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ABSTRACT

Comprehensive numerical simulations (reviewed in Dissipative Solitons, Akhmediev and

Ankiewicz (Eds.), Springer, Berlin, 2005) of pulse solutions of the cubic–quintic Ginzburg–

Landau equation (CGLE), a canonical equation governing the weakly nonlinear behavior

of dissipative systems in a wide variety of disciplines, reveal various intriguing and entirely

novel classes of solutions. In particular, there are five new classes of pulse or solitary waves

solutions, viz. pulsating, creeping, snake, erupting, and chaotic solitons. In contrast to the

regular solitary waves investigated in numerous integrable and non–integrable systems over

the last three decades, these dissipative solitons are not stationary in time. Rather, they

are spatially confined pulse–type structures whose envelopes exhibit complicated temporal

dynamics. The numerical simulations also reveal very interesting bifurcations sequences of

these pulses as the parameters of the CGLE are varied.

In this dissertation, we develop a theoretical framework for these novel classes of solutions.

In the first part, we use a traveling wave reduction or a so–called spatial approximation to

comprehensively investigate the bifurcations of plane wave and periodic solutions of the

CGLE. The primary tools used here are Singularity Theory and Hopf bifurcation theory

respectively. Generalized and degenerate Hopf bifurcations have also been considered to

track the emergence of global structure such as homoclinic orbits. However, these results

appear difficult to correlate to the numerical bifurcation sequences of the dissipative solitons.
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In the second part of this dissertation, we shift gears to focus on the issues of central

interest in the area, i.e., the conditions for the occurrence of the five categories of dissipa-

tive solitons, as well the dependence of both their shape and their stability on the various

parameters of the CGLE, viz. the nonlinearity, dispersion, linear and nonlinear gain, loss

and spectral filtering parameters. Our predictions on the variation of the soliton amplitudes,

widths and periods with the CGLE parameters agree with simulation results.

For this part, we develop and discuss a variational formalism within which to explore the

various classes of dissipative solitons. Given the complex dynamics of the various dissipative

solutions, this formulation is, of necessity, significantly generalized over all earlier approaches

in several crucial ways. Firstly, the two alternative starting formulations for the Lagrangian

are recent and not well explored. Also, after extensive discussions with David Kaup, the trial

functions have been generalized considerably over conventional ones to keep the shape rela-

tively simple (and the trial function integrable!) while allowing arbitrary temporal variation

of the amplitude, width, position, speed and phase of the pulses.

In addition, the resulting Euler–Lagrange equations are treated in a completely novel way.

Rather than consider the stable fixed points which correspond to the well–known stationary

solitons or plain pulses, we use dynamical systems theory to focus on more complex attrac-

tors viz. periodic, quasiperiodic, and chaotic ones. Periodic evolution of the trial function

parameters on stable periodic attractors constructed via the method of multiple scales yield

solitons whose amplitudes are non–stationary or time dependent. In particular, pulsating,

snake (and, less easily, creeping) dissipative solitons may be treated in this manner. Detailed
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results are presented here for the pulsating solitary waves — their regimes of occurrence,

bifurcations, and the parameter dependences of the amplitudes, widths, and periods agree

with simulation results.

Finally, we elucidate the Hopf bifurcation mechanism responsible for the various pulsating

solitary waves, as well as its absence in Hamiltonian and integrable systems where such

structures are absent.

Results will be presented for the pulsating and snake soliton cases. Chaotic evolution of

the trial function parameters in chaotic regimes identified using dynamical systems analysis

would yield chaotic solitary waves. The method also holds promise for detailed modeling

of chaotic solitons as well. This overall approach fails only to address the fifth class of

dissipative solitons, viz. the exploding or erupting solitons.
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CHAPTER ONE: INTRODUCTION

The cubic complex Ginzburg–Landau equation (CGLE) is the canonical equation governing

the weakly nonlinear behavior of dissipative systems in a wide variety of disciplines [1].

In fluid mechanics, it is also often referred to as the Newell–Whitehead equation after the

authors who derived it in the context of Bénard convection [1, 2].

As such, it is also one of the most widely studied nonlinear equations. Many basic prop-

erties of the equation and its solutions are reviewed in [3, 4], together with applications to

a vast variety of phenomena including nonlinear waves, second–order phase transitions, su-

perconductivity, superfluidity, Bose–Einstein condensation, liquid crystals and string theory.

The numerical studies by Brusch et al. [5, 6] which primarily consider periodic traveling

wave solutions of the cubic CGLE, together with secondary pitchfork bifurcations and pe-

riod doubling cascades into disordered turbulent regimes, also give comprehensive summaries

of other work on this system. Early numerical studies [7, 8] and theoretical investigations

[9, 10] of periodic solutions and secondary bifurcations are also of general interest for our

work here.

Certain situations or phenomena, such as where the cubic nonlinear term is close to

zero, may require the inclusion of higher–order nonlinearities leading to the so-called cubic–

quintic CGLE. This has proved to be a rich system with very diverse solution behaviors.

In particular, a relatively early and influential review by van Saarloos and Hohenberg [11],

also recently extended to two coupled cubic CGL equations [12, 13], considered phase–plane

counting arguments for traveling wave coherent structures, some analytic and perturbative
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solutions, limited comparisons to numerics, and so-called “linear marginal stability analysis”

to select the phase speed of the traveling waves.

Among the multitude of other papers, we shall only refer to two sets of studies which will

directly pertain to the work in this dissertation. The first class of papers [14, 15, 16] and

[17, 18] used dynamical systems techniques to prove that the cubic–quintic CGLE admits

periodic and quasi–periodic traveling wave solutions.

The second class of papers [19, 20], primarily involving numerical simulations of the full

cubic–quintic CGL PDE in the context of Nonlinear Optics, revealed various branches of

plane wave solutions which are referred to as continuous wave (CW) solutions in the Op-

tics literature. More importantly, these latter studies also found various spatially confined

coherent structures of the PDE, with envelopes which exhibit complicated temporal dynam-

ics. In [20], these various structures are categorized as plain pulses (or regular stationary

solutions), pulsating solitary waves, creeping solitons, slugs or snakes, erupting solitons,

and chaotic solitons depending on the temporal behavior of the envelopes. Plain pulses

are the regular stationary solitary wave solutions investigated for numerous integrable and

non-integrable nonlinear PDEs over the last three decades. However the other five classes

of solutions shown in Figs. 1.1–1.5, are novel for this system and they will be one of the

primary features we will concentrate on this dissertation. In addition, note that the speed of

the new classes of solutions may be zero, constant, or periodic (since it is determined by the

boundary conditions it is an eigenvalue, the speed may be in principle also quasiperiodic or

chaotic, although no such cases appear to have been reported). All indications are that these
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classes of solutions, all of which have amplitudes which vary in time, do not exist as stable

structures in Hamiltonian systems. Even if excited initially, amplitude modulated solitary

waves restructure into regular stationary solutions [21]. Exceptions to this rule are the in-

tegrable models where the pulsating structures are nonlinear superpositions or fundamental

solutions [22]. Hence, these classes of solutions are novel and they exist only in the presence

of dissipation in the simulations of [20]. Also, secondary complete period doubling cascades

of the pulsating solitons leading as usual to regimes of chaos are also found. This last feature

for numerical solutions of the full cubic–quintic PDE is strongly reminiscent of the period

doubling cascades found in [5, 6] for period solutions of the traveling wave reduced ODEs of

the cubic CGLE.

Figure 1.1: Plain pulsating soliton that shows periodic behavior with ǫ = −0.1, b1 = 0.08,
c1 = 0.5, b3 = −0.66, c3 = 1, b5 = 0.1, c5 = −0.1

In this context, we note that numerous attempts have been made to extend the well–

developed concept of soliton interactions in integrable, conservative systems [23] to more
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Figure 1.2: Creeping soliton with ǫ = −0.1, b1 = 0.101, c1 = 0.5, b3 = −1.3, c3 = 1, b5 = 0.3,
c5 = −0.101

Figure 1.3: Snake or slug solitons with ǫ = −0.1, b1 = 0.08, c1 = 0.5, b3 = −0.835, c3 = 1,
b5 = 0.11, c5 = −0.08

realistic active or dissipative media which are governed by non-integrable model equations.

The reason is that the complicated spatio–temporal dynamics of such coherent structure solu-

tions are governed by simple systems of ordinary differential equations, or low–dimensional
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Figure 1.4: Exploding soliton with ǫ = −0.1, b1 = 0.125, c1 = 0.5, b3 = −1, c3 = 1, b5 = 0.1,
c5 = −0.6

dynamical systems, rather by the original complex nonlinear partial differential equation

model. Hence, various theoretical approaches may be brought to bear on these ODEs.

There are situations [11, 23] and [24, 25] where this approach is appropriate, particularly

where the dynamics of various active or dissipative systems is primarily governed by local-

ized coherent structures such as pulses (solitary waves) and kinks (fronts or shocks). Such

coherent structures could also be information carriers, such as in Optics. Since such struc-
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Figure 1.5: Chaotic but spatially localized soliton with ǫ = −0.1, b1 = 0.125, c1 = 0.5,
b3 = −0.3, c3 = 1, b5 = 0.1, c5 = −1

tures correspond to spatial modulations, they are also often referred to spatially–localized

“patterns”. The speeds and locations of the coherent structures may vary in a complex

manner as they interact, but their spatial coherence is preserved in such situations. It is

tempting to apply this approach to any system which admits pulse and/or kink solutions,

but caution is necessary. Coherent structures may be transitory when they are unstable to

small disturbances in their neighborhood. Also, only some of them may be actually selected,

due to such stability considerations.

Another relevant feature of dissipative systems is that they include energy exchange

with external sources. Such systems are no longer Hamiltonian, and the solitons in these

systems are also qualitatively different from those in Hamiltonian systems. In Hamiltonian

systems, soliton solutions appear as a result of balance between diffraction (dispersion) and

6



nonlinearity. Diffraction spreads a beam while nonlinearity will focus it and make it narrower.

The balance between the two results in stationary solitary wave solutions, which usually

form a one parameter family. In dissipative systems with gain and loss, in order to have

stationary solutions, the gain and loss must be also balanced. This additional balance results

in solutions which are fixed. Then the shape, amplitude and the width are all completely

fixed by the parameters of the dissipative equation. This situation is shown schematically

in Fig. 1.6. However, the solitons, when they exist, can again be considered as “modes” of

dissipative systems just as for nondissipative ones.

Figure 1.6: Qualitative difference between the soliton solutions in Hamiltonian and dissipa-
tive systems

To briefly recapitulate, the numerical results on dissipative solitons [20, 26] indicate:

(a) five new classes of stable amplitude modulated solutions unique to dissipative systems,

and

(b) interesting bifurcation sequences of these solutions as parameters are varied.
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In addition, a question of great interest [26] is the effect of the system parameters viz.

dispersion/nonlinearity/linear and nonlinear gain and loss/spectral filtering on both the

structure and the stability of these new classes of dissipative solitons. This last feature was

repeatedly mentioned by many speakers in the multi–day session on Dissipative Solitons at

the 4th IMACS Conference on Nonlinear Waves held in Athens, Georgia in April 2005.

The above then defines the main themes to be explored in this dissertation. In the

first part, comprising Chapters 2 and 3, we use a traveling wave reduction or a so–called

spatial approximation to investigate the bifurcations of plane wave and periodic solutions

of the CGLE. The primary tools used here are Singularity Theory and Hopf bifurcation

theory respectively. We also comment briefly in Chapter 4 on possible extensions of this

bifurcation analysis using the theory of generalized Hopf bifurcations to track the emergence

of global structure. We have explored this in preliminary fashion, in a manner analogous to

the so–called continuous stirred tank reactor system [27, 28]. However, we are not convinced

that it is a particularly worthwhile avenue to pursue here since its actual relevance to the

simulations in [20] seems questionable.

In the second part of this dissertation, we shift gears to focus on the issues of central

interest in the area, i.e., the conditions for the occurrence of the five categories of dissipative

solitons (Figs. 1.1–1.5), as well the dependence of both their shape and their stability on the

nonlinearity, dispersion, linear and nonlinear gain, loss and spectral filtering parameters.

In the language of the Los Alamos school, the fully spatiotemporal approach followed

here may be said to be the “collective coordinates” formulation. In other words, we consider
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a pulse or solitary wave at any time as a coherent collective entity (or coordinate). This

solitary wave is then temporally modulated. The approaches proposed, and already partially

explored, in this second part of the dissertation are the two main theoretical tools usually

applied to nonintegrable nonlinear PDEs, viz.

(a) the variational method, and

(b) perturbation theory.

However, each method is very significantly and non–trivially generalized from all earlier

applications to deal with our novel classes of dissipative solitary waves. We are very grateful

to David Kaup, Jianke Yang and Roberto Camassa for discussions on these formulations.

The variational method seems by far the more general of these two approaches, especially as

most numerical results in [20] and [26] are far from the near–NLS or near–cubic–quintic–NLS

regimes where perturbation theory applies.

An approach based on soliton perturbation theory has recently been employed [29] to

explain why non–stationary or amplitude modulated solitary waves should occur in dissipa-

tive systems, as well as their non–occurrence in the absence of dissipation. In particular,

the occurrence of two of the five classes of dissipative solitons mentioned above, viz. the

pulsating solitons and snakes (slugs) may be proved within this formulation in the near–NLS

or near–cubic–quintic–NLS regimes. However, the other three classes, viz. the creeping,

erupting (exploding), and chaotic solitons cannot be thus explained. In addition, as men-

tioned above, this approach is severely limited in that most numerical results are not in the
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perturbative regime. David Kaup has been insistent that we be very attentive to this. And

Nail Akhmediev has mentioned this too in his papers and his personal communications.

We would also like to particularly cite David Kaup’s recent work, talks and conversations

stressing the power, versatility and accuracy of the variational technique in constructing reg-

ular and embedded solitons of various complicated χ2−χ3 systems. These were instrumental

in focusing our attention on this method, and attempting to extend its use to new classes

of dissipative solitons. Given this setting, in Chapters 5 and 6 we develop and discuss a

variational formalism within which to explore the various classes of dissipative solitons. We

will use two different trial functions that will represent two different shapes of the pulsating

soliton. As mentioned, this is significantly generalized over earlier formulations in several

crucial ways. Firstly, the starting formulations for the Lagrangian are recent [30] and not

well explored. Also, after extensive discussions with David Kaup, the trial functions have

been generalized considerably over conventional ones to keep the shape relatively simple (and

the trial function integrable!) while allowing arbitrary temporal variation of the amplitude,

width, position, speed and phase of the pulse. In addition, the resulting Euler–Lagrange

equations are treated in a completely novel way. Rather than consider on the stable fixed

points which correspond to the well–known stationary solitons or plain pulses, we use dy-

namical systems theory to focus on more complex attractors viz. periodic, quasiperiodic,

and chaotic ones. Periodic evolution of the trial function parameters on a stable periodic

attractor would yield solitons whose amplitudes are non–stationary or time dependent. In

particular, pulsating, snake (and less easily, creeping) dissipative solitons may be treated
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using stable periodic attractors of various trial function parameters. Chaotic evolution of

the trial function parameters would yield chaotic solitary waves. This approach explored in

Chapter 5, fails only to address the fifth class of dissipative solitons, viz. exploding or erupt-

ing solitons. We propose to explore the other two classes extensively within this formulation,

including comparisons with numerical solutions and explorations of, and predictions about,

the dependence of the soliton structure and stability on the various system parameters. In

addition, the numerically documented period doubling seen in earlier simulations of the pul-

sating solitons is investigated in detail via the use of numerical diagnostics to explore period

doublings of the periodic attractors for the trial function parameters. Chapter 7 summarizes

the results and conclusions for the plane pulsating and snaking soliton and addresses the

future work regarding the chaotic and creeping solitary waves.
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CHAPTER TWO: BIFURCATIONS AND COMPETING
COHERENT STRUCTURES IN CGLE: PLANE WAVE (CW)

SOLUTIONS

In this chapter, we begin by using Singularity Theory [22] to comprehensively categorize the

plane wave (CW) solutions which were partially considered numerically in [19]. In addition,

we shall be able to identify co–existing CW solutions in all parameter regimes together with

their stability. The resulting dynamic behaviors will include hysteresis among co–existing

branches, as well as the existence of isolated solution branches (isolas) separated from the

main solution branch.

The remainder of this chapter is organized as follows. Section 2.1 considers two formu-

lations for the traveling-wave reduced ODEs for the cubic-quintic CGLE, as well as CW

solutions. Section 2.2 quickly recapitulates the standard stability analysis for individual CW

solutions. In Section 2.3, which is the heart of the chapter, Singularity Theory is employed

to comprehensively categorize all possible co–existing and competing plane wave solutions

in general parameter regimes, as well as special cases corresponding to all possible quartic

and cubic normal forms for singularities of codimension up to three. Note that we are com-

puting stability of the traveling waves solutions. In particular, we shall concentrate on plane

waves or continuous wave solutions of the full PDE. Section 2.4 considers the corresponding

bifurcation diagrams as well as the resulting dynamical behaviors.
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2.1 Traveling Wave Reduced ODEs

2.1.1 Reductions

We shall consider the cubic-quintic CGLE in the form [11]

∂tA = ǫA+ (b1 + ic1)∂
2
xA− (b3 − ic3)|A|2A− (b5 − ic5)|A|4A (2.1)

noting that any three of the coefficients (no two of which are in the same term) may be set

to unity by appropriate scalings of time, space and A.

