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ABSTRACT

The energy of a graph began with German physicist, Erich Hückel’s 1931 paper, Quantent-

theoretische Beiträge zum Benzolproblem. His work developed a method for computing the

binding energy of the π-electrons for a certain class of organic molecules. The vertices of the

graph represented the carbon atoms while the single edge between each pair of distinct ver-

tices represented the hydrogen bonds between the carbon atoms. In turn, the chemical graphs

were represented by an n × n matrix used in solving Schrödinger’s eigenvalue/eigenvector

equation. The sum of the absolute values of these graph eigenvalues represented the total

π-electron energy. The criteria for constructing these chemical graphs and the chemical in-

terpretations of all the quantities involved made up the Hückel Molecular Orbital theory

or HMO theory. In this paper, we will show how the chemical interpretation of Hückel’s

graph energy evolved to a mathematical interpretation of graph energy that Ivan Gutman

provided for us in his famous 1978 definition of the energy of a graph. Next, we will present

Charles Coulson’s 1940 theorem that expresses the energy of a graph as a contour integral

and prove some of its corollaries. These corollaries allow us to order the energies of acyclic

and bipartite graphs by the coefficients of their characteristic polynomial. Following Coul-

son’s theorem and its corollaries we will look at McClelland’s first theorem on the bounds

for the energy of a graph. In the corollaries that follow McClelland’s 1971 theorem, we will

prove the corollaries that show a direct variation between the energy of a graph and the

number of its vertices and edges. Finally, we will see how this relationship led to Gutman’s

conjecture that the complete graph on n vertices has maximal energy. Although this was

disproved by Chris Godsil in 1981, we will provide an independent counterexample with the

help of the software, Maple 13.
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CHAPTER ONE: INTRODUCTION

1.0.1 Assumptions on the graph G

A graph G is a family of two sets. The first is a set of points or nodes, called a vertex set,

denoted by VG, and the other set is an edge set, EG. The edge set defines the relationships

between pairs of not necessarily distinct elements from VG. The element of EG, denoted xy,

means the edge between x and y If xy 6= yx for all distinct vertices x and y, then G is called

a directed graph or digraph. xy is the directed edge from x to y and yx is the directed

edge from y to x. We say that two vertices vi and vj are adjacent if vi and vj are joined

by an edge, (i.e. vivj belongs to EG). Vertex adjacency is a symmetric relationship for all

undirected graphs. Graphs can be finite or infinite depending on the cardinality of VG. We

will focus our attention on finite undirected simple graphs. These graphs of interest have

the following properties:

• The graph G has no loops.

• G has no multiple edges between any distinct pair of vertices x and y.

• G has no directed edges.

Here are some basic graph-theoretical notions that will be mentioned throughout. We begin

with some special simple graphs. We say that G is empty, if VG = ∅; trivial, if |VG| = 1, and

null, if EG = ∅ [1]. G is called a complete graph on n vertices, denoted Kn, if every vertex is

joined to the remaining n− 1 vertices. If two sets X and Y partition VG and every element

of EG consists of a vertex from X and a vertex from Y , then we say that G is bipartite. If X

has m vertices and Y has n vertices then Km,n denotes the bipartite graph with mn edges.
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Pn and Cn denote the path and cycle on n vertices, respectively. A graph G with no cycles

is a forest. If G is connected and without cycles then G is a tree [1]. The complement of G,

denoted G, over n vertices has the properties VG = VG, EG ∩ EG = ∅, and EG ∪ EG = EKn .

Any other simple graphs not mentioned will be introduced later in this work when necessary.

If H is a graph having all of its vertices and edges in G then we say that H is a subgraph of

G [23]. If VH = VG then H is a spanning subgraph of G [23]. For any set S of vertices of G,

the induced subgraph is the maximal subgraph of G with vertex set S [23]. An elementary

subgraph of G is any edge or cycle contained in G [1].

Let A = A(G) be the adjacency matrix of G. A(G) is n× n; n is the number of vertices in

G, and each (i,j)-entry is determined by the following rule:

(A(G))ij =

 1 vi and vj are joined by an edge,

0 otherwise.

The characteristic polynomial of a graph G is the characteristic polynomial of A(G) which

is given by the equation:

φ(G, x) = det|Ix−A(G)| = xn − σ1x
n−1 + σ2x

n−2 − . . .+ (−1)nσn.

In 1962, Harary published the following theorem which computes the determinant of the

adjacency matrix of a graph G. [1] provides a proof to this theorem.

Theorem 1 ([1]). If G is a graph with n vertices and adjacency matrix A(G), then

det(A(G)) = (−1)n
∑
H∈H

(−1)p(H)(2)c(H),

where H is the set of all spanning subgraphs of G, p(H) denotes the number of components

of H and c(H) denotes the number of cycles in H.
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We will use this theorem to prove this useful corollary which will determine the coefficients

of the characteristic polynomial of G.

Corollary 1 (Sachs’ Coefficient Theorem[1]). Let

φ(G, x) = xn − σ1x
n−1 + σ2x

n−2 − . . .+ (−1)nσn,

and let Hi be the set of elementary subgraphs of G with i vertices. Then

σi =
∑

H∈Hi

(−1)p(H)(2)c(H), (i = 1, . . . , n).

Proof [1]: The number (−1)iσi is the sum of all i × i principal minors of A(G), and each

such minor is the determinant of the adjacency matrix of an induced subgraph on i vertices.

