
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2011

Finding Dud Vertices In Defensive Alliances And Secure Sets Finding Dud Vertices In Defensive Alliances And Secure Sets

Using Computational Tools Using Computational Tools

George Worley II
University of Central Florida

 Part of the Mathematics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Worley, George II, "Finding Dud Vertices In Defensive Alliances And Secure Sets Using Computational
Tools" (2011). Electronic Theses and Dissertations, 2004-2019. 1815.
https://stars.library.ucf.edu/etd/1815

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/174?utm_source=stars.library.ucf.edu%2Fetd%2F1815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/1815?utm_source=stars.library.ucf.edu%2Fetd%2F1815&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

Finding dud vertices in defensive alliances and secure sets
using computational tools

by

George Gordon Worley III
B.S. Computer Science, University of Central Florida, 2004
M.S. Computer Science, University of Central Florida, 2006

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science
in the Department of Mathematics

in the College of Sciences
at the University of Central Florida

Orlando, Florida

Summer Term
2011

Major Professor:
Yue Zhao

ABSTRACT

Defensive alliances are a way of using graphs to model the defense of resources (people,

buildings, countries, etc.) against attacks where the number of potential attackers against

each resource is known. The initial study of defensive alliances focused on questions of min-

imal defensive alliances in a graph and the minimum possible size of a defensive alliance in

a graph, but in order to apply defensive alliances in modeling real-world situations, addi-

tional considerations are important. In particular, since each vertex in a defensive alliance

represents some real-world object that has a cost associated with remaining in the defensive

alliance, it is important to consider the value each vertex adds to the defensive alliance. In

this thesis we consider a method of assessing the efficiency of a defensive alliance, including

the special case of secure sets.

ii

TABLE OF CONTENTS

LIST OF FIGURES . iv

CHAPTER 1 INTRODUCTION . 1

1.1 Defensive Alliances . 3

1.2 Secure Sets . 4

1.3 Algorithmic Complexity . 6

CHAPTER 2 DUD VERTICES . 8

CHAPTER 3 COMPUTATIONAL TOOLS 15

CHAPTER 4 CONCLUSION . 23

LIST OF REFERENCES . 24

iii

LIST OF FIGURES

1.1 A graph with a defensive alliance that is not a secure set 4

2.1 A graph containing a minimal secure set with a dud vertex 9

2.2 A graph containing a minimum secure set with a dud vertex 13

iv

CHAPTER 1

INTRODUCTION

A simple, undirected graph G = (V,E) (hereafter referred to as a “graph”) is composed

of a set of vertices V and a set of edges E, where each edge is a set of two vertices. Two

vertices are said to be adjacent of there is an edge in E containing the two vertices. The

open neighborhood of a vertex v ∈ V , N(v), is the set of all vertices adjacent to v in G. The

closed neighborhood is defined as N [v] = N(v) ∪ {v}. The open neighborhood of a set of

vertices U ⊆ V is N(U) =
⋃
v∈U N(v)−U , and the closed neighborhood is N [U] = N(U)∪U .

A defensive alliance (sometimes abbreviated to “alliance”) is a set of vertices D in a graph G

with the property that for all v ∈ D, |N [v]∩D| ≥ |N(v)∩∂D|, where ∂D =
⋃
v∈DN(v)−D,

the set of vertices in G neighboring D but not in D (referred to as the boundary of D). A

strong defensive alliance requires that |N [v] ∩D| > |N(v) ∩ ∂D|. [KHH04] A secure set is a

defensive alliance with the added property that every subset S of D has the property that

|N [S] ∩D| ≥ |N(S) ∩ ∂D| (this property subsumes the defensive alliance property, though,

and is sufficient for defining secure sets on their own). [BDH07]

A defensive alliance is minimal if it contains no proper subset that is a defensive alliance.

Similarly, a secure set is minimal if it contains no proper subset that is a secure set. A

1

defensive alliance or secure set is a minimum in a particular graph if it is of least cardinality

among all defensive alliances or secure sets, respectively, in a graph.

Defensive alliances originated with the purpose of modeling neighboring countries defending

themselves from attacks by assigning each country to a vertex and connecting vertices when

the represented countries share a border. [KHH04] Other possible applications include mod-

eling the defense of a military compound, the guarding of the crown jewels of a country, and

the security of a museum. [Dut09] Although not explicitly considered in earlier works, each

vertex added to an alliance has a cost associated with adding the object it represents in the

real world, be it in terms of money, lives, or other valuable resources. Thus it is beneficial

to find minimal defensive alliances. But because we may find more than one minimal de-

fensive alliance meeting the requirements of the situation being modeled, we need a way of

assessing which of several alliances is “best”. To this end we want to consider the efficiency

of defensive alliances, that is to measure how well the defenders are utilized.