For the most part, we shall employ the polar form used in earlier treatments [5, 11] of

the traveling wave solutions of (2.1). This takes the form of the ansatz

A(x, t) = e−iωtÂ(x− vt) = e−iωta(z)eiφ(z) (2.2)

where

z ≡ x− vt (2.3)

is the traveling wave variable and ω and v are the frequency and translation speed (and are

determined by the boundary conditions, and are thus eigenvalues of the uniformly translated

solutions). Substitution of (2.2),(2.3) in (2.1) leads, after some simplification, to the three

mode dynamical system

az = b (2.4a)

bz = aψ2 − (b1ǫ+ c1ω)a+ v(b1b+ c1ψa) − (b1b3 − c1c3)a
3 − (b1b5 − c1c5)a

5

b21 + c21
(2.4b)

ψz = −2ψb

a
+

−b1ω + c1ǫ+ v
(

c1b
a
− b1ψ

)

− (b1c3 + b3c1)a
2 − (b1c5 + b5c1)a

4

b21 + c21
(2.4c)
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where ψ ≡ φz. Note that we have put the equations into a form closer to that in [5], rather

than that in [11], so that (2.4) is a generalization of the traveling wave ODEs in [5] to include

the quintic terms.

For future reference, we also include the fourth–order ODE system one would obtain from

(2.1) using the rectangular representation

A(x, t) = e−iωtÂ(x− vt) = e−iωt[α(z) + iβ(z)] (2.5)

with z given by (2.3). Using (2.5) in (2.1) yields the system:

−c1δz + b1γz = Γ1 (2.6a)

b1δz + c1γz = Γ2 (2.6b)

where γ = α′, δ = β′, ′ = d/dz, and Γ1,Γ2 are given below. This may be written as a first

order system

α′ = γ

β′ = δ

(b21 + c21)γ
′ = b1Γ1 + c1Γ2

(b21 + c21)δ
′ = b1Γ2 − c1Γ1 (2.7)

with

Γ1 = ωβ − vγ − ǫα + (b3α+ c3β)(α2 + β2) + (b5α+ c5β)(α2 + β2)2 (2.8a)

and

Γ2 = −ωα− vδ − ǫβ + (b3β − c3α)(α2 + β2) + (b5β − c5α)(α2 + β2)2. (2.8b)
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2.1.2 Fixed Points and Plane (Continuous) Wave Solutions

From (2.2), a fixed point (a0, 0, ψ0) of (2.4) corresponds to a plane wave solution

A(x, t) = a0e
i(ψ0z−ωt)+iθ (2.9)

with θ an arbitrary constant.

The fixed points of (2.4a)–(2.4c) may be obtained by setting b = 0 (from (2.4a)) in the

right hand sides of the last two equations, solving the last one for ψ, and substituting this

in the second yielding the quartic equation

α4x
4 + α3x

3 + α2x
2 + α1x+ α0 = 0 (2.10)

with

x = a2, (2.11a)

α4 =
(b1c5 + b5c1)

2

b21v
2

(2.11b)

α3 =
2(b1c3 + b3c1)(b1c5 + b5c1)

b21v
2

(2.11c)

α2 =
b23c

2
1 + 2b1b3c1c3 − 2b5c

2
1ǫ

b21v
2

+
b5v

2 + b1(c
2
3 + 2c5ω) + 2c1(b5ω − c5ǫ)

b1v
(2.11d)

α1 =
b3
b1

+
2(b1ω − c1ǫ)(b1c3 + b3c1)

b21v
2

(2.11e)

α0 =
(c1ǫ− b1ω)2

b21v
2

− ǫ

b1
. (2.11f)

Thus, with a0 =
√
x for x any of the four roots of (2.10), we have a plane wave solution of

the form (2.9).
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The fixed points of the system (2.7) are given by γ = δ = 0 and Γ1 = Γ2 = 0. They

may be obtained by eliminating the α and β terms by solving Γ1 = Γ2 = 0 simultaneously

yielding:

α2 + β2 = 0

or

α2 + β2 =
b5ω + c5ǫ

b3c5 − b5c3
.

Resubstituting these into the Γ1 = Γ2 = 0 yields only the trivial fixed point

α = β = 0. (2.12)

Thus, the system (2.7) has no non-trivial plane wave solutions.

In the next section, we begin the consideration of the stability, co–existence and bifurca-

tions of the plane wave states of (2.1) (the fixed points of (2.4a)– (2.4c)).

2.2 Stability Analysis for Individual Plane Wave Solutions

In this section, we conduct a stability analysis of individual plane wave solutions using

regular phase plane techniques. This was already done for the alternative formulation of the

traveling wave ODEs given in [11]. We provide a brief derivation for our system (2.4a)–(2.4c)

for completeness and future use. However, a much more complex question is the issue of

categorizing and elucidating the possible existence of, and transitions among, multiple plane

16



wave states which may co–exist for the same parameter values in (2.1) (corresponding to the

same operating conditions of the underlying system). Such behavior is well–documented in

systems such as the Continuous Stirred Tank Reactor System [22, 26]. For a system such

as (2.1) and the associated ODEs (2.4a)–(2.4c), the large number of parameters makes a

comprehensive parametric study of co–existing states bewilderingly complex, if not actually

impracticable. This more complex issue is addressed in the next section.

For each of the four roots xi, i = 1, . . . , 4 of (2.10) corresponding to a fixed point of

(2.4a)– (2.4c) or a plane wave
√
xi e

i(ψiz−wt)+iθi , the stability may be determined using

regular phase–plane analysis. The characteristic polynomial of the Jacobian matrix of a

fixed point xi = a2
i of (2.4a)–(2.4c) may be expressed as

λ3 + δ1λ
2 + δ2λ+ δ3 = 0 (2.13)

where

δ1 =
2b1v

b21 + c21
(2.14a)

δ2 =
1

b21 + c21

[

3a2(c1c3 − b1b3) + 5a4(c1c5 − b1b5)

+ (b1ǫ+ c1ω) + 3(b21 + c21)ψ
2 + v(v − 3c1ψ)

]

(2.14b)

δ3 =
4a2ψ[(b1c3 + b3c1) + 2a2(b1c5 + b5c1)]

b21 + c21

+
1

(b21 + c21)
2

{

b1c1ψv
2 − v

[

a2
(

2b3(b
2
1 + c21) + b1(b1b3 − c1c3)

)

+ a4
(

4b5(b
2
1 + c21) + b1(b1b5 − c1c5)

)

− b1

(

(b1ǫ+ c1ω) − ψ2(b21 + c21)
)]}

, (2.14c)
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where the fixed point values (ai, ψi) = (
√
xi, ψi) are to be substituted in terms of the system

parameters of Section 2.1. Note that ψi is obtained by setting a = ai =
√
xi, and b = 0 in

the right side of (2.4c).

Using the Routh–Hurwitz conditions, the corresponding fixed point is stable for

δ1 > 0, δ3 > 0, δ1δ2 − δ3 > 0. (2.15)

Equation (2.15) is thus the condition for stability of the plane wave corresponding to xi.

On the contrary, one may have the onset of instability of the plane wave solution occurring

in one of two ways. In the first, one root of (2.13) (or one eigenvalue of the Jacobian) becomes

non–hyperbolic by going through zero for

δ3 = 0. (2.16)

Equation (2.16) is thus the condition for the onset of “static” instability of the plane wave.

Whether this bifurcation is a pitchfork or transcritical one, and its subcritical or supercritical

nature, may be readily determined by deriving an appropriate canonical system in the vicinity

of (2.16) using any of a variety of normal form or perturbation methods [23, 24, 25].

One may also have the onset of dynamic instability (“flutter” in the language of Ap-

plied Mechanics) when a pair of eigenvalues of the Jacobian become purely imaginary. The

consequent Hopf bifurcation at

δ1δ2 − δ3 = 0 (2.17)

leads to the onset of periodic solutions of (2.4a)–(2.4c) (dynamic instability or “flutter”).

These periodic solutions for a(z) and ψ(z), which may be stable or unstable depending on
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the super– or subcritical nature of the bifurcation, correspond via (2.2) to solutions

A(x, t) = a(z)ei(
∫
ψdz−ωt) (2.18)

of the CGLE (2.1) which are, in general, quasiperiodic wavetrain solutions. This is because

the period of ψ and ω are typically incommensurate. Eq. (2.18) is periodic if ω = 0.

Here, we change gears to address the more difficult question of the possible coexistence

of, and transitions among, multiple plane wave states for the same parameter sets.

2.3 Co–existing and Competing Plane Waves

As mentioned earlier, for a multiparameter system like (2.1), and the associated ODEs (2.4a)–

(2.4c), a comprehensive parametric study of co–existing states is forbiddingly complex, if

not actually impracticable. Theoretical guidance is needed to determine all the multiplicity

features in various parameter domains, as well as the stability of, and mutual transitions

among, coexisting plane waves in each domain.

In this section, we use Singularity Theory [22] to comprehensively analyze such multi-

plicity features for (2.1), (2.4a)–(2.4c). In particular, we shall derive the existence conditions

on the eight coefficients of the CGLE under which the steady state equation (2.10) assumes

either (a) all possible quartic normal forms (the quartic fold, and an unnamed form), or (b)

all distinct cubic normal forms (the pitchfork or the winged cusp) for singularities of codi-

mension up to three. In addition, given that the most degenerate singularities or bifurcations

tend to be the primary organizing centers for the dynamics, we also consider the even higher
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codimension singularities leading to various quadratic normal forms. Clearly, the most de-

generate singularities for a particular parameter set would “organize” the dynamics in the

sense that local behavior in its vicinity predicts actual quasi–global results. In fact, since

we employ the actual governing equations, the ensuing results are not just locally valid, as

is often the case, but they have global applicability.

First, denoting (2.10) as

g(x, αi) = α4x
4 + α3x

3 + α2x
2 + α1x+ α0 = 0 (2.19)

where g denotes the “germ” and the αi are given in terms of system parameters by (2.11),

all points of bifurcation (where the Implicit Function Theorem fails) satisfy

gx = 0. (2.20)

Given a germ satisfying (2.19) and (2.20), the general Classification Theorem in [22] provides

a comprehensive list of all possible distinct normal forms to which it may be reduced for

bifurcations of codimension less than or equal to three.

For our g, which is already in polynomial form, it is particularly straightforward to reduce

it to each of these normal forms in turn and this is what we shall do next. Following this, we

shall consider the general form (2.19) itself. We start first with the possible distinct quartic

normal forms viz., the “Quartic Fold” and an unnamed form, and then proceed systematically

to lower order normal forms. In the standard manner, the so–called “recognition problem”

or identification of each normal form yields certain defining conditions and non–degeneracy

conditions and we check these first for each form. Each normal form has a well–known
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“universal unfolding” or canonical form under any possible perturbation [22]. This is so under

certain other non–degeneracy conditions (the conditions for the solution of the so–called

recognition problem) which we next satisfy. Once the universal unfolding is established, we

next need to consider the various parameter regions (for the parameters in the unfolding)

where distinct behaviors for the solutions x occur. The boundaries of these regions are the so–

called “transition varieties” across which these behaviors change or are non–persistent. We

consider these next. The final step involves detailing in each region delimited by two adjacent

“transition variety” curves the bifurcation diagram for x, i.e., the possible co–existing steady

states of (2.4a)–(2.4c) (or plane waves of (2.1)) and their stability.

2.3.1 The Quartic Fold

We perform the steps mentioned above for the first quartic normal form, viz. the Quartic

Fold

h1(x, λ) = ǫx4 + δλ. (2.21)

Clearly, our germ (2.19) has this form for

α4 = ǫ,

α3 = α2 = α1 = 0

α0 = δλ. (2.22)
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For the normal form (2.21), the universal unfolding is

G1(x, λ) = ǫx4 + δλ+ αx+ βx2 (2.23)

with defining conditions

gxx = gxxx = 0, (2.24)

non–degeneracy conditions

ǫ = sgn

(

∂4h1

∂x4

)

, δ = sgn

(

∂h1

∂λ

)

and provided the condition for the solution of the recognition problem

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

gλ gλx gλxx

G1α G1αx G1αxx

G1β G1βx G1βxx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0 (2.25)

is satisfied. Given (2.19) and (2.22), the conditions (2.23) are automatically satisfied, while

(2.25) yields the condition

δ 6= 0. (2.26)

The transition varieties across which the (λ, x) bifurcation diagrams change character

are:

i. The Bifurcation Variety

B = {~α ∈ Rk : (x, λ) such that G = Gx = Gλ = 0 at (x, λ, α)}. (2.27)
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ii. The Hysteresis Variety

H = {~α ∈ Rk : (x, λ) such that G = Gx = Gxx = 0 at (x, λ, α)}. (2.28)

iii. The Double Limit Variety

D = {~α ∈ Rk : (x1, x2, λ), x1 6= x2 such that G = Gx = 0 at (xi, λ, α), i = 1, 2}. (2.29)

We compute these here since the derivations are not given in [22]. For B, we need

G1x = 4ǫx3 + α+ 2βx = 0

and

G1λ = δ = 0.

However, δ 6= 0 by (2.26), and hence the bifurcation set is just the null set

B = ∅. (2.30)

For H, we need

G1x = 4ǫx3 + α+ 2βx = 0

G1xx = 12ǫx2 + 2β = 0

which yield

H =

{

( α

8ǫ

)2

= −
( β

6ǫ

)3

, β ≤ 0

}

. (2.31)

Similarly, using (2.29), it is straightforward to derive the double limit set

D = {α = 0, β ≤ 0}. (2.32)
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In the (α, β) plane, the (λ, x) bifurcation diagrams change character across the curves (2.30)–

(2.32), so that there are different multiplicities of steady–states in the regions they delimit.

We shall consider this in detail in the next section.

2.3.2 A Second Quartic Normal Form

Repeating the above steps for the other possible distinct normal form

h2(x, λ) = ǫx4 + δλx, (2.33)

our germ (2.19) takes this form for

α4 = ǫ

α3 = α2 = α0 = 0

α1 = δλ. (2.34)

For the normal form (2.33), the universal unfolding is

G2(x, λ) = ǫx4 + δλx+ α+ βλ+ γx2 (2.35)

with defining conditions

gxx = gxxx = gλ = 0, (2.36)
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non–degeneracy conditions which are automatically satisfied, and the solution of the recog-

nition problem yielding the condition
∣
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0 0 gxλ 0 gxxxx
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∣

∣

∣

∣

∣

∣

6= 0. (2.37)

For (2.19)/(2.34), (2.36) is satisfied, while (2.37) yields

ǫδ 6= 0, or α1α4 6= 0. (2.38)

We derive the transition varieties for this case since derivations are not provided in [22].

For B:

G2x = 4ǫx3 + δλ+ 2γx = 0

G2λ = δx+ β = 0

which, together with (2.35), yield

B :
ǫβ4

δ4
+
γβ2

δ2
+ α = 0. (2.39)

For H:

G2xx = 0 ⇒ γ = −6ǫx2

and

G2x = 0 ⇒ δλ = 8ǫx3.
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Together, these yield

λ2 = −
(2γ

3

)3 1

δ2ǫ
.

Using these in (2.35) yields the hysteresis curve:

H :
(

α+
γ2

12ǫ

)2

+
8γ3β2

27δ2ǫ
= 0. (2.40)

Similarly, the double limit curve D is:

D : 4α = γ2, γ ≤ 0. (2.41)

In the next two subsections, we summarize similar results for the two distinct cubic

normal forms, but omit the details. Then we briefly mention the four possible quadratic

normal forms for even more degenerate cases, before concluding the section with the general,

least degenerate case.

2.3.3 The Pitchfork

For our germ (2.19) to have the cubic normal form for the well–known pitchfork bifurcation

h3(x, λ) = ǫx3 + δλx (2.42)

we require

α4 = α2 = α0 = 0

α3 = ǫ,

α1 = δλ. (2.43)
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This will have a universal unfolding [22]

G3 = ǫx3 + δλx+ α+ βx2 (2.44)

provided
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= δ 6= 0.

The well–known transition varieties, generalized to our notation, are:

B : α = 0 (2.45)

H : α =
β3

27ǫ2
(2.46)

D : ∅. (2.47)

2.3.4 The Winged Cusp

The other distinct cubic normal form

h4(x, λ) = ǫx3 + δλ2 (2.48)

requires

α4 = α2 = α1 = 0

α3 = ǫ,

α0 = δλ2. (2.49)
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This has a universal unfolding [22]

G4(x, λ) = ǫx3 + δλ2 + α+ βx+ γλx (2.50)

provided
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= −12δǫ 6= 0.

