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ABSTRACT

We propose an exact filtered backprojection algorithm for inversion of the cone beam data

in the case when the trajectory is composed of a distorted circle and a line segment. The

length of the scan is determined by the region of interest , and it is independent of the size

of the object. With few geometric restrictions on the curve, we show that we have an exact

reconstruction. Numerical experiments demonstrate good image quality.
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CHAPTER ONE: INTRODUCTION

In practice, Computer Tomography (CT) is one of the most powerful tools in medical imag-

ing. The equipment utilizes x-rays produced from different angles. In case of a trauma, CT

can help locate multiple organs injuries. Additionally, it can be used to confirm the presence

of lesions such as cysts, solid tumors, and to determine the extent to which other organs are

affected.

From a scientific prospective, there is a complicated process that lead to the visualization

of these images. As a rough explanation, line integrals are obtained by sending an x-ray beam

through the human body. By inverting the resulting line integrals, one can reconstruct the

x-ray attenuation coefficient inside of the body. In practice, the attenuation coefficient allows

experts to make conclusions about the inner structure of the body. From a mathematical

standpoint, let us consider a beam of x-ray propagating through a medium. In our case, the

body of the patient represents the medium. Assume the velocities of the x-ray particles are

the same, and they are equal to v. Additionally, assume the collision between the particles

is neglected. The particles may collide with the fixed atoms of the medium, and in this case,

they are absorbed, provided the scattering is null.

Let ψ = ψ(x, t) be the density of the particles at the spatial location x and at the time

t. Then the transport equation is the differential form of the conservation of particles law:

∂ψ(x, t)

∂t
+ v · ∇ψ = −|v|σ(x)ψ(x, t) + q(x, t), (1.1)
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where q(x, t) is the source term, and σ(x) is the probability of absorption of the particle

at the point (x, t). Let v = |v|α, where α is the unit vector in the direction of v, and let

x = x0 + sα, be the parametric equation of the line L along which the particles propagate.

If one considers the stationary case, then equation (1.1) becomes

∂ψ(x)

∂s
= −σ(x)ψ(x) + h(x), x = x0 + sα (1.2)

In this case, h = q/|v|; it is assumed that |v| is constant and positive, and the source

term is independent of α. In x-ray transmission, ψ := I represents the intensity of the x-ray

beam, h(x) = 0 means there are no sources of the radiation inside of the body, and σ := f is

the x-ray attenuation coefficient, proportional to the density of the body. So (1.2) becomes

dI(x)

ds
= −f(x)I(x), x = x0 + sα. (1.3)

By integrating both sides of the equation along the line L,

I

I0
= exp

(

−
∫

L

f(x)dx
)

, (1.4)

where I0 is the initial intensity of the beam before entering the body, and I is the intensity

of the beam registered by the detector upon exit of the body. Therefore,

ln
I0
I

=

∫

L

f(x)dx, (1.5)
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Since I0 is known, from the observed quantity I, one can determine the line integral of f . In

this problem, the attenuation coefficient is the unknown. The CT problem is to reconstruct

the coefficient f given the set of its line integrals. This is where an exact inversion formula

is needed in order to convert the data collected from the scanners into images.
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CHAPTER TWO: RADON TRANSFORM AND ITS
INVERSION FORMULA

2.1 Definition of the Radon Transform

Let f be a function in Rn, which is integrable over all hyperplanes in Rn. The Radon

transform integrates the function f over hyperplanes. It is defined as follows:

f̂(α, p) =

∫

H(α,p)

f(x)dx, α ∈ Sn−1, (2.1)

where Sn−1 is the unit sphere in Rn, and H(α, p) = {x : x ·α = p, α ∈ Sn−1} is an hyperplane

in Rn.

As an example, figure 2.1 gives an illustration of the Radon transform in 2–D. In R2,

H(α, p) is a line. The directional vector corresponding to α is (cosα, sinα) ∈ S1. The Radon

transform of the function f i.e f̂(α, p) is the line integral of f along the line H(α, p). Even

though f̂(α, p) is defined for p ≥ 0, it can be extended to an even function due the fact that

H(−α,−p) = H(α, p). Other notations are

f̂(α, p) =

∫

Rn

f(x)δ(p− x · α)dx, (2.2)

where δ is the Dirac Delta function, and

f̂(α, p) =

∫

α⊥

f(x+ pα)dx, (2.3)

where

α⊥ = {x ∈ Rn : x · α = 0}. (2.4)

4
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Figure 2.1: The Radon Transform in R2
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2.2 The Fourier Slice Theorem

Let us introduce the Fourier transform. The Fourier transform of a function, denoted f̃ , is

defined as :

f̃(y) := F [f ](y) :=

∫

Rn

f(x) exp(ix · y)dx. (2.5)

The inverse Fourier transform is given by the following formula:

F−1[f̃ ](y) :=
1

(2π)n

∫

Rn

f(x) exp(−ix · y)dx. (2.6)

Theorem 1 (Fourier Slice Theorem) Let Fp denote the one dimensional Fourier trans-

form with respect to the second argument. Then for α ∈ Sn−1, t ∈ R,

Fp→t[f̂ ] :=

∫

∞

−∞

f̂(α, p) exp(ipt)dp = f̃(tα), (2.7)

where

f̃(tα) := (Ff)(tα) :=

∫

Rn

f(x)eitα·xdx. (2.8)

Proof:

Fp[f̂ ](α, t) =

∫

∞

−∞

exp(ipt)

∫

Rn

f(x)δ(p− α · x)dxdp

=

∫

Rn

f(x)

∫

∞

−∞

δ(p− α · x) exp(ipt)dpdx

=

∫

Rn

exp(itα · x)f(x)dx

= f̃(tα) (2.9)

�
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One can also show that the Radon transform of a convolution of two functions is the

convolution of the Radon transforms:

R[f ∗ g](ω, p) = f̂(ω, p) ∗ ĝ(ω, p). (2.10)

Whereas the convolution on the left hand side is n-dimensional, the one on the right hand

side is one dimensional, and it is performed with respect to the second argument.

2.3 3–D Radon Inversion Formula

Define C∞
0 (R3) to be the set of smooth and compactly supported functions defined on R3. If

we assume that f ∈ C∞
0 (R3), then by using the Fourier Slice Theorem, f can be computed

in the following manner:

f = F−1Ff = F−1Fpf̂ = F−1FpRf. (2.11)

If f is compactly supported, then so is Rf . If f ∈ C∞
0 (R3), then Rf ∈ C∞

0 (S2 × R). Thus,

FpRf is a well defined function of tα. Therefore, F−1FpRf is well-defined.

Theorem 2 3–D Radon Inversion Formula

For every x ∈ R3,

f(x) = − 1

8π2

∫

S2

∂2

∂p2
f̂(α, p)|p=α·xdα. (2.12)

Proof: Using the first equation in (2.11),

f = F−1Fp→tf̂ . (2.13)

7



In other words we have the following,

f(x) =
1

(2π)3

∫

R3

dα exp(−itα · x)
∫

∞

−∞

dp exp(itp)f̂(α, p). (2.14)

By using spherical coordinates, we have

f(x) =
1

8π3

∫

S2

dα

∫

∞

0

dt t2 exp(−itα · x)
∫

∞

−∞

dp exp(itp)f̂(α, p) (2.15)

=
1

8π3

∫

S2

dα

∫

∞

−∞

dpf̂(α, p)

∫

∞

0

dt t2 exp
(

− it(p− α · x)
)

(2.16)

From [10], we can recall the following identities:

∫

∞

0

tn−1eitsdt = in(n− 1)!s−n + (−i)n−1πδn−1(s)

(2.17)

Also recall that the function f̂(α, p) is even, and 1/(p − αx)n is odd for n = 3, so in the

sense of distributions [10],

∫

Sn

∫

∞

−∞

f̂(α, p)

(p− α · x)n
dpdα = 0, for n = 3. (2.18)

By using (2.17) and (2.18), we obtain the following

f(x) = − 1

8π2

∫

S2

∫

∞

−∞

f̂(α, p)δ
′′

(p− α · x)dpdα

= − 1

8π2

∫

S2

f̂
′′

(α, p = α · x)dpdα, (2.19)
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since for a compactly supported function φ,

∫

∞

−∞

φ(x)δ(n)(x− x0)dx = (−1)nφ(n)(x− x0). (2.20)

This ends the proof of the Radon inversion formula in R3. �
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CHAPTER THREE: THE CONE BEAM TRANSFORM

3.1 Definition of the Cone Beam Transform

Let f be a compactly supported C1 function in R3. Provided that f is integrable over any

straight line in R3, then the cone beam is defined to be the set of all integrals over all straight

lines in R3. Let y ∈ R3 be a point on the line l, and θ be a vector in the unit sphere S2.

