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Abstract 

 

Many organic compounds, although beneficial, are associated with negative health and 

ecological impacts. It is therefore imperative to understand the environmental fates of these 

contaminants. Whereas the fates and health impacts of many persistent organic pollutants have 

been extensively examined, there is limited research characterizing the fates of these and the less 

persistent organic compounds in tropical multi-use watersheds. This study therefore aimed to 

evaluate the roles of forests and climate change on the environmental fates and health impacts of 

select organic chemicals in the Rio Cobre watershed, a tropical river basin in Jamaica. A total of 

16 organic compounds were selected for this assessment, including some polybrominated 

diphenyl ethers (PBDEs), dioxins, furans and current-use pesticides. In the first portion of the 

assessment, field measurements of the concentrations of select PBDEs (PBDE-28, -47, -99, -100, 

-153, -154, -183 and -209) in the deposition, soil, litterfall and atmosphere of a forest and nearby 

clearing in the aforementioned watershed were evaluated. The mean air and litterfall 

concentrations of the PBDEs were lower in the forest than in the clearing, whereas the deposition 

flux rate and soil concentrations were higher in the forest. It was therefore concluded that the 

tropical forest filtered the PBDEs by transferring them from the atmosphere to the soil. In the 

next segment of the assessment, a multimedia environmental model of contaminant fate and 

transport, reflective of a region with three vegetative covers – urban, agricultural/grassland and 

forests – was developed to assist with the evaluations. This model, RioShed, was used to 

compute and compare fate metrics, including persistence and long range transport potential, for 
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the aforementioned 16 organic compounds given varying forest parameters and climatic 

conditions. The atmospheric long range transport potentials and overall persistence of the 

organics were generally lower in the forested tropical watershed than in the un-forested tropical 

watershed, especially when the forests were fully evergreen. In this tropical watershed, the fate 

metrics were particularly responsive to precipitation rates. The atmospheric long range transport 

potentials and overall persistence of the evaluated organics increased and decreased, 

respectively, under the climate change condition of decreased precipitation rates. However, the 

effects of precipitation on the atmospheric long range transport potentials and overall persistence 

were more varied for the current-use pesticides. It was therefore concluded that the fates of the 

evaluated chemicals differed in forested versus un-forested tropical watersheds and that such 

differences were influenced by forest parameters, climate drivers and the chemical properties of 

the organics. The results and methods described in this dissertation are applicable in 

environmental multi-media model development and can be used to inform land management 

practices, as well as assist in decision-making for environmental sustainability in tropical 

developing countries.  
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Chapter 1 

Introduction 

 

1.1 Problem statement 

A number of organic compounds are under global scrutiny, because they are ubiquitous, 

as well as associated with human and environmental toxicity. Among these are the 

polybrominated diphenyl ethers, dioxins and furans, as well as pesticides. Many of these 

compounds serve a variety of essential functions. The polybrominated diphenyl ethers are 

manufactured for global use as flame retardants, preventing fire propagation in the materials to 

which they have been added (Alaee, Arias, Sjödin, & Bergman, 2003), whereas pesticides are 

used extensively to control pests, which are organisms that negatively impact humans or their 

property (Moore, 2007). However, dioxins and furans are the by-products of combustion 

processes (Fiedler, 2003), including those involved in the manufacture of these and other 

essential/beneficial organic compounds. These chemicals are of current interest because their 

extensive use or by-production status has resulted in them being ubiquitous, with the ensuing 

probability of human and environmental harm.  

Upon emission or release, these organic contaminants are distributed among 

environmental compartments, from which they may exert varied adverse effects. For example, 

exposure to polybrominated diphenyl ethers has been found to cause endocrine disruption and 

neurotoxicity. In fact, decabrominated diphenyl ether has carcinogenic potential (US 

Environmental Protection Agency, 2010). Therefore, a keen understanding of the emission-fate-
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effect relationship for these organic contaminants is critical to formulate and implement 

appropriate control and/or remediation measures.  

Many environmental fates and distribution studies, as well as impact assessments aim to 

evaluate the role of physicochemical, climatic and environmental factors in the environmental 

distribution of the chemicals and/or their consequential effects (Fiedler, 2003; Lohmann et al., 

2007; Nizzetto & Perlinger, 2012; Sterling & Arundel, 1986; Walcott et al., 2009; Wania, 2006). 

One environmental factor that has not received as much attention in its influence on the fates of 

organic compounds is forest coverage.  

Although, it has long been accepted that forests provide essential environmental services, 

such as carbon sequestration, biodiversity preservation and water quality enhancement (Chomitz 

& Kumari, 1998; Kalácska et al., 2004), one beneficial role that is being explored is the 

regulation/sequestration of organic compounds (McLachlan & Horstmann, 1998; Nizzetto et al., 

2007; Su & Wania, 2005; Wania & McLachlan, 2000). Boreal and temperate forests have been 

shown to regulate the environmental fates of some semi-volatile organic compounds by 

transferring them from the atmosphere to forest soils through a process described as the ‗filter 

effect‘ of forests (McLachlan & Horstmann, 1998; Wania & McLachlan, 2000). However, it has 

been suggested that tropical rainforests may not be as effective as these forests in capturing some 

atmospheric organic pollutants (Wania & McLachlan, 2000), and that the filter effect may even 

be absent in tropical forests for some persistent organic pollutants, such as polychlorinated 

biphenyls (PCBs) (McLachlan & Horstmann, 1998). In fact, the filter factor and uptake ability of 

forests are influenced by temperature-dependent variables, such as partition coefficients, and are 

reduced at higher temperatures. Despite the indications, it has not been determined whether 

tropical forests also exhibit the filter effect.  
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Some tropical regions display high precipitation rates, thereby providing a key 

mechanism – via wet deposition, especially of particle-adsorbed organic compounds – for the 

enhanced transfer of organic contaminants from the atmosphere to terrestrial compartments. 

Forest vegetation has been shown to be efficient at capturing select particle-adsorbed organic 

pollutants and releasing them to lower biomass and the soil (Terzaghi et al., 2013). In addition, 

vegetative cover influences terrestrial volatilization fluxes, surface run-off and local climate, all 

of which are factors that influence contaminant fates (Bounoua et al., 2000; Foley, Costa, Delire, 

Ramankutty, & Snyder, 2003; Garmouma, Teil, Blanchard, & Chevreuil, 1998; Komprda, 

Komprdová, Sáňka, Možný, & Nizzetto, 2013). Therefore, tropical forests can be expected to 

influence the environmental fates of organic contaminants, thereby also influencing associated 

health impacts, even if not via a filter effect. The mechanism, by which tropical forests may 

influence environmental fates, has not been fully explored. 

Long-term fate metrics, such as overall persistence and long range transport potential, are 

hazard end-point indicators, which inform on the propensity of pollutants to cause adverse 

environmental and health effects. Overall persistence is indicative of longevity in a given 

environmental system, whereas long range transport potential indicates the ability to be 

transported distances from the source and the capacity to cause adverse effects at various scales – 

local, regional, continental or global (Bennett et al., 1998; Beyer et al., 2000; Scheringer et al., 

2009; Webster et al., 1998). The desired outcome is reduction in these metrics. 

In one study, temperate forests were shown to reduce the atmospheric concentrations of 

some organic pollutants, causing the authors to purport that they may reduce the atmospheric 

long range transport potential of the chemicals (Wania & McLachlan, 2000). In a global 

assessment, forests reduced the atmospheric and oceanic concentrations of the evaluated 
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organics, but increased overall persistence due to enhanced delivery of the pollutants to forest 

soils, which are environmental sinks (Su & Wania, 2005). However, it is not known whether 

tropical forests, specifically, reduce the long term fate metrics, such as long range transport 

potential or overall persistence, of organic contaminants, and whether the organics are limited to 

those which are persistent, or may include more polar organics, such as some current-use 

pesticides.  

The climate is expected to change, whether through increased precipitation, altered wind 

speeds or directions, among others (Dalla Valle, Codato & Marcomini, 2007). Changing climate 

conditions affect the environmental fates of organic chemicals (Lamon et al., 2009; Ma et al., 

2011; Paul et al., 2012; Walcott et al., 2009). Although it is difficult to predict the actual impact 

of climate change on the environmental fates of organics, due to the complex nature of the 

climate processes (Bloomfield et al., 2006), quantification of the potential impacts has been 

accomplished in a number of temperate, as well as global assessments (Lamon et al., 2009; Ma et 

al., 2011; Paul et al., 2012; Steffens et al., 2013; Wöhrnschimmel et al., 2013). However, little is 

known about: 1) how climate change may affect the long-term fate metrics of organics 

(persistent and more polar) in tropical regions; 2) under which climate change scenarios are the 

fate metrics increased, which are undesirable outcomes; and 3) whether the presence of tropical 

forests can temper any negative effect of climate change on the environmental fates.    

Shifting from agricultural land to forests saw reductions in volatilization fluxes, in a 

modeling study conducted in the Czech Republic (Komprda et al., 2013), with the possibility to 

also reduce atmospheric long range transport potential. This implies that land use or landscape 

architecture may affect the environmental fates of organic compounds. However, that which has 

not been well established for tropical regions includes: 1) the effect of land use on the 
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environmental fates of select organics; 2) whether shifts from other land uses to forests would 

also be beneficial; and 3) if the effect of changing the forested portion in landscapes of the 

environmental fates of the organics depends on the land use benefitting from the change.  

Effective management strategies are guided by local-scale assessments (Cash & Moser, 

2000). Tropical watersheds are habitats and sources of food, income, aesthetic appeal and 

recreation. Therefore, maintaining ecosystems and human health in these environmental units is 

critical. At the watershed scale, tropical forests are particularly known to not only provide the 

aforementioned typical forest services, but to also enhance vegetative yield and to stabilize soils 

(Pattanayak, 2004). However, they may also play the vital role of protecting watersheds by 

regulating/sequestering organic pollutants.  

The aforementioned filter effect is quantifiable using field measurements. However, such 

assessments are typically impractical in developing countries, which often lack the financial 

resources and analytical facilities to conduct the analyses of environmental samples. The use of 

multimedia environmental models to provide reasonable estimates/predictions of fates and 

impacts is a practical alternative. Additionally, some long-term fate end-points, such as overall 

persistence and long range transport potential, are not measurable and are solely computed using 

multimedia environmental models (Bennett et al., 2001; Fenner et al., 2005; Leip & Lammel, 

2004; Matthies et al., 2009). Many environmental multimedia models that are publicly available, 

relatively easy to use, with quick output, and, hence, typically used for evaluative or predictive 

purposes, often include only one vegetative cover (Fenner et al., 2005; Rong-Rong et al., 2012). 

Environmental models with single vegetative compartments are considered too simplistic for the 

regional assessment of environmental fates (Cousins & Mackay, 2001), and those without a 

forest canopy may not adequately represent environmental fates in forested regions (Wania & 
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McLachlan, 2000). Adding to this, many of these available predictive models are steady-state 

models (Fenner et al., 2005; Rong-Rong et al., 2012). These are deficiencies that can impede 

their use in watersheds, especially given the fact that many watersheds have multiple land uses or 

vegetative covers and that pollutant inputs, as well as compartmental fates, are often dynamic. 

The management of such watersheds is considered better guided by models capable of 

performing dynamic evaluations. No publicly-available, predictive/evaluative and dynamic 

environmental multi-media model, with at least three vegetative compartments (forest being one 

of them), was identified. 

The assessments in this dissertation were geared towards filling the identified knowledge 

gaps and developing the relevant tools to accomplish such.  

 

1.2 Aim and objectives 

This dissertation aims to contribute to the understanding of the influence of tropical 

forests and climate change on the environmental fates of select persistent organic pollutants and 

current-use pesticides at the watershed scale. For the purpose of this research, the Rio Cobre 

watershed in Jamaica was the case study. The selection criteria for the assessed organic 

compounds were that they be ubiquitous, associated with adverse health and/or environmental 

impacts, as well as be under current global scrutiny. Eight (8) known persistent organic 

pollutants, as well as eight (8) pesticides currently in use in Jamaica were selected for 

assessment. The persistent pollutants included the following: 

a) polybrominated diphenyl ethers (PBDEs) – PBDE-47, PBDE-99, PBDE-153 and PBDE-

209; 
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b) polychlorinated dibenzo-p-dioxins (PCDDs) – tetra-chlorinated dibenzo-p-dioxin 

(TCDD) and octa-chlorinated dibenzo-p-dioxin (OCDD); and  

c) polychlorinated dibenzofurans (PCDFs) – 2,3,4,7,8-Penta-chlorinated dibenzofuran 

(PeCDF) and 1,2,3,4,7,8-Hexa-chlorinated dibenzofuran (HxCDF).  

The pesticides assessed included:  

e) pyrethroids – cypermethrin and lambda-cyhalothrin; 

f) organophosphate insecticides – diazinon and dimethoate; 

g) carbamates – carbaryl and methomyl; 

h) herbicides – diuron and glyphosate.  

The objectives of this dissertation are detailed below. 

 

Objective 1: To determine whether tropical forests exhibit a filter effect for select persistent 

organic pollutants in the Rio Cobre watershed  

 Among the specific research questions to be answered by this objective are:  

 Are depositions of some PBDEs greater in tropical forests than in clearings? 

 Do tropical forests soils accumulate select PBDEs more than the soils in 

clearings? 

 Do tropical forests reduce the atmospheric concentrations of select PBDEs in 

comparison to clearings? 

To assist in answering these questions, samples of bulk deposition, litterfall, soil and 

ambient air were simultaneously obtained for a forest and adjacent clearing in the Rio Cobre 

watershed for a period of 15 weeks. These were used to compute filter, depletion and 

accumulation factors to quantify the effect of forests on the presence of the organic pollutants.   
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Objective 2: To determine the effects of tropical forests on the long-term fate metrics for select 

persistent organic pollutants and current-use pesticides in the Rio Cobre watershed  

Some specific research questions to be addressed by this objective are as follows: 

 Do tropical forests reduce the long-term fate metrics of both persistent and the 

more polar organic pollutants? 

 Does the degree of the effect of tropical forests on long term fate metrics depend 

on the nature of the pollutant – persistent or more polar? 

 How does the composition of the tropical forest affect its influence on the fate 

metrics for the evaluated pollutants? 

 It was hypothesized that tropical forests reduce the atmospheric concentrations and long 

range transport potentials of select organic pollutants at the expense of forest soils, but increase 

overall persistence. Therefore, to execute this objective, a multi-media model was first developed 

by modifying CalTOX 1.5 to include forest and urban covers. The model was then used to 

compute some long-term fate end-points – overall persistence, atmospheric long range transport 

potential, as well as steady state and average annual concentrations – for each of the 16 organic 

compounds in a forested and an un-forested scenario for the Rio Cobre watershed. Changes were 

evaluated by comparing the metrics in the forested scenario to that in the un-forested scenario.  
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Objective 3: To ascertain the influence of climate change and land use on the environmental 

fates of select persistent organic pollutants and current-use pesticides in the Rio Cobre 

watershed  

For this objective, specific research questions include: 

 Under which tropical climate change scenarios are the fate metrics of the evaluated 

organics increased? 

 What are the climate change scenarios for which the negative effects of climate 

change on environmental fates are tempered by the presence of tropical forests?   

 What land use distributions provide for increases in the long-term fate metrics of the 

organics in the tropical watershed?  

 When forested proportions of the tropical landscape are altered, do the ensuing effects 

on environmental fates also depend on the land use benefitting from the changes?  

 Do the climate change effects on environmental fates vary according to landscape 

architecture in the tropical watershed? 

It was hypothesized that tropical forests exhibit different impacts on the environmental 

fates of select organic compounds, depending on the properties of the chemicals and the climatic 

conditions. Therefore, the multi-media model developed in objective 2 was used to quantify 

long-term fate metrics for varying forest coverage applied to the Rio Cobre watershed under four 

(4) climate change scenarios. A total of 20 assessment scenarios were generated and compared to 

control scenarios for the 16 organic compounds.  
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In this dissertation, current knowledge is first reviewed and the knowledge gaps are 

presented in Chapter 2. The methods used and the results of this evaluation are detailed in 

Chapters 3 to 5, whereas summary is provided in Chapter 6. 

 

1.3 Significance 

Long-term environmental fates, as well as exposures to organic pollutants at the 

watershed scale, may be regulated and/or mitigated by the presence of tropical forests. As a 

result, evaluating the relationship between these vegetative covers and the fate metrics of the 

contaminants may provide critical information for planning and environmental monitoring 

agencies, as well as health assessors, as they seek to formulate measures/methods to ensure 

human and environmental health. This dissertation seeks to contribute such information.  

The organic compounds selected for assessment in this dissertation are polybrominated 

diphenyl ethers (PBDEs), dioxins, furans and some current-use pesticides, many of which 

provide essential functions. However, high environmental levels of these organics may cause 

adverse human and ecosystem health. This is deleterious at the watershed scale, with the co-

existing potential for similar adverse effects on neighboring regions. Tropical forests may assist 

in this regard by controlling levels in exposure media. Additionally, climate change and land use 

are expected to affect not only the fates of the organic pollutants, but also any influence of 

forests on their fates and health impacts in a tropical region – hence the need for the assessments 

in this study.  
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Chapter 2 

Literature Review 

2.1 Introduction 

Many organic compounds are the current source of tremendous concern, due to their 

global distribution, as well as potential for adverse environmental and health effects. Among 

these are polybrominated diphenyl ethers (PBDEs), dioxins, furans and pesticides. Some of these 

organic compounds are manufactured for their beneficial functions. For instance, PBDEs are 

flame retardants, which are produced and added to textile materials, foams and plastics to 

interfere with the initial stage of fire development, thereby restricting its propagation (Sjödin, 

Patterson, & Bergman, 2003). Pesticides are manufactured and applied to control pests (Moore, 

2007). However, other organic compounds are unintentionally produced. Examples of these are 

dioxins and furans, which are the by-products of combustion processes or the manufacture of 

other chlorinated organic compounds (Jones & de Voogt, 1999). Nevertheless, they are all 

ubiquitous environmental pollutants.   

The pollutants differ by their sources and release media (Lohmann, Breivik, Dachs, & 

Muir, 2007). PBDEs are chemical additives and, consequently, are released during all phases of 

their life cycle – manufacture, use and disposal. They are primarily emitted into the atmosphere. 

However, chemicals such as pesticides may be emitted directly into the atmosphere, soil or on 

vegetation typically during application (Ragnarsdottir, 2000).  

Organic pollutants also display varying environmental distribution behaviors, patterns 

and fates. These are controlled by the intrinsic physicochemical properties of the chemical. Such 
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properties include partition coefficients, media-specific half-lives, aqueous solubility and vapor 

pressure (Jones & de Voogt, 1999). These intrinsic properties dictate the persistence, long range 

transport potential, bioaccumulation and environmental state, among others.  Contaminants that 

display unfavorable attributes – persistence, bioaccumulation potential, long range transport 

potential and toxicity – are recommended for regulation, management or bans (Don Mackay, 

McCarty, & MacLeod, 2001). In fact, the possession of these four attributes is a criterion applied 

by the United Nations Environment Programme for the regulation of persistent organic pollutants 

(POPs) (Beyer, Mackay, Matthies, Wania, & Webster, 2000). For example, PBDEs, dioxins and 

furans display high octanol-air partition coefficients and long environmental half-lives and, 

consequently, they bioaccumulate, bio-magnify, and persist in the environment. They are also 

toxic. Hence, they are classified as persistent organic pollutants (POPs) (Jones & de Voogt, 

1999).  

In terms of environmental behavior, the organic compounds can also be differentially 

classified according to their mode of transport from their sources, as well as their potential to 

reach the Arctic environment. Some chemicals, especially those with octanol-air and air-water 

partition coefficients (Koa and Kaw, respectively) such that 6.5 ≤ log Koa < 10 or log Koa < 6.5 

with -4 < log Kaw  < 0, are transported to the polar region in a series of depositions and 

evaporations (depending on temperature changes) known as grass-hopping, and are considered 

‗multiple hoppers‘ (Wania, 2006). On the other hand, those with log Koa > 10 are the ‗single 

hoppers‘, with limited potential to reach the Arctic, having been previously irreversibly 

deposited to the earth‘s surface. ‗Swimmers‘ are typically those with log Kaw < -2 and traverse 

primarily via the oceans. However, there are the ‗fliers‘, often with log Koa < 6.5 and log Kaw > 

0, which are very volatile and are not usually deposited (Wania, 2006). Some organics are both 
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‗multiple hoppers‘ and ‗swimmers‘. PBDEs, because of their high octanol-air partition 

coefficients, are among the ‗single-hoppers‘ and as such they move from their region of emission 

to their final destination in a ‗single hop‘ (Lohmann et al., 2007).  

Other properties relating to the environment or landscape also govern the environmental 

fates and behavior of organic compounds. Precipitation provides a key mechanism via wet 

deposition for the transfer of chemicals from the atmosphere to terrestrial and aquatic 

compartments (Walcott, Erwin, & Levin, 2009). Also, processes such as volatilization and 

evaporation, which increase atmospheric concentrations, are often positively influenced by 

ambient temperatures. Vegetative covers, such as forests, have been shown to influence the 

environmental distribution of some organic compounds, whether by enhanced uptake from the 

atmosphere and subsequent transfer to soils or via re-volatilization from leaf surfaces (Nizzetto 

& Perlinger, 2012; Wania & McLachlan, 2000). Therefore climatic conditions and vegetation 

influence the fates of organics. 

Once in the environment, these organic compounds may cause adverse health effects 

ranging from skin disorders to neurological dysfunction, endocrine disruption and immuno-

toxicity (Fiedler, 2003; Sterling & Arundel, 1986). Therefore, understanding all the factors and 

mechanisms governing the environmental fates of these organics, as well as their impacts is 

critical. The evaluation of environmental fates and health impacts are accomplished using field 

measurements and/or multimedia environmental models.  

With this in mind, this dissertation review first synthesizes current information on the 

use, exposures, health effects and environmental fates of select organic contaminants – PBDEs, 

dioxins, furans and current-use pesticides. Subsequently, the potential contributions of tropical 

forests and climate change to the environmental fates of the chemicals in watersheds are 
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examined. Finally, environmental management measures, such as fate assessment tools, 

specifically multi-media models, are considered.  

 

2.2 Persistent organic pollutants  

2.2.1 Use, exposures and health effects – poly-brominated diphenyl ethers 

Polybrominated diphenyl ethers (PBDEs) are semi-volatile organic compounds and are 

among the cheapest flame retardants, whose purpose in items or materials is to interfere with 

combustion (Rahman, Langford, Scrimshaw, & Lester, 2001). There are 209 congeners of 

PBDEs, with 1 to 10 bromine atoms possibly attached to the diphenyl ether molecule.  

Commercial mixtures of the PBDEs include pentabrominated BDE (pentaBDE), 

octabrominated BDE(octaBDE) and decabrominated BDE (decaBDE) (Costa, Giordano, 

Tagliaferri, & Caglieri, 2009). PentaBDE and octaBDE have recently been banned in select 

states in the US and in Europe (Costa et al., 2009). The main constituents of the pentaBDE 

formulation are PBDE- 47, 99, 100, 153 and 154, whereas PBDE- 153, 154, 183, 196, 197, 203, 

207 and 208 are the components of the octaBDE mixture (USEPA, 2010). Commercial decaBDE 

is the most globally used and its main constituent congener is PBDE-209 (also called decaBDE). 

The extensive use of PBDEs in recent years has led to global distribution and, as such, they are 

now ubiquitous. These organic compounds are not only persistent, but they also bio-accumulate, 

bio-magnify and cause adverse human and ecosystem health. They are labeled as persistent 

organic pollutants (POPs). 

OctaBDE and decaBDE are mainly used in electronic housings, whereas foams and 

textile materials typically contain pentaBDE (Vonderheide, Mueller, Meija, & Welsh, 2008). As 

a result, PBDEs are found in furniture, clothing, our homes and other indoor environment, 
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vehicles and electronic devices. The PBDEs are dissolved in the polymers of the material, and 

the lack of chemical bonding means that PBDEs are constantly being emitted, from the material 

to which they have been added, during use and disposal. Point sources of PBDEs include 

manufacturing, recycling and waste disposal facilities. Other sources include back-yard burning 

(Vonderheide et al., 2008).  

Atmospheric and aqueous concentrations appear to be high for the pentaBDE, whereas 

higher concentrations of decaBDE are often found in soils and sediments. PBDEs in the 

atmosphere and sediment have been extensively assessed, but less is known about concentrations 

in the soil and aquatic media, although soil appears to be a major sink (Vonderheide et al., 2008). 

In the environment, PBDEs degrade to form lower congeners. During incineration, PBDEs 

produce dioxins and furans. 

Humans are not only exposed to PBDEs via the abiotic environment, but also through 

diet, with fish being the major dietary contributor (Frederiksen, Vorkamp, Thomsen, & Knudsen, 

2009) – this is because PBDEs are lipophilic. Although decaBDE is not well absorbed and is 

quickly eliminated from animals (McDonald, 2002), the lower PBDE congeners bioaccumulate 

in lipids and bio-magnify as the distance up the food chain increases. Upon exposure, PBDEs 

may cause a number of health effects. They have been associated with thyroid hormone 

disruption and developmental neurotoxicity, and PBDE-209 has carcinogenic potential (US 

Environmental Protection Agency, 2010).  
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2.2.2 Use, exposures and health effects – dioxins and furans 

Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzo-furans (PCDFs) are semi-

volatile organic compounds, that are the unintentional by-products of waste incineration, paper 

and pulp bleaching, pesticide manufacture and industrial combustion processes (Srogi, 2008). 

