
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2013

Numerical Simulations For The Flow Of Rocket Exhaust Through Numerical Simulations For The Flow Of Rocket Exhaust Through

A Granular Medium A Granular Medium

Kristina Kraakmo
University of Central Florida

 Part of the Mathematics Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation

Kraakmo, Kristina, "Numerical Simulations For The Flow Of Rocket Exhaust Through A Granular Medium"

(2013). Electronic Theses and Dissertations, 2004-2019. 2940.

https://stars.library.ucf.edu/etd/2940

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/174?utm_source=stars.library.ucf.edu%2Fetd%2F2940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/2940?utm_source=stars.library.ucf.edu%2Fetd%2F2940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

NUMERICAL SIMULATIONS FOR THE FLOW OF ROCKET EXHAUST THROUGH A

GRANULAR MEDIUM

by

KRISTINA KRAAKMO

B.S. University of Central Florida, 2009

A thesis submitted in partial fulfilment of the requirements

for the degree of Master of Science

in the Department of Mathematics

in the College of Sciences

at the University of Central Florida

Orlando, Florida

Fall Term

2013

Major Professor: Brian Moore

c© 2013 Kristina Kraakmo

ii

ABSTRACT

Physical lab experiments have shown that the pressure caused by an impinging jet on a granular bed

has the potential to form craters. This poses a danger to landing success and nearby spacecraft for

future rocket missions. Current numerical simulations for this process do not accurately reproduce

experimental results. Our goal is to produce improved simulations to more accurately and effi-

ciently model the changes in pressure as gas flows through a porous medium. A two-dimensional

model in space known as the nonlinear Porous Medium Equation as it is derived from Darcy’s law

is used. An Alternating-Direction Implicit (ADI) temporal scheme is presented and implemented

which reduces our multidimensional problem into a series of one-dimensional problems. We take

advantage of explicit approximations for the nonlinear terms using extrapolation formulas derived

from Taylor-series, which increases efficiency when compared to other common methods. We

couple our ADI temporal scheme with different spatial discretizations including a second-order

Finite Difference (FD) method, a fourth-order Orthogonal Spline Collocation (OSC) method, and

an N th-order Chebyshev Spectral method. Accuracy and runtime are compared among the three

methods for comparison in a linear analogue of our problem. We see the best results for accuracy

when using an ADI-Spectral method in the linear case, but discuss possibilities for increased effi-

ciency using an ADI-OSC scheme. Nonlinear results are presented using the ADI-Spectral method

and the ADI-FD method.

iii

ACKNOWLEDGMENTS

I would like to express my sincerest gratitude to my advisor Dr. Brian Moore for continuous

guidance and support through my journey here at UCF. His constant encouragement and advising

was essential to my accomplishments as a graduate student. I would like to thank Dr. Phil Metzger

for providing inspiration, collaboration, and experimental prowess which brought this project to

life. I also thank Dr. Brennan and Dr. Rollins for serving on my committee and for editing and

contributing suggestions for my research. I thank Brian Brennan and Whitney Keith for their large

contributions to this project and their support of my work. A special thanks is given to my peer

and friend Maria Strawn for her collaboration and assistance. Finally, thanks to my mother Ellen

Kelleher and to Shannon Dickson for their constant support throughout my graduate career.

This project was supported in part by the National Aeronautics and Space Administration through

the University of Central Florida’s Florida Space Consortium. I also would not have been able to

pursue and complete my degree without the financial assistance from the UCF McNair Fellowship

and the STATESS scholarship.

iv

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . xi

CHAPTER 1: INTRODUCTION . 1

1.1 History and Motivation . 1

1.2 Overview . 2

1.3 The Problem . 4

CHAPTER 2: DISCRETIZATION METHODS . 10

2.1 Explicit Finite Difference Method . 10

2.2 Alternating-Direction Implicit Finite Difference Method 12

2.2.1 Extrapolation . 18

2.2.2 Implementation . 19

2.3 Chebyshev Spectral Spatial Differentiation . 20

2.3.1 Differentiation Matrices . 21

2.4 Orthogonal Spline Collocation . 22

2.4.1 Notation . 23

v

2.4.2 Collocation Matrices . 26

2.4.3 Domain Decomposition . 31

CHAPTER 3: ERROR AND EFFICIENCY . 37

3.1 Spatial Approximation of Derivatives . 37

3.2 Linear Problem . 39

3.3 Nonlinear Simultations . 43

CHAPTER 4: CONCLUSIONS AND FUTURE WORK 52

4.1 Conclusions . 52

4.2 Improved Efficiency . 52

4.3 OSC for Nonlinear Problem . 54

4.4 Displacement and Cratering . 56

4.5 Future Work . 59

APPENDIX A: ADI-SPECTRAL METHOD . 60

APPENDIX B: ADI-OSC METHOD . 66

APPENDIX C: OSC MATRICES . 70

APPENDIX D: CHEBYSHEV SPECTRAL DIFFERENTIATION MATRICES 74

vi

LIST OF REFERENCES . 76

vii

LIST OF FIGURES

Figure 1.1: Coordinate shift from cylindrical to Cartesian coordinates. 6

Figure 1.2: Gaussian initial conditions for (a) the lunar case and (b) the lab case. Param-

eters for (a) are Thrust = 11,120N, σ = .75m. Parameters for (b) are Thrust

= 45.5N, σ = .015m. The domain in each case is [−4σ, 4σ]× [0, 4σ], where

σ is the standard deviation of the distribution. 8

Figure 1.3: Rescaled Gaussian initial conditions for (a) the lunar case and (b) the lab case. 9

Figure 2.1: Rectangular grid with general domain M = [a1, a2] ⊗ [b1, b2] for an ADI

method. In the figure, x remains constant along horizontal dashed lines, and

y is constant along vertical solid lines. 13

Figure 2.2: Gaussian collocation points on a finite mesh with seven equidistant nodes. . . 24

Figure 2.3: Spacing of three different spatial schemes. 35

Figure 2.4: Approximations to (2.62) using OSC on a uniform mesh, OSC with domain

decomposition, and the Spectral method on Chebyshev nodes. 36

Figure 2.5: Comparison of error in approximations to (2.62) using OSC on a uniform

mesh, OSC with domain decomposition, and the Spectral method on Cheby-

shev nodes. 36

Figure 3.1: Approximation of the second derivative of the 1D Gaussian initial condition,

p0 = Ee(−x2/σ2), with Thrust = 1, σ = 0.3. 38

viii

Figure 3.2: Error when approximating the second derivative of the steep 1D Gaussian

initial condition, p0 = Ee(−x2/σ2), with Thrust = 45.5, σ = 0.03. 39

Figure 3.3: ADI-Spectral Approximation of (3.2) with E = 2, Nx = Ny = 31, dt =

0.001, Tf = 0.5. 41

Figure 3.4: Error in approximation to (3.2) for varrying values of Nx and Ny. Parameters

used are dt = 0.0001, Tf = 0.002, E = 2. 42

Figure 3.5: Error in approximation to (3.2) for varrying values of dt. Parameters used are

Nx = Ny = 37, Tf = 0.032, E = 2. 42

Figure 3.6: ADI-Spectral approximation to the nonlinear problem (2.13). Parameters are

Nr = 51, Nz = 21, dt = 0.0004, Tf = .4, E = 1, σ = 1. 44

Figure 3.7: ADI-Spectral approximation to the nonlinear problem (2.13) for varrying fi-

nal times. Parameters are Nr = 51, Nz = 21, dt = 0.0004, E = 1, σ = 1. . . . 45

Figure 3.8: Richardson error in time for approximation of the nonliner problem (2.13).

Parameters are Tf = 0.001, Nr = 51, Nz = 21, E = 1. 47

Figure 3.9: Pressure values at varrying layers below the jet nozzle tracked over time. . . . 47

Figure 3.10:Comparison between ADI-FD and ADI-Spectral for the nonlinear problem. . 48

Figure 3.11: Approximations of pressure for the nonlinear problem (2.13) for both the

lunar and lab case. 50

Figure 3.12: Contour plots for approximations of pressure for the nonlinear problem

(2.13) for both the lunar and lab case. 51

ix

Figure 4.1: Approximation of (1.7) on [0, 1]× [0, 1] using ADI-FD. Parameters are Nr =

21, Nz = 31, E = 2, σ = 1, dt = 0.001, Tf = 0.5. 55

x

LIST OF TABLES

Table 1.1: Experimental Parameters . 7

Table 3.1: A comparison of error and runtime for the linear problem (3.2). 43

xi

CHAPTER 1: INTRODUCTION

1.1 History and Motivation

Soil displacement caused by the continuous firing of an impinging jet landing on a porous surface

can cause dangerous effects including as cratering and visual impairment. Understanding the con-

ditions under which these circumstances will occur has recently become an important concern to

NASA [16]. Upon the landing of the Apollo 12 lunar module, eroded soil was sprayed at a velocity

estimated to be as high as 2000 m/s which caused damage to the Surveyor 3 spacecraft that was

155m away from the landing site [16]. Due to the firing of the module’s engine at a distance of a

few feet above the surface during the Apollo 15 lunar mission, soil was blowing so severely that it

completely impaired visibility. This caused the module to land along the edge of a crater at a 15

degree angle, with only three of its four legs on the surface [14], [19].

While previous research of these blast effects caused by landings has contributed to successful

Apollo and Viking missions, it has been noted that future missions may suffer from more serious

situations caused by such severe blowing of granular material. Planetary regolith can be defined

as the outer layer of loose granular material that can be found on the moon and Mars. With larger

payloads and the possibility of landing multiple spacecraft near one another, the blowing of re-

golith caused by rocket exhaust may pose serious challenges [16]. These include the possibility

of crater formation and soil erosion. In an effort to prevent such complications, NASA has devel-

oped a program to research plume and soil mitigation techniques. This research serves the purpose

of engineering hardware near the launch and landing sites for future missions to ensure both the

safety of the crew and success of the mission. In order to do so, it is imperative that the behavior

of regolith under mission conditions is sufficiently understood. For example, it has been suggested

that barriers be engineered around the landing site to prevent flying regolith from damaging nearby

1

spacecraft or outposts. This type of prevention mechanism is largely dependent upon the accurate

calculation of the angle at which regolith will be blown during landing. While this type of calcula-

tion is not difficult given the physical parameters, predictions may be off by orders of magnitude if

the regolith exhibits cratering. If any type of cratering occurs, the material may be blasted at such

a severe angle that some of it may completely overshoot the height of the barrier. Other potential

problems include the loss of visibility upon landing the module due to the blowing material, and

even damage to the lander itself.

Physically simulating these experiments realistically in a lab requires large amounts of lunar sim-

ulant and a hypersonic engine in a large vacuum at reduced gravity to account for the moon’s lack

of atmosphere. Due to the high cost of such experiments and the lack of necessary equipment, re-

searchers have turned to numerical simulations for understanding how the blast of gas from a rocket

will flow through planetary regolith and the displacement effects it has on the porous material.

1.2 Overview

The bulk of this thesis is dedicated to the study of numerically simulating the pressure flow through

a porous medium. In Chapter 4, we describe the coupling of our results with equations of elasticity

that determine how the flow of gas actually displaces the regolith. When the linear elasticity

equation fails, we can infer that the regolith itself has failed. We conclude that regolith which fails

to act like an elastic material will begin to act like a plastic and display cratering behavior. We

discuss in detail the specific tests that can be performed to determine whether or not a crater is

formed.

Various cratering phenomena have been observed to occur due to the pressure exerted upon a

granular medium under rocket landing conditions. In particular, two of the identified mechanisms

are known to be bearing-capacity failure (BCF) and diffusion-driven flow (DDF) [15]. We can

2

think of BCF as the downward shoving of material caused by the pressure exceeding the bearing

capacity of the soil which forms a vertical depression. On the other hand, DDF describes the

forced shearing of soil caused by the flow of pressure through the pore spaces within the medium.

Geometrically, observations have shown that material is moved vertically by BCF and horizontally

by DDF. When we use our simulations to predict crater formation, we focus primarily on the

formation due to BCF or DDF.

A model has been created and analyzed in [24] to couple the pressure and displacement equations.

For pressure simulations, this model uses the second-order Crank-Nicholson method in time and

the Chebyshev Spectral method in space. Displacement results were obtained using a finite element

method. However, tests for cratering using this model were inconsistent with cratering results from

two experimental cases which we present in Section 1.3. Furthermore, another model has been

implemented to solve this problem using a high-performance finite-element method for the Porous

Medium Equation. While these results are more promising, they still do not completely reproduce

the experimental results. This has motivated us to further research numerical techniques to more

accurately and efficiently simulate pressure for our situation.

In this thesis, a model for simulating the pressure due to rocket exhaust is proposed and analyzed.

The contributions to the general study of porous medium displacement under rocket landing con-

ditions that are made in this thesis can be listed as follows:

• the implementation of an efficient second-order time-stepping scheme for this problem that

can be easily parallelized to run computationally expensive simulations,

• the set-up of a fourth-order spatial discretization that allows for elegant domain decomposi-

tion to simulate steep-gradient conditions,

• the development of MatLab code that can be used and extended for similar problems,

• a comparison of three common spatial discretizations to help identify current modeling in-

3

accuracies.

1.3 The Problem

The porous medium equation

∂tP = ∆(Pm), for m > 1, (1.1)

is a well known nonlinear parabolic equation [22]. While this equation is used to describe a

plethora of physical dynamic phenomena, one of its main physical applications is modeling the

flow of an ideal gas through a porous medium [22]. We derive a form of (1.1), with m = 2, that

serves as the mathematical model for our physical problem.

We begin by considering Darcy’s Law describing diffusive flow through a permeable medium

v = − κ

ηǫ
∇ · P, (1.2)

where v is the gas velocity in the medium, P is the pressure of the field, k is the permeability of

the medium, η is the viscosity of the gas, and ǫ is the porosity of the medium. The Ideal Gas law

states

γ =
P

RT
, (1.3)

where γ is the gas density, R is the ideal gas constant, and T is temperature. By combining

equations (1.2) and (1.3) with the conservation of mass

∇ · (γv) = −∂γ
∂t
, (1.4)

4

we can perform the following derivation:

− κ

ηǫRT
∇ · (P∇P) = − 1

RT

∂P

∂t

=⇒ ∇(P∇ · P) = ηǫ

κ

∂P

∂t

=⇒ ∇2 · P 2 =
2ηǫ

κ

∂P

∂t
. (1.5)

We use this equation to model the time evolution of rocket exhaust as it diffuses through regolith.