Note that θ is the direction of the ray emanating from the point y. Then the cone beam

transform of f denoted by g(y, θ) is given by:

g(y, θ) :=

∫

∞

0

f(y + tθ)dt, y ∈ R3, θ ∈ S2. (3.1)

3.2 Relation between the Cone Beam Transform and the Radon Transform

In practice, the data actually measured allows the computation of the cone beam transform

of the x-ray attenuation coefficient f . It is theoretically easier to invert the Radon transform

than it is to invert the cone beam transform. This is the main reason why it is necessary

to find a relation between the two transforms. The following lemma relates the cone beam

transform and the Radon transform in Rn.

Lemma 1 Let k be a distribution on R and f ∈ C∞
0 (Rn). Suppose that k is positively

10
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y(s)

C

Figure 3.1: The Cone Beam Transform
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homogeneous of degree 1 − n i.e

k(ts) = t1−nk(s), t > 0. (3.2)

Then one has the following:

∫

R

f̂(α, p)k(p− α · y)dp =

∫

Sn−1

g(y, θ)k(α · θ)dθ (3.3)

Proof:

∫

Sn−1

g(y, θ)k(α · θ)dθ =

∫

Sn−1

∫

∞

0

f(y + tθ)t1−nk(α · θ)tn−1dtdθ (3.4)

=

∫

Sn−1

∫

∞

0

f(y + z)k(α · z)tn−1dtdz (3.5)

=

∫

Rn

f(y + z)k(α · z)dz (3.6)

=

∫

R

k(s)

∫

α⊥

f
(

(α · y + s)α+ z⊥
)

dz⊥ds (3.7)

=

∫

R

k(s)f̂(α, s+ α · y)ds (3.8)

=

∫

R

k(p− y · α)f̂(α, p)ds. (3.9)

�

Lemma 2 (Grangeat’s Formula) Let f ∈ C∞
0 (R3). Then for every θ ∈ S2,

∂

∂p
f̂(α, p)|p=y·α =

∫

S2∩α⊥

∇αg(y, θ)dθ, (3.10)

where ∇α is the directional derivative acting on the second argument of g(y, θ) in the direction

of α.

12



The proof of Grangeat’s formula relies on the previous Lemma 1.

Proof: Recall Lemma 1, and let the distribution k = δ
′

, which is homogeneous of degree

−2. Then

∫

R

f̂(α, p)δ
′

(p− y · α) = −
∫

R

∂

∂p
f̂(α, p)δ(p− y · α)dp (3.11)

= − ∂

∂p
f̂(α, p)|p=y·α (3.12)

=

∫

S2

g(y, θ)δ
′

(α · θ)dθ (3.13)

Note that for every compactly supported distribution ϕ, and α ∈ S2,

ϕ
′

(α · θ) =
∑

i

αi
∂

∂θi

ϕ(α · θ), (3.14)

so with ϕ = δ:

∫

S2

g(y, θ)δ
′

(α · θ)dθ = −
∫

S2

g(y, θ)
∑

i

αi
∂

∂θi

δ(α · θ)dθ

= −
∫

S2

∑

i

αi
∂

∂θi

g(y, θ)δ(α · θ)dθ

= −
∫

S2

∇αg(y, θ)δ(α · θ)dθ

= −
∫

S2∩α⊥

∇αg(y, θ)dθ. (3.15)

Therefore, this proves Grangeat’s formula [11]. �
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CHAPTER FOUR: GENERAL SCHEME FOR
CONSTRUCTING INVERSION ALGORITHMS FOR CONE

BEAM CT

In this chapter, an overview of the general scheme for constructing inversion algorithms for

cone beam CT is given.

4.1 General Definitions

Definition 1 Let Γ be a finite union of smooth curves in R3:

I :=
⋃

[al, bl] → R3, I ∈ s→ y(s) ∈ R3, |ẏ(s)| 6= 0 on I (4.1)

where

−∞ < al < bl <∞, ẏ(s) := dy/ds

β(s, x) :=
x− y(s)

|x− y(s)| , x ∈ R3 \ Γ, s ∈ I;

Π(x, ξ) := {z ∈ R3 : (z − x) · ξ = 0}.

Df (y, β) is the cone beam transform of f , and β(s, x) is the unit vector directed from the

source towards the reconstruction point x.

In what follows, f is assumed to be smooth and compactly supported. Additionally, f is

identically zero in a neighborhood of the trajectory.

14



Definition 2 Let x ∈ R3 and ξ ∈ R3 − {0}. The intersection points of Π(x, ξ) with Γ are

denoted y(sj) where sj = sj(ξ, ξ · x), j = 1, 2, ....

For β ∈ S2, β⊥ denotes the circle { α ∈ S2 : α · β = 0 } consisting of unit vectors

perpendicular to β. Let Crit(s, x) be the set of all directions α is in β⊥(s, x) such that

the plane Π(x, α) is tangent to Γ or contains an endpoint of Γ. Denote by Ireg the set of

all parameters s in I, for which the set Crit(s, x) is included (but not equal) in β⊥(s, x).

Finally, define Crit(x) to be the union over all s in I of all Crit(s, x). We can concisely

reformulate the definitions as:

Crit(s, x) :=
{

α ∈ β⊥(s, x) : Π(x, α) is tangent to Γ

or Π(x, α) contains an endpoint of Γ
}

,

Ireg :=
{

s ∈ I : Crit(s, x) ( β⊥(s, x)
}

,

Crit(x) :=
⋃

s∈I

Crit(s, x). (4.2)

4.2 Conditions on the trajectory

For any given x in R3, where the function f needs to be computed, the trajectory Γ must

satisfy the following main assumptions:

Property 1 (Tuy’s Completeness Condition.) Any plane through x intersects Γ at least

at one point.

Property 2 For any s ∈ Ireg(x), the number of directions in Crit(s, x) is finite.

Property 3 For any α ∈ S2 \ Crit(x), the number of points in Π(x, α) ∩ Γ is finite.
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Additionally, consider a weight function n(s, x, α), s ∈ Ireg(x), α ∈ β⊥(s, x) \ Crit(s, x).

The main assumptions on the function n are the following:

Property 4 For almost all α ∈ S2,

∑

j:y(sj)∈C∩Π(x,α)

n(sj, x, α) = 1. (4.3)

Property 5 n(s, x, α) is a piecewise constant function.

4.3 Katsevich’s General Inversion Formula

Theorem 3 For x ∈ R3,

f(x) = − 1

4π2

∫

I

∑

m

cm(s, x)

|x− y(s)|

∫ 2π

0

∂

∂q
Df (y(q), cos γβ(s, x))+sin γα⊥(s, x, θm))|q=s

dγ

sin γ
ds,

(4.4)

θ is a polar angle in the plane perpendicular to β(s, x).

α⊥(s, x, θ) := α
′

(θ) = β(s, x) × α(θ).

θm ∈ [0, π) are the points where the φ(s, x, θ) is discontinuous, and cm(s, x) are values of the

jumps:

cm := lim
ǫ→0+

(φ(s, x, θm + ǫ) − φ(s, x, θm − ǫ)). (4.5)

where the function φ is defined as follows:

φ(s, x, θ) := sgn(α · ẏ(s))n(s, x, α), α = α(θ) ∈ β⊥(s, x), (4.6)
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Figure 4.1: Illustration of the Weight Function
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Figure 4.2: Illustration of the Normalization Condition
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Proof: This result is proven in [2]. However, let us give the main points of the proof.

First define the following expression, which is similar to the 3-D Radon inversion formula,

see Equation (2.19).

Bη(f)(x) := − 1

8π3

∫

S2

∑

j

n(sj, x, α)

α · ẏ(s)

× ∂

∂s

{
∫

α⊥

∇Θ,αDf (y(s),Θ)dΘ

}

|s=sj
η(α)dα (4.7)

where ∇Θ,αDf (y(s), θ) is the derivative of Df with respect to Θ along the direction α.