The transition varieties, for our unfolding G4, are:

B : α = 2x3 − γ2

4
x2, β = −3x2 +

γ2x

2
(2.51)

H : αγ2 + β2 = 0, α ≤ 0 (2.52)

D : ∅. (2.53)

2.3.5 Quadratic Normal Forms

Since our system of ODEs has many parameters, we may clearly have more degenerate

(higher codimension) cases corresponding to any of the distinct quadratic normal forms

h5(x, λ) = ǫx2 + δλ (2.54)

h6(x, λ) = ǫ(x2 − λ2) (2.55)

h7(x, λ) = ǫ(x2 + λ2) (2.56)

h8(x, λ) = ǫx2 + δλ3 (2.57)
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or

h9(x, λ) = ǫx2 + δλ4 (2.58)

Each of these is obtained by matching our germ (2.19) to the appropriate form, with the

defining and non–degeneracy conditions automatically being satisfied (because (2.19) is poly-

nomial). Solving the recognition problem [22], the corresponding unfoldings are respectively

G5(x, λ) = ǫx2 + δλ (2.59)

G6,7(x, λ) = ǫ(x2 + δλ2 + α) (2.60)

(with δ < 0 for (2.55) and δ > 0 for (2.56))

G8(x, λ) = ǫx2 + δλ3 + α+ βλ (2.61)

G9(x, λ) = ǫx2 + δλ4 + α+ βλ+ γλ2 (2.62)

with determinant conditions [22] for the cases (2.61) and (2.62) which may be straightfor-

wardly enforced as in previous cases. The B, H, and D curves for these cases are straight-

forward generalizations of those given in [22], and they may be derived as for the quartic

and cubic cases.

2.3.6 General Case

Finally, we include the most general possibility where, for arbitrary parameters in the CGLE

(2.1), we have the germ (2.19) with all αi non–zero. Treating (2.19) itself as the unfolding,
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with α0 the bifurcation parameter λ, the transition varieties in the (α1, α2) plane are:

B : ∅ (2.63)

H : α2 = −6α4x
2 − 3α3x

α1 = 8α4x
3 + 3α3x

2 (2.64)

D : identical to H (see Theorem 1) (2.65)

Theorem 1. The Double Limit Variety for (2.19) is identical to the Hysteresis Variety of

(2.64).

Proof. Using (2.19) and (2.29), D is defined by the equations

G(x1, λ) = 0 (2.66a)

G(x2, λ) = 0 (2.66b)

Gx(x1, λ) = 0 (2.66c)

Gx(x2, λ) = 0. (2.66d)

Canceling the trivial solution x1 = x2, the equations obtained from the difference of (2.66a)

and (2.66b), and of (2.66c) and (2.66d), yield respectively

α1 = −a(2b− a2)α4 − bα3 − aα2 (2.67a)

α2 = −1

2
(4bα4 + 3aα3) (2.67b)

where a ≡ x1 + x2
2, b ≡ x2

1 + x1x2 + x2
2. Using (2.67b) in (2.67a), these yield

α1 =
(3a2

2
− b
)

α3 + a3α4 (2.68a)

α2 = −3a

2
α3 − 2bα4. (2.68b)
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The Eqts. (2.66a) and (2.66b) may be considered to define the bifurcation parameter α0

which we do not require here. However, (2.66c) and (2.66d) independently define α1 and

thus far only their difference has been used. In order to incorporate α1, we consider the sum

of (2.66c) and (2.66d) written in terms of a and b as:

4α4a(3b− 2a2) + 3α3(2b− a2) + 2α2a+ 2α1 = 0.

Using (2.68) in this equation and simplifying yields

b =
3a2

4
. (2.69)

Using this in (2.68) yields the parametric equations for D:

α1 = a2
(3α3

4
+ α4a

)

(2.70a)

α2 = −3a

2

(

α3 + α4a
)

. (2.70b)

The re–parametrization a = 2x puts this into exactly the form (2.64) of the hysteresis

variety, thus proving the claim.

Note that the H curve is parametrized in terms of x (with α3, α4 being chosen values).

Also, given the non–degenerate nature of this general case, it is not surprising that there is

only one distinct transition variety.

2.4 Bifurcation Diagrams and Effects on the Dynamics

Having mapped out the B, H, and D curves for the various possible distinct quartic and cubic

normal forms, we now proceed in this section to consider the various bifurcation diagrams in
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the regions which they define in (α, β) space. These will then give us the multiplicities and

stabilities of the various co–exisitng steady states of (2.4a)–(2.4c) (or plane wave solutions

of (2.1)) in each region. In turn, these also enable us to consider dynamic features of the

plane wave solutions. The dynamics will include hysteretic behaviors among co–existing

plane waves. We will also find regimes of isolated plane wave behavior, both for a plane

wave branch which co–exists with other branches but cannot interact with them, as well as

those which actually occur only in isolation.

We first list examples of representative sets of parameters for which we may have the

various degenerate cases considered in Section 2.3.

a. For the Quartic Fold of Section 2.3.1, typical parameters are:

i. b1 = 0.0845, b3 = −0.0846, b5 = 0.0846, c1 = c3 = −c5 = 1, ǫ = 0.5, v = 0.1,

ω = 0.

ii. b1 = b5 = 0.01696, b3 = −0.0206, c1 = 1, c3 = 1.25, c5 = −1, ǫ = 0.5, v = 0.1,

ω = 0.

b. For the Quartic Normal form of Section 2.3.2:

i. b1 = 2.035, b3 = 29.274, b5 = 9.8496, c1 = −0.1, c3 = −1, c5 = 0.08, ǫ = 0.3,

v = 0.3, ω = 0.1.

c. For the Pitchfork case of Section 2.3.3:
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i. b1 = 0.0904, b3 = 0.0679, b5 = 0.1811, c1 = −0.4, c3 = 0.35, c5 = 0.8, ǫ = 0.2,

v = 0.01, ω = −0.9.

ii. b1 = 0.0904, b3 = 0.0823, b5 = −0.1808, c1 = −0.4, c3 = 0.35, c5 = −0.8, ǫ = 0.2,

v = 0.01, ω = −0.9.

d. For the Winged Cusp of Section 2.3.4:

i. b1 = 0.000923, b3 = +.00005548, b5 = 0.0013, c1 = 0.5, c3 = −0.03, c5 = −0.7,

ǫ = 0.01, v = 0.1, ω = 0.15.

For the winged cusp unfolding (2.50) in the particular form

G1(x, λ) = x3 + λ2 + α+ βx+ γλx = 0,

the transition varieties (2.51) and (2.52) are shown in the (α, β) plane in Fig 2.1(1–3)for

γ < 0, γ = 0, and γ > 0, respectively. They divide the (α, β) space into seven distinct regions.

As mentioned earlier, the (λ, x) bifurcation diagrams are isomorphous or “persistent” or

of similar form within each region, and they change form across the transition varieties

(or “nonpersistence” curves) as one crosses into an adjacent region. The representative

bifurcation diagrams in each of the seven regions are shown in Fig. 2.2, and they give us

a comprehensive picture of the co–existing plane wave solutions of (2.1) and their stability

(given by the eigenvalues of the Jacobian, or here just the sign of Gx) in each region. Hence,

as we shall consider next, one also has a clear picture of the ensuing dynamics from the plane

wave interactions.
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Figure 2.1: Transition varieties for the winged cusp (2.50) with ǫ = 1 = δ for the cases γ < 0,
γ = 0, and γ > 0, respectively. H is in solid lines, and B is dashed.

Figure 2.2: The (λ, x) bifurcation diagrams in the regions 1–7 of Fig. 2.1, respectively.

First, note the mushroom shaped bifurcation diagram in Fig. 2.2(2) for region 2 of Fig.

2.1. Clearly, there are two distinct ranges of λ (at the two ends of the mushroom) where

three plane waves co-exist (with the central one being unstable). Thus the dynamics exhibits

hysteresis. For instance, if λ is decreased from large values, one stays on the lower branch

until point A before jumping to the upper branch. If λ is then increased, one stays on the
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upper branch until B and then jumps back down to the lower one. Similar hysteresis occurs

in regions 4–7 of Fig. 2.1 as seen in the corresponding bifurcation diagrams of Fig. 2.2(4–7).

In each case, hysteresis occurs between the upper and lower fixed points in the range of λ

with three co–existing solutions (the central one is always unstable).

Another type of behavior is the isola, i.e., an isolated branch of solutions unconnected to

the primary solution (the one at λ→ ±∞). Such isola type behavior is seen in Fig. 2.2(3,5,7)

corresponding to regions 3,5,7 of Fig. 2.1 . In each case, the isola co–exists with the primary

solution branch and is the chosen branch or not according to the initial conditions. However,

once chosen, the dynamics is on the isola while λ is in the domain of its existence once we

leave this domain, the solution cannot jump to the primary branch and just disappears.

Next, we consider the normal form (2.33) in Section 2.3.2. Considering the unfolding

(2.35) in the particular form

G2(x, λ) = x4 − λx+ α+ βλ+ γx2 = 0,

the transition varieties (2.39)–(2.41) are shown in Fig. 2.3(1–3) for the cases γ > 0, γ = 0,

and γ < 0 respectively. Note in particular, a significant correction to [3] in the H curve of

Fig. 2.3(3). The H curve (2.40) represents a pair of straight lines in the (α, β) plane, rather

than the incorrect form

α+
γ2

12ǫ
+

8γ3β2

27δ2ǫ
= 0

in [22]. In Fig. 2.3(3), one consequence is two new regions or domains 13 and 14 of the (α, β)

space. Also, the bifurcation plots in the domains 3,4,5 and 8 are significantly modified from

those given in [22] for the corresponding regions.
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Figure 2.3: The transition varieties for the quartic normal form (2.35) with δ = −1 for the
cases γ > 0, γ = 0, and γ < 0, respectively. H is in solid lines, B is dashed and the double
limit curve D is in fine dashing. The regions 1–14 which they delimit are shown.

The bifurcations plots in the fourteen regions in Fig. 2.3(3) (Fig. 2.3(1 and 2) feature

only some of the regions) are shown in Figs. 2.4 and 2.5. Note that there are no regions of

isola behavior. In regions 3,4,5 and 8, there is only one branch of solutions, rather than two

as shown in Fig. 2.4 (case 10) of [22]. Of these, the segments BC and DE are unstable in

cases 3 and 5, so that the hysteretic behavior of the solutions will consist of transitions from

the stable plane waves on branch AB to those on branch CD as λ is increased past point

B, and a reverse transition when it is decreased through C. Similarly, in regions 4 and 8

where only segment BC is unstable, hysteresis occurs with a transition from the plane wave

on branch DE to branch AB if λ is decreased through D, a transition from branch CD to

branch AB when λ is decreased through D, and a transition from CD to either AB or DE

(depending on system bias, noise et cetera) as λ is increased through C. Analogous hysteresis

behavior is clearly possible in regions 7 and 11, while regions 9, 10, and 12 feature hysteresis

between co–existing stable plane wave solutions on distinct solution branches. In the two

new regions 13 and 14 of Fig. 2.3(3) (which were missing in [22]), the bifurcation plots in

Figs. 2.5(11 and 12) show only two co–existing plane wave solutions in each λ range, unlike
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the adjacent regions 5 and 8 of Fig. 2.3(3) where the bifurcation plots Fig. 2.4(5 and 8)

have λ ranges with four coeval solutions.

Figure 2.4: Bifurcation diagrams in the regions 1–8 of Fig. 2.3(3).

Figure 2.5: Bifurcation diagrams in the regions 9–14 of Fig. 2.3(3).

For the very degenerate cases discussed in Section 2.3.5 and corresponding to quadratic

normal forms, the corresponding transition varieties as well as the bifurcation plots and

resulting dynamics in the regions of (α, β) which they delimit may be deduced from the rele-
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vant cases in Figures 4.1–4.3 of [22]. In particular, cases (2.60)–(2.62) show isola, hysteresis,

and double isola behaviors respectively.

Let us consider the general case in Section 2.3.6 next. Since the results are entirely new,

we need to consider the issue of the stability of the (λ, x) ≡ (α0, x) bifurcation diagrams in

various regions of the (α1, α2) plane. Using (2.19),

dG

dλ
≡ dG

dα0

=
∂G

∂x

dx

dλ
+
∂G

∂λ
= 0,

so that

∂G

∂x
= − 1

(dx/dλ)
. (2.71)

Thus, the Jacobian and its eigenvalue Gx (these are identical for a one-dimensional system

such as (2.19)) are negative, and the corresponding fixed–point branch of the (λ, x) plane is

stable, for segments of the bifurcation plot where

dx

dλ
> 0, stable. (2.72)

Conversely, segments with dx
dλ
< 0 are unstable.

Finally, let us consider the dynamics and interactions of plane waves for the most general

case of Section 2.3.6. The coincident transition varieties H and D in (2.64),(2.65) are shown

in Fig. 2.6(1–8) for various combinations of (α3, α4) values. As is readily apparent, the

configurations in Fig. 2.6(1–3) are the independent ones corresponding to centered and

off-centered cusps and a parabolic variety curve respectively – the other cases are simple

reflections of these. For Fig. 2.6(1) with (α3, α4) = (0, 1), the transition variety divides the
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(α1, α2) space into two distinct regions 1 and 2. The bifurcation plots in the two regions are

shown in Fig. 2.7(1 and 2). As per (2.71), the segment(s) with dx
dλ
> 0 are stable, so that

there is a unique stable plane wave for Fig. 2.7(1) in region 1 of Fig. 2.6(1). By contrast,

there are co–existing stable plane wave states in regions BC and DE of Fig. 2.7(2) for region

2 of Fig. 2.6(1). Thus, hysteretic dynamics occurs with a transition from BC to DE as

λ ≡ α0 is decreased through C, and a reverse transition as λ is increased on DE through

D. For Fig. 2.6(2) with (α3, α4) = (1, 1), the bifurcation plots in regions 1 and 2 are shown

in Fig. 2.8(1 and 2) respectively. Once gain, per (2.71), the segments of these plots with

positive slope correspond to stable plane waves. Thus, only the segment corresponding to

DE in Fig. 2.8(1) is a unique stable plane wave solution in region 1 of Fig. 2.6(2). For region

2 of Fig. 2.6(2), Fig. 2.8(2) shows hysteresis between the stable plane wave branches BC

and DE. For regions 1 and 2 of Fig. 2.6(3) corresponding to (α3, α4) = (1, 0), the bifurcation

plots in regions 1 and 2 are shown in Fig. 2.9(1 and 2). For the former, as per (2.71), no

stable plane waves exist. For the latter, there is a unique stable plane wave solution in the

range of λ(α0) corresponding to segment BC.

Finally, for the sake of completeness, we mention an alternative interpretation of the gen-

eral case using Catastrophe Theory [27] (see [22] for a discussion of the connection between

this and the Singularity Theory approach). Treating (2.19) in a manner analogous to the

Cusp Catastrophe,

Gx = 4α4x
3 + 3α3x

2 + 2α2x+ α1

≡ 4α4(x
3 + Γ2x

2 + Γ1x+ Γ0) = 0 (2.73)
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Figure 2.6: Transition varieties for the general case (2.19) treated in Section 2.3. There is
no B curve, and H and D are coincident. The regions they delimit are shown. The figures
correspond respectively to (α3, α4) values (0, 1), (1, 1), (1, 0), (−1, 1), (−1, 0), (−1,−1),
(0,−1), and (1,−1).

Figure 2.7: Bifurcation diagrams in regions 1 and 2 of Fig. 2.6(1), respectively.

with

Γ2 =
3α3

4α4

,

Γ1 =
α2

2α4

,

Γ0 =
α1

α4

. (2.74)
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Defining

q =
1

3
Γ1 −

1

9
Γ2

2

r =
1

6
(Γ1Γ2 − 3Γ0) −

Γ3
2

27
, (2.75)

the transition cusp curve between domains with one and three real solutions is given by

q3 + r2 = 0. (2.76)

For (α3, α4) = (1, 1) corresponding to Figs. 2.6(2) and 2.8, the catastrophe surface (2.73)

showing regions of one/three real solutions in the (α1, α2) plane shown in Fig. 2.9(1). Fig.

2.9(2) shows the corresponding cusp surface (2.76) in (α1, α2) space. As mentioned, [22]

discusses the relationship between these plots and the Singularity Theory plots given in

Figs. 2.6(2) and 2.8 for this case.

Figure 2.8: Bifurcation diagrams in regions 1 and 2 of Fig. 2.6(2), respectively.

In concluding, we have comprehensively analyzed the co–existing plane wave solutions

in various parameter regimes for the CGLE (2.1). This includes transitions among co–

existing states involving up to two domains with hysteresis, isolated parameter regimes with
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Figure 2.9: Bifurcation diagrams in regions 1 and 2 of Fig. 2.6(3), respectively.

isola behavior, and the resulting dynamics. We should also stress that, since our governing

equation (2.19) is of polynomial form, all the results in Sections 2.3 and 2.4 are globally (and

not just locally) valid in their respective regimes, as of course are the results for the general

case.
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CHAPTER THREE: TRAVELING WAVETRAINS IN THE
CGLE: HOPF BIFURCATIONS

In this chapter we begin by using a traveling wave reduction or a so–called spatial approxi-

mation to investigate the periodic solutions of the CGLE. The primary tool used here is the

Hopf bifurcation theory and perturbation theory.