An elementary subgraph with i vertices is contained in exactly one of such subgraph, and so

the result follows by applying Theorem 1 to each minor. 2

By the Fundamental Theorem of Algebra, φ(G, x) = 0 has n complex roots λ1, λ2, . . . , λn,

and has factorization

φ(G, x) = (x− λ1)(x− λ2) . . . (x− λn) = 0.

The roots satisfying the equation φ(G, x) = 0 are the eigenvalues of A(G). The next section

will prove some basic theorems we will need to establish useful properties of A(G) and its

eigenvalues.
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1.0.2 Essential Results

From the definition of A(G) and for all simple undirected graphs G, it follows that A(G)

has entries, either 0 or 1, and remains unchanged when we interchange its rows and columns.

That is, A(G) is symmetric. Here are two results from the book [24] that we will use to

prove our main result, Theorem 4 which states the essential properties of A(G).

Theorem 2. Symmetric matrices have real eigenvalues.

Two matrices A and B are said to be similar if there exists a nonsingular matrix P such

that

A = P−1BP

Theorem 3. Similar matrices have the same eigenvalues.

Theorem 4. Let G be a simple graph with n vertices and m edges having adjacency matrix

A(G), eigenvalues λ1, λ2, . . . , λn, and nth degree characteristic polynomial φ(G, x) = |Ix −

A(G)| = xn − σ1x
n−1 + σ2x

n−2 − . . .+ (−1)nσn. Then we have:

(i) λ1 ≥ λ2 ≥ . . . ≥ λn, and λ1 + λ2 + . . .+ λn = 0.

(ii) The coefficient of xn−1 in φ(G, x) is 0, and the coefficient of xn−2 in φ(G, x) is
∑

1≤i<j≤n

λiλj =

−m.

(iii) trace(A2(G)) =
n∑

i=1

λ2
i = 2m.

Proof : The adjacency matrix of the simple graph G, A(G), is symmetric with zeros down the

principle diagonal.[2, page 6] By Theorem 2, the eigenvalues of A(G) are real and, therefore,

we can order the eigenvalues in the manner shown in statement (i). Also, A(G) is similar

to the matrix D = diag(λ1, λ2, . . . , λn), and for an orthogonal matrix P, A(G) = P′DP

4



because of the symmetry of A(G). Theorem 3 tells us that the eigenvalues of A(G) are

also the eigenvalues of D. When we use the fact that for any square matrices X and Y,

trace(XY) = trace(YX), we get

0 = trace(A(G))

= trace(P′DP)

= trace(PP′D)

= trace(ID)

= trace(D)

= λ1 + λ2 + . . .+ λn.

This proves (i).

We now consider the proof of statement (ii) by directing out attention to the factorization

of φ(G, x) = (x− λ1)(x− λ2) . . . (x− λn). To solve for σ1, we must combine all xn−1 terms.

The coefficient of xn−1 is
n∑

i=1

−λi, and there are a total of

n
1

 terms. Combining all terms

of xn−1, we have minus one times the sum of the eigenvalues of A(G). By (i), that sum is

zero. Hence, σ1 = 0. Now we turn our attention to σ2. Upon observing the expansion of the

factors of φ(G, x), each coefficient of xn−2 is the product of

n
2

 pairs of distinct factors,

λi and λj, where i < j. Thus,

σ2 =
∑

1≤i<j≤n

λiλj.

By [4], we also have

∑
1≤i<j≤n

λiλj =
∑
i<j

∣∣∣∣∣∣∣
aii aij

aji ajj

∣∣∣∣∣∣∣ .
The right - hand sum is the sum of all diagonal minors of order 2 of A(G) and we observe

straight away that the diagonal elements are zero. Now G is a simple graph having m edges.
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So there are m ones above the main diagonal and m ones below the diagonal of A(G). So of

the

n
2

 determinants, only m will have a nonzero contribution to the sum and we have,

whenever aij = aji = 1,∣∣∣∣∣∣∣
0 1

1 0

∣∣∣∣∣∣∣ = −1.

Therefore, the coefficient of xn−2 is −m. This proves (ii).

Finally, we turn our attention to the trace(A2(G)). We claim that the eigenvalues of A2(G)

are λ2
1, λ

2
2, . . . , λ

2
n. To see this, observe that

A2(G)x = A(G)A(G)x

= A(G)(λx)

= λ(A(G)x)

= λ2x

Hence, trace(A2(G)) =
n∑

i=1

λ2
i . The jth diagonal element of A2(G) represents the number of

vertices adjacent to vj. For example, if there are k ones that appear in the row or column

corresponding to vj, then the degree of vj is k. Therefore, the trace of A2(G) is the sum of

the degrees of all n vertices. But G is a simple graph having m edges. So (iii) follows.

By proving statements (i) through (iii), our proof is complete. 2
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CHAPTER TWO: GRAPH ENERGY’S BEGINNING IN
QUANTUM CHEMISTRY

2.1 HMO THEORY

The energy of a graph began in the 1930’s with German physicist, Erich Hückel. He de-

veloped a method for finding approximate solutions to the Schrödinger wave equation of

“unsaturated conjugated hydrocarbons”, a class of organic molecules. The solutions from

the time-independent Schrödinger wave equation measures the binding energy of the π-

electrons. Sadly, Hückel never enjoyed the recognition his contribution merited. The details

of this method, now known as the Hückel Molecular Orbital Theory, (HMO) theory, are

found in books[5] and [6].