Explicitly,

∇Θ,αDf (y(s),Θ) =
∂

∂t
Df (y(s),

√
1 − t2Θ + tα)|t=0,Θ ∈ α⊥ (4.8)

Consider the following expression,

1

α · ẏ(sj)

∂

∂s

{
∫

α⊥

∇Θ,αDf (y(s),Θ)dΘ

}

|s=sj
. (4.9)

Let us perform a change of variables by letting p = α · ẏ(s). Then

∂s

∂p
=

1

α · ẏ(s) (4.10)

Also, note that by Grangeat’s formula, we have the following

∫

α⊥

∇Θ,αDf (y(s),Θ)dΘ =
∂

∂p
f̂(α, p)|p=α·x, (4.11)

so

1

α · ẏ(sj)

∂

∂s

{
∫

α⊥

∇Θ,αDf (y(s),Θ)dΘ

}

|s=sj
=
∂2

∂p
f̂(α, p)|p=α·y(sj)=α·x (4.12)
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Thus

Bη(f)(x) := − 1

8π3

∫

S2

∑

j

n(sj, x, α)f̂pp(α, α · x)η(α)dα (4.13)

= − 1

8π3

∫

S2

f̂pp(α, α · x)η(α)dα (4.14)

=
1

8π3

∫

R3

f̃(ξ) exp(−ix · ξ)η
( ξ

|ξ|
)

dξ (4.15)

In the previous equations, we have used the fact that
∑

j n(sj) = 1, and the Fourier Slice

Theorem.

Another formula for Bηf(x) is derived in [2] and it is given by

(Bηf)(x) =
−1

8π2

∫

I

1

|x− y(s)| ×
∫ 2π

0

∂

∂θ
{η(α)sgn(α · ẏ(s))n(s, x, α)}

×
∫ 2π

0

∂

∂q
Df (y(q), cos γβ(s, x))

+ sin γα⊥(s, x, θ)|q=s
dγ

sin γ
dθds (4.16)

where

α(s, θ) ∈ β⊥(s, x), α⊥(s, x, θ) := β(s, x) × α(s, θ). (4.17)

Denote

φ(s, x, θ) := sgn(α · ẏ(s))n(s, x, α), α = α(s, θ) ∈ β⊥(s, x) (4.18)

As seen in the definition, the function φ depends on the signum function and on the weight

function, which is piecewise constant. Thus φ is piecewise constant with discontinuities at

θm, and the values of the jumps are denoted by cm. As a result, ∂
∂θ

in the formula for Bηf

will yield delta functions, and thus the integral with respect to θ becomes a summation over

all jumps cm. It is important to observe that, due to properties 2 and 3, the number of terms
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in the summation involved in Katsevich’s formula is finite. Katsevich’s inversion formula is

obtained by letting η → 1 and by using the Fourier inversion formula. �

As a final remark, it is important to mention that for α ∈ β⊥(s, x), the planes

Π
(

y(s), α(s, θm)
)

form the set of filtering planes for any given point (s, x). For a fixed m,

since β ⊥ α, then the integral with respect to γ in Katsevich’s Formula is confined to the

corresponding filtering plane. In practice, the intersections of such planes with the detector

is referred to as filtering lines.
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CHAPTER FIVE: THE CIRCLE AND LINE ALGORITHM

5.1 Introduction and General Settings

In practice, there are many different medical imaging devices that can collect x-ray scans.

In this research, the C-arm is the medical device that is being considered. In order to collect

x-ray scans, the operator first moves the patient along a line and subsequently rotates the C-

arm around the patient. Such a movement generates a trajectory composed of a incomplete

circle and a line (C-L trajectory), for which an inversion formula was developed in 2004 by

Katsevich. Note that the inversion formula for the C-L trajectory is a special case of the

general scheme previously studied in Chapter 4. Below are discussed the general settings of

the C-L problem.

The trajectory consists of an incomplete circle C and a line segment L attached to C.

It is assumed that C is sufficiently close to a complete circle and that L is sufficiently long.

Let y0 be the point where the circle and the line intersect. Let the following be respective

parametrizations of the line and circle, s ∈ I1 : s→ y(s) ∈ L and s ∈ I2 : s→ y(s) ∈ C.

Given a circle of radius R, assume U is an open set contained in the cylinder {(x1, x2, x3) ∈

R3 : x2
1 +x2

2 < R}. Let x be a reconstruction point in U . Consider the plane Π(x) through x

and L. Π(x) intersects the circle C at two points, one of them is y0, and the other is yC(x).

Let the line segment containing x and joining the point yC(x) to L be denoted by L1π. Then

yL(x) denotes the other endpoint of L1π(x)

There are two parametric intervals. The first one is I1(x) ⊂ I1 which corresponds to the
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Figure 5.1: Circle and Line Trajectory
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section of L between y0 and yL(x). The second interval I2(x) corresponds to the section of

the circle between y0 and yC(x). Γ1π(x) denotes the section of C
⋃

L bounded by L1π(x).

In order to utilize the result of the general scheme, we must show that for every point

x in the region of interest, the curve Γ1π(x) satisfies the conditions of the general inversion

formula.

Since Γ1π(x) is determined via the line L1π, then is is clear that any plane through x

intersects Γ1π at least once. Therefore Tuy’s completeness property is satisfied.

Consider y(s) ∈ Γ1π(x) such that y(s) /∈ {y0, yC(x), yL(x)}. First assume that the source

y(s) ∈ C. Thus if Π(x) is tangent to C, and contains either the line L1π, or the point y0,

then the vector α ∈ Crit(s, x). There are at most three such planes. Second, assume that

the source y(s) ∈ L. Then the vector α ∈ Crit(s, x) if Π(x) is tangent to C ∩ Γ1π(x) or

contains L. In this case, Π(x) also contains the line L1π. There are only two such planes.

Therefore, Property 2 is satisfied.

To show that Property 3 is satisfied, consider the intersection of planes through x with

Γ1π(x). Planes tangents to the trajectory are neglected. The number of intersection points

(IPs) is either one or three. Thus Property 3 is satisfied. In addition, there can be only one

IP on the line L.

The weight function n(s, x, α) satisfies Properties 4, and 5. Indeed, if there is only one

IP, then it is given weight 1. If there are three IPs, then the two IPs on the circle have

weight 1, and the IP on the line has weight -1.
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5.2 Katsevich’s Inversion Formula for the Circle and Line Trajectory

Theorem 4 For f ∈ C∞
0 (U),

f(x) = − 1

2π2

∫

Ik(x)

2
∑

k=1

δk(s, x)

|x− y(s)|

∫ 2π

0

∂

∂q
g(y(q),Θk(s, x, γ))|q=s

dγ

sin γ
ds, (5.1)

where

Θk(s, x, γ) := cos γβ(s, x) + sin γek(s, x), ek(s, x) := β(s, x) × uk(s, x), (5.2)

and δk is defined as follows:

δ1(s, x) = −sgn(u1(s, x) · ẏ(s)), s ∈ I1(x); δ2(s, x) = 1, s ∈ I2(x). (5.3)

Proof: A complete proof can be found in [2]. Below is a sketch of the proof. Consider

φ(s, x, θ) defined in (4.6). The purpose is to locate the jumps of the function φ. First let us

assume that the source is on the line. By projecting the curve onto the detector denoted by

DP (s), we obtain a parabola whose equation is

w = −h
2

( u2

R2
+ 1

)

. (5.4)

It is important to mention that the detector plane DP (s) contains the x3–axis and is per-

pendicular to the shortest line segment connecting the source position y(s) and the x3–axis.

The center of DP (s) is chosen to be at (0, 0, h). Finally, the first axis of DP (s) is horizontal

and the second axis is vertical. See Figure 5.2 for illustration.

Refer to figure 5.3 for the following discussion. We find θ1 such that Π(s, θ1) contains the

reconstruction point x and the line L. In orther words, ẏ(s) ⊥ α(θ1). Since α− · ẏ(s) < 0 and

α+ · ẏ(s) > 0, then we respectively have sgn(α(θ−) · ẏ(s)) = −1 and sgn(α(θ+) · ẏ(s)) = 1.
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Figure 5.2: Projection when the source is located on the line
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Figure 5.3: Projection when the source is located on the line
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The number of IPs of Π(s, x, θ) with the C-L trajectory changes from 3 to 1 between α− and

α+. Consequently,

n(s, x, α−) = −1, n(s, x, α+) = 1. (5.5)

It is also important to mention that the signum function jumps from -1 to 1. Consequently,

the function φ is continuous across θ = θ1. Indeed, depending on the direction of ẏ(s), we

either have

φ(s, x, θ−) = φ(s, x, θ+) = 1. (5.6)

or

φ(s, x, θ−) = φ(s, x, θ+) = −1. (5.7)

Therefore, the function φ is continuous regardless of the direction of ẏ(s).

