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Abstract

In this Ph.D. thesis, we study regular and embedded solitons and generalized and

degenerate Hopf bifurcations. These two areas of work are seperate and independent

from each other. First, variational methods are employed to generate families of both

regular and embedded solitary wave solutions for a generalized Pochhammer PDE

and a generalized microstructure PDE that are currently of great interest. The tech-

nique for obtaining the embedded solitons incorporates several recent generalizations

of the usual variational technique and is thus topical in itself. One unusual feature of

the solitary waves derived here is that we are able to obtain them in analytical form

(within the family of the trial functions). Thus, the residual is calculated, showing

the accuracy of the resulting solitary waves. Given the importance of solitary wave

solutions in wave dynamics and information propagation in nonlinear PDEs, as well

as the fact that only the parameter regimes for the existence of solitary waves had

previously been analyzed for the microstructure PDE considered here, the results

obtained here are both new and timely.
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Second, we consider generalized and degenerate Hopf bifurcations in three dif-

ferent models: i. a predator-prey model with general predator death rate and prey

birth rate terms, ii. a laser-diode system, and iii. traveling-wave solutions of two-

species predator-prey/reaction-diffusion equations with arbitrary nonlinear/reaction

terms. For specific choices of the nonlinear terms, the quasi-periodic orbit in the

post-bifurcation regime is constructed for each system using the method of multi-

ple scales, and its stability is analyzed via the corresponding normal form obtained

by reducing the system down to the center manifold. The resulting predictions for

the post-bifurcation dynamics provide an organizing framework for the variety of

possible behaviors. These predictions are verified and supplemented by numerical

simulations, including the computation of power spectra, autocorrelation functions,

and fractal dimensions as appropriate for the periodic and quasiperiodic attractors,

attractors at infinity, as well as bounded chaotic attractors obtained in various cases.

The dynamics obtained in the three systems is contrasted and explained on the basis

of the bifurcations occurring in each. For instance, while the two predator-prey mod-

els yield a variety of behaviors in the post-bifurcation regime, the laser-diode evinces

extremely stable quasiperiodic solutions over a wide range of parameters, which is

very desirable for robust operation of the system in oscillator mode.
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CHAPTER 1

INTRODUCTION

1.1 Variational Methods for Regular and Embedded Solitons

In Part II of this thesis, variational methods are employed to generate families of

both regular and embedded solitary wave solutions for a generalized Pochhammer

PDE and a generalized microstructure PDE that are of great interest. The technique

for obtaining the embedded solitons incorporates several recent generalizations of the

usual variational technique and is thus topical in itself. One unusual feature of the

solitary waves derived here is that we are able to obtain them in analytical form

(within the family of the trial functions). Thus, the residual is calculated, showing

the accuracy of the resulting solitary waves. Given the importance of solitary wave

solutions in wave dynamics and information propagation in nonlinear PDEs, as well

as the fact that only the parameter regimes for the existence of solitary waves had

previously been analyzed for the microstructure PDE considered here, the results

obtained here are both new and timely.
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1.2 Bifurcation of Limit Cycles

In the rest of the dissertation we study a seperate and independent problem. Many

physical systems exhibit self-sustaining oscillatory behavior with no external peri-

odic forcing; for example, a beating heart, a vibration in an airplane wing, or the

interacting populations of several species. This type of behavior is modeled in by

limit cycle solutions of the corresponding nonlinear dynamical systems. A limit cycle

is an isolated periodic orbit, meaning that no other periodic orbits exist sufficiently

close to it in state space. Every nearby trajectory approaches the orbit as t → ∞

or as t → −∞. Limit cycles are pervasive throughout physics, biology, chemistry

and economics, and limit cycle theory has consequently grown into a popular and

interesting field of research.

From the point of view of dynamical system theory, limit cycles are generated

through four kinds of bifurcations: multiple Hopf bifurcations from a center or focus,

separatrix cycle bifurcations from homoclinic or heteroclinic orbits, global center bi-

furcations from a periodic annulus, and limit cycle bifurcations from multiple limit

cycles. Bifurcations involving separatricies or global bifurcations are within the realm

of global bifurcation theory and are usually studied with theories such as Poincaré-

Pontrayagin-Andronov or higher-order Melnikov function analysis. Limit cycles bi-
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furcated from a focus, center, or other limit cycles are called local bifurcations and

are studied by normal form and other local bifurcation theories [1, 2].

While there have been a very large number of studies of regular Hopf bifurcations,

generalized and degenerate Hopf bifurcations are far less widely studied. Among

recent comprehensive treatments, we may list the monograph by Huseyin [3], the

thesis by Planeaux [4], and the recent review by Yu [5]. The first named is reasonably

comprehensive at the analytical end but employs the little-used generalized Harmonic

Balance asymptotic analysis technique. By contrast, [4] is a comprehensive numerical

analysis in the context of chemical reactor dynamics. Ref. [5] uses a mix of analytic

techniques, together with limited numerical simulations, to consider the dynamics

resulting from generalized and degenerate Hopf bifurcations.

In Part III of this thesis, we consider generalized and degenerate Hopf bifur-

cations comprehensively, using the established and widely-accepted multiple-scales

asymptotic technique for the analysis, as well as a variety of numerical solutions and

diagnostics. To operate on a broad platform, we consider three different models: i. a

predator-prey model with general predator death rate and prey birth rate terms, ii.

a laser-diode system, and iii. traveling-wave solutions of two-species predator-prey/

reaction-diffusion equations with arbitrary nonlinear/reaction terms.
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For specific choices of the nonlinear terms, the quasi-periodic orbit in the post-

bifurcation regime is constructed for each system with the method of multiple-scales

using the following steps. After expansions in several progressively slower time scales

are substituted into each variable and parameter, equations are separated by time

scales. Motion on each time scale can be represented by a differential operator for

each equation, and each operator is the same at each scale. These general operators

can be combined algebraically to eliminate all but one variable, giving a higher

order composite differential operator that holds information from all the general first

order differential equations for any time scale. This process creates a homogeneous

equation for the first time scale (we assume that appropriate changes of variable have

already been made to translate the system into one with a fixed point at the origin).

Sources for the other equations at slower time scales are only functions of equations

with faster time scales.

The composite operator can be solved one scale at a time. The first order (fastest

time scale) operator is homogeneous and so an ansatz can be imposed to give a

solution with the desired behavior. In our case we chose the ansatz to be a sum

of exponential functions. The same equations that we used to create the composite

operator before can now be used to find solutions for the other first order space

variables based on our chosen ansatz.
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Now that the first order operators are known, they can be plugged into the second

order equation’s source to fully determine it. If any term in the newly determined

source satisfies the homogeneous operator, then, following a standard undetermined

coefficients approach, a particular solution would involve a multiple of that term mul-

tiplied by the time variable to at least the first power. This would be unacceptable,

as it would cause an otherwise oscillating term to have an amplitude that approaches

infinity with time. The types of motion we desire need to be localized in space near

some fixed point. The elimination of these secular terms is a necessity that we use to

determine the second order normal form, which is the system of differential equations

in the coefficients of each term of the second order ansatz. This process is repeated as

many times as necessary. For our three-dimensional system, we found the required

normal form after eliminating secular terms in the second order source. For our

four-dimensional system, the normal form was found after eliminating secular terms

in the third order source.

Once the normal form is found, standard fixed point analysis allows us to find

appropriate parameter values, that when plugged into the first order ansatz, yields

the post-generalized Hopf periodic orbits. Their stability is usually analyzed with

standard phase plane analysis. However, in our two systems, the standard anal-

ysis fails since the eigenvalue of the Jacobian of the normal form at the origin is
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zero. These predictions are replaced and supplemented by numerical simulations,

including the computation of power spectra, autocorrelation functions, and fractal

dimensions as appropriate for the periodic and quasiperiodic attractors, attractors

at infinity, as well as bounded chaotic attractors obtained in various cases. The re-

sulting post-bifurcation dynamics provide an organizing framework for the variety of

possible behaviors. The dynamics obtained in the three systems is contrasted and

explained on the basis of the bifurcations occurring in each. For instance, while the

two predator-prey models yield a variety of behaviors in the post-bifurcation regime,

the laser-diode evinces extremely stable quasiperiodic solutions over a wide range of

parameters, which is very desirable for robust operation of the system in oscillator

mode.

Next, secondary bifurcations are investigated. Static bifurcations of a periodic

orbit can cause quasiperiodic behavior and a secondary Hopf bifurcation of a periodic

orbit can create a three-dimensional torus in space. Both of these scenarios may

lead to chaotic motion under further parameter variation. This work will lay out

exact regions of parameter space for which changes in second order deviations of two

particular parameters lead to each of the aforementioned system behaviors.
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1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Part II (Chapters 2-3),

we use a Rayleigh-Ritz variational technique to create regular solitons in two widely

used PDEs: a generalized Pochhammer-Chree PDE and a generalized microstruc-

ture PDE. Then we extend the method in a way which incorporates several recent

generalizations of the usual variational technique to obtain analytical expressions for

embedded solitons. In part III (Chapters 4-5), we investigate the effects of second-

order parameter deviations on the dynamics of three systems whose parameters sat-

isfy conditions for the existence of a generalized Hopf bifurcation. In Chapter 4 we

examine a laser diode system, and in Chapter 5 we examine a predator-prey model

with delay terms. In Part IV (Chapter 6), we examine nonlinear dynamics resulting

from double-Hopf bifurcations in a fourth-order population model.
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Part II

VARIATIONAL METHODS FOR REGULAR AND

EMBEDDED SOLITONS
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CHAPTER 2

REGULAR AND EMBEDDED SOLITONS IN A

GENERALIZED POCHHAMMER PDE

2.1 Abstract

In this chapter, variational methods are employed to generate families of both regu-

lar and embedded solitary wave solutions for a generalized Pochhammer PDE that

of great interest. The technique for obtaining the embedded solitons incorporates

several recent generalizations of the usual variational technique and is thus topical in

itself. One unusual feature of the solitary waves derived here is that we are able to

obtain them in analytical form (within the family of the trial functions) and calculate

their residuals. Given the importance of solitary wave solutions in wave dynamics

and information propagation in nonlinear PDEs, as well as the fact that only the

parameter regimes for the existence of solitary waves had previously been analyzed

for the microstructure PDE considered here, the results obtained here are both new

and timely.
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2.2 Introduction

The propagation of longitudinal deformation waves in elastic rods is governed [6–8]

by the Generalized Pochammer-Chree Equation:

utt − uttxx − (α1u+ α2u
2 + α3u

3)xx = 0 (2.2.1)

Here, α1, α2, and α3 are dimensionless parameters, and x and t denote space and

time coordinates, respectively.

References [6–8] include derivations and applications of these equations in var-

ious fields. In addition, motivated by experimental and numerical results, there

are derivations of special families of solitary wave solutions by the extended Tanh

method [6], and other ansatzen [8]. These extend earlier solitary wave solutions given

by Bogolubsky [9] and Clarkson et al. [10] for special cases of (2.2.1). In addition, [7]

generalizes the existence results in [11] for solitary waves of (2.2.1).

An analytical method for finding regular and embedded solitons with a variational

approach was given in [12]. The method for finding regular solitary waves variation-

ally is long-standing and widely used. By contrast, that for finding the so-called

embedded solitons is of very recent vintage. The embedded solitons are embedded

both in the continuous spectrum in spectral space and in a continuum of so-called

delocalized solitary waves with oscillatory tails of exponentially small amplitude. In
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this chapter, we shall construct regular solitary waves of (2.2.1) variationally and

follow the extensions of that method in [12] to construct embedded soliton families

of (2.2.1).

Towards that end and since both types of solitary wave solutions will be traveling-

waves, we first derive the traveling-wave reduced ODE corresponding to (2.2.1).

First, we transform to the traveling-wave variable z = x − ct. The derivatives are

transformed as below.

d

dx
=

d

dz

dz

dx
=

d

dz
(2.2.2)

d

dt
=

d

dz

dz

dt
= c

d

dz
(2.2.3)

Now the PDE is an ODE:

c2uzz − c2uzzzz − (α1u+ α2u
2 + α3u

3)zz = 0 (2.2.4)

After and integrating twice, we have the following ODE (2.2.5) governing 1-D longi-

tudinal wave propagation, with parameters defined by (2.2.6). Boundary conditions

are not taken into account. The solitons constructed for this equation correspond to

homoclinic orbits.

(1− a1)u− a2u
2 − a3u

3 − u′′ = 0 (2.2.5)

ai = αi/c
2, 1 ≤ i ≤ 3 (2.2.6)
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2.3 The linear spectrum

As mentioned above, embedded solitary waves exist within a continuum of delocalized

solitary waves with oscillating tails, as opposed to the exponentially decaying tails

of regular solitary waves. This distinction may be used, together with an analysis

of the tail region, to identify the disjoint parameter regimes where each of the two

types of solitary waves may exist.

First, we perform a Taylor analysis of the tail of the potential soliton to find

parameter regions where regular or embedded solitons could exist. Regular solitary

waves have a vanishing amplitude for large |z|, and embedded solitary waves will have

oscillating tails. These two behaviors can be modeled by an exponential function

with either a negative or imaginary argument. We use the simple exponential ansatz

below.

φ = A exp(λz). (2.3.1)

This is plugged into the linearized ODE to find the behavior of the tails. Note that the

solution and its derivatives are very small in the tail for both types of solitary wave

solutions. This is true even for embedded solitary waves since the tail oscillations

have exponentially small amplitudes. Hence, the linearized ODE may be used.

(1− a1)Ae
λz − λ2Aeλz = 0 (2.3.2)

13



Solveing forλ reveals the eigenvalues

λ = ±
√
1− a1. (2.3.3)

Therefore, parameter regimes with a1 < 1 correspond to regular solitary waves with

exponentially decaying tails, while parameter regimes with a1 > 1 support embedded

solitons with oscillatory tails.

2.4 Variational formulation

2.4.1 The variational approximation for regular solitons

The procedure for constructing regular solitary waves with exponentially decaying

tails is well-known. It is widely employed in many areas of applied mathematics and

goes by the name of the Rayleigh-Ritz method. In this section, we shall employ it

to construct regular solitary waves of (2.2.5).

For this purpose, we first require the corresponding Lagrangian. The Lagrangian

having equation (2.2.5) as its Euler-Lagrange equation is

(1− a1)u
2/2− a2u

3/3− a3u
4/4− uzzu/2 (2.4.1)

This may be found by comparison with similar examples. It may also be found

more systematically by matching the Euler-Lagrangian equation to (2.2.5), equating

14



coefficients of corresponding terms, and integrating the resulting equations in Lie-

algebraic fashion.