They are also impurities in chlorinated products/materials. Natural events, such as volcanic 

eruptions and forest burning, are among the point sources of PCDDs and PCDFs. 

There are 75 PCDDs and 135 PCDFs, of which only seven (7) PCDDs and ten (10) 

PCDFs are of interest, as they have been found to be toxic (Schecter, Birnbaum, Ryan & 

Constable, 2006). These 17 toxic dioxins and furans have chlorine atoms on the second, third, 

seventh and/or eighth positions on the dibenzo-p-dioxin or dibenzofuran parent molecule. 

PCDDs and PCDFs adsorb onto particulate matter and are soluble in octanol and lipids, with 

solubility positively correlated with chlorine-atom content (Lohmann & Jones, 1998). PCDDs 

and PCDFs are subject to long range atmospheric transport and this, in combination with their 

by-production from common events, has resulted in global distribution and the ensuing 

ubiquitousness.  

In the environment, PCDDs and PCDFs are deposited from the atmosphere to the water 

and terrestrial compartments. However, they more readily partition to soils and sediments than 

water, mainly due to their high octanol-water partition coefficient (Kow) (Lohmann & Jones, 

1998). These organic compounds are persistent, accumulate in lipids, biomagnify in the food 

web and cause adverse environmental and human health. Higher order PCDDs and PCDFs 

degrade to the more toxic, lower order PCDDs and PCDFs, respectively. 

PCDDs and PCDFs are among the most toxic organic chemicals, achieving status 

amongst the United Nations Environment Programme‘s (UNEP‘s) ‗Dirty Dozen‘ (Srogi, 2008). 
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The most toxic is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The toxicities of the 17 PCDDs 

and PCDFs of interest are compared to that of TCDD, via the World Health Organization‘s 

(WHO‘s) 2005 toxicity equivalence factors (TEFs), using half-order increments on a logarithmic 

scale (0.03, 0.1, 0.3, etc.) (Van den Berg et al., 2006). The TEFs are used to calculate toxicity 

equivalence quotients (TEQs), which are compared to a tolerable daily intake of 1-4 pg TEQ/kg-

bw.   

PCDDs and PCDFs have been associated with a variety of effects on humans and 

animals, not limited to skin lesions, disrupted liver function, disrupted metabolism, behavioral 

and developmental disorders, immunotoxicity and neurotoxicity. TCDD has also been found to 

be teratogenic and carcinogenic (Fiedler, 2003). 

 

2.2.3 Environmental fates – PBDEs, PCDDs and PCDFs 

Environmental fates and distribution studies about organic pollutants give information on 

the short- and long-term environmental concentrations, exposure media, time period during 

which the hazard potential is greatest, as well as the factors affecting their respective fates. 

Further understanding of pollutants and their behavior in the environment comes from 

physiochemical studies of the organic compounds, field measurements of environmental 

concentrations/distribution and from transport models. 

Persistent organic pollutants are organic compounds that not only reside in the 

environment for a long time, but also bio-accumulate, bio-magnify and cause adverse effects 

(Wania & MacKay, 1996). They are characteristically lipophilic and resistant to metabolism. 

Their distribution and movement through the environment are dependent on environmental 

properties, such as temperature and precipitation. For example, higher ambient temperatures 
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facilitate evaporation into the atmosphere and migration, whereas lower temperatures facilitate 

deposition from the atmosphere to soils and aqueous media. Also, lower temperatures enhance 

partitioning from the gaseous to non-gaseous phase (as in condensation to aqueous media or 

adsorption on particles) and retard degradation – both facilitating persistence. Due to their 

persistent nature, these organic pollutants are also typically subject to long range transport 

(Lohmann et al., 2007).  

Although some persistent organic pollutants display the traditional negative concentration 

gradient in non-gaseous media with respect to distance from emission sources, many of the more 

mobile and volatile display a positive correlation between concentration and distance from the 

source (Wania & MacKay, 1996). Therefore, it can be seen that significant properties influencing 

the environmental fates of these chemicals include their partition coefficients. Other key 

indicators of environmental fates are half-lives, vapor pressure, aqueous solubility and migration 

velocity (Jones & de Voogt, 1999; Wania & MacKay, 1996). For example, the more volatile 

persistent pollutants, those with lower octanol-air partition coefficients, are often airborne and 

tend to move faster from one location to the next, thereby displaying higher migration velocities 

(Wania & MacKay, 1996). The half-live of an organic is the time taken for its concentration to 

decrease to, or by, half of the original amount. This variable is a typical metric used to determine 

single-medium persistence, as well as overall persistence (which is calculated for a number of 

connected environmental media) (Webster, Mackay, & Wania, 1998). Therefore, organics that 

retreat to environmental media in which they display high half-lives or persistence, may 

contaminate the given media, persist, as well as cause adverse effects. 
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Persistent organic pollutants can also be categorized by the mode of production. Some are 

intentionally produced, such as PBDEs, whereas some are process by-products, such as PCDDs 

and PCDFs.  

Sources generally emit directly to the atmosphere. Soils then receive these organic 

pollutants primarily from atmospheric deposition (Hassanin et al., 2004). However, some 

contaminants, such as PBDEs, can leach directly from sources, such as electronic waste 

recycling facilities, into the soils (Leung, Luksemburg, Wong, & Wong, 2007).  Unintentionally 

produced organic pollutants, such as PCDDs and PCDFs, can also be formed directly in the soils, 

when the soils are contaminated with chlorinated organic compounds, and especially when the 

soils are alkaline (Sokolovich, 1994). Concentrations of persistent organic pollutants in soils are 

often balances of inputs and outputs because of long half-lives. Chemical concentrations in this 

medium are functions of the distance from the source, climatic drivers (temperature and 

precipitation), vegetative cover, soil organic carbon content, soil type and the long range 

atmospheric transport potential (LRAT) of the compound. For some persistent organic 

pollutants, such as PBDEs, soils retain the higher congeners more efficiently than the lower 

congeners (Hassanin et al., 2004). The lower congeners often experience ‗hopping‘, due to their 

lower octanol-air partition coefficients, whereas the higher order congeners do not. 

Many persistent organic pollutants are delivered to surface waters via atmospheric 

deposition. However, other inputs include surface run-off and direct discharges (Castro-Jiménez 

et al., 2008; Sepúlveda et al., 2010). Once in the aquatic media, these organic contaminants 

typically migrate to sediments and aquatic biota (Moon, Choi, Yu, Jung, & Choi, 2012). 

Although the toxicities of some persistent organic pollutants, such as PBDEs, PCDDs and 

PCDFs, have been well characterized, identifying the sources of most was previously difficult 
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because of their widespread use or unintentional production (Jones & de Voogt, 1999). However, 

methods have been developed to aid in such assessments, and the current focus is to identify and 

better characterize sources, as well as the environmental concentrations of many. In China, major 

sources of PCDDs and PCDFs were the impurities used in the production of many chlorinated 

organics (Zheng, Leung, Jiao, & Wong, 2008). Metal smelting operations and organochlorine 

chemical production were the major sources of PCDDs and PCDFs in the drainage areas of the 

Taiza River and Hun River, respectively, in China (Zhang et al., 2008). Fish is the major dietary 

source of PBDEs, with a mean observed concentration of 4200 pg/g bw (Frederiksen et al., 

2009). Average soil and sediment PBDE concentrations decreased as progress was made 

downstream from the Shiawassee River in Michigan (Yun et al., 2008). Decreasing soil and 

sediment concentrations of PBDEs were also observed along the river flow gradient in 

Argentina, with concentrations associated with the presence of facilities such as hydroelectric 

power plants (Miglioranza et al., 2013). Waste electronic recycling plants are significant sources 

of PCDDs and PCDFs in China and India (Sepúlveda et al., 2010). Vehicle and house dust are 

significant sources of PBDEs in urban regions (Jones-Otazo et al., 2005; Lagalante, Oswald, & 

Calvosa, 2009). Although it has been possible to quantify environmental concentrations and 

identify the sources, emissions are still largely estimated (USEPA, 2010).    

Despite the growing work demonstrated above, studies involving the role of many 

environmental factors, such as vegetative cover, on the fates of these select persistent organic 

pollutants are relatively few.  
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2.3 Current-use pesticides  

2.3.1 Use, exposures and health effects – current-use pesticides 

The negative health and environmental effects associated with many currently used 

organic pesticides have placed them under much scrutiny. Major classes include organochlorine 

insecticides, organophosphate insecticides, pyrethroids, fungicides, rodenticides, carbamates and 

herbicides. Organochlorine (halogenated) insecticides are considered to be persistent organic 

pollutants (Dehn, Allen-Mocherie, Karek, & Thenappan, 2005), and many such pesticides are 

banned from use in a number of developed countries. There is instead a global shift towards non-

halogenated pesticides, including organophosphate insecticides and herbicides (Yao et al., 2006). 

Even in a small developing country such as Jamaica, the Pesticides Control Authority of Jamaica 

(2011) estimated that, during 2010-2011, herbicides and other non-halogenated insecticides 

represented 55% and 32%, respectively, of imported pesticides, with 35.9% of all imported 

pesticides being directly imported by the agricultural sector and 32.4% as raw material for 

manufacture. Therefore, for the remainder of this dissertation, these increasingly popular non-

halogenated pesticides will be referred to as current-use pesticides (CUPs). However, the focus 

will be on select current-use pesticides – pyrethroids, carbamates, organophosphate insecticides 

and herbicides. 

Pyrethroids are insecticides, first identified in 1949. They are neuro-toxic, affecting the 

sodium and chloride channels of the nerves. Human exposures are primarily occupational. 

Environmental exposure is rare. As is common with many pesticides, acute ingestion can cause 

vomiting, headaches, coma and convulsions (Bradberry, Cage, Proudfoot, & Vale, 2005).  

Organophosphate pesticides are also insecticides, which were first identified in 1938. 

Exposures are generally occupational, with some environmental exposures. Organophosphates 
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are also neurotoxic and inhibit the cholinesterase enzyme, resulting in elevated levels of 

acetylcholine at the nerve-muscle junctions, causing muscular spasms. Acute exposure causes 

the typical symptoms of pesticide exposure, such as muscle weakness, sweating and 

gastrointestinal upset, whereas chronic exposure causes nausea, vomiting, blurred vision, among 

other symptoms (Jaga & Dharmani, 2003). 

The evaluation of carbamates as insecticides was initiated in 1949 (Metcalf & Fukuto, 

1965). These insecticides operate in a similar fashion to organophosphate insecticides by 

inhibiting acetylcholinesterase, and are therefore also neurotoxic (Fukuto, 1990). As a result, 

human exposures to these esters cause similar health effects to the organophosphates, such as 

muscular spasms, vomiting, headache, muscle weakness, blurred vision, among others.  

Selective herbicides were introduced in the 1940s. Herbicides control weeds primarily 

through the inhibition of photosystem I, photosystem II, acetyl-CoA carboxylase enzyme, EPSP 

synthase or the acetolactate synthase enzymes (Kudsk & Streibig, 2003). Glyphosate-based 

herbicides are among the first used herbicides, and are still globally used (Gasnier et al., 2009).  

There is limited data on the health effects of exposure to herbicides. However, exposures to some 

herbicides, such as phenoxy herbicides, are associated with chloracne (Sterling & Arundel, 

1986), whereas acute ingestion of glyphosate herbicides may cause gastrointestinal erosion, 

hemorrhaging, as well as sore throats (Talbot et al., 1991). 

 

2.3.2 Environmental fates – current-use pesticides  

Much research has been directed towards characterizing the fates of pesticides. It is 

known that pesticides typically enter the atmosphere via spraying, volatilization from soil and 

suspension of soil particles to which they are adsorbed (Scheyer, Morville, Mirabel, & Millet, 
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2007). These chemicals are then atmospherically transported varying distances from their 

application and emission sites (Sanusi, Millet, Mirabel, & Wortham, 2000).  

Pesticides reside in the atmosphere as vapor, aerosols or adsorbed on soil particles 

(Sadiki & Poissant, 2008). The atmospheric state of the chemical is a function of its gas-particle 

partition coefficient, determined by its octanol-air coefficient, as well as vapor pressure (Sanusi, 

Millet, Mirabel, & Wortham, 1999). Variables such as air-water coefficients influence the 

removal processes for these organics from the atmosphere. For example, pesticides with low air-

water partition coefficients (Kaw) are more easily removed by deposition. Those pesticides with 

higher Kaw exhibit longer atmospheric residence times, and hence are more likely to exhibit long 

range atmospheric transport, because they are less likely to be removed via wet or dry deposition 

(Scheyer, Morville, Mirabel, & Millet, 2008). Otherwise, pesticides are removed from the 

atmosphere via photo-degradation and reactions with radicals and oxidizing agents, such as 

ozone (Bossan, Wortham, & Masclet, 1995). 

Contamination of surface waters by pesticides is a function of the physicochemical 

properties of the pesticide, such as octanol-water partition coefficient (Kow) and aqueous 

solubility, as well as landscape properties, such as topography and location of waters with 

respect to the site of application (Dabrowski et al., 2002). Other factors that also influence 

pesticide concentrations in surface waters include the quantity of applied pesticide, the 

percentage available for run-off, application rate, precipitation rate, land use and loss to organic 

matter en route to surface waters. The most common source of surface water contamination is 

agricultural run-off. Direct releases from manufacturing plants also contribute tremendously to 

surface water contamination. The pesticide burden in surface waters includes the solute 
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concentrations, concentrations adsorbed to settled and suspended particles, as well as 

concentrations in aquatic biota (Holvoet, Seuntjens & Vanrolleghem, 2007). 

Pesticides may migrate to groundwater via leaching through soil. The concentration of 

these contaminants in ground-water is a function of quantity applied, the vertical distance 

between the surface application site and the water-table, soil properties, and recharge properties 

of the groundwater (Pionke & Glotfelty, 1989).  

Soils are considered to be reservoirs for many organic compounds, such as pesticides, 

due to their high organic content. Contamination of this environmental medium occurs via 

atmospheric deposition, transfers from vegetation and direct application/spray. The main factors 

influencing the concentration of pesticides in this medium are the physicochemical properties of 

the pesticides, climatic conditions such as temperature and precipitation rate, application rate and 

quantity, as well as landscape properties. Also, soil characteristics play major roles in soil 

concentrations. These characteristics include organic content, porosity and air/water content, as 

these often influence sorption of the chemical to the soil colloids (van der Werf, 1996), and 

hence residence time. Pesticides may remain in the soil bound to soil particles, undergo 

degradation or be removed by non-degradation processes such as leaching, run-off among others. 

Sorption to soil colloids enhances persistence and determines the reservoir nature of the soil for 

the particular pesticide.   

Much of the current field research includes regional studies aimed at determining media-

specific concentrations. These studies are especially important because contaminants with 

elevated levels in given media, such as the atmospheric or aquatic media, may be subject to long 

range transport, with potential adverse effects in the immediate and distant environs. Also, re-

volatilization may be an issue when levels are elevated in soils.   
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A recent trend is to characterize the environmental and climatic factors influencing the 

fates of pesticides, primarily the halogenated insecticides. For example, the seasonal variations in 

the atmospheric concentrations of some organochlorine pesticides have been assessed, with 

observed elevated concentrations in the summer over the winter. A major finding is that not only 

is primary emission significant for elevated atmospheric levels, but so also is re-volatilization 

from surfaces (Wu, Tao, Zhang, Lan, & Zuo, 2005; Yao et al., 2006; Yeo, Choi, Chun, & 

Sunwoo, 2003; Yeo, Choi, & Sunwoo, 2004). In many of these studies, the fates were assessed in 

single media (primarily the atmosphere) and the chemicals of interest were the known persistent 

organochlorines. 

There is a growing number of field studies assessing climate-based changes/seasonal 

trends in the fates of current-use pesticides (Field, Reed, Sawyer, Griffith, & Wigington, 2003; 

Garmouma et al., 1998; Holvoet, Seuntjens, & Vanrolleghem, 2007), some of which have been 

found to be relatively persistent (Field et al., 2003). For instance, there are suggestions that 

dissipation half-lives for current-use pesticides are shorter in tropical soils than temperate soils 

(Laabs, Amelung, Pinto, & Zech, 2002) and the dissipation half-lives in tropical aquatic systems 

are similar to those in temperate aquatic systems, during the summer period (Laabs, Wehrhan, 

Pinto, Dores, & Amelung, 2007). Therefore, higher temperatures facilitate faster dissipitation. 

However, sorption behavior does not not depend on whether the soil is located in a tropical or 

temperate region (Oliver, Kookana, & Quintana, 2005), but instead depends on whether the soil 

is located in a wet or dry zone (Liyanage, Watawala, Aravinna, Smith, & Kookana, 2006). The 

time lapse between pesticide application and a rainy event influences the residence time of the 

chemicals in soils and the concentrations in surface waters in France (Garmouma et al., 1998).  
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Although substantial work has been conducted on assessing the role of climatic and 

environmental factors on the fates of pesticides, studies involving the role of vegetation are still 

limited. 

 

2.4 Forests effects  

It is well known that climate affects land cover. However, it is being recognized that land 

cover also influences climatic conditions. Increasing the vegetative density has been shown to 

increase albedo and total latent heat flux, while simultaneously decreasing sensible heat flux, 

thereby resulting in cooler and wetter climatic conditions (Bounoua et al., 2000). The vegetative 

cover and soil distribution in ecosystems affect climate through changes in the balance of water, 

momentum and energy (Foley et al., 2003). According to Foley (2003), grasslands and pastures 

display lowered humidity, lowered precipitation and higher surface temperatures. Tropical 

deforestation has been associated with climatic changes, such as increased temperatures and 

albedo, as well as decreased evaporation cooling and precipitation rates (Costa, Bonell, & 

Bruijnzeel, 2004; Costa & Foley, 2000). There is clearly a feedback system between climate and 

land cover. Since climate affects the fates of organic compounds, it was reasonably hypothesized 

that land cover also influences the fates of these chemicals. 

Land use/cover influences the fates of organics in the environment because the retention 

capacity of the surface for the chemicals is determined by conditions such as vegetative cover 

(Schiedek, Sundelin, Readman, & Macdonald, 2007). There are studies that correlate land 

use/cover with either pollutant fates or some influential factors of their fates. For instance, the 

contamination of surface waters depends on land use (Holvoet et al., 2007). The uptake by 

vegetation is more important in reducing atmospheric concentrations than uptake by soil for 
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organics with lg KOA > 6 (Nizzetto et al., 2008). It has been shown that land use/cover influences 

the volatilization fluxes of persistent organic pollutants to the atmosphere (Komprda et al., 

2013). Plant cover controls run-off (Garmouma et al., 1998) and, hence, contaminant fate.  

There are a number of studies assessing the influence of specific land covers, such as 

forests, on the fates of organic contaminants. Temperate forests are thought to reduce the 

atmospheric concentrations of a subset of organics, specifically semi-volatile organic compounds 

with 7 < log KOA < 11 and log KAW > -6, by transferring these to forests soils (McLachlan & 

Horstmann, 1998). With reduced atmospheric concentrations of these semi-volatile organic 

compounds, there is the resultant reduction in atmospheric deposition to surface waters. 

However, there is increased delivery to the surface waters via forest soil run-off, although to a 

lesser degree (Wania & McLachlan, 2000). In examining the role of forests in a Canadian 

watershed, the vegetative cover was alternated between forested and urban coverage, and it was 

found that forests soils may be reservoirs for semi-volatile organic compounds (Priemer & 

Diamond, 2002). Therefore, these forests are considered to be filters of many organic 

contaminants and their soils the reservoirs.  

First, the forest canopy uptakes the chemicals from the atmosphere via gaseous diffusion, 

wet gaseous deposition, as well as wet and dry particle-bound deposition (Horstmann & 

McLachlan, 1998). The uptake rates are controlled by the deposition velocities of particles and 

gases, with gaseous deposition velocities typically exceeding particle-bound deposition 

velocities. Thereafter, the canopy transfers the organics to the soil primarily through canopy drip, 

cuticular-wax erosion and litterfall (Horstmann & McLachlan, 1998). This process of chemical 

uptake and transfer to soils by forest canopies is classified as the forest ‗filter effect‘. This filter 

effect has been described for those organic pollutants that are hydrophobic, persistent and with 7 
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< log Koa < 11 and log Kaw > -6. Chemicals such as these are considered to fall within the forest 

‗filter window‘.  

The type of forest is thought to be important in the filter effect for the organic pollutants. 

Atmospheric deposition fluxes to deciduous forests were higher than to coniferous forests 

(Horstmann & McLachlan, 1998; Wania & McLachlan, 2000). The boreal forests, especially 

those that are deciduous, may be more effective at capturing some atmospheric organic 

pollutants than tropical rainforests (Wania & McLachlan, 2000). Globally, boreal forests, 

especially deciduous boreal forests, reduce the atmospheric and ocean concentrations of organic 

pollutants, but increase the environmental persistence of these chemicals by delivery to forest 

soils where they are stored (Su & Wania, 2005). It has been suggested that the filter effect may 

be absent for some organics, such as polychlorinated biphenyls (PCBs) in tropical forests 

(McLachlan & Horstmann, 1998). Temperature affects the partition coefficients Koa and Kaw. 

The filter factor, which is a function of deposition velocities, which in turn are governed by these 

partition coefficients, is then also temperature dependent and appears to be reduced at higher 

temperatures. Also, the uptake ability from the atmosphere of forests is reduced during higher 

temperatures, with mass transfer coefficients displaying lower median values during periods with 

higher temperatures (Nizzetto, Stroppiana, Brivio, Boschetti, & Di Guardo, 2007). These suggest 

that the higher temperatures of tropical regions may inhibit the filtering effect of forests.  

However, many tropical regions display high precipitation rates. Wet deposition, an 

important process influencing the forest uptake of organic compounds, is positively associated 

with precipitation rates and is therefore a key transport mechanism, especially for the more polar 

organics. In some tropical regions, the higher temperatures may inhibit while the higher 

precipitation rates may enhance the forest filter effect for organic contaminants, especially the 
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more polar current-use pesticides. It is as yet unknown whether the combined high temperatures 

and precipitation rates of some tropical regions allow for organic contaminants to be filtered 

from the atmosphere. Also, it is not known how any filtering effect of tropical forests may vary 

with forest structure and coverage.   

It has been shown above that vegetative compartments affect the atmospheric 

concentrations of organic contaminants, by enhanced uptake from the atmosphere. However, 

enhanced emissions to the atmosphere are expected under select conditions. Organics with 

higher Koa values (8 ≤ log Koa ≤ 10.7) can be re-emitted during seasons with higher temperatures 

(Nizzetto & Perlinger, 2012). Therefore, forests may act as secondary sources of organic 

pollutants at the local or regional scale. Changes to agrochemical use, due to changes in land use, 

such as shifts from arable to forested land, were found to influence environmental distribution of 

pesticides with reductions in atmospheric concentrations, given increased forested acreage 

(Wöhrnschimmel, MacLeod, & Hungerbuhler, 2013). Therefore, despite the suggestions that the 

filter effect of tropical forests may be reduced, these biomes may otherwise control the fates of 

organic contaminants, including those that are less persistent.  

Although many current-use pesticides are organic contaminants, they are typically more 

polar (with low air-water and octanol-water partition coefficients) and less persistent. Some 

possess partition coefficients outside of the forest ‗filter window‘. While as yet unknown, it is 

possible that the filter effect extends to these products, especially since the forest filter effect is 

expected to vary widely because the filter factor is dependent on a number of parameters 

including deposition velocities, temperature, the canopy storage capacity for lipophilic organic 

contaminants, as well as particle-air partitioning (McLachlan & Horstmann, 1998).  
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It is internationally accepted that tropical forests provide critical environmental and 

economic services, such as habitat, biodiversity conservation, timber production and carbon 

sequestration (Chomitz & Kumari, 1998; Kalácska et al., 2004). These biomes may then also 

provide additional benefits such as human and ecosystem health preservation as they regulate 

organic contaminants.  

Hazard assessment end-points, such as overall persistence and long range transport 

potential, as well as steady state concentrations, are often used for the purpose of evaluating or 

predicting environmental impact (Bennett, Scheringer, McKone, & Hungerbühler, 2001; 

Diamond, Priemer, & Law, 2001; Fenner, Scheringer, & Hungerbühler, 2000; Fenner et al., 

2005; Leip & Lammel, 2004; Wania & McLachlan, 2000). The long range transport potential 

(LRTP) of organic contaminants speaks to the ability of the locally emitted contaminants to be 

transported over large distances (Scheringer, Jones, Matthies, Simonich, & van de Meent, 2009) 

via air (LRTPA) or water (LRTPw), and is therefore indicative of the capacity to cause adverse 

effects on larger scales – regional, continental or global (Bennett, McKone, Matthies, & 

Kastenberg, 1998; Beyer et al., 2000; Scheringer, 1996, 2009). Quantified metrics that allow for 

the evaluation of long range transport potentials include those that are transport based, such as 

the characteristic travel distance, as well as those that are target oriented, such as the arctic 

contamination potential (Scheringer, 2009). The characteristic travel distance is defined as the 

distance over which the contaminant is transported such that its concentration is 1/e (37%) of its 

original (Bennett et al., 1998). For an organic contaminant evaluated using the characteristic 

travel distance (CTD) and travelling at a height of 1000 m in the atmosphere at 25 ⁰C, 

recommended classifications for the contaminant are as follows: Class 1 – atmospheric CTD of 
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greater than 2000 km; Class 2 – atmospheric CTD of 700 to 2000 km; and Class 3 – atmospheric 

CTD of less than 700 km.  