The aim is to predict the formation of craters in cases that are unknown through numerical simu-

lation. By doing this, we can determine the rocket exhaust and material conditions under which

cratering will occur. The following case studies serve as a means to verify that our simulations

correspond to reality.

Lunar Case -an actual lunar landing where no crater was formed that is spatially unbounded

Lab Case -an experiment conducted within a box-shaped apparatus at Kennedy Space Center’s

Granular Mechanics and Regolith Operations Laboratory where a crater was formed.

All experiments must be done using three dimensions in order to physically simulate reality. How-

ever, due to the symmetric nature of our experiments, we make a coordinate shift from cylindrical

coordinates to Cartesian coordinates. It can be seen in Figure (1.1) that there are only two degrees

of freedom in the three dimensional case. That is, the values of the pressure are independent of

the θ direction. Therefore, we make a shift down to two dimensions which also simplifies our

computations. The cylinder on the left in Figure (1.1) represents the three dimensional initial pres-

sure exerted by the rocket nozzle. The cylinder on the right shows a slice representing the spatial

domain in two dimensions.

5

(𝑟, 𝜃, 𝑧) (𝑥, 𝑦) 𝑥

𝑦

𝑟

Figure 1.1: Coordinate shift from cylindrical to Cartesian coordinates.

It is helpful to first consider the initial condition representing the firing of rocket exhaust into the

medium at t = 0. Following the lead of [19], we model the initial condition for our numerical

model using a Gaussian function of the form

g0(r, z) = E · e− 1
σ2 (x2+y2), (1.6)

where σ is the radius of the jet nozzle in meters. The variables x and y denote the horizontal and

vertical spatial dimensions. The amplitude E is calculated in terms of σ and the thrust of the rocket

by

E =
Thrust

πσ2
.

A list of all parameters used for both experiments are included in Table (1.1).

6

Table 1.1: Experimental Parameters

Parameters units Description Lunar Case Lab Case

Thrust N thrust of the rocket 11,120 45.5

σ m radius of the nozzle 0.75 0.015

p0 psi characteristic pressure of environment 1 14.7

κ m2 permeability of the medium 10−12 4.68× 10−10

η Ns/m2 viscosity of the gas 5× 10−5 6.7× 10−5

ǫ - porosity of the medium 0.51 0.5

E N/m2 exhaust from the rocket nozzle 68 63,662

We plot the initial conditions for each test case in Figures (1.2(a)) and (1.2(b)). The domain is

chosen to be [−4σ, 4σ] × [0, 4σ] to account for boundary conditions. While these two Gaussians

may look similar, we note that the distribution in Figure (1.2(b)) is much steeper than that of

Figure (1.2(a)). The lunar distribution has an amplitude of about 6,000m on domain [-3, 3]×[-3,

3], while the lab distribution has an amplitude of about 64,000m on the much smaller domain [-

0.06, 0.06]×[-0.06, 0.06]. This is expected since there is no atmosphere in the lunar case so the

plume should be more spread out while the lab case acts more like a jet. Under these conditions, it

is easily seen that the less steep lunar case did not create a crater while cratering definitely occured

in the lab. We see the challenge for the lab case when attempting to approximate derivatives of

such a steep function.

If we think about this distribution in terms of cylindrical coordinates, we can see that the evolution

of diffusion is radially symmetric. In order to take advantage of this property, we rewrite (1.5)

using cylindrical coordinates

∂2p2

∂z2
+

1

r

∂

∂r

(

r
∂p2

∂r

)

=
2ǫη

κ

∂p

∂t
. (1.7)

7

−3

−2

−1

0

1

2

3

0

0.5

1

1.5

2

2.5

3

0

1000

2000

3000

4000

5000

6000

7000

x

Lunar Gaussian

y

P
re

s
s
u

re

(a)

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

0.01

0.02

0.03

0.04

0.05

0.06

0

1

2

3

4

5

6

7

x 10
4

x

Lab Gaussian

y

P
re

s
s
u

re

(b)

Figure 1.2: Gaussian initial conditions for (a) the lunar case and (b) the lab case. Parameters for

(a) are Thrust = 11,120N, σ = .75m. Parameters for (b) are Thrust = 45.5N, σ = .015m. The

domain in each case is [−4σ, 4σ]× [0, 4σ], where σ is the standard deviation of the distribution.

By implementing the linear change of variables

p→ pp0, r → rr0, z → zr0, t→ 2ǫηr20
κp0

t, (1.8)

where p0 is the characteristic pressure with units of N/m2 and r0 is the radius of the jet nozzle in

meters, we arrive at the dimensionless equation

pt =
∂

∂z
(ppz) +

∂

∂r
ppr +

1

r
ppr, (1.9)

where we utilize the notation pt =
∂p

∂t
, pz =

∂p

∂z
, and pr =

∂p

∂r
. The is the form of the equation

8

−4

−2

0

2

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

Lunar Gaussian

y

P
re

s
s
u

re

(a)

−4

−2

0

2

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

Lab Gaussian

y

P
re

s
s
u

re

(b)

Figure 1.3: Rescaled Gaussian initial conditions for (a) the lunar case and (b) the lab case.

which we will be solving in our nonlinear simulations.

Expanding (1.9) yields

pt = ppzz + pprr + (pz)
2 + (pr)

2 +
1

r
ppr. (1.10)

Once we make the change of variables in (1.8), our initial conditions are smoothed out greatly. We

plot the scaled versions of both the lunar and the lab initial conditions in Figures (1.3(a))-(1.3(b)).

9

CHAPTER 2: DISCRETIZATION METHODS

2.1 Explicit Finite Difference Method

One of the first numerical studies of this problem, conducted in [19], arose when preparing to

land the Apollo Lunar Module on the moon. At this time, the existence of a grandular medium

was known to be present on the lunar surface and potential hazards during landing had been iden-

tified. One hazard considered was damage to the spacecraft caused by the blowing of regolith.

Another was such severe exhaust plume that would cause the module to overturn. Preliminary

lab experiments were conducted to test the firing of a Surveyor engine and analyze the erosion

and depressions left in the soil for different porous media. While these lab experiments attempted

to simulate lunar conditions, accounting for the lunar atmosphere and reduced gravity was not

possible. Due to the physical constraints of lab experimentation on Earth, researchers turned to

numerical simulations of this process.

To numerically model this problem, the authors of [19] presented an explicit five-point finite-

difference method. They begin by making the following forward in time and centered in space

finite difference discretizations:

pt(x, y, tn) ≈
P n+1
i,j − P n

i,j

∆t
, (2.1)

p2r(x, y, tn) ≈
(P n

i+1,j)
2 − (P n

i−1,j)
2

2∆r
, (2.2)

p2rr(x, y, tn) ≈
(P n

i+1,j)
2 − 2(P n

i,j)
2 + (P n

i−1,j)
2

(∆r)2
, (2.3)

p2zz(x, y, tn) ≈
(P n

i,j+1)
2 − 2(P n

i,j)
2 + (P n

i,j−1)
2

(∆z)2
, (2.4)

where P is the discrete approximation of the continuous function p. By plugging these discretiza-

10

tions into the expanded dimensionless form of equation (1.7),

∂2p2

(∂z)2
+

1

r

∂p2

∂r
+
∂2p2

(∂r)2
=
∂p

∂t
, (2.5)

the following discrete difference equation can be formulated

P n+1
i,j = P n

i,j +
∆t

(∆z)2

[

(P n
i,j+1)

2 − 2(P n
i,j)

2 + (P n
i,j−1)

2

]

+

∆t

(∆r)2

[(

1 +
∆r

2r

)

(P n
i+1,j)

2 +

(

1− ∆r

2r

)

(P n
i−1,j)

2 − 2(P n
i,j)

2

]

, (2.6)

where r ∈ [r1, rNr+1], z ∈ [z1, zNz+1], and t ∈ [t0, tf]. We have that ∆t = tn − tn−1, where

n = 0, 1, . . . , tf , ∆z = zj − zj−1 for j = 1, . . . , Nz +1, and ∆r = ri− ri−1 for i = 1, . . . , Nr +1.

The spatial domain is restricted to r ∈ [−1, 1], z ∈ [0, 1]. The domain for the r−dimension is

chosen so the singularity when r = 0 is avoided. This also significantly simplifies the boundary

conditions which is made clear in Section 4.2.1. This type of treatment is considered in [21]. We

denote by P n
i,j the point P (ri, zj, tn).

A uniform spatial mesh is imposed by setting ∆r = ∆z and M =
∆t

(∆z)2
. By combining like

terms, equation (2.6) can be rewritten as

P n+1
i,j = P n

i,j +M

[

(P n
i,j+1)

2+(P n
i,j−1)

2+

(

1 +
∆r

2r

)

(P n
i+1,j)

2+

(

1− ∆r

2r

)

(P n
i−1,j)

2−4(P n
i,j)

2

]

.

(2.7)

Impervious boundary conditions where r = r1, r = rNr+1, and z = zNz+1 are the most represen-

tative of the physics for our problem. For such conditions, the pressure along one layer outside

of each boundary is exactly the same as the pressure along one layer inside the boundary. These

boundary conditions simulate zero flow of gas across the boundary, so we account for them by

setting

r1 = r2, rNr+1 = rNr
, zNz+1 = zNz

.

11

When implementing a difference approximation, the solution has a finite domain of dependence.

That is, each point in the numerical solution is dependent upon an interval of points on the original

mesh. In order for the solution of (2.5) to converge using the difference method (2.7), the choice

of ∆t and ∆z must satisfy the Courant-Friedrichs-Lewy (CFL) condition for stability,

∆t

(∆z)2
<

1

4
. (2.8)

It is clear that a better spatial approximation to the differential equation can be obtaind by using

a smaller step-size. However, since we must adhere to the constraint (2.8), using smaller spatial

step size requires the use of an even smaller time step size. This relationship makes it extremely

difficult to simulate accurate approximations with sufficient efficiency. For this reason, we turn

to a linearly implicit method that is not restricted by such a strict constraint as (2.8) allowing for

increased efficiency.

2.2 Alternating-Direction Implicit Finite Difference Method

Alternating-Direction Implicit (ADI) methods have been used to efficiently solve problems in mul-

tiple dimensions [2]. The efficiency of an ADI method comes from its ability to step forward by

a timestep of ∆t/2 implicitly in the first dimension, say along horizontal lines of a 2D matrix,

and explicitly in the second, along vertical lines of a 2D matrix. Then the method steps forward

in time again by a timestep of ∆t/2 implicitly in the second dimension and explicitly in the first.

We make use of Figure (2.1) to explain the general behavior of the ADI time-stepping scheme.

First, the method carries out the explicit calculation after one-half of a timestep (the right-hand

side of (2.12a)) on points such as those marked by a and then performs the implicit calculation

after one-half of a timestep (the left-hand side of (2.12a)) at nodes such as those marked with a �.

Then the method performs the explicit calculation (the right-hand side of (2.12b)) at points such

12

as those marked by a and then performs the implicit operation (the right-hand side of (2.12b))

after one-half of a timestep at nodes such as those marked with a �. Boundary conditions for the

Figure 2.1: Rectangular grid with general domain M = [a1, a2] ⊗ [b1, b2] for an ADI method. In

the figure, x remains constant along horizontal dashed lines, and y is constant along vertical solid

lines.

x−direction are needed at points marked with a , and boundary conditions for the y−direction

are needed at points marked with a �.

This allows a two-dimensional problem to be broken down into a series of one-dimensional prob-

lems [2]. This scheme proves to be much more efficient and easier to implement than the com-

monly used second-order accurate Crank-Nicolson scheme [17], which requires the simultaneous

solving of systems of equations implicitly in both dimensions. The Crank-Nicolson scheme used

in [24] requires at least 2N4 long operations while an ADI scheme requires only 2N2. While an

implicit method is more computationally expensive than the explicit scheme from Section 2.1, the

time-step size for an ADI scheme is not limited by (2.8). However, similar to the Crank-Nicolson

13

scheme, we must still satisfy the condition

∆t

(∆z)2
< 1 (2.9)

in order to ensure accuracy. We note that this restriction allows for a larger time-step given the

same number of spatial nodes than the finite-difference restriction (2.8).

Let us first consider the linear analogue to our problem

ut = ∇2u. (2.10)

Let Un be a matrix approximation to the solution u(x, y, tn). That is, the entries of the matrix Un

are the values for the approximation of u at the spatial grid points at the nth time step. An ADI

scheme for this problem implicitly approximates the solution in the x−dimension at an interme-

diate level, Un+1/2, with an explicit approximation in the y−dimension. Then the approximate

solution Un is computed implicitly in the y−dimension and explicitly in the x−dimension. We

write this two-step scheme as

Un+1/2 − Un

∆t/2
= δ2xU

n+1/2 + δ2yU
n, (2.11a)

Un+1 − Un+1/2

∆t/2
= δ2xU

n+1/2 + δ2yU
n+1, (2.11b)

where δ2x and δ2y are differentiation matrices which approximate second-derivatives by δ2xU ≈ Uxx

and δ2yU ≈ Uyy. Some rearrangement yields

(I − ∆t

2
δ2x)U

n+1/2 = (I +
∆t

2
δ2y)U

n, (2.12a)

(I − ∆t

2
δ2y)U

n+1 = (I +
∆t

2
δ2x)U

n+1/2, (2.12b)

where I is the identity matrix. With this arrangement it is easily seen that all terms on the right-

14

hand side of (2.12a) are explicitly dependent only upon the approximation Un computed during the

previous time-step. Also, the implicit computation of (2.12a) must be done in only the x−direction.

Similarly, all terms on the right-hand side of (2.12b) are dependent solely upon the approximation

Un+1/2 which is already computed in (2.12a). The implicit computation of (2.12b) must only be

done in the y−direction.