The localized regular solitary wave solutions will be found with a Gaussian trial

function (2.4.2). Note that it is standard to use such Gaussian ansatzën for analytic

tractability. This is true even for simpler nonlinear PDEs where exact solutions may

be known and have the usual sech or sech2 functional forms.

φ = A exp

(

−z2

ρ2

)

(2.4.2)

Next, substituting the trial function into the Lagrangian and integrating over all

space yields the ‘averaged Lagrangian’ or action (2.4.3):

A2
√
π

72ρ
(−9A2ρ2 + 9

√
2(2 + ρ2)− 8

√
3Aρ2a2) (2.4.3)

The next step is to optimize the trial functions by varying the action with respect to

the trial function parameters, viz. the core amplitude, A, and the core width, ρ. This

determines the optimal parameters for the trial function or solitary wave solution,

but within the particular functional form chosen for the trial function ansatz. The

resulting variational Euler-Lagrange equations, by varying A and ρ respectively, are

the system of algebraic equations:

ρ2(3
√
2a1 + A(2

√
3a2 + 3Aa3)) = 3

√
2(1 + ρ2) (2.4.4)

ρ2(18
√
2a1 + A(8

√
3a2 + 9Aa3)) = 18

√
2(−1 + ρ2) (2.4.5)
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Given their relative simplicity, and assuming a1 = 1/2, a3 = 1, a nontrivial solution

to these equations is

A =
4(10− ρ2)a2

3
√
3(ρ2 − 6)

(2.4.6)

ρ2 =
80a22 + 2

√
2(81− 4

√

81
√
2a22 + 50a42)

27
√
2 + 16a22

(2.4.7)

The optimized variational soliton for the regular solitary waves of the traveling-wave

equation (2.2.5) is given by the trial function (2.4.2) with the above A and ρ. The

following plots show the resulting regular solitary wave solution for various values of

the parameter a2. Note that the tail analysis revealed the need for a1 < 1 in regimes

with regular solitary waves.

Figure 2.1 shows the residual of the variational regular solitary waves obtained

above. We are able to find this since our variational solution for the regular solitary

waves given by (2.4.2), (2.4.6), and (2.4.7) is, unlike for most variational solutions,

an analytical one. Inserting this variational solution (2.4.2) (with (2.4.6) and (2.4.7))

into the traveling-wave ODE (2.2.5), the deviation of the left-hand side of (2.2.5)

from zero gives a direct measure of the goodness of the variational solution.

Figure 2.2 shows this left-hand side for a1 = 1/2, a3 = 1. For small values of a2,

the residual is small for all values of z. Greater values of a2 create a greater residual

for small values of z, but it approaches 0 for any particular a2 as z → ∞.
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Figure 2.1: The regular soliton plotted for a1 = 1/2, a3 = 1
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Figure 2.2: Residual of the regular soliton
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2.4.2 The variational approximation for embedded solitons

In the very recent and novel variational approach to embedded solitary waves, the

tail of a delocalized soliton is modeled by (2.4.8). Our embedded solitary wave will be

embedded in a sea of such delocalized solitons. The cosine ensures an even solution,

and the arbitrary function κ(c) will, as shown below, help to ensure the integrability

of the action.

φtail = α cos(κ(c)z) (2.4.8)

Our ansatz for the embedded soliton uses a second order exponential core model plus

the above tail model.

φ = A exp

(

−z2

ρ2

)

+ φtail (2.4.9)

Plugging this ansatz into the Lagrangian (2.4.1) and reducing the trigonometric

powers to double and triple angles yields an equation with trigonometric functions

of the double and triple angles, as well as terms linear in z. The former would make

spatial integration or averaging of the Lagrangian divergent. However, it is possible to

rigorously establish, following a procedure analogous to proofs of Whitham’s averaged

Lagrangian technique [13], that such terms may be averaged out, so we shall set them

to zero a priori.
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The terms linear in z would also cause the Lagrangian to be non-integrable.

Hence, we set κ(c) as below to force these linear terms to equal 0.

κ(c) = ±
√
−8 + 8a1 + 3α2a3

2
√
2

(2.4.10)

ai = αi/c
2 (2.4.11)

Note that this step, and the preceding step of averaging out trigonometric functions

of the higher angles are novel ones for the variational approximation of embedded

solitary waves. They are not part of the traditional Rayleigh-Ritz method used for

the construction of regular solitary waves.

Next, the rest of the Lagrangian can be integrated over all space to give the action

−A
√
π

72ρ

(

−18
√
2A(1 + ρ2) + ρ2f(a1, a2, a3)

)

(2.4.12)

f(a1, a2, a3) = 8
√
3A2a2 + 36α2a2 + 9A3a3 + 9

√
2A(2a1 + 3α2a3) (2.4.13)

ai = αi/c
2 (2.4.14)

As for the regular solitary waves, the action is now varied with respect to the core

amplitude (A), the core width (ρ), and the small amplitude (α) of the oscillating tail
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to give the following system of equations (2.4.15), (2.4.16), and (2.4.17):

ρ2
(

4
√
3A2a2 + 6α2a2 + 6A3a3 + 3

√
2A(2a1 + 3α2a3)

)

= 6
√
2A(1 + ρ2)

(2.4.15)

8
√
3A2ρ2a2 + 36α2ρ2a2 + 9A3ρ2a3 + 9

√
2A(2− 2ρ2 + ρ2(2a1 + 3α2a3)) = 0

(2.4.16)

4a2 + 3
√
2Aa3 = 0 (2.4.17)

For strictly embedded solitary waves, which occur on isolated curves in the parameter

space where continua of delocalized solitary waves exist, the amplitude of the tail is

strictly zero. Once again, this is an extra feature not encountered in the standard

variational procedure. Hence, we set α = 0 in the above equations in order to recover

such embedded solitary waves, yielding

ρ2
(

2
√
3Aa2 + 3A2a3 + 3

√
2a1

)

= 3
√
2(1 + ρ2) (2.4.18)

ρ2
(

18
√
2a1 + A(8

√
3a2 + 9Aa3)

)

= 18
√
2(ρ2 − 1) (2.4.19)

4a2 + 3
√
2Aa3 = 0 (2.4.20)
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Figure 2.3: The embedded soliton plotted for a1 = 2

If we set a1 = 2, a nontrivial analytical solution to these equations can be found.

A = −2
√
2a2

3a3
(2.4.21)

ρ2 = − 27
√
2a3

12a22 − 8
√
6a22 + 27

√
2a3

(2.4.22)

a3 =
−18a22 + 10

√
6a22

27
√
2

(2.4.23)

22



As for the regular solitary waves, our embedded solitary waves (2.4.9) (with α = 0

and (2.4.21), (2.4.22), (2.4.23)) are somewhat unusual for the variational approach,

being available in analytic form. Hence, as done for the regular solitary waves, they

could be inserted into the left-hand of side of (2.2.5), which could then be plotted

for various ranges of z and a2. Then, the left-hand side of (2.2.5) again remains very

small over all ranges of z and a2, thus attesting to the goodness of the variational

embedded solitary waves constructed here.

2.5 Conclusion

We have found both regular and embedded solitons in a generalized Pochhammer

PDE using a variational method. While both types of solutions are important and

relevant in themselves, the approach used for the construction of the embedded

solitary waves is novel. It employs several extensions of the conventional Rayleigh-

Ritz variational technique, which is a widely used and most versatile technique for

the construction of regular solitary waves of important nonlinear PDEs.
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CHAPTER 3

REGULAR AND EMBEDDED SOLITONS IN A

GENERALIZED MICROSTRUCTURE PDE

3.1 Abstract

In this chapter, variational methods are employed to generate families of both regular

and embedded solitary wave solutions for a generalized microstructure PDE that is

of great interest. The technique for obtaining the embedded solitons incorporates

several recent generalizations of the usual variational technique and is thus topical in

itself. One unusual feature of the solitary waves derived here is that we are able to

obtain them in analytical form (within the family of the trial functions). Thus, the

residual is calculated, showing the accuracy of the resulting solitary waves. Given the

importance of solitary wave solutions in wave dynamics and information propagation

in nonlinear PDEs, as well as the fact that only the parameter regimes for the

existence of solitary waves had previously been analyzed for the microstructure PDE

considered here, the results obtained here are both new and timely.
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3.2 Introduction

One-dimensional wave propagation in microstructured solids is currently a topic of

great interest, given the potential applications of such materials in diverse areas. This

phenomenon has recently been modeled [14] by equation (3.2.1) with complicated

dispersive and nonlinear terms.

φtt − bφxx −
µ

2
(φ2)xx − δ(βφtt − γφxx)xx = 0 (3.2.1)

Here, b, µ, β, δ, and γ are dimensionless parameters, φ denoting the macroscopic

deformation of the material, and x and t denoting space and time coordinates, re-

spectively.

Equation (3.2.1) is derived by using the so-called Mindlin model in [15–17]. It

is a non-integrable PDE. However, necessary analytic conditions for the possible

existence of solitary waves of (3.2.1) have been derived in [17, 18]. The last-cited

papers also numerically construct asymmetric, pulse-shaped traveling-wave solutions

of (3.2.1), where the spatial and temporal coordinates occur in the combination x−ct.

More recently [14, 19, 20], pulse trains in (3.2.1) have been numerically patched

together.

An analytical method for finding regular and embedded solitons with a varia-

tional approach was given in [21]. The method for finding regular solitary waves
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variationally is long-standing and widely used. By contrast, that for finding the

so-called embedded solitons is of very recent vintage. The embedded solitons are

embedded both in the continuous spectrum in spectral space and in a continuum

of so-called delocalized solitary waves with oscillatory tails of exponentially small

amplitude. In this paper, we shall construct regular solitary waves of (3.2.1) vari-

ationally and follow the extensions of that method in [21] to construct embedded

soliton families of (3.2.1).

Towards that end and since both types of solitary wave solutions will be traveling-

waves, we first derive the traveling-wave reduced ODE corresponding to (3.2.1).

First, we transform to the traveling-wave variable z = x − ct. The derivatives are

transformed as below.

d

dx
=

d

dz

dz

dx
=

d

dz
(3.2.2)

d

dt
=

d

dz

dz

dt
= c

d

dz
(3.2.3)

Now the PDE is an ODE:

(c2 − b)φzz −
µ

2
(φ2)zz − δ(βc2φzz − γφzz)zz = 0 (3.2.4)

After integrating twice, the PDE becomes the following ODE (3.2.5) governing 1-

D longitudinal wave propagation, with parameters defined by (3.2.6) and (3.2.7).

Boundary conditions are not taken into account. The solitons constructed for this
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equation correspond to homoclinic orbits.

φzz − qφ− 1

2
rφ2 = 0 (3.2.5)

q =
c2 − b

δ(βc2 − γ)
(3.2.6)

r =
µ

−δ(βc2 − γ)
(3.2.7)

3.3 The linear spectrum

As mentioned above, embedded solitary waves exist within a continuum of delocalized

solitary waves with oscillating tails, as opposed to the exponentially decaying tails

of regular solitary waves. This distinction may be used, together with an analysis

of the tail region, to identify the disjoint parameter regimes where each of the two

types of solitary waves may exist.

First, we perform a Taylor analysis of the tail of the potential soliton to find

parameter regions where regular or embedded solitons could exist. Regular solitary

waves have a vanishing amplitude for large |z|, and embedded solitary waves will have

oscillating tails. These two behaviors can be modeled by an exponential function with

either a negative or imaginary argument. We use the simple exponential ansatz

φ = A exp(λz). (3.3.1)
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This is plugged into the linearized ODE to find the behavior of the tails. Note that the

solution and its derivatives are very small in the tail for both types of solitary wave

solutions. This is true even for embedded solitary waves since the tail oscillations

have exponentially small amplitudes. Hence, the linearized ODE may be used.

λ2Aeλz − qAeλz = 0 (3.3.2)

Solving for λ reveals the eigenvalues

λ = ±√
q. (3.3.3)

Therefore, parameter regimes with q > 0 correspond to regular solitary waves with

exponentially decaying tails, while parameter regimes with q < 0 support embedded

solitons with oscillatory tails.

3.4 Variational formulation

3.4.1 The variational approximation for regular solitons

The procedure for constructing regular solitary waves with exponentially decaying

tails is well-known. It is widely employed in many areas of applied mathematics and

goes by the name of the Rayleigh-Ritz method. In this section, we shall employ it

to construct regular solitary waves of (3.2.5).
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For this purpose, we first require the corresponding Lagrangian. The Lagrangian

having equation (3.2.5) as its Euler-Lagrange equation is

L = −q

2
φ2 − r

6
φ3 +

1

2
φφzz. (3.4.1)

This may be found by comparison with similar examples. It may also be found

more systematically by matching the Euler-Lagrangian equation to (3.2.5), equating

coefficients of corresponding terms, and integrating the resulting equations in Lie-

algebraic fashion.

The localized regular solitary wave solutions will be found with a Gaussian trial

function (3.4.2). Note that it is standard to use such Gaussian ansatzën for analytic

tractability. This is true even for simpler nonlinear PDEs where exact solutions may

be known and have the usual sech or sech2 functional forms.

φ = A exp

(

−z2

ρ2

)

(3.4.2)

Next, substituting the trial function into the Lagrangian and integrating over all

space yields the ‘averaged Lagrangian’ or action (3.4.3):

−A2

2

√

π

2

(

1

ρ
+ qρ

)

− A3

6

√

π

3
rρ (3.4.3)

The next step is to optimize the trial function by varying the action with respect to

the trial function parameters, viz. the core amplitude, A, and the core width, ρ. This
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determines the optimal parameters for the trial function or solitary wave solution,

but within the particular functional form chosen for the trial function ansatz. The

resulting variational Euler-Lagrange equations, by varying A and ρ respectively, are

the system of algebraic equations:

√
3Arρ2 + 3

√
2(1 + qp2) = 0 (3.4.4)

2
√
3Arρ2 + 9

√
2(−1 + qρ2) = 0 (3.4.5)

Given their relative simplicity, a nontrivial solution to these equations is

A = −6
√
6q

5r
(3.4.6)

ρ2 =
5

q
(3.4.7)

The optimized variational soliton for the regular solitary waves of the traveling-

wave equation (3.2.5) is given by the trial function (3.4.2) with the above A and ρ.

Figures 3.1 and 3.2 show the resulting regular solitary wave solution for q = 1 and

various values of the parameter r, as well as for r = 1 and various positive values of

q. Note that the tail analysis revealed the need for positive q in regimes with regular

solitary waves.