The overall persistence (Pov) at its simplest is a measure of the tendency or ability to 

maintain presence in the given environmental system (Webster et al., 1998). Whereas single 

media persistence considers contaminant presence in an individual medium (air, water, among 

others), overall persistence assumes total presence, given a set of linked environmental media. 

Overall persistence is measured using half-lives (Webster et al., 1998) or steady-state residence 

times (Scheringer et al., 2009). The residence time is the time taken for the contaminant to be 

degraded to 1/e of its original concentration. Therefore, overall persistence depends primarily on 

degradation losses from the entire environment (Webster et al., 1998; Wegmann, Cavin, 

MacLeod, Scheringer, & Hungerbühler, 2009a). 

It is recommended that hazard assessments focusing on hazard end-points, such as overall 

persistence and long range transport potential, be conducted prior to toxicological assessments 

(Wegmann et al., 2009a). The overall persistence and long range transport potential of a few 

persistent pollutants have been assessed (Beyer et al., 2000; Leip & Lammel, 2004). Some 

current-use pesticides, which tend to be more polar than their halogenated counterparts, have 

been found to display regional transport potential (Matthies, Klasmeier, Beyer, & Ehling, 2009). 

There is little information on the manner in which forests affect the above hazard assessment 

end-points and any associated health effects of the organic pollutants. In a study on the 

contribution of forests to the fates of select organic compounds, the observed reduced 

atmospheric concentrations led the authors to suggest that forests may be important in reducing 

the long range transport potential of many organic contaminants (Wania & McLachlan, 2000). In 

a global study, forests reduced atmospheric and aquatic (oceanic and freshwater) concentrations 
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of the studied organic compounds. Therefore in reducing media-specific concentrations, forests 

alleviated media-specific health risks. However, the overall global persistence/residence times 

due to delivery to forest soils was increased (Su & Wania, 2005), with potentially enhanced risk 

via this medium.  

Therefore, with the potential decreases to long range transport potential and persistence 

in the atmosphere at the regional scale in temperate areas, as well as globally, in addition to 

observed global increase in overall persistence, it is possible that tropical forests may exhibit 

similar effects on these variables for organic pollutants – persistent and less persistent. One 

important question that comes to mind is, ―Are tropical forests among those that can influence 

the fates of a chosen subset of organics?‖ This area of research has been little explored. Also, 

studies assessing the fates and health effects of persistent organic pollutants and current-use 

pesticides in tropical regions, given the presence of forests at a site with other co-existing land 

uses, such as agriculture or urban centers, have not been identified.  

To summarize, the impact of tropical forests on the environmental fates of select 

persistent organic pollutants and current-use pesticides at the watershed scale with co-existing 

land uses is yet unknown.  

 

2.5  Climate change effects  

The major indicators of climate are precipitation and atmospheric temperature (Granger 

1985). These variables influence parameters responsible for the environmental distribution of 

organic pollutants. For example, partition and transport coefficients are functions of temperature 

and/or precipitation rate. The mobility of persistent organic pollutants  is dependent on climatic 

conditions, such as temperature, wind and precipitation distribution (Lamon et al., 2009). 
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Increasing temperatures result in increases in the primary volatilization of organic contaminants 

(Lamon et al., 2009; Ma, Hung, Tian, & Kallenborn, 2011; Paul et al., 2012). For each 10 
o
C 

increase in temperature, the half-life of pesticides in soils is expected to decrease by as much as 

60% (Bloomfield, Williams, Gooddy, Cape, & Guha, 2006b). Increased precipitation is 

associated with increased wet deposition and delivery to terrestrial and aquatic surfaces (Walcott 

et al., 2009).Therefore, changes to the climate variables, temperature and precipitation rate, are 

expected to alter the environmental fates of organic chemicals. These are considered to be the 

direct impacts of climate change on the fates of organic contaminants.  

The indirect impacts of climate change on the fates of organic contaminants are difficult 

to quantify and assess. Agrochemicals will herein be used for elucidation. Regional changes in 

climate are expected to result in subsequent shifts in the types and size of pest populations. For 

instance, insect proliferation is expected with rising temperatures (Bloomfield, Williams, 

Gooddy, Cape, & Guha, 2006a). Also, as the climate changes, geographical shifts in the types 

and quantity of crops produced are expected (Schiedek et al., 2007). To add to this, pesticide 

losses may occur from processes such as volatilization, degradation, erosion or run-off with 

consequential increased applications to compensate for the losses (Walcott et al., 2009). Since 

pesticide use influences the fates of these chemicals, climate change may indirectly affect their 

fates, by governing their use patterns.  

An analysis by Bloomfield et al. (2006) suggests that it may be difficult to predict the 

exact impact of climate change on environmental fates, because of the complex nature of climate 

processes. Nevertheless, efforts to quantify the potential impacts of climate change on the fates 

of organic pollutants, under a limited number of climate change scenarios, are on the rise. 

Steffens et al. 2013 showed that pesticide leaching was dependent on the specific climatic 
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conditions. For example, they found that leaching was generally higher when pesticides were 

applied in the autumn than in the spring. In another study, the atmospheric concentration records, 

since the 1990s, of select organic chemicals, were compared with arctic variables, such as 

surface air temperature and sea-ice extent, and it was found that the increasing atmospheric 

concentrations of these compounds as the arctic warms were due primarily to revolatilization 

(Ma et al., 2011). In yet another study using the multimedia model EVn-BETR, climate change 

scenarios included changes to land cover, precipitation and temperature, in the time periods 

1991-2020, 2021-2050, 2051-2080 and 2071-2100, to assess the resultant impacts on the fates of 

poly-chlorinated biphenyls (PCBs) and PBDEs (Paul et al., 2012). It was found that temperature 

was the major determinant for atmospheric fates, with reduced concentrations due to increased 

degradation and volatilization rates when the temperatures increased. Lamon et al. (2009) also 

found that temperature most strongly affected the global atmospheric fates of some organic 

contaminants. They had used BETR Global to create two climate change scenarios (for the 

periods 1981-2000 and 2080-2099) by varying select climate variables, such as temperature 

fields, wind fields, ocean current fields and precipitation rates. Using BETR Research, a global-

scaled seven compartment (upper air, lower air, sediment, soil, fresh water, ocean water and 

vegetation) multimedia model, to compare emissions with climate change scenarios, it was 

observed that increased temperature was the chief determinant of increases in arctic ocean and 

atmospheric concentrations of α-hexachlorocyclohexane (α-HCH), due to atmospheric transport 

to the arctic (Wöhrnschimmel et al., 2013).  

On the horizon are studies comparing climate and land use change effects on the fates of 

organic compounds. Shifts from arable land to forests reduced volatilization fluxes from soils, 
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whereas temperature rises increased volatilization fluxes from soils (Komprda et al., 2013). This 

suggests that land use/cover may counteract or temper some direct effects of climate change.  

The assessments described above were primarily conduced for the arctic region, or 

otherwise at a global scale. Watershed scaled assessments of climate change effects on the 

environmental fates of organic contaminants have not been identified. The studies involving 

climate change impacts are predictive and, as such, require the use of multimedia models. 

Typically, only one vegetative cover is incorporated, with the application of weighted 

parameters. Consequently, the influence of any vegetative cover in the regional environmental 

fates of organic pollutants in a watershed with co-existing land uses/covers has not been 

adequately examined. In addition to this, assessments on the impacts of climate change on the 

long-term fates and associated health impacts of select organic contaminants in such watersheds, 

as well as on the roles played by tropical forests in governing these fates and health impacts, are 

limited.  

 

2.6  Environmental assessment tools - multimedia modeling 

Multimedia models are often used to quantify the environmental fates and health impacts 

of pollutants in the absence of monitoring or field data. Also, for select long term fate metrics, 

such as overall persistence and long range transport potential, computation is accomplished 

solely via multi-media models (Bennett et al., 2001; Fenner et al., 2005; Leip & Lammel, 2004; 

Matthies et al., 2009). Multimedia modeling is therefore key to assessing the chemistry and 

transport across environmental compartments (Semeena et al. 2006). A number of private and 

publicly available multimedia models exist, including CalTOX, ELPOS, SimpleBox, Globo-Pop, 

ChemRange, CliMoChem, The Tool, ECHAM5, CozMo-POP, among others (Fenner et al., 
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2005; Götz, Scheringer, MacLeod, Roth, & Hungerbühler, 2007; Wania & McLachlan, 2000; 

Wegmann, Cavin, MacLeod, Scheringer, & Hungerbühler, 2009b). The models differ by the 

scale of transport assessment (local/regional/continental/global), complexity of transport 

equations, the number and types of compartment combinations, as well as the various sources 

and loss mechanisms considered. The metrics defining terms, such as long range transport 

potential, differ depending on the goals of the different models (Fenner et al., 2005). 

Multimedia environmental models are mass balance models that predict the fates of 

chemicals in the environment. For such models, the chemical properties, use patterns and 

quantities are the inputs used to estimate fates, exposures and health impacts (Donald Mackay & 

MacLeod, 2002). Multimedia environmental models consider transport and transformation 

processes including chemical reactions, diffusive transfer between phases (within and between 

environmental compartments/media) as well advective transport (Mackay & MacLeod, 2002).  

Also included in these models are sources to and sinks from the given environmental system. 

The multimedia environmental model can be classified as compartmental models, integrated-

spatial-multimedia compartmental models or linked spatial single-media models (Rong-Rong, 

Che-Sheng, Zhong-Peng, & Xiao-Meng, 2012). Compartment models simulate the distribution 

of contaminants among several environmental compartments/media, all of which are assumed to 

be homogenous (i.e. well-mixed). As a result, these models typically do not display spatial 

dimension for chemical transport within any given compartment. In linked spatial single-media 

models, the spatially-explicit concentration in a single media is first calculated, which, using 

intermedia transport terms, serves as inputs into other relevant compartments for the sequential 

calculation of concentrations (Rong-Rong et al., 2012).  These types of models can therefore 

exhibit fine spatial and temporal resolution. The integrated-spatial-multimedia compartmental 
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model is a hybrid of both the compartmental and the linked spatial single-media models. It 

achieves an intermediate spatial and temporal resolution.  

Compartmental models can be classified according to four levels: level I assumes a 

closed system, with a fixed amount of non-reacting chemical mass, with equilibrium established 

between compartments; level II assumes an open system at steady state, with inputs balanced by 

outputs and reaction losses, with equilibrium maintained between compartments; level III relaxes 

the equilibrium requirement, and instead uses intermedia transport rates while still assuming 

steady-state (inputs balanced by outputs and reaction losses); whereas level IV allows for 

dynamicity (unsteady-state) and non-equilibrium (Mackay & Paterson, 1982; Rong-Rong et al., 

2012). 

Many compartmental models are used primarily for evaluative/predictive purposes 

(Rong-Rong et al., 2012). The application of these models, due to their country of origin, is often 

in temperate developed countries. The modeled landscape is often delineated into compartments 

including air, soil, water, sediments and vegetation. Vertical layers or sub-compartments may be 

described for the soil, sediment and water compartments. The terrestrial and aquatic 

compartments often interact simultaneously with one atmospheric compartment spanning the 

combined surface area of these compartments.  

Terrestrial landscapes are heterogeneous, often with a variety of co-existing land covers 

in any given region. This feature of the terrestrial environment is not well characterized in many 

compartmental models. It is known, for instance, that forests interact differently with the 

atmosphere above than do grasslands (Costa et al., 2004; Foley et al., 2003). Therefore, 

compartmentalizing the landscape according to vegetative cover may be a useful technique to 

employ in multimedia modeling.  
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Techniques, such as sub-grid scale parameterization, to account for the heterogeneous 

quality of landscapes, have been introduced in general circulation models (Avissar & Pielke, 

1989; Entekhabi & Eagleson, 1989; Giorgi, Francisco, & Pal, 2003). In other words, the 

recognition that land cover affects climate and vice versa has resulted in the need to model 

according to land cover. This is accomplished by delineating the terrestrial compartment 

according to the various topographical features/ land use and describing individual land-

atmosphere interactions for each feature/use (Giorgi et al., 2003). For example, the land surface 

can be gridded such that forests, grasslands, agricultural lands and urban locales interact 

independently with the atmosphere and surface waters. These models are often defined as 

spatially explicit and, although detailed in their description of contaminant transport, they often 

lack transparency and require substantial computational resources (Pistocchi, Sarigiannis, & 

Vizcaino, 2010). Therefore, for evaluative or predictive purposes, especially for hypothesis 

testing, simpler models are recommended. 

For the purpose of this dissertation, a compartmental multimedia model with vegetation 

was considered most suitable. It has been suggested that many fate and transport models do not 

include a forest canopy and, as such, may not accurately describe chemical fate in significantly 

forested regions (Wania & McLachlan, 2000). As a result, forest canopy has already been 

included in a global contaminant fate model (Su & Wania, 2005).  

Multimedia models with one vegetative cover are considered too simplistic for regional-

scaled assessments (Cousins & Mackay, 2001). Indeed, many watersheds possess co-existing 

forests, grasslands, croplands and urban centers, and the adequate representation of such 

landscapes is crucial for informative evaluations. However, no compartmental model with 

adequate vegetative resolution was identified. Close contenders were: 1) CalTOX, which models 
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one (1) vegetative compartment with three (3) associated soil compartments, in addition to non-

vegetative compartments, such as the atmosphere and surface waters; 2) GIM3, which operates 

similarly to CalTOX, but links a number of adjacent watersheds; 3) CoZMoPOP, which models 

one (1) vegetative cover and two (2) soil types, in addition to other non-vegetative 

compartments, such as the atmosphere; 4) SimpleBox, which models vegetation above natural 

and agricultural soils, in addition to other non-vegetative compartments. Only CozMoPOP was 

found to have been employed to demonstrate that temperate forests affect the environmental 

behavior of some semi-volatile organic compounds. Therefore, for the purpose of this 

dissertation, a level IV compartmental model with three (3) vegetative compartments, one of 

which is a forest canopy, was developed for the improved assessment of the fates and health 

impacts of contaminants at the watershed or regional scale.  

 

2.7    Summary 

The PBDEs, dioxins, furans and current-use pesticides are among those organic 

compounds that are now ubiquitous, associated with adverse effects and, therefore, have raised 

global concern. The design and implementation of control or mitigation measures requires 

understanding the emission-fate-effect relationships of these chemicals. To assist in this capacity, 

this review presented current knowledge on the use, environmental distribution and fates, as well 

as exposures and health effects of these organic compounds. The known influences of specific 

factors such as forests and climate change on the fates and potential impacts of the chemicals 

were also examined. Hazard indicators such as long range transport potential were explained. 

Finally, fate and impact measurement tools such as multimedia environmental models were 

described. 
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A number of knowledge gaps were identified and include the following:  

 the influence of tropical forests on the long-term environmental fates of the select organic 

contaminants in a multi-use watershed; 

 the effects of climate change on the long-term environmental fates of the organic 

chemicals in a tropical region;  

 the effects of climate change on the influence of tropical forests on the environmental 

fates of the contaminants; 

 the existence of an evaluative watershed multimedia model with adequate heterogeneity 

in the terrestrial compartment, to aid in evaluating the fates and health impacts of organic 

chemicals in a multi-use watershed. 

This dissertation is directed towards filling these knowledge gaps. 
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Chapter 3 

The filter effect of forests on organic pollutants in a tropical watershed 

 

3.1 Introduction 

Polybrominated diphenyl ethers (PBDEs) are flame retardants added to the polymers of 

foams, textile and plastic materials (Rahman et al., 2001). They are simply dissolved into these 

materials with no chemical bonding occurring. As a result, they are constantly being emitted 

from the materials during use and disposal. Once released, these organics distribute among 

environmental compartments, in which they are potentially associated with adverse human and 

environmental health, such as neurotoxicity and thyroid hormone dysfunction.  

Although there are 209 PBDE congeners, only a select few are included in commercial 

formulations. Technical mixtures are disseminated as pentabrominated BDE (PentaBDE), 

octabrominated BDE(OctaBDE) and decabrominated BDE (DecaBDE) (Costa et al., 2009). 

Commercial DecaBDE is the most globally used and its main constituent congener is PBDE-209 

(also called decaBDE). However, the production and use of both pentaBDE and octaBDE have 

been banned in select states in the US and Europe (Costa et al., 2009). 

In the environment, higher order (greater bromination) PBDE congeners degrade to the 

lower order congeners (Vonderheide et al., 2008). Adsorption to particles increases with 

bromination. Therefore, the apparent affinities of the PBDEs for the various environmental 

media differ. For example, higher order PBDEs, such as decaBDE, appear to have a high affinity 

for soils and sediments, whereas the lower order congeners, such as pentaBDEs, are more often 
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found in high concentrations in the atmospheric and aqueous media (Vonderheide et al., 2008). 

The lower order congeners are therefore subject to long range transport. The greater affinity of 

the larger (greater molar mass) congeners for soils and sediment is expected given that octanol-

air and octanol-water partition coefficients increase with bromination (Gouin & Harner, 2003; 

Vonderheide et al., 2008). Most PBDEs display limited mobility in soils, where they often 

persist, due to long residence times in these media. PBDEs are expected to also display a high 

affinity for vegetation, due to the organic carbon content of this environmental compartment. 

However, little is known about their persistence in the vegetative compartment (Gouin & Harner, 

2003). 

The PBDEs are not only toxic and persistent, but they also bio-accumulate and bio-

magnify (Frederiksen et al., 2009). Therefore, they are classified as persistent organic pollutants, 

with the most toxic being PBDE-209, which is also a known potential carcinogen. PBDEs are 

now ubiquitous (Vonderheide et al., 2008), due to extensive global use and/or production.   

Forests may be able to reduce the atmospheric concentrations of these pollutants by 

transferring them to forests soils, thereby reducing the amount available for partitioning to 

agricultural crops and surface waters, as well as direct exposures. The transfer process from the 

atmosphere to the forest soil is termed the forest filter effect and has been shown to be a function 

performed by boreal and temperate forests on select organic compounds with octanol-air (Koa) 

and air-water (Kaw) partition coefficients such that 7 < log Koa < 11 and log Kaw  > -6 

(McLachlan & Horstmann, 1998). The forest filter effect is governed by a number of temperature 

dependent variables, such as chemical partition coefficients and half-lives, and, as such, is also 

temperature dependent. Also, the uptake abilities of forests have been shown to be temperature 

dependent (Nizzetto et al., 2007). The net conclusion is that the forest filter effect may be 
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reduced at elevated temperatures, which are often experienced in tropical climates. However, 

since wet deposition also transfers atmospheric contaminants to other environmental media such 

as vegetation, the elevated precipitation rates of some tropical regions may facilitate the forest 

filter effect. In one study, the inclusion of a vegetation compartment, in the modeling of the 

environmental fate of PBDE-47, was shown to influence the atmospheric concentrations of this 

chemical, leading the authors to conclude that vegetation may play a role in the fates of PBDEs 

by augmenting air-surface exchange (Gouin & Harner, 2003).     

There is limited information on the role of tropical forests in the environmental fates of 

the PBDEs. Therefore, the primary goal of this section of the study was to use field measured 

concentrations of select PBDEs in the soils, bulk deposition, litterfall and local atmospheres of a 

forest and nearby clearing to determine whether forests in tropical watersheds filter select 

PBDEs. Routinely detected PBDEs include PBDE -28, -47, -99, -100, -153, -154, -183 and -209, 

which are common constituents in the commercial products. These were selected for the 

assessment. 

 

3.2 Methods 

3.2.1 Study area 

Jamaica is a tropical island located at approximately 77ºW and 18ºN. Despite a hundred-

year mean annual rainfall of 1895 mm, this region displays distinct wet periods during May-July 

and August-November (Taylor, Enfield & Chen, 2002). Driest months occur during December to 

March. Temperatures are typically consistent, with average maxima ranging from 22.0 ºC to 30.3 

ºC. Sunshine hours are also consistent, with maximum hours in June (up to 13.2 hours) and 

minimum hours in December (11 hours). However, daylight hours may be as low as six (6) hours 
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in montane regions. Approximately 45% of this island is covered in forests, of which there are 

five (5) main types – limestone, shale, alluvial, wetland and anthropogenic forests. 

Jamaica is approximately 11,244 km
2
 and is delineated into ten (10) drainage basins, 

which are further divided into 26 watershed management zones. The Rio Cobre River drainage 

basin, also a watershed management unit, is the third largest watershed management unit in 

Jamaica with a drainage area of 1,249 km
2
 (Forestry Department of Jamaica, 2015). As seen in 

Figure 3.1, it is further sub-divided into two sub-basins – the Upper and Lower Rio Cobre basins. 

The basin drains into the Rio Cobre River, which is the third longest river in Jamaica, with a 

length of 52.5 km and an average daily stream flow of 9.8 m
3
.s

-1
 (Setegn et al., 2014). The 

annual average ambient temperature and precipitation rate for the 1986-2005 period were 302.79 

K and 1953 m/y, respectively (Meteorological Service of Jamaica, 2015).  

This watershed is home to many communities and urban pockets. Figure 3.2 shows that a 

variety of land covers exists in this area, including forests, farmlands, grasslands, wetlands and 

urban centers. It is a source of income from activities such as farming. Agricultural use includes 

sugar-cane and banana plantations as well as intensive and extensive mixed farming. The Rural 

Agricultural Development Agency (2015), a government body with responsibility for farming 

activities in rural Jamaica, indicated that there are approximately 16062 farmers conducting 

activities on 552.11 km
2
 in St. Catherine.  

In rural areas of Jamaica, such as the Rio Cobre River watershed, residents obtain their 

waters from ground and surface waters, including streams and rivers. A dam, the Rio Cobre 

Diversion Dam, is located along the junction between the Upper and Lower Rio Cobre Basins. 

The water is then diverted into canals to provide domestic water and for irrigation. Otherwise, 
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the waters of this watershed are used for recreational activities, not limited to swimming. 

Mangroves, forests, swamps and other nature preserves are features within this watershed.  

Backyard burning is widely practiced and waste disposal is relatively unmonitored. 

Pesticides are used extensively for agricultural, household and public protection. As a result, 

there exists the potential for widespread contamination within the watershed. In fact, this 

watershed is currently highly polluted, causing the local environmental agency, the National 

Environmental and Planning Agency (NEPA), to develop a strategic action plan (SAP) to ensure 

the proper management of this unit. It is therefore critical to characterize the probable fates and 

impacts of organic contaminants emitted/applied in this watershed. 

Approximately 60% of the watershed is considered occupied by deciduous and evergreen 

forests, whereas approximately 25% and 15% are considered to be occupied by agriculture and 

urban areas, respectively, with surface waters occupying the negligible remaining portion. Figure 

3.2 shows the sampling sites, which were established in a forest and nearby clearing in the 

Hellshire region of the Rio Cobre watershed. 

 
Figure 3.1: The Rio Cobre Watershed Management Unit. 
Extracted with permission: Unpublished Report, 1995 (Water Resources Authority, Jamaica, 2014). 
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Figure 3.2: Land-use map of the Rio Cobre watershed. 
Provided by the Forestry Department, Jamaica (2015). 
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Figure 3.3: Satellite image of the sampling sites. 
Extracted from Google Maps. 

       Sampling site in the forest. 

       Sampling site in the clearing. 

 

At the forested site, the canopy was dense. The soil was extremely moist and was covered 

by a thick layer of plant litter. However, within the clearing, the vegetation was sparse, and the 

few plants present were either cacti or possessed few leaves. The land surface was rocky and the 

soil was dry and hardened, as seen in Figure 3.4 and Figure 3.5.  

 

3.2.2 Sampling 

 

Air, bulk deposition, litterfall and soil samples were collected from the two (2) 

monitoring sites described above. As seen in Figure 3.3, a monitoring site was established within 

a forest in the Hellshire dry forest region with a second site in a nearby clearing (open field), 

more than 150 m from the edge of the forest and 300m from the forest sampling site, as done by 

Horstmann and McLachlan (1998). Sampling began November 4, 2015 and extended for a 

period of 105 days.  
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Polyurethane foam passive air samplers (PUF-PAS) were used in this study. They have 

been found to provide reasonably good estimates of organic compounds when used in tropical 

environments (Gouin, Wania, Ruepert, & E. Castillo, 2008). Each monitoring site was equipped 

with five (5) polyurethane foam passive air samplers (PUF-PAS) mounted at approximately 2 m 

above ground, as shown in Figure 3.4. The foil-wrapped absorbents were transferred to the 

sampling sites at the beginning of the sample period in sealed solvent-cleaned zipper bags, 

unwrapped and inserted into the samplers on site. The polyurethane foam (PUF) absorbents were 

retrieved after 105 days and transported to the laboratory, where they remained frozen (< 4 
o
C) 

until extraction. 