We now go back to our nonlinear problem and set up our ADI scheme. We can express the nonlin-

ear porous medium equation (1.10) on a rectangular polygon M = (−1, 1)× (0, 1) in the general

form

pt = (Lx + Ly)p+ f(x, p, px, py), (2.13)

with the initial condition

p(x, y, 0) = g(x, y), (x, y) ∈M, (2.14)

and boundary conditions

px(−1, y, t) = 0, px(1, y, t) = 0, (2.15)

p(x, 0, t) = p(x, 0, 0), py(x, 1, t) = 0. (2.16)

The Neumann boundary conditions at x = −1, x = 1, and y = 1 simulate the impervious boundary

conditions discussed in Section 2.1. By imposing a Dirichlet boundary condition when y = 0 we

are assuming that the pressure exerted by the jet on the medium is constant until shutoff.

We let Lx and Ly be the differential operators given by

Lxp = ppxx, Lyp = ppyy, (2.17)

15

and f(x, p, px, py) be the first-order term given by

f(x, p, px, py) = (px)
2 + (py)

2 +
1

x
ppx. (2.18)

We refer to uh ∈M as the approximation to the solution p(x, y, t) of (2.13)-(2.16). We first define

our discrete derivative matrices, Ln
x and Ln

y , to approximate Lx and Ly, respectively. When coupled

with the finite-difference spatial approximation, we have that

Ln
x

(

ũn(x, y)
)

· unh(x, y) = ũn(x, y) ·D2
xuh(x, y), (2.19)

Ln
y

(

ũn(x, y)
)

· unh(x, y) = ũn(x, y) ·D2
yuh(x, y), (2.20)

where ũn is computed using extrapolation formulas to give an approximation of un+1. This is

explained in detail in Section 2.2.1. We have that D2
xu ≈ uxx and D2

yu ≈ uyy are centered-

difference differentiation matrices of the form

D2 =
1

h2







































−1 1 0 0 0 . . . 0

1 −2 1 0 0 . . . 0

0 1 −2 1 0 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 1 −2 1 0

0 . . . 0 0 1 −2 1

0 . . . 0 0 0 1 −1







































.

The elements in the first and last rows account for our boundary conditions which are currently set

to homogeneous Neumann conditions. To account for the Dirichlet boundary condition for y = 0,

the first element in the first row is set to one while the remaining values in the first row are zero.

16

We also provide a discretization of the function f at time tn as

fn
(

x, ũn, ûnx, ũ
n
y

)

= (ũny)
2 + (ûnx)

2 +
1

x
ũnûnx, (2.21)

where ûn is also computed using extrapolation. All derivatives of ũ and û are approximated using a

centered-difference approximation in the finite-difference case. That is, Dxũ ≈ ũx and Dyû ≈ ûy

where Dx and Dy are differentiation matrices of the form

D =
1

2h







































−1 1 0 0 0 . . . 0

−1 0 −1 0 0 . . . 0

0 −1 0 −1 0 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 −1 0 1 0

0 . . . 0 0 −1 0 −1

0 . . . 0 0 0 1 −1







































.

Now that we have described the method for the linear case, we can write the ADI scheme for the

nonlinear case.

u
n+1/2
h − unh
∆t/2

= Ln+1/2
x (ũh)u

n+1/2
h + Ln+1/2

y (ũh)u
n
h

+ fn+1/2
(

x, ũh, (ûh)x, , (ũh)y

)

, (2.22a)

un+1
h − u

n+1/2
h

∆t/2
= Ln+1/2

x (ũh)u
n+1/2
h + Ln+1/2

y (ũh)u
n+1
h

+ fn+1/2
(

x, ũh, (ûh)x, (ũh)y

)

. (2.22b)

17

Some rearrangement yields

[

I − ∆t

2
Ln+1/2
x (ũh)

]

u
n+1/2
h =

[

I +
∆t

2
Ln+1/2
y (ũh)

]

unh

+ fn+1/2 (x, ũh, (ûh)x, (ũh)y) , (2.23a)

[

I − ∆t

2
Ln+1/2
y (ũh)

]

un+1
h =

[

I +
∆t

2
Ln+1/2
x (ũh)

]

u
n+1/2
h

+ fn+1/2 (x, ũh, (ûh)x, (ũh)y) . (2.23b)

Just as in the linear case (2.12a)-(2.12b), the right-hand side of (2.23a) explicitly depends only upon

the approximation at the previous time-step, unh. The left-hand side of (2.23a) is only calculated

implicitly in the x−direction. Similarly, the right-hand side of (2.23b) explicitly depends on the

approximation of u
n+1/2
h that is calculated in (2.23a). The implicit calculation on the left-hand side

of (2.23b) is solely done in the y−direction.

2.2.1 Extrapolation

We make use of extrapolation to predict the solution at the future time step which reduces our

problem to a linear problem. In order to do so, we begin by defining ûnh(·, y) ∈ [−1, 1] and

ũnh(x, ·) ∈ [0, 1] which approximate u(x, y, tn) for x ∈ (−1, 1) and y ∈ (0, 1), respectively. If we

let û0h(x, y) = g(x, y) and ũ0h(x, y) = g(x, y), then we can use Taylor’s theorem to define

û
1/2
h = g(x, y) +

∆t

2

[

f 0
(

x, g(x, y), (û0h)x(x, y), (ũ
0
h)y(x, y)

)

+Lx

(

ũ0(x, y)
)

g(x, y) + Lx

(

ũ0(x, y)
)

g(x, y), for all y ∈My (2.24)

ũ
1/2
h = g(x, y) +

∆t

2

[

f 0
(

x, g(x, y), (û0h)x(x, y), (ũ
0
h)y(x, y)

)

+Lx

(

ũ0(x, y)
)

g(x, y) + Lx

(

ũ0(x, y)
)

g(x, y), for all x ∈Mx. (2.25)

18

In order to calculate an approximation to u(x, y) at the first time step, u1h(x, y), we must first

approximate a solution to u
1/2
h (x, y). By utilizing the second-order Taylor series expansion of

u(x, y, t) about t = 0, we can write

u(x, y, t+
∆t

2
) = u(x, y, 0) +

∆t

2
ut(x, y, 0) +O(∆t2)

= g(x, y) +
∆t

2
(f 0(x, u, ux, uy) + Lxu+ Lyu) (2.26)

Our calculations of û
n+1/2
h and ũ

n+1/2
h for n = 1, . . . , Nt depend solely upon approximations of

the solution, unh, at the previous time-steps using

ũ
n+1/2
h (x, ·) =

3

2
unh(x, ·)−

1

2
un−1
h (x, ·), (2.27)

û
3/2
h (·, y) = 3u

1/2
h − 2û0h(·, y), (2.28)

û
n+1/2
h (·, y) = 2u

n−1/2
h (·, y)− u

n−3/2
h (·, y). (2.29)

These formulas are obtained from second order Taylor series expansions in time, which is consis-

tent with the overall second-order convergence of an ADI scheme.

2.2.2 Implementation

We present a step-wise list for the implementation of the ADI scheme. This implementation coded

in MatLab can be viewed in detail in Appendices A and B for the Chebyshev Spectral spatial

discretization and also the OSC method.

Step 1 Initialize the following

• f 0

• u
1/2
h according to (2.26)

19

• û
1/2
h and ũ

1/2
h according to (2.24) and (2.25).

Step 2 Perform the following for n = 0

• calculate the right-hand side (RHS) of (2.23a) along rows of uh

• calculate the left-hand side (LHS) of (2.23a) along columns of uh

• calculate the RHS of (2.23b) along columns of uh

• calculate the LHS of (2.23b) along rows of uh

• calculate û
3/2
h according to (2.28)

• calculate ũ
3/2
h according to (2.27)

Step 3 Loop over n = 1, . . . tf using the same steps in Step 2 except calculate û
n+1/2
h and ũ

n+1/2
h

using equations (2.29) and (2.27), respectively.

2.3 Chebyshev Spectral Spatial Differentiation

Rather than a second-order accurate finite-difference spatial aproximation, we introduce a spectral

differenatiation method. Spectral differentiation is said to have “spectral accuracy,” that is, con-

vergence occurs so rapidly that further improvement is prevented by rounding errors [21]. It has

been shown that a spectral method for smooth functions typically converge at a rate of O(N−N)

[21], where N is the number of spatial nodes. Rather than interpolating on equispaced nodes, as

done in the commonly used Fourier spectral method, we make use of unevenly-spaced nodes that

are clustered near the boundary. By clustering the nodes near the boundary, we can distribute the

interpolation error more evenly over the domain. This allows us to minimize the effects of the

Runge phenomenon in which case the approximations fail to converge.

20

2.3.1 Differentiation Matrices

In this section, we set up the differentiation matrices which approximate the spatial first and second

derivatives for our problem using Chebyshev Spectral differentiation.

We make use of the Chebyshev nodes spread over the interval [−1, 1], defined by

xj = cos(jπ/Nx), j = 0, 1, . . . , Nx, (2.30)

where Nx + 1 is the number of nodes used in the x−dimension. The nth-order interpolating

polynomials for this method are of the form

pn(x) =
Nx
∑

j=0

N
∏

k=0,k 6=j

x− xk
xj − xk

.

The entries of the Chebyshev differentiation matrix, DNx
, that approximate the first derivative in

the x−dimension of a smooth function are

(DNx
)00 =

2N2
x + 1

6
, (2.31)

(DNx
)NN = −2N2

x + 1

6
, (2.32)

(DNx
)jj =

−xj
2(1− x2j)

, j = 1, . . . , Nx − 1, (2.33)

(DNx
)ij =

ci(−1)i+j

cj(xi − xj)
, i 6= j, i, j = 0, 1, . . . , Nx. (2.34)

Since our ADI method allows us to approximate derivatives in one dimension at a time, we need

not worry about constructing a larger matrix that calculates derivatives in both dimensions simul-

taneously. We simply have that DNx
u ≈ ux and DNy

(u)T ≈ uy. However, for DNy
, we must

construct the matrix components given in (2.31) using the Chebyshev nodes on the domain [0, 1].

21

These can be obtained using

yj =
cos(jπ/Ny) + 1

2
, j = 0, 1, . . . , Ny, (2.35)

where Ny + 1 is the number of nodes used in the y−dimension.

The Chebyshev differentiation matrix that approximates the second derivative of a smooth function

is evaluated by applying the first derivative matrix to itself, that is,

D2
Nx

= (DNx
)2,

D2
Ny

= (DNy
)2,

where

D2
Nx
u ≈ uxx,

D2
Ny
u ≈ uyy.

We include detailed code for the formulation of these matrices according to [21] in Appendix D.

We couple this Chebyshev Spectral method in space with the ADI temporal scheme presented in

Section 2.2 by replacing the finite-difference differentiation matrices D2
x, D2

y, Dx and Dy with D2
x,

D2
y, Dx and Dy, respectively, in equations (2.19) and (2.20).

2.4 Orthogonal Spline Collocation

It has been shown that an orthogonal spline collocation method coupled with an ADI temporal

scheme is more efficient than other common methods for a parabolic nonlinear equation such as

(2.13) [2]. The benefits of using OSC over other methods commonly used to solve this type of

22

problem are:

• OSC is cheaper than FD methods for desired accuracy

• OSC does not require a stability parameter or preconditioning

• OSC does not require the approximation of integrals

• OSC is easier to implement than finite element Galerkin methods

• OSC lends itself easily to domain decomposition (beneficial for steep problems with local-

ized activity).

We note that none of these benefits are in comparison with a Spectral method. We can use a spline

collocation method to obtain an approximation, uh(x, y), to our solution u(x, y) in the form of

piecewise polynomials that satisfy both the given equation and its boundary conditions at specifi-

cally chosen collocation points. We utilize piecewise cubic Hermite polynomials, requiring knowl-

edge of both the function and the first derivative at each point satisfying (2.13) at the Gauss points.

2.4.1 Notation

Let us denote Ix = (−1, 1) as the domain of x and Iy = (0, 1) as the domain of y. Let dx =

{xi}Nx

i=1 and dy = {yj}Ny

j=1 be uniform partitions of Īx and Īy, respectively, where Nx and Ny are

positive odd integers. We denote by Īx the closure of Ix. We form a Gaussian quadrature by letting

Gx = {ξxik}Nx,2
i=1,k=1 be the Gauss points on Ix and Gy = {ξyjk}

Ny ,2
j=1,k=1 be the Gauss points on Iy

from [25] given by

ξxi1 = xi−1 +
3−

√
3

6
hx, ξxi2 = xi−1 +

3 +
√
3

6
hx, i = 1, . . . , Nx, (2.36)

ξyj1 = yj−1 +
3−

√
3

6
hy, ξyj2 = yj−1 +

3 +
√
3

6
hy, j = 1, . . . , Ny. (2.37)

23

We have that hx = xi − xi−1 and hy = yj − yj−1 denote the spatial step size of the uniform

mesh in each direction. Given Nx nodes in dx and Ny nodes in dy on a uniform mesh, we have that

hx = 1/Nx and hy = 1/Ny. We note that there are two collocation points between each equidistant

node, yielding 2Nx Gauss nodes in Gx and 2Ny Gauss nodes in Gy. We illustrate these nodes in

one dimension in Figure (2.2).

Figure 2.2: Gaussian collocation points on a finite mesh with seven equidistant nodes.

In order to consider the two-dimensional space, M , in which our solution exists, we denote by

Mx and My the space of piecewise cubic Hermite polynomials on Īx and Īy, respectively, where

M =Mx ⊗My.

We utilize the value basis function vk and the scaled slope basis function sk to create bases for Mx

and My as presented in [25]. These basis functions are defined by

vk(xi) = δki, v′k(xi) = 0, (2.38)

sk(xi) = 0, s′k(xi) =
δki
h
, (2.39)

where δhi is the Kronecker delta function

δki =











1 for k = i

0 for k 6= i
.