Immediately following the Hopf bifurcations we construct the periodic orbits by using

the method of multiple scales. The remainder of the chapter is organized as follows. We

first analyze the stability of fixed points in Section 3.1 and the onset of instability via a

Hopf bifurcation, which may be either supercritical or subcritical. Then stability of periodic

orbits is presented in Section 3.2 where we derive analytical expressions for the periodic

orbits resulting from this Hopf bifurcation, and for their stability coefficients, by employing

the multiple scales method. Section 3.3 considers numerical solutions and discusses the

results.

3.1 Stability Analysis of Fixed Points

In this section, we conduct a stability analysis of individual plane wave solutions using

regular phase–plane techniques. This was already done for the alternative formulation of the

traveling wave ODEs given in [11]. We provide a brief derivation for our system (3.1a)–(3.1c)

for completeness and future use. However, a much more complex question is the issue of

categorizing and elucidating the possible existence of, and transitions among, multiple plane
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wave states which may co–exist for the same parameter values in (2.1) (corresponding to the

same operating conditions of the underlying system). Such behavior is well–documented in

systems such as the Continuous Stirred Tank Reactor System [22, 26]. For a system such

as (2.1) and the associated ODEs (3.1a)–(3.1c), the large number of parameters makes a

comprehensive parametric study of co–existing states bewilderingly complex, if not actually

impracticable. This more complex issue is addressed in the next section.

Proceeding as in Section 2.1.1, the system (2.4a)–(2.4c) can be written in the new form

az = b (3.1a)

bz = aψ2 − γ1

[

γ2a+ v
(

b1b+ c1ψa
)

− γ3a
3 − γ4a

5
]

(3.1b)

ψz = −2ψb

a
+ γ1

[

γ5 + v
(c1b

a
− b1ψ

)

− γ6a
2 − γ7a

4
]

(3.1c)

where the constant terms γ1 − γ7 are given as functions of the system parameters in the

following manner:

γ1 =
1

b21 + c21

γ2 = b1ǫ+ c1ω

γ3 = b1b3 − c1c3

γ4 = b1b5 − c1c5

γ5 = −b1ω + c1ǫ

γ6 = b1c3 + c1b3

γ7 = b1c5 + c1b5 .
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From (2.2), a fixed point (a0, 0, ψ0) of (3.1a) corresponds to a plane wave solution

A(x, t) = a0e
i(ψ0z−ωt)+iθ (3.2)

with θ an arbitrary constant.

The fixed points of (3.1a)–(3.1c) may be obtained by setting b = 0 (from (3.1a)) in the

right hand sides of the last two equations, solving the last one for ψ, and substituting this

in the second yielding the quartic equation

α4x
4 + α3x

3 + α2x
2 + α1x+ α0 = 0 (3.3)

with

x = a2, (3.4a)

α4 =
γ2

7

b21v
2

(3.4b)

α3 =
2γ6γ7

b21v
2

(3.4c)

α2 =
γ2

6 − 2γ5γ7

b21v
2

+
γ1(b1γ4 + c1γ7)

b1
(3.4d)

α1 = γ1

(

γ3 +
c1γ6

b1

)

− 2γ5γ6

b21v
2

(3.4e)

α0 =
γ2

5

b21v
2
− γ1

b1

(

b1γ2 + c1γ5

)

. (3.4f)

Thus, with a0 =
√
x for x any of the four roots of (3.3), we have a plane wave solution of

the form (3.2). For each of the four roots xi, i = 1, . . . , 4 of (3.3) corresponding to a fixed

point of (3.1a)–(3.1c) or a plane wave
√
xi e

i(ψiz−wt)+iθi , the stability may be determined

using regular phase–plane analysis. The characteristic polynomial of the Jacobian matrix of
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a fixed point xi = a2
i of (3.1a)–(3.1c) may be expressed as

λ3 + δ1λ
2 + δ2λ+ δ3 = 0 (3.5)

where

δ1 = 2b1vγ1 (3.6a)

δ2 = 3ψ2 + γ1[γ2 − a2(3γ3 + 5a2γ4) − v(3c1ψ − v)] (3.6b)

δ3 = −2a2γ1(γ6 + 2a2γ7)(−2ψ + c1γ1v)

+ b1γ1v[−ψ2 + γ1(γ2 − 3a2γ3 − 5a4γ4 + c1ψv)] (3.6c)

where the fixed point values (ai, ψi) = (
√
xi, ψi) are to be substituted in terms of the system

parameters. Note that ψi is obtained by setting a = ai =
√
xi, and b = 0 in the right side of

(3.1c).

For (a0, 0, ψ0) to be a stable fixed point within the linearized analysis, all the eigenval-

ues must have negative real parts. Using the Routh–Hurwitz criterion, the necessary and

sufficient conditions for (3.5) to have Re(λ1,2,3) < 0 are:

δ1 > 0, δ3 > 0, δ1δ2 − δ3 > 0. (3.7)

Equation (3.7) is thus the condition for stability of the plane wave corresponding to xi.

On the contrary, one may have the onset of instability of the plane wave solution occurring

in one of two ways. In the first, one root of (3.5) (or one eigenvalue of the Jacobian) becomes

non–hyperbolic by going through zero for

δ3 = 0. (3.8)
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Equation (3.8) is thus the condition for the onset of “static” instability of the plane wave.

Whether this bifurcation is a pitchfork or transcritical one, and its subcritical or supercritical

nature, may be readily determined by deriving an appropriate canonical system in the vicinity

of (3.8) using any of a variety of normal form or perturbation methods [23, 24, 25].

One may also have the onset of dynamic instability (“flutter” in the language of Ap-

plied Mechanics) when a pair of eigenvalues of the Jacobian become purely imaginary. The

consequent Hopf bifurcation at

δ1δ2 − δ3 = 0 (3.9)

leads to the onset of periodic solutions of (3.1a)–(3.1c) (dynamic instability or “flutter”).

These periodic solutions for a(z) and ψ(z), which may be stable or unstable depending on

the super- or subcritical nature of the bifurcation, correspond via (2.2) to solutions

A(x, t) = a(z)ei(
∫
ψdz−ωt) (3.10)

of the CGLE (2.1) which are, in general, quasiperiodic wavetrain solutions. This is because

the period of ψ and ω are typically incommensurate. Eq. (3.10) is periodic if ω = 0.

3.2 Stability Analysis of Periodic Orbits

In this section we will use the method of multiple scales to construct analytical approxima-

tions for the periodic orbits arising through Hopf bifurcation of the fixed point of the CGLE

equation. For the systems of differential equations given by (3.1a)–(3.1c), the physically
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relevant point is given by (a0, 0, ψ0) where ψi is obtained by setting a = ai =
√
xi, in

ψi =
γ5 − a2

i (γ6 + a2
i γ7)

b1v
(3.11)

and xi is one of the roots of the fixed point equation (3.3). We will choose the parameter

ǫ which represents the linear gain or loss as the control parameter. The limit cycle is

determined by expanding about the fixed point using progressively slower spatial scales. In

the standard way, we write the various or multiple scales as z = Z0, Z1 = δZ0, Z2 = δ2Z0,

. . ., where δ is the usual multiple scales expansion parameter. We shall expand in powers

of δ, to separate the various scales, and then set δ = 1 at the end in the usual way. The

expansion takes the form

a = a0 +
3
∑

n=1

δnan(Z0, Z1, Z2) + . . . , (3.12)

b = B0 +
3
∑

n=1

δnBn(Z0, Z1, Z2) + . . . , (3.13)

ψ = ψ0 +
3
∑

n=1

δnψn(Z0, Z1, Z2) + . . . . (3.14)

Using the chain rule, the spatial derivative becomes

d

dZ
= D0 + δD1 + δ2D2 + . . . , (3.15)

where Dn = ∂/∂Zn. The delay parameter ǫ is ordered as

ǫ = ǫ0 + δ2ǫ2, (3.16)

where ǫ0 is the critical value such that (3.7) is not satisfied, (i.e. ǫ0 is a solution of (3.9).

This is standard for this method, as it allows the influence from the nonlinear terms and the

control parameter to occur at the same order.
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Using (3.12)–(3.16) in (3.1a)–(3.1c) and equating like powers of δ yields equations at

O(δi), i = 1, 2, 3 of the form:

L1(ai, Bi, ψi) = Si,1, (3.17)

L2(ai, Bi, ψi) = Si,2, (3.18)

L3(ai, Bi, ψi) = Si,3, (3.19)

where, the Li, i = 1, 2, 3 are the differential operators

L1(ai, Bi, ψi) = D0ai −Bi ≡ Si,1, (3.20)

L2(ai, Bi, ψi) = D0Bi − ψ2
0ai − 2a0ψ0ψi

+ γ1{γ20ai + v[b1Bi + c1(ψ0ai + a0ψi)]

− 3γ30a
2
0ai − 5γ40a

4
0ai} ≡ Si,2, (3.21)

L3(ai, Bi, ψi) = a0(D0ψi) + 2(ψ0Bi +B0ψi)

− γ1{γ50ai + v[c1Bi − b1(ψ0ai + a0ψi)]

− 3γ60a
2
0ai − 5γ70a4

0ai} ≡ Si,3, (3.22)

where γp = γp0 + δ2γp2 with p = 2, 3, . . . , 7, the source terms Si,j for i, j = 1, 2, 3 at O(δ),

O(δ2), and O(δ3) are given by the following:

O(δ) :

S1,1 = 0 (3.23)

S1,2 = 0 (3.24)

S1,3 = 0. (3.25)
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O(δ2) :

S2,1 = −D1a1 (3.26)

S2,2 = −D1B1 + a0ψ
2
1 + 2ψ0a1ψ1 − γ1(γ22a0 + vc1ψ1a1 − 3γ30a0a

2
1

− γ32a
3
0 − 10γ40a

3
0a

2
1 − γ42a

5
0) (3.27)

S2,3 = −a0D1ψ1 − a1D0ψ1 − 2ψ1B1 + γ1[(γ52a0 − vb1ψ1a1)

− (3γ60a0a
2
1 + γ62a

3
0) − (10γ70a

3
0a

2
1 + γ72a

5
0)]. (3.28)

O(δ3) :

S3,1 = −D1a2 −D2a1 (3.29)

S3,2 = −D1B2 −D2B1 + 2a2ψ0ψ1 + a1(2ψ0ψ2 + ψ2
1) + 2a0ψ1ψ2

− γ1{γ22a1 + vc1(ψ1a2 + ψ2a1) − [γ30(a
3
1 + 6a0a1a2) + 3γ32a

2
0a1]

− [γ40(10a2
0a

3
1 + 20a3

0a1a2) + 5γ42a
4
0a1]} (3.30)

S3,3 = −D1ψ2 −D2ψ1 − a1(D1ψ1 +D0ψ2) − a2D0ψ1 − 2(ψ1B2 + ψ2B1)

+ γ1{γ52a1 − vb1(ψ1a2 + ψ2a1) − [γ60(a
3
1 + 6a0a1a2)

+ 3γ62a
2
0a1] − [γ70(10a2

0a
3
1 + 20a3

0a1a2) + 5γ72a
4
0a1]}. (3.31)

Also, (3.17) may be solved for Bi in terms of ai and ψi. Using this in (3.18) yields ψi

ψi =
θi
φ1

, (3.32)
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where

θi = −D0Si,1 +D2
0ai − ψ2

0 + γ1{γ20ai − 3γ30a
2
0ai − 5γ40a

4
0ai

+ v[b1(−Si,1 +D0ai) + c1]} − Si,2 (3.33)

and

φ1 = 2a0ψ0 − vγ1c1a0. (3.34)

Using (3.32) and the equation for Bi in (3.20) yields the composite equation:

Lcai ≡ Γi, (3.35)

where

Γi ≡ Si,3 −
a0

φ1

(

D0ζi

)

− 2B0

φ1

ζi − γ1vb1a0
ζi
φ1

+ (2ψ0 − γ1vc1)Si,1, (3.36)

ζi = −D0Si,1 − γ1vb1Si,1 − Si,2. (3.37)

We shall now use (3.36) and (3.37) to systematically identify and suppress secular terms

in the solutions of (3.20)–(3.22). Let us now turn to finding the solutions of (3.20)–(3.22).

In what follows , we shall detail the solution of the above system of equations for the case

ǫ0 = ǫ01. In order to achieve that we must find first the fixed points. The characteristic

polynomial of the Jacobian matrix of a fixed point of (3.1a)–(3.1c) may be expressed as

λ3 + δ1λ
2 + δ2λ+ δ3 = 0, (3.38)

as in (3.5), and the fixed point values (ai, ψi) are to be substituted in terms of the system

parameters.
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The condition δ1δ2 − δ3 = 0 yields an involved equation in ǫ which actually can be solved

easily numerically for ǫ0 by the root method .

For O(δ) the Eqns. (3.23)–(3.25) give Si,1 = Si,2 = Si,3 = 0, and hence we may pick a

solution for the first order as

a1 = α(Z1, Z2)e
λ1Z0 + β(Z1, Z2)e

λ2Z0 + γ(Z1, Z2)e
λ3Z0 , (3.39)

where β = ᾱ is the complex conjugate of α and λ2 = λ1. As evident for the Routh–Hurwitz

condition, the α and β modes correspond to the center manifold where λ1,2 are purely

imaginary and where the Hopf bifurcation occurs, while γ corresponds to the attractive

direction or the stable manifold. Since we wish to construct and analyze the stability of the

periodic orbits which lie in the center manifold, we should take γ = 0 so (3.39) becomes

a1 = α(Z1, Z2)e
iωZ0 + β(Z1, Z2)e

−iωZ0 . (3.40)

Using (3.23)–(3.25) for i = 1, then the first order fields (a1, B1, ψ1) are

B1 = D0a1 = iωαeıωZ0 − iωβe−iωZ0 , (3.41)

and (3.32) becomes

ψ1 =
1

φ1

[

− ω2 − ψ2
0 + γ1

(

γ20 + vc1ψ0 − 3γ30a
2
0 − 5γ40a

4
0

)](

αeiωZ0 + βe−iωZ0

)

+
γ1vb1
φ1

(

iωαeiωZ0 − iωβe−iωZ0

)

. (3.42)

Now that the first order solutions (3.40)–(3.42) are known, the second order sources S21,

S22, S23 may be evaluated via (3.26)–(3.28). Using these sources in (3.36) we obtain Γ2
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which may be written as

Γ2 = Γ
(0)
2 + Γ

(1)
2 eiωZ0 + Γ

(2)
2 e2iωZ0 + c.c. (3.43)

Setting the coefficients of the secular eiωZ0 terms (which are the solutions of the homogeneous

equation for i = 1) to zero, i.e. Γ
(1)
2 = 0 yields

D1α =
∂α

∂Z1

= 0,

D1β =
∂β

∂Z1

= 0. (3.44)

Using (3.44), the second–order sources, and assuming a second–order particular solution for

a2 of the form:

a2 = a
(0)
2 + a

(2)
2 e2iωZ0 , (3.45)

having the standard form of a DC or time–independent term plus second–harmonic terms,

the composite equations (3.35)–(3.37) for i = 2, yield

Lca2 = Γ
(0)
2 + Γ

(2)
2 e2iωZ0 , (3.46)

which will be solved for the particular solution a
(0)
2 , and a

(2)
2 by equating both sides of the

expression (3.46). In terms of the composit operator Lc which is obtained from (3.36), the
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particular solution takes the form:

a
(0)
2 = −Γ

(0)
2

[

a0(vc1γ1 − 2ψ0)
]

{

2B0

[

− ψ2
0 + γ1(γ20 − 3a2

0γ30 − 5a4
0γ40 + vc1ψ0)

]

+ a0γ1

{

(γ50 − 3a2
0γ60 − 5a4

0γ70)(vc1γ1 − 2ψ0)

+ vb1[γ1(γ20 − 3a2
0γ30 − 5a4

0γ40) + ψ2
0]
}

}

−1

, (3.47)

a
(2)
2 = −Γ

(2)
2

[

a0(vc1γ1 − 2ψ0)
]

{

6a2
0B0γ1γ30 + 10a4

0B0γ1γ40

+ 3a3
0γ1

[

γ30(2iω + vb1γ1) + γ60(vc1γ1 − 2ψ0)
]

+ 5a5
0γ1

[

γ40(2iω + vb1γ1) + γ70(vc1γ1 − 2ψ0)
]

+ 2B0

[

4ω2 − 2ivωb1γ1 + ψ2
0 − γ1(γ20 + vc1ψ0)

]

+ a0

{

8iω3 − 2iv2ωb21γ
2
1 − 6iωψ2

0 + 2γ1ψ0(3ivωc1 + γ50)

+ γ1[−2iω(v2c21γ1 + γ20) − vc1γ1γ50] − vb1γ1(−8ω2 + γ1γ20 + ψ2
0)
}

}

−1

. (3.48)