 
Figure 3.4: Polyurethane foam passive air sampler mounted in the forest 

 

Bulk deposition is the sum of the wet deposition and sedimenting particles, with the 

inherent possibility of additional deposition of aerosols and gases, to a continuously open 

sampler (Dämmgen, Erisman, Cape, Grünhage, & Fowler, 2005). To collect bulk deposition, 

four (4) posts, were erected such that together they formed a square with sides of approximately 

20 ft. Glass jars, with diametric openings of 8.5 cm, were mounted on each post at a height of  

2 m. Also, on each post, one stainless steel drainage basket was mounted at a height of 50 cm to 

collect litterfall, as seen in Figure 3.5. This is a slight variation of previously employed methods 

(Horstmann, Bopp, & McLachlan, 1997; Horstmann & McLachlan, 1998). The bulk deposition 
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and litterfall samples were both retrieved at weeks 4 (after 30 days in the field) and 15 (after 21 

days in the field) and stored frozen at the laboratory until extraction.  

 
Figure 3.5: Deposition and litterfall collectors in the clearing 

 

Random grab soil samples were collected three (3) times, at each site, during the 

sampling period, as shown in Figure 3.6. In the forest, all overlying litter and debris were 

brushed aside to expose the soil below. This was not necessary in the clearing, which was free of 

overlying matter. To collect soil samples at both sites, the soil surface was skimmed within 2 cm 

using a steel trowel. The samples were wrapped in solvent-rinsed foil papers and subsequently 

transported to the laboratory, where they were stored frozen (< 4 ⁰C) until extraction. The soil 

samples were collected on December 4, 2015, January 27, 2016 and February 17, 2016. 

 
Figure 3.6: Soil sampling in the clearing 
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3.2.3 Sample extraction and clean-up 

Only analytical-grade reagents were used in this study, including Baker-analyzed silica 

gel (100-200 mesh), alumina and sodium sulfate, as well as hexane and dichloromethane. They 

were purchased either through VWR Scientific, USA, or Fisher Scientific, USA.  

Each sample was spiked with the recovery standards PBDE-35 and PBDE-181 prior to 

extraction. The soil, deposition and litterfall samples were extracted and cleaned in Jamaica, 

whereas the PUF samples were shipped to, extracted and cleaned in the US. The extraction 

methods for the different sample matrices are described below.  

The soil samples, in 10 g batches, were mixed with 2 g of anhydrous sodium sulfate in 

extraction thimbles. The mixtures were soxhlet extracted for 24 hours using hexane: 

dichloromethane in a 1:1 ratio. The litterfall samples were ground, similarly blended with 

anhydrous sodium sulfate in extraction thimbles, and then soxhlet extracted for 24 hours, with 

1:1 hexane: dichloromethane. Each poly-urethane foam (PUF) disk was also soxhlet extracted, 

using 1:1 hexane: dichloromethane, for 24 hours. The glass jars containing the bulk deposition 

were rinsed and the contents liquid-liquid extracted (using separatory funnels), using a 1:1 

hexane: dichloromethane mix. Copper granules, activated with dilute nitric acid, were added to 

each extract to remove excess sulfur. The extracts were then transferred to fresh vials. 

Each PUF extract was reduced to 1 mL, using a rotary evaporator, and then transferred to 

a fresh vial, which was capped with a foil-lined lid and sealed with paraffin film to prevent 

contamination and further evaporation. The 1 mL extracts were refrigerated until clean-up.  

Prior to clean-up, the PUF extracts were all allowed to achieve room temperature. For the 

clean-up, specialty silica gel columns were used as specified by a modified AccuStandard/EPA 
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method 1614. The columns were packed with the following: glass wool; 1 g silica; 4 g basic 

silica (33% w/w sodium hydroxide); 1 g silica; 8 g acidic silica (40% w/w sulfuric acid); 2 g 

silica; and 4 g anhydrous sodium sulfate. All silica reagents were slurry-packed using 1:1 

hexane: dichloromethane whereas the sodium sulfate was dry-packed. Excess solvent was then 

drained from the column to a level about 1 cm above the reagents. Each extract was added to a 

prepared column, followed by the addition of 100 mL of 1:1 hexane: dichloromethane in 50 mL 

increments. Sample blanks were treated in the same manner. Each sample was then drained into 

a labeled flask, stoppered and sealed with paraffin wrap and stored in the refrigerator until 

instrumental analysis.    

In Jamaica, the soil, litterfall and bulk deposition extracts were rotary evaporated to 30 

mL. Extract columns were prepared with glass wool, as well as 10 g silica gel/anhydrous sodium 

sulfate. The columns were wetted with hexane and then drained of the excess solvent. Each 

sample was added to a column, followed by elution with 25 mL of hexane. The extracts were 

each collected, reduced to 1.5 mL using a gentle stream of nitrogen and transferred to gas 

chromatography-mass spectrometer (GC/MS) vials, sealed with paraffin wrap. The same method 

was applied to the sample blanks. The extracts were refrigerated until shipment to the US. The 

shipping agency was requested to refrigerate the samples in-between transport. Once delivered to 

the analytical laboratory in the US, the samples were again refrigerated until analysis.  

 

3.2.4 Instrumental Analysis 

For instrumental analysis, all cleaned samples (including sample blanks) were 

individually reduced to 1 mL using the rotary evaporator, transferred to fresh amber vials and 

placed in the nitrogen turbo-evaporator for further concentration. The samples were each 
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transferred to labeled amber GC/MS vials, to which 50 μL of dodecane was added, and reduced 

again to 50 μL in the nitrogen turbo-evaporator. To each vial, 10 μL of Mirex (100 pg.μL
-1

) was 

added as the internal standard. The vials were re-capped and placed in the GC-MS for analysis. 

Analysis was conducted using an Agilent GC 7890A, which employs splitless injection 

with a pulse pressure of 25 psi for one (1) minute and then a purge flow-to-split vent of 50 

mL.min
-1

. The carrier gas was helium with a flow rate of 1.2 mL.min
-1

.  

A DB5-ms UI analytical capillary column, with length 20 m, film thickness 0.36 μm and 

a diameter of 0.18 mm, was used. Given an injection temperature of 300 ⁰C, the oven 

temperature program included the following: initiation and holding at 80 ⁰C for two (2) minutes; 

ramping at 25 ⁰C.min
-1

 up to 210 ⁰C; holding at 210 ⁰C for two (2) minutes; ramping at  

5 ⁰C.min
-1

 up to 315 ⁰C; and finally holding at 315 ⁰C for ten (10) minutes.  

The Agilent GC 7890A was coupled to an Agilent 5975C Mass Selective Detector. The 

detector was operated in the electron capture negative chemical ionization (ECNCI) mode, using 

methane as the reagent gas. To operate the detector, the transfer line, quadrupole and ion source 

were set at 315 ⁰C, 150 ⁰C and 300 ⁰C, respectively. 

For the identification and quantification of PBDE -28, -47, -99, -100, -153, -154, -183 

and -209, five (5) calibration standards of known concentrations (5, 10, 25, 50 and 100 pg.μL
-1

), 

with mirex as the internal standard, were used. The ion fragments with m/z 79 and 81 were 

monitored for the PBDEs, whereas those with m/z 402/404 were monitored for mirex. The eight 

(8) PBDEs were analyzed and quantified using calibration curves for each analyte. 

 

 

 



53 

 

3.2.5 Quality Assurance/Quality Control 

Strict quality assurance/quality control measures were employed in all analytical 

procedures. All samples were treated in the same manner and using the same procedures. Two 

(2) field blanks were included for every five (5) atmospheric samples. Also, one (1) laboratory 

blank was analyzed per six (6) samples. The field and laboratory blanks were treated as samples. 

There were no discernable differences between field and laboratory blanks, indicating minimal 

contamination during transportation, storage and analysis. A test sample with known 

concentration of PBDE-47 was analyzed to monitor the recovery method. All quantified 

concentrations were blank-corrected by first subtracting the mean masses of each analyte in the 

appropriate blanks from those in the samples. However, reported values were not recovery 

corrected. 

The peaks were positively identified if they were within ±0.05 min. of the retention time 

in the calibration standard. Also, the standard noise ratio of ≥ 3 was applied, such that any signal 

peak less than three (3) times the background signal was not quantified and was recorded as non-

detectable. In the air field blanks, concentrations of the PBDEs ranged from 0.1 to 1.6 pg.m
-3

. 

Therefore, the limit of detection for the GC/MS was set at either 2 pg.m
-3

 or the three times the 

standard deviations of the means of the analytes in the blank samples – whichever was higher. 

The analysis adhered to the recommended EPA Method 8270D.  

The surrogates, PBDE-35 and PBDE-181, exhibited recoveries of 70 ± 12 % and  

84 ± 8 %, respectively. For the entire method, external recovery analysis involved spiking six (6) 

polyurethane foam disks with a working standard containing the eight (8) PBDE congeners. All 

extraction and work-up procedures were the same as for the actual samples. Amber vials were 
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used to minimize photodegradation, whereas foil-lined caps and paraffin film were used to 

restrict evaporative loss. Recoveries were 90 ± 12 % for the eight (8) congeners.  

 

3.2.6 Quantification of the effect of forests  

Bulk atmospheric deposition fluxes in ng.m
-2

.d
-1

, which is the mass deposited daily per 

unit area, was calculated for each PBDE at each site from collected bulk deposition. To compute 

deposition flux, the mass of each analyte in the glass jars was divided by both the cross-sectional 

area of the jar opening and the sampling time period. A forest filter factor, F, was subsequently 

calculated for each analyte, which is simply the ratio of the bulk deposition fluxes to the forest 

and to the clearing (McLachlan & Horstmann, 1998): 

𝐹 =  
𝑏𝑢𝑙𝑘  𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝑓𝑙𝑢𝑥  𝑡𝑜  𝑓𝑜𝑟𝑒𝑠𝑡  𝑐𝑎𝑛𝑜𝑝𝑦

𝑏𝑢𝑙𝑘  𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝑓𝑙𝑢𝑥  𝑡𝑜  𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔
              (i)                                          

A filter factor greater than 1 describes a filter effect (McLachlan & Horstmann, 1998).  

Another factor that was also calculated was the depletion factor (DF). This factor speaks 

to the ability of the forest to deplete air concentrations and helps to express the filter effect of 

forests (Jaward et al., 2005). The DF, for each analyte, is the ratio of air concentrations in the 

forests and in the clearing.   

𝐷𝐹 =  
𝑎𝑡𝑚𝑜𝑠𝑝 𝑕𝑒𝑟𝑖𝑐  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  𝑖𝑛  𝑡𝑕𝑒  𝑓𝑜𝑟𝑒𝑠𝑡

𝑎𝑡𝑚𝑜𝑠𝑝 𝑕𝑒𝑟𝑖𝑐  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  𝑖𝑛  𝑡𝑕𝑒  𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔
          (ii) 

A depletion factor less than 1 is indicative of a filter effect (Jaward et al., 2005).  

In computing atmospheric concentrations, the quantified masses from the GC/MS were 

divided by the product of the number of sampling days (105 days) and the sampling/uptake rate 

of the passive samplers. Passive samplers typically have uptake rates for organics in the range 2 

to 4 m
3
.d

-1
 (Markovic, Prokop, Staebler, Liggio, & Harner, 2015). In this dissertation, an uptake 

rate of 3 m
3
.d

-1
 was assumed for the selected PBDEs. 
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Forest soils have been shown to display higher concentrations of organic compounds than 

nearby non-forested soils (Su & Wania, 2005). Using the concepts employed for the derivations 

of filter and depletion factors, a new comparison factor for soils is being defined in this study and 

is called an accumulation factor (AF). This is considered to express the ability of forest soils to 

accumulate organics. For each analyte, the AF is the ratio of the forested soil concentration and 

soil concentrations in the clearing such that  

  𝐴𝐹 =  
𝑠𝑜𝑖𝑙  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  𝑖𝑛  𝑡𝑕𝑒  𝑓𝑜𝑟𝑒𝑠𝑡

𝑠𝑜𝑖𝑙  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  𝑖𝑛  𝑡𝑕𝑒  𝑐𝑙𝑒𝑎𝑟𝑖𝑛𝑔
        (iii) 

It is being proposed that an accumulation factor greater than 1 aids in describing a filter 

effect.  Since measured amounts of soil were analyzed, the soil concentrations were simply the 

ratios of the GC/MS quantified masses and the masses of soil analyzed. 

 

3.3 Results & Discussion 

PBDE -28, -47, -99, -100, -153, -154, -183 and -209 were detected in all sample matrices, 

as discussed below.   

 

3.3.1 PBDEs in the atmosphere 

As seen in Table 3.1, the congener with the highest atmospheric concentrations was 

PBDE-99, with mean values of 5.51 pg.m
-3

 and 5.95 pg.m
-3

 in the forest and clearing, 

respectively. PBDE-47 was the congener with the second-highest atmospheric concentrations in 

both the forest and clearing. Therefore, these two congeners dominated the atmospheres in both 

the forest and clearing. Both PBDE-47 and PBDE-99 are among the lighter and more volatile 

congeners and are less likely to be deposited than the higher brominated congeners. In one study, 

urban air was found to be dominated by PBDE- 47, -99 and -209 (T. Gouin et al., 2005). PBDE-



56 

 

209 is the main constituent of the most globally used technical PBDE – decaBDE (USEPA, 

2010). This congener degrades to lower molecular weight congeners, especially PBDE -28, -47 

and -99. Therefore, the high atmospheric concentrations of PBDE-47 and PBDE-99 are to be 

expected. Although the study sites in this dissertation were not near to urban centers, they were 

relatively close to residential areas where activities, such as backyard burning and dumping, are 

often practiced. 

In the forest air, the congeners with the lowest concentrations were PBDE- 28 and 154. 

However, in the clearing, PBDE-153 and 183 displayed the lowest atmospheric concentrations. 

Total atmospheric concentrations for the eight (8) congeners ranged from 8.11 pg.m
-3

 to  

31.68 pg.m
-3

. In the literature, reported values for summed atmospheric concentrations of PBDEs 

typically range from 0.78 pg.m
-3

 to 106.71 pg.m
-3

 (Hayakawa et al., 2004; Mariani et al., 2008; 

Su et al., 2009; Su, Hung, Sverko, Fellin, & Li, 2007). However, mean total atmospheric 

concentrations of the PBDEs have been found to be as high as 980 pg.m
-3

 (Hoh & Hites, 2005). 

The reporting of the total congeners differed in the various studies with some analyzing as few as 

seven (7) congeners and others as many as 15 congeners. Despite this, the values reported in this 

present study are within the range of the cited literature (see Table A.1 in Appendix A for the 

atmospheric masses of the contaminants in the forest and clearing). 
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3.3.2 PBDEs in bulk deposition 

Table 3.1: Mean atmospheric concentrations and deposition fluxes for the PBDE congeners 

PBDE 

congener 

Atmosphere (pg.m
-3

) Deposition (ng.m
-2

.d
-1

) 

Forest Clearing Forest Clearing 

Period 1 
(11/4/2015 – 

12/4/2015) 

Period 2 
(1/27/2016 – 

2/17/2016) 

Period 1 
(11/4/2015 – 

12/4/2015) 

Period 2 
(1/27/2016 – 

2/17/2016) 

28 0.91 1.17 1.58 2.24 2.59 2.44 

47 2.17 4.16 2.80 2.57 2.03 2.40 

99 5.51 5.95 2.74 2.51 1.87 2.31 

100 1.09 1.22 1.77 2.57 1.59 2.21 

153 1.02 1.11 3.68 2.27 1.66 2.27 

154 0.96 1.70 9.55 2.20 1.56 2.20 

183 1.21 0.98 10.6 2.40 1.76 2.28 

209 1.47 3.28 43.8 3.74 2.97 3.65 

8
PBDE

 

14.34 19.57 76.52 20.50 16.03 19.76 

 

Examination of Table 3.1 shows that the higher congeners (PBDE- 153 to 209) were 

most likely to be deposited from the forested air. In fact, PBDE-209 experienced a mean 

deposition flux in the forest of 43.8 ng.m
-2

.d
-1

 and 3.74 ng.m
-2

.d
-1

 in the first and second 

sampling periods, respectively, compared to 1.58 ng.m
-2

.d
-1

 and 2.24 ng.m
-2

.d
-1

 for PBDE-28 in 

the first and second sampling periods, respectively. In the clearing, PBDE-209 observed the 

greatest deposition fluxes, with a greater deposition in the first sampling period. This congener is 

considered to be mostly associated with atmospheric particles (USEPA, 2010). As a result, the 

high deposition flux is expected. Also, both PBDE-28 and PBDE-47 were well deposited from 

the atmosphere in the clearing, whereas the remaining congeners were similarly less deposited. 

Total bulk deposition flux for the eight (8) congeners range from 16.03 ng.m
-2

.d
-1

 to 76.52 ng.m
-

2
.d

-1
. Bulk deposition flux values in the literature ranged from 11 ng.m

-2
.d

-1
 to 1600 ng.m

-2
.d

-1
 

(Hayakawa et al., 2004; Mariani et al., 2008; Moon, Kannan, Lee, & Choi, 2007). As with 
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atmospheric concentrations, the ranges for the bulk deposition in the present study were well 

within the range of those found in other studies. 

As seen in Table 3.1 (see Table A.2 in Appendix A for the PBDE masses in the 

depositions in the forest and clearing), the higher molecular weight congeners (PBDE-153 to 

PBDE-209) all experienced greater deposition fluxes in the forest during the first sampling 

period than in the second. However, in the clearing, all congeners, with the exception of PBDE-

28, were deposited more in the second than the first sampling period. In this watershed, high 

precipitation rates are typical for November, with low precipitation rates often experienced in 

January and February. Given that adsorption to particles increases with bromination and particle 

deposition is affected by precipitation rate, then the higher deposition fluxes in the forest of the 

higher molecular weight congeners, which also display higher octanol-air partition coefficients, 

during the first sampling period is reasonable. 

 

 

3.3.3 PBDEs in litterfall 

In the litterfall, as seen in Figure 3.4 (see Table A.3 in Appendix A for the absolute mass 

concentrations of the PBDEs in the various samples), the congener with the greatest mean 

concentration was PBDE-209 with 109.53 pg.g
-1

 and 434.22 pg.g
-1

 in the forest and clearing 

litterfall, respectively. In the forest litterfall, both PBDE-47 and PBDE-99 displayed relatively 

higher concentrations than the remaining five congeners. In this particular compartment, the 

remaining five congeners (PBDE- 28, 100, 153, 154 and 183) displayed similar concentrations, 

albeit the lowest being that of PBDE-154. In the litterfall of the clearing, the lowest 

concentrations were of PBDE-153 and PBDE-154. 
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Congener concentrations were vastly higher in the litterfall of the clearing. It is probable 

that the plants in the clearing are among those that are more efficient in capturing organic 

compounds or more efficient in retaining uptaken organics than those in the forest. On the other 

hand, clearings typically display lower leaf area indices, and hence smaller plant compartment 

volumes, than forests. This could then lead to higher concentrations of captured organic 

contaminants, especially if the capture/uptake rates are similar.  

Information on PBDE concentrations in litterfall is limited. However, PBDE 

concentrations in leaves have been reported in the range of 0.16 ng.g
-1

 dw to 34.1 ng.g
-1

 dw (Qin, 

Ni, Liu, Shi, & Zeng, 2011; St-Amand, Mayer, & Blais, 2007). In this current dissertation study, 

the total mean PBDE concentrations in the litterfall of the forest and clearing were approximately 

0.62 ng.g
-1

 dw and 2.65 ng.g
-1

 dw, respectively.  

 

3.3.4 PBDEs in surface soil 

Soil concentrations for the PBDEs, excluding PBDE-153, ranged from 26 pg.g
-1

 to 46 

pg.g
-1

 (see Table A.4 in Appendix A for the absolute mass concentrations of the PBDEs in the 

different soil samples). In the forest soil, PBDE-153 had concentrations ranging from 43 pg.g
-1

 to 

162 pg.g
-1 

to yield a mean of approximately 113 pg.g
-1

, thereby rendering this congener the 

dominant one in forest soils. However, Figure 3.7 shows that this PBDE congener was among 

those with the lowest levels in the soils of the clearing, where the dominant congener was PBDE-

209. It has been previously shown that PBDE-209 tends to dominate urban soils (Cetin & 

Odabasi, 2008). Given that the study site is close to residential areas, the observations in this 

study are within reason. 
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Figure 3.7: Percentage contribution of each congener in the given compartment 

 

3.3.5 Forest filter effect 

To assess the difference between the PBDE contaminants in the clearing and the forest, 

filter, depletion and accumulation factors were computed, as described in the methods section, 

and are displayed in Table 3.2. Accumulation and filter factors greater than one (> 1) and 

depletion factors less than one (< 1) are considered indicative of a filter effect. When these 

factors were computed for all the PBDEs together, a filter effect was clearly observed.  

Table 3.2: Forest filter effect factors 

PBDE 

congener 

Depletion 

factor 

Filter factor Accumulation 

factor 

28 0.78 0.80 1.58 

47 0.52 1.22 1.33 

99 0.93 1.26 1.40 

100 0.90 1.14 1.09 

153 0.92 1.44 4.14 

154 0.56 2.56 1.02 

183 1.23 2.61 1.09 

209 0.45 5.28 1.05 


8

PBDE  0.73 2.23 1.55 
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All congeners, with the exception of PBDE-183, observed lower atmospheric 

concentrations in the forest than in the clearing. The remaining seven (7) congeners were 

therefore more efficiently depleted from the atmosphere by the forest than PBDE-183. This 

congener displayed mid-range mean atmospheric concentrations of all congeners in the forest but 

had the lowest mean atmospheric concentration in the clearing. Deposition fluxes for PBDE-183 

were mid-range. However, concentrations of this chemical were amongst the highest and lowest 

in the litterfall of the clearing and of the forest, respectively. 

The filter factor was higher for the higher-order congeners. This indicates that these 

congeners are more efficiently deposited from the atmosphere of the forest than the clearing. It 

appears then that deposition to vegetation is a significant pathway for the removal of PBDEs 

from the atmosphere, especially the higher molecular weight congeners. 

The soil concentrations of all congeners were greater in the forest than in the clearing, 

leading to accumulation factors greater than 1. The lower-order congeners were typically more 

greatly accumulated in the forest soil than in the clearing soil, as shown by the higher 

accumulation factors (1.33 to 1.58). However, PBDE-153 displayed a substantially higher 

accumulation factor than the remaining congeners – a value of 4.14. This congener had amongst 

the lowest atmospheric concentrations. In one study, total PBDE background concentrations in 

forest soils have been found to exceed those in grasslands (Hassanin et al., 2004). The burden of 

select persistent pollutants tends to be higher in forest soils (Su & Wania, 2005). All these 

findings were for temperate regions. Therefore, the observations in this dissertation are 

consistent with those in the literature, despite the tropical nature of the study site.  
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3.4 Conclusions 

Studies have been conducted to evaluate and compare the concentrations of select organic 

compounds in the soils, atmosphere and deposition of forests and clearings (or grasslands) 

(Horstmann et al., 1997; Horstmann & McLachlan, 1998; Jaward et al., 2005; McLachlan & 

Horstmann, 1998; Su & Wania, 2005).  However, the assessments have been restricted to 

temperate regions. Studies performing similar evaluations in tropical regions have not been 

identified. This dissertation work is considered among the first to perform such comparisons in a 

tropical environment, especially in a developing country.  

The goals were to determine whether there was a difference in the concentrations of 

PBDEs in the atmosphere, soils, litterfall and bulk deposition of a clearing versus a forest in a 

tropical region, as well as to conclude whether such differences led to a ‗filter effect‘ for the 

PBDEs. A quantitative evaluation method was employed.  

This dissertation showed that the bulk deposition fluxes and soil concentrations of the 

PBDEs were higher in the forested environment than in the clearing. These were quantitatively 

demonstrated by filter and accumulation factors greater than 1. Also, it was found that the 

atmospheric concentrations of the PBDEs were typically lower in the atmosphere of the forest 

than in the adjacent clearing. Computed depletion factors less than 1 supported this finding.  

Studies comparing the concentrations of these select PBDEs in the litterfalls of 

clearings/grasslands and forests are limited. This dissertation is among the first to do so, 

especially in a tropical developing country. It was found that the litterfall of the clearing 

contained higher concentrations of the PBDEs than those in the forest. 
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These results therefore support this dissertation‘s hypothesis that tropical forests filter 

PBDEs by transferring them from the atmosphere to the soils. The tropical forests therefore 

perform this role similar to their temperate counterparts. 

The current work should be extended to determining how atmospheric and soil 

concentrations of the PBDEs vary with distance from the forest in the tropical region. Attempts 

should be made to identify the sources of the PBDEs in the watershed. Additional research is 

recommended to examine how the various tropical plants or trees contribute to the filtering effect 

of the forest. Quantifying the environmental concentrations of the congeners according to land 

use in such tropical developing nations would also provide useful information. These would all 

assist in identifying long-term control measures to reduce/prevent contamination. To date, such 

studies in developing tropical countries are limited. 

Conducting this section of the dissertation was associated with a number of challenges. 

Only one laboratory was found that was equipped enough to conduct the extraction and clean-up 

of the samples. However, the associated cost was exorbitant. Shipping the soil, litterfall and 

deposition samples to the US, where the extraction and clean-up would be cheaper, was difficult. 