24

We choose bases {φi(x)}2Nx

i=1 for Mx and {ψj(x)}2Ny

j=1 for My defined by

{φi(x)}2Nx+2
i=1 = {v0, v1, . . . , vNx−2, vNx−1, vNx

, s0, s1, . . . , sNx−2, sNx−1, sNx
}, (2.40)

{ψj(y)}2Ny+2
j=1 = {v0, s0, v1, s1, . . . , vNy−1, sNy−1, vNy

, sNy
}. (2.41)

This choice of bases allows us to set up the form of the OSC solution, uh, in two dimensions in

such a way that all function and derivative values are stored. This allows us to operate on the

solution in either dimension with collocation matrices built according to the proper bases. The two

dimensional orthogonal spline collocation solution uh ∈Mx ⊗My can then be written in terms of

these bases as

uh(x, y) =
2Nx+2
∑

i=1

2Ny+2
∑

j=1

pi,jφi(x)ψj(y), (2.42)

where the components of matrix P = {pi,j}2Nx+2,2Ny+2
i=1, j=1 are determined by the basis

{φi(x)ψj(y)}2Nx+2,2Ny+2
i=1, j=1

of Mx ⊗My. By representing P as a matrix in terms of the corresponding basis functions from

(2.40) and (2.41), we have the (2Nx + 2)× (2Ny + 2) matrix

P =













































v0v0 v0s0 v0v1 v0s1 . . . v0vNy−1 v0sNy−1 v0vNy
v0sNy

v1v0 v1s0 v1v1 v1s1 . . . v1vNy−1 v1sNy−1 v1vNy
v1sNy

...
...

...
...

...
...

...
...

vNx
v0 vNx

s0 vNx
v1 vNx

s1 . . . vNx
vNy−1 vNx

sNy−1 vNx
vNy

vNx
sNy

s0v0 s0s0 s0v1 s0s1 . . . s0vNy−1 s0sNy−1 s0vNy
s0sNy

s1v0 s1s0 s1v1 s1s1 . . . s1vNy−1 s1sNy−1 s1vNy
s1sNy

...
...

...
...

...
...

...
...

sNx
v0 sNx

s0 sNx
v1 sNx

s1 . . . sNx
vNy−1 sNx

sNy−1 sNx
vNy

sNx
sNy













































.

25

Here we have that the first component of each element along a row has the concatonated form of

(2.41) representing the y−dimension, and the second component of each element along a row has

the alternating form of (2.40) representing the x−dimension. We see the reverse behavior along a

column.

According to (2.38) and (2.39), the entries of P consist of x−, y− and xy−partial derivatives in

the following way:





















































u0,0 hy∂yu0,0 u0,1 hy∂yu0,1 . . . u0,Ny
hy∂yu0,Ny

u1,0 hy∂yu1,0 u1,1 hy∂yu1,1 . . . u1,Ny
hy∂yu1,Ny

...
...

...
...

...
...

uNx−1,0 hy∂yuNx−1,0 uNx−1,1 ∂yuNx−1,1 . . . uNx−1,Ny
hy∂yuNx−1,Ny

uNx,0 hy∂yuNx,0 uNx,1 hy∂yuNx,1 . . . uNx,Ny
hy∂yuNx,Ny

hx∂xu0,0 hxhy∂xyu0,0 hx∂xu0,1 hxhy∂xyu0,1 . . . hx∂xu0,Ny
hxhy∂xyu0,Ny

hx∂xu1,0 hxhy∂xyu1,0 hx∂xu1,1 hxhy∂xyu1,1 . . . hx∂xu1,Ny
hxhy∂xyu1,Ny

...
...

...
...

...
...

hx∂xuNx,0 hxhy∂xyuNx,0 hx∂xuNx,1 hxhy∂xyuNx,1 . . . hx∂xuNx,Ny
hxhy∂xyuNx,Ny





















































,

where ui,j represents u(xi, yj).

2.4.2 Collocation Matrices

In order to approximate (2.13), we set up orthogonal spline collocation matrices for (2.19) and

(2.20).

We let ξ̂x be the 1 × 2Nx vector of the Gauss points in the x−direction and ξ̂y be the 1 × 2Ny

26

vector of Gauss points in the y−direction given by

ξ̂x = {ξx11 ξx12 ξx21 ξx22 . . . ξxNx,1 ξ
x
Nx,2}, (2.43)

ξ̂y = {ξy11 ξy12 ξy21 ξy22 . . . ξyNy ,1
ξyNy ,2

}. (2.44)

Again, we begin by utilizing the linear case to demonstrate the general method. By approximating

L2
x ≈ δx and L2

y ≈ δy and plugging in the form of uh(x, y) from (2.42), we have that

L2
xuh + L2

yuh =
2Nx
∑

i=1

2Ny
∑

j=1

bi,j[L2
x(φi)](ξ̂

x
i)ψj(ξ̂

y
j) +

2Nx
∑

i=1

2Ny
∑

j=1

bi,jφi(ξ̂
x
i)[L2

y(ψj)](ξ̂
y
j)

=
2Nx
∑

i=1

2Ny
∑

j=1

bi,jφ
′′
i (ξ̂

x
i)ψj(ξ̂

y
j) +

2Nx
∑

i=1

2Ny
∑

j=1

bi,jφi(ξ̂
x
i)ψ

′′
j (ξ̂

y
j), (2.45)

where Lx and Ly are orthogonal spline collocation matrices which approximate the second deriva-

tive in the x− and y− directions, respectively. We have that ξ̂xi is the ith element of ξ̂x and ξ̂yj is

the jth element of ξ̂y.

It is important to understand how these collocation matrices work when applied to a row or column

of P . We have that

L2
xu(x, ·) ≈ uxx(ξ

x, ·),

L2
yu(·, y) ≈ uyy(·, ξy).

When we write u(x, ·) we mean the approximation u at the equidistant nodes in the x−dimension,

xi ∈ dx. However, these values must be a concatonation of function values and x−derivatives at

xi ∈ dx, taking on the form of a column of the matrix P . Similarly, u(·, y) denotes the approxi-

mation u at the equidistant nodes in the y−dimension, yj ∈ dy. These values must be arranged as

alternating function values and y−derivatives, taking the form of a row of the matrix P . The no-

tation u(ξx, ·) denotes the approximation at the Gauss points in the x−dimension, ξxij ∈ ξ̂x, while

27

u(·, ξy) is the approximation at the Gauss points in the y−dimension, ξyij ∈ ξ̂y. By placing a “·”

in either dimension, we mean that u is approximated at either the equidistant nodes or the Gauss

nodes in the proper dimension, but the choice remains consistent for each individual operation.

We have that L2
y is applied to the transpose of each row of P which is of the form

P (i, ·)T =

(

ui,0 hy∂yui,0 ui,1 hy∂yui,1 . . . ui,Ny
hy∂yui,Ny

)T

,

for i = 0, . . . , Nx.

We set up the 2(Ny +1)× 2(Ny +1) collocation square matrix L2
y in the following way according

to [25]

L2
y =

































[W y
0]

(2) 0 . . . 0

[W y
1 Zy

1]
(2) ...

0 [W y
2 Zy

2]
(2)

...
. . .

. . . 0

[W y
Ny

Zy
Ny
](2)

0 . . . 0 [Zy
Ny+1]

(2)

































,

where each [W y
j Zy

j] is a 2× 4 matrix for j = 1, . . . , Ny whose components are determined by the

bases {φ} and {ψ}. For the bases in (2.40) and (2.41), the 2× 4 matrices [W y
j Zy

j] are

[W y
j Zy

j]
(2) =







φ′′
j−1(ξj1) ψ′′

j−1(ξj1) φ′′
j (ξj1) ψ′′

j (ξj1)

φ′′
j−1(ξj2) ψ′′

j−1(ξj2) φ′′
j (ξj2) ψ′′

j (ξj2)







=







v′′j−1(ξj1) s′′j−1(ξj1) v′′j (ξj1) s′′j (ξj1)

v′′j−1(ξj2) s′′j−1(ξj2) v′′j−1(ξj2) s′′j (ξj2)






,

28

for j = 1, . . . , Ny. To satisfy the boundary conditions of our problem, we let

[W y
0]

(2) =

[

νy1/h µy
1

]

, [Zy
Ny+1]

(2) =

[

νy2/h µy
2

]

.

According to explicit formulas for the value and scaled slope basis functions evaluated at the Gauss

points, found in [25],

v′′i−1(ξi1) = −1/h2 · 2
√
3 , v′′i−1(ξi2) = 1/h2 · 2

√
3 (2.46)

v′′i (ξi1) = 1/h2 · 2
√
3 , v′′i (ξi2) = −1/h2 · 2

√
3 (2.47)

s′′i−1(ξi1) = −1/h2 · (1 +
√
3) , s′′i−1(ξi2) = 1/h2 · (

√
3− 1) (2.48)

s′′i (ξi1) = −1/h2 · (
√
3− 1) , s′′i (ξi2) = 1/h2 · (1 +

√
3). (2.49)

We have that L2
x is applied to each column of P which is of the form

P (·, j) =
(

u0,j u1,j . . . uNx,j hx∂xu0,j hx∂xu1,j . . . hx∂xuNx,j

)T

,

for j = 0, . . . , 2 ∗Ny + 1.

We set up the 2(Nx + 1)× 2(Nx + 1) collocation square matrix L2
x in the following way:

L2
x =







































µx
1 0 . . . 0 νx1 /hx 0 . . . 0

W x
1 Zx

1

...

0 W x
2 Zx

2

...
. . .

. . .

W x
Nx−1 ZNx−1 0

W x
Nx

ZNx

0 . . . 0 µx
2 0 . . . 0 νx2 /hx







































,

29

where each [W x
i] and [Zx

i] are 2× 2 matrices whose components are determined by the bases {φ}

and {ψ}, respectively. For the bases in (2.40) and (2.41), the matrices [W x
i] and [Zx

i] are given by

[W x
i] =







φ′′
i−1(ξi1) φ′′

i (ξi1)

φ′′
i−1(ξi2) φ′′

i (ξi2)






=







v′′i−1(ξi1) v′′i (ξi1)

v′′i−1(ξi2) v′′i (ξi2)






,

[Zx
i] =







ψ′′
i−1(ξi1) ψ′′

i (ξi1)

ψ′′
i−1(ξi2) ψ′′

i (ξi2)






=







s′′i−1(ξi1) s′′i (ξi1)

s′′i−1(ξi2) s′′i (ξi2)






.

In order to implement this method for our problem, we must also construct the collocation matrices

for approximating the first derivative in both dimensions. The structure of these first-derivative

matrices, Lx and Ly, are be the same as those for L2
x and L2

y, respectively. However, for Ly, rather

than [W y
j Zy

j]
(2), we make use of [W y

j Zy
j]

(1), where

[W y
j Zy

j]
(1) =







v′j−1(ξj1) s′j−1(ξj1) v′j(ξj1) s′j(ξj1)

v′j−1(ξj2) s′j−1(ξj2) v′j(ξj2) s′j(ξj2)






,

where

v′i−1(ξi1) = −1/h , v′i−1(ξi2) = 1/h, (2.50)

v′i(ξi1) = −1/h , v′i(ξi2) = 1/h, (2.51)

s′i−1(ξi1) = 1/h · 1/(2
√
3) , s′i−1(ξi2) = −1/h · 1/(2

√
3), (2.52)

s′i(ξi1) = −1/h · 1/(2
√
3) , s′i(ξi2) = 1/h · 1/(2

√
3). (2.53)

It is also necessary to present an OSC analogue for the identity matrix. That is, we construct

30

matrices, IxOSC and IyOSC , such that

IxOSC · u(x, ·) = u(ξx, ·), forx ∈ dx, ξ
x ∈ ξ̂x,

IyOSC · u(·, y) = u(·, ξy), for y ∈ dy, ξ
y ∈ ξ̂y.

Once again, these identity matrices have the same structure as L2
x and L2

y, using [W y
j Zy

j]
(0) rather

than [W y
j Zy

j]
(2). These block submatrices are built using

[W y
j Zy

j]
(0) =







vj−1(ξj1) sj−1(ξj1) vj(ξj1) sj(ξj1)

vj−1(ξj2) sj−1(ξj2) vj−1(ξj2) sj(ξj2)






,

where

vi−1(ξi1) = (9 + 4
√
3)/18 , vi−1(ξi2) = (9− 4

√
3)/18, (2.54)

vi(ξi1) = (9− 4
√
3)/18 , vi(ξi2) = (9 + 4

√
3)/18, (2.55)

si−1(ξi1) = (3 +
√
3)/36 , si−1(ξi2) = −(3−

√
3)/36, (2.56)

si(ξi1) = (3−
√
3)/36 , si(ξi2) = −(3 +

√
3)/36. (2.57)

2.4.3 Domain Decomposition

Since the majority of the change in our solution over time occurs near r = 0, it is highly beneficial

to take advantage of a non-overlapping domain decomposition. In this way, we are able to choose

a fine grid spacing scheme near r = 0, where the solution is the steepest, while choosing a coarse

grid spacing scheme on the remainder of the domain.

Due to the symmetry in our initial condition, we discuss our method of domain decomposition

in one spatial variable and assume that the extension of the decomposition algorithm to the two-

31

dimensional problem is clear. If we let J be the number of subdomains of Ix, we can begin by

defining {x∗j}Jj=0 to be a coarse grid partition, not necessarily uniform, of Ix. That is,

0 = x∗0 < x∗1 < . . . < x∗J−1 < x∗J = 1.

Let us denote by Mj , for j = 1, . . . , J , the space of Hermite piecewise cubic polynomials on the

interval [x∗j−1, x
∗
j]. We represent the set of Gauss points on the domain Ix that lie in the interval

[x∗j−1, x
∗
j] by Gג

x.

We can define u
∗(j)
h , v

∗(j)
h , and w

∗(j)
h on each of the J subdomains to satisfy the following problems

Lu
∗(j)
h (ξx) = f(ξx), ξx ∈ Gג

x, (2.58)

u
∗(j)
h (x∗j−1) = 0, u

∗(j)
h (x∗j) = 0,

Lv
∗(j)
h (ξx) = 0, ξx ∈ Gג

x, (2.59)

v
∗(j)
h (x∗j−1) = 1, v

∗(j)
h (x∗j) = 0,

Lw
∗(j)
h (ξx) = 0, ξx ∈ Gג

x, (2.60)

w
∗(j)
h (x∗j−1) = 0, w

∗(j)
h (x∗j) = 1.