Figures 3.3 and 3.4 show a direct analysis of the accuracy of the variational regular

solitary waves obtained above. In this instance, we are able to calculate the residual

since our variational solution for the regular solitary waves given by (3.4.2), (3.4.6),
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Figure 3.1: The regular soliton plotted for q = 1

Figure 3.2: The regular soliton plotted for r = 1
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Figure 3.3: Residual of the regular soliton for q = 1

and (3.4.7) is, unlike for most variational solutions, an analytical one. Inserting

this variational solution (3.4.2) (with (3.4.6) and (3.4.7)) into the traveling-wave

ODE (3.2.5), the deviation of the left-hand side of (3.2.5) from zero gives a direct

measure of the goodness of the variational solution.

Figure 3.3 shows this left-hand side for q = 1. Over the entire ranges of z from

-10 to 10 and r from 1 to 10, it is bounded in magnitude by 0.2, thus showing that

our variational solution is indeed accurate over the entire range of z and r values.

At larger z values, the residual becomes even smaller. At values of r less than 1
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Figure 3.4: Residual of the regular soliton for r = 1

and approaching 0, the residual increases without bound since there is an r in the

denominator of (3.4.6).

Figure 3.4 displays the left-hand side of (3.2.5) in a somewhat different fashion.

Now, r = 1. Over the entire ranges of z from -10 to 10 and q from 0 to 1, it is

bounded in magnitude by 0.2, thus showing that our variational solution is, once

again, accurate over the entire range of z and small q values. At larger z values, the

deviation from zero becomes even smaller. The residual increases for larger values

of q.
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3.4.2 The variational approximation for embedded solitons

In the very recent and novel variational approach to embedded solitary waves, the

tail of a delocalized soliton is modeled by (3.4.8). Our embedded solitary wave will be

embedded in a sea of such delocalized solitons. The cosine ensures an even solution,

and the arbitrary function κ(c) will, as shown below, help to ensure the integrability

of the action.

φtail = a cos(κ(c)z) (3.4.8)

Our ansatz for the embedded soliton uses a fourth order exponential core model plus

the above tail model.

φ = A exp

(

−z4

ρ4

)

+ φtail (3.4.9)

Plugging this ansatz into the Lagrangian (3.4.1) and reducing the trigonometric

powers to double and triple angles yields an equation with trigonometric functions

of the double and triple angles, as well as terms linear in z. The former would make

spatial integration or averaging of the Lagrangian divergent. However, it is possible to

rigorously establish, following a procedure analogous to proofs of Whitham’s averaged

Lagrangian technique [13], that such terms may be averaged out, so we shall set them

to zero a priori.
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The terms linear in z would also cause the Lagrangian to be non-integrable.

Hence, we set κ(c) = ±√
α, where α = −q > 0, to force these linear terms to equal

zero. Note that this step, and the preceding step of averaging out trigonometric

functions of the higher angles are novel ones for the variational approximation of

embedded solitary waves. They are not part of the traditional Rayleigh-Ritz method

used for the construction of regular solitary waves.

Next, the rest of the equation can be integrated to give the action

− 1

18
A
(

9a2r + A(2 · 33/4Ar − 9 · 23/4α)
)

ρΓ

[

5

4

]

− 1

ρ
21/4A2Γ

[

7

4

]

(3.4.10)

Here we have used the Gamma function Γ. As for the regular solitary waves, the

action is now varied with respect to the core amplitude (A), the core width (ρ),

and the small amplitude (a) of the oscillating tail to give the following system of

equations (3.4.11), (3.4.12), and (3.4.13):

(

3a2r + 2A(33/4Ar − 3 · 23/4α)
)

ρ2Γ

[

5

4

]

+ 12 · 21/4AΓ
[

7

4

]

= 0 (3.4.11)

(

9a2r + A(2 · 33/4Ar − 9 · 23/4α)
)

ρ2Γ

[

5

4

]

− 18 · 21/4AΓ
[

7

4

]

= 0 (3.4.12)

aArρ = 0 (3.4.13)

For strictly embedded solitary waves, which occur on isolated curves in the parameter

space where continua of delocalized solitary waves exist, the amplitude of the tail is

strictly zero. Once again, this is an extra feature not encountered in the standard
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Figure 3.5: The embedded soliton plotted for α = 7

variational procedure. Hence, we set a = 0 in the above equations in order to recover

such embedded solitary waves, yielding

(33/4Ar − 3 · 23/4α)ρ2Γ
[

5

4

]

+ 6 · 21/4Γ
[

7

4

]

= 0 (3.4.14)

(2 · 33/4Ar − 9 · 23/4α)ρ2Γ
[

5

4

]

− 18 · 21/4Γ
[

7

4

]

= 0 (3.4.15)

A nontrivial analytical solution to these equations is found to be

A =
27/435/4α

5r
(3.4.16)

ρ2 = −21/2
5

α

Γ[7/4]

Γ[5/4]
(3.4.17)
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Figure 3.6: The embedded soliton plotted for r = 2

Note that using the model exp(−z2/ρ2) for the core of the embedded solitary

wave, with the tail (3.4.8) added on, would have resulted in an imaginary ρ, which

would have made the argument to the exponential positive, and there would have

been no decaying wave corresponding to a genuine embedded solitary wave. Fig-

ures 3.5 and 3.6 show our embedded soliton (3.4.9) (with a = 0 and (3.4.16)/(3.4.17))

versus the traveling-wave variable z for figure 3.5: α = 7 and various r values and

figure 3.6: r = 2 and various positive values of α. Note that the tail analysis revealed

the need for negative q values (positive α values) in order to have delocalized solitary

waves with oscillatory tails.
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Figure 3.7: Residual of the embedded soliton for α = 1

Figure 3.8: Residual of the embedded soliton for r = 1
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As for the regular solitary waves, our embedded solitary waves (3.4.9) (with

a = 0 and (3.4.16)/(3.4.17)) are somewhat unusual for the variational approach,

being available in analytic form. Hence, as done for the regular solitary waves,

figures 3.7 and 3.8 show (3.4.9) inserted into the left-hand of side of (3.2.5), which is

then plotted for various ranges of z, r and α. The residual again remains very small

for fixed α and large enough r and z, and for fixed r and large enough z or small

enough α, thus attesting to the goodness of the variational embedded solitary waves

constructed here.

3.5 Conclusion

We have found both regular and embedded solitons in a topical, generalized micros-

tucture PDE using a variational method. While both types of solutions are important

and relevant in themselves, the approach used for the construction of the embedded

solitary waves is novel. It employs several extensions of the conventional Rayleigh-

Ritz variational technique, which is a widely used and most versatile technique for

the construction of regular solitary waves of important nonlinear PDEs.
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Part III

DYNAMICAL CONSEQUENCES FOR GENERALIZED

HOPF BIFURCATIONS
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CHAPTER 4

GENERALIZED HOPF BIFURCATIONS AND

QUASIPERIODICITY IN A LASER DIODE SYSTEM

WITH SELF-SUSTAINED PULSATIONS

4.1 Abstract

In this chapter, generalized Hopf bifurcations in a laser diode system are consid-

ered. The periodic orbit immediately following the generalized Hopf bifurcation is

constructed using the method of multiple scales, and its stability is analyzed. Numer-

ical solutions reveal the existence of stable periodic attractors, attractors at infinity,

and bounded chaotic dynamics in various cases. The dynamics are explained on the

basis of the bifurcations occurring. Chaotic regimes are characterized using power

spectra, auto-correlation functions and fractal dimensions.

4.2 Introduction

In this chapter, we consider a semiconductor laser diode system [22, 23] with self-

sustained pulsation (SSN). In normalized coordinates [23], the equations governing

this system are written below, where τ is normalized time, x and y are normalized
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carrier densities in different sections of the diode, z is a normalized photon number

density, τ̄b is a normalized carrier lifetime, γ is the ratio of the differential gains in

the two sections, Γ̄ is a photon loss coefficient, and x0 and y0 are normalized photon

pumping rates in the two sections.

ẋ(τ) = −(x− x0)− xz,

ẏ(τ) = −(y − y0)

τ̄b
− γyz, (4.2.1)

ż(τ) = Γ̄(x+ y − 1)z,

Physically, the parameters that may be varied most readily are the pumping rates

x0 and y0. The other parameters, τ̄ , γ and Γ̄, are material properties of the semi-

conductor and thus difficult to vary.

Hopf and generalized Hopf bifurcations occur in this system. The conditions

for their occurrence are analyzed, and the resulting periodic orbits are constructed

analytically by the method of multiple scales. Stability analysis of these periodic

orbits reveals that they may be destroyed by secondary bifurcations as the parameter

is varied further past the bifurcation value. These secondary bifurcations may lead

to chaos. This conclusion is verified numerically, showing that while the periodic

orbit serves as a vehicle for SSN, which keeps the system operating in a microwave

oscillator mode, it does so over a narrow range of parameters.
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The remainder of this chapter is organized as follows. In section 4.3 we consider

the stability of the fixed point of (4.2.1) and the onset of instability via a Hopf

bifurcation, which may be either supercritical or subcritical. In section 4.4, we derive

the analytical expressions for the periodic orbits resulting from this generalized Hopf

bifurcation by employing the method of multiple scales. Section 4.5 considers detailed

numerical solutions and discusses the results.

4.3 Linear stability and generalized Hopf bifurcation analysis

The fixed (alternatively, equilibrium or critical) points of (4.2.1) are (xc, yc, zc), de-

fined in (4.3.1).

xc =
−1 + γτ̄b + γτ̄bx0 + y0 ±

√
D

2(γτ̄b − 1)

yc =
−1 + γτ̄b − γτ̄bx0 − y0 ∓

√
D

2(γτ̄b − 1)
(4.3.1)

zc =
−1− γτ̄b + γτ̄bx0 + y0 ∓

√
D

2γτ̄b

D = (1 + γτ̄b − γτ̄bx0 − y0)
2 + 4γτ̄b(x0 + y0 − 1)

Here we pick the fixed point satisfying the physical requirement zc > 0 [22, 23].

Following standard methods of phase-plane analysis [22], the Jacobian matrix of
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(4.2.1) at (xc, yc, zc) is

J =

















−x0
xc

0 −xc

0 − 1
τ̄ b

− γ
(

x0
xc

− 1
)

−γ(1− xc)

Γ̄
(

x0
xc

− 1
)

Γ̄
(

x0
xc

− 1
)

0

















The eigenvalues of this matrix satisfy the characteristic equation (4.3.2);

λ3 + b1λ
2 + b2λ+ b3 = 0 (4.3.2)

b1 =
1

τ̄b
− γ +

(1 + γ)x0

xc

b2 = xc(−1 + γ)Γ̄ +
x0

xc

(
1

τ̄b
+ γ(−1 + Γ̄)) +

(

x0

xc

)2

γ

− Γ̄(γ + (−1 + γ)x0) (4.3.3)

b3 = −Γ̄(xc − x0)

(

1

τ̄b
− γ + x−2

c γx0

)

For (xc, yx, zc) to be a stable fixed point within the linearized analysis, all the eigen-

values must have negative real parts [22]. From the Routh-Hurwitz criterion, the

necessary and sufficient conditions for the solutions of (4.3.2) to have negative real

parts are

b1 > 0, b3 > 0, b1b2 − b3 > 0. (4.3.4)

The condition b1b2−b3 = 0 for Hopf bifurcation yields an involved equation. In order

to solve this, the simplest technique is to isolate the
√
D terms on one side and then
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square to obtain an expression which is of sixth degree in x0 and y0 (and contains

spurious solutions due to squaring). Since the resulting equation is not transparent,

we do not include it here. If the two relevant values of x0 satisfying b1b2 − b3 = 0

are x01 and x02, then the following is true: (a) If x01 > 0, then (xc, yc, zc) is stable

for 0 < x0 < x01 and x0 > x02 and unstable for x01 < x0 < x02; (b) If x01 < 0, then

(xc, yc, zc) is stable for x0 > x02 and unstable for 0 < x0 < x02.

In this chapter, we will primarily be concerned with the interesting case of the gen-

eralized Hopf bifurcation scenario where all three roots of (4.3.2) have zero real parts,

which corresponds to the first two Routh-Hurwitz conditions becoming marginal, i.e.,

b1 = b3 = 0 (4.3.5)

Sets of system parameters satisfying these conditions for the generalized Hopf bifur-

cation will be considered in section 4.5.

In the next section, we construct the orbits arising through the generalized Hopf

bifurcation and consider their stability.
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4.4 Analytical construction of orbits

We will use the method of multiple scales to construct analytical approximations

for the orbits arising through the generalized Hopf bifurcation of the fixed point of

the laser-diode system. For the system of differential equations (4.2.1), the only

physically relevant fixed point is given by (4.3.1). The parameter x0 will be used as

the control parameter. The limit cycle is determined by expanding about the fixed

point using progressively slower time scales. The expansion takes the following form.

x = xc +
2

∑

n=1

ǫnxn(T0, T1, T2) + · · · , (4.4.1)

y = yc +
2

∑

n=1

ǫnyn(T0, T1, T2) + · · · , (4.4.2)

z = zc +
2

∑

n=1

ǫnzn(T0, T1, T2) + · · · , (4.4.3)

Here Tn = ǫnτ and ǫ is a small positive non-dimensional parameter that is introduced

as a bookkeeping device and will be set to unity in the final analysis. Utilizing the

chain rule, the time derivative becomes

d

dτ
= D0 + ǫD1 + ǫ2D2 + · · · , (4.4.4)

Dn = ∂/∂Tn

The delay parameter x0 is ordered as follows.

x0 = x0c + ǫµ1 + ǫ2µ2, (4.4.5)
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Here x0c is obtained from (4.3.5). This is standard for this method, as it allows the

influence from the nonlinear terms and the control parameter to occur at the same

order.

Using (4.4.1)-(4.4.5) in (4.2.1) and equating like powers of ǫ yields equations at

O(ǫi), i = 1, 2 of the following form.

L1(xi, yi, zi) = Si,1, (4.4.6)

L2(xi, yi, zi) = Si,2, (4.4.7)

L3(xi, yi, zi) = Si,3, (4.4.8)

Here, Li, i = 1, 2 are the differential operators below.