In this thesis we will consider the existence of “dud” vertices in alliances (that is, vertices

of at least distance 3 from the boundary of the alliance) and examine what they may tell us

about the efficiency of an alliance.

Note: For all notation not explicitly introduced in the body of this thesis, we follow the

terminology of West. [Wes01]

2

1.1 Defensive Alliances

In 2002 Kristiansen, Hedetniemi, and Hedetniemi introduced the concept of defensive al-

liances. [KHH04] In particular they studied minimal and minimum defensive alliances and

defensive alliance number, defined as a(G) to be the cardinality of a minimum alliance in

G. They discovered several properties of defensive alliances that help us to understand their

structure.

Theorem 1. For any graph G = (V,E),

1. For any minimal defensive alliance D ⊆ V , the subgraph induced by D in G is con-

nected.

2. a(G) = 1 if and only if there exists a vertex v ∈ V such that deg(v) ≤ 1.

3. a(G) = 2 if and only if δ(G) ≥ 2 and G has two adjacent vertices of degree at most

three.

This tells us, for example, that for any tree or path graph, a(G) = 1, and for any cycle or

wheel graph, a(G) = 2. [KHH04] But since determining the characteristics of graphs with

a(G) = k becomes harder as k increases, they also give bounds on a(G).

Theorem 2. For any graph G or order n, 1 ≤ a(G) ≤
⌊
n
2

⌋
.

3

a

b

c

d e f g h i

Figure 1.1: A graph with a defensive alliance that is not a secure set

This bound is known to be sharp, since a(Kn) =
⌊
n
2

⌋
, where Kn is the complete graph on n

vertices.

1.2 Secure Sets

The work of Kristiansen, Hedetniemi, and Hedetniemi lead Brigham, Dutton, and Hedet-

niemi to further consider the graph theoretic modeling of real-world alliances and noted that

defensive alliances might fail in a real-world defenses because the attackers could overwhelm

the capacity of the defenders to help their neighbors. [BDH07] Consider the graph in Figure

1.1.

In it, the vertex set {a, b, c} forms a defensive alliance, but does not form a secure set. In

terms of the model, we could say that a defensive alliance can defend against an attack against

any one vertex in the alliance, but not an attack against multiple vertices in the alliance.

To address this issue Brigham, Dutton, and Hedetniemi formally defined the meaning of an

4

attack on and a defense of an alliance and used these to construct a stronger type of alliance

called a secure set. [BDH07]

Definition 3. Let G = (V,E) be a graph. For any S = {s1, s2, ..., sk} ⊆ V , an attack

on S is any k mutually disjoint sets A = {A1, A2, ..., Ak} for which Ai ⊆ N [si] − S, 1 ≤

i ≤ k. A defense of S is any k mutually disjoint sets D = {D1, D2, ..., Dk} for which

Di ⊆ N [si] ∩ S, 1 ≤ i ≤ k. An attack A is defendable if there exists a defense D such that

|Di| ≥ |Ai| for 1 ≤ i ≤ k.

A set S is secure if and only if every attack on S is defendable.

A subset X ⊆ S is S-secure if every attack on S in which Ai = ∅ whenever si 6∈ X is

defendable.

This definition of secure sets, while instructional in understanding the motivations behind

the design of the concept, is not very useful in proofs because it is cumbersome. Instead,

they give the following equivalent definition of secure sets. [BDH07]

Definition 4. A set S of vertices in graph G is secure if and only if |N [X]∩S| ≥ |N [X]−S|

for all X ⊆ S.

Because of the advantages of this definition of secure sets, in the remainder of this thesis we

will refer to attacks and defenses only informally to make clear the scenarios being modeled

using alliances.

5

Similar to the bounds on the defensive alliance number of a graph, bounds exist on the

security number of a graph, defined as s(G) to be the minimum cardinality of a minimal

secure set in G. [DLB08] Much like in the case of defensive alliances, these bounds are

especially useful since s(G) = k becomes increasingly difficult to characterize as k increases.

Theorem 5. Given a graph G of order n,
⌈
δ(G)+1

2

⌉
≤ s(G) ≤ n−

⌈
δ(G)
2

⌉
.