Then the solution uh(x) on the entire interval [x∗j−1, x
∗
j] can be defined by

uh(x) = u
∗(j)
h (x) + uh(x

∗
j−1)v

∗(j)
h (x) + uh(x

∗
j)w

∗(j)
h (x), (2.61)

for j = 1, . . . , J , where f(ξx) is the exact second derivative of u at the Gauss points in ξ̂x.

32

The problem (2.58) solves for the interior points on the jth subdomain [x∗j−1, x
∗
j], while (2.59)

accounts for the left endpoint of the subdomain and (2.60) accounts for the right endpoint of the

subdomain. To satisfy the condition that the solution uh is continuously differentiable on its entire

domain, the following condition must hold

u′h(x
∗+
j) = u′h(x

∗−
j), for j = 1, . . . J − 1.

That is, there must be continuity across neighboring endpoints of each pair of subdomains. Now,

we must solve for the endpoints of each subdomain, uh(x
∗
j−1) and uh(x

∗
j). We solve the tridiagonal

system

TU∗
h = η∗

to solve for these subdomain endpoints. By using the continuity condition (2.4) and the form of

the solution (2.61) we build the matrix T to be





































w
′(1)
h

(x∗

1)− v
′(2)
h

(x∗

1) −w
′(2)
h

(x∗

1)

v
′(2)
h

(x∗

2) w
′(2)
h

(x∗

2)− v
′(3)
h

(x∗

2) −w
′(3)
h

(x∗

2)

· · · · · · ·

· · · · · · ·

· · · · · · ·

v
′(J−2)
h

(x∗

J−2) w
′(J−2)
h

(x∗

J−2)− v
′(J−1)
h

(x∗

J−2) −w
′(J−1)
h

(x∗

J−2)

v
′(J−1)
h

(x∗

J−1) w
′(J−1)
h

(x∗

J−1)− v
′(J)
h

(x∗

J−1)





































.

The vector

U∗
h =

(

uh(x
∗
1), uh(x

∗
2), . . . , uh(x

∗
J−2), uh(x

∗
J−1)

)T

33

stores the endpoints of each subdomain and

η∗ =

























u
′(2)
h (x∗1)− u

′(1)
h (x∗1)

u
′(3)
h (x∗2)− u

′(2)
h (x∗2)

...

u
′(J−1)
h (x∗J−2)− u

′(J−2)
h (x∗J−2)

u
′(J)
h (x∗J−1)− u

′(J−1)
h (x∗J−1)

























stores the difference between neighboring endpoints of each pair of subdomains.

To show the effectiveness of implementing domain decomposition, we conduct a short experiment

approximating the function u for

L2
xu(x) = u′′(ξx), (2.62)

where u′′(ξx) is known explicitly. We will be approximating the Guassian initial condition used for

the lab case on the domain [0, 1] centered at x = 0.5. We first approximate the solution to (2.62)

with 20 nodes on an uniformly spaced mesh for the domain [0, 1]. We then split the domain into

five equal subdomains and approximate the solution. We refer to these subdomains as d1 = [0, .2],

d2 = [.2, .4], d3 = [.4, .6], d4 = [.6, .8], and d5 = [.8, 1], where [0, 1] is made up of the union

of d1, . . . , d5. Using domain decomposition, we can choose the number of nodes to place in each

subdomain. Since the majority of the steepness occurs in the center of the domain, we assign the

20 nodes in the following way: one node in the outer subdomains d1 and d5 where the function

is relatively flat, five nodes in subdomains d2 and d4, and eight nodes in the center subdomain d3

where the function is the steepest.

We begin by displaying the three different node-spacing schemes. Figure (2.3) plots

• 20 equidistant nodes on a domain with no subdomains,

• 20 equidistant nodes placed into subdomains d1, . . . d5 using the described placement scheme

34

No domain decomposition

5 subdomains

Chebyshev nodes

Figure 2.3: Spacing of three different spatial schemes.

• 20 Chebyshev nodes given by (2.30).

We can see clearly that the spacing with five subdomains clusters the nodes in the center of the

domain, while the Chebyshev nodes are clustered near the boundary.

In Figure (2.4), we plot the exact solution and the OSC approximation using a uniform mesh as

well as with domain decomposition. We include an approximation using the Chebyshev Spectral

method for comparison. Since OSC takes advantage of 2(N+1) gauss nodes on the spatial domain,

we choose 2(N + 1) Chebyshev nodes to make an accurate comparison.

While both OSC approximations use the same amount of nodes, we can see in Figure (2.5) that the

error using this five-subdomain decompostion is much lower than that for the equidistant nodes.

Furthermore, the OSC approximation using domain decomposition has less error than the higher-

order Chebyshev Spectral method. We see that the maximum relative error for the OSC uniform

mesh is approximately 0.0273, while the maximum relative error using OSC subdomains is 0.0018.

The maximum relative error for the Chebyshev Spectral method is 0.0039. It is of particular

importance to point out that the error for OSC with domain decomposition is much more evenly

distributed throughout the domain than the other two methods.

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

0

1000

2000

3000

4000

5000

6000

x

u
(x

)

Exact solution

OSC domain decomposition

OSC no domain decomposition

Chebyshev Spectral

Figure 2.4: Approximations to (2.62) using OSC on a uniform mesh, OSC with domain decompo-

sition, and the Spectral method on Chebyshev nodes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

x

e
rr

o
r

Relative error

OSC no domain decomposition

OSC domain decomposition

Chebyshev Spectral

Figure 2.5: Comparison of error in approximations to (2.62) using OSC on a uniform mesh, OSC

with domain decomposition, and the Spectral method on Chebyshev nodes.

For this particular experiment with N = 20, five subdomains was optimal. However, when the

domain, the number of nodes, and the function changes it is suggested that experiments be run to

determine the optimal number of subdomains.

36

CHAPTER 3: ERROR AND EFFICIENCY

3.1 Spatial Approximation of Derivatives

Numerically solving (2.13) requires the spatial approximation of first and second derivatives. We

run experiments to compare the approximation of the second derivative of the initial condition. We

claim that this is important because we generally run short-time experiments which means we do

not expect the approximations to change much from the initial condition. Furthermore, due to the

diffusive nature of our problem, the approximation is the steepest at the initial condition.

As presented in Sections 2.2-2.4, we have set up three spatial discretization methods for our prob-

lem. When approximating the second derivative of a Gaussian, all three methods generally attain

increasingly accurate results when the number of nodes, N, is increased. We show this in Figure

(3.1) by calculating the relative error using

error =
1

‖pxx‖∞
‖pxx −D2p‖∞, (3.1)

where the differentiation matrix D2 approximates the second derivative using Finite-Differences,

Orthogonal Spline Collocation, or a Chebyshev Spectral method. Even when approximating

derivatives of a non-steep Gaussian, we see large values in the second derivative. For example,

when Thrust= 1 and σ = 0.3, the maximum value of the second derivative of the Gaussian reaches

over 560. It is not feasible to calculate relative error component-wise since the exact second deriva-

tive contains zero values. However, it can be shown that the maximum error between the exact and

approximate second derivatives occurs when the exact second derivative is the greatest. This can

be seen in Figure (2.5) from Section 2.3. So, by dividing by ‖pxx‖∞ in (3.1), we achieve a relative

error that is extremely useful when analyzing steeper cases with larger values.

37

10
1

10
2

10
3

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

log(N)

lo
g

(e
rr

o
r)

Error as N increases

FD

OSC

SPECTRAL

Figure 3.1: Approximation of the second derivative of the 1D Gaussian initial condition, p0 =
Ee(−x2/σ2), with Thrust = 1, σ = 0.3.

By plotting both the error and the number of nodes using a log scale, we see that the Finite-

Difference method has a slope of 2 which is consistent with its second-order convergence property.

We also see that OSC has a slope of 3. This convergence rate is consistent with similar experiments

run in [2]. We expect to see a convergence of O(N−N) for the Spectral method, however, since we

are approximating the second derivative with D2 = D ·D, we loose some accuracy. This O(N−N)

accuracy can be acheived for the second derivative approximation by using recurrance formulas to

build the Chebyshev Spectral second derivative matrix found in [23].

It is overwhelmingly clear from Figure (3.1) that the Chebyshev Spectral method can quickly attain

much better accuracy than both the finite-difference method and OSC. With 90 nodes, we can

approximate the second derivative of a non-steep Gaussian with nearly 10−13 accuracy using the

Spectral method, while OSC yields an accuracy of 10−3 and the finite-difference yields an accuracy

of 10−2. Since the Chebyshev Spectral method uses the Chebyshev nodes that are clustered on the

boundaries, we expect this method to perform worse with fewer nodes, in this case when N < 14,

than the Finite-Difference method and OSC where the nodes are evenly distributed throughout the

38

10
2

10
3

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

log(N)

lo
g

(e
rr

o
r)

Error as N increases

FD

OSC

SPECTRAL

Figure 3.2: Error when approximating the second derivative of the steep 1D Gaussian initial con-

dition, p0 = Ee(−x2/σ2), with Thrust = 45.5, σ = 0.03.

domain. This is especially evident for a Gaussian function where the majority of the change occurs

in the center of the domain.

In order to run simulations that represent our physical model, it is necessary to approximate these

derivatives when the function is much more steep. We show our results for error under these

extreme conditions in Figure (3.2).

As expected, both of our methods require more nodes to achieve acceptable accuracy for this

approximation. Now, in order to achieve accuracy of 10−13 using the Spectral Method, we must

use nearly 800 nodes.

3.2 Linear Problem

Now that we have an idea of how well the different spatial discretizations perform for our ini-

tial condition, we couple these methods with our ADI time-stepping scheme to simulate time-

39

evolution. In order to analyze and compare the ability of the different methods, we look at their

ability to approximate the solution to the linear problem for which we have an exact solution. That

is, we seek approximations to the linear 2D heat equation problem in Cartesian coordinates with

homogeneous Dirichlet boundary conditions

ut = uxx + uyy,

u(x0, y, t) = 0, u(x, y0, t) = 0,

u(xNx
, y, t) = 0, u(x, yNy

, t) = 0,

u(x, y, t0) = E cos
(π

2
x
)

cos
(π

2
y
)

, (3.2)

where the amplitude E is calculated the same as for the Gaussian initial condition given by (1.6).

We choose this initial condition so that our problem is symmetric about (x, y) = (0, 0) and has

zero values on the boundaries for the domain [−1, 1] × [−1, 1]. This problem is well studied and

the exact solution is easily derived to be

u(x, y, t) = E cos
(π

2
x
)

cos
(π

2
y
)

e−
π2

2
t. (3.3)

We compare approximations to the solution of (3.2) using the following methods

1. Backward in time, FD in space (BT-FD)

2. ADI in time, FD in space (ADI-FD)

3. ADI in time, OSC in space (ADI-OSC)

4. ADI in time, Chebyshev Spectral in space (ADI-Spectral).

First we present the behavior of the diffusion in the approximation using the ADI-Spectral method.

Figure (3.3) shows the evolution of the approximation to (3.2) over time.

40

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2

xy

P
(x

,y
)

(a) Initial Condition

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2

xy

P
(x

,y
)

(b) After 100 timesteps

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.5

1

1.5

2

xy

P
(x

,y
)

(c) After 500 timesteps

Figure 3.3: ADI-Spectral Approximation of (3.2) with E = 2, Nx = Ny = 31, dt = 0.001,

Tf = 0.5.

We now compare all four methods’ ability to approximate the solution to (3.2) as a function of the

number of spatial nodes, Nx and Ny. We run the simulation using each of the four methods for

increasing values of Nx and Ny and calculate the error using (3.1). We illustrate this error as a

function of Nx in Figure (3.4).

Since the BT-FD and ADI-FD methods use the same spatial approximation, we see that the error

using both methods overlap. It is clear from Figure (3.4) that the ADI-Spectral method performs

the best for this type of problem. We see that with just 14 nodes, the ADI-Spectral method solves

(3.2) with accuracy of 10−12.

We also show accuracy of our approximation as a function of the time-step size. We show that the

ADI method attains second-order convergence with respect to time, while the explicit backward in

time method used by [19] has only first-order. This is illustrated in Figure (3.5).

41

10
0

10
1

10
2

10
−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

log(N)

lo
g

(e
rr

o
r)

Absolute error for linear 2D heat equation

BT−FD

ADI−FD

ADI−OSC

ADI−Spectral

Figure 3.4: Error in approximation to (3.2) for varrying values of Nx and Ny. Parameters used are

dt = 0.0001, Tf = 0.002, E = 2.

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

log(dt)

lo
g
(e

rr
o
r)

Absolute error for linear 2D heat equation

BT−FD

ADI−OSC

ADI−Spectral

Figure 3.5: Error in approximation to (3.2) for varrying values of dt. Parameters used are Nx =
Ny = 37, Tf = 0.032, E = 2.

42

Table 3.1: A comparison of error and runtime for the linear problem (3.2).

Relative Error Runtime (s)

N ADI-FD ADI-OSC ADI-Spectral ADI-FD ADI-OSC ADI-Spectral

4 1.1436 · 10−2 4.0363 · 10−3 1.061 · 10−2 0.02764 0.02567 0.02686

8 6.040 · 10−3 7.677 · 10−4 4.741 · 10−6 0.05738 0.05714 0.06092

16 3.061 · 10−3 6.446 · 10−5 3.599 · 10−9 0.14484 0.15152 0.17605

32 1.535 · 10−3 4.219 · 10−6 7.199 · 10−9 0.47324 0.50055 .50713

64 7.683 · 10−4 3.099 · 10−7 1.440 · 10−8 2.6897 3.0644 3.1568

128 3.842 · 10−4 6.136 · 10−8 2.880 · 10−8 23.713 24.711 26.237

Table 3.1 shows a comparison of runtime1 and accuracy for the ADI-FD, ADI-OSC, and ADI-

Spectral methods as a function of the number of spatial nodes, N . For simplicity, we run these

experiments on a uniform mesh where Nx = Ny. The runtime as a function of N is similar for

all three methods, but we can see that we get the best error using the Chebyshev Spectral spatial

discretization which is consistent with Figure (3.4). We also see that there is a point at which the

error using the Spectral method no longer improves as N increases. This is interesting because

while the OSC method does not initially attain as low an error as the Spectral method, it continues

to improve as N increases. Furthermore, we see that when N = 128, the OSC method actually

attains an error on the same order of magnitude as the Spectral method.