Hückel’s energy computation begins with the consideration of Schrödinger’s equation

ĤΨ = EΨ, (2.1.1)

where Ĥ is the Hamiltonian operator of the system under consideration, Ψ represents the

wave functions satisfying equation of the system considered, and E is the energy of that

system. If our system under consideration is a molecule from the class of unsaturated

conjugated hydrocarbons, we can use equation (2.1.1) to describe that molecule’s behavior

and energy of its π-electrons. Clearly, (2.1.1) is an eigenvalue/eigenvector equation in terms

of the operator Ĥ. In order to find a feasible (not necessarily exact) solution to this equation,

one needs to find a suitable set of basis functions, say, ψ1, ψ2, . . . , ψn, so that Ψ is in the

span{ψ1, ψ2, . . . , ψn}. Doing so allows us to obtain solutions for (2.1.1) by solving the matrix

equation

HΨ = EΨ, (2.1.2)

where H is a square matrix having dimension n known as the Hamiltonian Matrix. [8]
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According to the HMO model, the wave functions of a conjugated hydrocarbon with n carbon

atoms are linear combinations of n orthogonal basis functions while the Hamiltonian Matrix

H has this definition:

(H)ij =


α i = j,

β if the atoms i and j are chemically bonded,

0 if there is no chemical bond between the atoms i and j.

The parameters of α and β are constants, equal for all conjugated molecules. Their physical

nature and numerical value are not relevant in our mathematical consideration.[8] Details

about these parameters are found in these books [5][6]. From the definition of H, we see

that the size of H is equal to the number of carbon atoms in our molecule. If there is a bond

between a particular pair of carbon atoms, we can think of them as vertices joined by an

edge. If we assume that no carbon atom is chemically bonded to itself, no vertex has a loop.

So we can form a simple graph using the carbon atoms as vertices and their chemical bonds

as the edges. In the HMO theory, the physical considerations of the molecules place many

restrictions on the construction of these simple graphs. Two examples of such restrictions

are:

1. Every vertex must have degree at most three; [8]

2. All cycles within the graph must be the same size. [12]

Graphs that meet the HMO criteria will be denoted GHMO. The specifics on how GHMO is

constructed are also found in the books by Coulson and Yates [5][6]. We also have from the

definition of H this equation

H = αIn + βA(GHMO).

8



If the eigenvalues of A(GHMO) are λ1, λ2, . . . , λn then the energy eigenvalues of H, denoted

E1, E2, . . . , En, are given by the equation

Ei = α+ βλi, (2.1.3)

where i = 1, 2, . . . , n. Moreover, the molecular orbitals, describing electron movement within

the π-orbital, coincide with the eigenvectors ψi of the graph GHMO.[8]

In the HMO theory, the approximation for the total energy is given by

Eπ =
n∑

i=1

giEi,

where gi represents the quantum number of the molecular orbital ψi. By the Pauli Exclusion

Principle, every molecular orbital has at most two electrons.[11] So gi only takes on values

0, 1, or 2.

For what follows, we direct our attention to the fact that there are n electrons in the π-

orbitals of the hydrocarbon under consideration. Then g1 + g2 + . . .+ gn = n. So

Eπ =
n∑

i=1

giEi

=
n∑

i=1

gi(α+ βλi)

= nα + β

n∑
i=1

giλi. (2.1.4)

If we formally set α = 0, β = 1 and use the fact that the total number of electrons in the

π-orbitals is constant, then the non-trivial part of (2.1.4) is given by

E =
n∑

i=1

giλi. (2.1.5)

The right-hand side of equation (2.1.5) is called the “total π-electron energy”, or the “total

π-electron energy in β-units”.[8]
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Moreover, by setting α = 0, β = 1, the Hamiltonian Matrix H, is now the adjacency matrix

A(GHMO). So the π-electron energy levels Ei are the eigenvalues of A(GHMO). By theorem

2 of Section 1 the π-electron energy levels are real eigenvalues, and therefore, can be ordered

in a non-decreasing order E1 ≤ E2 ≤ . . . ≤ En. If we require that the total π-electron energy

levels to be as low as possible, then, by [8] we have for even n,

gi =

 2, for i = 1,2,. . . ,n/2

0, for i = n/2+1,n/2+2, . . . , n

and for odd n

gi =


2, for i = 1,2,. . . ,(n-1)/2,

1, for i = (n+1)/2,

0, for i = (n+1)/2 +1, (n+1)/2 +2,. . . , n.

Moreover, [8] also gives us a definition of gi that depends on the eigenvalues of A(GHMO)

which holds for the majority of our chemically relevant cases.

gi =

 2, if λi > 0

0, if λi < 0

Using this definition of gi, equation ( 2.1.5) becomes

E = E(GHMO) = 2
∑

{λi : λi > 0}.

Now, by Theorem 3(i), the sum of the eigenvalues of a simple graph is zero. So, the previous

equation becomes

E = E(GHMO) =
n∑

i=1

|λi|. (2.1.6)

In the 1970’s, Ivan Gutman noticed that many of the earlier results, pertaining to either

the computation or a property of the total π-electron energy tacitly assume the validity of

equation (2.1.6). [13], [14], [15], and [16] are examples of such papers that [8] mentions.

10



This means that the energy computation of equation (2.1.6) holds for all simple graphs, not

just the Hückel molecular graphs. Gutman’s observation led to his famous 1978 definition

that begins every graph energy discussion.