As a result, to conserve costs, the air samples were shipped to the US for extraction and clean-up, 

whereas the remaining samples were extracted in Jamaica. All samples were instrumentally 

analyzed in the US, as the cost to do so in Jamaica was astronomical. Although shipping the 

samples to the US required that they be in and out of refrigeration during transport, this was 

considered acceptable, only because the samples were expected to have maintained a low 

temperature. Also, negligible degradation was expected in the short time out of the refrigerator, 

because of the known long half-lives of the analytes. Challenges such as these are common in 

developing countries like Jamaica wherein analytical facilities and financial resources are 
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limited. However, knowledge regarding the fates and distribution of organic contaminants is 

critical, especially in developing regions as Jamaica, where products are often overused and 

abused, and their disposals are largely unmonitored. Until the conduct of field monitoring and 

assessments become more practical, environmental multi-media models are critical tools that can 

be employed to serve as reasonable alternatives. Therefore, in this dissertation, such a 

representative model, able to assist with fate and health impact assessments, has been developed 

for employment in tropical developing countries. It is recommended for interim use in the 

research/assessments suggested above. This model is described and applied in Chapters 4 and 5. 
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Chapter 4 

The effect of forests on the fates and distribution of organic contaminants in a 

tropical watershed 

4.1 Introduction  

A number of organic compounds are associated with adverse human and ecosystem 

health. Many are ubiquitous, having entered the environment from a variety of sources. Their 

propensity to cause adverse effects is reflected by hazard end-point indicators, such as long range 

transport potential and overall persistence (Fenner et al., 2005; Wegmann et al., 2009).  

The assessment of the long term fates and health impacts of organic contaminants at the 

watershed scale is critical. Watersheds provide income, aesthetic appeal, recreational facilities 

and habitats for its human and non-human inhabitants. They are often delineated into 

combinations of land uses including urban regions, agricultural zones, grasslands, forests, among 

others. Forests, especially in tropical regions, provide beneficial functions such as water quality 

enhancement, yield promotion and soil stabilization (Pattanayak, 2004). However, their 

potentially beneficial role in controlling the long term fates, and resultant health impacts of 

environmental contaminants, has not been sufficiently explored. Such information would clearly 

be valuable for the formulation and implementation of watershed management strategies, 

policies and controls. Therefore, this chapter aims to examine the role of forests in influencing 

the fates of select organic pollutants in a tropical watershed. 

Evaluations of the trends in the fates and distribution of environmental contaminants are 

considered to be best obtained from field monitoring and measurements. However, field 
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assessments are typically challenging in many developing countries, which often lack the 

financial resources and analytical facilities to perform such tasks. An excellent alternative is the 

use of multimedia environmental models. These can provide reasonable estimates of these fates 

and health impacts of the organic contaminants, under various scenarios, in such tropical 

watersheds/catchments.  

Long-term fate metrics are typically unmeasurable and are instead computed using 

multimedia fate models, which range from simple to complex. Simple compartmental models 

assume well-mixed compartments, with no spatially explicit transport. They are characteristically 

used for evaluative or predictive purposes, due to ease of use and quick output of information 

(Rong-Rong et al., 2012). More complex models provide spatially explicit representation of 

transport through the landscape. However, such complex models are often resource intensive, 

difficult to use, and not necessarily accurate or transparent (Pistocchi et al., 2010).  

Examples of current compartmental multimedia environmental models, with assessment 

scales from regional to global, include CalTOX, ELPOS, SimpleBox, ChemRange, CliMoChem, 

ECHAM5, The Tool and CozMo-POP (Fenner et al., 2005; Götz et al., 2007; Wania & 

McLachlan, 2000; Wegmann et al., 2009b). Many compartmental models incorporate only one 

vegetative cover. Models with single vegetative compartments are considered too simplistic for 

local/regional scaled assessments (Cousins & Mackay, 2001). Also, many of these models do not 

include a forest compartment and may not accurately assess contaminant fate, especially in a 

forested region (Wania & McLachlan, 2000). 

Additionally, many multimedia environmental models are not dynamic. While the use of 

steady state models is suitable for the assessment of long-term or average fates, their 

applicability may be limited when attempting to assess time-variant behaviors and processes 
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(Pistocchi et al., 2010) or when the environment experiences constant perturbations, such as 

variations in weather patterns over a given period. In such cases, a dynamic multimedia model is 

expected to give a more realistic representation of the changes to the fates of chemicals over 

time.  

A limited number of multimedia models capable of assessing chemical distribution at the 

catchment scale have been developed, including G-CIEMS, BasinBox and GIM3 (Hollander, 

Huijbregts, Ragas, & Van de Meent, 2006; Luo, Gao, & Yang, 2007; Suzuki et al., 2004). 

However, these models are either site-specific for very small watersheds, steady state or lack the 

spatial heterogeneity in the vegetative/terrestrial compartments that is characteristic of many 

watersheds. Also, most current catchment models typically focus on water quality in lieu of 

chemical distribution among environmental media. 

Therefore, another major goal of this dissertation was to develop a regional dynamic 

(level IV) multimedia model that provided the spatial heterogeneity, in the landscape, typical of 

many watersheds, and that could represent the fates of organics under both steady state and 

dynamic conditions. This was achieved by combining elements from three existing multimedia 

models – CalTOX 1.5 (California Environmental Protection Agency, 1993), GIM3 (Luo et al., 

2007) and Multimedia Urban Model (MUM) (Diamond et al., 2001). A 16-compartmental model 

with three (3) vegetative surfaces – forests/grasslands, urban centers and cropland – was the 

result. The new model, named RioShed, was used in this dissertation to examine the association 

between tropical forests and the fates of select organic compounds at the watershed scale. 

The chosen organic contaminants are among those that are under current global scrutiny 

due to their ubiquitous nature and potential to cause adverse health impacts. They include 

polybrominated diphenyl ethers (PBDEs), dioxins, furans and non-halogenated current-use 
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pesticides (CUPs). The PBDEs, dioxins and furans are known persistent organic pollutants 

(POPs), that have been associated with endocrine disruption, immunological and neurological 

disorders, and some (PBDE-209 and tetrachlorinated dibenzo-p-dioxin (TCDD)) are classified as 

potentially carcinogenic. However, the current-use pesticides are typically more polar, less 

persistent and have been associated with headaches, comas, convulsions, muscular spasms and 

skin disorders (Bradberry et al., 2005; Fukuto, 1990; Jaga & Dharmani, 2003; Mitrou, 

Dimitriadis, & Raptis, 2001; Sterling & Arundel, 1986; Vonderheide et al., 2008). 

To summarize, this study is among the first to characterize the effects of tropical forests 

on the fates of the above organic contaminants, using a newly developed, dynamic and spatially 

heterogeneous evaluative multimedia model. The study site is the Rio Cobre watershed in 

Jamaica.  

 

4.2 Methods 

4.2.1 Model Development - RioShed 

4.2.1.1 Compartments 

To develop RioShed, elements from select multimedia environmental models were 

combined. The selection criteria for the models were as follows: 1) they should be publicly 

and/or readily accessible; 2) when combined, they should allow for assessment across multiple 

vegetative covers and their respective soil compartments; and 3) they should be applicable to 

organic compounds, not limited to those of a persistent nature. The multimedia environmental 

models selected were CalTOX 1.5 (California Environmental Protection Agency, 1993), GIM3 

(Luo et al., 2007) and the Multimedia Urban Model (MUM) (Diamond et al., 2001). 
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CalTOX 1.5 was used as the base model, due to its established good environmental fate 

predicting capabilities, as well as the fact that the required input data were obtainable or 

estimable. The existing vegetative cover in the base model was represented as agricultural 

vegetation. A second vegetative compartment was introduced for the forest canopy. The 

associated forest soil compartment was delineated into surface, root-zone and vadose-zone soils. 

Further to this, an impervious surface and co-existing urban vegetation, as modeled in the 

Multimedia Urban Model (MUM) (Diamond et al., 2001), were together also introduced into the 

model as an urban compartment. To ensure compatability, the associated soil for the urban 

compartment was also delineated into surface, root-zone and vadose-zone soil compartments. 

Whereas the base model (CalTOX 1.5) was pseudo-steady state, with the root-zone and vadose-

zone soils at steady state with respect to the remaining compartments, RioShed is fully dynamic. 

With the described modifications to CalTOX 1.5, the ensuing RioShed has a total of 16 

compartments, which are: sediment (d); surface water (w); atmosphere (A); agricultural 

vegetation (ca); agricultural surface soil (sa); agricultural root-zone soil (ra); agricultural vadose-

zone soil (va); urban vegetation (cu); urban impervious surface (iu); urban surface soil (su); urban 

root-zone soil (ru); urban vadose-zone soil (vu); forest canopy (cf); forest surface soil (sf); forest 

root-zone soil (rf); forest vadose-zone soil (vf). A diagram representing the model is given in 

Figure 4.1.  
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Figure 4.1: Illustration of Rioshed  

 

 

Surface 

water 

Agriculture ground-

surface soil Forest ground-

surface soil 

Atmosphere 

 

Agricultural 

vegetation 

Agriculture root-

zone soil 

Agriculture vadose-

zone soil 

Sediment 

Forest canopy 

Forest root-zone 

soil 

Forest vadose-zone 

soil 

Urban 

vegetation 
Urban impervious 

surfaces 

Urban ground-surface soil 

Urban vadose-zone soil 

Urban root-zone soil 

              Groundwater Key 
 

Inter-media exchange 
To external environment 

Degradation 

Source 



71 

 

The atmosphere compartment spans the area of the modeled region and is considered 

well-mixed and homogeneous. This compartment is modeled to extend from the top of the 

troposphere down to the top of the surface soil layer, and includes only particles and pure (free of 

other impurities) air. The surface water compartment is considered to include only suspended 

particles, aquatic biota and pure (free of other impurities) water, and consumes less than 10% of 

the modeled landscape. The sediment compartment lies below the water compartment and 

displays the same surface area. Only the top 2-5 cm of the sediment layer is modeled, since this 

section typically engages in exchange with the surface water above (Santschi et al., 1990; Wang 

et al., 2003). The sediment layer consists of particles and pure water in the pores. The soil has a 

thin surface layer (0.1-1 cm), a thick root-zone layer below and a base vadose-zone layer. All 

soil layers are considered to consist of particles, pure air and pure water. The vadose-zone layer 

is the layer of soil between the root-zone layer and the water table. Only vertical mass exchange 

is modeled between soil layers. The vegetative compartments (agriculture, forest and urban) 

include the above-ground portion of the plants (the leaves with associated cuticles and stoma), as 

well as the plant-roots.  In their study, Diamond et al. (2001) considered the impervious surface 

to be coated with urban film, which constitutes of pure or organic film (30%) and particulate 

matter (70%). The organic film was assumed to have organic matter as its sole constituent and, 

hence, was modeled using the organic carbon fraction (foc) of octanol (0.74). This approach for 

representing the urban film was employed in RioShed. 
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4.2.1.2 Model equations in RioShed 

In RioShed, the total mass entering the system is conserved, and each compartment is 

assumed homogenous and completely mixed. The transport processes considered are advective, 

diffusive and otherwise physical non-advective/diffusive, such as wind re-suspension (see Table 

B.1 in Appendix B for all considered compartment gains and losses). The fugacity approach is 

employed to calculate the transport rate constants (the equations for the relevant fugacity 

capacities are presented in Table B.3 in Appendix B; the formulations necessary to estimate the 

transport rate constants for the 16 compartments are presented in Table B.4 in Appendix B; and a 

description of the fugacity approach to intermedia transfer is also given in Appendix B).   

The transport and transformation equations used are of the following general form – 

 
𝑑

𝑑𝑡
 𝑁𝑖 𝑡 =  −𝑅𝑖𝑁𝑖 𝑡 −   𝑇𝑖𝑗  𝑁𝑖 𝑡 

𝑚
𝑗=1,𝑗≠𝑖 +   𝑇𝑗𝑖  𝑁𝑗 (𝑡)𝑚

𝑗=1,𝑗≠𝑖 +  𝑆𝑖 𝑡 −  𝑇𝑖𝑜  𝑁𝑖(𝑡) ,       (i) 

 where Ni(t) is the inventory of the contaminant in compartment i, mol; Nj(t) is the inventory of 

the contaminant in compartment j, mol; Ri is the first-order removal constant from compartment 

i, d
-1

; Tij is the first order transfer rate constant for transport from compartment i to j, d
-1

; Tji is 

the first order transfer rate constant for transport from compartment j to i, d
-1

; Tio is the first order 

transfer rate constant for transport from compartment i to a point outside the modeled domain,  

d
-1

; Si is the source input rate into compartment i, mol.d
-1

; and m is the total number of 

compartments in the defined system.  

Table 4.1 includes the mass balance equations for the 16 compartments.  
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Table 4.1: Mass balance equations for RioShed  

Compartment Mass Balance Equation 

Atmosphere (A) 𝑑𝑁𝐴

𝑑𝑡
 = −𝐿𝐴𝑁𝐴 +  𝑆𝐴 + 𝑇𝑐𝑎 ,𝐴𝑁𝑐𝑎 +  𝑇𝑐𝑢 ,𝐴𝑁𝑐𝑢 + 𝑇𝑐𝑓 ,𝐴𝑁𝑐𝑓 +  𝑇𝑠𝑎 ,𝐴𝑁𝑠𝑎+ 𝑇𝑠𝑢 ,𝐴𝑁𝑠𝑢

+  𝑇𝑠𝑓 ,𝐴𝑁𝑠𝑓 +   𝑇𝑤 ,𝐴𝑁𝑤 +  𝑇𝑖𝑢 ,𝐴𝑁𝑖𝑢  

Surface Water (w) 𝑑𝑁𝑤

𝑑𝑡
 = −𝐿𝑤𝑁𝑤 +  𝑆𝑤 + 𝑇𝐴,𝑤𝑁𝐴 + 𝑇𝑑 ,𝑤𝑁𝑑 +  𝑇𝑠𝑎 ,𝑤𝑁𝑠𝑎 + 𝑇𝑠𝑢 ,𝑤𝑁𝑠𝑢 +  𝑇𝑠𝑓 ,𝑤𝑁𝑠𝑓

+  𝑇𝑖𝑢 ,𝑤𝑁𝑖𝑢  

Sediment (d) 𝑑𝑁𝑑

𝑑𝑡
 = −𝐿𝑑𝑁𝑑 + 𝑇𝑤𝑑 𝑁𝑤  

Impervious Surface 

(iu) 

𝑑𝑁𝑖𝑢

𝑑𝑡
 = −𝐿𝑖𝑢𝑁𝑖𝑢 + 𝑇𝐴,𝑖𝑢𝑁𝐴 + 𝑆𝑖𝑢  

Agricultural Canopy 

(ca) 

𝑑𝑁𝑐𝑎

𝑑𝑡
 = −𝐿𝑐𝑎𝑁𝑐𝑎 +  𝑇𝐴,𝑐𝑎𝑁𝐴 +  𝑇𝑟𝑎 ,𝑐𝑎𝑁𝑟𝑎  + 𝑆𝑐𝑎  

Forest Canopy 

(Chapin et al.) 

𝑑𝑁𝑐𝑓

𝑑𝑡
 = −𝐿𝑐𝑓𝑁𝑐𝑓 + 𝑇𝐴,𝑐𝑓𝑁𝐴 +  𝑇𝑟𝑓 ,𝑐𝑓𝑁𝑟𝑓  +  𝑆𝑐𝑓  

Urban Canopy (cu) 𝑑𝑁𝑐𝑢

𝑑𝑡
 = −𝐿𝑐𝑢𝑁𝑐𝑢 + 𝑇𝐴,𝑐𝑢𝑁𝐴 + 𝑇𝑟𝑢 ,𝑐𝑢𝑁𝑟𝑢  +  𝑆𝑐𝑢  

Agricultural Ground-

surface Soil (sa) 

𝑑𝑁𝑠𝑎

𝑑𝑡
 = −𝐿𝑠𝑎𝑁𝑠𝑎 + 𝑆𝑠𝑎 +  𝑇𝐴,𝑠𝑎𝑁𝐴 +  𝑇𝑟𝑎 ,𝑠𝑎𝑁𝑟𝑎 + 𝑇𝑐𝑎 ,𝑠𝑎𝑁𝑐𝑎  

Forest Ground-

surface Soil 

(Berrisford et al.) 

𝑑𝑁𝑠𝑓

𝑑𝑡
 = −𝐿𝑠𝑓𝑁𝑠𝑓 + 𝑆𝑠𝑓 +  𝑇𝐴,𝑠𝑓𝑁𝐴 + 𝑇𝑟𝑓 ,𝑠𝑓𝑁𝑟𝑓 + 𝑇𝑐𝑓 ,𝑠𝑓𝑁𝑐𝑓  

Urban Ground-

surface Soil (su) 

𝑑𝑁𝑠𝑢

𝑑𝑡
 = −𝐿𝑠𝑢𝑁𝑠𝑢 + 𝑆𝑠𝑢 +  𝑇𝐴,𝑠𝑢𝑁𝐴 +  𝑇𝑟𝑢 ,𝑠𝑢𝑁𝑟𝑢 + 𝑇𝑐𝑢 ,𝑠𝑢𝑁𝑐𝑢  

Agricultural Root-

zone Soil (ra) 

𝑑𝑁𝑟𝑎

𝑑𝑡
 =  − 𝐿𝑟𝑎𝑁𝑟𝑎 +  𝑇𝑐𝑎 ,𝑟𝑎𝑁𝑐𝑎 + 𝑇𝑠𝑎 ,𝑟𝑎𝑁𝑠𝑎 +  𝑆𝑟𝑎  

Forest Root-zone Soil 

(Berrisford et al.) 

𝑑𝑁𝑟𝑓

𝑑𝑡
 =  − 𝐿𝑟𝑓𝑁𝑟𝑓 + 𝑇𝑐𝑓 ,𝑟𝑓𝑁𝑐𝑓 +  𝑇𝑠𝑓 ,𝑟𝑓𝑁𝑠𝑓 + 𝑆𝑟𝑓  

Urban Root-zone Soil 

(su) 

𝑑𝑁𝑟𝑢

𝑑𝑡
 =  − 𝐿𝑟𝑢𝑁𝑟𝑢 + 𝑇𝑐𝑢 ,𝑟𝑢𝑁𝑐𝑢 + 𝑇𝑠𝑢 ,𝑟𝑢𝑁𝑠𝑢 + 𝑆𝑟𝑢  

Agricultural Vadose-

zone Soil (va) 

𝑑𝑁𝑣𝑎

𝑑𝑡
=  − 𝐿𝑣𝑎𝑁𝑣𝑎 +  𝑇𝑟𝑎 ,𝑣𝑎𝑁𝑟𝑎  

Forest Vadose-zone 

Soil (vf) 

𝑑𝑁𝑣𝑓

𝑑𝑡
=  − 𝐿𝑣𝑓𝑁𝑣𝑓 + 𝑇𝑟𝑓 ,𝑣𝑓𝑁𝑟𝑓  

Urban Vadose-zone 

Soil (vu) 

𝑑𝑁𝑣𝑢

𝑑𝑡
=  − 𝐿𝑣𝑢𝑁𝑣𝑢 +  𝑇𝑟𝑢 ,𝑣𝑢𝑁𝑟𝑢  

Li is the loss rate constant for compartment i (which includes constants for reaction losses, as well as transport to 

other compartments and the external environment), d
-1

; Ni is the i
th

 compartmental inventory, mol; Ti,j is the 

transport rate constant for transport from compartment i to j, d
-1

; and Si is the source input rate for compartment i, 

mol.d
-1

. 

 

Bulk diffusivity in compartment i (j), Di(j), as well as the thickness of the boundary layer 

for compartment i (or j), δi(or j), and/or their ratios, were estimated as in CalTOX 1.5 (California 

Environmental Protection Agency, 1993) (see Table B.4 in Appendix B for the formulae used).  
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For the equations in Table 4.1, fully implicit solutions were obtained using the Backward 

Euler method such that        dtt
i

ii
dt

dN
dttNdttN  )()(   (ii) 

Substituting 
dt

dNi with the equations in Table 4.1 and solving for )( dttN i  resulted in a 

system of equation that were solved to give the inventory values at each time step (see Figure S.1 

in the Supporting Information for the matrix solution employed). The transport terms in the 

model depend on properties inherent to the landscape, such as ambient temperature, leaf area 

index (LAI), precipitation rate and compartment areas, as well as chemical data such as Henry‘s 

constant, partition coefficients, molecular weight, among others. Therefore, such landscape and 

chemical properties are inputs into the model. 

Scripts were created in Matlab to accept these input data and to use them to calculate the 

model parameters (fugacity capacities and the associated transport coefficients). Matlab was also 

coded to use the matrix equation to give the simultaneous solution of media inventories at a 

specified time. For the calculation of inventories at steady state, the differential terms in the 16 

differential equations were equated to zero with the resultant linear equations put in matrix form 

such that  

sTnss

 1
,     (iii)

 

where T  is the 16 by 16 matrix of transport coefficients, d
-1

; ssn


is the column array of the steady 

state inventory in each compartment i, mol; and s


 is the column array of source input rates into 

each compartment i, mol.d
-1

. Codes were generated in Matlab to use this matrix equation to 

generate simultaneous steady state compartment outputs (the matrix solution is given in Figure 

B.2 in Appendix B and the codes to generate the outputs are presented in Appendix E). 
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Outputs of RioShed include inventories (in moles), long term fate metrics, health impact 

metrics, as well as compartmental chemical losses and gains. These outputs can be obtained for 

steady state conditions or at a specified time after the chemical has been introduced into the 

modeled landscape.  

 

4.2.1.3 Long –term fate metrics formulations in RioShed 

Long-term fate metrics give information on the propensity of environmental 

contaminants to cause localized, as well as distant health and environmental effects. Examples of 

such metrics include overall persistence (Pov) and long range transport potential (LRTP) (Bennett 

et al., 2001; Fenner et al., 2005; Leip & Lammel, 2004; MacLeod, Scheringer, McKone, & 

Hungerbuhler, 2010). Multimedia models are typically used to calculate these metrics, since 

direct measurements are not possible (Fenner et al., 2005). RioShed was employed for this 

purpose in this study. The computational methods are explained below. 

Overall persistence, Pov, is defined as the total residence time of a chemical in a system 

under steady state conditions (Fenner et al., 2000; Leip & Lammel, 2004; Wegmann et al., 

2009b), and can be considered to be the time for degradation from the environment (Wegmann et 

al., 2009b). In RioShed, it is calculated as the ratio of the total steady state inventory of the 

chemical in the system, Nt (mol), and the sum of the products of the inventory in each medium i, 

Ni (mol), as well as the degradation rate for the chemical in the given medium i, ki (d
-1

) (Matthies 

et al., 2009; Stroebe, Scheringer, & Hungerbühler, 2004; Wania & Mackay, 2000), such that  

𝑃𝑜𝑣 =
𝑁𝑡

 𝑁𝑖𝑘𝑖
              (iv) 

The long range transport potential (LRTP) of any chemical can be expressed by its 

characteristic travel distance (CTD) in a transporting fluid, often in air (CTDA) or water (CTDw). 
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For the purpose of this study, the CTDi is the distance the i
th

 transporting fluid, moving as a 

Lagrangian cell, travels before the concentration of the chemical in the medium is reduced to 1/e 

(or 37%) of the original concentration (Bennett et al., 1998).  

CTDi, and hence LRTPi, is the product of the i
th

 medium‘s advection velocity, ui, and the 

residence time of the chemical in the medium i, τi, (Matthies et al., 2009), such that  

𝐿𝑅𝑇𝑃𝑖 = 𝐶𝑇𝐷𝑖 = 𝑢𝑖𝜏𝑖 .                                              (v) 

The long range transport potential (or characteristic travel distance) is a steady state 

variable, since the residence times assume steady state. Medium-specific residence time τi was 

calculated as in CalTOX, such that  

𝜏𝑖 =
1

𝐿𝑖
        (vi) 

where Li is the loss rate constant for the medium i, d
-1

. 

The annual average concentrations for each chemical in the i
th

 compartment, Ciave, similar 

to the average concentrations employed by Wania and McLachlan (2001), were computed by 

generating daily media concentrations for 365 days, given a dynamic solution, and averaging 

these over the period. Therefore, the annual average concentration for compartment i was 

computed using the following equation: 

𝐶𝑖𝑎𝑣𝑒 =
1

365
 𝐶𝑖𝑛

365
𝑛=1         (vii) 

It must be noted that for a system achieving steady state within days or weeks, the annual 

average concentrations approximate the steady state concentrations. 

 

 

 

 



77 

 

4.2.1.4 Formulation of health impact metrics in RioShed 

A few health impact metrics can be estimated using RioShed. Among these is the non-

cancer hazard quotient for consumption of surface water (HQnc,w), expressed as   

ATBW

RfD

KIR

RfD

IR
EDEFC

HQ i

A

o

w
w

wnc







)(

,
  (US Environmental Protection Agency (USEPA), 1991), (viii) 

where Cw is the concentration of the chemical in the surface water, mg.m
-3

; IRw and IRA are the 

individual‘s intake rate of surface water and air, respectively, m
3
.d

-1
; RfDo and RfDi are the 

respective oral and inhalation reference doses, mg.kg
-1

.d
-1

; K is the volatilization factor; EF is the 

exposure frequency, d.y
-1

; ED is the exposure duration, y; BW is the individual‘s body weight, 

kg; and AT is the averaging time, d.  