Now let us find θ2 s.t Π(s, θ2) is tangent to C at some y(st) where st ∈ I2. The number

of IPs varies from 1 to 3 with a jump from n(s, x, α−) = 1 to n(s, x, α+) = −1 on the line.

Therefore,

[φ(s, x, θ)]θ=θ2
= −2 sgn(α · ẏ(s)), (5.8)

where −2 is the value of the jump.

Next, we assume that the source is on the circle as illustrated in Figure 5.4.

We find θ1 s.t Π(s, θ1) contains y0, θ2 s.t Π(s, θ2) contains L1π, and θ3 s.t Π(s, θ3) is

tangent to C at some point y(st), where st ∈ I2. In these conditions, n(s, x, θ) = 1, for all

θ. Thus, only the signum function will create jumps. As a fact, sgn(s, x, α−) = −1 and
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Figure 5.4: Projection when the source is located on the circle
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sgn(s, x, α+) = 1. This indicates a jump whose value is 2. Thus, we have the following

[φ(s, x, θ)]θ=θ3
= 2, s ∈ I2. (5.9)

Also note that by construction sgn(α(θ) · ẏ(s)) is continuous across θ1 and θ2.

By using the above results, an inversion formula for the C-L can be formulated. Given

a point y(s) on the line, find the plane P1 passing through x and y(s), and tangent to C at

some point y(st). Define the vector

u1(s, x) :=
(y(st) − y(s)) × β(s, x)

|(y(st) − y(s)) × β(s, x)| , x ∈ U, s ∈ I1(x). (5.10)

Pick a point y(s) on the circle, and let P2 be the plane containing the point x and tangent

to the trajectory at y(s).

Define the vector

u2(s, x) :=
ẏ(s) × β(s, x)

|ẏ(s) × β(s, x)| , x ∈ U, s ∈ I2(x). (5.11)

Note that the vector u1 and u2 are orthogonal to P1 and P2 respectively. Katsevich’s

reconstruction formula (5.1) − (5.3) can thus be obtained from (5.8) − (5.11).

�
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CHAPTER SIX: THE DISTORTED CIRCLE AND LINE
ALGORITHM

6.1 Motivation and Research Outline

As mentioned in the previous chapter, the circle and line source trajectory is obtained by

moving the patient along a line and by rotating the C-arm, which is a common X-ray device

that can collect cone beam data. In practice, due to the heavy weight of the C-arm, the

presumed circular trajectory of the C-arm is frequently perturbed. It is important to mention

that if the distortions on the source trajectory are not corrected, they lead to some noticeable

artifacts in the reconstructed image.

An FBP-type (Filtered Backprojection) algorithm was developed for the ideal circle and

line source trajectory by Katsevich in 2004. This means that two steps are involved in the

numerical implementation of the algorithm. First, one performs a shift-invariant filtering

of the derivative of the cone beam projections. Second, the result of the filtering is back-

projected in order to reconstruct the image. In this algorithm, the number of intersection

points between the planes and the source trajectory was established to be at most three.

The main idea of this research is to utilize Katsevich ’s algorithm as a building block for

constructing an inversion algorithm for a broader class of curves.

The problem is solved in the following manner. The first step is to consider an entire

class of curves on which a set of natural geometric restrictions is imposed. The curves are

assumed to be planar, smooth, non self-intersecting with positive curvature. Also, the curves
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have to satisfy an extra condition referred to as ”convexity with respect to the origin”. A

given curve satisfies the ”convexity with respect to the origin” if the number of intersection

points between the curve and a line passing through its initial point is at most two.

The next step is to study the geometry of the intersection points (IPs) between planes

and the source trajectory. The distribution of the IPs over different sections of the source

trajectory is also taken into consideration in this analysis. The plan is to limit the number of

IPs between planes and the source trajectory to maximum three as prescribed by Katsevich’s

ideal circle-and-line algorithm.

Third, a set of lemmas is derived proving that Katsevich’s inversion formula for the ideal

circle-and-line can be applied to our class of curves.

In summary, the derived results will apply not only to the ideal circle, but they will also

be applicable to the entire class of curves defined earlier. In other words, any curve or source

trajectory satisfying the prescribed conditions will admit an FBP-type reconstruction.

6.2 Class of Curves

Definition 3 Let y(s), s ∈ [0, smax] be a planar curve. The curve C is said to be convex with

respect to y(0) its initial point, if any line passing through y(0) intersects C at most twice.

Definition 4 C is defined as the class of non self-intersecting smooth planar curves with

positive curvature satisfying the convexity with respect to y(0).

Lemma 3 Let C ∈ C , L1 be a line in the plane. Assume that C intersects the line L1

at some point s1. Let ~T (s1), ~N(s1) be the unit tangent and the unit normal respectively as
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Figure 6.1: Illustration of the convexity with respect to y(0)
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illustrated in Figure 6.2. Then the next closest intersection point s2 with the curve C and

the line L1, if it exists, satisfies
(

y(s2) − y(s1)
)

· ~N(s1) > 0.

Proof: Let C ∈ C , L1 be a line in the plane. Let s1 be the intersection point between the

curve C and L1 as depicted in Figure 6.2. Let us introduce the xy rectangular coordinate

system where the x-axis is parallel to L1 and the y-axis is perpendicular to L1. See Figure

6.3 for an illustration. Let s be a point on C, and consider the initial condition depicted in

Figure 6.3, then there exists a point at which the tangent line T1 is horizontal.

First, if the vertical coordinate of the point s on the curve C strictly decreases, then the

curve will eventually intersect the line L1. Therefore, we are done in this case. See top left

panel of Figure 6.3.

Second, let Ts be the tangent lines to C at s, and assume C crosses the tangent line T1,

which was previously defined. In this case, the tangent lines Ts change direction of rotation

as illustrated in Figure 6.3. This means there is a point s∗ at which the tangent T ∗ to C stops

rotating. Equivalently, s∗ is a point at which the curvature is zero. This is contradictory

because by definition C has a positive curvature for all s. See bottom left panel of Figure

6.3.

Third, if C continues to curve, then there is another point at which the tangent T2 is

horizontal. The endpoint of the curve is contained in the region bounded by the curve, T1,

and T2. By repeating the process, then the endpoint of the curve C is trapped in a spiral.

Consequently, it is clear that the curve C will never intersect the line L1. See bottom right

panel of Figure 6.3.

�
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Figure 6.2: Illustration of Lemma 3
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Lemma 4 Let C ∈ C and L1 be a line in the plane. Then the number of intersection points

with the curve C and the line L1 does not exceed two.

Proof: For a contradiction, assume there are three intersection points s1 , s2 and s3 with

the curve C and the line L1 as illustrated in Figure 6.4. Let ~N(s) and ~T (s) respectively the

unit tangent and normal vectors at s. It is assumed that C starts at s1, so by Lemma 3, the

next intersection point s2 satisfies
(

y(s2) − y(s1)
)

· ~N(s1) > 0. Similarly by Lemma 3, the

point s3 satisfies
(

y(s3)− y(s2)
)

· ~N(s2) > 0, and it is located either on the right of s1 or on

the left of s1. Let s∗ be a point in the plane.

First, if the point s3 is located on the right of s1, then there is a line passing through s∗

and s1 that intersects C at least once.

Second, if the point s3 is between the points s1 and s2, then there is a line passing through

s∗ and s3 that intersects C at least once. These statements hold true for the origin s = 0 in

particular. In either case, the convexity with respect to the origin is violated. This ends the

proof. �

Lemma 5 Let C ∈ C . Consider y(s1) and y(s2) two distinct source positions such that

s1 6= s2. Then there is no line intersecting C at s1 and tangent to the curve C at s2.

Proof: Let y(s1) and y(s2) be two distinct source positions such that s1 < s2. For a

contradiction, assume there is a line intersecting C at s1 and tangent to the curve C at

s2 as depicted in Figure 6.5. Denote by T1 the tangent line to C at the point s2. Since

the curvature is non zero, then the curve C is entirely on one side of the tangent line T1.

Consequently, the rotation of T1 around s1 will create two more intersection points between
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T1 and C. Lemma 4 is thus contradicted. �

s
1 s

2 T
1

T
1

Figure 6.5: Illustration of Lemma 5
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The lemmas derived so far will help us find a parametrization for the distorted circle.

6.3 The Distorted Circle

Given a curve C ∈ C , we would like to find an appropriate parametrization for the distorted

circle. This leads us to think about the parametrization below:

y(s) =
(

R(s) cos(s), R(s) sin(s), 0
)

, s ∈ [0, smax], (6.1)

where R(s) is a radius function.