This bound is not sharp, but no better bound has yet been discovered. However it is known

that there exist graphs for which s(G) ≥
⌈
n(G)
2

⌉
, so security number does not share an upper

bound with defensive alliance number. [DLB08]

1.3 Algorithmic Complexity

Intuitively the problems of finding defensive alliances and secure sets should be in the set

of NP problems, that is the set of decision problems where the affirmative instances can

be identified in polynomial time by a nondeterministic Turing machine, because defensive

alliances and secure sets are defined in terms of their subsets. For defensive alliances, the

problem is formally stated as follows.

Problem 6. DEFENSIVE ALLIANCE

INSTANCE: Graph G = (V,E), positive integer k < |V |.

QUESTION: Does G have a defensive alliance of size at most k?

6

DEFENSIVE ALLIANCE is not only in NP, but is in the set of NP-complete problems

because there exists a transformation from the VERTEX COVER problem to DEFENSIVE

ALLIANCE. [Jam07] This means it is among the hardest problems that can be answered in

polynomial time by a nondeterministic Turing machine.

Not as much is known about the same problem for secure sets. First, we define it formally.

Problem 7. SECURE SET

INSTANCE: Graph G = (V,E), positive integer k < |V |

QUESTION: Does G have a secure set of size at most k?

Currently nothing is known about the complexity classification of SECURE SET. We can

currently only say that no deterministic or nondeterministic polynomial time algorithms are

known for the problem, although special cases of the problem that restrict the structure of G

are known to be in NP and co−NP . [Dut06] All known algorithms that answer SECURE

SET require exponential time.

7

CHAPTER 2

DUD VERTICES

In a defensive alliance, a vertex is a dud if it is at least distance 3 from the alliance’s boundary,

which is to say that a dud never defends itself or one of its neighbors from an attack. There

are two reasons we might include dud vertices in a defensive alliance. One is if the dud

is a vertex that must be included in the defensive alliance, such as when using a defensive

alliance to model the guards protecting the crown jewels, which we model by saying we have

a vertex set J in a graph G that must be defended. The other reason we might be tempted

to include a dud vertex is to keep it from attacking, thus out of the boundary. But, if our

defensive alliance is minimal, there is no need for any dud vertices outside of any that might

be contained in J , even if we require a strong defensive alliance.

The primary result of the paper follows.

Theorem 8. Given J ⊆ V (G), let D be a minimal defensive alliance that contains J . Then

there are no duds in D − J .

Proof. Assume to the contrary that v is a dud vertex in D − J . Then v must be at least

distance 3 from ∂D. Then for all u ∈ N(v), N(u) ⊆ D since no u is adjacent to any vertex

8

d a1

a2

a3

a4

b1

b2

b3

b4

Figure 2.1: A graph containing a minimal secure set with a dud vertex

not in D, from which it also follows that |N [u]| ≥ 3. Then in D − v, |N [u] ∩ (D − v)| ≥

2 > |N(u) ∩ ∂(D − v)| = 1, since N(u) ∩ ∂(D − v) = {v}, and since for all w ∈ D − N [v],

N [w] ∩ D = N [w] ∩ D − v and N(w) ∩ ∂D = N(w) ∩ ∂D − v, it follows that D − v is a

(strong) defensive alliance, hence D is not minimal, a contradiction to D being a minimal

(strong) defensive alliance, thus v does not exist and the result is proved.

Since the only duds present in a minimal (strong) defensive alliance are those vertices that

we have decided must be included, regardless of whether or not they were duds, duds do not

provide a very good means of measuring the efficiency of defensive alliances.

We see, though, that a minimal secure set can contain a dud.

Observation 9. Consider the graph in Figure 2.1. S = {d, a1, a2, a3, a4, b1, b2, b3, b4} forms

a minimal secure set (that is, no subset of S is also a secure set), and d is a dud. Thus the

presence of dud vertices is relevant when considering the efficiency of minimal secure sets.

9

This observation was verified computationally using the following Sage code, which is ex-

plained in further detail in Chapter 4.