Similarly, the non-cancer hazard quotient for inhalation of air (HQnc,A) is calculated using  

𝐻𝑄𝑛𝑐 ,𝐴 =  
𝐶𝐴×𝐸𝐹×𝐸𝐷×𝐼𝑅𝐴

𝑅𝑓𝐷 𝑖×𝐵𝑊×𝐴𝑇
     (USEPA, 2016b) ,     (ix) 

where CA is the concentration of the chemical in the atmosphere, mg.m
-3

; and the remaining 

terms are as previously defined. 

Cancer risks for the consumption of surface water (CRw) and inhalation of air (CRA) are 

calculated using the following respective equations: 

𝐶𝑅𝑤 =  
𝐶𝑤 ×𝐸𝐹×𝐸𝐷(𝑆𝐹𝑜×𝐼𝑅𝑤 +𝑆𝐹𝑖×𝐼𝑅𝐴×𝐾)

𝐵𝑊×𝐴𝑇
  and      (x) 

𝐶𝑅𝐴 =  
𝐶𝐴×𝐸𝐹×𝐸𝐷×𝑆𝐹𝑖×𝐼𝑅𝐴 )

𝐵𝑊×𝐴𝑇
 ,       (xi) 

where SFo and SFi are the oral and inhalation cancer slope factors, respectively, (mg.kg
-1

.d
-1

)
-1

; 

and the remaining terms are as previously defined. 

Among the outputs of RioShed are the compartmental concentrations over a given period, 

as well as steady state concentrations for the given 16 compartments.  RioShed is programmed to 

calculate risk using the average annual concentration, in the atmosphere or surface water, 
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generated over the period specified by the user. Recommended default values for the terms in the 

risk equations are used such that: the averaging time is set to 70 years (25550 d) for carcinogenic 

risk and 30 years (10950 d) for non-cancer risk; the exposure duration used is 30 years (10950 

d); the exposure frequency is 350 d.y
-1

; the inhalation and ingestion rates are 15 m
3
.d

-1
 and 2e-3 

m
3
.d

-1
, respectively; the body weight is set at 70 kg; and the volatilization factor is 0.5 (USEPA, 

1991).  

Health impacts are also evaluated in life cycle assessments. However, life cycle 

assessment differs from risk assessment in that the former is comparative. In life cycle impact 

assessments, the impacts of a given compound or product are compared with others, whereas in 

risk assessment, absolute risk is classified (Olsen et al., 2001). Life cycle analysts often evaluate 

health impacts, using metrics such as the human toxicity potential, HTP. The human toxicity 

potential is the resultant number of disease cases per kilogram of pollutant emitted. It is 

dependent on population density, and uses benchmark measures such as ED10 or ED50, which are 

effect doses resulting in toxicity in 10% and 50% of the exposed population, respectively 

(Rosenbaum et al., 2011).  

In RioShed, the non-cancer human toxicity potentials for exposures via intake route k 

(HTPnc,k), whether ingestion or inhalation, is calculated using the general formula    

𝐻𝑇𝑃𝑛𝑐 ,𝑘 =
𝐼𝐹𝑘×𝛼

𝐸𝐷50_𝑛𝑐 ,𝑘
 ,      (x) 

whereas the cancer human toxicity potentials for exposures via intake route k (HTPc,k), whether 

ingestion or inhalation, is calculated using  

𝐻𝑇𝑃𝑐 ,𝑘 =
𝐼𝐹𝑘×𝛼

𝐸𝐷50_𝑐 ,𝑘
,       (xi) 

where HTPnc,k  and HTPc,k are the respective number of potential non-cancer and cancer disease 

cases via direct intake route k (ingestion or inhalation) per kilogram of the emitted pollutant, 
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persons.kg
-1

; IFk is the fraction of the agent emitted that is taken in via route k; α is the slope 

factor relating the probability of cancer to the inverse of the ED50; ED50_nc,k  and ED50_c,k  are the 

lifetime effect doses for intake route k resulting in increases in non-cancer and cancer 

probabilities, respectively, by 50%, kg.person
-1

 per lifetime.  

For intake route k, the intake fraction is calculated as 

𝐼𝐹𝑘 =
𝜏𝑖×𝐼𝑅𝑘 ,𝑖×𝑃

𝜌 𝑖×𝑉𝑖
 (Margni et al., 2002; Rosenbaum et al., 2011), (xii) 

where τi is the residence time of the chemical in medium i, d; IRk,i is the intake rate via intake 

route k of medium i, kg.d
-1

.person
-1

; P is the population exposed, person; ρi is the bulk density of 

medium i, kg.m
-3

; and Vi is the volume of medium i, m
3
. The intake fraction calculated is 

actually the portion of the medium that is taken in by the exposed individual, during the 

residence time of the chemical in that medium. This is equivalent to the intake fraction of any 

pollutant via the medium. The total human toxicity potential is the sum of all calculated cancer 

and non-cancer human toxicity potentials for all intake routes.  

Among the outputs of RioShed are the compartmental residence times for the pollutants, 

which are used in equation xii for the calculation of human toxicity potentials. The effect 

measure ED50, which is the estimated lifetime dose that increases the probability of disease by 

50% in the exposed population via the exposure route, is not known for many chemicals, 

including those assessed in this dissertation. However, the ED50 values for chemicals with no 

evidence of carcinogenicity can be estimated from no observed effect levels (NOELs), by 

multiplying the NOELs by a conversion factor of 9 (Rosenbaum et al., 2011). When a lowest 

observed effect level is instead used, a conversion factor of 2.25 can be employed. In the 

calculation of human toxicity potential using RioShed, the default slope factor (α) of 0.5, used by 

Rosenbaum et al. (2011), was employed. This value for the slope factor assumes linearity 
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between the dose and the probability of effect, such that there is an additional 50% chance of 

having an effect, given consumption of a pollutant at a lifetime dose equal to the ED50. 

 

4.2.2 Model application 

4.2.2.1 Study Site 

  
Figure 4.2: Land-use in the Rio Cobre watershed in Jamaica. 
 Povided by the Forestry Department of Jamaica (2015). 
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For this section of the dissertation, the main objective was to evaluate the effect of forests 

on the fates of select organic contaminants in a tropical watershed. The Rio Cobre watershed in 

Jamaica was chosen as the study site. The landscape properties of this watershed and the 

physicochemical properties of the evaluated contaminants were applied, with the 

physicochemical properties estimated based on the climatic conditions of the area.  

Jamaica displays a bi-modal precipitation pattern, with wet seasons in May-July and 

August-November (Taylor, Enfield, & Chen, 2002). Average annual precipitation was 1953 mm, 

whereas average ambient temperature was 302.79 K, for the period 1986 to 2005 

(Meteorological Service of Jamaica, 2015). The watershed drains into the 52.5 km long Rio 

Cobre River and occupies an area of 1249 km
2
 (Forestry Department of Jamaica, 2015). A map 

of the area, Figure 4.2, shows that the watershed occupies the SSE section of Jamaica and that it 

is comprised of surface water, forests, fields, bare land, buildings and other infrastructure, and 

croplands (agriculture). For the purpose of this dissertation, the watershed was classified into 

three major vegetative covers – forests (60.15%), agricultural lands (25.19%) and an urban zone 

(14.48%) – and surface waters (0.18%). 

 

 

4.2.2.2 Input data estimations – landscape and chemical properties 

All fate metrics were computed using either the annually averaged or monthly averaged 

meteorological parameters (precipitation rate and ambient temperature), for the 1986-2005 

period, for the Rio Cobre watershed, which were obtained from the Meteorological Service of 

Jamaica (2015). Landscape properties required included air and water content of the soils, lipid 

fraction in vegetation, density of particles in soil and sediment, fraction of surface water that is 

sediment, among others. For these, the properties specific to the Rio Cobre watershed were used 
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when available. However, when lacking, estimates were either obtained from the literature or 

computed from accepted equations. Table 4.2 provides some examples of the data values and/or 

estimation methods for select input landscape properties (detailed landscape inputs are provided 

in Table D.1 in Appendix D). 

Table 4.2: Select landscape parameters for the Rio Cobre watershed 

Landscape Parameter Value 

Used/Estimating 

Equation 

Source 

Area - Agricultural vegetation (m
2
)
 
 3.15E+08 Forestry Department of Jamaica (FDJ), 

2015 

Area - Forest vegetation (m
2
) 7.51E+08 FDJ, 2015 

Area - Urban region (m
2
) 1.81E+08 FDJ, 2015 

Area - Surface water (m
2
) 2.20E+06 FDJ, 2015 

Area - Atmosphere (m
2
) 1.25E+09 FDJ, 2015 

Average Ambient Temperature, T 

(K) 

3.03E+02 Meteorological Service of Jamaica 

(MOJ), 2015 

Average precipitation rate (m.d
-1

) 5.35E-03 MOJ, 2015 

Density of soil particles (kg.m
-3

) 2650 CalTOX 2.3 

Density of plants (kg.m
-3

) 830 CalTOX 2.3 

Lipid density in plants (kg.m
-3

) 850 Multimedia Urban Model  

Forest fractions: 

deciduous/evergreen 

0.55/0.45 FDJ, 2015 

Organic carbon fraction in urban 

film 

0.74 Diamond et al., 2001 

Organic carbon fraction in soil 0.036 Hennemann & Mantel, 1995 

Fractions in foliage: Air, water, lipid 0.18, 0.8, 0.02 Cousins and MacKay, 2000 

Leaf Area Index (LAI): deciduous 

forest, evergreen forest, agricultural 

vegetation, urban vegetation 

3.9, 4.8, 3.6, 1.2 Asner et al., 2003; Diamond et al., 

2001 

Surface water outflow rate (m.d
-1

) 2.46E-03 Setegn et al., 2014 

Groundwater recharge rate (m.d
-1

) 1.09E-03 Setegn et al., 2014 

Transpiration rate (m.d
-1

) 4.8E-03*LAI GIM3 

Run-off rate (m.d
-1

) 2.82E-04 Setegn et al., 2014 

Erosion rate (m.d
-1

) usrunoff/3E+04 GIM3 
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Table 4.3: Select chemical properties - Carbaryl 

Chemical Parameter Value Used/Estimating 

Equation 

Source 

Henry's Constant, H 

(Pa.m
3
.mol

-1
) 

4.48E-05 Mackay et al., 2006 

Melting Point (K) 418.15 Mackay et al., 2006 

Vapor Pressure (Pa) 1.60E-04 Mackay et al., 2006 

Octanol-Water partition 

coefficient, Kow 

229.09 Mackay et al. 2006 

Air-Water partition coefficient, 

Kaw 

H/RT or 10^(log10(Kow/Koa)-

0.1+(0.3*log10(Kow)-1.20)) when 

Kow>1E4 and 

10^((log10(Kow/Kaw)-0.1) when 

Kow<1E4 

Mackay et al., 2006 

Octanol-air partition 

coefficient, Koa 

10^(log10(Kow/Kaw)-

0.1+(0.3*log10(Kow)-1.20)) 

Mackay et al., 2006 

Plant-air particle partition 

coefficient (m
3
.kg

-1
) 

3000 CalTOX 2.3 

Molecular weight (g.mol
-1

) 201.221 Mackay et al., 2006 

Atmospheric half-life (d) 5.25E-01 Mackay et al., 2006 

Surface water half-life (d) 9 Mackay et al., 2006 

Soil half-life, HLs (d) 10 Mackay et al., 2006 

Vegetation half-life (d) HLs/4 (Juraske, 2008 #889) 

Urban film half-life (d) HLs * 
* In the absence of measured values, the half-lives in soil were used for the half-lives in urban film.  

 

For each chemical assessed, the intrinsic properties required included, as previously 

mentioned, partition coefficients (air-water, octanol-water, octanol-air, air-aerosol particle), 

vapor pressure, aqueous solubility, half-lives in each compartment, among others. Such data 

were retrieved from the literature, using values measured at temperatures close to the annual 

average temperature of the Rio Cobre watershed (302.79 K), or at 298.15 K when otherwise 

unavailable. In the absence of site-specific values, estimates were computed from accepted 

equations. Alternatively, representative values from the literature were used. For example, the 

estimated average global leaf area index for tropical deciduous forests was used, since none was 

available for such a forest in the Rio Cobre watershed. To provide an illustration of the types and 

data sources of the chemical properties used, those for Carbaryl are presented in Table 4.3 (see 
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figure C.1 and Table C.1, Table C.2 and Table C.3 in Appendix C for the chemical structures and 

properties for all considered/evaluated contaminants). 

 

4.2.2.3 Model testing & evaluation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Simulation process in RioShed 
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A schematic diagram, summarizing the simulation process in RioShed, is presented in 

Figure 4.3. For ease of use of the developed model, input landscape values representative of a 

tropical region are supplied with the model. The simulation process was employed throughout all 

modeling aspects in this dissertation, including for model evaluation. 

The performance of RioShed was benchmarked by comparing calculated fugacity 

capacities, transport rates, compartmental residence times and annual average concentrations to 

those calculated using CalTOX 2.3 and/or GIM3. Despite the fact that CalTOX 1.5 was the base 

model for RioShed, CalTOX 2.3 was used in the benchmarking exercise since this was the 

available version. CalTOX 1.5, CalTOX 2.3 and RioShed all differ from each other in the 

modeling of the plant and root-zone soil compartments.  

In this exercise, the landscape properties of the Rio Cobre watershed were used and a 

hypothetical atmospheric emission rate of 10 g.d
-1

 was applied, using PBDE-47 as the test 

chemical. In 2007, it was estimated that 32.2 metric tons of deca-BDE was released into the US 

(USEPA, 2010), yielding a flux rate of 8.96 ng.m
-2

.d
-1

, given that the surface area of the US is 

approximately 9.86 Mkm
2
. When this flux rate was applied to Rio Cobre watershed, an emission 

rate of 11.2 g.d
-1

 was obtained. As a result, a hypothetical emission rate of 10 g.d
-1

 was applied 

for the contaminant, given the absence of such data for the watershed. In this evaluation, only the 

seven mutual compartments for the three models were left active in RioShed. Once relevant data 

were inputted into the three models having the same active seven compartments, the computed 

fugacity capacities, transport rate constants and compartment residence times were compared 

using a percent bias (PBIAS) as follows: 

PBIAS =  
  𝑌𝑖

𝑜𝑏𝑠  − 𝑌𝑖
𝑠𝑖𝑚   ×  100% 𝑛

𝑖=1

  𝑌𝑖
𝑜𝑏𝑠  𝑛

𝑖=1

        (Moriasi et al., 2007)                        (xiii) 



86 

 

where 𝑌𝑖
𝑜𝑏𝑠  is the observed i

th
 fugacity capacity, transport rate constant or residence time, 

generated using CalTOX 2.3 or GIM3; and 𝑌𝑖
𝑠𝑖𝑚  is the simulated i

th
 fugacity capacity, transport 

rate constant, residence time or average annual compartmental concentrations, from RioShed. 

RioShed was considered to perform well for PBIAS values, for the fugacity capacity, transport 

rate constant, residence times or average annual compartmental concentrations, of or close to 0 

for all compartments in which the inputs and losses were represented as in CalTOX 2.3 and/or 

GIM3. 

 

Table 4.4: Comparison of fugacity capacities 

Model Fugacity capacity of 

plant compartment 

(Zcm), mol/m
3
/Pa 

Equation Affected 

Transport 

Terms 

CalTOX 

2.3 

1.84e4 𝑍𝑐𝑚

= 𝐾𝑝𝑎𝜌𝑝𝑍𝑎𝑖𝑟 + 𝐾𝑝𝑎
𝑝 𝑍𝑎𝑝𝜌𝑝𝛽𝐴𝜌𝑠𝑚𝑝

−1  

Tcmrm, Tcmsm, 

TcmA, TAcm 

RioShed 4.44e4 𝑍𝑐𝑚 = 𝑓𝑝𝑤 𝑍𝑤𝑎𝑡𝑒𝑟 + 𝑓𝑝𝑎𝑍𝑎𝑖𝑟

+ 𝑓𝑝𝑙𝑍𝑙  

 

Zcm is the fugacity capacity of plants, mol.m
-3

.Pa
-1

; fpw, fpa, fpl  are the respective fractions of 

water, air and lipids in vegetation; Zap is the fugacity capacity of atmospheric particles, mol.m
-

3
.Pa

-1
;Zwater is the fugacity capacity of water, mol.m

-3
.Pa

-1
; Zair is the fugacity capacity of air, 

mol.m
-3

.Pa
-1

; Zl is the fugacity capacity of lipids, mol.m
-3

.Pa
-1

; ρp is the density of plant, kg.m
-3

; 

ρsmp is the density of particles in surface soil, kg.m
-3

; βA is the atmospheric dust load, kg.m
-3

; Kpa 

is the plant/air-vapor partition ratio; and Kpa
p
 is the plant/air-particle partition ratio; Tcmrm is the 

transport constant for movement from plant to root soil, d
-1

; Tcmsm is the transport constant for 

movement from plant to surface soil, d
-1

; TcmA is the transport constant for movement from 

plants to atmosphere, d
-1

; TAcm is the transport constant for movement from atmosphere to plants, 

d
-1

. 
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Table 4.5: Rate constant equations for comparison 

Model Advective 

Transport rate 

constant (d
-1

) 

Transport rate 

constant for 

transport via 

atmospheric 

particles (d
-1

) 

Transport rate 

constant for 

transport via 

particles (d
-1

) 

Reaction rate 

constant (d
-1

) 

CalTOX 

2.3 
𝑇𝐴𝑖𝑗

= 𝐴𝑖𝑗 𝑍𝑖𝑐𝑢𝑖𝑍𝑖
−1𝑉𝑖

−1 

𝑇𝑁𝑖𝑗

= 𝐴𝑖𝑗 𝑍𝑖𝑝𝑢𝑖𝑓𝑖𝑝𝑍𝑖
−1𝑉𝑖

−1 

𝑇𝑁𝑖𝑗

= 𝐴𝑖𝑗 𝑍𝑖𝑐𝑢𝑖𝑐𝑍𝑖
−1𝑉𝑖

−1 

𝑅(𝑑 ,𝑟 ,𝑣)

=
0.693𝑍𝑤𝑎𝑡𝑒𝑟 𝑓 𝑑 ,𝑟 ,𝑣 𝑤

𝑍(𝑑 ,𝑟 ,𝑣)
 

GIM3 𝑇𝐴𝑖𝑗

= 𝐴𝑖𝑗 𝑍𝑖𝑐𝑢𝑖𝑍𝑖
−1𝑉𝑖

−1 

𝑇𝑁𝑖𝑗

= 𝐴𝑖𝑗 𝑍𝑖𝑝𝑢𝑖𝑓𝑖𝑝𝑍𝑖
−1𝑉𝑖

−1 

𝑇𝑁𝑖𝑗

= 𝐴𝑖𝑗 𝑍𝑖𝑝𝑢𝑖𝑝𝑓𝑖𝑝𝑍𝑖
−1𝑉𝑖

−1 

𝑅(𝑑 ,𝑟 ,𝑣)

=
0.693𝑍𝑤𝑎𝑡𝑒𝑟 𝑓 𝑑 ,𝑟 ,𝑣 𝑤

𝑍(𝑑 ,𝑟 ,𝑣)
 

RioShed 𝑇𝐴𝑖𝑗

= 𝐴𝑖𝑗 𝑍𝑖𝑐𝑢𝑖𝑍𝑖
−1𝑉𝑖

−1 

𝑇𝑁𝑖𝑗

= 𝐴𝑖𝑗 𝑍𝑖𝑝𝑢𝑖𝑓𝑖𝑝𝑍𝑖
−1𝑉𝑖

−1 

𝑇𝑁𝑖𝑗

= 𝐴𝑖𝑗 𝑍𝑖𝑝𝑢𝑖𝑝𝑓𝑖𝑝𝑍𝑖
−1𝑉𝑖

−1 

𝑅(𝑑 ,𝑟 ,𝑣)

=
0.693𝑍𝑤𝑎𝑡𝑒𝑟 𝑓 𝑑 ,𝑟 ,𝑣 𝑤

𝑍(𝑑 ,𝑟 ,𝑣)
 

Highlights illustrate differences in modeled parameters 

 

TAij is the advective transport rate constant for movement from medium i to j, d
-1

; Aij is the area 

of the interface between media i and j, m
2
; uic and uip are the velocities of the carrying medium 

and particles, respectively, m.d
-1

; Zi the fugacity capacity of medium i, mol.m
-3

.Pa
-1

; Zwater is the 

fugacity capacity of water, mol.m
-3

.Pa
-1

; Z(d,r,v) is the fugacity capacity of sediment, root-soil or 

vadose-zone soil, mol.m
-3

.Pa
-1

; Zd is the fugacity capacity of sediment, mol.m
-3

.Pa
-1

; Zip the 

fugacity capacity of particles in medium i, mol.m
-3

.Pa
-1

; Zic is the fugacity capacity of the 

carrying medium c in medium i, mol.m
-3

.Pa
-1

; Vi is the volume of medium i, m
3
; TNij is the 

transport rate constant for transport on particles, d
-1

; fip is the fraction of particles in medium i; 

f(d,r,v)w is the fraction of water in the sediment, root-zone soil and vadose-zone soil, respectively;  

R(d,r,v) is the reaction rate constant in the sediment, root-zone soil and vadose-zone soil, 

respectively, d
-1

; Rd is the reaction rate constant in the sediment, d
-1

. 

 

Table 4.4 gives the different formulae used in RioShed and CalTOX 2.3 to calculate the 

fugacity capacity of the plants in the vegetation compartment. The formula used by RioShed was 

obtained from Mackay and Cousins (2000), who suggested the equation for the incorporation of 

a plant compartment into environmental models. As a result, the residence time in plants 

calculated by RioShed differs from those calculated using CalTOX 2.3 and GIM3. Consequently, 

the rate constants, for transport to and from the vegetation/canopy, are different in RioShed.  
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In RioShed, all diffusive and some advective transport rate constants are calculated the 

same as in CalTOX 2.3. The remaining advective terms for transport via particles in the 

atmosphere, soils and sediments are calculated as in GIM3, as seen in column 3 of Table 4.5. In 

RioShed, advective transport from the canopy/vegetation uses the canopy model employed by 

the Multimedia Urban Model (MUM).  

For the sediment, root-zone and vadose-zone soils, reaction rate constants are calculated 

in RioShed, as also in both CalTOX 2.3 and GIM3, using the equation 

iw

i

water

i

i f
Z

Z

HL
R

693.0


      (xxvii)

 

where Ri is the reaction rate constant, d
-1

; Zwater is the fugacity capacity of water, mol.m
-3

.Pa
-1

; 

HLi is the half-life of the contaminant in medium i (sediment, root- or vadose-zone soil), d; Zi is 

the fugacity capacity of medium i (sediment, root- or vadose-zone soil), mol.m
-3

.Pa
-1

; and fiw is 

the fraction of water in medium i (sediment, root- or vadose-zone soil). For the remaining 

compartments, reaction rate constants are calculated using the known formula: 

i

i
HL

R
693.0



       (xxviii)

 

with Ri and HLi as the respective reaction rate constant, d
-1

, and half-life, d, in medium i. 

RioShed also offers the option to calculate reaction rates in the root and vadose soils using this 

same formula. 

RioShed was tested for sensitivity to select model input parameters – chemical, emission 

and landscape. This analysis indicated the dependence of the model‘s outputs on select inputs, 

under the hypothetical emission scenario used. The inputted chemical properties included media-

specific half-lives, partition coefficients and molecular weight whereas the landscape properties 

included meteorological data (precipitation rate and ambient temperature), atmospheric dust load 
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and compartment dimensions, among others. Also, the emission properties included the quantity 

released and the source compartment.  The test chemical was 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD) and the hypothetical atmospheric emission rate of 3.65 kg.y
-1

 (10 g.d
-1

) was used. As 

has been done in previous studies (Wania, Breivik, Persson, & McLachlan, 2006; Wania & 

McLachlan, 2001), the effect was analysed using an initial application of inputs in a control 

scenario. The current land-use distribution for the Rio Cobre watershed (agriculture: forest: 

urban – 25 %: 60 %: 15%), labeled as land-use distribution scenario I, was employed as the 

control scenario. In general, the parameters to be assessed were individually halved and the 

outputs compared to the initial output. However, where halving was unrealistic, the properties 

were doubled. 