However some questions arise with this representation. First, we need to establish the

existence of R(s) for all s ∈ [0, smax] by using Lemma 4. Second, we have to show that R is

well-defined and is a smooth function of s. Note that the choice of the radius function R is

not unique.

6.3.1 Existence and Smoothness of R(s)

Lemma 6 Let C ∈ C , y(s) ∈ C, s ∈ [0, smax]. Then, there exists a well defined smooth

function R such that y(s) = (R(s) cos(s), R(s) sin(s), 0).

Proof: Let s = 0, smax be respectively the initial and the terminal point of the curve

C. Let x
′

y
′

be the rectangular coordinate system originated at s = 0, and whose horizontal

axis x
′

is tangent to the curve C at s = 0. While the horizontal axis points to the same

direction as the tangent vector at s = 0, the vertical axis y
′

has the same direction as the

normal vector to the curve C at the initial point s = 0 as depicted in Figure 6.6. Two cases

need to be considered.
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For the first case, we consider the positive portion of the y
′

axis. Assume C intersects

the positive portion of the y
′

axis at st. By construction the point st is above the origin

s = 0. Choose any point P located on the y
′

axis between s = 0 and st. The idea is to show

that any ray with vertex at P intersects the curve C at most once. For this matter, define

L1 to be the line containing the ray with vertex at P . For the proof, we will only need to

consider the intersections between C and the portion of L1 where the ray is located. Since

s = 0 and smax are on different sides of L1, there can be only an odd number of intersection

points with the curve and the line L1. Since by Lemma 4, we cannot have three intersection

points, then there must be only one with the curve and the line L1. See top panel of Figure

6.6.

For the second case, assume C does not intersect the positive portion of the y
′

axis. Let s

be a point on the curve C, and let l(s) be the tangent lines to C at s. For every s, the line

l(s) intersects the y
′

axis at some point Q(s). Of all the points Q(s), the one obtained when

s = smax, denoted Qt is the lowest on the positive portion of the y
′

axis. Let P be a point

located on the line segment between the origin s = 0 and the point Qt. Also, if we assume

that the ray with vertex at P intersects the curve C at s1 and s2, then we can find a point

s∗ on C such that s∗ 6= s1, s2, as shown in Figure 6.6. Additionally, denote by L1 the line

containing the ray with vertex at P . Then the tangent line l(s∗) to C at s∗ intersects the

positive portion of the y
′

axis at Q∗, which is a point located below Qt on the y
′

axis. See

bottom panel of Figure 6.6. The statement is a contradiction because by construction, the

point Qt is the lowest point located on the positive portion of the y
′

axis. The existence of

the function R is thus established. See bottom panel of Figure 6.6.
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Since the radius function R is well defined for all s in [0, smax], we now need to prove that

R is also a smooth function of s. For the proof, consider the rectangular coordinate system

originated at the center of the distorted circle i.e the point P previously defined in the proof.

The x-axis is the horizontal axis while the y-axis is the vertical axis as depicted in Figure

6.7.

Let ~Y (t) =
(

x(t), y(t)
)

be a parametrization of a point on the distorted circle. We have

the following

x(t) = R(t) cos(s) (6.2)

y(t) = R(t) sin(s) (6.3)

The above system can be rewritten in a compact form

R(t)~Θ(s) − ~Y (t) = 0, (6.4)

where ~Θ(s) = (cos(s), sin(s)) and ~Y (t) = (x(t), y(t)). Since ~Y (t) is smooth, then R(t) =

√

x2(t) + y2(t) must be smooth. Consequently we can differentiate Equation 6.4 with respect

to the variable t. We then obtain

Ṙ(t)~Θ(s) +R(t)~̇Θs
ds

dt
− ~̇Y (t) = 0 (6.5)

By applying the dot product to Equation 6.5 with the vector ~Θ⊥, and using the equality

~Θ⊥ = ~̇Θs, we obtain the expression below

R(t)
ds

dt
− ~̇Y (t) · Θ⊥ = 0 (6.6)

since ~Θ · ~Θ⊥ = 0 and ~̇Θs · ~Θ⊥ = 1. In the above equation, R is a positive function of t, and

the expression ~̇Y · Θ⊥ is non zero. For a contradiction, if we assume ~̇Y · Θ⊥ = 0, then this
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is equivalent to saying that the vector ~̇Y is parallel to ~Θ, which is impossible according to

Lemma 5. See bottom panel of Figure 6.7 for an illustration.

The fact that ~̇Y ·Θ⊥ is non zero implies that ds
dt

is also non zero. Therefore, we can write

t as a function of s i.e t = t(s), and the function t = t(s) is continuously differentiable by the

Implicit Function Theorem. Consequently, the radius function R(t) = R(t(s)) is a smooth

function of s.

�

6.3.2 Choice of R(s) and its Consequence

We have shown that R exists and is a smooth function of s. However, the choice of R(s)

is not unique. In our case, we choose the function R in the following manner. Recall the

cartesian coordinate system x − y introduced earlier in the proof of Lemma 6. See Figure

6.8 for an illustration. With such a choice for R(s), we have the lemma below.

Lemma 7 R(0) −R(s) cos(s) > 0 for all s in [0, smax].

Proof: In what follows, see the illustration in Figure 6.8. Let x(s) = R(s) cos(s) be the

horizontal coordinate of a point s on the curve C. If s = 0, then x(s) = x(0) = R(0). Since

C has a positive curvature, then x(s) < x(0). In other words, R(0) −R(s) cos(s) > 0. �

6.3.3 The Pi Line and its Properties

The source trajectory consists of a distorted circle C and a line L attached to C at some point

y(0). The curve C is relatively close to a complete circle and the line L is sufficiently long.

Let the following be respective parametrizations of the line and circle, s ∈ I1 : s→ y(s) ∈ L
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and s ∈ I2 : s → y(s) ∈ C. In what follows, we recall the general settings of the ideal circle

and line source trajectory introduced in Chapter 5, and we use Figure 5.1 as an illustration.

Consider the following two parametric intervals. The first one is I1(x) ⊂ I1 which corre-

sponds to the section of L between y(0) and yL(x). The second interval I2(x) corresponds

to the section of the circle between y(0) and yC(x). Γ1π(x) denotes the section of C
⋃

L

bounded by L1π(x). Γ1π(x) satisfies Properties 1, 2 similarly to the ideal circle and line case

previously studied. We would like to prove that Γ1π(x) also satisfies Property 3, and the

weight function n(s, x, α) satisfies Properties 4 and 5. The idea is to demonstrate that the

number of intersection points between Γ1π(x) and a plane Π(x) passing through x in the

ROI is at most three. If that is the case, then the weight distribution will be analogous to

the one in the ideal circle and line problem.

The results follow if we show that the projection of the curve C on the detector is convex.

Definition 5 Let C ∈ C , and y(s) ∈ C.

Ω = {x|x = λy(0) + (1 − λ)y(s), s ∈ [0, smax]} is the set of points located on all chords from

the origin y(0) to y(s), a point on the curve, when the parameter s ∈ [0, smax].

Definition 6 The region of interest (ROI) is any solid U whose projection Û on the x-y

plane is contained in Ω.

Definition 7 Let C ∈ C , and x be a reconstruction point in the ROI. Consider the plane

Π(x) passing through x and the line L. The plane Π(x) intersects the distorted circle at 2

points, y(0) and yC. Then the PI–line denoted by L1π(x) is defined to be the line segment

containing the point x connecting yC(x) to the line L at some point yL(x).
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Lemma 8 For every x in the ROI, L1π(x) is unique.

Proof: Let x be a point in the ROI. Because C ∈ C , we can always find a plane Π(x)

passing through x and containing the line L. According to Definition 7, Π(x) determines the

L1π(x). To prove the uniqueness, let L1π(x) and L
′

1π(x)be two different Pi-lines. Let PL be a

vertical plane containing both the line L and the reconstruction point x. Then PL intersects

the circle C at yC and y
′

C . Additionally, the corner of the circle and line y(0) belongs to PL.

Now if we consider PC the plane of the circle, then the points y(0) and yC belong to PC .