L1(xi, yi, zi) ≡ D0xi + xi + xczi + zcxi (4.4.9)

L2(xi, yi, zi) ≡ D0yi +
yi
τ̄b

+ γyczi + γzcyi (4.4.10)

L3(xi, yi, zi) ≡ D0zi + Γ̄(zi − xczi − yczi − zcxi − zcyi). (4.4.11)
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The source terms Si,j for i = 1, 2 and j = 1, 2, 3, i.e. at O(ǫ) and O(ǫ2) are

S1,1 = µ1

S1,2 = 0

S1,3 = 0

S2,1 = −D1x1 − x1z1 + µ2 (4.4.12)

S2,2 = −D1y1 − γy1z1

S2,3 = −D1z1 + Γ̄x1z1 + Γ̄y1z1

Note that (4.4.8) may be solved for yi in terms of zi and xi. Using this in (4.4.7)

yields zi in terms of xi. Next, using both of these last two relations in (4.4.6) yields

the composite equation below.

Lcxi = Γi, (4.4.13)

The composite operator Lc is defined below.

Lc ≡
Lcn3D

3
0 + Lcn2D

2
0 + Lcn1D0 + Lcn0

xczcΓ̄τ̄b
(4.4.14)

Lcn3 = τ̄b

Lcn2 = 1 + τ̄b + zcτ̄b + zcγτ̄b

Lcn1 = 1 + zc + zc(xcΓ̄ + γ(1 + zc − xcΓ̄))τ̄b

Lcn0 = zcΓ̄(xc + (yc + zc)γτ̄b)
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The composite source term Γi is defined below.

Γi ≡
(

γ

(

1− 1

xc

)

+
D2

0

xczcΓ̄
+

D0(1 + τ̄bzcγ)

τ̄bxczcΓ̄

)

Si,1

− Si,2 −
(

D0

zcΓ̄
− 1 + τ̄bzcγ

zcΓ̄τ̄b

)

Si,3. (4.4.15)

We shall use (4.4.13) and (4.4.14) later to identify and suppress secular terms in the

solutions of (4.4.6)-(4.4.8).

Let us now turn to finding the solutions of (4.4.6)-(4.4.8). For i = 1 or O(ǫ), we

may pick the following form for the first order carrier density below.

x1 = α(T1)e
λ1τ + β(T1)e

λ2τ + η(T1)e
λ3τ , (4.4.16)

Here β = ᾱ is the complex conjugate of α since λ2 = λ̄1 and x1 is a real carrier

density. The α, β and η correspond to the center manifold where the λ1,2 are purely

imaginary and λ3 = 0.

Using (4.4.16) in (4.4.6)-(4.4.8) for i = 1 together with (4.4.12) yields the first

order fields

y1 = −(xczcΓ̄ + λ1(1 + zc + λ1))

xczcΓ̄
α(T1)e

λ1τ

− (xczcΓ̄ + λ2(1 + zc + λ2))

xczcΓ̄
β(T1)e

λ2τ − η(T1), (4.4.17)

z1 = −(1 + zc + λ1)

xc

α(T1)e
λ1τ − (1 + zc + λ2)

xc

β(T1)e
λ2τ

− (1 + zc)

xc

η(T1) +
µ1

xc

(4.4.18)
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Now that the first order solutions (4.4.16)-(4.4.18) are known, the second order

sources S2,1 through S2,3 may be evaluated via (4.4.12). Setting the coefficients of

the secular eλ1,2,3t terms in these sources (which are the solutions of the homogeneous

equations for i = 1) to zero yields the normal form:

D1α = α(k1µ1 + k2η), (4.4.19)

D1η = k3µ2 + k4αβ + k5µ1η + k6η
2, (4.4.20)
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where we have used λ1 = iω and λ2 = −iω, and

k1 =− k1N/k1D (4.4.21)

k1N =z2cγΓ̄τ̄b + i
(

−1 + z2cγτ̄b
)

ω + (1 + τ̄b)ω
2 + iτ̄bω

3

k1D =xczc(−1− 2i(1 + τ̄b)ω + 3τ̄bω
2

+ (−1− γτ̄b(1 + Γ̄ + 2iω)− 2iτ̄bω − (1− γ)Γ̄τ̄bxc)zc − γτ̄bz
2
c )

k2 =k2N/k2D (4.4.22)

k2N =2z2c (1 + zc)γΓ̄τ̄b + i
(

−1 + z2c + z2cγ(2 + 2zc + Γ̄)τ̄b
)

ω

+
(

1−
(

−1 + z2c (1 + γ)
)

τ̄b
)

ω2 + iτ̄bω
3

k2D =xczc(1 + 2i(1 + τ̄b)ω − 3τ̄bω
2 + (1 + γτ̄b(1 + Γ̄ + 2iω)

+ 2iτ̄bω + (1− γ)Γ̄τ̄bxc)zc + γτ̄bz
2
c )

k3 =
γΓ̄τ̄byczc

1 + (1 + γ(1 + Γ̄)τ̄b + (1− γ)Γ̄τ̄bxc)zc + γτ̄bz2c
(4.4.23)

k4 =
2zc(1 + zc)γΓ̄τ̄b

xc(1 + zc + zc(xcΓ̄ + γ(1 + zc + ycΓ̄))τ̄b)
(4.4.24)

k5 =− zcγΓ̄τ̄b
xc(1 + zc + zc(xcΓ̄ + γ(1 + zc + ycΓ̄))τ̄b)

(4.4.25)

k6 =
zc(1 + zc)γΓ̄τ̄b

xc(1 + zc + zc(xcΓ̄ + γ(1 + zc + ycΓ̄))τ̄b)
. (4.4.26)

Writing α = aeiθ, the real and imaginary parts of (4.4.19) yield

∂a

∂T1

= k1,rµ1a+ k2,rηa, (4.4.27)
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and

a
∂θ

∂T1

= k1,iµ1a+ k2,iηa, (4.4.28)

where

k1,2 = k1,2 r + ik1,2 i. (4.4.29)

The fixed points of (4.4.20) and (4.4.27) are

η = ηc = −k1,r
k2,r

µ1 (4.4.30)

a = ac =

√

√

√

√

k3µ2 − k1,rk5µ2

1

k2
+

k2
1,rk6µ

2

1

k2
2

−k4
(4.4.31)

Using these values in the first order field yields the post-generalized Hopf periodic

orbits.

x1 = (ace
iθeiωτ + ace

−iθe−iωτ ) + ηc

= 2ac cos(ωτ + θ) + ηc (4.4.32)

The evolution and stability of the periodic orbit (4.4.32) of amplitude ac is gov-

erned by the stability of the fixed point ac of (4.4.27) and (4.4.28). To determine

this, we compute the Jacobian (and eigenvalue, as this is a one-dimensional system)

52



of (4.4.27) at a = ac, η = ηc, i.e.,

J =
∂

∂a
(k1,rµ1a+ k2,rηa)

∣

∣

∣

∣

(ac,ηc)

= k1,rµ1 + k2,rηc

≡ 0 by (4.4.30).

Since this eigenvalue is non-hyperbolic, or has zero real part, our linearized stability

analysis of the periodic orbits (4.4.32) is inconclusive. Hence, we shall determine this

via direct numerical simulations on (4.2.1) in the post-generalized Hopf regime.

To this end, we consider actual parameter sets for the occurrence of the general-

ized Hopf bifurcation and the subsequent dynamics in the next section.

4.5 Numerical results

As is well known, the supercritical Hopf bifurcations give rise to a stable or attracting

periodic orbit. By contrast, the subcritical Hopf bifurcation corresponds to an unsta-

ble periodic orbit coexisting with a stable fixed point. This unstable periodic orbit

tightens like a noose around the fixed point as the perturbed parameter approaches

the bifurcation value. At the bifurcation value, the two collide, causing the fixed

point to become unstable. Thus, there is neither a stable fixed point attractor nor
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a stable limit cycle attractor. Hence, one may have one of three possible dynamical

behaviors:

(a) bounded quasiperiodic dynamics,

(b) bounded chaotic dynamics, or

(c) solutions may go to an attractor at infinity (a movable, initial condition depen-

dent singularity [24]) in a finite time.

However, in this chapter we are interested in degenerate Hopf bifurcations which

do not satisfy the “simple eigenvalue hypothesis,” and so we should not expect the

standard Hopf bifurcation diagrams to describe the behavior we see on either side of

the bifurcation point.

In the case of a regular Hopf bifurcation in three dimensions, one pair of eigen-

values of the Jacobian matrix evaluated at the fixed point are complex conjugates

with zero real parts, and the other eigenvalue is free. This free eigenvalue is also

the trace of the matrix since the other two sum to zero, and so its value determines

the dissipativity of the system. A large negative trace would be helpful for finding

interesting chaotic behavior. In the case of a generalized Hopf bifurcation in three

dimensions, the third eigenvalue is zero, and so the trace is also zero.
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Figure 4.1: The characteristic polynomial coefficient b2 for small positive parameter
values should always be positive for physically meaningful parameter sets. Shown
here for small positive parameter values, the surface is always negative.

And so, we now move on to numerical solutions. Physically realistic parameter

values would be positive and on the order of 1. Figure 4.1 shows the coefficient of

the characteristic polynomial b2, which should always be positive since it is equal

to the square of the frequency of the periodic orbit. In the figure, made with small

positive parameter values, b2 is always negative. Figure 4.2 show the coefficients b1

and b3, which should equal zero simultaneously. Again, with small parameters on

the order of 1, the figure indicates that this is not possible.

To proceed, we need values for the fixed point as well as for the bifurcation point

of the control parameter. For the purpose of this analysis we will consider two cases
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Figure 4.2: The characteristic polynomial coefficients b1 and b3 for small positive
parameter values should vanish simultaneously at the bifurcation. Shown here for
small positive parameter values, the surfaces do not intersect at 0.

corresponding to the following sets of numerical values:

x0 = 0.98730, γ = 53, θ = 143, τb = −0.75748 (4.5.1)

y0 = 0.00019457, γ = 95, θ = 80, τb = −0.0083491, (4.5.2)

These parameter sets give positive values for the fixed points.

For (4.5.1), the fixed point is given by

(xc, yc, zc) ≈ (0.98148, 0.018519, 0.0059290) (4.5.3)

and the bifurcation occurs at

y0 ≈ 0.014111. (4.5.4)
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Furthermore, the eigenvalues of the Jacobian at the fixed point with these parameters

are

λ1,2 = ±0.80770i, λ3 = 0. (4.5.5)

The corresponding values for (4.5.2) are

(xc, yc, zc) ≈ (0.98958, 0.010417, 1.2372) (4.5.6)

x0 ≈ 2.2139 (4.5.7)

λ1,2 = ±13.816, λ3 = 0. (4.5.8)

For parameter set (4.5.1), we begin integrating at (xc + icδ, yc + icδ, zc + icδ) where

icδ = 10−6. Figure 4.3 shows quasiperiodic behavior in the time series of x(t) on one

side of the bifurcation, y0− 10−6. Figure 4.4 shows that y(t) approaches infinity on

the other side, y0 + 10−6. Figure 4.5 shows the behavior of the trajectories near the

quasiperiodic attractor in the (x, y, z) phase-space.

For the parameter set (4.5.2), we also begin integrating at (xc+icδ, yc+icδ, zc+icδ)

where icδ = 10−6. On one side of the bifurcation, x0−10−6, Figure 4.6 reveals strange

aperiodic behavior in y(t).

To analyze this motion, we show the power spectral density in figure 4.7 and the

autocorrelation function in Figure 4.8. Both have been computed using code from

“Numerical Recipes in C” [25]. The broad features in the power spectral density
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show that power is being injected into many different frequencies, which is indicative

of chaos. The autocorrelation function first goes to zero at tc = 2. This is used as

the time delay in the fractal dimension calculation [24–35] which is discussed below.

A more quantitative and definitive numerical diagnostic is the fractal dimension.

Strong randomness or stochastic behavior with many degrees of freedom can be

distinguished from low-dimensional (deterministic) chaos by computing the fractal

cluster dimension. Of several possible alternative definitions for the fractal dimen-

sion [24–35] we employ the cluster fractal dimension D of Termonia and Alexandrow-

icz [29] which is defined below.

n = k[R(n)]D, n → ∞ (4.5.9)

Here R(n) is the average radius of an E-dimensional ball containing n points. Thus,

D is the slope of a plot of log n versus logR(n). More usefully, if a scaling law (4.5.9)

exists, then it would show up on a plot of d log n/d logR(n) versus log n, with the

height of the line being a measure of D. Numerical computation of D is some-

what subtle, and requires the embedding of the numerical time-series N(t) in E-

dimensional space with various values of E, via the construction (from N(t)) of
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“E-tuples”

[N(t), N(t+ τ), N(t+ 2τ), . . . , N(t+ (E − 1)τ)], (4.5.10)

[N(t+ τ), N(t+ 2τ), . . . , N(t+ Eτ)], . . . (4.5.11)

This is a consequence of the Takens embedding theorem [24–35]. For each choice of

embedding dimension E, the “delay” τ is typically chosen to be tc, tc/2 and 2tc and

D is estimated for each τ from the slope of a log n/ logR(n) plot (provided this is ap-

proximately a straight line, or there is a well-defined scaling region) or the height of

an approximate horizontal line in a (d log n/d logR(n))/ log n plot. This is repeated

for increasing E until the estimates for D saturate, which yields the converged es-

timate for D (provided well-defined straight lines or scaling regions (4.5.9) occur in

the plots and the D values obtained for τ = tc,tc/2, and 2tc are in good agreement).

Following this procedure, a sample plot is shown in Figure 4.9.

Figure (4.9) shows the (d log n/d logR(n))/ log n plot for E = 3, tc = τ . From

the height of the approximate horizontal line (which indicates a well-defined scaling

region), we can estimate the converged cluster fractal dimension to be a non-integer

value in the range D ∈ (1.27, 1.32). This confirms that the system possesses bounded

low-dimensional (deterministic) chaotic solutions evolving on a strange attractor with

fractal dimension D ∈ (1.27, 1.32).
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Figure 4.3: A quasiperiodic time series for x(t) for parameter set 4.5.1 and the
perturbation y0− 10−6.