G = Graph ()

#arm 1
G. add edge (0 , 1)

G. add edge (1 , 2)
G. add edge (1 , 3)
G. add edge (1 , 4)

G. add edge (2 , 3)
G. add edge (3 , 4)
G. add edge (4 , 2)

G. add edge (2 , 5)
G. add edge (2 , 6)
G. add edge (3 , 6)
G. add edge (3 , 7)
G. add edge (4 , 7)
G. add edge (4 , 8)

#arm 2
G. add edge (0 , 11)

G. add edge (11 , 12)
G. add edge (11 , 13)
G. add edge (11 , 14)

G. add edge (12 , 13)
G. add edge (13 , 14)
G. add edge (14 , 12)

G. add edge (12 , 15)
G. add edge (12 , 16)
G. add edge (13 , 16)
G. add edge (13 , 17)
G. add edge (14 , 17)
G. add edge (14 , 18)

10

#between arms
G. add edge (2 , 11)
G. add edge (3 , 11)
G. add edge (4 , 11)

G. add edge (12 , 1)
G. add edge (13 , 1)
G. add edge (14 , 1)

S = Set ([0 , 1 , 2 , 3 , 4 , 11 , 12 , 13 , 1 4])
p r i n t min imum secure s e t s in subse t (G, S)

Which output that S did not contain any proper subsets which were themselves secure sets.

Let dudG(S) be the number of dud vertices in a secure set S in G. If S contains a subset J

that must be defended, J may contain dud vertices, so let dudJG(S) be the number of dud

vertices in a secure set S in graph G where dud vertices in J are excluded from the count.

Although dud vertex count is a new concept, we can say at least a few useful things about

it.

Observation 10. Let S be a secure set in a graph G. If the diameter of 〈S〉 is less than 2

or the diameter of G is less than 3, then dud(S) = 0. Equivalently, if dud(S) > 0, then the

diameter of 〈S〉 is at least 2 and the diameter of G is at least 3. Or, put another way, G

must contain a vertex of at least eccentricity 3.

11

This observation follows immediately from the fact that a dud vertex must be at least

distance 3 away from any vertex in ∂S. This tells us something about the structure of a

graph that contains a minimal secure set with a dud vertex.

We can also see that a minimum secure set may contain a dud (noting that in Observation

9, a minimal secure set contained a dud, but the graph contained a secure set of size 1).

Observation 11. Consider the graph H, shown in Figure 2.2, formed as G from Figure 2.1

connected to the complete graph K17 with vertices in ∂S corresponding to any set of unique

vertices in K17. Then S is a minimum secure set of H that contains a dud vertex.

We find the minimum secure sets of H using Sage, continuing on the code from our earlier

example.

H = G
K = [5 , 6 , 7 , 8 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27]
i = 0
whi le i < l en (K) − 1 :

j = i + 1
whi le j < l en (K) :

H. add edge (K[i] , K[j])
j += 1

i += 1

pr in t minimum secure sets (H)

The output of this code tells us that any set of 9 vertices in the K17 subgraph of H form a

secure set, and |S| = 9, so all are minimum secure sets. But since only S has a dud vertex

count of 1, this demonstrates that even minimum secure sets may contain dud vertices.

12

d a1

a2

a3

a4

b1

b2

b3

b4

Figure 2.2: A graph containing a minimum secure set with a dud vertex

13

In terms of a model, consider the example where each vertex in H represents a position on

a battlefield that a soldier might take up, and vertices are adjacent if they can attack each

other. In this case, both S and the sets of 9 vertices in the K17 subgraph are minimum secure

sets and can be defended with just 9 soldiers, but in S only 8 of those soldiers are actually

involved in the defense whereas in the other minimum secure sets all 9 are. Depending on

the situation being modeled, this might suggest S would be a better or worse choice than

one of the other sets.

For example, if one soldier is wounded, S might be preferable because the wounded soldier

could be place at the d position, but if no soldier is wounded, S might be a poor choice

because it will require 8 soldiers to do the work of 9 while 1 soldier sits idle. However, the

amount of work the soldiers have to do to defend each of the minimum secure sets in H is

not clearly defined, and we have given no means of comparing the amount of work required

to defend each secure set, so determining which of the minimum secure sets would be best

for the soldiers is an open problem.

14

CHAPTER 3

COMPUTATIONAL TOOLS

In order to effectively study defensive alliances, and especially secure sets, computer assis-

tance is needed to verify results that would take too long to do by hand since many of the

problems posed by defensive alliances and secure sets require O(2n) operations to answer.

[Jam07, Dut06] Building on the Sage mathematical library, we wrote the following functions

to extend the existing graph theory functions available in Sage to support computations

involving defensive alliances and secure sets. [Sag10]

Note that in many cases the functions could be optimized to generate results in less time

using less memory, and indeed such algorithms do exist. In particular, it is possible to reduce

the run time of the algorithms by applying known properties of defensive alliances and secure

sets to skip processing portions of the search space. [Dut06] But since we did not need, in the

course of this thesis, to deal with any graphs or alliances that were practically challenging to

work with given the inefficiencies of the algorithms, we left the functions inefficient in favor

of readability.