Definition 1 ([7]). If G is graph on n vertices, and λ1, λ2, . . . , λn are its eigenvalues, then

the energy of G is

E = E(G) =
n∑

i=1

|λi|. (2.1.7)

11



CHAPTER THREE: GRAPH ENERGY

3.1 GRAPH ENERGY

From Gutman’s definition, we observe that the energy of the empty graph and the null graph

is zero. So, isolated vertices do not affect the energy of a graph G. Assuming that G has

no isolated vertices gives us m ≥ n/2, recalling that m is the number of edges of G. Also,

if G has multiple components then the energy of G is the sum of the energy of each of its

components. This means that we can assume, without loss of generality, that G is connected.

Moreover, Definition 1 frees us from all of the chemical-based restrictions we had to put on

the graph G; thus giving us a mathematical interpretation of graph energy to every simple

graph.

In the section that follows, we apply some basic properties of complex integration to establish

a very useful integral formula developed by Coulson and Longuet-Higgins. This formula

establishes the dependence of the energy of a graph on the characteristic polynomial of this

graph. In other words, this integral makes it possible to compute the sum, as stated in

Definition 1, without knowing the zeros of its characteristic polynomial. [17] However, the

numerical implementation of this formula proved difficult.

In 1951, Frank Sumner, a PhD student of Christopher Longuet-Higgins, attempted to apply

the integral technique to solve the HMO eigenvalue problem using the latest computing

machine, Ferranti Mk I [?]. Soon after he began this project, his advisor, Longuet-Higgins

left for another position. Frustrated with his progress on the project, he consulted with

Alan Turing who advised him to “to forget the contour integrals and attack the eigenvalue

problem head-on” [?].

12



Despite the numerical difficulties of this contour formula, the mathematical value of the

Coulson Integral Theorem lies in its corollaries which gives us a way to establish an order of

energies between acyclic graphs and bipartite graphs.

3.2 THE COULSON INTEGRAL FORMULA

In 1940, Charles Alfred Coulson gave another eigenvalue formulation of the energy of a

graph. This formula establishes the dependence of the energy of a graph on the characteristic

polynomial of this graph. In other words, this integral makes it possible to compute the sum,

as stated in Definition 1, without knowing the zeros of its characteristic polynomial. [17]

For the integral theorem and the corollaries that follow, all integrals of the form

∫ ∞

−∞
F (x)dx

mean the principal value of the respective integral. That is,

∫ ∞

−∞
F (x)dx = lim

r→∞

∫ r

−r

F (x)dx.

Theorem 5 (Coulson, 1940 [7]). If G is a graph on n vertices, then

E(G) =
1

π

∫ ∞

−∞

[
n− ixφ′(G, ix)

φ(G, ix)

]
dx

=
1

π

∫ ∞

−∞

[
n− d

dx
log φ(G, ix)

]
dx

where φ′(G, x) = d
dx
φ(G, x) and i =

√
−1.

Proof : [7] Since G is a graph on n vertices, G has n eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

Consider only the p (p ≤ n) distinct eigenvalues of G, ξ1 ≥ ξ2 ≥ . . . ≥ ξp and µ1, µ2, . . . , µp,

the corresponding algebraic multiplicity of each distinct eigenvalue such that

p∑
j=1

µj = n.

Let z be a complex variable, z = x+ iy. Since

φ(G, z) =

p∏
j=1

(z − ξj)
µj ,

13



it follows that

φ′(G, z)

φ(G, z)
=

p∑
j=1

µj

z − ξj
. (3.2.1)

Now, φ′(G,z)
φ(G,z)

is a meromorphic function with simple poles at ξ1, ξ2, . . . , ξp. The eigenvalues

of G that influence its energy are the nonzero eigenvalues, so we will consider two possible

contours and note that neither contour has a pole at z = 0. To this end, let Γ+ be the

semi-circular contour of radius r, centered at z = 0, where r > max {ξ1, |ξp|}. The contour

goes along the imaginary axis from ri to −ri and then returns to ri along the arc of the

semi-circle of radius r. All positive eigenvalues lie on the real axis in the open interval from

0 to r. Furthermore, define

f(z) = z
φ′(G, z)

φ(G, z)
. (3.2.2)

Observe that

z
φ′(G, z)

φ(G, z)
=

p∑
j=1

µj
z

z − ξj

=

p∑
j=1

µj

(
1 +

ξj
z − ξj

)
(3.2.3)

=

p∑
j=1

µj +

p∑
j=1

µjξj
z − ξj

= n+

p∑
j=1

µjξj
z − ξj

. (3.2.4)

Therefore,

f(z)− n =

p∑
j=1

µjξj
z − ξj

. (3.2.5)

Applying the Cauchy formula to equation (3.2.1),

1

2πi

∮
Γ+

f(z)dz =
∑
ξj≥0

µjξj =
∑
λi≥0

λi =
E(G)

2
. (3.2.6)
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where Γ+ is the aforementioned contour. Since n is a constant and Γ+ is a closed contour,∮
Γ+ ndz = 0 which means

1

2πi

∮
Γ+

f(z)dz =
1

2πi

∮
Γ+

[f(z)− n]dz. (3.2.7)

By equation (3.2.5),

lim
|z|→∞

[f(z)− n] = 0.

From that, it follows that if r → ∞ then the integrand [f(z) − n] vanishes everywhere on

Γ+, except on the imaginary axis. This change of Γ+ will not affect the value of the contour

integral itself. Hence, for r →∞,

1

2πi

∮
Γ+

[f(z)− n]dz =
1

2πi

∫ −∞

∞
[f(iy)− n]d(iy) =

1

2π

∫ ∞

−∞
[n− f(iy)]dy =

E(G)

2
.