In conclusion, we have comprehensively analyzed generalized Hopf bifurcations in

our laser-diode model. In contrast to regular Hopf bifurcations [36], which give rise

to a very stable and robust periodic attractor in this system, the generalized Hopf

bifurcation creates stable quasiperiodic attractors and chaotic attractors. These

attractors are, once again, very robust under subsequent parameter changes in the

post-bifurcation regime. Thus, as for the stable periodic attractors resulting from

regular Hopf bifurcation, these generalized-Hopf induced solutions provide a robust,

and very desirable, platform for quasiperiodic operation of the laser-diode systems

over a large region of the parameter space.
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Figure 4.4: The variable y(t) approaches infinity for parameter set 4.5.1 and the
perturbation y0 + 10−6.
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Figure 4.5: A quasiperiodic orbit in the (x, y, z) phase space for parameter set 4.5.1
with perturbation y0− 10−6.
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Figure 4.6: Chaotic behavior in the time series of y(t) for parameter set 4.5.2 with
perturbation x0− 10−6.
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Figure 4.7: Power spectrum for y(t) with perturbation x0 − 10−6. Broad features
show lots of contributing frequencies which indicates chaos.
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Figure 4.8: Autocorrelation for y(t) with perturbation x0− 10−6. The value goes to
zero at tc = 2.
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Figure 4.9: Fractal cluster dimension for y(t) with perturbation x0 − 10−6 is
D ∈ (1.27, 1.32).
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CHAPTER 5

GENERALIZED HOPF BIFURCATIONS AND CHAOS

IN A PREDATOR-PREY SYSTEM

5.1 Abstract

In this chapter, generalized Hopf bifurcations in a predator-prey model with delay

terms modeled by “weak generic kernel a exp(−at)” are considered. The periodic

orbit immediately following the generalized Hopf bifurcation is constructed using

the method of multiple scales, and its stability is analyzed. Numerical solutions

reveal the existence of attractors at infinity and bounded chaotic dynamics in various

cases. The dynamics are explained on the basis of the bifurcations occurring in each.

Chaotic regimes are characterized using power spectra, correlation functions, and

fractal dimensions.

5.2 Introduction

Population models for single-species, two-species, and multispecies communities are

of relevance in various fields of mathematical biology and mathematical ecology.

Extensive reviews of various continuous models have been investigated (such as the
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regular logistic equation for one species, Lotka-Volterra systems for two species and a

variety of additional effects as in the Kolmogorov, May, Holling, Hsu, Leslie, Caperon

and other models) and may be found, for example, in [37, 38]. Discrete models are

considered there.

In order to incorporate various realistic physical effects that may cause at least one

of the physical variables to depend on the past history of the system, time-delays

often need to be introduced into the governing equations. Factors that introduce

time lags may include age structure of the population (influencing the birth and

death rates), maturation periods (thresholds), feeding times and hunger coefficients

in predator-prey interactions, reaction times, food storage times, and resource re-

generation times. Models incorporating time delays in diverse biological models are

extensively reviewed by MacDonald [39] and, in the context of predator-prey models,

by Cushing [37].

Consider, for instance, the (modified) Lotka-Volterra two-species model below.

Ṅ(t) = ǫN(1−N/κ)− αNP,

Ṗ (t) = γP + βNP (5.2.1)

Here N(t) and P (t) are the prey and predator populations (numbers) respectively,

ǫ is the birth rate of the prey, κ > 0 is the carrying capacity, α is the rate of

predation per predator, γ is the death rate of the predator, β is the rate of the prey’s
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contribution to the predator growth, and the overdot denotes a time derivative.

Farkas [40] has considered the modification of (5.2.1) when a distributed (Volterra

or convolution-type [41]) delay was introduced in the second equation, yielding the

following equations.

Ṅ(t) = ǫN(1−N/κ)− αNP (5.2.2)

Ṗ (t) = −γP + βP

∫ t

−∞

N(τ)Ḡ(t− τ)dτ (5.2.3)

Here Ḡ(U) is the memory function of delay kernel [39, 41]. Similarly, El-Owaidy and

Ammar [42] have considered (5.2.1) modified to include delays in both equations,

i.e.,

Ṅ(t) = ǫN − αNP − ǫN

κ

∫ t

−∞

N(τ)Ḡ(t− τ)dτ (5.2.4)

Ṗ (t) = −γP + βP

∫ t

−∞

N(τ)Ḡ(t− τ)dτ. (5.2.5)

One choice for the memory function is the Dirac delta function, which is sometimes

referred to as the unit impulse function. The defining properties of this function are

δ(t− a) = 0, t 6= a,

∫

∞

−∞

δ(t− a)dτ = 1. (5.2.6)

For Ḡ(U) = δ(U), one gets the case of the so-called discrete delay [37–39, 41]. While

both (5.2.3) and (5.2.5) may be treated in the setting of the theory of functional
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differential equations [21, 37, 39, 43], employing the “linear chain” form has proven

fruitful for the memory function [39, 44, 45]. Reference [39] discusses the origin of

this in the theory of elasticity and in the work of Vogel [21, 43].

Ḡ(U) = Gp
a(U) ≡ ap+1Up

p!
e−aU (5.2.7)

Notice that in this model, 1/a measures the influence of the past, and as a increases,

this influence decreases. The functions G0
1(U) and G1

a(U) (which are called the ’weak’

and ’strong’ kernels [37]) have been used in [44, 45] in the context of predator-prey

models, such as May’s model [37].

In [40, 42], the authors used the memory function G
(0)
a (U) to investigate the

systems (5.2.3) and (5.2.5), respectively. This reduces the integrodifferential systems

(5.2.3) and (5.2.5) to the differential systems:

Ṅ(t) = ǫN(1−N/κ)− αNP, (5.2.8)

Ṗ (t) = γPβPQ (5.2.9)

Q̇(t) = a(N −Q)

Ṅ(t) = ǫN(1−Q/κ)− αNP, (5.2.10)

Ṗ (t) = −γP + βPQ

Q̇(t) = a(N −Q),
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Here the definition of Q̇(t) is given below.

Q̇(t) ≡
∫ t

−∞

N(τ)Ḡ(t− τ)dτ

=

∫ t

−∞

N(τ)ae−a(t−τ)dτ (5.2.11)

In particular, Farkas [40] showed that at a = a0 ≡ βκ − γ − ǫ/βκ a supercritical

Hopf bifurcation [46] takes place for the system (5.2.8), and the bifurcating closed

paths are asymptotically stable for a < a0. A companion theorem was also derived,

which provides simpler sufficient, but not necessary, conditions for the stability of the

bifurcating closed periodic orbits. El-Owaidy and Ammar [42] showed analogously

that for (5.2.10), a supercritical Hopf bifurcation takes place at a = a0 ≡ βκ− γ > 0

(if βκ−γ > 0), and the bifurcating closed periodic orbits are orbitally asymptotically

stable for a < a0.

In this chapter, we will extend the analyses of references [40, 42] to the general

predator-prey model with distributed delay in both prey and predator equations:

Ṅ(t) = NF (N)− αNP − ǫ̃N

κ

∫ t

−∞

N(τ)Ḡ(t− τ)dτ,

Ṗ (t) = −PG(P ) + βP

∫ t

−∞

N(τ)Ḡ(t− τ)dτ. (5.2.12)

For F (N) = ǫ = constant, G(P ) = γ = constant, and ǫ̃ = ǫ, this model would

reduce to (5.2.5). For ǫ̃ = 0, F (N) = ǫ(1 − N/κ) and G(P ) = γ = constant, the

model (5.2.12) reduces to (5.2.3). Notice that qualitative features of such general
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models have been considered earlier, for instance for the Kolmogorov model without

delay [38] and the May model with delay [37] using G0
a(U) and G1

a(U). Here, however,

we will follow references [40, 42, 46, 47], using G0
a(U) to consider the stability of the

fixed points (equilibria) and the Hopf bifurcations of (5.2.12) for the general functions

F (N) and G(P ). This is done in Section 5.3. An analogous treatment of these issues

for the special case of (5.2.12) with ǫ̃ = 0 has been considered by Roose [48]. In

Section 5.4 we consider (5.2.12) for specific choices of F (N) and G(P ) to determine

the regions of phase-space where the system is dissipative (volume contracting) or

dilatory (volume expanding). Section 5.5 considers the stability of physically relevant

equilibria and Hopf bifurcation points for specific parameter values and choices of

F (N) and G(P ). Possible chaotic regimes are also delineated there. The systems are

numerically integrated, and chaotic regimes are characterized by computing power

spectra, correlation functions and fractal dimensions [49].

In the remainder of this chapter, we shall consider generalized Hopf bifurcations

in (5.2.12) with Ḡ(U) = G0
a(U), which yields the differential system below.

Ṅ(t) = NF (N)− αNP − ǫ̃QN

κ
(5.2.13)

Ṗ (t) = −PG(P ) + βPQ

Q̇(t) = a(N −Q),
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Here Q defined by (5.2.11). This system has been investigated earlier [49] for func-

tions F and G different from those considered here, although the primary emphasis

there was on characterizing chaotic regimes using numerical diagnostics. Here, we

shall carefully consider the solutions resulting from generalized Hopf bifurcations. We

shall derive analytic expressions for the resulting periodic orbits using the method

of multiple scales. The stability of this periodic orbit is then considered, revealing

secondary bifurcation of the orbit leading to chaos. Also, note that F (N) is chosen

to incorporate the prey birth rate. Later we will consider, as a typical example, the

function below.

F (N) = 1− δN (5.2.14)

Similarly, the function G(P ) incorporates the predator death rate and is chosen so

that this rate increases with predator density P . A typical example, and the one we

will use, is

G(P ) = γ(1 + κP 2). (5.2.15)

The remainder of this chapter is organized as follows. In Section 5.3, we consider the

stability of the fixed point of (5.2.13)-(5.2.15) and the onset of instability via Hopf

and generalized Hopf bifurcations that may be either supercritical or subcritical. In

Section 5.4, we derive analytical expressions for the periodic orbits resulting from
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generalized Hopf bifurcations by employing the method of multiple scales. Section 5.5

considers detailed numerical solutions and discusses the results.

5.3 Linear stability and generalized Hopf bifurcation analysis

The fixed (also known as equilibrium or critical) points of (5.2.13) (remembering

that only points with positive N and P are physically applicable) are (N0, P0, Q0).

N0 = Q0 =
α2βκ+ 2ǫ̃γκ+ 2δγκ2 − αD

2γ(ǫ̃+ δκ)2
(5.3.1)

P0 =
−αβκ+D

2γκ(ǫ̃+ δκ)
(5.3.2)

D2 ≡ α2β2κ2 − 4γκ(ǫ̃+ δκ)(ǫ̃γ − βκ+ δγκ) (5.3.3)

Here we pick the fixed point (N0, P0, Q0) corresponding to positive values of the prey

and predator populations N0 and P0, and omit the four fixed points with vanishing

values for either or both of these populations. Following standard methods of phase-

plane analysis, the Jacobian matrix of (5.2.13) at (N0, P0, Q0) is

J =

















N0F
′(N0) −αN0 − ǫ̃N0

κ

0 −P0G
′(P0) βP0

a 0 −a

















(5.3.4)
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The eigenvalues of this matrix satisfy the characteristic equation and coefficients

given below.

λ3 + b1λ
2 + b2λ+ b3 = 0 (5.3.5)

b1 = L+ a

b2 = aL−N0P0F
′G′ + ǫ̃aN0/κ (5.3.6)

b3 = aN0P0(αβ − F ′G′ + ǫ̃G′/κ)

L = 2κγP 2
0 + δN0

F ′ = −δ (5.3.7)

G′ = 2κγP0

For (N0, P0, Q0) to be a stable fixed point within the linearized analysis, all the

eigenvalues must have negative real parts.The necessary and sufficient conditions for

(5.3.5) to have Re(λ1,2,3) < 0 flow from the Routh-Hurwitz criterion:

b1 > 0, b3 > 0, b1b2 − b3 > 0.

Using (5.3.7), b1 > 0 is satisfied since both a and κ are positive. The next condition

is also satisfied when the fixed point (N0, P0, Q0) has F
′ < 0, i.e., if δ > 0 (recalling

that G′(P ) is everywhere positive). The final condition is satisfied when

f(a) ≡ a2
(

L+
ǫ̃N0

κ

)

+a

(

L2 +
ǫ̃N0L

κ
− αβN0P0 −

ǫ̃G′N0P0

κ

)

−LN0P0F
′G′ > 0.
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(5.3.8)

This is satisfied when there are no real roots of f(a) = 0. The existence of at least

one real positive root of f(a) = 0 at a0 corresponds to a change of stability of the

fixed point (N0, P0, Q0), since (5.3.8) is violated.

a0 =
Γ±

√

Γ2 + 4LN0P0F ′G′(N0ǫ+ Lκ)

2(Lκ+N0ǫ)
(5.3.9)

Γ = −LN0ǫ+G′N0P0ǫ− L2κ+N0P0αβκ (5.3.10)

Note that in previous research, the inequality corresponding to (5.3.8) governing the

change in stability is only linear in a. If the discriminant is negative in (5.3.9), then

a0 is complex, and the fixed point (N0, P0, Q0) is stable for all the physically relevant

values of a (since (5.3.8) is satisfied for a = 0 with F ′ < 0). If the discriminant is

positive, on the other hand, and we call the two real solutions for a0 in (5.3.8) a01

and a02, then there are two possible scenarios. If a01 > 0, then (N0, P0, Q0) is stable

for 0 < a < a01 and a > a02 and unstable for a01 < a < a02, or else, if a01 < 0, then

the fixed point is stable for a > a02, and unstable for 0 < a < a02.

In this chapter, we will primarily be concerned with the interesting case of the

generalized Hopf bifurcation scenario in which all roots of (5.3.5) have zero real parts,

which corresponds to the first two Routh-Hurwitz conditions becoming marginal, i.e.,
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b1 = b3 = 0 (5.3.11)

Sets of system parameters satisfying these conditions for the generalized Hopf bifur-

cation will be considered in Section 5.5.

In the next section, we construct the orbits arising through the generalized Hopf

bifurcation and consider their stability.

5.4 Analytical construction of periodic orbits

We will use the method of multiple scales to construct analytical approximations

for the periodic orbits arising through the generalized Hopf bifurcations of the fixed

point of the predator-prey model. For the system of differential equations (5.2.12),

with F (N) and G(P ) given by (5.2.14) and (5.2.15), respectively, the only physically

relevant fixed point is given by (5.3.2).

The parameter a will be used as the control parameter. The limit cycle is deter-

mined by expanding around the fixed point using progressively slower time scales.
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The expansion takes the form below.