The first three functions do not deal directly with defensive alliances but instead provide

convenience functions for obtaining information for which there is no built-in function in

15

Sage. In the future these will likely be rendered irrelevant as the Sage graph theory library

expands, but they were necessary at the time of writing.

Additional Graph Functions

def closed neighborhood(G, X):
”””
Input: a Graph G, a set of vertices X

Output: the closed neighborhood of X in G as a set of vertices
”””
Y = X
for v in X:

Y = Y.union(Set(G.neighbors(v)))
return Y

def open neighborhood(G, X):
”””
Input: a Graph G, a set of vertices X

Output: the open neighborhood of X in G as a set of vertices
”””
Y = closed neighborhood(G, X)
Y = Y.difference(X)
return Y

def min distance(G, u, V):
”””
Input: a Graph G, a vertex u, and a set of vertices V

Output: minimum distance between u and any vertex in V in G,
returns +Infinity if u is not connected to V

”””
d = +Infinity
for v in V:

if G.distance(u,v) < d:
d = G.distance(u,v)

return d

Defensive Alliance and Secure Set Functions

def is defensive alliance(G, S):
”””

16

Input: a Graph G and a set of vertices S
Output: true if S is a defensive alliance in G, false if not
”””
for v in S:

if (((Set(G.neighbors(v)).union(Set([v]))).intersection(S)
).cardinality() < ((Set(G.neighbors(v)).union(Set([v]))
).intersection((Set(G.vertices(v)).union(Set([v]))
).difference(S))).cardinality()):

return false
return true

def is secure set(G, S):
”””
Input: a Graph G and a set of vertices S

Output: true if S is a secure set in G, false if not

Note: This iterates through every subset of S, so it runs
in O(2ˆ|S|).

”””
P = S.subsets()
for X in P:

if (closed neighborhood(G, X).intersection(S)).cardinality()
< (closed neighborhood(G, X).intersection(
open neighborhood(G, X).difference(S))).cardinality():

return false
return true

def is minimal secure set(G, S):
”””
Input: a Graph G and a set of vertices S that form a secure set

Output: true if S is a minimal secure set in G

Note: returns true if S does not form a secure set, so you should
verify this separately.

”””
P = S.subsets()
for X in P:

if is secure set(G, X):
return false

return true

def secure sets within secure set(G, S):

17

”””
Input: a Graph G and a set of vertices S

Output: a list of vertex sets forming secure sets within S,
including S if S is a secure set in G

”””
P = S.subsets()
SS = [] # list of secure sets
for X in P:

if is secure set(G, X):
SS.append(X)

return SS

def minimum defensive alliance(G):
”””
Input: a Graph G

Output: a set of vertices forming a minimum defensive alliance in G
”””
V = Set(G.vertices())
VS = V.subsets()
VS.next() # skip empty set at start
for X in VS:

if (is defensive alliance(G, X) & X.cardinality() > 0):
return X

def minimum secure set(G):
”””
Input: a Graph G

Output: a set of vertices forming a minimum secure set in G
”””
V = Set(G.vertices());
VS = V.subsets()
VS.next() # skip empty set at start
for X in VS:

if (is secure set(G, X)):
return X

def minimum defensive alliances(G):
”””
Input: a Graph G

Output: a list of vertex sets, each a minimum defensive alliance in G
”””
V = Set(G.vertices())

18

Q = []

VS = V.subsets()

found one = false
card = 0

VS.next() # skip the empty set at start
for X in VS:

if is defensive alliance(G, X):
if found one == false:

Q.append(X)
found one = true
card = X.cardinality()

else:
if card == X.cardinality():

Q.append(X)
else:

break
return Q

def minimum secure sets(G):
”””
Input: a Graph G

Output: a list of vertex sets, each a minimum secure set in G
”””
V = Set(G.vertices())
Q = []

VS = V.subsets()

found one = false
card = 0

VS.next() # skip the empty set at start
for X in VS:

if is secure set(G, X):
if found one == false:

Q.append(X)
found one = true
card = X.cardinality()

else:

19

if card == X.cardinality():
Q.append(X)

else:
break

return Q

def minimum secure sets in subset(G, S):
”””
Input: a Graph G and a set of vertices S

Output: a list of vertex sets containing minimum secure sets in G
that are subsets of S

Note: Used to get faster output when a minimum secure set is known
to reside in a particular subset of the vertices of G.