Using (3.32), the second–order sources, and the equation for Bi in (3.20) with i = 2, then we

can find the second–order fields B2 and ψ2. Substituting them into the Eqts. (3.29)–(3.31)

we find the third order sources and we may evaluate the coefficients of the secular term eiωZ0

in the composite source Γ3 of (3.36). Suppressing again the secular terms to obtain uniform

expansions yields the final equation for the evolution of the coefficients in the linear solutions

(3.40)-(3.42) on the slow second–order spatial scales

∂α

∂Z2

= S1α
2β + S2α. (3.49)

Writing α = 1
2
Aeiθ and separating (3.49) into real and imaginary parts, yields

∂A

∂Z2

=
S1rA

3

4
+ S2rA, (3.50)
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where S1r and S2r represent the real parts of S1 and S2 respectively. In the usual way, the

fixed points of (3.50), (A1, A2,3) where

A1 = 0,

A2,3 = ±2

√

−S2r

S1r

(3.51)

give the amplitude of the solution α = 1
2
Aeiθ, with A2,3 corresponding to the bifurcation

periodic orbits. Clearly A2,3 are real fixed points whenever

S2r

S1r

< 0, (3.52)

and the Jacobian of the right hand side of (3.50) evaluated at A2,3 is J |A2,3 = −2S2r, where

J(A) =
∂(

S1rA3

4
+S2rA)

∂A
. Clearly, a necessary condition for stability is to have S2r > 0, and for

instability S2r < 0. Thus, the system undergoes:

a. supercritical Hopf bifurcations when

S2r > 0, S1r < 0, (3.53)

b. subcritical Hopf bifurcations when

S2r < 0, S1r > 0. (3.54)

3.3 Discussion of Results

In this section, we consider the numerical results which follow from the analysis in the

previous sections. The fixed point Eq. (3.3) can be solved analytically for each fixed point
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xi using the program Mathematica, for i = 1, . . . , 4. Since all coefficients αi, for i = 1, . . . , 4

depend on the nine system parameters, we fix b1 = 0.08, b3 = −0.65, b5 = 0.1, c1 = 0.5,

c3 = 1, c5 = −0.07, ω = 0, and v = 0.01. The possibility of bounded chaotic solitons

depends on the system being fairly strongly dissipative near the fixed points (a0, 0, ψ0) in a

significant part of the phase space, with the strong dissipativity ruling out the appreciable

volume expansion associated with an attractor at infinity, as well as volume–conserving

quasiperiodic behavior. The trace of the Jacobian matrix for this sets of values at the fixed

point (a0, 0, ψ0), which gives the local logarithmic rate of change of (a, b, ψ) phase–space

volume V is 1
V

dv
dt

= J(a0, 0, ψ0) = −0.0062, so we may anticipate that the orbits may go to

an attractor at infinity, since the dissipation is weak.

The four fixed points can be analytically found as a function of only one parameter, in

our case we chose ǫ as being the free parameter. By choosing “the right fixed point”, the

Hopf curve α1α2 − α3 = 0 may be solved numerically for ǫ, which gives ǫ0 = −0.0000807.

The idea is to find the “right” ǫ which will give rise to the condition for Hopf bifurcation,

(i.e. α1 > 0, α2 > 0, α3 > 0 and α1α2 − α3 < 0).

We obtain α1 = 0.006, α2 = 0.001, α3 = 0.0001 and α1α2 − α3 = −1.01 10−6 for an

ǫ = −0.008, i.e. ǫ < ǫ0.

Now we will analyze the multiple scales method to construct the analytical approxi-

mations for the periodic orbits arising through the Hopf bifurcations of the fixed point.

The delay parameter ǫ (or the bifurcation parameter) is ordered as ǫ = ǫ0 + δ2ǫ2, where

ǫ0 = −0.0000807, and ǫ2 = −0.1. This method allows the influence from the nonlinear terms
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and the control parameter to occur at the same order. For the system parameters chosen

above, at the fixed points, we get (a0, 0, ψ0) = (0.0121663, 0,−0.00514).

From (3.35) and by the method presented in Section 3.1, the final equation for the

evolution coefficients in the linear solutions, on the slow second–order time scale is

∂α(Z1, Z2)

∂Z2

= S1α
2(Z1, Z2)β(Z1, Z2) + S2α(Z1, Z2), (3.55)

where S1 = −3235.55 + 295.279i and S2 = 297.074 − 32.26i. Since S2r = Re(S2) > 0, and

S1r = Re(S1) < 0, then this situation will correspond to a supercritical Hopf bifurcation.

Figs. 3.1–3.3 show the time behaviors of a(z), b(z), and ψ(z) for ǫ = −0.00008 (the

supercritical regime). Note that, as anticipated from before, there is a stable limit cycle

attractor at ǫ, the solution remains positive and bounded while it stays periodic.

Figure 3.1: Stable periodic oscillations on the limit cycle a(z) vs. z

Clearly, similar stable periodic solutions may be obtained for many other parameter sets.

For each case, the overall solution A(x, t) of the CGLE is, via (3.10), a quasiperiodic solution.
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Figure 3.2: b(z) = az vs. z

Figure 3.3: ψ(z) = φz vs. z

One may also use the above approach to both explain, and extend, the numerical treat-

ment by Brusch et al. [5, 6] of the periodic traveling waves of the CGLE using the bifurcation

software AUTO [31]. However, the solutions in Brusch et al. do not appear to be clearly

correlated to the dissipative solitons of the CGLE in Akhmediev at al [26]. Hence, we shall

move on next to briefly consider possible generalizations of the above treatment.
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CHAPTER FOUR: REMARKS ON GENERALIZED HOPF
BIFURCATIONS AND EMERGENCE OF GLOBAL

STRUCTURE

One may pursue the line of inquiry based on the traveling waves or spatial ODEs even further

to track the emergence of global structure. We have done preliminary work along these lines

which is outlined in this chapter. However, although there is well–established roadmap

and it has been implemented in detail for the well–known Continuous Stirred Tank Reactor

System [27, 28], we are not convinced of its relevance to the actual numerical simulations of

dissipative solitons. Hence, we present it here as a possible future direction before moving

into fully spatiotemporal approaches in the subsequent chapters.

For completeness, let us first consider more degenerate cases where more than one root

of the Jacobian is non–hyperbolic. In such cases the non–hyperbolic eigenvalues of the Ja-

cobian matrix, may consist of either:

(a) a double zero: λ1,2 = 0, λ3 ∈ ℜ

(b) one zero and a complex conjugate pair:λ1 = 0, λ2 = λ̄3

(c) a triple zero: λ1,2,3 = 0
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For the above situations, we have the following sub–cases of the so–called “degenerate

Hopf” (H1) bifurcation. Each sub–case is given a name:

F1 : λ1,2 = 0, 0 (4.1)

F2 : λ1,2,3 = ±iω0, 0 (4.2)

G1 : λ1,2,3 = 0, 0, 0 (4.3)

In these cases, [28, 32, 33, 34, 35, 36], these (H1) bifurcations may lead to global structure

including homoclinic orbits, invariant tori, and period doubling to chaos at the (H1) points.

One may also work perturbatively [32] near these (H1) points as done by Keener for the

well–known Continuous Stirred Tank Reactor problem.

Two other degenerate/generalized Hopf bifurcation scenarios are possible. As seen in

Chapter 3 (3.50), the normal form for the Hopf bifurcation may be written as

ṙ = r
[

α(µ) + c1(µ)r2 + c2(µ)r4 + ...
]

(4.4)

θ̇ = ω0 +O(µ, r2) (4.5)

where we have made the identification A → r, S1r/4 → c1, S2r → α, and higher order

nonlinear terms are included.

The first kind of possible degeneracy (the (H2) kind) occurs if

α = α′ = ... = α(k) = 0

α(k+1) 6= 0. (4.6)

This is the so–called kth order (H2) degeneracy and it gives rise to multiple Hopf points

and multiple periodic orbits. The resulting structure is thus similar to that resulting from
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a regular Hopf bifurcation, and much less complex than the structure produced by (H1)

bifurcation.

A second possible degeneracy in the normal form (4.4) corresponds to

c1 = c2 = ... = cm = 0

cm+1 6= 0. (4.7)

This so–called mth order (H3) degeneracy results in isolated branches of periodic solutions

unconnected to the main branch.

When the kth order (H2) degeneracy and the mth order (H3) degeneracy occur simulta-

neously, the normal form (4.4) may be rescaled to the form:

ṙ = r
[

r2m+2 + ...± µk+1
]

(4.8)

This is the so–called Hmk degeneracy.

In the case of the (H2) degeneracy, the complex conjugate eigenvalues ±iω at the Hopf

point cross the imaginary axis tangentially leading, after additional analysis, to multiple

periodic orbits.

For (H3) degeneracy, one may obtain isolated branches (isolas) of periodic orbits uncon-

nected to the main branch.

However, of greatest interest are the (H1) bifurcations where the Jacobian has more than

one non–hyperbolic eigenvalue and global structure emerges.

As mentioned, we have investigated these in preliminary fashion. However, the connec-

tions to the actual bifurcations of dissipative solitons are hard to see, and this approach
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appears to be of dubious value. Hence, we shall now change track and switch to fully spa-

tiotemporal approaches for the remainder of this dissertation.
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CHAPTER FIVE: THE GENERALIZED VARIATIONAL
FORMULATION

In this chapter, we develop a general variational formulation to address four of the five

classes of dissipative solitons, viz. the pulsating, creeping, snake, and chaotic solitons on all

parameter ranges. As mentioned in Chapter 1 in general terms, we shall need to generalize

previous variational approaches in several crucial ways.

First, the starting formulation of the Lagrangian for dissipative NLPDEs is relatively of

recent vintage [30] and neither widely known or widely explored. We are grateful to David

Kaup for digging into his encyclopedic body of work and pointing us to this. An alternative,

complex formulation of the Lagrangian for dissipative NLPDEs has been recently employed

by Skarka [37] to investigate conventional stationary solitons only. We are also in touch with

Vladimir Skarka in order to obtain a write–up on this other formulation.

This chapter is organized as follows. Section 5.1 details the recent variational formulation

for dissipative systems, as well as the novel generalized trial functions to be employed in

modeling the pulsating solitary waves. Section 5.2 outlines the framework of investigation

of the pulsating and snake solitons. Periodic evolution of the trial function parameters on

stable periodic attractors resulting from supercritical Hopf bifurcations, when substituted

back into the trial function, yield pulsating solitary waves. Within this framework, we also

comprehensively explore:

(a) the cascade of period doubling bifurcations observed in the simulations of the CGLE,

and
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(b) the effect of the various parameters in the CGLE on the shape (amplitude, width and

period) and domain of existence of the pulsating solitary waves. In Section 5.3 we use

the method of multiple scales to construct analytical approximations for the periodic orbits

arising through Hopf bifurcation of the fixed point of the Euler–Lagrange equations (5.14) or

(5.18). Sections 5.4 and 5.5 provide numerical work for the pulsating and snakes solitons. In

Section 5.6 we elucidate the new mechanism responsible for the various classes of pulsating

solitary wave solutions in dissipative systems, viz. the possibility of Hopf bifurcations. This

also explains the absence of pulsating solitary waves in Hamiltonian and integrable systems.

5.1 The Generalized Variational Formulation

In this section we develop a general variational formulation to address the pulsating solitons

on all parameter ranges. As mentioned earlier, we shall need to generalize previous variational

approaches in several crucial ways.

First, the starting formulation of the Lagrangian for dissipative NLPDEs is relatively of

recent vintage [30] and neither widely known or widely explored. We are grateful to David

Kaup for digging into his encyclopedic body of work and pointing us to this. An alternative,

complex formulation of the Lagrangian for dissipative NLPDEs has been recently employed

by Skarka [37] to investigate conventional stationary solitons only.
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5.1.1 Formulation

Proceeding as in [30], the Lagrangian for the cubic–quintic CGLE (2.1) may be written as

L = r∗
[

∂tA− ǫA− (b1 + ic1)∂
2
xA+ (b3 − ic3)|A|2A+ (b5 − ic5)|A|4A

]

+ r
[

∂tA
∗ − ǫA∗ − (b1 − ic1)∂

2
xA

∗ + (b3 + ic3)|A|2A∗ + (b5 + ic5)|A|4A∗
]

(5.1)

Here r is the usual auxiliary equation employed in [30] and it satisfies a perturbative evolution

equation dual to the CGLE with all non–Hamiltonian terms reversed in sign.

The second key assumption involves the trial functions A(t) and r(t) which have been

generalized considerably over conventional ones to keep the shape relatively simple and the

trial functions integrable. To this end, we choose single–humped trial functions of the form:

A(x, t) = A1(t)e
−σ1(t)2[x−φ1(t)]2eiα1(t) (5.2)

r(x, t) = e−σ2(t)2[x−φ2(t)]2eiα2(t) (5.3)

Here, the A1(t) is the amplitude, the σi(t)’s are the inverse widths, φi(t)’s are the positions

(with φi(t)/t being phase speeds, φ̇i(t) the speed) and αi(t)’s are the phases of the solitons.

All are allowed to vary arbitrarily in time. For now, the chirp terms are omitted for simplicity.
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Substituting (5.2) in (5.1) the effective or averaged Lagrangian is

LEFF =

∫

∞

−∞

Ldx = 2
√
π

{

− e
−

σ1(t)2σ2(t)2[φ1(t)−φ2(t)]2

σ1(t)2+σ2(t)2

[σ1(t)2 + σ2(t)2]
1
2

ǫA1(t) cos[α1(t) − α2(t)]

+
e
−

3σ1(t)2σ2(t)2[φ1(t)−φ2(t)]2

3σ1(t)2+σ2(t)2

[

3σ1(t)2 + σ2(t)2
] 1

2

A1(t)
3

[

b3 cos[α1(t) − α2(t)] + c3 sin[α1(t) − α2(t)]

]

+
e
−

5σ1(t)2σ2(t)2[φ1(t)−φ2(t)]2

5σ1(t)2+σ2(t)2

[

5σ1(t)2 + σ2(t)2
] 1

2

A1(t)
5

[

b5 cos[α1(t) − α2(t)] + c5 sin[α1(t) − α2(t)]

]

+
e
−

σ1(t)2σ2(t)2[φ1(t)−φ2(t)]2

σ1(t)2+σ2(t)2

[

σ1(t)2 + σ2(t)2
] 5

2

[

cos[α1(t) − α2(t)][σ1(t)
2 + σ2(t)

2]2Ȧ1(t)

+A1(t)

(

− 2σ1(t)
2σ2(t)

2
[

b1 cos[α1(t) − α2(t)] − c1 sin[α1(t) − α2(t)]
][

− σ2(t)
2

+σ1(t)
2[−1 + 2σ2(t)

2[φ1(t) − φ2(t)]
2]
]

− α̇1(t) sin[α1(t) − α2(t)][σ1(t)
2 + σ2(t)

2]2

−σ1(t)σ̇1(t) cos[α1(t) − α2(t)]
[

σ1(t)
2 + σ2(t)

2 + 2σ2(t)
4[φ1(t) − φ2(t)]

2
]

−2φ̇1(t)σ1(t)
2σ2(t)

2[φ1(t) − φ2(t)][σ1(t)
2 + σ2(t)

2] cos[α1(t) − α2(t)]

)]}

(5.4)

Since (5.4) reveals that only the relative phase α(t) = α1(t)− α2(t) of A(x, t) and r(x, t)

is relevant, we henceforth take

α1(t) = α(t)

α2(t) = 0 (5.5)

with no loss of generality.

Also, for algebraic tractability, we have found it necessary to assume

σ2(t) = mσ1(t) ≡ mσ(t). (5.6)
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While this ties the widths of the A(x, t) and r(x, t) fields together, the loss of generality is

acceptable since the field r(x, t) has no real physical significance.

For reasons of algebraic simplicity, we may also scale the positions according to:

φ1(t) = φ(t)

φ2(t) = 0, (5.7)

although this assumption may easily be relaxed. In fact, we may expect that it may be

necessary to relax (5.7) for certain classes of dissipative solitons.

Finally, for real solutions (note that the numerical results in [20, 26] pertain to |A(x, t)|),

we may make the additional assumption

α(t) = 0 (5.8)

when desired, although this too may be easily relaxed.

