(A, N) [ Xeroye(A — X') for
k € Z2. Then

> s(kyw(k) = [|A]le, < oo. (3.2.11)

kezd

Let p = oo and take any ¢ € £3°. Then we obtain from (3.2.11) that

ez = supw(N)]| 3 alh X)e(X)
A €eA

< supw(A) Y la(A )] Je(X))]
ACA NeN
< Csup Y fa(AA)w(d = X)le(A)[w(X)
AEAN T,
A EA
= C’||c||41o§§u1/3 E la(\, X)) |w(h — N, (3.2.12)
€ / !
A €EA

where C' is the constant in the definition of the submultiplicative weight w. Note that

> la M)lw(r = X)

Nen
= Z Z la(A, X)’U)O\ - X)Xk+[0,1)d(>\ - X)
keZd X eN
< O skw(k) Y Xerpe(A = N) < CR(A)[|Alle,,, (3.2.13)
kezd Nen'
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for any A € A and

D la( ) fw(h = X)

AEA
= Z Z la(A, X)]w()\ - X)Xk+[0,1)d()‘ - X)
keZd NeA
< O s(Rwk) Y Xuroaye(A = N) < CRA)|Alle,, (3.2.14)
kezd AEA

for any A" € A, where C' is a positive constant independent of A € A and A" € A’. Combining
(3.2.12) and (3.2.13) proves (3.2.10) for p = occ.

Let 1 < p < oo and take any ¢ € (. By (3.2.13) and (3.2.14) we have

Jely, = S w| 3 a\)e\)|!
AeA Nen
< w3 e e[|
AeA Nen
< 3| Ja W)l = X))l (N) |
AEA N en
< Y (D2 a V)lw(A = X)(le(N)lw(X))?)
AEA Nen
(3 Ja M) X))
Nen'
< CHRUPAIY Y (W)l Dl Nhw(x = X)
NeN AEA
= CPR)PRA)AIR, el (3.2.15)

where C' is a positive constant independent of A, A', A and C,. Hence the inequality in
(3.2.10) for 1 < p < oo follows.

To prove Theorem 3.3.1, we also need the following uniform boundedness result on
the equivalent norm || - ||,4n5w for any infinite matrix in the weighted Gohberg-Baskakov-

Sjostrand class C,,.
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Proposition 3.2.4 Let 1 < p,q < o0, 1 < N € Z, w be a submultiplicative weight. Then

there exists a positive constant C (independent of A and N > 1) such that

p—1

7\ =1 1
[Acllpgnw < CR(N)) > (RA) 7 |Alle,lcllpgnw  for all ce &

Proof. Write A = (a(\, X)) e ven and set
s(k)y = sup  |a(\N)xoppona(A = X)
AeA N e
for k € Z%. Then

> s(k)yw(k) = [|A]le, < oo.

kezd

Take any ¢ € (2. For any n € NZ% and N > 1,

1Y Acllye = supw(A)qﬂ()\_n)‘ 3" a(n A )e(N)

AGA N Nen
)\ —n ’ ’
< supw(A a(A, A)] |e(A
< Eg<>w(A,);g)< ) e\
)\ —n ’ ’
<C D st (S ) Y e N)lw(h = X)
n'eNZ? AEA Men

N —n+n N —n+n , ,
X1 (T) X[-2,2) (T) lc(A)|w(X)

<C Y Il

n’€NZ4

AEA
€ Nen

<C Y el

n’€NZ4

BYIN
NeA and ||A=N —n'||co<4N

31

A—n , , N —n+n
xsup¢( N ) Z |a(A, A)[w(A = X)X (2,9 <T

<supy (237 > a Xl (r = )

(3.2.16)

(3.2.17)



<C > WY el > s(k)w(k)

n’eNZ4 kezZd and ||k—n'||cc<6N
A—n A=) —n
Xig\”ﬂ( N ) /Z, X[—4,4)d (T) Xk+[0,1)¢ a(A— >\)
AN EA
) > el
n'€NZd
X Z X[ GNGN]d(k — n/), (3218)
kezd
and for 1 < g < o0,
a\ 1/
)\—n ’ ’
¥y = (30 wmw( - ) 3™ a(h N)e(M)
AEA Nen
A—n / :
< (T X o (F") T tax e - )
AeA  n’eNZd Nen
N —n+n N —n+n , S\ /g
i (B0 Y s () e u))')
ch(Z(( >Z|a)\>\|w()\ )
n'€ENZE  A€EA NeN
N —n+n A —n+n , S\ 1/a
<o () s () 1 o))
A—n , , N —n+n\\e!
<oy (z ((A2) 3l X — X (A2
n'eNZI \ AeA Xen'
><( 3 Jah X)lw(A = X)
NeN
\ L \ L 1/q
—n n —n n / ’
00 () na (S ) el >)q))
< C Z ||\I/n n/CHeq Z s(k)w(k )X[ 6N,6N]d (k/’_"l)
n’eNZd kezd
’ ’ _ 1/q
X (Z Xk+[0,l)d()‘ —A )( Z Xk+[0,1)d()\ — A ))q 1)
AEA Nen
< C(R(A)7 (R(A))
X Z H‘I!n n’c”fq ZS X[ 6N,6N]? (k_nl>7 (3219>

n'€NZ4 kezd
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where C' is a positive constant independent of C € ¢4 and N > 1. Therefore for any