N = N0 +
3

∑

n=1

ǫnNn(T0, T1, T2) + . . . (5.4.1)

P = P0 +
3

∑

n=1

ǫnPn(T0, T1, T2) + . . . (5.4.2)

Q = Q0 +
3

∑

n=1

ǫnQn(T0, T1, T2) + . . . , (5.4.3)

Here Tn = ǫnt and ǫ is a small non-dimensional parameter that is introduced as a

bookkeeping device and will be set to unity in the final analysis. Utilizing the chain

rule, the time derivative is expanded as shown below.

d

dt
= D0 + ǫD1 + ǫ2D2 + . . . , (5.4.4)

Here Dn = ∂/∂Tn. The delay parameter a is ordered as below where a0 is derived

from the condition that b1 = b3 = 0.

a = a0 + ǫa1 + ǫ2a2 (5.4.5)

Using (5.4.1)-(5.4.5) and equating like powers of ǫ yields equations at O(ǫi), i = 1, 2, 3

of the form:

L1(Ni, Pi, Qi) = Si,1 (5.4.6)

L2(Ni, Pi, Qi) = Si,2 (5.4.7)

L3(Ni, Pi, Qi) = Si,3 (5.4.8)
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Here the Li, i = 1, 2, 3 are the following differential operators

L1(Ni, Pi, Qi) ≡D0Ni + α(N0Pi + P0Ni) + 2δN0Ni

+
ǫ̃

κ
(N0Qi +Q0Ni)−Ni (5.4.9)

L2(Ni, Pi, Qi) ≡D0Pi − β(P0Qi +Q0Pi) + γ(1 + 3κP 2
0 )Pi (5.4.10)

L3(Ni, Pi, Qi) ≡D0Qi + a0(Qi −Ni) (5.4.11)

The source terms Si,j for i = 1, 2 and j = 1, 2, 3, i.e. at O(ǫ) and O(ǫ2), are

O(ǫ) :

S1,1 = 0 (5.4.12)

S1,2 = 0 (5.4.13)

S1,3 = 0 (5.4.14)

O(ǫ2) :

S2,1 = −D1N1 − δN2
1 − αN1P1 −

ǫ̃

κ
N1Q1 (5.4.15)

S2,2 = −D1P1 + βP1Q1 − 3γκP0P
2
1 (5.4.16)

S2,3 = −D1Q1 + a1(N1 −Q1). (5.4.17)

Now, we can use equation (5.4.7) to solve for Qi in terms of Pi. Also we can

solve (5.4.8) for Ni in terms of Qi. Then, we can use both of these results in (5.4.6)
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to find the composite equation below.

LcPi =Γi (5.4.18)

Lc =Lc3D
3
0 + Lc2D

2
0 + Lc1D0 + Lc0 (5.4.19)

Lc0 =
1

βκP0

(−2β(ǫ+ δ + κ)N2
0 + γκ(αP0 − 1)(1 + eκP 2

0 )

+N0(βκ+ 2γ(ǫ+ δκ)6γκ(ǫ+ δκ)P 2
0 )) (5.4.20)

Lc1 =
1

a0βκP0

(−β(ǫ+ 2δκ)N2
0 +N0(ǫγ + βκ+ 2γδκ+ a0(2ǫ

− βκ+ 2δκ) + κP0(−αβ + 3γ(ǫ+ 2δκ)P0)) + κ(a0(γ − 1)

− γ + P0(α(a0 + γ) + 3γκP0(a0 − 1αP0)))) (5.4.21)

Lc2 =
1

a0βκP0

((ǫ− βκ+ 2δκ)N0 + κ(a0 − 1 + γ + P0(α + 3γκP0))) (5.4.22)

Lc3 =
1

a0βp0
(5.4.23)

Γi =Si,1 +
2(ǫ+ δκ)N0 + κ(αP0 − 1)

βκP0

Si,2

+
(ǫ+ 2δκ)N0 + κ(αP0 − 1)

a0κ
Si,3

+
(ǫ+ 2δκ)N0 + κ(a0 − 1 + αP0)

a0βκP0

D0Si,2

+
1

a0
D0Si,3 +

1

a0βP0

D2
0Si,2 (5.4.24)

Now, we will use (5.4.18) to identify and suppress the secular terms in the solutions

of (5.4.6)-(5.4.8).
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We will find the solutions of the above equations (5.4.6)-(5.4.8). For i = 1, (5.4.12)-

(5.4.14) show that S1,1 = S1,2 = S1,3 = 0. And so we will pick a solution for the first

order population P1.

P1 = c1(T1, T2)e
λ1t + c2(T1, T2)e

λ2t + c3(T1, T2)e
λ3t (5.4.25)

Here c2 = c̄1 is the complex conjugate of c1 since λ2 = λ̄1 and P1 is a real valued

function.

Note that since λ3 = 0 and P1 is real, c3 is a real number.

c3(T1, T2)e
λ3t = c3(T1, T2) (5.4.26)

Using (5.4.25) and (5.4.26) in (5.4.6)-(5.4.8) for i = 1 together with (5.4.12)-(5.4.14)

gives us the values of the other first-order fields N1 and Q1.

Armed with the first-order solutions N1, P1 and Q1, we may evaluate the second-

order sources S2,1 through S2,3 using (5.4.15)-(5.4.17). Setting the coefficients of the

secular eλ1,2t terms in these sources (which are the solutions of the homogeneous

equations for i = 1) to zero yields the normal form.

∂c1
∂T1

= k1a1c1 + k2c1c3 (5.4.27)

∂c3
∂T1

= k3c
2
3 + k4c1c2 (5.4.28)

Here k1 − k4 are constants dependent upon our parameters, which are of the form

kj = kjr + ikji. (5.4.29)
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Writing c1 = Aeiθ, the real and imaginary parts of (5.4.27) yield

∂A

∂T1

= k1ra1A+ k2rc3A (5.4.30)

A
∂θ

∂T1

= k1ia1A+ k2ic3A. (5.4.31)

The fixed points of (5.4.28) and (5.4.31) yield

c3 = c3c = −k1r
k2r

a1 (5.4.32)

A = Ac =

√

−k2
1rk3a

2
1

k4k2
2r

. (5.4.33)

Using these values in the first-order fields yields the post-generalized Hopf periodic

orbits.

P1 =
(

Ace
iθeiλ1t + Ace

−iθe−iλ1t
)

+ c3c

= 2Ac cos(λ1t+ θ) + c3c (5.4.34)

The evolution and stability of the periodic orbit (5.4.34) of amplitude Ac is governed

by (5.4.30) and (5.4.31). In particular, the stability of the periodic solution depends

on the stability of the fixed point Ac of (5.4.30). To determine the stability, we com-

pute the Jacobian (and eigenvalue, as this is a one-dimensional system) of (5.4.30)
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at A = Ac, c3 = c3c , where the last step follows from (5.4.32).

J =
∂

∂A
(k1ra1A+ k2rc3A) |Ac,c3c

= k1ra1 + k2rc3c

= 0

Since this eigenvalue is non-hyperbolic, or has zero real part, our linearized stability

analysis of the periodic orbits (5.4.34) is inconclusive. Hence, we shall determine this

via direct numerical simulations on (5.2.13) in the post-generalized-Hopf regime.

To this end, we consider actual parameter sets for the occurrence of the general-

ized Hopf bifurcation and the subsequent dynamics in the next section.

5.5 Numerical results

Supercritical generalized Hopf bifurcations give rise to a stable or attracting periodic

orbit. By contrast, the subcritical generalized Hopf bifurcations correspond to an

unstable periodic orbit coexisting with a stable fixed point for a < a0. The unstable

periodic orbit tightens like a noose around the fixed point as a → a−0 . At a = a0,

the two collide, causing the fixed point (N0, P0, Q0) to go unstable for a = a+0 . Thus,

there is neither a stable fixed point attractor nor a stable limit cycle attractor for

a = a+0 . Instead, there may be one of three possible dynamical behaviors at a = a+0 :
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(a) bounded quasiperiodic dynamics,

(b) bounded chaotic dynamics, or

(c) an attractor at infinity (a movable, initial-condition dependent singularity [24])

reached in a finite time.

However, in this chapter we are interested in degenerate Hopf bifurcations which

do not satisfy the “simple eigenvalue hypothesis” that two of the eigenvalues are

purely imaginary and the other has a nonzero real part, and so we should not expect

the standard Hopf bifurcation diagrams to describe the behavior we see on either

side of the bifurcation point.

And so, we now move on to numerical solutions. To proceed, we need values

for the fixed point and for the bifurcation point a0 of the control parameter. Phys-

ically relevant parameter values would be small and positive, since they represent

growth, death, and predation rates and ratios between them. Figure 5.1 shows the

coefficients of the characteristic polynomial b1, b2, and b3 plotted for small positive

parameter values. It can be seen that b1 and b3 are always positive. Similar numeri-

cal and algebraic experiments indicate that these bifurcation conditions do not exist

for physically relevant parameter values.
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Figure 5.1: b1, b2 and b3 for κ = 0.2, a = 0.5, e = 0.4, γ = 0.3, δ = 0.4.

For the purpose of this analysis, we will consider two cases corresponding to the

following sets of numerical values:

ǫ̃ = 427.25, α = −0.237274, β = −4096, δ = 29, γ = −17, κ = 2;

(5.5.1)

ǫ̃ = 36.0002, α = 1.69443, β = 0.00488281, δ = 9, γ = −25, κ = −4.

(5.5.2)

Both of these parameter sets give positive values for the population of predator and

prey at the fixed point.
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For (5.5.1), the fixed point and bifurcation value is given below.

(N0, P0, Q0) ≈ (0.00417919, 0.0589068, 0.00417919) (5.5.3)

The bifurcation value is given below.

a0 ≈ 0.114764. (5.5.4)

Furthermore, from (5.3.5)-(5.3.7), the values of λ are:

λ1,2 = ±0.246355i, λ3 = 0. (5.5.5)

The corresponding values for (5.5.2) are

(N0, P0, Q0) ≈ (11605.3, 0.903696, 11605.3) (5.5.6)

a0 ≈ −104611 (5.5.7)

λ1,2 = ±169.991, λ3 = 0. (5.5.8)

In the case of a regular Hopf bifurcation in three dimensions, one pair of eigenvalues

of the Jacobian matrix evaluated at the fixed point are complex conjugates with zero

real parts, and the other eigenvalue is free. This free eigenvalue is also the trace of the

matrix since the other two sum to zero, and so its value determines the dissipativity

of the system. A large negative trace would be desirable to find bounded chaotic

behavior. In the case of a generalized Hopf bifurcation in three dimensions, the third

eigenvalue is zero, and so the trace is also zero.
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For parameter set (5.5.1), we begin integrating at (x0+icδ, y0+icδ, z0+icδ) where

icδ = 10−3. Figure 5.2 shows a stable fixed point on one side of the bifurcation. On

the other side of the bifurcation, figure 5.3 shows periodic oscillations. In figure 5.4,

the bifurcation parameter has moved farther away from the bifurcation point, and

the periodic orbit has become unstable.

For the parameter set (5.5.2), we begin integrating at (x0 + icδ, y0 + icδ, z0 + icδ)

where icδ = 10−5. On one side of the bifurcation, in Figure 5.5, the system ap-

proaches a stable fixed point. On the other side of the bifurcation, in figure 5.6,

a complicated attractor is created. In figure 5.7, we zoom in to the t interval

(8000, 8250) to see the chaotically changing envelope of oscillations. The 3D para-

metric plot, shown in figure 5.8, shows trajectories orbiting a fixed point with a

chaotically changing radius.

In order to confirm this and further characterize the suspected chaotic solutions,

we employ the standard numerical diagnostics [24, 26–33] i.e., the power spectral den-

sity, the autocorrelation function, and the fractal dimensions (notice that one could

also calculate Lyapunov exponents which measure the rate of divergence of neigh-

boring trajectories on an attractor). The power spectral density and autocorrelation

function of N(t) are computed using codes from “Numerical Recipes in C” [25].
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Figure 5.2: N(t) and Q(t) for a0 + 0.01
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Figure 5.3: N(t) and Q(t) for a0 − 0.0001
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Figure 5.4: N(t) and Q(t) for a0 − 0.01
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Figure 5.5: N(t) for a0 − 0.1
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Figure 5.6: N(t) for a0 + 0.1
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Figure 5.7: N(t) plotted for 8000 < t < 8250 and a0 + 0.1
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Figure 5.8: 3D Parametric Plot. The three variables have been scaled and translated
to make the motion easier to see. The orbits are circling periodically, but the radius
is changing chaotically.
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Figure 5.9: Power spectrum for N(t) with perturbation a0 − 10−3. Broad features
show lots of contributing frequencies which indicates chaos.
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Figure 5.10: Autocorrelation function for N(t) for a0 − 0.001. The autocorrelation
function goes to zero in a finite time, which is indicative of chaos. Its first zero is at
about τ = 200, which will be used as the delay in the cluster dimension calculation.
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Figure 5.11: The best fit horizontal line is shown at d log n/d logR(n) = 1.36.

The broad features in the power spectral density in Figure 5.9 show that power

is being injected into many different frequencies, which is indicative of chaos. The

autocorrelation function first goes to zero at tc = 200. This is used as the time delay

in the fractal dimension calculation [24–35] which is discussed below.

A more quantitative and definitive numerical diagnostic is the fractal dimen-

sion. Strong randomness or stochastic behavior with many degrees of freedom

can be distinguished from low-dimensional (deterministic) chaos by computing the

fractal cluster dimension. Of several possible alternative definitions for the frac-

tal dimension [24–35] we employ the cluster fractal dimension D of Termonia and

Alexandrowicz [29] which is defined below and where R(n) is the average radius of

an E-dimensional ball containing n points.

n = k[R(n)]D, n → ∞, (5.5.9)
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Thus, D is the slope of a plot of log n versus logR(n). More usefully, if a scaling

law (5.5.9) exists, then it would show up on a plot of d log n/d logR(n) versus log n,

with the height of the line being a measure of D. Numerical computation of D

is somewhat subtle, and requires the embedding of the numerical time-series N(t)

in E-dimensional space with various values of E, via the construction (from N(t))

of “E-tuples”

[N(t), N(t+ τ), N(t+ 2τ), . . . , N(t+ (E − 1)τ)], (5.5.10)

[N(t+ τ), N(t+ 2τ), . . . , N(t+ Eτ)], ... (5.5.11)

This is a consequence of the Takens embedding theorem [24–35]. For each choice of

embedding dimension E, the “delay” τ is typically chosen to be tc, tc/2 and 2tc and

D is estimated for each τ from the slope of a log n/ logR(n) plot (provided this is ap-

proximately a straight line, or there is a well-defined scaling region) or the height of

an approximate horizontal line in a (d log n/d logR(n))/ log n plot. This is repeated

for increasing E until the estimates for D saturate, which yields the converged es-

timate for D (provided well-defined straight lines or scaling regions (5.5.9) occur in

the plots and the D values obtained for τ = tc,tc/2, and 2tc are in good agreement).