Recalling the definition of f , we see that our equation is equivalent to our desired result.

Lastly, we turn our attention to the second possible contour of integration, Γ−. This contour

is also semi-circular centered at z = 0 and having the same radius r as before. The contour

begins at ri on the imaginary axis and traverses the semi-circular arc through the point −r

on the real axis and completing the arc at −ri. From there, we continue on the imaginary

axis from −ri to ri. The negative eigenvalues of G lie on the real axis in the interior of the

open interval from −r to 0. Using a similar argument as before and the same definition for

f , but integrating over Γ− we have

1

2πi

∮
Γ−

[f(z)− n]dz =
∑
λi<0

λi

or

−
∑
λi<0

λi = − 1

2πi

∮
Γ−

[f(z)− n]dz (3.2.8)

following from equations (3.2.6) and (3.2.7). As r →∞, we have

1

2πi

∮
Γ−

[f(z)− n]dz =
1

2πi

∫ ∞

−∞
[f(iy)− n]d(iy). (3.2.9)
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So,

−
∑
λi<0

λi = − 1

2πi

∮
Γ−

[f(z)− n]dz

= − 1

2πi

∫ ∞

−∞
[f(iy)− n]d(iy)

= − 1

2π

∫ ∞

−∞
[f(iy)− n]dy

=
1

2π

∫ ∞

−∞
[n− f(iy)]dy

=
∑
λi≥0

λi

=
E(G)

2

Hence,

E(G) =
n∑

i=1

|λi| =
∑
λi≥0

λi −
∑
λi<0

λi =
1

π

∫ ∞

−∞
[n− f(iy)]dy,

where f(iy) = iy φ′(G,iy)
φ(G,iy)

. 2

Gutman and Mateljević point out that Coulson’s theorem is not valid for graphs whose

eigenvalue sum is nonzero [17]. The statement of the theorem does not require it nor do they

use that fact in the details of the original proof. In their paper [17] they prove a proposition

that states that the graph in which the Coulson integral formula can be applied is logically

equivalent to saying that the sum of that graph’s eigenvalues is zero. Furthermore, they

give and prove a new integral formula that extends to graphs having a nonzero sum of its

eigenvalues. No other work prior to that 2006 paper challenged the validity of that 1940

result.

From Coulson’s Theorem, we have some useful corollaries as we shall see in the next section.

3.3 COROLLARIES FROM COULSON’S THEOREM
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Corollary 2 ([7]). If G1 and G2 are two graphs with equal number of vertices, then

E(G1)− E(G2) =
1

π

∫ ∞

−∞
log

φ(G1, ix)

φ(G2, ix)
dx.

Proof : By Coulson’s theorem,

E(G1)− E(G2) =
1

π

∫ ∞

−∞

[
(n− x

d

dx
log φ(G1, ix))− (n− x

d

dx
log φ(G2, ix))

]
dx

=
1

π

∫ ∞

−∞

[
x
d

dx
log φ(G2, ix)− x

d

dx
log φ(G1, ix)

]
dx

=
1

π

∫ ∞

−∞
x
d

dx
[log φ(G2, ix)− log φ(G1, ix)] dx

=
1

π

∫ ∞

−∞
x
d

dx

[
log

φ(G2, ix)

φ(G1, ix)

]
dx.

Integrating by parts, we obtain

E(G1)− E(G2) =
1

π
lim
r→∞

[
x log

φ(G2, ix)

φ(G1, ix)

]r

−r

− 1

π

∫ ∞

−∞
log

φ(G2, ix)

φ(G1, ix)
dx

= − 1

π

∫ ∞

−∞
log

φ(G2, ix)

φ(G1, ix)
dx

=
1

π

∫ ∞

−∞
log

φ(G1, ix)

φ(G2, ix)
dx.

To complete our proof, we need to show that

1

π
lim
r→∞

[
x log

φ(G2, ix)

φ(G1, ix)

]r

−r

= 0.

This is equivalent to showing that

lim
|ix|→∞

[
x log

φ(G2, ix)

φ(G1, ix)

]
= 0. (3.3.1)

Observe that the characteristic polynomial of any simple graph of n vertices is monic. So

the leading terms of φ(G1, ix) and φ(G2, ix) are identical which means their ratio tends to

1 as |ix| increases without bound. So log φ(G2,ix)
φ(G1,ix)

→ 0 as |ix| → ∞. Because we also have a
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factor of x involved in our limit, we apply L’Hospital’s Rule to verify (3.3.1). Indeed,

lim
|ix|→∞

[
x log

φ(G2, ix)

φ(G1, ix)

]
=

lim
|ix|→∞

d

dx
log

φ(G2, ix)

φ(G1, ix)

lim
|ix|→∞

d

dx

(
1

x

)
= lim

|ix|→∞

[ φ′(G2,ix)φ(G1,ix)−φ(G2,ix)φ′(G1,ix)
φ(G2,ix)φ(G1,ix)

−1
x2

]

= lim
|ix|→∞

(−x2)
φ′(G2, ix)φ(G1, ix)− φ(G2, ix)φ

′(G1, ix)

φ(G2, ix)φ(G1, ix)
.