3.3 Nonlinear Simultations

Results from approximations of the linear problem (3.2) lead us to believe that the ADI-Spectral

method attains the most accuracy and efficiency for approximating the nonlinear problem (2.13).

Figure (3.6) shows the ADI-Spectral method’s approximation after 1000 timesteps.

1In order to get a good estimate of runtime using MatLab, the time was calculated for five experiments and the

average time is presented.

43

We must first point out that while using the Spectral method for spatial discretization provides

the best results for both accuracy and efficiency, we see that too large of a time-step causes the

exponential growth of small errors [21]. It has been shown empircally in [21] that stability in

solving the 2D linear equation (3.2) using the Chebyshev Spectral method requires the following

restriction on the timestep

∆t < 6.6(∆x)2,

where we are assuming that ∆x ≤ ∆y.

−4

−2

0

2

4

0

1

2

3

4
0

0.2

0.4

0.6

0.8

1

r

Initial Condition

z

P
(r

,z
)

−4

−2

0

2

4

0

1

2

3

4
0

0.2

0.4

0.6

0.8

1

r

ADI−Spectral Final approx

z

P
(r

,z
)

Figure 3.6: ADI-Spectral approximation to the nonlinear problem (2.13). Parameters are Nr = 51,

Nz = 21, dt = 0.0004, Tf = .4, E = 1, σ = 1.

In order to make a connection between our results and the realistic experiments, we point out

that the boundary z = 0 in Figure (3.6) represents the surface of the granular medium, while

z = 4 represents the bottom. We see that over time the pressure spreads through the regolith while

maintaining constant pressure at the top boundary. This constant pressure at z = 0 is achieved

with the Dirichlet boundary condition. This can be better understood with the help of contour plots

displayed in Figure (3.7).

44

r

z

Initial Condition

−2−1012

0

0.5

1

1.5

2

r

z

200 Timesteps

−2−1012

0

0.5

1

1.5

2

r

z

400 Timesteps

−2−1012

0

0.5

1

1.5

2

r

z
600 Timesteps

−2−1012

0

0.5

1

1.5

2

r

z

800 Timesteps

−2−1012

0

0.5

1

1.5

2

r

z

1000 Timesteps

−2−1012

0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.7: ADI-Spectral approximation to the nonlinear problem (2.13) for varrying final times.

Parameters are Nr = 51, Nz = 21, dt = 0.0004, E = 1, σ = 1.

45

We present error plots in the Section 3.2 to show the order of convergence in time for the linear

problem (3.2). However, no extrapolation to account for nonlinear terms was necessary for the

approximation of solutions to (3.2). Therefore, we plot the the temporal error for our nonlinear

method which requires extrapolation in Figure (3.8). While we have no exact solution to compare

with our final approximations, we can make use of the Richardson error estimate

u− U(
1

2
∆t) ≈ 1

2p − 1
(U(

1

2
∆t)− U(∆t)), (3.4)

where u is the unknown exact solution, and p is the order of the discretization method. Here we

have that Un(∆t) = U(x, y, tn), where tn − tn−1 = ∆t. From (3.4), we can make the comparison

∥

∥Un (∆t)− Un
(

1
2
∆t

) ∥

∥

∥

∥Un
(

1
2
∆t

)

− Un
(

1
4
∆t

) ∥

∥

(3.5)

and see a slope of p for each method when plotted on a loglog scale.

Using this analysis, Figure (3.8) shows the error in time for the BT-FD, ADI-FD, and ADI-Spectral

methods. We can see that the BT-FD method is first-order in time and the ADI-FD and ADI-

Spectral methods are both second-order. However, since the Spectral Method converges much

faster than the Finite Difference method, we have that the Richardson error for the ADI-Spectral

method is lower than that of the ADI-FD method.

Figure (3.9) shows the values of the pressure for different layers under the center of the jet nozzle.

By P (0, j) we denote the jth layer of pressure directly underneath the point where r = 0. Tracking

the values at each of these layers over time shows us that the layers closer to the surface reach a

steady state very quickly. This characteristic is consistent with experimental results where the

formation of a crater happens very quickly and does not undergo much change once it is created.

This serves as motivation to run short time simulations.

In Figure (3.10), we display the contour plots for the nonlinear problem using both the ADI-FD

46

10
−7

10
−6

10
−5

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

log(dt)

lo
g
(e

rr
o
r)

ADI−Spectral

ADI−FD

BT−FD

Figure 3.8: Richardson error in time for approximation of the nonliner problem (2.13). Parameters

are Tf = 0.001, Nr = 51, Nz = 21, E = 1.

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T

P

P(0, 1)

P(0,2)

P(0,3)

P(0,4)

P(0,5)

P(0,6)

P(0,7)

Figure 3.9: Pressure values at varrying layers below the jet nozzle tracked over time.

47

and ADI-Spectral methods after 1000 timesteps. We note that the two methods compare fairly

well except for layers near the boundary where z = 0. Since the Chebyshev Spectral method is

implemented on the Chebyshev nodes that are clustered near the boundaries, we get a smoother

and more accurate approximation at the z = 0 boundary. This is displayed in the figure.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

ADI−Spectral

ADI−FD

Figure 3.10: Comparison between ADI-FD and ADI-Spectral for the nonlinear problem.

We now wish to see the difference in the approximations for the two experiments presented in Sec-

tion 1.1. Until now, all simulations have been implemented for the scaled case. Figures (3.11) and

(3.12) present different views for the results for both experiments. In Figure (3.11), we show the

final approximation of the pressure in the lunar case after 42 seconds and the final approximation

of the pressure in the lab case after just 0.00096 seconds. Such a large difference in final times

arises from the change of variables presented in Section 1.1. If we let TN be the final time for our

simulations and tp be the physical time in reality, we have that

TN = βtp,

48

where β =
2ǫηr20
κp0

. According to the values in Table (1.1), we have that

βlab ≈ 4.67× 10−3,

βlunar ≈ 4.16× 103,

where βlab and βlunar are the values for β according to both the lab case and the lunar case, respec-

tively. For example, if we let TN = 0.01 for the lunar case, we are simulating the approximation

after about 42 seconds. In order to approximate the pressure for the lab case after 42 seconds,

we would need TN = 8907. With a small time-step size of 0.001, which is necessary to ensure

accuracy, we see that this type of experiment is not easily run.

Our main goal is to reproduce the experimental cratering results for both cases. No cratering

occured in the lunar case, and a crater was definitely formed in the lab case. We claim that these

results are consistent with our simulations, despite the difference in final times. It makes sense that

the pressure is not as extreme in the lunar case, even after a longer period of time. Results from this

simulation for 42 seconds show very little change in the pressure within the medium. Similarly,

by showing such an extreme change in the pressure for the lab case after only a short time, we can

easily see how cratering will occur.

Figure (3.12) displays this even more clearly. If we pay close attention to the boundary z = 0,

which represents the surface of the medium, we can see a very large difference in the behavior of

the lunar case when compared to that of the lab case. Since we have shown that a steady state is

reached after a short amount of time, see Figure (3.9), we can assume that the results in the lunar

case remain smooth and relatively unchanging as time evloves further. Overall, we claim that these

preliminary results are consistent with the experimental results for both cases.

49

−3

−2

−1

0

1

2

3

0

0.5

1

1.5

2

2.5

3

0

500

1000

1500

2000

2500

xy

P
(x

,y
)

(a) Lunar

−0.06

−0.04

−0.02

0

0.02

0.04

0

0.01

0.02

0.03

0.04

0.05

0.06

0

0.5

1

1.5

2

2.5

3

x 10
4

xy

P
(x

,y
)

(b) Lab

Figure 3.11: Approximations of pressure for the nonlinear problem (2.13) for both the lunar and

lab case.

50

x

y

−3−2−10123

0

0.5

1

1.5

2

2.5

3

500

1000

1500

2000

2500

(a) Lunar

x

y

−0.06−0.04−0.0200.020.040.06

0

0.01

0.02

0.03

0.04

0.05

0.06

0.5

1

1.5

2

2.5

x 10
4

(b) Lab

Figure 3.12: Contour plots for approximations of pressure for the nonlinear problem (2.13) for

both the lunar and lab case.
51

CHAPTER 4: CONCLUSIONS AND FUTURE WORK

4.1 Conclusions

We have presented an Alternating-Direction Implicit temporal scheme for both the linear problem

(3.2) and the nonlinear Porous Medium Equation (1.7). We have compared this ADI method with

a Backward-Euler scheme to show increased accuracy, and have discussed the advantages of using

this type of scheme over a Crank-Nicholson scheme. Results using a Richardson error estimate

for this time discretization are presented for both the linear and nonlinear problems in Sections 3.1

and 3.2, which both show the second-order accuracy of the ADI method in time.

We also presented three spatial discretization methods to solve our problem. We presented the

second-order Finite Difference method, the fourth-order Orthogonal Spline Collocation Method,

and the N th-order Chebyshev Spectral method. Results for all three methods coupled with and

ADI time-stepping scheme are compared in Section 3.1 for the linear problem. These results show

that the Spectral method attains the best accuracy. We implement this ADI-Spectral method for the

nonlinear case and compare it to the ADI-FD method and also the Backward Euler method used

by [19].

Experiments were run to simulate the pressure for the case where a crater was formed in a lab at

KSC and for the case from a lunar mission where no cratering occurred. Our preliminary simula-

tion results using the ADI-Spectral method agree with the results from these two cases.

4.2 Improved Efficiency

One elegant property of our problem is the presence of symmetry about the point (0, 0). In our

simulations, we do not take advantage of this symmetry with respect to r due to a singularity which

52

appears when r = 0. By implementing our problem on the domain [−1, 1]× [0, 1], we do not need

to worry about problems arising from this singularity. However, we can with some ease derive

an equation that is consistent with the order of convergence for the spatial discretization of choice

to use for the layer where r = 0. By using half of the domain in the r− dimension, we can use

half as many nodes to attain the same amount of accuracy. On our current domain, the Chebyshev

nodes in the r−dimension are clustered near the boundaries where the function is relatively flat.

By chopping the r−domain in half, we are able to take advantage of the clustering nature of the

Chebyshev nodes at the boundary for r = 0 where the function is the steepest.

This type of technique was derived and implemented in [19] where pressure was simulated over

the domain [0, 1] × [0, 1]. They make a second-order approximation to account for the singularity

at the axis of symmetry that is consistent with the second-order finite-difference method used in

their model. We present the derivation of this approximation to serve as an example for what will

be done for higher-order discretizations.

A different approximation for
1

r

∂

∂r

(

r
∂p

∂r

)

must be made to account for r = 0. We begin by

taking a Taylor series expansion of pr(r, z, t) about the point r = 0 and by assuming that there is

no flow of gas across this boundary, that is
∂p

∂r
= 0 when r = r1,

pr(r, z, t) = pr(0, z, t) + rprr(0, z, t) +
r2

2
prrr(0, z, t) + . . .

= rprr(0, z, t) +
r2

2
prrr(0, z, t) + . . . ,

since pr(0, z, t) = 0. Then we can write

1

r

∂

∂r

(

r
∂p

∂r

)

=
1

r

∂

∂r

(

r2prr(0, z, t) + . . .
)

=
1

r
(2rprr(0, z, t) + . . .

= 2prr(0, z, t) +

53

Next we consider the the Taylor expansion

p(∆r, z, t)− p(0, z, t) =
∆r2

2
prr(0, z, t) + (4.1)

This implies that

prr(0, z, t) ≈
2

∆r2

(

p(∆r, z, t)− p(0, z, t)

)

. (4.2)

By combining (4.2) with the approximation
1

r

∂

∂r

(

r
∂p

∂r

)

≈ 2prr(0, z, t), it follows that

1

r

∂

∂r

(

r
∂p

∂r

)

≈ 4

∆r2

(

p(∆r, z, t)− p(0, z, t)

)

, (4.3)

when r = 0. Representing this in discretized form, we can write

P n+1
0,j = P n

0,j+M

[

(P 2
0,j+1)

n−2(P 2
0,j)

n+(P 2
0,j−1)

n

]

+4M

[

(P 2
1,j)

n−(P 2
0,j)

n

]

, for j = 1, . . . , Nz.

(4.4)

Since our ADI-FD method is of second order in space, we can implement this second-order

treatment of the boundary to approximate the solution to the nonlinear problem on the domain

[0, 1]× [0, 1]. Results are shown in Figure (4.1).

4.3 OSC for Nonlinear Problem

The results in this thesis show that the ADI-Spectral method performs better than the ADI-FD and

ADI-OSC methods for our problem. However, we showed in Section 2.4.3 that we can achieve as

good an approximation with the OSC method if we utilize the domain decomposition algorithm

presented. One particular benefit of using OSC over Spectral differentiation is the almost block

diagonal (ABD) form of the OSC differentiation matrices versus the non-sparse Spectral matrices.

We can take advantage of this form by using an ABD solver which will increase efficiency while

54

0

1

2

3

4

0
1

2
3

4
0

0.5

1

1.5

2

x

Initial Condition

y

P
(x

,y
)

0

2

4

0
1

2
3

4
0

0.5

1

1.5

2

x

Final approx

y

P
(x

,y
)

Initial Condition

x

y

00.511.522.53

0

0.5

1

1.5

2

2.5

3

Final approx

x

y

00.511.522.53

0

0.5

1

1.5

2

2.5

3
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 4.1: Approximation of (1.7) on [0, 1] × [0, 1] using ADI-FD. Parameters are Nr = 21,

Nz = 31, E = 2, σ = 1, dt = 0.001, Tf = 0.5.

maintaing accuracy.

55

4.4 Displacement and Cratering

Simulating the flow of gas through a permeable membrane by approximating solutions to the

Porous Medium Equation (1.5) can be extended to understand conditions for cratering. The ap-

proximations for the pressure from (1.5) can act as the body force for Navier’s equation for volume

displacement

µ∇2
v + (µ+ λ)∇(∇v) + f = 0, (4.5)

where v is the displacement vector field and µ and λ are Lamé parameters determined by the

material. The body force f = ρg +∇P is determined by the pressure, P , approximated in (1.5),

where ρ is the bulk density of the material and g is gravity.