Also recall that the plane PL contains the points y(0), and yC and y
′

C , so y(0), yC , y
′

C are

contained in the intersection PC ∩PL. In other words, y(0), yC , y
′

C are not only on the curve

C, but they are also colinear. This statement violates the fact that the curve C satisfies the

convexity with respect to y(0). Therefore L1π(x) must be unique. �

Lemma 9 Let C ∈ C , and x be a point in the ROI. Then the following hold true:

1. There is no plane tangent to C in the interior of Γ1π(x) and passing through L1π(x).

2. There is no plane containing x, tangent to C in the interior of Γ1π(x), and passing

through the corner y(0) of the distorted circle and line.

Proof: 1. Let x be a point in the ROI, P be a plane containing L1π(x) and tangent to

the circle C at the point y1. Then P contains yC , y1 and ẏ1. If we let PC be the plane of

the circle, then PC contains the points yC and y1. Thus the line passing through the points

yC and y1 is the intersection of PC with P . Also, note that PC contains ẏ1. Therefore,

ẏ1 ∈ PC ∩ P = (yC , y1). In other words, the line passing through y1 and yC intersects the
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curve C at yC and is also tangent to C at y1, which contradicts Lemma 5.

2. This proof is analogous to the first one. Let P be a plane tangent to C at y1 and containing

the point y(0). This allows us to say that the plane P contains y(0), y1 and ẏ1. Additionally,

if we let PC be the plane of the circle, then y(0), y1 and ẏ1 belong to PC . Therefore, y(0), y1, ẏ1

are contained in the intersection P ∩ PC . In other words, the line passing through y(0) and

y1 is tangent to the curve at y1, which is contradictory to Lemma 5. �

6.3.4 Projection on the Detector Plane DP(s)

Consider a point on the distorted circle. Assume s ∈ I2(x), then

y(s) =
(

R(s) cos(s), R(s) sin(s), 0
)

, s ∈ [0, smax] (6.7)

where R(s) is the variable radius of the circular trajectory such that R(0) is the radius

when s = 0. Let h be the height of the source position y(s) above the plane of the circle.

Recall that {x1, x2, x3} is the three dimensional coordinate system. Project x and C on

the detector plane DP (s), which is assumed to contains the x3–axis. In addition, DP (s) is

perpendicular to the shortest line segment connecting y(s) and the x3-axis. Let (u(s), w(s))

be the coordinates of a point on the detector DP (s) originated at (0, 0, h).

Lemma 10 The coordinates
(

u(s), w(s)
)

of the projected source trajectory y(s), s ∈ (0, smax],

satisfy the following :

u(s) =
R(0)R(s)sin(s)

R(0) −R(s) cos(s)
, (6.8)

w(s) =
−hR(0)

R(0) −R(s) cos(s)
(6.9)
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Proof: Let y(s) be a point on C, s ∈ (0, smax], and let (u(s), w(s)) be its projection on

DP (s). Then we have the following three equations:

λR(s) cos(s) + (1 − λ)R(0) = 0

λR(s) sin(s) + (1 − λ) · 0 = u(s)

λ0 + (1 − λ)h = w(s) + h (6.10)

One can solve for λ, substitute it into Equation 6.10, and obtain the following:

λ(s) = R(0)/(R(0) −R(s) cos(s)) (6.11)

u(s) = λR(s) sin(s) =
R(0)R(s) sin(s)

R(0) −R(s) cos(s)

w(s) = −λh =
−hR(0)

R(0) −R(s) cos(s)

�

Lemma 11 Let C ∈ C . Let y(s) ∈ C, s ∈ (0, smax], and u(s) be the horizontal coordinate

of its projection on the detector plane DP (s0), s0 ∈ I1. Then for every y(s) on C, u̇(s) < 0.

Proof: Let y(s) be a point on the curve C, and let u(s) be the horizontal coordinate of the

projection of y(s) on the detector plane DP (s). First, observe that a simple computation

allows us to write u̇(s), the derivative w.r.t. s of u(s) defined in Lemma 10, as

u̇(s) =
ẏ(s) ×

(

y(s) − y(0)
)

· e3
(

R(0) −R(s) cos(s)
)2 (6.12)

where e3 is the unit vector of the third component in the {x1, x2, x3} coordinate system.

By Lemma 7, (R(0) − R(s) cos(s))2 > 0, and by Lemma 5, ẏ(s) × (y(s) − y(0)) · e3 6= 0, so
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u̇(s) 6= 0. Therefore, in order to prove that u̇(s) < 0, for all s in (0, smax], it suffices to show

that u̇(s) < 0 when s → 0. Also, note that showing u̇(s) < 0 is equivalent to showing that

ẏ(s) × (y(s) − y(0)) · e3 < 0.

Let us expand y(s) around s = 0, then

y(s) = y(0) + ẏ(0)s+O(s2), s→ 0

and

ẏ(s) = ẏ(0) + ÿ(0)s+O(s2), s→ 0.

Thus

ẏ(s) × (y(s) − y(0)) · e3 = ÿ(0) × ẏ(0)s2 · e3 +O(s3), s→ 0

=
(

ÿ(0) × ẏ(0)s2
)

· e3 +O(s3), s→ 0

=
(

ÿ(0) × ẏ(0)s
)

· e3 +O(s), s→ 0

= −κ(0)|ẏ(0)|3 +O(s), s→ 0 (6.13)

where κ(0) > 0 is the curvature at s = 0. This implies that u̇(s) < 0 as s → 0. Therefore,

u̇(s) < 0 for all s in (0, smax]. �

Lemma 12 Let (u(s), w(s)) be the projection of the source position y(s) on the detector

plane DP (s0), s0 ∈ I1. Then d2w
du2 < 0.

Proof: Let y(s) be a source position on the curve C. Then y(s) =
(

α(s), β(s), 0
)

, where

α(s) = R(s) cos(s), β(s) = R(s) sin(s). If (u(s), w(s)) is the projection of y(s) on DP (s),
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then the second derivative is defined as follows,

d2w

du2
=

1

u̇(s)

d

ds

(ẇ(s)

u̇(s)

)

. (6.14)

Also for every s in [0, smax], the curvature is given by the formula below,

κ(s) =
α̇(s)β̈(s) − β̇(s)α̈(s)
(

α̇2(s) + β̇2(s)
)3/2

. (6.15)

After some computations, Equation 6.15 can be reformulated in the following manner,

κ(s) =
−R̈(s)R(s) + 2R(s)Ṙ2(s) +R2(s)

(

Ṙ2(s) +R2(s)
)3/2

. (6.16)

By using Equation 6.16, the expression of the second derivative in terms of the curvature

κ(s) is derived below,

d2w

du2
=
C(s)κ(s)

(

R(0) −R(s) cos(s)
)

u̇(s)
, (6.17)

where

C(s) =

(

hṘ2(s) +R2(s)
)3/2

(

Ṙ(s) sin(s) +R(s) cos(s) −R2
)2 > 0. (6.18)

Since u̇(s) < 0, R(0) −R(s) cos(s) > 0, and κ(s) > 0, then d2w
du2 < 0. �

Lemma 13 The projection of the curve C on the detector plane DP (s) is a convex curve.

Proof: The projection of the curve C on the detector plane DP (s) is convex because for

every s, u̇(s) < 0 and d2w
du2 < 0. �

Conclusion:The conditions that we just derived state that the trajectory is not too

exotic. In other words, we have proven that any plane passing through a reconstruction
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point x in the ROI cannot intersect the curve C at more than 3 IPs. The distortions on

the circle do not violate the number of intersection points (3 IPs at most) referred to in the

ideal circle and line case. Consequently, the weight distribution remains the same, and a

description of the weight function n(s, x, α) is summarized in Table 6.1 below.

6.4 Weight Distribution and Inversion Theorem

Table 6.1: Definition of the Weight Function n(s, x, α)

Case Weight Function n(s, x, α)

1IP s1 ∈ I1(x) n(s1, x, α) = 1

1IP s1 ∈ I2(x) n(s1, x, α) = 1

3 IPs s1 ∈ I1(x) n(s1, x, α) = −1

s2, s3 ∈ I2(x) n(sk, x, α) = 1, k = 1, 2

We have shown that our curve satisfies Properties 1 − 5, so we can use Katsevich’s

inversion formula for the ideal circle and line case. The inversion formula is stated below.