By theorem 3(ii),

φ(G2, ix) = (ix)n −m2(ix)
n−2 + . . .+ det(A(G2))

φ(G1, ix) = (ix)n −m1(ix)
n−2 + . . .+ det(A(G1)),

where m2 and m1 represent the number of edges in the graphs G2 and G1, respectively. Also,

φ′(G2, ix) = ni(ix)n−1 − im2(n− 2)(ix)n−3 + remaining terms,

and

φ′(G1, ix) = ni(ix)n−1 − im1(n− 2)(ix)n−3 + remaining terms.

Now, the leading terms of φ′(G2, ix)φ(G1, ix) and φ′(G1, ix)φ(G2, ix) are identical and so they

cancel out in the subtraction that takes place in the numerator of the limit in expression.

The next highest order term is the product of (ix)nand d
dx
m1,2(ix)

n−2 multiplied by (−x2)

which makes the numerator of the limit of order (ix)2n−1. The denominator is the product

of φ(G1, ix)φ(G2, ix) which is of order (ix)2n. Hence, the expression in (3.11) is of order 1
ix

and tends to zero as |ix| increases without bound. This proves the corollary. 2

Corollary 3 ([7]). If G is a graph on n vertices, then

E(G) =
1

π

∫ ∞

−∞

dx

x2
log |xnφ(G, i/x)|.

18



Recall that all integrals of the form

∫ ∞

−∞
F (x)dx,

∫ 0

−∞
F (x)dx, and

∫ ∞

0

F (x)dx stand for

the principal value of each integral.

Proof : By Theorem 4,

E(G) =
1

π

∫ ∞

−∞

[
n− iy

φ′(G, iy)

φ(G, iy)

]
dy

=
1

π

∫ 0

−∞

[
n− iy

φ′(G, iy)

φ(G, iy)

]
dy +

1

π

∫ ∞

0

[
n− iy

φ′(G, iy)

φ(G, iy)

]
dy.

Using the change of variables y = 1
x
, we have

E(G) =
1

π

∫ −∞

0

[
n− (i/x)

φ′(G, i/x)

φ(G, i/x)

](
−1

x2

)
dx+

1

π

∫ 0

∞

[
n− (i/x)

φ′(G, i/x)

φ(G, i/x)

](
−1

x2

)
dx

=
1

π

∫ ∞

−∞

[
n− (i/x)

φ′(G, i/x)

φ(G, i/x)

](
1

x2

)
dx

Let u = 1
x

and dv =
[

n
x
− i/x2φ′(G,i/x)

φ(G,i/x)

]
dx so that

du = −dx
x2 and v = n log |x|+ log |φ(G, i/x)| = log |xnφ(G, i/x)|. Integrating by parts gives

E(G) =
1

π
lim
r→∞

(
1

x
log |xnφ(G, i/x)|

)r

−r

+
1

π

∫ ∞

−∞

dx

x2
log |xnφ(G, i/x)|

=
1

π

∫ ∞

−∞

dx

x2
log |xnφ(G, i/x)|

because

lim
x→∞

log |xnφ(G, i/x)|
x

= 0

by applying L’Hospital’s rule. This proves the corollary. 2

We now turn our attention to two established characteristic polynomials of a graph on n

vertices. Let F be a forest (or a tree if F is connected) with n vertices, and characteristic

polynomial [21]

φ(F, x) =

bn
2
c∑

k=0

(−1)km(F, k)xn−2k, (3.3.2)
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where m(F,k) is the number of k-matchings in F. On the other hand, if B is bipartite then

its characteristic polynomial is [7], [21]

φ(B, x) =

bn
2
c∑

k=0

σ2kx
n−2k =

bn
2
c∑

k=0

(−1)kb(B, k)xn−2k, (3.3.3)

where σ2k = (−1)kb(B, k) and b(B, k) ≥ 0 for all k = 1, 2, ...bn
2
c. Moreover, when k = 0,

σ0 = b(B, 0) = 1. If n+ represents the number of positive eigenvalues then n+ is also the

number of negative eigenvalues and b(B, k) = 0 whenever k > n+ [7]. Our next corollary,

which we will state without proof, follows from equations (3.3.2), (3.3.3) and Corollary 2.

Corollary 4 ([7]). If F and B are a forest and a bipartite graph, respectively on n vertices,

then

E(F ) =
1

π

∫ ∞

−∞

dx

x2
log

1 +

bn
2
c∑

k=1

m(F, k)x2k



E(B) =
1

π

∫ ∞

−∞

dx

x2
log

1 +

bn
2
c∑

k=1

b(B, k)x2k

 .
Corollary 3 establishes that the energy of a forest and that the energy of a bipartite graph

are monotonically increasing functions of their respective coefficients of x2k. [7]. The next

corollary, also stated without proof, provides us with a criteria for ordering the energies of

forests and the energies of bipartite graphs.

Corollary 5 ([7]). The energy of two bipartite graphs and the energy of two forests are

ordered in the following manner:

(a) If for two bipartite graphs B1 and B2 (not necessarily with equal number of vertices),

the relation

b(B1, k) ≤ b(B2, k) (3.3.4)
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is satisfied for all k ≥ 1, then E(B1) ≤ E(B2). If, in addition, b(B1, k) < b(B2, k) for

at least one value of k, then E(B1) < E(B2).

(b) If for two forests F1 and F2 (not necessarily with equal number of vertices), the relation

m(F1, k) ≤ m(F2, k) (3.3.5)

is satisfied for all k ≥ 1, then E(F1) ≤ E(F2). If, in addition, m(F1, k) < m(F2, k) for

at least one value of k, then E(F1) < E(F2).

Relations (3.3.4) and (3.3.5) were proved by [19] and [20] for numerous pairs of graphs

implying the inequalities between their energies.