The material constants µ, commonly known as the shear modulus, and λ can be calculated by

µ =
Ey

2(1 + wp)
, (4.6)

λ =
wpEy

(1 + wp)(1− 2wp)
. (4.7)

For these equations Ey is Young’s modulus measuring the stiffness of an elastic material while wp

is Poisson’s ratio describing the strain in the material.

Once the displacement field is known, we can perform tests to determine the limits of stability of

the regolith when rocket exhaust flows through it. In order to do so, the stress tensor must first be

calculated by

T = λ(traceEs)I + 2µEs, (4.8)

where I is the identity matrix and Es is the strain tensor given by

Es =
1

2
(∇v +∇v

T). (4.9)

56

We can now test the capability of the regolith to support the stress by whether or not it violates the

inequality

τ < c+ σd tanφ, (4.10)

where tanφ is given by the internal friction coefficient of the material, σd is any element on the

diagonal of T , and τ is any off-diagonal element of T that is in the same row as σd. The parameter

c is dependent upon the cohesion in the regolith. The failure to satisfy the condition (4.10) for

any pairing of σd and τ for any possible rotations of T means that the material fails to act like an

elastic and begins to act like a plastic. This is when cratering occurs. We have included a chart to

understand the flow of steps for the simulation and testing process.

57

Simulate pressure as a function of

time by approximating the porous

medium equation (1.10) with a set of

experimental parameters from Table 1

Calculate the body force f = ρg+∇·P

Determine displacement field by

solving the static equation for elastic-

ity (4.5) with parameters consistent

with those for pressure simulations

Calculate the strain and stress

fields given by (4.9) and (4.8)

Test the stress field for lim-

its of elastic behavior of

the medium using (4.10)

P (x, y)

f(x, y)

v(x, y)

T

58

4.5 Future Work

We now summarize the next steps to be taken to complete this project and attain the final results

we seek. These steps include

• completing the implementation of an OSC spatial discretization coupled with an ADI tem-

poral scheme for the nonlinear problem

• implementing a domain decomposition algorithm that is optimal for our problem

• deriving an appropriate 4th-order boundary condition for r = 0

• coupling our pressure results with the displacement equation (4.5) using a finite element

method presented in [24]

• running simulations for the entire model with various sets of experimental parameters to

determine the conditions under which cratering occurs

• taking advantage of the alternating nature of the ADI scheme in order to parallelize the code

• running numerical experiments in the high performance computing STOKES lab at the Uni-

versity of Central Florida’s Institue for Simulation and Training.

59

APPENDIX A: ADI-SPECTRAL METHOD

60

PME ADI Spectral.m

%% COMPUTATIONAL PARAMETERS

Nr = 3 1 ; Nz = 2 1 ;

d t = . 0 0 0 1 ; T = 300∗ d t ;

T f i n a l = c e i l (T / d t) ;

IR = eye (Nr +1) ; IZ = eye (Nz+1) ;

%% PHYSICAL PARAMETERS

sigma = 1 ; %s t a n d a r d d e v i a t i o n o f IC

E = 1 ; %a m p l i t u d e o f IC

%% SET UP MESH WITH CHEBYSHEV NODES

domainparam = 4 ; %t a k e domain o u t t o 4∗ s t a n d a r d d e v i a t i o n

r = domainparam∗ s igma ∗ cos (p i ∗ ((0 : Nr) / (Nr))) ;

r = f l i p l r (r) ; %Cheb nodes on [−4∗ sigma , 4∗ s igma]

z = domainparam∗ s igma ∗ ((cos (p i ∗ ((0 : Nz) / (Nz))) + ones (Nz +1 ,1) ’) / 2) ;

z = f l i p l r (z) ; %Cheb nodes on [0 , 4∗ s igma]

r i n v (1 : Nr +1) = 1 . / r (1 : Nr +1) ;

%% INITIAL CONDITION

f o r i = 1 : Nz+1

u (i , 1 : Nr +1)= E∗ (exp (− ((((r (1 : Nr +1)) . ˆ 2) / ((s igma) ˆ 2)) + ((z (i))

. ˆ 2) / ((s igma) ˆ 2)))) ;% + AmbPres ;

u r (i , 1 : Nr +1) = −2∗(r (1 : Nr +1)) / (s igma ˆ 2) . ∗ u (i , 1 : Nr +1) ;

u z (i , 1 : Nr +1) = −2∗(z (i)) / (s igma ˆ 2) . ∗ u (i , 1 : Nr +1) ;

u r r (i , 1 : Nr +1)= −2/(s igma ˆ 2) .∗ u (i , 1 : Nr +1) − 2∗ (r (1 : Nr +1)) / (

s igma ˆ 2) . ∗ u r (i , 1 : Nr +1) ;

u z z (i , 1 : Nr +1)= −2/(s igma ˆ 2 .) ∗u (i , 1 : Nr +1) − 2∗ (z (i)) / (s igma

ˆ 2) .∗ u z (i , 1 : Nr +1) ;

61

end

%s t o r e i n i t i a l c o n d i t i o n and d e r i v a t i v e s

g = u ; g r = u r ; g r r = u r r ; g z = u z ; g z z = u z z ;

%% CHEBYSHEV SPECTRAL DIFFERENTIATION MATRICES

[D1Z , D2Z] = cheb (z , Nz , IZ) ;

[D1R , D2R] = cheb (r , Nr , IR) ;

%% BOUNDARY CONDITIONS

D2R (1 , :) = 0 ; D2R(end , :) = 0 ; D2Z (1 , :) = 0 ; D2Z(end , :) = 0 ;

D1R (1 , :) = 0 ; D1R(end , :) = 0 ; D1Z (1 , :) = 0 ; D1Z(end , :) = 0 ;

D1R (1 , 1) = 1 ; D1Z (1 , 1) = 1 ; D1R(end , end) = 1 ; D1Z(end , end) = 1 ;

%% INITIALIZE F , P t i l d e , P t i l d e z , P ha t , P h a t r

F = (g r . ˆ 2 + g z . ˆ 2 + repmat (r i n v , Nz +1 ,1) . ∗ g .∗ g r) ’ ; %F0

P t i l d e = (g + (d t / 2) ∗ (g . ∗ g r r + g .∗ g z z + F ’)) ’ ; %P t i l d e 1 / 2

P h a t = P t i l d e ’ ;

P h a t 0 = g ; %P h a t 0

P t i l d e z = (D1Z∗ P t i l d e ’) ’ ; P h a t r = D1R∗ P ha t ’ ;

%% FIRST TIMESTEP n = 0

u o l d = g ; u = u ’ ; Q = u ;

f o r kk = 2 : Nr

P t i l d e m a t z = repmat (P t i l d e (kk , :) , Nz +1 ,1) ;

BZ = IZ + (d t / 2) ∗ (P t i l d e m a t z . ∗D2Z) ;

Q(kk , :) = (BZ∗u (kk , :) ’) ’ ;

F (kk , :) = P h a t r (kk , :) . ˆ 2 + P t i l d e z (kk , :) . ˆ 2 + . . .

r i n v (kk) ∗ (P t i l d e (kk , :) . ∗ P h a t r (kk , :)) ;

end

F (1 , :) = 0 ; F (Nr + 1 , :) = 0 ;

62

Q(end , :) = 0 ; Q (1 , :) = 0 ;

u h a l f = Q;

f o r k = 2 : Nz

P t i l d e m a t r = repmat (P t i l d e (: , k) , 1 , Nr +1) ’ ;

AR = IR − (d t / 2) ∗ (P t i l d e m a t r . ∗D2R) ;

u h a l f (: , k) = l i n s o l v e (AR, Q (: , k) + ((d t / 2) ∗F (: , k))) ;

end

Q (: , end) = 0 ;

u h a l f (: , end) =0;

u = u h a l f ;

f o r L = 2 : Nr

P t i l d e m a t z = repmat (P t i l d e (L , :) , Nz +1 ,1) ;

AZ = IZ − (d t / 2) ∗ (P t i l d e m a t z . ∗D2Z) ;

u (L , :) = l i n s o l v e (AZ, 2∗ u h a l f (L , :) ’ − Q(L , :) ’) ;

end

u o l d h a l f = u h a l f ’ ; u = u ’ ;

P t i l d e = (3 / 2) ∗u − (1 / 2) ∗ u o l d ;

P h a t = 3∗ u o l d h a l f − 2∗ P h a t 0 ; %P h a t 1 +1/2

P h a t r = D1R∗ P ha t ’ ; P t i l d e z = (D1Z∗ P t i l d e) ’ ;

%% REMAINING TIMESTEPS

f o r n = 2 : T f i n a l

u o l d = u ;

u = u ’ ;

P t i l d e = P t i l d e ’ ;

Q = u ;

f o r kk2 = 2 : Nr

63

P t i l d e m a t z = repmat (P t i l d e (kk2 , :) , Nz +1 ,1) ;

BZ = IZ + (d t / 2) ∗ (P t i l d e m a t z . ∗D2Z) ;

Q(kk2 , :) = (BZ∗u (kk2 , :) ’) ’ ;

F (kk2 , :) = P h a t r (kk2 , :) . ˆ 2 + P t i l d e z (kk2 , :) . ˆ 2 + . . .

r i n v (kk2) ∗ (P t i l d e (kk2 , :) . ∗ P h a t r (kk2 , :)) ;

end

F (1 , :) = 0 ; F (Nr + 1 , :) = 0 ;

Q(end , :) = 0 ; Q (1 , :) = 0 ;

u h a l f n e w = Q;

f o r k2 = 2 : Nz

P t i l d e m a t r = repmat (P t i l d e (: , k2) , 1 , Nr +1) ’ ;

AR = IR − (d t / 2) ∗ (P t i l d e m a t r . ∗D2R) ;

u h a l f n e w (: , k2) = l i n s o l v e (AR, Q (: , k2) +(d t / 2) ∗F (: , k2)) ;

end

u h a l f n e w (: , end) =0;

Q (: , end) = 0 ;

u = u h a l f n e w ;

f o r L2 = 2 : Nr

P t i l d e m a t z = repmat (P t i l d e (L2 , :) , Nz +1 ,1) ;

AZ = IZ − (d t / 2) ∗ (P t i l d e m a t z . ∗D2Z) ;

u (L2 , :) = l i n s o l v e (AZ, 2∗ u h a l f n e w (L2 , :) ’ − Q(L2 , :) ’) ;

end

u = u ’ ;

u h a l f n e w = u h a l f n e w ’ ;

P t i l d e = (3 / 2) ∗u − (1 / 2) ∗ u o l d ;

P h a t = 2∗ u h a l f n e w − u o l d h a l f ;

64

u o l d h a l f = u h a l f n e w ;

P h a t r = D1R∗ P ha t ’ ; P t i l d e r = D1R∗ P t i l d e ’ ;

P h a t z = D1Z∗ P h a t ; P t i l d e z = (D1Z∗ P t i l d e) ’ ;

u h a l f n e w = u h a l f n e w ’ ;

end

65

APPENDIX B: ADI-OSC METHOD

66

Heat2D linear ADI OSC.m

f u n c t i o n [] = Heat2D Linear ADI OSC

%% COMPUTATIONAL PARAMETERS

Nr = 3 1 ; Nz = 1 1 ;

d t = . 0 0 0 1 ; T = . 0 0 1 ;

T f i n a l = c e i l (T / d t) ;

%% PHYSICAL PARAMETERS

T h r u s t = 1 ;

diam = . 3 ;

s igma = diam / 2 ;

E = T h r u s t / (p i ∗diam ˆ 2 / 4) ;

%% EQUIDISTANT MESH

domparam = 4 ;

r = l i n s p a c e (−domparam , domparam , Nr +1) ; z= l i n s p a c e (0 , domparam , Nz+1) ;

h r = 2∗ domainparam / (Nr) ; hz = domparam / (Nz) ;

%% GAUSS POINTS

n o d e s g a u s s = z e r o s (Nr , 2) ;

c = r (1) ;

f o r i n d e x = 1 : Nr

n o d e s g a u s s (index , 1) = c + hr ∗(1−1/ s q r t (3)) / 2 ;

n o d e s g a u s s (index , 2) = c + hr ∗ (1 + 1 / s q r t (3)) / 2 ;

c = hr + c ;

end

r g a u s s 1 =Mat2Vec2 (n o d e s g a u s s) ;

r g a u s s =[r (1) ; r g a u s s 1 (:) ; r (end)] ’ ;

%% INITIAL CONDITION

67

f o r i = 1 : Nz+1

u (i , 1 : 2 ∗ Nr +2) = E∗ exp (−(r g a u s s (1 : 2∗ Nr +2) . ˆ 2 / s igma ˆ2 + . . .

z (i) . ˆ 2 / s igma ˆ 2)) ;

u r (i , 1 : 2 ∗ Nr +2) = −2∗(r g a u s s (1 : 2∗ Nr +2)) / (s igma ˆ 2) .∗ u (i , 1 : 2 ∗ Nr

+2) ;

u z (i , 1 : 2 ∗ Nr +2) = −2∗(z (i)) / (s igma ˆ 2) . ∗ u (i , 1 : 2 ∗ Nr +2) ;

end

u = u ’ ; u z = u z ’ ; u r = u r ’ ;

g=u ;

%% STORE DERIVATIVE VALUES IN Z

bigmat = z e r o s (2∗ (Nr +1) , 2∗ (Nz+1)) ;

b igmat (1 : 2∗ Nr + 2 , 1 : 2 : 2∗Nz+1) =u (1 : 2∗ Nr + 2 , 1 : Nz+1) ;

b igmat (1 : 2∗ Nr + 2 , 2 : 2 : 2∗Nz+2) =hz .∗ u z (1 : 2∗ Nr + 2 , 1 : Nz+1) ;

%% OSC DIFFERENTIATION MATRICES

[LR , BR] = s c r i p t L c o n c a t (hr , Nr) ;

[LZ , BZ] = s c r i p t L a l t e r n a t i n g (hz , Nz) ;