Theorem 5 Let C ∈ C .For f ∈ C∞
0 (U),

f(x) = − 1

2π2

∫

Ik(x)

2
∑

k=1

δk(s, x)

|x− y(s)|

∫ 2π

0

∂

∂q
g(y(q),Θk(s, x, γ))|q=s

dγ

sin γ
ds,

where

Θ(s, x, γ) := cos γβ(s, x) + sin γek(s, x), ek(s, x) := β(s, x) × uk(s, x), (6.19)

and δk is defined as follows:

δ1(s, x) = −sgn(u1(s, x) · ẏ(s)), s ∈ I1(x); δ2(s, x) = 1, s ∈ I2(x). (6.20)
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For completeness purposes, some numerical experiments are performed in order to demon-

strate good image quality. The details of the implementation are mentioned in the next

chapter.
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CHAPTER SEVEN: THE ALGORITHM AND ITS
IMPLEMENTATION

7.1 Description of the Cone Beam (CB) Measurements

A general description of the cone beam (CB) projections is first reviewed. Then for practical

purposes, a description of the projections specific to the flat detector geometry is given.

Such a description is highly convenient for the development of an efficient reconstruction

algorithm.

The x-ray attenuation coefficient of the three dimensional object to be reconstructed is

denoted by f(x̄), where x̄ ∈ R3. In what follows, f is assumed to be zero outside of the

cylinder x2 + y2 < r2
0, for r0 < R(0).

7.1.1 General Formulation

The cone beam (CB) is defined to be the set of all line integrals diverging from a given point

in space often referred to as vertex. In computed tomography (CT), the vertex represents

the point from which the x-ray are emanating. The CB projections are assumed to be known

for every vertex point y(s) on the trajectory. Below is the definition of the vertex point in

our case

y(s) = (R(s) cos(s), R(s) sin(s), h). (7.1)

Note that in order to make the x-ray source move along the circle, we let h = 0 and allow

s to vary from 0 to a certain maximum scan angle denoted by smax. It is also important to
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mention that the maximum scan angle depends on the size of the region of interest (ROI).

If the source is on the line then the parameter s is set to zero, while h varies along the line.

For the purposes of the implementation, we consider the following smooth radius function

R(s) = R(0) − 1

2
ǫs2, (7.2)

where R(0) is the radius of the circle when s = 0 and ǫ is a positive distortion parameter.

Notice that if ǫ = 0, we are in the case of the ideal circle and line trajectory.

In can be shown that the curvature κ(s) remains positive with such a choice of R(s).

Indeed, if R(s) is defined as in Equation 7.2, then

Ṙ(s) = −ǫs, R̈(s) = −ǫ. (7.3)

By substituting Equation 7.3 into Equation 6.16, we obtain,

κ(s) =
ǫR(s) + 2ǫ2s2 +R2(s)

(

ǫ2s2 +R2(s)
)3/2

, (7.4)

which is positive since ǫ and the radius function R(s) are both positive. Figure 7.1 gives a

comparison between the ideal circle and the distorted circle for R(0) = 570 and ǫ = 5.0. The

graph shows that the curve satisfies the conditions of Definition 4.

7.1.2 Flat Detector Geometry

As introduced in Chapter 3, the CB projection g is a function of the source s, and the

detector coordinates u and w. Therefore, to better describe the function, it is useful to
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introduce the following unit vectors for u and w respectively:

eu(s) = [− sin(s), cos(s), 0],

ev(s) = [− cos(s),− sin(s), 0],

ew(s) = [0, 0, 1]. (7.5)

The CB data is measured using a flat panel of detectors parallel to the x3-axis and

changing according to the source position. The detector plane is consequently perpendicular

to the unit vector ev(s).

The detector is composed of rows and columns, which are respectively parallel to eu and ew.

Nrow and Ncol respectively denotes the number of detector rows and columns. The center

of the virtual detector is located at (u = 0, w = 0). It is finally assumed that the distance

between the detector and the source position is R(s) because of the distortions on the circle.

Using this geometry, the CB appears as a function g(s, u, w) such that

g(s, u, w) = g(s, θ), (7.6)

with

θ =
ueu(s) +R(s)ev(s) + wew(s)

√

u2 + w2 +R2(s)
. (7.7)

Also note that conversely, for a given direction θ pointing towards the detector, we have

g(s, θ) = g(s, u, w), (7.8)

where

u = R(s)
θ · eu

θ · ev

w = R(s)
θ · ew

θ·v
, (7.9)
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7.2 Katsevich Formula

This section gives a description of the steps involved in the CB reconstruction. According

to [1], for every x in the ROI, the three dimensional function f(x) is reconstructed using CB

backprojections over the segment of the curve (circle in our case) joining the two extremities

of the Pi-line L1π(x) passing through x. The reconstruction formula is

f(x̄) = − 1

2π

∫ st(x̄)

sb(x̄)

ds
1

||x̄− y(s)||g
F
(

s,
x̄− y(s)

||x̄− y(s)||
)

, (7.10)

sb(x̄), st(x̄), are the endpoints of L1π(x) such that sb(x̄) < st(x̄). gF (s, θ) is referred to as

filtered data. In order to obtain gF (s, θ), we first need to compute the derivative of the CB

g(s, θ) with respect to s at a constant direction θ,

g
′

(s, θ) = lim
ǫ→0

g(s+ ǫ, θ) − g(s, θ)

ǫ
. (7.11)

Now g′(s, θ) is known, we can compute gF (s, θ) according to the formula below,

gF (s, θ) =

∫ 2π

0

g
′

(y(s),Θk(s, x, γ))hH(sin γ)dγ, (7.12)

where Θk(s, x, γ) was previously defined in 6.19 and hH is the kernel of the Hilbert transform

that is, hH(s) = 1/πs.

As a remark, the computation of gF (s, θ) in Equation 7.12 is called filtering, and the step

involving the calculation of the integral over the segment [sb(x̄), st(x̄)] in Equation 7.10 is

referred to as backprojection. In other words, it follows from the formula in 7.10 that the

reconstruction is achieved in two steps which are: filtering and backprojection.
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7.2.1 Filtering

Derivative at a Constant Direction: Use the CB g(s, u, w) to compute g1(s, u, w) such

that g1(s, u, w) = g
′

(s, θ), where θ is given by Equation 7.7, and g
′

(s, θ) is the derivative of

the CB g with respect to s at a constant direction as defined in Equation 7.11.

Length Correction: Compute

g2(s, u, w) =
R(s) · g1(s, u, w)

√

u2 + w2 +R2(s)
. (7.13)

1 D Hilbert Transform in u: Compute

gF (s, u, w) =

∫

∞

−∞

hH(u− u
′

)g2(s, u, u
′

)du
′

, (7.14)

where hH is the kernel of the Hilbert transform that is, hH(s) = 1/πs.

7.2.2 Backprojection

The filtered projection gF (s, u, w) is backprojected in order to build the three dimensional

function f at each point x̄ = (x1, x2, x3) in the ROI according to the formula below,

f(x̄) = − 1

2π

∫ st(x̄)

sb(x̄)

1

v∗
gF

(

s, u∗(s, x̄), w∗(s, x̄)
)

ds, (7.15)

where

v∗(s, x) = R(s) − x1 cos(s) − x2 sin(s), (7.16)

u∗(s, x) =
R(s)

v∗(s, x)
(−x1 sin(s) + x2 cos(s)), (7.17)

w∗(s, x) =
R(s)

v∗
(x3). (7.18)
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7.3 Numerical Implementation Strategies

The steps of the numerical implementation of the Katsevich inversion formula on a flat

detector geometry are originally described in [7]. In what follows, it is assumed that the CB

g(s, θ) is sampled at,

sk = k∆s,∆s = 2π/Ns,

ui = (i− (Ncol − 1)/2)du,

wj = (j − (Nrow − 1)/2)dw. (7.19)

where du, dw, and Ns are respectively the horizontal, vertical, and the number of source

positions. The available CB data are given by g(sk, ui, wj) where k = 0, ..., Ns − 2, i =

0, ..., Ncol − 2, j = 0, ..., Nrow − 2.

Since our source trajectory consists of an incomplete circle and a line segment, then two

cases will be considered for some of the steps involved in the numerical implementation.