Denote Kn, Sn and Pn to represent the graph without edges, the star graph and the path

graph, respectively, each having n vertices. Then, if Fn is a forest on n vertices different

from Kn and Pn we have

E(Kn) < E(Fn) < E(Pn)

according to [7]. Also, if Tn is a tree on n vertices differing from both Sn and Pn we also

have

E(Sn) < E(Tn) < E(Pn)

by [7] as well.

The consequences of Coulson’s integral formulae of Theorem 4 not only allows us to compute

the energy without computing each individual eigenvalue but also we can order the energies

of all members of any set of bipartite graphs as well as the energy of every element of any

set of forests because of their respective characteristic polynomials. Furthermore, for the
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aforementioned graphs on n vertices, we have a way to compare them with different trees or

different forests also having n vertices.

One can use Theorem 6 and its corollaries to give upper and lower bounds for the energy

of specific graphs. For applications such bounds may be useful to provide insight into why

different molecules behave differently. The next chapter gives us some useful inequalities for

E(G).
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CHAPTER FOUR: BOUNDS FOR THE ENERGY OF A
GRAPH

4.1 MCCLELLAND INEQUALITIES

In this chapter we mention about the bounds for energy of a graph. Of several known

results we chose the work of MCClelland[16].

Theorem 6 (McClelland, 1971 [16]). If G is a graph with n vertices, m edges and adjacency

matrix A(G), then√
2m+ n(n− 1)|detA(G)|2/n ≤ E(G) ≤

√
2mn. (4.1.1)

In the following proof, we will use the notation from[7] for the geometric mean of the product

of all index-distinct eigenvalue pairs

GM{|λj||λk|} =

( ∏
1≤j<k≤n

|λj||λk|

)2/(n2−n)

. (4.1.2)

Similarly, the notation from [7] for the arithmetic mean of the product of all index-distinct

eigenvalue pairs is given by

AM{|λj||λk|} =

∑
1≤j<k≤n

|λj||λk|

(n2 − n)/2
(4.1.3)

Proof [7]: We begin by proving the lower bound relation. Since G is a graph on n vertices,

it has n (not necessarily distinct), eigenvalues: λ1, λ2, . . . , λn. We have by Theorem 3 (iii)

n∑
i=1

λ2
i = 2m. (4.1.4)
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Indeed,

E2(G) =

(
n∑

i=1

|λi|

)2

=
n∑

i=1

|λi|2 + 2
∑

1≤j<k≤n

|λj||λk|

= 2m+ n(n− 1)AM{|λj||λk|}by equation 4.3.

Since GM{|λj||λk|} ≤ AM{|λj||λk|}, 2m+ n(n− 1)GM{|λj||λk|} ≤ E2(G) follows.

Observe that

GM{|λj||λk|} =

( ∏
1≤j<k≤n

|λj||λk|

)2/(n(n−1))

=

(
n∏

i=1

|λi|(n−1)

)2/(n(n−1))

=

(
n∏

i=1

|λi|

)2/n

= |detA(G)|2/n.

because
∏n

i=1 |λi| = |detA(G)|.

Therefore,√
2m+ n(n− 1)|detA(G)|2/n ≤ E(G).

This completes the argument for the lower bound of the energy of G. Finally, we turn our

attention to establishing the upper bound of E(G). To this end, we observe that the variance

of the eigenvalues of G is a nonnegative quantity denoted by V AR{|λi|} for i = 1, 2, . . . , n,

and its relationship with AM{|λi|} is given by the equation

V AR{|λi|} = AM{|λi|2} − (AM{|λi|})2

=
1

n

n∑
i=1

|λi|2 −

(
1

n

n∑
i=1

|λi|

)2

=
2m

n
− E2(G)

n2
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Therefore,

2m

n
− E2(G)

n2
≥ 0 (4.1.5)

which establishes our upper bound. 2

From this theorem, we have the following corollary.

Corollary 6 ([7]). If detA(G) 6= 0, then E(G) ≥
√

2m+ n(n− 1) ≥ n.

Proof : Since we have detA(G) 6= 0, the simple graph G has no zero eigenvalues. From

that it follows that G has at least one edge and at least two vertices. That is, m ≥ n
2
. Now,

from the proof of Theorem 5, we also have

|detA(G)|2/n =

( ∏
1≤j<k≤n

|λj||λk|

)2/(n2−n)

= | −m|2/(n2−n).

So | −m|2/n2−n ≥ 1 means that |detA(G)|2/n ≥ 1. Hence, by Theorem 5, we have

√
2m+ n(n− 1) ≤

√
2m+ n(n− 1)|detA(G)|2/n ≤ E(G).

This proves

E(G) ≥
√

2m+ n(n− 1).

Finally, we want to prove that
√

2m+ n(n− 1) ≥ n. Sincem ≥ n
2
, we have

√
2m+ n(n− 1) ≥√

2
(

n
2

)
+ n(n− 1) =

√
n+ n(n− 1) = n. This completes our proof of the corollary. 2

Corollary 7 ([7]). If G is a graph containing m edges, then

2
√
m ≤ E(G) ≤ 2m.

Proof [7]: Applying the definition of E(G) and the triangle inequality, we have
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E2(G) =

(
n∑

i=1

|λi|

)2

=
n∑

i=1

|λi|2 + 2
∑

1≤i<j≤n

|λi||λj|

≥ 2m+ 2

∣∣∣∣∣ ∑
1≤i<j≤n

λiλj

∣∣∣∣∣
= 2m+ 2| −m|

= 4m.