%% BUILD MATRICES FOR RHS AND LHS OF ADI METHOD

AR = BR − (d t / 2) ∗LR ; CR = BR + (d t / 2) ∗LR ;

AZ = BZ − (d t / 2) ∗LZ ; CZ = BZ + (d t / 2) ∗LZ ;

%% BOUNDARY CONDITIONS

AR(1 , 1) = 1 ; AR(end , end) = 1 ;

CR(1 , 1) = 1 ; CR(end , Nr +1) = 1 ;

AZ(1 , 1) = 1 ; AZ(end , end) = 1 ;

CZ (1 , 1) = 1 ; CZ(end , end −1)= 1 ;

%% TIME−STEPPING LOOP

u = bigmat ;

68

f o r n = 1 : T f i n a l

Q=u ;

f o r i i = 1 : 2∗Nr+2

Q(i i , :) = CZ∗u (i i , :) ’ ;

end

f o r k = 1 : 2∗Nz+2

u h a l f (: , k) = l i n s o l v e (AR, Q (: , k)) ;

end

Q = Q’ ; u h a l f = u h a l f ’ ; u = u ’ ;

f o r LL = 1 : 2∗Nz+2

Q2 (LL , :) = CR∗ u h a l f (LL , :) ’ ;

end

f o r L = 1 : 2∗Nr+2

u (: , L) = l i n s o l v e (AZ, Q2 (: , L)) ;

end

Q = Q’ ; u h a l f = u h a l f ’ ; u = u ’ ;

end

%% TRANSFORM SOLUTION FROM GAUSS POINTS TO EQUIDISTANT IN R

BR(1 , 1) = 1 ; BR(end , end) = 1 ;

f o r MM=1:2∗Nz+2

unew2 (: ,MM) = l i n s o l v e (BR, u (: ,MM)) ;

end

u f i n a l = unew2 (1 : Nr + 1 , 1 : 2 : 2∗Nz+1) ; %SKIP OVER DERIVATIVES IN Z

69

APPENDIX C: OSC MATRICES

70

OSC Matrices alternating.m

f u n c t i o n [I OSC , L1 , L2]= O S C M a t r i c e s a l t e r n a t i n g (h ,N)

% For b a s i s {v0 , s0 , v1 , s1 , . . . vn , sn }

%% NEUMANN BOUNDARY CONDITIONS

mu1 = 0 ; nu1 = 1 ; mu2 = 0 ; nu2 = 1 ;

%% VALUES FOR BLOCK COMPONENTS

a1 = 2∗ s q r t (3) ; a2 = 1 + s q r t (3) ; a3 = s q r t (3) − 1 ;

c1 = (9+4∗ s q r t (3)) / 1 8 ; c2 = (3+ s q r t (3)) / 3 6 ;

c3 = (9−4∗ s q r t (3)) / 1 8 ; c4 = (3− s q r t (3)) / 3 6 ;

%% BUILD BLOCK COMPONENTS

A = (1 / h ˆ 2) .∗ [−a1 −a2 a1 −a3 ; a1 a3 −a1 a2] ;

B = (1 / h) .∗ [−1 1 / a1 1 −1/ a1 ; −1 −1/ a1 1 1 / a1] ;

C = [c1 c2 c3 −c4 ; c3 c4 c1 −c2] ;

%% OSC MATRICES

L2 = z e r o s (2∗N+2 , 2∗N+2) ;

L1 = z e r o s (2∗N+2 , 2∗N+2) ;

I OSC = z e r o s (2∗N+2 , 2∗N+2) ;

f o r i = 1 :N

L2 (2∗ i : 2∗ i +1 , 2∗ i −1:2∗ i +2) = A;

L1 (2∗ i : 2∗ i +1 , 2∗ i −1:2∗ i +2) = B ;

I OSC (2∗ i : 2∗ i +1 , 2∗ i −1:2∗ i +2) = C ;

end

%% FIRST AND LAST ROWS TAKE IN BOUNDARY CONDITIONS

I OSC (1 , 1 : 2) =[mu1 nu1 / h] ; I OSC (end , end −1: end) =[mu2 nu2 / h] ;

L1 (1 , 1 : 2) =[mu1 nu1 / h] ; L1 (end , end −1: end) =[mu2 nu2 / h] ;

L2 (1 , 1 : 2) =[mu1 nu1 / h] ; L2 (end , end −1: end) =[mu2 nu2 / h] ;

71

OSC Matrices alternating.m

f u n c t i o n [L1 , L2 , ID OSC]= O S C M a t r i c e s c o n c a t o n a t e d (h ,N)

% For b a s i s {v0 , v1 , . . . vn , s0 , s1 , . . . , sn }

%% NEUMANN BOUNDARY CONDITIONS

mu1 = 0 ; nu1 = 1 ; mu2 = 0 ; nu2 = 1 ;

%% %% VALUES FOR BLOCK COMPONENTS

a1 = 2∗ s q r t (3) ; a2 = 1 + s q r t (3) ; a3 = s q r t (3) − 1 ;

c1 = (9+4∗ s q r t (3)) / 1 8 ; c2 = (3+ s q r t (3)) / 3 6 ;

c3 = (9−4∗ s q r t (3)) / 1 8 ; c4 = (3− s q r t (3)) / 3 6 ;

%% BUILD BLOCK COMPOENENTS

W2 = (1 / h ˆ 2) .∗[− a1 a1 ; a1 −a1] ; Z2 = (1 / h ˆ 2) .∗[− a2 −a3 ; a3 a2] ;

W1 = (1 / h) . ∗ [−1 1 ; −1 1] ; Z1 = (1 / h) . ∗ [1 / a1 −1/ a1 ; −1/ a1 1 /

a1] ;

Cw = [c1 c3 ; c3 c1] ; Cz = [c2 −c4 ; c4 −c2] ;

%% OSC MATRICES

L2 = z e r o s (2∗N+2 , 2∗N+2) ;

L1 = z e r o s (2∗N+2 , 2∗N+2) ;

I OSC = z e r o s (2∗N+2 , 2∗N+2) ;

f o r i = 1 :N

L2 (2∗ i : 2∗ i +1 , i : i +1) = W2;

L2 (2∗ i : 2∗ i +1 , (N+1)+ i : (N+1)+ i +1)= Z2 ;

L1 (2∗ i : 2∗ i +1 , i : i +1) = W1;

L1 (2∗ i : 2∗ i +1 , (N+1)+ i : (N+1)+ i +1)= Z1 ;

I OSC (2∗ i : 2∗ i +1 , i : i +1) = Cw;

I OSC (2∗ i : 2∗ i +1 , (N+1)+ i : (N+1)+ i +1) = Cz ;

end

72

%% FIRST AND LAST ROWS TAKE IN BOUNDARY CONDITIONS

ID OSC (1 , 1) = mu1 ; ID OSC (1 ,N+2) = nu1 / h ;

ID OSC (end ,N+1)= mu2 ; ID OSC (end , end) = nu2 / h ;

L1 (1 , 1) = mu1 ; L1 (1 ,N+2) = nu1 / h ;

L1 (end ,N+1)= mu2 ; L1 (end , end) = nu2 / h ;

L2 (1 , 1) = mu1 ; L2 (1 ,N+2) = nu1 / h ;

L2 (end ,N+1)= mu2 ; L2 (end , end) = nu2 / h ;

73

APPENDIX D: CHEBYSHEV SPECTRAL DIFFERENTIATION

MATRICES

74

cheb.m

f u n c t i o n [D1 , D2] = cheb (z , N, I)

% z i s t h e s p a t i a l nodes

% N i s t h e number o f s p a t i a l nodes

% I i s t h e i d e n t i t y m a t r i x

cz = [2 ; ones (N−1 ,1) ; 2] .∗ (−1) . ˆ (0 : N) ’ ;

Z = repmat (z ’ , 1 ,N+1) ; %c r e a t e s a 1xNz+1 m a t r i x w i th c o p i e s o f z ’

dZ = Z−Z ’ ; %g i v e s z e r o s a l o n g d i a g o n a l

m = (cz ∗ (1 . / (cz)) ’) . / (dZ + I) ;

m = m − d i a g (sum (m’)) ;

M = m;

D1 = M; %F i r s t d e r i v a t i v e m a t r i x

D2 = M∗M; %Second d e r i v a t i v e m a t r i x

75

LIST OF REFERENCES

[1] Aitbayev, R., & Bialecki, B. (2000). Orthogonal Spline Collocation for Nonlinear Dirichlet

Problems. SIAM Journal on Numerical Analysis, 38(5), 1582.

[2] Bialecki, B., & Fernandes, R. I. (2006). An Alternating-direction implicit orthogonal spline

collocation scheme for nonlinear parabolic problems on rectangular polygons. SIAM Journal

on Scientific Computing, 28(3), 1054.

[3] Bialecki, B., & Fernandes, R. I. (2009). An Alternating-direction implicit backward differ-

entiation orthogonal spline collocation method for linear variable coefficient parabolic equa-

tions. SIAM Journal on Numerical Analysis, 47(5), 3429.

[4] Bialecki, B., & Fairweather, G. (2001). Orthogonal spline collocation methods for partial

differential equations. Journal of Computational and Applied Mathematics, 128(1-2), 55.

[5] Bialecki, B., & Frutos, J. d. (2010). ADI spectral collocation methods for parabolic problems.

Journal of Computational Physics, 229(13), 5182.

[6] Bialecki, B., & Dryja, M. (2003). A nonoverlapping domain decomposition method for or-

thogonal spline collocation problems. SIAM Journal on Numerical Analysis, 41(5), 1709.

[7] J. P. Boyd, (1989). Chebyshev and Fourier Spectral Methods, Berline: Springer-Verlag.

[8] Bruce, G. H., Peaceman, D. W., Rachford, H. H., & Rice, J. D. (1953). Calculations of

unsteady-state gas flow through porous media. Journal of Petroleum Technology, 5(3), 79.

[9] Fairweather, G. (1978). Finite element galerkin methods for differential equations. New York:

M. Dekker.

76

[10] Fernandes, R. I. & Fairweather, G. (1993). Analysis of alternating direction collocation meth-

ods for parabolic and hyperbolic problems in two space variables. Numerical Methods for

Parial Differential Equations, 9(2), 191.

[11] Greenwell-Yanik, C. E., & Fairweather, G. (1986). Analysis of spline collocation methods

for parabolic and hyperbolic problems in two space variables. SIAM Journal on Numerical

Analysis, 23(2), 282.

[12] Kincaid, D. & Cheney, W. (2002) . Numerical analysis: mathematics of scientific computing,

Pacific Grove, Calif.: Brooks/Cole.

[13] Lou, Z., Bialecki, B., & Fairweather, G. (1998). Orthogonal spline collocation methods for

biharmonic problems. Numerische Mathematik, 80(2), 267.

[14] Metzger, P. T., Lane, J. E., Immer, C. D., & Clements, S. (2008). Cratering and blowing soil

by rocket engines during lunar landings. 6th International Conference on Case Histories in

Geotechnical Engineering.

[15] Metzger, P. T., Latta, R. C. III, Schuler, J. M., and Immer, C. D. (2008). Craters formed in

granular beds by impinging jets of gas. AIP Conference Proceedings, 1145(1), 767.

[16] Metzger, P. T., Immer, C. D., Donahue, C. M., Vu, B. T., Latta, R. C., & Deyo-Svendsen,

M. (2009). Jet-induced cratering on a granular surface with application to lunar spaceports.

Journal of Aerospace Engineering, 22(1), 24.

[17] Morton, K. W., & Meyers, D. F. (2006). Numerical Solution of Partial Differential Equations

(2nd ed.). Cambridge: Cambridge University Press.

[18] Peaceman, D. W., & Rachford, H. H. (1955). The numerical solution of parabolic and elliptic

differential equations. Journal of the Society for Industrial and Applied Mathematics, 3(1),

28.

77

[19] Scott, R. F. & Ko, H. Y. (1968). Transient rocket-engine gas flow in soil. AIAA Journal, 6(2),

258.

[20] Thomas, J. W. (1995). Numerical Partial Differential Equations. New York: Springer.

[21] Trefethen, L. N. (2000). Spectral Methods in MATLAB. Phyladelphia, PA: SIAM.

[22] Vázquez, J. L. (2007). The Porous Medium Equation mathematical theory. Oxford: Claren-

don.

[23] Welfert, B. D. (1997). Generation of pseudospectral differentiation matrics I. SIAM Journal

on Numerical Analysis, 34(4), 1640.

[24] Brennan, B. (2011). Numerical Computations for PDE models of rocket exhaust flow in soil

(Unpublished master’s thesis). University of Central Florida, Orlando, FL.

[25] Fairweather, G. (1998). Notes for a lecture on Orthogonal Spline Collocation methods. Col-

orado School of Mines, Golden, Co.

78

	Numerical Simulations For The Flow Of Rocket Exhaust Through A Granular Medium
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 History and Motivation
	1.2 Overview
	1.3 The Problem

	CHAPTER 2: DISCRETIZATION METHODS
	2.1 Explicit Finite Difference Method
	2.2 Alternating-Direction Implicit Finite Difference Method
	2.2.1 Extrapolation
	2.2.2 Implementation

	2.3 Chebyshev Spectral Spatial Differentiation
	2.3.1 Differentiation Matrices

	2.4 Orthogonal Spline Collocation
	2.4.1 Notation
	2.4.2 Collocation Matrices
	2.4.3 Domain Decomposition

	CHAPTER 3: ERROR AND EFFICIENCY
	3.1 Spatial Approximation of Derivatives
	3.2 Linear Problem
	3.3 Nonlinear Simultations

	CHAPTER 4: CONCLUSIONS AND FUTURE WORK
	4.1 Conclusions
	4.2 Improved Efficiency
	4.3 OSC for Nonlinear Problem
	4.4 Displacement and Cratering
	4.5 Future Work

	APPENDIX A: ADI-SPECTRAL METHOD
	APPENDIX B: ADI-OSC METHOD
	APPENDIX C: OSC MATRICES
	APPENDIX D: CHEBYSHEV SPECTRAL DIFFERENTIATION MATRICES
	LIST OF REFERENCES