1 < ¢ < o it follows from (3.2.17), (3.2.18) and (3.2.19) that

[Aclloognw = sup ||V Ac]l g
neNZd

! aq

< CRIN)T(RA)T sup Y Y el S stk)w(k)x_evena(k —n

n€NZ

’

)

n!'eNZa keZd
< C(R(A )) ( (A) HC”ooqu Z Z X[ 6N6N]d(k_nl)
n'eNZ2 kezd
< C(RANT (R [lcllooqnwlAllcs, (3.2.20)

and for 1 < p < o0,

1A} g = D 1192 Acllfy

< c((RW)T (RANT) Y ( > ||wﬁ_n/c||eazs<k>w<k>x[GN,md(k—n’))
neNZS \n'eNZ? kezd
< c(mra) T R > ( > H\Ifﬁn/cuazs<k>w<k>x[6N,6N}d<k—n’>>
( Z Z X[ 6N,6N]d (k:—n/)>
n'eNZe keZd
< C((RA)'T (R(A >>%) AR el g D2 3 sthywlk)xi-ovamps(k =)
< C((RA)'T (RANT) A, Nl 0 (3.2.21)

where C' is a positive constant which could be different at different occurrence. Thus the

conclusion (3.2.16) follows from (3.2.20) and (3.2.21).

3.3 Weighted (P-stability

In this section, we establish the equivalence of the weighted ¢P-stability for infinite matrices

in the Gohberg-Baskakov-Sjostrand class.
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Definition 3.3.1 Let 1 < p < oo, w be a weight, and T' be a linear operator on ¢%,. We say

that T has (2 -stability if there exist positive constants A and B such that
Allellg, < I Tellg, < Bl for all c &, (3:3.1)

The following result generalizes Theorem 2.3.1 on (P-stability as the trivial weight w =1

is a submultiplicative weight.

Theorem 3.3.1 Let 1 < p,q < oo, w be a submultiplicative weight, and A be an infinite

matriz in the Gohberg-Baskakov-Sjostrand class C,,. If A has (% -stability, then A has (% -

stability.

Proof. Take any ¢ € ¢4. By the ¢4 -stability of the infinite matrix A, there exists an

absolute positive constant Cy (independent of N > 1,n € NZ? and ¢ € ¢4) such that

1A elleg, = Coll W cl

ZZJ (332)

By Propositions 3.2.2 and 3.2.3, we have

I(An Ty — W Ax)elle

= |[(ANTY — U AU | s,

AN =t § 1 . S
< GRAYT RO (| inf A, + 14 = Adle, ) 195Vl (3.3.3)
and
1A = An)¥lelly, < CH(R(N))'T RA)T A = Axlle, | ¥l (3:3.4)
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where C] is a positive constant independent of N > 1 and n € NZ%. Combining (3.3.2),
(3.3.3) and (3.3.4), we get

7o a—1 g—1

|95 Avellg, > (Co— Ci(R()'T ROIIA = Axle, ) el — CL(R(A) T R(A)S

><< inf il

0<s<N N

Alle, + 14 = Aslle, ) 195l (3.3.5)

for any N > 1 and n € Z?. This implies that

[ANCllpgNw > (CO —CUR(N )T R(A)F||A - AN||Cw> el e — Gy (RO R(AY:
. S
. <0<1£l<fN NHAHCw +A- ASHCw) €llp.q.65.w- (3.3.6)

Noting that

A — Anllc, < I|1A— Aglle,  for all0 < s <N,

we then obtain from (3.1.20), (3.2.16) and (3.3.6) that

[ Acllp.qnw = <Co—C2(R(A'))(%1R(A)$( inf %HA

0<s<N

o T A=A

&) Vlellpg v (33.7)

where C5 is a positive constant independent of N > 1. Recalling from Proposition 3.2.1 that

lim [|A — A

Cw — 07

we can find a sufficiently large integer Ny such that

r o 4—1

q-1 1 . S
NY'T R nf S l4lle, + 114 = Adle. )

0<s<Np

1oy a—1

< GRU)'TRWT (114 - Aymglles + Ng Al )
< Cy/2. (3.3.8)
Thus by (3.3.7) and (3.3.8) we have

Co
”ACHp,q,No,w Z 7HC||p,q,N0,w (339)
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for any ¢ € (2. Combining (3.1.18), (3.1.19) and (3.3.9), we have
Col2C) (RN o= 1rl2= 017l < [ Ac] (3:3.10)

where Cy is a positive constant dependent on Ny and C' is a positive constant independent

on Ny for all ¢ € (2. Therefore the desired (£ -stability follows from (3.2.10) and (3.3.10).
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