To evaluate the predictive capabilities of RioShed, some predicted outputs of the model 

were compared to the field measurements from Chapter 3. The field measurements included 

concentrations of some PBDEs in the soils, atmosphere, deposition and litterfall of a forest 

versus a nearby clearing, in the Rio Cobre watershed. However, the outputs of Rioshed were the 

concentrations of the same PBDEs in all of its 16 compartments for the forested versus un-

forested version of the Rio Cobre watershed. The differences in the scope of the field monitoring 

and that employed in using RioShed allowed only a simple evaluation of whether RioShed could 

accurately predict an impact of forests on the fates of the PBDEs in the Rio Cobre watershed, 

given the findings of the field monitoring exercise. 
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4.2.2.4 Determination of forest effects   

The goal of this assessment was to evaluate the effects of tropical forests on the fates of 

select organic contaminants in the Rio Cobre watershed. Since emission data for the chemicals in 

the given watershed were lacking and given the comparative nature of the assessment, an 

atmospheric emission rate of 3.65 kg.y
-1

 was applied throughout. In 2007, deca-BDE was the 

only technical PBDE mixture produced and used in the USA, with an estimated release of 32.2 

metric tons in that year (USEPA, 2010). Given a surface area of approximately 9.86 Mkm
2
 for 

the USA, this equated to a release flux of 8.96 ng.m
-2

.d
-1

. Applying this flux to the Rio Cobre 

watershed, which exhibits a surface area of 1249 km
2
, produced an equivalent release/emission 

rate of 11.2 g.d
-1

. As a result, a hypothetical emission rate of 3.65 kg.y
-1

 (10.0 g.d
-1

) was used for 

each chemical, with the assumption that emission was solely into the atmosphere.  

This evaluation was divided into segments – dynamic and steady state. Depending on the 

specific objective of any given segment, one of two control scenarios was employed. The current 

landscape of the Rio Cobre watershed was labeled land-use distribution scenario I and employed 

as control scenario I.  For control scenario II, also labeled as land-use distribution scenario II, the 

forested area of the Rio Cobre watershed was instead modeled as grassland, with agricultural 

lands, urban zone and surface waters remaining as before, as seen in table 4.8. Figure 4.2 shows 

that, in the Rio Cobre watershed, fields occupy a far larger portion of the landscape (6.31%) than 

bare rocks (0.91%) (Forestry Department of Jamaica, 2015). Therefore, grasslands are more 

likely than bare rock. As a result, grassland was chosen in lieu of bare rock to replace forests in 

control scenario II (land-use distribution scenario II). In order to model the forested area as 

grassland, select forest parameters, such as litterfall rate, biomass production and leaf area index, 

were altered to representative grassland values.  
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Table 4.6: Physicochemical properties for PBDE-47 and dimethoate 

Physicochemical properties PBDE-47 Dimethoate 
Henry's constant (Pa.m

3
/mol) 1.107 1.15E-04 

Henry's constant (Pa.m
3
/mol) - 30

o
C 1.78 - 

Melting Point (K) 357.15 325.15 

Vapor Pressure (Pa) 2.15E-04 3.63E-02 

Koc, Organic carbon partition coefficient 

(L/kg)  1.26E+06 15.85 

Kow, Octanol-water partition coefficient 2.46E+06 6.03 

Kaw, Air-water partition coefficient 4.47E-04 4.57E-08 

Koa, Octanol-air partition coefficient 2.75E+10 1.13E+07 

Kpaap, Plant-air particle partition 

coefficient (m
3
/kg)  3.00E+03 3.00E+03 

Kps, Plant root-soil partition coefficient 

(kg/kg)  5.38E-01 5.38E-01 

Molecular Weight (g/mol) 485.791 229.258 

Molecular Volume (cm
3
/mol) 288.8 205.6 

Bioconcentration factor fish/water (m
3
/kg)  0 100 

Atmospheric half-life (d) 1.07E+01 1.95E-01 

Half-life in surface water (d) 150 29 

Half-life in sediment (d) 600 7 

Average half-life in vegetation (d) Half-life in surface soil/4 2.95 

Half-life in agricultural vegetation (d) 37.5 as above 

Half-life in forest vegetation (d) 37.5 as above 

Half-life in urban vegetation (d) 37.5 as above 

Half-life in surface soil (d) 150 7 

Half-life in agricultural surface soil (d) as above as above 

Half-life in forest surface soil (d) as above as above 

Half-life in urban surface soil (d) as above as above 

Half-life in root-zone soil (d) as above as above 

Half-life in agricultural root-zone soil (d) as above as above 

Half-life in forest root-zone soil (d) as above as above 

Half-life in urban root-zone soil (d) as above as above 

Half-life in vadose-zone soil (d) 150 as above 

Half-life in agricultural vadose-zone soil 

(d) 150 as above 

Half-life in forest vadose-zone soil (d) 150 as above 

Half-life in urban vadose-zone soil (d) 150 as above 

Half-life in urban organic film (d) 150 as above 

Half-life in biota (d) 30.1 - carp 2.95 - cabbage 

 

In the first segment of the evaluation, a dynamic assessment was conducted of the 

environmental fates, of only dimethoate and PBDE-47, in a forested and un-forested landscape. 
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Two categories of organic pollutants are being examined in this dissertation – a few persistent 

pollutants and some polar current-use pesticides. PBDE-47 is a member of the more persistent 

group of pollutants, whereas dimethoate is from the current-use pesticides category. Both were 

arbitrarily selected from their respective groups for this evaluation exercise. The 

physicochemical properties used for these two organics are presented in Table 4.6. The outputs 

of this evaluation were the monthly compartmental concentrations using: 1) the average annual 

precipitation rate and ambient temperature for the 1986-2005 period, and 2) average monthly 

precipitation rates and ambient temperatures for the same 1986-2005 period. 

 

Table 4.7: Monthly averaged climate variables for the Rio Cobre watershed for the 1986-2005 

period 

Month 

number 

Month Temperature (K) Precipitation rate 

(×10
-3

 m.d
-1

) 

1 January 300.82 2.74 

2 February 301.26 2.32 

3 March 302.19 2.32 

4 April 302.82 4.35 

5 May 303.16 8.72 

6 June 303.91 5.03 

7 July 304.23 5.91 

8 August 304.30 6.20 

9 September 304.18 9.87 

10 October 303.34 7.63 

11 November 302.20 5.84 

12 December 301.23 3.14 
Meteorological data was obtained from the Meteorological Service of Jamaica, 2015 

To calculate the average annual temperature and precipitation rate, such data for the 

1986-2005 period, was obtained from the Meteorological Service of Jamaica (MOJ) and 

averaged. The annually averaged temperature and precipitation rate for this period were 302.79 

K and 5.35e-3 m.d
-1

, respectively. To calculate the average monthly temperature and 

precipitation rate, the same data from the Meteorological Service of Jamaica (MOJ) was used, 
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but instead the values, for each calendar month of the year, were averaged over the same 1986-

2005 period. The monthly average climate values used are given in Table 4.7. 

In the first part of the dynamic section, an initially pristine environment, with 

compartments void of the contaminants, was assumed. The hypothetical emission rate of 3.65 

kg.y
-1

 was then applied for the two contaminants (PBDE-47 and dimethoate). The average 

annual climate data were input at the beginning of the model run, for each PBDE-47 and 

dimethoate, and remained unchanged thereafter. For each chemical, the model was run for both 

forested and un-forested scenarios. Control scenario I (land-use distribution scenario I) was 

employed to provide forested conditions, whereas control scenario II (land-use distribution 

scenario II) was used as the un-forested landscape. The system was evaluated to determine if 

and/or when steady state concentration was achieved in each compartment, in both the forested 

and un-forested scenarios.  

In the second part of the dynamic assessment, two conditions were initiated: 1) a pristine 

environment and 2) an environment with compartmental concentrations set at the steady state 

values, previously calculated for an environment that was initially pristine, and thereafter 

receiving the contaminants only into its atmosphere, at a rate of 3.65kg.y
-1

. At the beginning of 

each set of model runs, the averaged temperature and precipitation rate for January for the 1986-

2005 period were the meteorological inputs. The model was then run for the 31 days of January 

and the end-of-month compartmental inventories obtained, as well as the next month‘s climate 

data, were the inputs for the model run for the following month. This procedure was employed 

for the months February to December, whereby the compartmental inventory outputs, from the 

previous month, were the initial compartmental inventories for the current month, and the 

meteorological inputs were the averaged temperature and precipitation rate for the current 
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month, for the 1986-2005 period. The model was then run for the number of days typically 

associated with the given month. As before, this assessment was performed using both control 

scenarios I and II (land-use distribution scenarios I and II, respectively) to provide the forested 

and un-forested landscapes, respectively.  

In the non-dynamic (steady state) segment of the evaluation, the effects of forests, on the 

long-term fates of the aforementioned 16 organic contaminants (four (4) PBDEs, four (4) dioxins 

and furans, as well as eight (8) current-use pesticides), were examined for varying forested 

landscapes, by comparing the long-term fate metrics calculated in forested scenarios with those 

calculated assuming grassland conditions. Control scenario II (land-use distribution scenario II) 

was employed as the control. Figure 4.4 illustrates the assessment process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Schematic representation of the assessment process 
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Table 4.8: Land-use distribution scenarios 

Scenarios Land-use percentage distribution (%) 

 

Agriculture Forest/Grassland Urban 

I 25 60 (forest) 15 

II 25 60 (grassland) 15 

III 34 42 (forest) 24 

IV 25 42 (forest) 33 

V 43 42 (forest) 15 

VI 7 78 (forest)  15 

 

In this steady state assessment, control scenario I was employed as one of the forested 

landscapes and was labeled land-use distribution scenario I, whereas control scenario II was 

labeled land-use distribution scenario II. The remaining four (4) forested landscapes for 

comparison were generated by applying the following algorithms to the existing landscape of the 

Rio Cobre watershed (control/land-use distribution scenario I), such that there was a: a) 30% 

decrease in forest coverage, assuming equal distribution of the difference to the urban and 

agricultural compartments (agriculture:forest:urban area at 34%:42%:24%); b) 30% decrease in 

forest coverage, strictly due to urban expansion (agriculture:forest:urban area at 25%:42%:43%); 

c) 30% decrease in forest coverage, strictly due to agricultural expansion 

(agriculture:forest:urban area at 43%:42%:15%) and; d) 30% increase in coverage, through 

afforestation of agricultural lands (agriculture:forest:urban area at 7%:78%:15%). These 

comparison scenarios were labeled land-use distribution scenarios III to VI. The details of the 

generated land-use distribution scenarios are given in Table 4.8.  

Three tropical forest compositions were considered: a) 100% deciduous; b) 50%:50% 

deciduous: evergreen; and c) 100% evergreen. These three compositions were applied to the five 

(5) forested land-use scenarios in Table 4.8. Therefore, for each of these 15 assessment scenarios 

generated, forest parameters were weighted according to the selected forest compositions, and 
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representative values applied. Landscape and chemical properties were input into the model and 

the fate metrics obtained for each of the 16 scenarios. As indicated before, the fate metrics for 

the forested scenarios were assessed with respect to those obtained for control scenario II. As a 

further step in this evaluation of forest effects on the long-term fates, the fate metrics, obtained 

when the three (3) forest compositions (deciduous, evergreen and semi-evergreen) were applied 

to land-use distribution scenarios III to VI, were evaluated with respect to those obtained when 

the aforementioned three (3) forest compositions were applied to control scenario I (also labeled 

land-use distribution scenario I).  

Daily compartmental concentrations for both dimethoate and PBDE-47 were generated 

for 365 days, using the annual average climate data for the 1986-2005 period, inputted at the 

beginning of the 365-day model run, with the assumption of an initially pristine environment 

(free of the select chemical). This allowed for the examination of how both the contaminant and 

the model behaved under such condition, as well as to confirm that steady state could be 

achieved. The daily compartmental concentration outputs were averaged over the 365 days to 

give representative annual average compartmental concentrations. This was done for both land-

use distribution scenarios I (forested landscape) and II (un-forested landscape). The annual 

average concentrations were compared. Also, steady state concentrations were generated under 

these conditions. The steady state concentrations were used to compute the overall persistence 

and atmospheric long range transport potential. This allowed for the evaluation of the effect of 

forests on the long-term fate metrics for these two (2) chemicals. This evaluative method was 

also performed for the remaining 14 chemicals. The arithmetic means and ranges of the fate 

metrics for the eight (8) persistent pollutants and the eight (8) current-use pesticides in both land-
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use distribution scenarios were compared to determine the general effect of forests on the two 

groups of pollutants evaluated. 

 

4.2.2.5 Determining the effects of forest parameters  

A number of forest parameters influence the transport of organics between the 

atmosphere and soil, via the canopy. These include canopy drip, leaf area index, biomass, 

epicuticular wax erosion and litterfall. To assist with understanding how these parameters 

influence the effects of forests on the long-term fates of the assessed contaminants, the forest 

parameters were varied and the associated long-term fate metrics calculated and compared. The 

control in this segment of the evaluation was the current landscape architecture of the Rio Cobre 

watershed.  

Canopy drip is the wet deposition of contaminants from the leaves of plants. The 

efficiency of this removal process is characterized by a canopy drip parameter (Diamond et al., 

2001). In the application of their model MUM to the Don River Watershed in Canada, where the 

rainfall rate was approximately 815 mm.y
-1

, Diamond et al. (2001) used a canopy drip parameter 

of 8.7×10
-4

. This is expected to be larger in areas with higher precipitation rates. However, in the 

absence of actual values, this canopy drip parameter was applied to the Rio Cobre watershed. 

This section of the assessment then involved calculating and comparing output fate metrics 

generated by altering this parameter by factors of 0 to 2, in increments of 0.5.  

The leaf area index (LAI) influences the deposition of contaminants from the atmosphere 

to the leaf, as well as diffusion between the atmosphere and the leaf. Global leaf area indices for 

various biomes have been found to range from 1.3 to 8.7, with a range of 2.6 to 8.7 for forests 

(Asner, Scurlock, & A. Hicke, 2003). The global mean for tropical deciduous and evergreen 
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forests were given as 3.9 and 4.9, respectively. The output fate metrics were then computed and 

compared for leaf area indices in the range of 1 through to 9, varied in increments of 2. 

Dry deposition interception is a function of biomass, which therefore impacts the direct 

transport of chemicals from the atmosphere to soils. Above ground biomass for tropical forests 

were found in the range 28.2-507.8 Mg.ha
-1

, approximately 9.31-167 μm.d
-1

 (Cairns, Olmsted, 

Granados, & Argaez, 2003; Malhi, Baldocchi, & Jarvis, 1999; Mani & Parthasarathy, 2007; 

Martinez-Yrizar et al., 1992; Yamakura, Hagihara, Sukardjo, & Ogawa, 1986). Biomass 

inventories were varied between 5 kg.m
-2

 to 55 kg.m
-2

, in increments of 10 kg.m
-2

. 

The influence of epicuticular wax erosion on contaminant fate is still little understood. It 

is known though that epicuticular wax morphology is a function of environmental conditions, 

such as temperature and irradiance (Baker & Hunt, 1986). Also, epicuticular wax production and 

wax erosion are dependent on the presence of atmospheric pollutants. Epicuticular wax has been 

found to be abraded by pollutants (Huttunen & Laine, 1983; Rogge, Hildemann, Mazurek, Cass, 

& Simoneit, 1993) and the structure altered by exposure to pollutants, such as vehicular exhaust 

(Honour, Bell, Ashenden, Cape, & Power, 2009) and pesticides (Baker & Hunt, 1986).  

However, the effect of wax erosion on the transport and transfer of contaminants has not been 

well characterized. In the application of MUM to the Don River watershed in Canada, Diamond 

et al. (2001) used a wax erosion transfer coefficient of 1.932×10
-6

 m.d
-1

.  Therefore, the wax 

erosion transfer coefficient was varied from 0 m.d
-1

 and increased up to 200% of the quoted 

1.932×10
-6

 m.d
-1

, in increments of 50%. The long-term fate metrics, previously described, were 

calculated at each incremental change and compared.        

Forest litterfall dynamics have been evaluated over the years. Litterfall rate is one 

dynamic found to influence contaminant transport from canopy to soil. Measured values for 
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tropical leaf and total litterfall fluxes ranged from 2.1-9.6 t.ha
-1

.y
-1

 and 2.4-13.5 t.ha
-1

.y
-1

, 

respectively (Pragasan & Parthasarathy, 2005). Given a plant density of 830 kg.m
-3

, this 

parameter was varied from 0.66 μm.d
-1

 to 4.62 μm.d
-1

. 

 

4.3 Results & Discussion 

4.3.1 Model testing and evaluation 

4.3.1.1 Benchmarking  

For this evaluation, the fugacity capacities, transport rate constants and compartmental 

residence times for PBDE-47 under select conditions were calculated, using RioShed, GIM3 and 

CalTOX 2.3, and compared. These outputs are given in Table 4.9, Table 4.10 and Table 4.11. 

The average compartmental concentrations, over a one (1) year period, generated using RioShed, 

were also assessed against those generated using CalTOX 2.3, as seen in Table 4.12.  

 

Table 4.9: Fugacity capacities for PBDE-47 calculated using CalTOX 2.3, GIM3 and RioShed 

 Fugacity Capacity (mol.m
-3

.Pa
-1

)  

Compartment CalTOX 2.3 GIM3 RioShed 

Pure air  4.0E+4 4.0E+4 4.0E+4 

Atmosphere 4.3E+4 4.3E+4 4.3E+4 

Pure water 9.0E-1 9.0E-1 9.0E-1 

Surface water particle 6.0E+4 6.0E+4 6.0E+4 

Surface water 2.9E+0 2.9E+0 2.9E+0 

Sediment particle 6.0E+4 6.0E+4 6.0E+4 

Sediment 4.8E+4 4.8E+4 4.8E+4 

Plant 1.8E+4 4.4E+4 2.2E+4 

Plant root 5.3E+1 2.2E+4 5.3E+1 

Surface soil particle 1.1E+5 1.1E+5 1.1E+5 

Root soil particle 1.1E+5 1.1E+5 1.1E+5 

Vadose soil particle 1.1E+5 1.1E+5 1.1E+5 

Surface soil 6.4E+4 6.4E+4 6.4E+4 

Root soil 6.4E+4 6.4E+4 6.4E+4 

Vadose soil 6.4E+4 6.4E+4 6.4E+4 

Aquifer particle 1.1E+5 - - 

Aquifer 8.7E+4 - - 
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Table 4.10: Transport rate constants for PBDE-47 calculated using CalTOX 2.3, GIM3 and 

RioShed 

 Transport rate, Tij, from medium i to j (d
-1

) 

Delivering 

Compartment, i 

Receiving 

Compartment, j 

CalTOX 2.3 GIM3 RioShed 

Atmosphere Surface water 3.4E-3 3.5E-3 3.4 E-3 

Atmosphere Plants 1.1E-1 3.3E-2 2.0E-1 

Atmosphere Surface soil 1.4E-1 3.6E-2 1.4E-1 

Atmosphere External environment 2.2E+0 2.3E+0 2.2E+0 

Surface water Atmosphere 4.3E-3 4.5E-3 4.3E-3 

Surface water Sediment 1.6E+1 1.1E-3 6.1E-4 

Surface water External environment 5.0E-2 5.0E-4 5.0E-2 

Sediment Surface water 9.9E-2 7.9E-2 7.9E-2 

Sediment N/A (burial) 2.5E-5 1.6E-1 2.0E-5 

Plants Atmosphere 2.4E-4 1.9E-4 6.1E-5 

Plants Surface soil 5.6E-3 5.6E-3 1.6E-2 

Plants Root soil 1.0E-5 8.3E-6 4.2E-6 

Surface soil Atmosphere 6.7E-6 1.3E-5 3.0E-6 

Surface soil Surface water 2.0E-6 1.3E-6 1.3E-6 

Surface soil Root soil 5.5E-6 5.5E-6 5.5E-6 

Root soil Plants 2.5E-7 2.4E-7 2.4E-7 

Root soil Surface soil 4.0E-8 4.0E-8 4.0E-8 

Root soil Vadose soil 1.6E-8 1.5E-8 1.5E-8 

Vadose soil External 

environment/Ground-

water 

4.5E-10 4.5E-10 4.5E-10 

 

 

Table 4.11: Compartmental residence times for PBDE-47calculated using CalTOX 2.3, GIM3 & 

RioShed 

Compartments Residence time (d) 

CalTOX 2.3 GIM3 RioShed  RioShed 

(alternative) 

Air 3.89E-01 4.18E-01 3.75E-01 3.75E-01 

Water 6.06E-02 9.39E+01 1.68E+01 1.68E+01 

Sediment 1.01E+01 6.31E+00 1.26E+01 1.26E+01 

Plant 1.72E+02 3.48E+01 2.57E+01 2.57E+01 

Surface soil 2.16E+02 2.16E+02 2.16E+02 2.16E+02 

Root-zone soil 3.09E+06 3.13E+06 3.13E+06 2.16E+02 

Vadose-zone 

soil 

4.46E+07 4.46E+07 4.46E+07 2.17E+02 
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Table 4.12: Annual average compartmental concentrations for PBDE-47 calculated using 

CalTOX 2.3  and RioShed 

Compartment Concentration (mol.m
-3

) 

CalTOX 2.3 RioShed 

Atmosphere 8.5E-15 8.2E-15 

Surface water 6.7E-12 6.5E-12 

Sediment 1.1E-7 4.8E-12 

Vegetation 1.5E-8 1.0E-9 

Surface soil 3.2E-8 1.4E-8 

Root soil 5.1E-12 1.2E-13 

Vadose soil 4.3E-18 5.5E-21 

 

Table 4.9 reveals that all three models obtain the same values for the fugacity capacitites 

of all compartments, with the exception of the plant/vegetation compartment. This was expected 

given the different modeling of the vegetation compartment, as explained in section 4.2.2.3. This 

same difference in modeling technique also contributed to the different rate constants, involving 

transport to and from vegetation, seen in Table 4.10. 

The different methods employed in both RioShed and GIM3, compared to that employed 

in CalTOX 2.3, to calculate advection via particles in the soils and sediment, led to the observed 

different transport rate constants, in Table 4.10, involving these compartments.  

The higher rate constant for transport from vegetation to surface soils, observed in 

RioShed, is expected given the inclusion of transport via canopy drip, wax erosion and litterfall.  

From Table 4.11, it can be garnered that RioShed performs similar to CalTOX 2.3 and/or 

GIM3 in some compartments. The marked difference in the residence times in the vegetative 

compartments are expected, as previously explained. However, the significant differences in the 

residence times in the water and sediment compartments originate from differences in calculating 

transport via particles, as shown in Table 4.5. For the compartments, except the atmospheric 

compartment, where the residence times calculated using RioShed differ from those using 

CalTOX 2.3 and GIM, those calculated with RioShed are the intermediate of those by CalTOX 
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2.3 and GIM3. The final column in Table 4.11 simply gives the residence times calculated by 

RioShed when the equation 
i

i
HL

R
693.0

  is applied to each compartment i, except the sediment 

compartment, as explained in section 2.2.2.3. 

It can be seen, in Table 4.12, that compartmental concentration distribution is predicted 

similarly by CalTOX 2.3 and RioShed. Therefore, both models predict higher annual average 

concentrations of PBDE-47 in vegetation and surface soils, whereas lowest concentrations are 

expected in the atmosphere and vadose soils. However, the distinct difference in the predictions 

for concentrations in the sediment is due to the significantly lower transport rate constant for 

transport from surface water to sediment, calculated by RioShed versus CalTOX 2.3. Other than 

direct input, surface water is the source of contaminants for the sediment. Consequently, the 

modeling method in RioShed for advection via particles resulted in the lower transport rate 

constant from surface water to sediment and, hence, the lower sediment concentration.  

 

4.3.1.2 Sensitivity analysis 

It was found that the long range transport potential via surface waters was unresponsive 

to most properties (see Table F.1a and Table F.1b in Appendix F for absolute results). However, 

this parameter was negligibly responsive to the half-life in water, but positively responsive to the 

water outflow current and modeled water depth. It can therefore be expected that the long range 

transport potential via surface water will remain constant unless these properties are altered. The 

atmospheric long range transport potential was notably sensitive to changes in wind speed, 

atmospheric area and depth. It was most sensitive to the atmospheric area, decreasing by 

approximately 27% when this parameter was halved. When atmospheric half-life was halved, 

atmospheric long range transport potential decreased by 8%. The overall persistence was highly 
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sensitive to the halving of the following parameters, with the respective bracketed changes: air-

water partition coefficient (increased by 52%); half-life in soil (decreased by 40%); wind speed 

(increased by 75%); atmospheric depth (increased by 89%).  

The annual average concentrations in all compartments, except in the atmosphere, 

decreased appreciably when ambient temperature was halved. Consequently, overall persistence 

decreased by 12%. However, atmospheric concentration and long range transport potential 

negligibly increased. Similar changes, albeit more notable, were observed when precipitation rate 

was halved. Chemical concentration in the urban vegetation decreased less notably, in 

comparison to concentrations in the remaining compartments, when the ambient temperature was 

halved. 

Canopy concentrations for all vegetative covers decreased by approximately 100% when 

log Koa was halved. All compartment concentrations increased by 60% to 75% when wind speed 

was halved. Overall persistence increased when the wind speed was halved, and atmospheric 

long range transport potential decreased moderately by 12%. Although atmospheric 

concentrations and long range transport potential as well as urban vegetation concentration 

increased almost imperceptibly when the precipitation rate was halved, all other compartment 

concentrations and, hence, overall persistence decreased notably by 5% to 50%.    

Doubling the atmospheric emission rate doubled the average compartment concentrations 

without affecting persistence or long range transport potential. Changing the receiving 

compartment from the atmosphere to agricultural surface soil resulted in exorbitant increases in 

contaminant concentrations in only the agricultural soils, whereas concentrations in all other 

compartments decreased by 75% to 100%. Notably, the overall persistence skyrocketed by more 

than 3000%, although atmospheric long range transport potential was not affected. When the 
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agricultural soil compartment was added as a source compartment, with the same application rate 

as for the atmosphere, cropland soil concentrations increased substantially, whereas many of the 

other compartments observed negligible increases in concentrations. Surface waters saw an 

appreciable increase in contaminant concentrations, of about 22%, when agricultural soil was 

added as a source compartment.  