Hence, using all assumptions, (i.e. (5.5)–(5.7) in (5.4)), the effective Lagrangian (5.4)

may be written in a simpler but still general form

LEFF = 2
√
π

{

A1(t)

σ(t)

[

− e
−

m2σ(t)2φ(t)2

1+m2

[1 +m2]
1
2

ǫ cosα(t)

+
e
−

3m2σ(t)2φ(t)2

3+m2

[3 +m2]
1
2

A1(t)
2
[

b3 cosα(t) + c3 sinα(t)
]

+
e
−

5m2σ(t)2φ(t)2

5+m2

[5 +m2]
1
2

A1(t)
4
[

b5 cosα(t) + c5 sinα(t)
]

]

+
e
−

m2σ(t)2φ(t)2

1+m2

[1 +m2]
5
2σ(t)2

[

(1 +m2)2 cosα(t)σ(t)Ȧ1(t)

67



−A1(t)

(

4m4σ(t)5φ(t)2
[

b1 cosα(t) − c1 sinα(t)
]

+(1 +m2)2σ(t)α̇(t) sinα(t) + (1 +m2)σ̇(t) cosα(t)

−2m2(1 +m2)σ(t)3
[

b1 cosα(t) − c1 sinα(t)
]

+2m4σ̇(t)σ(t)2φ(t)2 + φ̇(t)φ(t) cosα(t)

)]}

(5.9)

5.2 Framework for Investigation of Euler–Lagrange Equations for Pulsating
and Snake Solitons

5.2.1 Variational Equations

Pulsating Solitons

For plain pulsating solitons, the speed is always zero [20, 26] and we take

φ1(t) = φ2(t) = 0. (5.10)

However, we need not, in general invoke (5.8), since the solution of (2.1) must be complex.

Therefore, the trial functions (5.2) and (5.3) become

A(x, t) = A1(t)e
−σ(t)2x2

eiα(t) (5.11)

r(x, t) = e−σ(t)2 (5.12)
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Substituting the last two equations into (5.9), and by choosing m = 1, the simplified effective

Lagrangian becomes

LEFF =

√
π

6σ(t)2

[

6A1(t)
3σ(t)

(

b3 cosα(t) + c3 sinα(t)
)

+
√

2

(

2
√

3A1(t)
5σ(t)

(

b5 cosα(t) + c5 sinα(t)
)

+6Ȧ1(t)σ(t) cosα(t) − 6A1(t)σ(t) sinα(t)
(

c1σ(t)2 + α̇(t)
)

−3A1(t) cosα(t)
(

σ̇(t) + 2ǫσ(t) − 2b1σ(t)3
)

)]

(5.13)

We are left with three parametersA1(t), σ(t) and α(t) in LEFF . Varying these parameters,

we obtain the following Euler–Lagrange equations

∂LEFF
∂ ⋆ (t)

− d

dt

(∂LEFF
∂⋆̇(t)

)

= 0,

where ⋆ refers to A1, σ, or α. Solving for ⋆̇(t) as a system of three ODEs,

Ȧ1(t) = f1[A1(t), σ(t), α(t)]

σ̇(t) = f2[A1(t), σ(t), α(t)]

α̇(t) = f3[A1(t), σ(t), α(t)], (5.14)

where the fi, i = 1, · · · , 3 are complicated nonlinear functions of the arguments and are

given in the Appendix.

Snake Solitons

For this class of solutions, we require the position φ1(t) (and phase–speed φ1(t)
t

) to vary.

Hence, as a first approach, we could use (5.6)–(5.8) (and relax (5.8) later if needed). Thus,

69



the Eqn. (5.2) becomes

A(x, t) = A1(t)e
−

4
φ(t)2

[x−φ(t)]2
eiα(t) (5.15)

r(x, t) = e
−

4
φ(t)2

x2

(5.16)

Substituting the last two into (5.9), and by choosing again m = 1 and σ(t) = 2
φ(t)

, the new

simplified effective Lagrangian becomes

LEFF =

√
π

12e
10
3 φ(t)

[

6e
1
3A1(t)

3φ(t)2
(

b3 cosα(t) + c3 sinα(t)
)

+2
√

6A1(t)
5φ(t)2

(

b5 cosα(t) + c5 sinα(t)
)

−3
√

2e−
4
3

(

− 2A1(t) sinα(t)
(

− 12c1 + φ(t)2 ˙α(t)
)

+ cosα(t)
(

− 2φ2(t)α̇(t) + A1(t)(24b1 + 2ǫφ2(t) + 3φ(t)φ̇(t))
)

)

]

(5.17)

As in the previous case, we are left with three parameters A1(t), φ(t) and α(t) in LEFF .

Varying these parameters (5.4), we obtain

∂LEFF
∂ ⋆ (t)

− d

dt

(∂LEFF
∂⋆̇(t)

)

= 0,

where ⋆ refers to A1, φ, or α. Solving for ⋆̇(t) as a system of three ODEs,

Ȧ1(t) = f4[A1(t), φ(t), α(t)]

φ̇(t) = f5[A1(t), φ(t), α(t)]

α̇(t) = f6[A1(t), φ(t), α(t)], (5.18)

where the fi, i = 4, · · · , 6 are complicated nonlinear functions of the arguments and are

given in the Appendix.
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Regimes of supercritical Hopf bifurcations identified by Multiple Scales analysis then yield

stable periodic solutions for σ(t), A1(t) and φ(t). The soliton (5.2) would now “snake” or

wiggle as its position varies periodically. Note that the amplitude |A(t)| varies periodically

as A1(t) varies, but there would be additional amplitude modulation due to the periodic

variation of φ(t) ≡ φ1(t).

5.2.2 Hopf Bifurcations

The general strategy for investigating pulsating solitons and their bifurcations within the

variational framework is as follows. The Euler–Lagrange equations (5.14) are treated in a

completely novel way. Rather than consider the stable fixed points which correspond to the

well–known stationary solitons or plain pulses, we use Hopf bifurcation theory to focus on

periodic attractors. Periodic evolution of the trial function parameters on stable periodic

attractors yield the pulsating soliton whose amplitude is non–stationary or time dependent.

We derive the conditions for the temporal Hopf bifurcations of the fixed points. The

conditions for supercritical temporal Hopf bifurcations, leading to stable periodic orbits of

A1(t), σ(t), and α(t) will be evaluated using the method of Multiple Scales in Section 4.

These are the conditions or parameter regimes where exhibit stable periodic oscillations,

and hence stable pulsating solitons will exist within our variational formulation. Note that,

as is easy to verify numerically, periodic oscillations of A1(t), σ(t), and α(t), correspond to

a spatiotemporal pulsating soliton structure of the |A(x, t)| given by (5.2).
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The fixed points of (5.14) are given by a complicated system of transcendental equations.

These are solved numerically to obtain results for each particular case.

For a typical fixed point, the characteristic polynomial of the Jacobian matrix of a fixed

point of (5.14) may be expressed as

λ3 + δ1λ
2 + δ2λ+ δ3 = 0 (5.19)

where δi with i = 1, . . . , 3 depend on the system parameters and the fixed points. Since

these are extremely involved, we omit the actual expressions, and evaluate them numerically

where needed.

To be a stable fixed point within the linearized analysis, all the eigenvalues must have neg-

ative real parts. Using the Routh–Hurwitz criterion, the necessary and sufficient conditions

for (5.19) to have Re(λ1,2,3) < 0 are:

δ1 > 0, δ3 > 0, δ1δ2 − δ3 > 0. (5.20)

On the contrary, one may have the onset of instability of the plane wave solution occurring

in one of two ways. In the first, one root of (5.14) (or one eigenvalue of the Jacobian) becomes

non–hyperbolic by going through zero for

δ3 = 0. (5.21)

Eq. (5.21) is thus the condition for the onset of “static” instability of the plane wave.

Whether this bifurcation is a pitchfork or transcritical one, and its subcritical or supercritical

nature, may be readily determined by deriving an appropriate canonical system in the vicinity

of (5.21) using any of a variety of normal form or perturbation methods.
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One may also have the onset of dynamic instability (“flutter” in the language of Ap-

plied Mechanics) when a pair of eigenvalues of the Jacobian become purely imaginary. The

consequent Hopf bifurcation at

δ1δ2 − δ3 = 0 (5.22)

leads to the onset of periodic solutions of (5.14) (dynamic instability or “flutter”).

5.2.3 Effects of system parameters on shape of the Pulsating Soliton

Also, within the regimes of stable periodic solutions, we comprehensively investigate:

(a) the effects of the nonlinearity/dispersion/linear and nonlinear gain/loss spectral filtering

on the shape and structure of the pulsating solitons given by (5.2), and

(b) the period doubling sequences of the pulsating solitons given by (5.2) as the above system

parameters are varied.

To study the effects of system parameters on the shape and the stability of the Pulsating

Soliton, we integrate Eqns. (5.14), (5.18) numerically in Mathematica for different sets of

the various system parameters within the regime of stable periodic solutions. The resulting

periodic time series for A1(t), σ(t) and α(t) and are then simply inserted in (5.2) whose

spatiotemporal structure (|A(x, t)| versus x and t) may be plotted. As the various system

parameters within the stable regime are varied, the effects of the pulsating soliton amplitude,

width, and phase will be studied.

73



5.2.4 Investigation of period doubling

Pulsating solitons can exhibit more complicated behaviors as one of the parameters changes.

Simple pulsations can be transformed by period doubling and period quadrupling as the pa-

rameter changes further. This phenomena occurs due to the bifurcations at certain bound-

aries in the parameter space.

To study the period doubling bifurcation sequences of the pulsating solitons, we will

use the standard numerical diagnostics [38]. In other words, a stable pulsating soliton will

be constructed as above for a set of parameters in the stable regime. One parameter (the

“distinguished bifurcation parameter”) will then be varied and the effect on the periodic

orbits for A1(t), σ(t) and α(t) will be studied. If these period double (or subharmonics

appear in the power spectral density [38]), note that this would result in an approximate

temporal period doubling of |A(t)| given by (5.2). This is precisely what is observed in the

numerical simulations of Akhmediev et al [20], as we can see in Figs. 5.1 and 5.2. In his

simulations, as b3 is varied the plane pulsating soliton experienced almost period doubling.

Further varying of b3 produced almost period quadrupling.

In the next section we shall implement the above procedure and also will make detailed

comparisons between our work that of Akhmediev et al. [20, 26].

74



Figure 5.1: Plain pulsating soliton that shows period doubling, b3 = −0.785

Figure 5.2: Plain pulsating soliton that shows period quadrupling, b3 = −0.793

5.3 Stability Analysis of Periodic Orbits

In this section we will use the method of multiple scales to construct analytical approxi-

mations for the periodic orbits arising through Hopf bifurcation of the fixed point of the

Euler–Lagrange equations (5.14). For the systems of differential equations given by (5.14),

the limit cycle is determined by expanding the amplitude A1(t), the inverse width σ(t), and

phase α(t), using progressively slower spatial scales. In the standard way, we write the var-

ious or multiple scales as z = Z0, Z1 = δZ0, Z2 = δ2Z0, . . ., where δ is the usual multiple

scales expansion parameter. We shall expand in powers of δ, to separate the various scales,
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and then set δ = 1 at the end in the usual way. We will choose the parameter b3, which

stands for cubic gain when negative, as the control or distinguished bifurcation parameter.

The expansion takes the form

A1 = A11(Z0, Z1, Z2) + δA12(Z0, Z1, Z2) + δ2A13(Z0, Z1, Z2) . . . , (5.23)

σ = σ1(Z0, Z1, Z2) + δσ2(Z0, Z1, Z2) + δ2σ3(Z0, Z1, Z2) . . . , (5.24)

α = α1(Z0, Z1, Z2) + δα2(Z0, Z1, Z2) + δ2α3(Z0, Z1, Z2) . . . . (5.25)

Using the chain rule, the spatial derivative becomes

d

dZ
= D0 + δD1 + δ2D2 + . . . , (5.26)

where Dn = ∂/∂Zn. The delay parameter b3 is ordered as

b3 = b30 + δ2b32, (5.27)

where b30 is the critical value such that (5.20) is not satisfied, (i.e. b30 is a solution of (5.22)).

This is standard for this method [1], as it allows the influence from the nonlinear terms and

the control parameter to occur at the same order. Using (5.23)–(5.27) in (5.14) and equating

like powers of δ yields equations at O(δi) of the form:

d

dZ0

~xi +

















f1v f2v f3v

f1w f2w f3w

f1z f2z f3z

















~xi = ~Si,j (5.28)
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where, i = 1, . . . , 3, represents the order, and j = 1, . . . , 3 represents the equations, and Si,j

is the source or inhomogeneous term for the jth equation at O(δi),

~xi =

















A1i(Z0, Z1, Z2)

σi(Z0, Z1, Z2)

αi(Z0, Z1, Z2)

















.

Here,
















f1v f2v f3v

f1w f2w f3w

f1z f2z f3z

















= J
[∂f1, ∂f2, ∂f3

∂A1, ∂σ, ∂α

]

(5.29)

where J is the Jacobian matrix of (5.14), numerically evaluated at the fixed points. For all

orders, the structure of the equations is the same, only the source terms Si,j are different,

and they are represented below order by order.

O(δ1) :

S1,j = 0 (5.30)

O(δ2) :

S2,1 =
1

2
(f1vvA

2
11 + f1wwσ

2
1 + f1zzα

2
1) (5.31)

+ f1vwA11σ1 + f1vzA11α1 + f1wzσ1α1 − 2D1A11

S2,2 =
1

2
(f2vvA

2
11 + f2wwσ

2
1 + f2zzα

2
1) (5.32)

+ f2vwA11σ1 + f2vzA11α1 + f2wzσ1α1 − 2D1σ1
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S2,3 =
1

2
(f3vvA

2
11 + f3wwσ

2
1 + f3zzα

2
1) (5.33)

+ f1vwA31σ1 + f3vzA11α1 + f3wzσ1α1 − 2D1α1

O(δ3) :

S3,1 =
1

6
(f1vvvA

3
11 + f1wwwσ

3
1 + f1zzzα

3
1) (5.34)

+
1

2
(f1vvwA

2
11σ1 + f1vvzA

2
11α1 + f1wwzσ

2
1α1 + f1vzzA11α

2
1 + f1wzzσ1α

2
1 + f1vwwA11σ

2
1)

+ g1vA11 + g1wσ1 + g1zα1 + f1vvA11A12 + f1wwσ1σ2 + f1zzα1α2

+ f1vz(A11α2 + A12α1) + f1vw(A11σ2 + A12σ1) + f1wz(σ1α2 + σ2α1)

+ f1wzA11σ1α1 −D2A11 −D1A12

S3,2 =
1

6
(f2vvvA

3
11 + f2wwwσ

3
1 + f2zzzα

3
1) (5.35)

+
1

2
(f2vvwA

2
11σ1 + f2vvzA

2
11α1 + f2wwzσ

2
1α1 + f2vzzA11α

2
1 + f2wzzσ1α

2
1 + f2vwwA11σ

2
1)

+ g2vA11 + g2wσ1 + g2zα1 + f2vvA11A12 + f2wwσ1σ2 + f2zzα1α2

+ f2vz(A11α2 + A12α1) + f2vw(A11σ2 + A12σ1) + f2wz(σ1α2 + σ2α1)

+ f2wzA11σ1α1 −D2σ1 −D1σ2

S3,3 =
1

6
(f3vvvA

3
11 + f3wwwσ

3
1 + f3zzzα

3
1) (5.36)

+
1

2
(f3vvwA

2
11σ1 + f3vvzA

2
11α1 + f3wwzσ

2
1α1 + f3vzzA11α

2
1 + f3wzzσ1α

2
1 + f3vwwA11σ

2
1)

+ g3vA11 + g1wσ1 + g3zα1 + f3vvA11A12 + f3wwσ1σ2 + f3zzα1α2

+ f3vz(A11α2 + A12α1) + f3vw(A11σ2 + A12σ1) + f3wz(σ1α2 + σ2α1)

+ f3wzA11σ1α1 −D2α1 −D1α2
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Here, the gi functions are obtained by using (5.27) in fi as this variation will introduce

additional terms of higher order. i.e. fi → fi + δ2gi. So the new fi will contain b30 terms

and represents the fact that we are situated on the Hopf bifurcation curve, while gis contain

b32 terms, and shows how far we are from the curve.

Now we will proceed to solve (5.28) order by order. Since the sources for the first order

system are identically zero, we may assume the first order solution of (5.28) to be

~x1 =

















β1

γ1

η1

















e−iω0Z0 + c.c., (5.37)

and substituting back this solution into (5.28), we obtain the eigenvalue problem which

gives the eigenvalue ω0, and corresponding eigenvector ~x1. By looking at the characteristic

polynomial of the Jacobian matrix of (5.19) we obtain that

δ2 = ω2
0 = −f1wf2v + f1vf2w − f1zf3v + f1vf3z + f2wf3z. (5.38)

Hence, the first order solution of (5.28), ~x1 can be written as

A11 = (a+ ib)θ(Z1, Z2)e
iω0Z0 + (a− ib)θ̄(Z1, Z2)e

−iω0Z0 (5.39)

σ1 = (c+ id)θ(Z1, Z2)e
iω0Z0 + (c− id)θ̄(Z1, Z2)e

−iω0Z0 (5.40)

α1 = θ(Z1, Z2)e
iω0Z0 + θ̄(Z1, Z2)e

−iω0Z0 , (5.41)

where η1 is taken to be 1, β1 ≡ a+ ib, and γ1 ≡ c + id. Now, since the first order solutions

(5.39)–(5.41) are known, the second order sources S2,j may be evaluated via (5.31)–(5.33).
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In the standard way, these take the form

~S2,j =

















S
(0)
2,1

S
(0)
2,2

S
(0)
2,3

















+

















S
(1)
2,1

S
(1)
2,2

S
(1)
2,3

















eiω0Z0 +

















S
(2)
2,1

S
(2)
2,2

S
(2)
2,3

















e2iω0Z0 + c.c., (5.42)

Setting the coefficients of the secular first harmonic or eiω0Z0 terms (which are the solutions

of the homogeneous equation) to zero, i.e. ~S
(1)
2,j = ~0 yields

D1θ =
∂θ

∂Z1

= 0 (5.43)

D1θ̄ =
∂θ̄

∂Z1

= 0.