Following this procedure, a sample plot is shown in Figure 5.11.

Figure 5.11 shows the (d log n/d logR(n))/ log n plot for E = 3, tc = τ . From

the height of the approximate horizontal line (which indicates a well-defined scaling
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region), we can estimate the converged cluster fractal dimension to be a non-integer

value in the range D ∈ (1.3, 1.4). This confirms that the system possesses bounded

low-dimensional (deterministic) chaotic solutions evolving on a strange attractor with

fractal dimension D ∈ (1.3, 1.4).

5.6 Conclusion

In conclusion, we have comprehensively analyzed generalized Hopf bifurcations and

the resulting dynamics in our model predator-prey system both analytically and nu-

merically. Both supercritical and subcritical bifurcations occur. However, in contrast

to regular Hopf bifurcations [36], there is now the additional constraint that the sum

of the eigenvalues at the point(s) of bifurcation is strictly zero. Since this is also the

trace of the Jacobian matrix of the fixed point at bifurcation, and thus a measure

of the system’s relative rate of local volume contraction or dissipation, strong dis-

sipativity is precluded at or near parameter sets corresponding to generalized Hopf

bifurcation. Thus, even in subcritical cases, where there are no local (point or pe-

riodic) attractors in the post-bifurcation regime, the system is much more likely to

fly off to attractors at infinity than for parameters corresponding to subcritical cases

or the regular Hopf bifurcation. For the latter, strong dissipativity often precludes

such blow-up and provides the folding part of the repeated ‘stretching and folding’
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mechanisms which makes bounded chaotic dynamics far more common than for the

generalized Hopf cases.
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Part IV

DYNAMICAL CONSEQUENCES OF DOUBLE HOPF

BIFURCATIONS
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CHAPTER 6

PERIODIC AND QUASIPERIODIC WAVETRAINS

FROM DOUBLE HOPF BIFURCATIONS IN

PREDATOR-PREY SYSTEMS WITH GENERAL

NONLINEARITIES

6.1 Abstract

Traveling wavetrains in generalized two-species predator-prey models and two-component

reaction-diffusion equations are considered. The stabilities of the fixed points of the

traveling wave ODEs (in the usual spatial variable) are found. For general functional

forms of the nonlinear prey birthrate/deathrate or reaction terms, Hopf bifurcations

are shown to occur at various critical values of the parameters. The post-bifurcation

dynamics is investigated for three different functional forms of the nonlinearities.

The normal forms near the double Hopf points are derived using the method of

multiple scales. The possible post-bifurcation dynamics resulting from the normal

form comprises stable limit cycles and 2-period tori corresponding to periodic and

quasiperiodic wavetrains. In principle, subcritical Hopf bifurcations may yield more

complex behavior, although none has been observed. The diverse behaviors predicted
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from the normal forms in various parameter regimes are validated using numerical

simulations and diagnostics.

6.2 Introduction

Morphogenesis, which is the occurrence of spatial form and pattern evolving from a

spatially homogeneous state, is a fundamental problem in developmental biology. A

seminal contribution to this problem was made by Turing [50] who studied reaction-

diffusion equations of the form

∂N

∂t
= R1(N,P ) +D1

∂2N

∂x2
(6.2.1)

∂P

∂t
= R2(N,P ) +D2

∂2P

∂x2

In [50], the reaction functions (or kinematic terms) R1 and R2 were polynomials.

However, the fundamental and somewhat surprising result that diffusion could desta-

bilize an otherwise stable equilibrium leading to nonuniform spatial patterns (referred

to as prepattern) is not dependent on particular forms of R1 and R2.

The Turing instability in reaction-diffusion models thus provided a plausible and

robust mechanism for the establishment of spatial prepattern, which could then gen-

erate biological patterns for gene activation. Numerous extensions and applications

followed. These include early theoretical and analytical extensions [50–52]. In par-
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ticular, Segel and Jackson [53] showed that spatial patterns may occur via Turing

instability in macroscopic (extended Lotka-Volterra) models in population biology as

well, particularly for species dispersing at different rates. They also provided a lucid

biology as well, particularly for species dispersing at different rates. They also pro-

vided a lucid physical explanation of how diffusion could indeed generate instability,

contrary to its usual interpretation as a smoothing mechanism. Applications in de-

velopmental biology were stimulated by the work of Meinhards and Gierer [54–56],

primarily consisting of numerical simulations of reaction-diffusion systems in vari-

ous geometries. Analytical work has confirmed and extended the results of [54–56],

including bifurcation analysis and investigations of nonstationary (traveling-wave)

patterns, spirals, solitary peaks, and fronts [57–61]. These are reviewed in [62].

Other work has focused on explaining the properties of spatial patterns [63–66] on

the basis of chemical interactions and geometric considerations. Alternative expla-

nations of pattern-forming, not based on reaction-diffusion equations and the Turing

mechanism have been investigated [67]. Recent reviews of these and other related

work on spatial pattern forming are given by Levin and Siegel [68], Murray [47], and

Edelstein-Keshet [69].

In order to incorporate various realistic physical effects which may cause at least

one of the physical variables to depend on the past history of the system, it is
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often necessary to introduce time-delays into the governing equations. Factors that

introduce time lag may include age structure of the populations (influencing the

birth and death rate), maturation periods (thresholds), feeding times and hunger

coefficients in predator-prey interactions, reaction times, food storage times, and

resource generation times. Models incorporating time delays in diverse spatially-

homogeneous biological systems are extensively reviewed by MacDonald [39], and

in the context of predator-prey models, by Cushing [37]. These include continuous

models such as the Kolmogorov, May, Holling, Hsu, Leslie and Caperon models, as

well as discrete models.

Consider (6.2.1) for the general two-species predator-prey model [49] with the

reaction terms given below.

R1(N,P ) = NF (N)− αNP − ǫ̃N2

k
(6.2.2)

R2(N,P ) = −PG(P ) + βNP

Here N(t) and P (t) are the prey and predator populations, respectively, ǫ̃ is the

birth rate of the prey, k > 0 is the carrying capacity, α is the rate of predation per

predator, and β is the rate of the prey’s contribution to predator growth.
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In this paper, we initiate a fresh and detailed investigation of traveling spatial

wave patterns of (6.2.1) in the following form.

N(x, t) = N(ζ) (6.2.3)

P (x, t) = P (ζ)

Here ζ = x− vt is the traveling wave, or “spatial” variable, and v is the translation

or wave speed. Substitution of Eqns (6.2.3) and (6.2.2) in (6.2.1) leads, after some

simplification, to the following four-mode dynamical system.

Ṅ = M (6.2.4)

Ṁ =
1

D1

(

−vM −NF (N) + αNP +
θN2

z

)

Ṗ = Q

Q̇ =
1

D2

(−vQ+ PG(P )− βNP )

Here F (N) and G(P ) are certain functions unique to each system.

While there have been a very large number of studies of regular Hopf bifurcations,

generalized and degenerate Hopf bifurcations are far less widely studied. Among

recent comprehensive treatments, we may list the monograph by Huseyin [3], the

thesis by Planeaux [4], and the review by Yu [5], as well as the comprehensive

reference lists in all three. The first named is reasonably comprehensive at the

analytical end but employs the little-used generalized Harmonic Balance asymptotic
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analysis technique. By contrast, [51] is a comprehensive numerical analysis in the

context of chemical reactor dynamics. Ref [52] uses a mix of analytic techniques and

limited numerical simulations to consider the dynamics resulting from generalized

and degenerate Hopf bifurcations.

Here we will follow [62] and especially [5] to consider the stability of the equilibria

and the double Hopf bifurcations of 6.2.4 for general functions F (N) and G(P ). We

will derive the normal form governing the post-bifurcation dynamics and the possible

post-bifurcation dynamics in various parameters is deduced from it. The resulting

predictions will be matched against numerical simulations and diagnostics.

6.3 Linear stability analysis

The fixed points of system (6.2.4) are

(N0,M0, P0, Q0) =

(

G(P0)

β
, 0,

zβF (N0)− θG(P0)

zαβ
, 0

)

. (6.3.1)

The functions F (N) and G(P ) are kept general during the analysis but are subse-

quently chosen to correspond to three systems analysed by Mancas [70].

A. F (N) = ρ, G(P ) = γ, θ = 0 (6.3.2)

B. F (N) = ρ, G(P ) = γ, θ = ρ (6.3.3)

C. F (N) = k0, G(P ) = d+ cP, θ = ρ (6.3.4)
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The Jacobian matrix of (6.2.4) at the fixed point (N0,M0, P0, Q0) is

J =

























0 1 0 0

G0(−F ′

0
z+θ)

D1zβ
− v

D1

αG0

D1β
0

0 0 0 1

−F0zβ+G0θ
D2zα

0
G′

0
(F0zβ−G0θ)

D2zαβ
− v

D2

























. (6.3.5)

Here F0 = F (N0) and G0 = G(P0). The eigenvalues λ of (6.3.5) satisfy the charac-

teristic equation below.

λ4 + b1λ
3 + b2λ

2 + b3λ+ b4 = 0 (6.3.6)

Here bi, i = 1, . . . , 4 are given below.

b1 =
(D1 +D2)v

D1D2

b2 =
v2

D1D2

− F0G
′

0

D2α
+

F ′

0G0

D1β
− G0θ

D1zβ
+

G0G
′

0θ

D2zαβ

b3 = v
F ′

0G0zα− F0G
′

0zβ +G0θ(G
′

0 − α)

D1D2zαβ

b4 = G0
(F0zβ −G0θ)(−F ′

0G
′

0z + zαβ +G′

0θ)

D1D2z2αβ2

Presently we are interested in double Hopf bifurcations, so we want the four eigen-

values to be two pairs of purely imaginary complex conjugates. Hence we impose the

characteristic form

(λ2 + ω2
1)(λ

2 + ω2
2) = 0

λ4 + b2λ
2 + b4 = 0.
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This determines that the conditions for a double Hopf bifurcation are

b1 = 0 (6.3.7)

b2 = ω2
1 + ω2

2 > 0 (6.3.8)

b3 = 0 (6.3.9)

b4 = ω2
1ω

2
2 > 0 (6.3.10)

ω1, ω2 ∈ R (6.3.11)

6.4 Analytical construction of periodic orbits

We will use the method of multiple scales to contruct analytical approximations for

the periodic orbits arising through the double Hopf bifurcation of the fixed point.

The multiple scales expansions take the following form.

Ṅ = N0 +
3

∑

n=1

ǫnNn(T0, T1, T2) + . . . (6.4.1)

Ṁ = M0 +
3

∑

n=1

ǫnMn(T0, T1, T2) + . . .

Ṗ = P0 +
3

∑

n=1

ǫnPn(T0, T1, T2) + . . .

Q̇ = Q0 +
3

∑

n=1

ǫnQn(T0, T1, T2) + . . .
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Here Tn = ǫnt and ǫ is a small positive non-dimensional parameter that distinguishes

different time scales. The time derivative is shown below, where Dn = ∂/(∂Tn).

d

dt
= D0 + ǫD1 + ǫ2D2 + . . . (6.4.2)

The control parameters are expanded as τ1 = τ1 + ǫ2µ1 and τ2 = τ2 + ǫ2µ2. This

allows the nonlinear terms and the control parameters to occur at the same order.

We use τ1 = D2 and τ2 = β in our calculations.

Using the expansions (6.4.1) in (6.2.4) and matching powers of ǫ yields equations

of the following form.

L1(Ni,Mi, Pi, Qi) = Si,1 (6.4.3)

L2(Ni,Mi, Pi, Qi) = Si,2 (6.4.4)

L3(Ni,Mi, Pi, Qi) = Si,3 (6.4.5)

L4(Ni,Mi, Pi, Qi) = Si,4 (6.4.6)

Here the Li, i = 1, 2, 3, 4 are the following differential operators.

L1(Ni,Mi, Pi, Qi) ≡−Mi +D0Ni (6.4.7)

L2(Ni,Mi, Pi, Qi) ≡
vMi

D1

− G0θNi

D1zβ
− G0αPi

D1β
+D0Mi

L3(Ni,Mi, Pi, Qi) ≡−Qi +D0Pi

L4(Ni,Mi, Pi, Qi) ≡
F0zβ −G0θ

D2zα
Ni +

v

D2

Qi +D0Qi
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The source terms Si,j , i = 1, 2, 3 , j = 1, 2, 3, 4 are given in Appendix A. Equa-

tion (6.4.3) may be solved for Mi, (6.4.4) for Pi, and (6.4.5) for Qi.

Mi =− Si,1 +D0Ni (6.4.8)

Pi =
vβ

G0α
Mi −

θ

zα
Ni −

D1β

G0α
Si,2 +

D1β

G0α
D0Mi (6.4.9)

Qi =− Si,3 +D0Pi (6.4.10)

These can be plugged into (6.4.6) in the order (6.4.10), (6.4.9), (6.4.8) to obtain the

following composite equation.

LcNi = Γi (6.4.11)

The composite operator Lc and Γi are given in Appendix A.

To find the solutions of (6.4.3)-(6.4.6), we note that S1,i = 0 for i = 1, 2, 3, 4 and

so we choose the following first order solution.

N1 =α(T1, T2)e
iω1T0 + ᾱ(T1, T2)e

−iω1T0 (6.4.12)

+ β(T1, T2)e
iω2T0 + β̄(T1, T2)e

−iω2T0

The fields α and β correspond to the center manifold where ω1 and ω2 are real. Using

(6.4.12) in (6.4.8)-(6.4.10) with i = 1 yields the other first order fields M1, P1, Q1.

With the first order fields known, the second order source Γ2 may be evaluated.

Suppressing secular source terms (solutions of the homogeneous equations for i = 1)
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gives the requirement

dα

dT1

=
dᾱ

dT1

=
dβ

dT1

=
dβ̄

dT1

= 0. (6.4.13)

Now we assume a second order solution of the form

N2 =N200 +N201α(T2)ᾱ(T2) +N202β(T2)β̄(T2)

+N203α(T2)
2e2iω1T0 +N204ᾱ(T2)

2e−2iω1T0

+N205β(T2)
2e2iω2T0 +N206β̄(T2)

2e−2iω2T0

+N207α(T2)β(T2)e
i(ω1+ω2)T0 +N208α(T2)β̄(T2)e

i(ω1−ω2)T0

+N209ᾱ(T2)β(T2)e
−i(ω1−ω2)T0 +N210ᾱ(T2)β̄(T2)e

−i(ω1+ω2)T0 (6.4.14)

This solution is plugged into (6.4.11) with i = 2. Coefficients of exponentials with

identical arguments on either side are matched to determine N200, N201, . . . , N210.