7.3.1 Filtering

Derivative at a Constant Direction: The idea is to use g(sk, ui, wj) to compute samples

of g1(s, u, w) such that g1(s, u, w) = g
′

(s, θ). By applying the chain rule to g(s, u, w), and

by using the relation in Equation 7.6, we obtain

g1(s, u, w) =
(∂g

∂s
+
∂g

∂u

∂u

∂s
+
∂g

∂w

∂w

∂s

)

(s, u, w). (7.20)

Using Equation 7.9, for u and w yields

g1(s, u, w) =
(∂g

∂s
+
Ṙ(s)u+R2(s) + u2

R2(s)

∂g

∂u
+
Ṙ(s)w + uw

R(s)

∂g

∂w

)

(s, u, w). (7.21)
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If the source position is on the circle, then from the last equation, the derivative g1(s, u, w)

is numerically computed for k = 0, ..., Ns−2, i = 0, ..., Ncol −2, j = 0, ..., Nrow −2 as follows:

g1(sk+1/2,, ui+1/2, wj+1/2) ≃
i+1
∑

I=i

j+1
∑

J=j

g(sk+1, uI , wJ) − g(sk, uI , wJ)

4∆s
(7.22)

+ a1(s) ∗
k+1
∑

K=k

j+1
∑

J=j

g(sk, ui+1, wJ) − g(sk, ui, wJ)

4du
(7.23)

+ a2(s) ∗
k+1
∑

K=k

j+1
∑

J=j

g(sk, uI , wj+1) − g(sk, uI , wj)

4dw
(7.24)

where

a1(s) =
Ṙ(s)u(s) +R2(s) + u2(s)

R2(s)
,

a2(s) =
Ṙ(s)w(s) + u(s)w(s)

R(s)
. (7.25)

If the source is on the line, then for a fixed θ, the finite-difference derivative of the CB

has the numerical expression below:

g1(sk+1/2,, ui, wj) =
g1(sk+1,, ui, wj) − g1(sk,, ui, wj)

4∆s
(7.26)

Length Correction: Regardless of the location of the source position, we use g1(sk+1/2, ui+1/2, wj+1/2)

to compute,

g2(sk+1/2, ui+1/2, wj+1/2) =
R(s) · g1(sk+1/2, ui+1/2, wj+1/2)

√

u2
i+1/2 + w2

j+1/2 +R2(s)
. (7.27)

1 D Hilbert Transform in u: The convolution in (7.14) can be efficiently implemented

by taking the Fourier transform of g2, multiply it by the Fourier transform of the Hilbert

Kernel, and then by taking the inverse Fourier transform. This is justified by the following
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property below,

h⊗ g = F−1(Fh · Fg) (7.28)

where F represents the Fourier transform. Note that from a computational standpoint, some

care must be taken to avoid aliasing. In order to account for aliasing, the function g2(s, u, w)

evaluated at half pixels, say g2(sk+1/2, ui+1/2, wj+1/2) is zero-padded before applying the Fast

Fourier Transform (FFT). Also, the fourier transform of the Hilbert kernel is taken over the

interval [−A/2, A/2], where A is the size of the sampled signal.

If the source is on the circle, then the process described above is done along the detector

rows (see Figure 7.3).

If the source is located on the line, the 1 D Hilbert tranform in u is done as follows. Let

Ĉ be the projection of the curve C on the detector plane DP (s). By Lemma 13, Ĉ is a

convex curve. Let (R(0), 0, h) be a source position on the line segment, and (0, H) be the tip

of the pencil as depicted in Figure 7.4. Then the projection of the tip of the pencil (0, H)

from the point (R(0), 0, h) on DP (h) is (0, H − h). Let Tmin be the line passing through

the point (0, H − h) and tangent to Ĉ at some point whose parameter is denoted by qmin.

Analogously, qmax is defined to be the parameter of the intersection point between the line

Tmax tangent to Ĉ and the left boundary of the cylinder. Now, choose a parameter q0 such

that qmin < q0 < qmax, and let Tq0
be the tangent to Ĉ at q0. We find the intersections {ui, i}

between the detector columns and Tq0
. Let uj0 be an intersection point between Tq0

and a

detector column, and wj0 be its corresponding vertical coordinate. Since uj < uj0 < uj+1,

wi < wj0 < ui+1, and g2(uj0 , wi), g2(uj0 , wi+1) are known, we use linear interpolation to

calculate g2(uj0 , wj0). We then obtain the following set {g2(uj0 , wj0), i0 = 1, ..., Nc − 2} on
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wi+1

wi

wi0
uj

Figure 7.3: Filtering when the source is on the Circle
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ROI

Trajectory 

(0, H)

(R,0)

Figure 7.4: Illustration of the Height of the Cylindrical ROI
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which we perform the 1-D Hilbert transform. Figure 7.6 gives an illustration of the process.

By repeating the process for Nq parameters between qmin and qmax, we recover an Nq by Ncol

matrix which will be used for backprojection. See Figure 7.5.

(0,Η-Δh )

T(q0)

qmin
qmax

T(q0)

uj

Figure 7.5: Filtering when the source is on the Line
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T(q0)

T(q0)

uj0

g2(uj0,wi)

g2(uj0,wi+1)

g2(uj0,wj0)

Figure 7.6: Filtering when the source is on the Line (Interpolation)
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7.3.2 Backprojection

Let x̄ be a point in the ROI, and its projection (u∗, w∗) be on the detector plane. The filtered

projection gF (s, u, w) is backprojected according to Equation 7.15 in order to recover the

three dimensional function f for every x̄ in the ROI.

Source on the Circle Once the point (u∗, w∗) is located on the grid i.e uj < u∗ < uj+1 and

wi < w∗ < wi+1, bilinear interpolation is performed using the discretized function g3(s, u, w)

in order to obtain the corresponding backprojected gF (s, u∗, w∗).

Source on the Line For each point x̄ in the ROI, compute the projection (u∗, w∗) on the

detector DP (s) according to Equation 7.16. Assume (u∗, w∗) is above the projected curve

Ĉ, and ui < u∗ < ui+1, use linear interpolation to find the corresponding parameter s∗ such

that si < s∗ < si+1. Next, calculate the parameter q∗ such that the line passing through

(u∗, w∗) is tangent to the projected curve Ĉ. Now that q∗ is computed, and located on the

u− q grid, we use the discretized values of the function g3(s, u, w) and bilinear interpolation

to compute the backprojected value gF (q∗, u∗). See Figure 7.8 as an illustration.
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(u*,w*)T(q
*
)

q*

Figure 7.7: Backprojection
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T(q
*
)

wi+1

(u*,w*)

g3(uj,wi)

wi

uj uj+1

Figure 7.8: Bilinear Interpolation prior to Backprojection
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CHAPTER EIGHT: NUMERICAL RESULTS

In this chapter, we first start with a brief definition of the Hounsfiled unit, and we discuss

the numerical experiments that we conducted in order to test for good image quality.

The Hounsfield unit (HU) is a standardized and accepted measurement system for re-

porting and displaying reconstructed X-ray CT values. The HU was named after the British

electro-engineer Sir. Godfrey N. Hounsfield who developed the first clinically useful CT ma-

chine. The system of units represents a transformation from the original linear attenuation

coefficient into a system where water and air are assigned the values 0 and -1000 respectively.

In other words, assume µw, µa, and µ are linear attenuation coefficients of water, air and an

unknown substance, then the corresponding HU value is given by the equation below

HU = 1000
µ− µw

µw − µa

. (8.1)

Therefore one (HU) corresponds to 0.1% of the attenuation coefficient difference between

water and air, or we can say approximately 0.1% of the attenuation coefficient of water since

the attenuation coefficient of air is nearly zero. Table 8.1 gives the HU of some common

substances.

In order to test the proposed algorithm, we conducted some numerical experiments with

the clock phantom which was originally described in[22]. The background cylinder was at

0 HU, the spheres were at 1000 HU, and the air at −1000 HU. Under the assumption that

the plane of the circle is at z = 0, the phantom is shifted by ∆z = +20.0. The purpose

of this shift is to better illustrate how well the algorithm reconstructs cross-sections which
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Table 8.1: HU of Some Common Substances

Substance HU

Air −1000

Water 0

Bone ≥ 400

Muscle 40

Fat −120

are located away from the plane of the circle. The size of the image is 512 x 512, which

corresponds to the following ROI |x| ≤ 250 and |y| ≤ 250. In order to make small artifacts

visible, we introduce a highly compressed grey level window level and window width of

[1.0, 0.1d], for a density d = 1. Besides small numerical discretization artifacts, the quality

of the reconstructed cross section is good.
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Figure 8.1: Cross section z = 20 mm through the reconstructed clock phantom. The region

|x| ≤ 250,|y| ≤ 250 mm is show for a distortion parameter of ǫ = 5.0
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Table 8.2: Simulation and Reconstruction Parameters

Parameter Value Unit

Radius of the circle 570 mm

Distortion parameter ǫ 5.0

Height of the line L 160 mm

Detector pixel size at isocenter 0.7 mm2

Number of detector rows 551

Number of detector columns 1001

Number of source positions on the circle 600

Number of source positions on the Line 160

Number of FFT points 2048

Number of filtering lines for source points 200

Radius of the ROI 250
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