Using (5.43), (5.39)–(5.42), and the second order sources (5.42), and by assuming a second

order particluar solution of (5.28) of the type

~x2 =

















A
(0)
12

σ
(0)
2

α
(0)
2

















+

















A
(2)
12

σ
(2)
2

α
(2)
2

















e2iω0Z0 + c.c., (5.44)

we can solve the system (5.28) by elementary linear algebra for the unknowns A
(0)
12 , σ

(0)
2 , and

α
(0)
2 , by looking at the homogeneous system, and for the unknowns A

(2)
12 , σ

(2)
2 , and α

(2)
2 , by

looking at the inhomogeneous system (5.28). Using the full second order solution ~x2, which

includes the DC terms and the 2nd harmonic terms, and the previously found first order

solution ~x1, we can find the third order sources via (5.34)–(5.36). By writing the third order

sources as
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~S3,j =

















S
(0)
3,1

S
(0)
3,2

S
(0)
3,3

















+

















S
(1)
3,1

S
(1)
3,2

S
(1)
3,3

















eiω0Z0 +

















S
(2)
3,1

S
(2)
3,2

S
(2)
3,3

















e2iω0Z0 +

















S
(3)
3,1

S
(3)
3,2

S
(3)
3,3

















e3iω0Z0 + c.c., (5.45)

we can find the coefficient of the secular terms eiω0Z0 terms, i.e. ~S
(1)
3,j . Now, the evolution

equation can be found by solving (5.46).

















f1v + iω0 f2v f3v

f1w f2w + iω0 f3w

f1z f2z f3z + iω0

















~x3 = ~S
(1)
3,j (5.46)

This system can be written in the compact form

(A − λI)~x3 = ~S
(1)
3,j , (5.47)

where λ = ±iω0 are the eigenvalues of A. By the Fredholm alternative, (5.47) has solution iff

~S
(1)
3,j ∈ Range(A−λI). The final evolution equation for the coefficients in the linear solutions

of (5.28) my be obtained more directly [38] using Cramer’s rule as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S
(1)
3,1 f2v f3v

S
(1)
3,2 f2w + iω0 f3w

S
(1)
3,3 f2z f3z + iω0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (5.48)

From (5.48), we have the evolution equation on the slow second order Z2 scale

∂θ

∂Z2

= S1θ
2θ̄ + S2θ. (5.49)
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Writing θ = 1
2
Aeiζ and separating (5.49) into real and imaginary parts, yields

∂A

∂Z2

=
S1rA

3

4
+ S2rA, (5.50)

where S1r and S2r represent the real parts of S1 and S2 respectively. In the usual way, the

fixed points of (5.48), (A1, A2,3) where

A1 = 0,

A2,3 = ±2

√

−S2r

S1r

(5.51)

give the amplitude of the solution θ = 1
2
Aeiζ , with A2,3 corresponding to the bifurcation

periodic orbits. Clearly A2,3 are real fixed points whenever

S2r

S1r

< 0, (5.52)

and the Jacobian of the right hand side of (5.52) evaluated at A2,3 is J |A2,3 = −2S2r, where

J(A) =
∂(

S1rA3

4
+S2rA)

∂A
. Clearly, a necessary condition for stability is to have S2r > 0, and for

instability S2r < 0. Thus, the system undergoes:

(a) supercritical Hopf bifurcations when

S2r > 0, S1r < 0, (5.53)

(b) subcritical Hopf bifurcations when

S2r < 0, S1r > 0. (5.54)

We will use (5.53) next to identify regimes of supercritical bifurcations where the solutions

of the Euler–Lagrange equations (5.14) or (5.18) for pulsating or snake solitons will result in
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oscillations of A1(t), σ(t) or φ(t) and α(t) that when substituted into trial function (5.2) or

(5.15) will lead to pulsating or snake solitary wave solitons.

5.4 Results for the General Plane Pulsating Soliton

An example of a plain pulsating soliton, obtained by us via independent simulations on (2.1),

is shown in Fig. 5.3 using the trial functions (5.11) and (5.12). It has a different shape at

each time t, since it evolves, but it recovers its exact initial shape after a period. To derive

Figure 5.3: Plain pulsating soliton for b3 = −0.66 and ǫ = −0.1

the conditions for occurrence of stable periodic orbits of A1(t), σ(t), and α(t), we proceed

as follows.

First, we fix a set of system parameters b1 = 0.08, b5 = 0.1, c1 = 0.5, c3 = 1, c5 = −0.1.

Then, we solve numerically the system of transcendental equations (5.14), which are the

equations of the fixed points. By the Ruth–Hurwitz conditions, the Hopf curve is defined as
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δ1δ2 − δ3 = 0. This condition, along with the equations of the fixed points leads to onset of

periodic solutions of (5.14) as we will see next.

On the Hopf bifurcation curve we obtain that b3 = −0.216825, and ǫ = −0.345481, while

the fixed points are A1(0) = 0.954712, σ(0) = 0.917093, and α(0) = −0.181274. Using these

values of b3 and ǫ , we integrate numerically the systems of three ODEs (5.14), using as

initial conditions the three values of the fixed points. Hopf bifurcations occur in this system

leading to periodic orbits.

Next, we may plot the time series of the periodic orbit for the amplitude A1(t), and,

as expected, we noticed that the amplitude was very small, since it is proportional to the

square root of the distance from the Hopf curve.

To construct pulsating solitons with amplitudes large enough, we had to move away from

the Hopf curve, as much as possible, but at the same time to be sure not to be outside of

the parameters ranges for the existence of the pulsating soliton. That could be achieved by

varying one or more of the system parameters. First, we varied ǫ slowly away from the Hopf

curve. Repeating the above procedure to construct a plane pulsating soliton, we noticed

that the pulsating soliton still had very small amplitudes A1(t), of magnitude only of 10−4.

Therefore, we decided to vary another parameter, b3, which stands for the cubic gain when

negative. We found that the domain of existence for the pulsating soliton as a function of b3

was [−0.2531943,−0.1424], passing through the Hopf curve value of b3 = −0.216825. Within

this range, we varied b3, and studied the effects on the shape and the stability, as well as

the various bifurcations that lead potentially to period doubling and quadrupling. For the

84



largest value of b3, i.e. b3 = −0.1424, we numerically integrate in Mathematica the three

differential equations (5.14), and we plot the periodic orbit, which is shown in Fig. 5.4.
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Figure 5.4: The periodic orbit for b3 = −0.1424

The resulting periodic time series for A1(t), σ(t), and α(t) from Fig. 5.5 are then simply

inserted in (5.11) whose spatiotemporal structure (|A(x, t)| or phase A(x, t) versus x and t)

is plotted in Fig. 5.6. As the various system parameters c1, c3, c5, b1, b5 within the stable

regime are varied, the effects of the pulsating soliton amplitude, width, position, phase speed

(and, less importantly, phase) may also be studied, and this is discussed subsequently.

Repeating the above, we also show the orbit and the plane pulsating soliton for the smallest

value of b3 = −0.2531943 in Figs. 5.7 and 5.8.

Next, we consider the detailed effects of varying the parameter b3. For the chosen values of

the system parameters of b1 = 0.08, b5 = 0.1, c1 = 0.5, c3 = 1, c5 = −0.1, and ǫ = −0.345481,
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Figure 5.5: Periodic time series for b3 = −0.1424
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Figure 5.6: Plane pulsating soliton for b3 = −0.1424

with the fixed points A1(0) = 0.954712, σ(0) = 0.917093, and α(0) = −0.181274, from (5.14)

and (5.22), the Hopf bifurcation occurs at

b3Hopf = −0.216825 (5.55)
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Figure 5.7: The periodic orbit for b3 = −0.2531943
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Figure 5.8: Plane pulsating soliton for b3 = −0.2531943
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First, let us consider values of b3 greater that b3Hopf . There is a stable and robust periodic

orbit to this side which becomes larger and deforms as b3 is increased up to −0.1424. A

representative periodic orbit is shown in Fig. 5.4.

Next, moving to values smaller than b3Hopf , we see a clean, periodic orbit which slowly

grows in size as b3 is made more negative. The periodic orbit, time series, and solitary waves

are qualitatively similar to those for b3 > b3Hopf .

However, more interesting dynamics is seen as b3 is decreased further. The periodic orbit

goes unstable via a very rapid, complete cascade of period–doubling bifurcations between

b3 = −0.25, and b3 = −0.2516. In Fig. 5.9 we show the period doubled orbit for b3 =

−0.2516. The orbit at b3 = −0.2531943 after many more period doublings is shown in Fig.

5.7. The corresponding solitary wave solution is shown in Fig. 5.8. Notice that this feature

agrees with the sequence of period doublings for pulsating solitons seen by Akhmediev et

al. [20]. Note also that one may track the complete cascade of period doublings using

software such AUTO or DERPER, or using the schemes of Holodniok and Kubicek [39].

Next, we shall consider the effect of all the various parameters in the CGLE (2.1) on the

shape (amplitude, width, period) and stability of the pulsating solitary wave. This is a key

feature of interest that was repeatedly mentioned by many speakers in the multi–day session

on Dissipative Solitons at the 4th IMACS Conference on Nonlinear Waves held in Athens,

Georgia in April 2005, as there are no existing theoretical guidelines or predictions about

this at all.
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Figure 5.9: The periodic orbit for b3 = −0.2516

In considering the parameter effects on the solitary wave shape and period, note that the

wave is a spatially coherent structure (or a “collective coordinate” given by the trial function)

whose parameters oscillate in time. Hence, the temporal period of the pulsating soliton is

the same as the period T of the oscillations of A1(t), σ(t), and α(t) on their limit cycle. As

for the peak amplitude and peak width of the pulsating wave, these are determined by the

peak amplitude A1p of A1(t), and the reciprocal of the peak amplitude σp of σ(t) respectively,

i.e. at any time t when the amplitude is maximum, the width will be minimum, and vice

versa.

Keeping the above in mind, we vary the parameters of the CGLE in turn and we observe

the resulting effects on A1p (the peak amplitude), σp (the inverse width), and T (the temporal

period) of the pulsating soliton:
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(i) For increased b1, the values of A1p, σp, and T all increase.

(ii) Increasing b5 augments all of A1p, σp, and T .

(iii) Raising c1 increases A1p, σp, and T .

(iv) Incrementing c3 decreases all of A1p, σp, and T .

(v) Augmenting c5 causes a decrease in A1p, σp, and T .

(vi) Raising ǫ causes A1p, σp, and T to fall. These results can be seen in Figs.5.10,5.11.

The results in cases (a),(c),(e) of Figs. 5.10,5.11 are to be compared with the plane

pulsating soliton obtained by numerical simulations from Fig. 5.3. The results in cases

(b),(d),(f) of Figs. 5.10,5.11 are to be compared with the plane pulsating soliton obtained

by variational approximation from Fig. 5.8. The above constitute our detailed predictions

of the various parameters in the CGLE on the amplitude, inverse width, and temporal width

of the pulsating solitons. We have verified that each set of predictions (a)–(f) above agree

when the corresponding parameter is varied in the solitary wave simulation for the full PDE

shown in Fig. 5.3. Note also that A1(t) and σ(t) are always in phase, so that A1p and σp

occur simultaneously. Thus, the pulsating solitons are tallest where they have least width.

This is completely consistent with our simulation in Fig. 5.3, as well as those in [20, 21].

5.5 Results for the Snake Soliton

An example of a snake soliton, obtained by us via independent simulations on (2.1), is shown

in Fig. 5.12 using the trial functions (5.15) and (5.16). The soliton would now “snake” or
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wiggle as its position varies periodically. Note that the amplitude |A(t)| varies periodically

as A1(t) varies, but there would be additional amplitude modulation due to the periodic

variation of φ(t).

To derive the conditions for occurrence of stable periodic orbits of A1(t), φ(t), and α(t),

we proceed as follows. First, we fix a set of system parameters b1 = 0.08, b5 = 0.11, c1 = 0.5,

c3 = 1, c5 = −0.08. Then, we solve numerically the system of transcendental equations

(5.18), which are the equations of the fixed points. By the Ruth–Hurwitz conditions, the

Hopf curve is defined as δ1δ2 − δ3 = 0. This condition, along with the equations of the fixed

points leads to onset of periodic solutions of (5.18) as we will see next.

On the Hopf bifurcation curve we obtain that b3 = −1.89646, and ǫ = −0.297393, while

the fixed points are A1(0) = 0.583236, φ(0) = 1.05969, and α(0) = 0.185515. Using these

values of b3 and ǫ , we integrate numerically the systems of three ODEs (5.14), using as

initial conditions the three values of the fixed points. Hopf bifurcations occur in this system

leading to periodic orbits.

Next, we may plot the time series of the periodic orbit for the amplitude A1(t), and,

as expected, we noticed that the amplitude was very small, since it is proportional to the

square root of the distance from the Hopf curve.

To construct snake solitons with amplitudes large enough, we had to move away from

the Hopf curve, as much as possible, but at the same time to be sure not to be outside of

the parameters ranges for the existence of the pulsating soliton. That could be achieved

by varying one or more of the system parameters. For the value of b3 = −0.835, and
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ǫ = −0.1 we numerically integrate in Mathematica the three differential equations (5.18).

The resulting periodic time series for A1(t), φ(t), and α(t) are then simply inserted in (5.15)

whose spatiotemporal structure (|A(x, t)| or phase A(x, t) versus x and t) is plotted in Fig.

5.13. As the various system parameters c1, c3, c5, b1, b3, b5, and ǫ within the stable regime

are varied, the effects of the snake amplitude, position, width (and, less importantly, phase)

may also be studied, and this is discussed subsequently. Next, we shall consider the effect

of all the various parameters in the CGLE (2.1) on the shape (amplitude, position, phase,

period) and stability of the snake. As mentioned before, this is a key feature of interest that

was repeatedly mentioned by many speakers in the multi–day session on Dissipative Solitons

at the 4th IMACS Conference on Nonlinear Waves held in Athens, Georgia in April 2005, as

there are no existing theoretical guidelines or predictions about this at all.

In considering the parameter effects on snake shape and period, note that the wave is a

spatially coherent structure (or a “collective coordinate” given by the trial function) whose

parameters oscillate in time. Hence, the temporal period of the snake is the same as the

period T of the oscillations of A1(t), φ(t), and α(t) on their limit cycle. As for the peak

amplitude and peak position of the snake, these are determined by the peak amplitude A1p

of A1(t), and the peak position φp of φ(t) respectively. Notice that from (5.15) we can regard

the width and the amplitude of the snake as being inverse proportional with position φ(t) for

the snake i.e., at any time t when the amplitude is minimum, the width will be minimum, so

the position is maximum and vice versa. Threfore, maximum deflection from the horizontal

position x = const. is obtained when the position of the snake is maximum, and hence the
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width and amplitude are minimum. This can be clearly seen in Fig. 5.14. Keeping the

above in mind, we vary the parameters of the CGLE in turn and we observe the resulting

effects on A1p (the peak amplitude), φp (the position), and T (the temporal period) of the

snake soliton:

(vii) For increased b1, the values of A1p, φp, and T all increase.

(viii) Increasing b3 augments all of A1p, φp, and T .

(ix) Increasing b5 increases all of A1p, φp, and T .

(x) Raising c1 increases A1p, φp, but decreases T .

(xi) Incrementing c3 decreases all of A1p, φp, and T .

(xii) Augmenting c5 causes a decrease in A1p, φp, and increases T .

(xiii) Raising ǫ causes A1p, σp to rise, but T to fall.

An example of a snake soliton when we change ǫ is shown in Fig. 5.15. The above

constitute our detailed predictions of the various parameters in the CGLE on the amplitude,

position, and temporal width of the snake solitons. We have verified that each set of predic-

tions (g)–(m) above agree when the corresponding parameter is varied in the solitary wave

simulation for the full PDE shown in Fig. 5.12. Note also that A1(t) and φ(t) are always

in phase, so that A1p and φp occur simultaneously. Thus, the pulsating solitons are tallest

where they have most width. This is completely consistent with our simulation in Figure

5.12, as well as those in [20, 21].
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5.6 Nonexistence of Hopf Bifurcations in Hamiltonian Systems: Connections
to Pulsating Solitons

It is widely reported [21, 40] and generally accepted that Hamiltonian systems, as well as

integrable systems which are a subclass, do not admit pulsating solitary wave solutions. If

excited initially, pulsating solitons in Hamiltonian and integrable systems re–shape them-

selves and evolve into regular stationary waves. The only exceptions are pulsating structures

comprising nonlinear superpositions of stationary solitons in integrable systems [22].