”””
Q = []

VS = S.subsets()

found one = false
card = 0

VS.next() # skip the empty set at start
for X in VS:

X = VS[i]
if is secure set(G, X):

if found one == false:
Q.append(X)
found one = true
card = X.cardinality()

else:
if card == X.cardinality():

Q.append(X)
else:

break
return Q

def all defensive alliances(G):
”””

Input: a Graph G
Output: a list of vertex sets, each forming a defensive alliance in G

”””

20

V = Set(G.vertices())
Q = []
for X in V.subsets():

if is defensive alliance(G, X):
Q.append(X);

return Q

def all secure sets(G):
”””

Input: a Graph G
Output: a list of vertex sets, each forming a secure set in G

”””
V = Set(G.vertices())
Q = []
for X in V.subsets():

if is secure set(G, X):
Q.append(X);

return Q

The code was checked for correctness in two ways. First, we verified that the code matched

the mathematical definitions, and second we further tested the functions experimentally

using known results. In all cases the functions presented are believed to be correct.

In our usage of this code, described in Chapter 3, the total compute time was approximately

three hours and required about 700 MB of process memory. In addition to techniques for

speeding up the algorithms, if needed, could have reduced the amount of process memory

used by changing the way Sage represents graphs. Currently, this code uses an incident list

representation of graphs. [Sag10] Specifically, a graph is stored as an array of edges, each

edge stored as a pair of integers, with integers used as vertex identifiers. If we switched to an

adjacency matrix or incident matrix representation of graphs, though, we could potentially

21

reduce memory usage significantly, allowing analysis of larger graphs with less computational

resources. [Gib85]

22

CHAPTER 4

CONCLUSION

The presence of dud vertices, even in minimum secure sets, suggests that secure sets may

contain inefficiencies that can be addressed. Additionally, dud vertices are only one pos-

sible way of considering the matter of efficiency in defensive alliances and secure sets, and

since dud vertices do not appear in minimal defensive alliances, they do not even provide a

comprehensive tool for assessing efficiency in alliances. To these points, we end with several

open questions related to the efficiency of defensive alliances.

1. Does there exist a measure on defensive alliances (secure sets) that gives a useful

definition of efficiency? If so:

(a) Does the minimum defensive alliance in a graph also have maximum efficiency?

(b) Does the maximum efficiency among all possible defensive alliances within a graph

relate to other graphical invariants?

2. What is the smallest subgraph that can contain a secure set with at least one dud?

3. Does there exist a measure of the amount of “work” each vertex has to do to defend a

defensive alliance (secure set)? How does this relate to efficiency?

23

LIST OF REFERENCES

[BDH07] Robert C. Brigham, Ronald D. Dutton, and Stephen T. Hedetniemi. “Security in
graphs.” Discrete Applied Mathematics, 155(13):1708–1714, 2007.

[DLB08] Ronald D. Dutton, Robert Lee, and Robert C. Brigham. “Bounds on a graph’s
security number.” Discrete Applied Mathematics, 156(5), 2008.

[Dut06] Ronald D. Dutton. “Secure set algorithms and complexity.” In 37th Southeastern
International Conference on Combinatorics, Graph Theory, and Computing, 2006.

[Dut09] Ronald D. Dutton. “On a graph’s security number.” Discrete Mathematics,
309(13):4443–4447, 2009.

[Gib85] A.M. Gibbons. Algorithmic graph theory. Cambridge University Press, 1985.

[Jam07] Lindsay H. Jamieson. Algorithms and Complexity for Alliances and Weighted
Alliances of Various Types. PhD thesis, Clemson University, 2007.

[KHH04] Petter Kristiansen, Sandra M. Hedetniemi, and Stephen T. Hedetniemi. “Alliances
in graphs.” Journal of Combinatorial Mathematics and Combinatorial Computing,
48:157–177, 2004.

[Sag10] W. A. Stein et al. Sage Mathematics Software (Version 4.6). The Sage Develop-
ment Team, 2010. http://www.sagemath.org.

[Wes01] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2001.

24

http://www.sagemath.org

	Finding Dud Vertices In Defensive Alliances And Secure Sets Using Computational Tools
	STARS Citation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 Defensive Alliances
	1.2 Secure Sets
	1.3 Algorithmic Complexity

	CHAPTER 2 DUD VERTICES
	CHAPTER 3 COMPUTATIONAL TOOLS
	CHAPTER 4 CONCLUSION
	LIST OF REFERENCES