Evaluating the third order source term Γ3 with the first and second order solutions

and setting first order harmonics equal to zero produces the normal form.

α′(T2) = c1α(T2)β(T2)β̄(T2) + c2α(T2)
2ᾱ(T2) + c3α(T2) (6.4.15)

β′(T2) = c4α(T2)ᾱ(T2)β(T2) + c5β(T2)
2β̄(T2) + c6β(T2)
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Note that c1 through c6 are complex. We can more easily find periodic orbits by

switching to polar coordinates.

α(T2) = ρ1(T2)e
iθ1(T2) (6.4.16)

ᾱ(T2) = ρ1(T2)e
−iθ1(T2)

β(T2) = ρ2(T2)e
iθ2(T2)

β̄(T2) = ρ2(T2)e
−iθ2(T2)

Plugging (6.4.16) into (6.4.15) and separating real and imaginary parts of the result-

ing equations gives the normal form in polar coordinates.

ρ′1(T2) = ρ1(T2)
(

Re[c3] + Re[c2]ρ1(T2)
2 + Re[c1]ρ2(T2)

2
)

(6.4.17)

ρ′2(T2) = ρ2(T2)
(

Re[c6] + Re[c4]ρ1(T2)
2 + Re[c5]ρ2(T2)

2
)

(6.4.18)

θ′1(T2) = Im[c3] + Im[c2]ρ1(T2)
2 + Im[c1]ρ2(T2)

2

θ′2(T2) = Im[c6] + Im[c4]ρ1(T2)
2 + Im[c5]ρ2(T2)

2
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Re[c3] and Re[c6] are expressions which are both linear in the second order deviations

µ1 and µ2. The normal form can be written

ρ′1(T2) = ρ1(T2)
(

α11µ1 + α12µ2 + a20ρ1(T2)
2 + a02ρ2(T2)

2
)

(6.4.19)

ρ′2(T2) = ρ2(T2)
(

α21µ1 + α22µ2 + b20ρ1(T2)
2 + b02ρ2(T2)

2
)

(6.4.20)

θ′1(T2) = ω1 + β11µ1 + β12µ2 + c20ρ1(T2)
2 + c02ρ2(T2)

2

θ′2(T2) = ω2 + β21µ1 + β22µ2 + d20ρ1(T2)
2 + d02ρ2(T2)

2

6.5 Predictions for Post-Bifurcation Dynamics and Comparisons with

Numerical Simulations

We now analyze (6.4.19)/(6.4.20) for the possible dynamical behaviors. Note that the

periodic and 2-period quasiperiodic behaviors which we shall find in various param-

eter regimes correspond to periodic and quasiperiodic wavetrains of (6.2.1)/(6.2.2).

Periodic solutions are found by setting (6.4.19) and (6.4.20) equal to zero and

solving for ρ1(T2) and ρ2(T2).

There are four solutions: the inital equilibrium solution (6.5.1), the Hopf bifurca-

tion solution with frequency ω1 (6.5.2), the Hopf bifurcation solution with frequency
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ω2 (6.5.3), and the quasiperiodic solution with frequencies ω1 and ω2 (6.5.4).

ρ1 = ρ2 = 0 (6.5.1)

ρ21 = − 1

a20
(α11µ1 + α12µ2) , ρ2 = 0 (6.5.2)

ρ1 = 0, ρ22 = − 1

b02
(α21µ1 + α22µ2) (6.5.3)

ρ21 =
1

a20b02 − a02b20
[a02(α21µ1 + α22µ2)− b02(α11µ1 + α21µ2)] (6.5.4)

ρ22 =
1

a20b02 − a02b20
[b20(α11µ1 + α12µ2)− a20(α21µ1 + α22µ2)]

The stability conditions for each of these solutions can be determined with the Ja-

cobian of (6.4.19) and (6.4.20).

J =









α11µ1 + α12µ2 + 3a20ρ
2
1 + a02ρ1ρ2 2a02ρ1ρ2

2b20ρ1ρ2 α21µ1 + α22µ2 + b20ρ
2
1 + 3b02ρ

2
2









(6.5.5)

Evaluating (6.5.5) on the solution (6.5.1) reveals the stability conditions for the

equilibrium solution:

α11µ1 + α12µ2 < 0 and α21µ1 + α22µ2 < 0 (6.5.6)

Changing either of these inequalities to an equality produces a critical line where

a family of limit cycles bifurcates from the equilibrium solution (6.5.1). The first

critical line (6.5.7) supports limit cycles with the approximate solution (6.5.2). The
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second critical line (6.5.8) supports limit cycles with the approximate solution (6.5.3).

L1 : α11µ1 + α12µ2 = 0 and α21µ1 + α22µ2 < 0 (6.5.7)

L2 : α11µ1 + α12µ2 < 0 and α21µ1 + α22µ2 = 0 (6.5.8)

Evaluating (6.5.5) on the Hopf bifurcation solution (6.5.3) yields the stability condi-

tions (6.5.9) and (6.5.10).

α11µ1 + α12µ2 > 0 (6.5.9)

α21µ1 + α22µ2 −
b20
a20

(α11µ1 + α12µ2) < 0. (6.5.10)

When a20 < 0, the above conditions also allow the Hopf bifurcation solution (6.5.2)

to exist. Changing the second inequality to an equality results in the third critical

line L3, along which a secondary Hopf bifurcation takes place with frequency ω2.

The trajectories trace out a 2-D torus described by (6.5.4).

L3 :

(

α21 −
b20
a20

α11

)

µ1 +

(

α22 −
b20
a20

α12

)

µ2 = 0 (6.5.11)

α11µ1 + α12µ2 > 0

When b02 < 0, the conditions (6.5.12) allow the Hopf bifurcation solution (6.5.3) to

exist. Changing the second inequality to an equality results in the fourth critical line

L4, along which a secondary Hopf bifurcation takes place with frequency ω1. The
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trajectories trace out the 2-D torus described by (6.5.4).

α21µ1 + α22µ2 > 0 (6.5.12)

α11µ1 + α12µ2 −
a02
b02

(α21µ1 + α22µ2) < 0

L4 :

(

α11 −
a02
b02

α21

)

µ1 +

(

α12 −
a02
b02

α22

)

µ2 = 0 (6.5.13)

α21µ1 + α22µ2 > 0

The stability conditions of the quasiperiodic solution (6.5.4) are fully derived in [5],

and the resulting critical line L5, where a quasiperiodic solution loses stability and

may bifurcate into a motion on a 3-D torus, is given here:

L5 : [a20(a02 − b02)α21 − b02(a20 − b20)α11]µ1

+ [a20(a02 − b02)α22 − b02(a20 − b20)α12]µ2 = 0 (6.5.14)

The line L5 must satisfy the existence conditions- geometrically speaking, the line

L5 must lie between the lines L3 and L4.

6.5.1 Systems A and B

The characteristic polynomial of the Jacobian (6.5.5) is

λ4 +

(

1

D1

+
1

D2

)

vλ3 +
v2

D1D2

λ2 +
γρ

D1D2

(6.5.15)
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The double Hopf conditions (6.3.7)-(6.3.11) reduce to

(

1

D1

+
1

D2

)

v = 0 (6.5.16)

v2

D1D2

− sgn(α)
√

v4 − 4D1D2γρ > 0 (6.5.17)

v2

D1D2

+ sgn(α)
√

v4 − 4D1D2γρ > 0 (6.5.18)

These conditions are unable to be satisfied simultaneously. Therefore, we conclude

that systems A and B have no double Hopf bifurcations.

6.5.2 System C

The double Hopf conditions for system C are satisfied by the numerical values β =

20.8, α = 2.0245424389488, d = 19.8, ρ = −20.53280120743, v = 1, c = 13.8,

z = 2.8, k0 = −9.2, D1 = 1, D2 = −1. The coefficients of the normal form equations
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(6.4.19) and (6.4.20) are

α11 = 0.6678559485566

α22 = −0.0873243655541

α12 = 0.0873243655541

α21 = −0.1678559485567

a02 = 317.3289342685

a20 = −27.52499854917

b02 = −158.6644671343

b20 = 55.0499970983

The bifurcations lines are

L1 : D22 + 0.52023396β2 = 0 and D22 + 0.13075329454β2 < 0 (6.5.19)

L2 : D22 + 0.520233964β2 > 0 and D22 + 0.13075329454β2 = 0 (6.5.20)

L3 : D22 + 0.07477323352β2 = 0 and D22 + 0.1307532945β2 > 0 (6.5.21)

L4 : D22− 0.26291112297β2 = 0 and D22 + 0.520233964β2 < 0 (6.5.22)

L5 : D22 + 4.25185092759 ∗ 10−14β2 = 0 (6.5.23)

The bifurcations lines for system C are shown in Figure 6.1.

112



Choosing µ1 = −0.24 and µ2 = 0.79 between L1 and L2 results in the stable

equilibrium solution shown in Figure 6.2.

The second order deviation values µ1 = −0.4 and µ2 = 0.6 place the sample

point immediately after the line L1 where a Hopf bifurcation occurs, and the stable

periodic orbit that is created is shown in Figure 6.3.

The values µ1 = −0.11 and µ2 = 0.9 place the sample point immediately after

another Hopf bifurcation at L2, and the stable periodic orbit that is created is shown

in Figure 6.4. In this case, we show the periodic oscillations of N(t).

The values µ1 = −0.06 and µ2 = 0.9 place the sample point immediately after the

line L3 where a static bifurcation of the periodic orbit occurs, and the quasi-periodic

orbit that is created is shown in Figure 6.5. The power spectrum of this solution is

shown in Figure 6.6. Two frequency peaks indicate quasiperiodic motion.

The values µ1 = −0.15 and µ2 = −0.7 place the sample point immediately after

the line L4 where another Hopf bifurcation occurs, and the unstable solution that is

created is shown in Figure 6.7. In this case, the solution flies off to infinity in finite

time.

The values µ1 = 0.02 and µ2 = 0.9 place the sample point immediately after the

line L5 where a secondary Hopf bifurcation of the stable quasiperiodic orbit occurs,
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Figure 6.1: Bifurcation lines of system C

Figure 6.2: A stable fixed point exists in the region between the first two bifurcation
lines L1 and L2.
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Figure 6.3: A stable periodic orbit is created during the first Hopf bifurcation.

Figure 6.4: A stable periodic orbit is created during the first Hopf bifurcation.

Figure 6.5: A stable quasi-periodic orbit is created during the first Hopf bifurcation.
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Figure 6.6: The power spectrum for the stable quasiperiodic orbit shows two clear
peaks indicating that power is being concentrated in these distinct frequencies.

Figure 6.7: The solution in the region after L4 is unstable.
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and the quasi-periodic orbit is now unstable. Trajectories fly to infinity soon after

the interesting behavior shown in Figure 6.8.

6.6 Conclusion

We have comprehensively analyzed the wavetrain dynamics resulting from Hopf and

double-Hopf bifurcations in two-reactant reaction-diffusion (or two-species predator-

prey) systems with general nonlinearities. For general functional forms of the non-

linear prey birthrate/prey deathrate or reaction terms, regular/double-Hopf bifurca-

tions are shown to occur at various critical values of the traveling wave speed. The

post-bifurcation dynamics is investigated for three different functional forms of the

nonlinearities. The normal forms near the double Hopf points have been derived us-

ing the method of multiple scales. The post bifurcation dynamics resulting from the

normal form include stable limit cycles and two-period tori corresponding to periodic

and quasiperiodic wave trains. In principle, subcritical Hopf bifurcations may yield

more complex behavior, although none has been observed. The diverse behaviors

predicted from the normal forms in various parameter regimes have been validated

using numerical simulations and diagnostics. In general, the dynamics changes be-

tween analytically predicted regions of phase space separated by stability boundaries

derived from the the normal form.
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6.7 Appendix A

For systems A-C, the source terms are

S1,1 =S1,2 = S1,3 = S1,4 = 0 (6.7.1)

S2,1 =−D1N1 (6.7.2)

S2,2 =
F0G0α2

D1αβ
− G2

0z2θ

D1z2β2
− G2

0α2θ

D1zαβ2
+

G2
0θ2

D1zβ2
+

θ

D1z
N2

1

+
α

D1

N1P1 −D1M1 (6.7.3)

S2,3 =−D1P1 (6.7.4)

S2,4 =− F0G0β2

D2αβ
+

G2
0β2θ

D2zαβ2
− N1P1β

D2

+
D22q0v

D2
2

− q0v2
D2

−D1Q1 (6.7.5)

S3,1 =−D2N1 −D1N2 (6.7.6)

S3,2 =N1

(

F0α2

D1α
− 2G0z2θ

D1z2β
− G0α2θ

D1zαβ
+

2D1G0θ2 −D12G0θ

D2
1zβ

)

(6.7.7)

+N1

(

2N2θ + P2αz

D1z

)

+ P1

(

−D12G0α

D2
1β

+
G0α2

D1β
+

N2α

D1

)

+M1

(

D12v

D2
1

− v2
D1

)

−D2M1 −D1M2

S3,3 =−D2P1 −D1P2 (6.7.8)

S3,4 =N1

(

D22F0β

D2
2α

− F0β2

D2α
+

G0β2θ

D2zαβ
− D22G0θ

D2
2zα

− P2β

D2

)

(6.7.9)

+ P1

(

−G0β2

D2β
− N2β

D2

)

+
D22Q1v

D2
2

− Q1v2
D2

−D2Q1 −D1Q2
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For systems A-C, the composite operator is

Lc ≡
F0βNi

D2α
+

D2
0v

2βNi

D2G0α
+

D3
0vβNi

G0α
+

D1D
3
0vβNi

D2G0α
(6.7.10)

− G0θNi

D2zα
+

D1D
4
0βNi

G0α
− D0vθNi

D2zα
− D2

0θNi

zα

For systems A-C, the composite source is

Γi ≡
v2βD0Si,1

D2G0α
+

vβD2
0Si,1

G0α
+

D1vβD
2
0Si,1

D2G0α
+

D1vβD0Si,2

D2G0α
(6.7.11)

+
D1βD

3
0Si,1

G0α
+

D1βD
2
0Si,2

G0α
+

vSi,3

D2

+D0Si,3 + Si,4
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Figure 6.8: The stable quasiperiodic orbit created at line L3 has become unstable
after the secondary Hopf bifurcation at L5.
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