In addition, the regimes of the pulsating solitons in the CGLE are very far from the

integrable nonlinear Schrödinger equation limit. This fact, and the great diversity of pulsat-

ing solitons in the CGLE, both indicate a new mechanism which is operative in dissipative

systems in the creation of these pulsating structures.

The primary point of this section is that Hopf bifurcations are the new mechanism re-

sponsible for the occurrence of these pulsating solitons in dissipative systems, and we shall

analyze both plain pulsating solitons and snakes via this mechanism. However, in order to

establish that Hopf bifurcations are indeed the operative mechanism creating the various

pulsating solitons in dissipative systems, we first proceed to prove their absence in Hamil-

tonian systems. The proof of the absence of Hopf bifurcations may possibly explain the

above–mentioned absence of pulsating solitons in Hamiltonian and integrable systems.
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For a Hamiltonian system with Hamiltonian H, the particular evolution equations may

be represented in canonical form as [41].

iΨζ =
δH

δΨ⋆

iΨ⋆
ζ = −δH

δΨ
. (5.56)

These may be further combined into

i~̇x = L∇~xH(~x) (5.57)

where ˙ denotes δ/δζ,

~x = [Ψ,Ψ⋆], (5.58)

I is the n× n unit matrix, and L∇ is the symplectic gradient of H(~x)

L =









0 I

−I 0









. (5.59)

Equation (5.57) follows from

i









Ψ̇

Ψ̇⋆









=









0 I

−I 0

















∇ΨH

∇Ψ⋆H









which is identical to (5.56).

The fixed (or equilibrium or critical ) points of (5.57) satisfy

∇~xH(~x) = 0, (5.60)

or equivalently

δH

δΨ⋆
= 0,

δH

δΨ
= 0.
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Using the standard representation

H =
1

2
〈Ψζ ,Ψζ〉 + V (Ψ) (5.61)

for the Hamiltonian, this implies

~∇ΨV = 0

or

δV

δΨ
= 0. (5.62)

At a fixed point ~x0 = [Ψ0,Ψ0
⋆], the Jacobian matrix of (5.57) is

J(~x0) = LH (5.63)

where

H ≡
[

δ2H

δxiδxj

]

~x0

=









V 0

0 I









(5.64)

from (5.60). Here

V =

[

δ2V

δΨiδΨj

]

~x0

(5.65)

Hence, we have

J(~x0) =









0 I

−I 0

















V 0

0 I









=









0 I

−V 0









(5.66)
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whose eigenvalues λ satisfy the characteristic equation

|V + λ2I| = 0 (5.67)

Since the matrix V is symmetric, its eigenvalues are real and the solutions λ of (5.67)

are thus either real or purely imaginary. Thus, as claimed earlier, Hopf bifurcations cannot

occur in Hamiltonian systems. The introduction of dissipation allows the occurrence of

Hopf bifurcation and, as we shall model in the remainder of this dissertation, introduces the

various pulsating solitary wave structures which occur in the CGLE.
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(a) Numerical simulations b1 = 0.2

-2
0

2x
0

5

10

15

t
0

0.25
0.5

0.75
ÈA@x,tDÈ

-2
0

2x

(b) Variational approximation b1 = 0.1

(c) Numerical simulations b5 = 0.11
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(d) Variational approximation b5 = 0.13

(e) Numerical simulations c1 = 0.6
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(f) Variational approximation c1 = 0.6

Figure 5.10: Predictions for the plane pulsating soliton cases i–iii
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(a) Numerical simulations c3 = 1.05
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(b) Variational approximation c3 = 1.05

(c) Numerical simulations c5 = −0.075
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(d) Variational approximation c5 = −0.08

(e) Numerical simulations ǫ = −0.08
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(f) Variational approximation ǫ = −0.06

Figure 5.11: Predictions for the plane pulsating soliton cases iv–vi
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Figure 5.12: Snake soliton for b3 = −0.835
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Figure 5.13: Snake soliton for b3 = −0.835, and ǫ = −0.1
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Figure 5.14: Snake soliton for b1 = 0.19
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Figure 5.15: Snake soliton for ǫ = −0.08
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CHAPTER SIX: PULSATING SOLITONS USING
HYPERBOLIC ANSATZ

The detailed modeling in Chapter 5 elucidates many numerically observed features of pul-

sating and snake solitons. The one unsatisfactory feature is the somewhat narrower peaks

our solitons exhibit in comparison with the plateau–like peaks of the numerical solitons. To

remedy this feature, we shall consider a different class of trial functions in this chapter.

6.1 Framework for Investigation of Euler–Lagrange Equations for Pulsating
Solitons

We choose hyperbolic trial functions of the form:

A(x, t) = A1(t) cosh−2 [σ(t)2x2]eiα(t) (6.1)

r(x, t) = eiσ(t)x (6.2)

This is motivated by the need for soliton shapes less steep than exponentials, as well as the

standard sech2 solitary waves in many systems. Substituting the last two equations into

(5.1), the effective Lagrangian becomes

LEFF =
π

36288 sinh(π/2)σ(t)2

[

36288A1(t) cosα(t)σ̇(t)
(

− 4 + π coth(π/2)
)

+σ(t)

(

51408A1(t)
3
(

b3 cosα(t) + c3 sinα(t)
)

+40885A1(t)
5
(

b5 cosα(t) + c5 sinα(t)
)

+ 72576 cosα(t)Ȧ1(t)

−72576A1(t)
(

cosα(t)
(

ǫ− b1σ(t)2
)

+ sinα(t)
(

c1σ(t)2 + α̇(t)
)

)

)]

(6.3)
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As in Chapetr 5, we are left with three parameters A1(t), σ(t) and α(t) in LEFF . Varying

these parameters, we obtain the following Euler–Lagrange equations

∂LEFF
∂ ⋆ (t)

− d

dt

(∂LEFF
∂⋆̇(t)

)

= 0,

where ⋆ refers to A1, σ, or α. Solving for ⋆̇(t) as a system of three ODEs,

Ȧ1(t) = f7[A1(t), σ(t), α(t)]

σ̇(t) = f8[A1(t), σ(t), α(t)]

α̇(t) = f9[A1(t), σ(t), α(t)], (6.4)

where the fi, i = 7, · · · , 9 are complicated nonlinear functions of the arguments and are

given in the Appendix.

To study the effects of system parameters on the shape and the stability of the Pulsating

Soliton, we integrate Eqns. (6.4) numerically in Mathematica for different sets of the various

system parameters within the regime of stable periodic solutions. The resulting periodic time

series for A1(t), σ(t) and α(t) and are then simply inserted in (6.2) whose spatiotemporal

structure (|A(x, t)| versus x and t) may be plotted. As the various system parameters within

the stable regime are varied, the effects of the pulsating soliton amplitude, width, and phase

will be studied.

We will use (5.53) next to identify regimes of supercritical bifurcations where the solutions

of the Euler–Lagrange equations (6.4) for the pulsating soliton will result in oscillations of

A1(t), σ(t), and α(t) that when substituted into trial function (6.2) will lead to pulsating

solitary wave solitons.
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6.2 Results for the Plane Pulsating Soliton

To derive the conditions for occurrence of stable periodic orbits of A1(t), σ(t), and α(t), we

proceed as follows.

First, we fix a set of system parameters b1 = 0.08, b5 = 0.1, c1 = 0.5, c3 = 1, c5 = −0.1.

Then, we solve numerically the system of transcendental equations (6.4), which are the

equations of the fixed points. By the Ruth–Hurwitz conditions, the Hopf curve is defined as

δ1δ2 − δ3 = 0. This condition, along with the equations of the fixed points leads to onset of

periodic solutions of (6.4) as we will see next.

On the Hopf bifurcation curve we obtain that b3 = 0.187269, and ǫ = −0.638362, while

the fixed points are A1(0) = 1.18061, σ(0) = 0.672925, and α(0) = −0.681909. Using these

values of b3 and ǫ , we integrate numerically the systems of three ODEs (6.4), using as initial

conditions the three values of the fixed points. Hopf bifurcations occur in this system leading

to periodic orbits.

Next, we may plot the time series of the periodic orbit for the amplitude A1(t), and,

as expected, we noticed that the amplitude was very small, since it is proportional to the

square root of the distance from the Hopf curve.

To construct pulsating solitons with amplitudes large enough, we had to move away from

the Hopf curve, as much as possible, but at the same time to be sure not to be outside of

the parameters ranges for the existence of the pulsating soliton. That could be achieved by

varying either ǫ or b3 slowly and away from the Hopf curve. We found that the domain of
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existence for the pulsating soliton as a function of b3 was [0.004, 0.5347], passing through

the Hopf curve value of b3 = 0.1872, and correspondingly, the domain by varying ǫ was

[−1.2148,−0.2074] passing through the Hopf curve value of ǫ = −0.6383. Within these

ranges, we varied b3 or ǫ and studied the effects on the shape and the stability, as well as

the various bifurcations that lead potentially to period doubling and quadrupling. For the

largest value of ǫ, i.e. ǫ = −0.2074, we numerically integrate in Mathematica the three

differential equations (6.4), and we plot the periodic orbit, which is shown in Fig. 6.1. The

resulting periodic time series for A1(t), σ(t), and α(t) from Fig. 6.2 are then simply inserted

in (6.1) whose spatiotemporal structure (|A(x, t)| versus x and t) is plotted in Fig. 6.3. Note

that the table–top structure in Fig. 6.3 is now much closer to the numerically observed

shapes. As the various system parameters c1, c3, c5, b1, b5 within the stable regime are

varied, the effects of the pulsating soliton amplitude, width, position, phase speed (and, less

importantly, phase) may also be studied, and this is discussed subsequently. Repeating the

above, we also show the orbit, time series and the plane pulsating soliton for the smallest

value of b3 = 0.003 in Figs. 6.4–6.6.

Next, we shall consider the effect of all the various parameters in the CGLE (2.1) on the

shape (amplitude, width, period) and stability of the pulsating solitary wave. This is a key

feature of interest that was repeatedly mentioned by many speakers in the multi–day session

on Dissipative Solitons at the 4th IMACS Conference on Nonlinear Waves held in Athens,

Georgia in April 2005, as there are no existing theoretical guidelines or predictions about

this at all.

105



0.8

1

1.2

1.4
Σ@tD

0.2

0.4

0.6
Α@tD

-0.6

-0.4

-0.2

A1@tD

0.8

1

1.2

1.4
Σ@tD

0.2

0.4

0.6
Α@tD

Figure 6.1: The periodic orbit for ǫ = −0.2074
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Figure 6.2: Periodic time series for ǫ = −0.2074

In considering the parameter effects on the solitary wave shape and period, note that the

wave is a spatially coherent structure (or a “collective coordinate” given by the trial function)

whose parameters oscillate in time. Hence, the temporal period of the pulsating soliton is

the same as the period T of the oscillations of A1(t), σ(t), and α(t) on their limit cycle. As

for the peak amplitude and peak width of the pulsating wave, these are determined by the

peak amplitude A1p of A1(t), and the reciprocal of the peak amplitude σp of σ(t) respectively,
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Figure 6.4: The periodic orbit for b3 = 0.003

i.e. at any time t when the amplitude is maximum, the width will be minimum, and vice

versa.

Keeping the above in mind, we vary the parameters of the CGLE in turn and we observe

the resulting effects on A1p (the peak amplitude), σp (the inverse width), and T (the temporal
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Figure 6.6: Plane pulsating soliton for b3 = 0.003

period) of the pulsating soliton:

(a) For increased b1, the values of A1p, σp, and T all increase.

(b) Increasing b5 augments all of A1p, σp, and T .

(c) Raising c1 increases A1p, σp, and T .

(d) Incrementing c3 decreases all of A1p, σp, and T .
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(e) Augmenting c5 causes a decrease in A1p, σp, and T .

(f) Raising ǫ causes A1p, σp, and T to fall.

The above constitute our detailed predictions of the various parameters in the CGLE

on the amplitude, inverse width, and temporal width of the pulsating solitons. We have

verified that each set of predictions (a)–(f) above agree when the corresponding parameter

is varied in the solitary wave simulation for the full PDE shown in Fig. 5.3. Note also that

A1(t) and σ(t) are always in phase, so that A1p and σp occur simultaneously. Thus, the

pulsating solitons are tallest where they have least width. This is completely consistent with

our simulation in Fig. 5.3, as well as those in [20, 21].
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CHAPTER SEVEN: CONCLUSIONS AND DISCUSSIONS

In conclusion, we have developed a comprehensive theoretical framework for analyzing the full

spatiotemporal structure of both pulsating and snake solitary waves in the complex, cubic–

quintic Ginzburg–Landau equation. This includes elucidating the mechanism operative in

creating these new classes of solitons in dissipative systems, as well as their absence in

Hamiltonian and integrable systems where only stationary solitons are observed to occur.

The specific theoretical modeling includes the use of a recent variational formulation

and significantly generalized trial function for the solitary waves solutions. In addition,

the resulting Euler–Lagrange equations are treated in an entirely different way by looking at

their stable periodic solutions (or limit cycles) resulting from supercritical Hopf bifurcations.

Oscillations of their trial function parameters on these limit cycles provide the pulsations

of the amplitude, width, and phase of the solitons. The model also allows for detailed

predictions regarding the other issue of central interest for the pulsating and snake solitons,

viz. the effect of each of the system parameters on the amplitude, width, period, and stability

of the solitary waves.

Also, given the generality of the theoretical framework developed in this dissertation, it

provides a platform for the detailed modeling of chaotic solitary waves as well. These will

be the focus of future work in this area. Other outstanding issues which remain are the

modeling of creeping and erupting solitons. These will clearly require additional features to

be built into our Lagrangian formulation.
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We will investigate the chaotical solitons within the same formulation as the snake by

looking for chaotic attractors. These may be investigated within the same formulation (5.15)

by looking for chaotic attractors of this system. In the standard way, we may look for chaotic

regimes of (5.18) by enforcing that:

a. all fixed points are unstable,

b. there are no stable periodic orbits; this is harder to achieve in general, but it is often

sufficient to choose system parameters to ensure:

i. no Hopf bifurcations or

ii. only subcritical Hopf bifurcations,

c. there are no attractors at infinity, or the solutions of (5.18) do not blow up. The

general way to accomplish this is by constructing a Lyapunov function, but, if this

proves intractable, an effective practical way is to choose parameters to make the

system strongly dissipative or volume contracting (Tr(J) ≪ 0) at all fixed points and

thus prevent exponential growth of the volume leading to solutions flying off to infinity.

Other ways in which chaotic regimes of A1(t), φ(t), and α(t) may result are:

a. a subcritical Hopf bifurcation,

b. a generalized (H1) Hopf bifurcation,

c. repeated period doubling, and
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d. bifurcations of periodic solutions.

Once all of the above are ensured, simple point, periodic, and infinite attractors for the

solutions of (5.18) are precluded. Thus, A1(t), φ(t) and α(t) must have complex (chaotic

or quasiperiodic) dynamics and this will translate, via (5.15), to a spatially localized soliton

with chaotic temporal dynamics.

Other outstanding issues which remain are the modeling of creeping and erupting solitons.

For the creeping soliton we may need invariants of Euler–Lagrange equations that must turn

out to be equal to φ/t in the trail functions. The constant speed condition φ̇(t) = v is

imposed in (5.18). Eliminating v in terms of α̇(t) and Ȧ1(t), supercritical Hopf bifurcations

yield periodic solutions for α(t) and A1(t). The creeping speed v may then be found self–

consistently using φ̇(t) = v, Ȧ1(t), and α̇(t) at any one time, and, via (5.15), the |A(x, t)|

would be a creeping soliton.

A mathematical framework for the erupting solitons incorporating the theory of Canards

into the above variational formulation is also under development.
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APPENDIX: LISTINGS OF CODE
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Using the program Mathematica we show the right hand side (f1, · · · , f9) of the Euler–

Lagrange equations (5.14), (5.18), (6.4) from Chapters 5 and 6.

We also show a notebook in which we explain how we found the pulsating soliton from

Section 5.4. Using the trial functions for the pulsating soliton explained in Section 5.2 first

we find the effective Lagrangian, (5.13). Then, we vary the effective Lagrangian with respect

to A1(t), σ(t) and α(t), and we solve the system of three ODEs (5.14). The right hand sides

f1, f2 and f3 are given above. We calculate the characteristic polynomial of the Jacobian

matrix, the coefficients δ1, δ2 and δ3 and the Hopf curve condition δ1δ2 − δ3 = 0 which will

depend on all system parameters and the time series. Assigning numerical values for five of

the system parameters, as explained in Section 5.4, we solve numerically the equations of the

fixed points on the Hopf curve. As explained before in Chapter 5, by varying one or more

of the system parameters, in this case b3, we numerically integrate (5.14) using as initial

conditions the values obtained by the find root method. The time series are then inserted

back in the ansatz and the pulsating soliton is shown in Fig. 5.6. The snakes are treated

in similar fashion using the same file but different ansatz and parameters, as explained in

Section 5.5.
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