So E2(G) ≥ 4m implies 2
√
m ≤ E(G).

If G has isolated vertices then each isolated vertex yields an eigenvalue equal to zero and

each isolated vertex does not contribute to the number of edges because G has no loops.

So isolated vertices contribute neither to the energy of G nor the number of edges in G.

If G consists of m isolated edges and no isolated vertices then the number of vertices, n is

equal to 2m. Otherwise, the number of vertices is less than 2m. Therefore, if n ≤ 2m then
√

2mn ≤
√

(2m)2 = 2m. By Theorem 6, we have E(G) ≤ 2m. This proves the upper bound

and the corollary is proved. 2
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CHAPTER FIVE: GUTMAN’S CONJECTURE

5.1 Disproving Gutman’s Conjecture By Counterexample

Various empirical and statistical studies, performed on graphs of chemical interest, point

towards a simple regularity: The energy of a graph is directly proportional to the number of

edges and vertices. McClelland’s inequality confirms this. These chemical graphs of interest

were connected, but possessed a minimal number of edges. Therefore, the energies of these

graphs were less than the energy of a complete graph with the same number of vertices.

Gutman conjectured that the energy of the complete graph was maximal for all simple

graphs having the same number of vertices. Although a very reasonable conjecture, Chris

Godsil was the first to disprove this conjecture in 1981.

Using Maple 13, we will also disprove Gutman’s conjecture by finding a simple graph whose

energy exceeds the energy of a complete graph with the same number of vertices. The

Petersen graph, a graph on ten vertices has been a standard counterexample used to disprove

many conjectures and so we will see if this conjecture holds up to the Petersen graph. Since

the Petersen graph is a simple graph on ten vertices and fifteen edges, we will compare its

energy to the energy of the complete graph on ten vertices and 45 edges. Recall that K10

denotes the complete graph. Here is the adjacency matrix for K10.
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A(K10) =



0 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 0


With the help of Maple 13, we have its characteristic polynomial

φ(K10, λ) = λ10 − 45λ8 − 240λ7 − 630λ6 − 1008λ5 − 1050λ4 − 720λ3 − 315λ2 − 80λ− 9

and the eigenvalues to the equation φ(K10, λ) = 0 are λ = 9 and λ = −1 (multiplicity of 9).

Therefore, E(K10) = |9|+9|− 1| = 18. We must find a graph whose energy exceeds E(K10).

Consider the Petersen graph. The adjacency matrix is
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A(Petersen) =



0 1 0 0 1 1 0 0 0 0

1 0 1 0 0 0 0 0 1 0

0 1 0 1 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0 1

1 0 0 1 0 0 0 1 0 0

1 0 0 0 0 0 1 0 0 1

0 0 1 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0 1 0

0 1 0 0 0 0 0 1 0 1

0 0 0 1 0 1 0 0 1 0


and characteristic polynomial

φ(Petersen, λ) = λ10 − 15λ8 + 75λ6 − 24λ5 − 165λ4 + 120λ3 + 120λ2 − 160λ+ 48.

The eigenvalues of the Petersen graph are: λ = 3, λ = −2 (multiplicity of 4), and λ = 1

(multiplicity of 5). E(Petersen) = |3|+ 4| − 2|+ 5|1| = 16 shows that Gutman’s conjecture

holds up to the Petersen graph. We will now turn our attention to complement of the

Petersen graph, Petersen.

Starting with the adjacency matrix of the graph Petersen,
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A(Petersen) =



0 0 1 1 0 0 1 1 1 1

0 0 0 1 1 1 1 1 0 1

1 0 0 0 1 1 0 1 1 1

1 1 0 0 0 1 1 1 1 0

0 1 1 0 0 1 1 0 1 1

0 1 1 1 1 0 0 1 1 0

1 1 0 1 1 0 0 0 1 1

1 1 1 1 0 1 0 0 0 1

1 0 1 1 1 1 1 0 0 0

1 1 1 0 1 0 1 1 0 0


and characteristic polynomial,

φ(Petersen, λ) = λ10−30λ8−60λ7 +105λ6 +276λ5−180λ4−480λ3 +240λ2 +320λ−192

we solve φ(Petersen, λ) = 0 to get λ = 6, λ = 1 (multiplicity 4), and λ = −2 (multiplicity

5). Therefore, E(Petersen) = 20. From this energv calculation, we conclude that the graph

Petersen is our desired counterexample.

Can we generalize this result? Yes. We first observe that both the Petersen graph and the

complement of the Petersen graph are connected (or primitive) strongly regular graphs with

parameters n, d, µ, and ν denoting the number of vertices, the degree of each vertex, the

number of neighbors between all pairs of adjacent vertices, and the neighbors between all

pairs of non-adjacent vertices, respectively. For example, the Petersen graph is srg(10,3,0,1)

and the complement of the Petersen graph is srg(10,6,3,4), which can easily be verified from

their respective adjacency matrices. When a graph on n vertices exceed the energy of the

complete graph on n vertices, we call such graphs hyperenergetic. In 2011, [25] proved

that only four primitive strongly regular graphs are not hyperenergetic: srg(10, 3, 0, 1),
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srg(9,4,1,2), srg(5,2,0,1) and srg(16,5,0,2). Since srg(10,6,3,4) is not among the four graphs

listed, the complement of the Petersen graph is one of many counter examples to Gutman’s

conjecture.
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