 

4.3.1.3 Field monitoring versus RioShed 

A simple evaluation of RioShed was done by comparing some results from the field 

monitoring, detailed in Chapter 3, to predicted outputs of the model for PBDE -47, -99, -153 and 

-209, as shown in Table 4.13.  

 

Table 4.13: Field and modeled outputs for comparison – for PBDE-47, -99, -153 and -209 

Field data Modeled data 

Ratio of concentrations in atmosphere of a 

forest and nearby clearing  

Ratio of steady state concentrations in 

atmosphere of a forest and grassland  

Ratio of concentrations in soil of a forest and 

nearby clearing 

Ratio of steady state concentrations in surface 

soil of a forest and grassland 

Ratio of concentrations in litterfall of a forest 

and nearby clearing 

Ratio of steady state concentrations in 

vegetation of a forest and grassland 

 

It must be noted that field measurements were accomplished by analyzing and comparing 

samples of the chemicals in a forest and nearby clearing. However, the outputs of RioShed for 

the same contaminants were obtained by comparing the steady state concentrations in the forest 

of a forested landscape with those obtained when the forest was replaced with grassland in an un-

forested scenario, given the previously explained hypothetical emission scenario. Although the 

assessment criteria for the field work clearly differ from those for RioShed in this section of the 

dissertation, such a comparison was considered suitable to evaluate RioShed‘s ability to identify 

trends or make qualitatively accurate predictions. 
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Employing the previously described hypothetical emission scenario, RioShed predicted 

that the ratio of the atmospheric steady-state concentrations in the forest and grassland for PBDE 

– 47, -99, -153 and -209 should range from 0.95 to 0.98, as seen in Table 4.14. However, field 

monitoring yielded atmospheric concentration ratios for the forest and clearing, portrayed as 

depletion factors, as low as 0.45 for PBDE-209 and as high as 0.93 for PBDE-99.  

 

Table 4.14: Atmospheric concentration ratios for select PBDEs 

Contaminant Atmospheric Concentration Ratio 

Field measurements – 

forest/clearing 

Modeled results using 

RioShed – forest/grassland 

PBDE-47 0.52 0.98 

PBDE-99 0.93 0.96 

PBDE-153 0.92 0.97 

PBDE-209 0.45 0.95 

 

Specifically for PBDE-47, the ratio of the steady state concentrations in the vegetation of 

the forest and that in the vegetation of grassland was predicted, by the model, to be 0.31. 

However, the ratio of the mean concentration of PBDE-47 in the litterfall of the forest and that in 

the litterfall of the clearing was 0.26. Also, for this same organic, the model predicted that the 

ratio of the steady state concentrations in the surface soil of the forest and the grassland should 

be 1.09. However, field monitoring produced a value of 1.33 for the ratio of the mean 

concentrations of PBDE-47 in the forest and clearing. 

Based on the above, it was concluded that the model accurately predicted that the 

presence of a forest should reduce atmospheric concentrations, but increase soil concentrations. 

It also accurately predicted that the concentrations in the vegetation of the forest should be lower 

than that in a more limited vegetative cover, such as grassland.  

Quantitative accuracy was not expected of the model given that: 1) a hypothetical 

emission scenario was employed and 2) the forest was replaced by grassland in lieu of 
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comparing concentrations in adjacent vegetative covers. However, accurate qualitative 

predictions were desired, despite the different assessment criteria, and these were obtained. 

 

4.3.2 Dynamic evaluation of forest effects on PBDE-47 and dimethoate 

To examine the impact of forests on fates in a dynamic system, only two chemicals were 

chosen – dimethoate and PBDE-47. Dimethoate was chosen from the more polar current-use 

pesticides, whereas PBDE-47 was from the more persistent pollutants.  

Table 4.15: Percentage fraction of steady-state concentrations as at 29 and 365 days  

 Percent fraction of steady-state concentration at the end of day 29 or 365 (%) 

Compartment Dimethoate PBDE-47 

Grassland Forest Grassland Forest 
29 days 365 days 29 days 365 days 29 days 365 days 29 days 365 days 

Atmosphere 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Water 99.4 100.0 99.4 100.0 99.5 99.9 99.5 99.9 

Sediment 82.9 100.0 82.9 100.0 83.9 99.9 83.9 99.9 

Imperv 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Agricultural vegetation 98.6 100.0 98.6 100.0 96.8 100.0 96.8 100.0 

Forest vegetation 99.1 100.0 98.7 100.0 25.4 100.0 52.8 100.0 

Urban vegetation 99.3 100.0 99.3 100.0 100.0 100.0 100.0 100.0 

Agricultural  surface soil 99.6 100.0 99.6 100.0 10.7 81.1 10.7 81.1 

Forest surface soil 99.6 100.0 99.6 100.0 9.8 80.6 9.6 80.2 

Urban surface soil 99.6 100.0 99.6 100.0 12.3 81.4 12.3 81.4 

Agricultural root soil 91.6 100.0 91.6 100.0 1.2 51.6 1.2 51.6 

Forest root soil 89.9 100.0 91.2 100.0 0.7 49.7 0.8 49.8 

Urban root soil 91.1 100.0 91.1 100.0 1.2 51.2 1.2 51,2 

Agricultural vadose soil 72.3 100.0 72.3 100.0 0.1 25.0 0.1 25.0 

Forest vadose soil 68.7 100.0 70.4 100.0 0.0 23.5 0.0 23.6 

Urban vadose soil 71.8 100.0 71.8 100.0 0.1 24.7 0.1 24.7 

 

The physicochemical properties of these two contaminants, given in Table 4.6, were 

input into RioShed, which was then run to generate daily dynamic outputs for 365 days, for 

forested and un-forested landscapes, using the 1986-2005 annual average climate, as previously 

described in section 4.2.2.4.
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Solid line – forested scenario 

Dashed line – un-forested scenario 
 
To calculate concentrations, the annual average temperature and precipitation for the 1986-2005 period were used 

with initial concentrations set to zero in all compartments and source input thereafter to the atmosphere only.   
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Figure 4.5: Time trend of dimethoate concentrations in given compartments (1986-2005 climate conditions) 
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Figure 4.6- A: PBDE-47 concentrations in the vegetation and soils (1986-2005 climate 

conditions) 
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g. h. 

To calculate concentrations, the annual average temperature 

and precipitation for the 1986-2005 period were used with 

initial concentrations set to zero in all compartments and 

source input thereafter to the atmosphere only. 
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Figure 4.6- B: PBDE-47 concentrations in remaining compartments (1986-2005 

climate conditions) 

 

To calculate concentrations, the annual average 

temperature and precipitation for the 1986-2005 period 

were used with initial concentrations set to zero in all 

compartments and source input thereafter to the 

atmosphere only. 
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Within the first 29 days of introducing the source, steady state was achieved by 

dimethoate in the air and on impervious surfaces, irrespective of whether the landscape was 

forested or not. Table 4.15 and Figure 4.6 show that dimethoate achieved steady state at similar 

rates in all corresponding compartments of the forested and grassland scenarios, except in the 

canopies, root soils and vadose soils of the forests versus grassland vegetative covers, in which 

steady state was achieved at a marginally faster rate in the forested than un-forested landscape. 

For this organic, as revealed in Figure 4.5, steady state was achieved in all compartments within 

90 days, irrespective of whether the landscape was forested or not.  Also, steady state 

concentrations were typically higher in the un-forested landscape. 

For PBDE-47, as seen in Table 4.15, steady state was achieved within the atmosphere, on 

impervious surfaces and in the urban canopies, in both the forested and un-forested landscapes, 

within the first 29 days of introducing the source. However, even after 365 days, concentrations 

were only within 20%-55% of steady state values in all root and vadose soils, and approximately 

80% in the surface soils. As seen in Figure 4.6-A, steady state concentrations of PBDE-47 were 

achieved within 50 months in the root and vadose soils. Steady state was achieved at similar 

rates in all compartments of the un-forested landscape as in the corresponding compartments of 

the forested landscape. For this organic, steady state concentrations in the compartments of 

forested landscape were typically lower than in the un-forested landscape, except in the soils 

(surface, root and vadose). 

For chemicals such as PBDE-47, which exhibit higher octanol-air partition coefficients 

and lower degradation rates in soils and sediments with respect to other compartments, the 

assumption of steady state may produce erroneous results in assessments in the range of weeks to 
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months. However, such an assumption may be more reasonable for chemicals with properties 

similar to dimethoate.  

Monthly compartmental inventories for both PBDE-47 and dimethoate were obtained 

over a one (1) year period, using the averaged monthly climate variables for the 1986-2005 

period, for the forested and un-forested landscapes. The inventories of PBDE-47 and dimethoate 

were obtained, assuming both an initially pristine environment and an environment with initial 

conditions set at steady state, as explained in section 4.2.2.4.  

In the current forested landscape under initially pristine conditions, most of PBDE-47 

could be found in the forest surface soil after the first 3 months. Generally though, the main 

compartments to which this organic appeared to be disseminated included the surface soils of all 

vegetative covers, the forest canopy and the atmosphere. Therefore, a high affinity for surface 

soils and the forest canopy in a forested landscape is noted for this chemical. Although most of 

PBDE-47 did eventually retreat to the grassland surface soil in the un-forested landscape, it took 

8 months. During the first 8 months, the highest inventory of the chemical, in this landscape, was 

recorded for the plant material of the grassland. Otherwise, the chemical was mostly observed in 

the agricultural and urban surface soils, as well as the atmosphere. It is apparent that vegetative 

covers do transfer some contaminants from the atmosphere to associated surface soils, with 

forests more quickly achieving this outcome. 

When the steady state values from the previous results were instead used to initiate a 

model run, with monthly varying climate conditions, inventory distribution remained as at the 

start. The compartments with the highest inventories were the same as observed under initially 

pristine conditions – the surface soils for all vegetative covers and forest canopy. However, 

fluctuations occurred within the compartments, throughout the modeling year, depending on the 



111 

 

climatic conditions. Lowest inventories in these compartments occurred in the months of March 

and April, displaying a one month delay in response precipitation rates, given that precipitation 

rates were lowest in February and March. However, highest inventories were observed in 

October, following the month that displayed the highest precipitation rate – September.   

Dimethoate inventories observed a different pattern. Inventories were highest in the forest 

root soil and forest surface soil, followed by the agricultural root soil, in the forested landscape, 

irrespective of the initial conditions – pristine or steady state. When the landscape was devoid of 

forests, dimethoate was primarily in the plant material of the grassland. In this un-forested 

landscape, dimethoate inventories were also high in the grassland and agricultural root soils, as 

well as the grassland surface soil. Therefore, forests appear more effective than grassland 

vegetation at transferring dimethoate to the soils, irrespective of the initial conditions. 

Comparing the results for PBDE-47 and dimethoate revealed that dimethoate, which has 

the lower air-water partition coefficient, displayed the greater affinity for surface water, 

irrespective of whether the landscape was forested or not.   

 

4.3.3 Forest effects on long-term fates 

There were two types of assessments conducted for the effects of forests on the fate 

metrics of the contaminants: 1) replacing an un-forested landscape with varying forested 

landscapes and 2) replacing a forested landscape with other forested landscapes, which were 

modifications of the original. In the first section of the evaluation, control scenario II (land-use 

distribution scenario II) was employed as the control, with the Rio Cobre watershed occupied by 

agricultural vegetation (25%), grasslands in lieu of forests (60%), and urban areas (15%). The 

comparison scenarios included the existing forest coverage (agriculture:forest:urban area – 
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25%:60%:15%), as well as other land use conversions of the forests, as described in section 

4.2.2.4. The meteorological data included those annually averaged over the 1986-2005 period.  

The fate metrics of two chemicals – polybrominated diphenyl ether-47 (PBDE-47) and 

dimethoate were computed and compared for land-use distribution scenarios I and II, the results 

for which are provided in Table 4.16. It can be seen that the presence of the forest reduced the 

overall persistence of dimethoate, by 5.1%, and of PBDE-47, by as much as 6.2%. Both typically 

observed reductions in the average annual compartmental concentrations.  However, the forest 

soil concentrations of PBDE-47 were higher than the grassland soil concentrations of this 

organic, by as much as 11.6%.  

 

Table 4.16: Percent changes in the fate metrics for PBDE-47 and dimethoate when the  

grassland is replaced by forest 

Fate Metric Percent change (%) 

PBDE-47 Dimethoate 

Overall Persistence -6.16 -5.13 

Atmospheric long range transport potential -2.27 -10.43 

Atmospheric concentration -2.27 -10.43 

Surface water concentration -2.26 -10.42 

Sediment concentration -2.26 -10.42 

Impervious surface concentration -2.27 -10.43 

Agricultural vegetation concentration -2.27 -10.43 

Forest canopy concentration -68.96 -76.57 

Urban vegetation concentration -2.27 -10.43 

Agricultural surface soil concentration -2.27 -10.43 

Forest surface soil concentration 7.04 -10.39 

Urban surface soil concentration -2.27 -10.43 

Agricultural root-zone soil concentration -2.26 -10.43 

Forest root-zone soil concentration 11.51 -3.48 

Urban root-zone soil concentration -2.26 -10.43 

Agricultural vadose-zone soil concentration -2.26 -10.43 

Forest vadose-zone soil concentration 11.60 -3.47 

Urban vadose-zone soil concentration -2.26 -10.43 
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Table 4.17: Percent change in given fate metrics for the persistent chemicals in forested landscape versus un-forested landscape 

 Percent change (%)  

Fate Metrics PBDE-

47 

PBDE-

99 

PBDE-

153 

PBDE-

209 

TCDD OCDD PeCDF HxCDF Average 

Overall persistence -6.16 -1.49 -7.58 -6.29 13.79 -5.13 -4.39 -9.50 -3.34 

Atmospheric long range transport potential -2.27 -3.46 -3.39 -5.42 -1.72 -4.26 -1.92 -2.11 -3.07 

Atmospheric concentration -2.26 -3.46 -3.39 -5.42 -1.72 -4.25 -1.92 -2.10 -3.06 

Surface water concentration -2.25 -3.41 -3.39 -5.42 -1.71 -4.25 -1.91 -2.10 -3.05 

Sediment concentration -2.25 -3.41 -3.39 -5.42 -1.71 -4.25 -1.91 -2.10 -3.06 

Impervious surface concentration -2.26 -3.46 -3.39 -5.42 -1.72 -4.25 -1.92 -2.10 -3.06 

Agricultural vegetation concentration -2.26 -3.46 -3.39 -5.42 -1.72 -4.25 -1.92 -2.10 -3.06 

Forest canopy concentration -68.96 -69.21 -75.03 -77.71 -61.65 -76.57 -65.68 -69.29 -70.51 

Urban vegetation concentration -2.26 -3.46 -3.39 -5.42 -1.72 -4.25 -1.92 -2.10 -3.06 

Agricultural surface soil concentration -2.26 -3.46 -3.39 -5.42 -1.72 -4.25 -1.92 -2.10 -3.06 

Forest surface soil concentration 7.04 12.15 -2.34 -5.33 4.73 -3.79 5.48 0.89 2.35 

Urban surface soil concentration -2.26 -3.46 -3.39 -5.42 -1.72 -4.25 -1.92 -2.10 -3.06 

Agricultural root-zone soil concentration -2.26 -3.45 -3.39 -5.41 -1.72 -4.25 -1.92 -2.10 -3.06 

Forest root-zone soil concentration 11.50 12.62 0.36 -4.64 46.28 39.46 84.08 66.03 31.96 

Urban root-zone soil concentration -2.26 -3.45 -3.39 -5.41 -1.72 -4.25 -1.92 -2.10 -3.06 

Agricultural vadose-zone soil concentration -2.26 -3.45 -3.38 -5.41 -1.71 -4.25 -1.91 -2.10 -3.06 

Forest vadose-zone soil concentration 11.59 12.42 0.57 -4.58 46.39 39.38 84.46 66.36 32.07 

Urban vadose-zone soil concentration -2.26 -3.45 -3.38 -5.41 -1.71 -4.25 -1.91 -2.10 -3.06 

Positive changes to the fate metrics are highlighted
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Table 4.18: Percent change in given fate metrics for the current-use pesticides in forested landscape versus un-forested landscape 
 Percent change (%)  

Fate Metrics Diazinon Dimethoate Carbaryl Methomyl Cyhalothrin Cypermethrin Diuron Glyphosate Average 

Overall persistence 1.15 -5.13 -6.99 -9.65 0.09 -3.04 -2.07 0.28 -3.17 

Atmospheric long range 

transport potential 

-2.58 -10.43 -10.58 -10.59 -3.18 -4.65 -9.35 -10.60 -7.74 

Atmospheric concentration -2.58 -10.43 -10.58 -10.59 -3.18 -4.66 -9.36 -10.59 -7.75 

Surface water concentration -2.54 -10.42 -10.58 -10.57 -3.17 -4.65 -7.10 -10.59 -7.45 

Sediment concentration -2.54 -10.42 -10.58 -10.57 -3.17 -4.65 -7.10 -10.59 -7.45 

Impervious surface 

concentration 

-2.58 -10.43 -10.58 -10.59 -3.18 -4.66 -9.36 -10.59 -7.75 

Agricultural vegetation 

concentration 

-2.58 -10.43 -10.58 -10.59 -3.18 -4.66 -9.36 -10.59 -7.75 

Forest canopy concentration -73.80 -76.57 -77.31 -76.54 -74.84 -74.91 -71.95 -78.21 -75.52 

Urban vegetation 

concentration 

-2.58 -10.43 -10.58 -10.59 -3.18 -4.66 -9.36 -10.59 -7.75 

Agricultural surface soil 

concentration 

-2.58 -10.43 -10.58 -10.59 -3.18 -4.66 -9.36 -10.59 -7.75 

Forest surface soil 

concentration 

-2.41 -10.40 -10.55 -10.55 0.18 -0.96 1.24 -10.53 -5.50 

Urban surface soil 

concentration 

-2.58 -10.43 -10.58 -10.59 -3.18 -4.66 -9.36 -10.59 -7.75 

Agricultural root-zone soil 

concentration 

-2.58 -10.43 -10.58 -10.59 -3.18 -4.66 -9.36 -10.59 -7.75 

Forest root-zone soil 

concentration 

-5.26 -3.48 0.99 -5.52 0.26 2.09 4.26 33.69 3.38 

Urban root-zone soil 

concentration 

-2.58 -10.43 -10.58 -10.59 -3.18 -4.66 -9.36 -10.59 -7.75 

Agricultural vadose-zone soil 

concentration 

-2.58 -10.43 -10.58 -10.59 -3.18 -4.66 -9.36 -10.59 -7.75 

Forest vadose-zone soil 

concentration 

-5.08 -3.47 1.01 -5.31 0.24 15.09 4.35 33.95 3.48 

Urban vadose-zone soil 

concentration 

-2.58 -10.43 -10.58 -10.59 -3.18 -15.40 -9.36 -10.59 -7.75 

Positive changes to the fate metrics are highlighted
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For a more generalizable analysis, percent changes in the fate metrics, when the forest 

replaced the grassland, were also computed for all 16 evaluated organics, and are presented in 

Table 4.17 and Table 4.18 (see Table G.1, Table G.2, Table G.3 and Table G.4 in Appendix G 

for the absolute values for the 16 chemicals in each landscape). When the grassland was replaced 

by forests, annual average concentrations of the persistent organics were reduced in all 

compartments of the forested landscape, except in the forest soils. For those compartments 

observing concentration reductions, the change was approximately 3%, with the exception of the 

canopy, in which the change was about 71%. The surface, root-zone and vadose-zone soils for 

the forested region saw increases, in the average concentrations of the persistent pollutants, of 

2%, 26% and 26%, respectively. As a result, for these persistent chemicals, both mean 

atmospheric long range transport potential and overall persistence decreased by aapproximately 

3%.  

Scrutiny of Table 4.18 revealed that most of the persistent pollutants, with TCDD as the 

exception, observed reduced overall persistences, in the range of 1.5%-9.5%, when forests 

replaced grassland. However, all observed reduced atmospheric concentrations and long range 

transport potentials (ranging from 2.1% to 5.4%) in the forested versus un-forested landscapes. 

All of the persistent chemicals had reduced concentrations in the agricultural, as well as urban 

root- and vadose- soils. Other than PBDE-209, the persistent chemicals observed greater 

concentrations, even as high as by 84%, in the forest root- and vadose- soils, compared to in the 

grassland equivalents. Only PBDE-153, PBDE-209 and OCDD observed decreased 

concentrations in the forest surface soil compared to the grassland surface soil.  

Examination of Table 4.18 revealed that most of the current-use pesticides had decreased 

overall persistences (from 2.07% to 9.65%) in the forested (land-use distribution scenario I) 
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versus un-forested (land-use distribution scenario II) landscapes. However, the atmospheric 

concentrations and long range transport potentials of all the current-use pesticides were lower in 

the forested landscape than the un-forested landscape, by as much as 11%. For these 

contaminants, whereas the forest surface soil concentrations were generally lower than the 

grassland counterpart, forest root-zone and vadose-zone soil concentrations were typically 

greater than the grassland root-zone and vadose soil concentrations, respectively. 

This effect has been previously described as the ‗filter effect‘ of forests, whereby the 

forests transfer persistent organic pollutants from the atmosphere to the forest soils (McLachlan 

& Horstmann, 1998; Su & Wania, 2005; Wania & McLachlan, 2000). However, in these studies, 

the soil compartment was not delineated so as to distinguish the soil layer(s) to which the 

pollutants commonly retreated. 

The observations in this evaluation are less striking than those in the study by Wania and 

McLachlan (2000). There are a few probable reasons for this. In their study, Wania and 

McLachlan (2000) considered boreal and temperate forests, whereas tropical forests were the 

focus of this dissertation. The filter effect is possibly tempered for tropical forests, compared to 

temperate and boreal forests, due to processes such as increased volatilization, re-volatilization 

and the reduced uptake ability of forests when ambient temperatures are high. Also, the study by 

Wania and McLachlan (2000) considered bare soil as the control, compared to grasslands used in 

this dissertation. Grassland is vegetation that is expected to also uptake the organic contaminants 

from the atmosphere, albeit to a lesser degree than forests. Therefore, comparisons with 

grassland as the control are expected to be less notable than comparisons with bare soil as the 

control. This dissertation considered grasslands as the controls since such covers are more likely 

to exist in fertile/productive tropical countries such as Jamaica.   
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As also seen in Table 4.17 and Table 4.18, there were slight differences in the outcomes 

for the more polar current-use pesticides and the persistent pollutants. Compartmental 

concentrations of all evaluated contaminants, except in the forest or grassland soil compartments, 

were typically reduced when forests replaced grassland. However, the concentrations of the 

persistent chemicals in the forested landscape over the un-forested landscape were reduced in the 

range of 1.7%-77.7%, compared to similar reductions for the current-use pesticides with a range 

of 2.6%-78.2%. The reductions, in the atmospheric concentrations of the current-use pesticides, 

were as high as 11%, compared to the highest of 5% for the persistent pollutants. The 

consequence was that the mean atmospheric long range transport potential for the more polar 

organics was reduced by almost 8%, compared to 3% for the more persistent chemicals. 

Nevertheless, the overall persistences of most of the examined organics were reduced, with 

arithmetic means in the region of 3% (an arithmetic mean of 3.17%, with a range of -9.65% to 

1.15%, for the current-use pesticides; and an arithmetic mean of 3.34%, with a range of -9.50% 

to 13.79%, for the persistent chemicals).  

Concentrations in the forest root- and vadose- zone soils were typically higher than in the 

grassland counterparts. However, the concentrations of the pesticides in the forest root- and 

vadose- zone soils were at most 34% higher than in grassland root- and vadose- zone soils, 

whereas the persistent pollutants were at most 84% more concentrated in forest versus grassland 

root- and vadose- zone soils. 

It appears that forests are more efficient at removing the current-use pesticides from the 

atmosphere than the less polar and more persistent pollutants. The reduced overall persistences 

when forests replace grasslands indicates that the tropical forests enhance the removal of these 

examined chemicals possibly through efficient degradation in the canopy. 
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For the persistent pollutants, the arithemetic mean of the annual average surface water 

concentrations were reduced by roughly 3%, whereas for the more polar current-use pesticides, 

these metrics were reduced by almost 7.5% when the forest replaced the grassland. Since 

drinking water health impacts are dependent on water concentrations, it can be concluded that 

tropical forests may reduce drinking water risks, especially for polar current-use pesticides.  

Figure 4.7 also shows that for the persistent organic pollutants, the general decrease in 

overall persistence, whenever forests are included in the landscape, is more striking when the 

forest composition includes only evergreen trees. The assessed persistent pollutants have high 

octanol-air partition coefficients. These types of organics are typically efficiently up-taken by 

vegetation and it is expected that forests should be more efficient at this task than grasslands. 

Given that evergreen trees retain their foliage and that degradation rates in vegetation are often 

higher than in compartments such as soils or sediments, the observed general reductions in 

overall persistences in the landscape, forested with evergreen trees, is reasonable. 

In Figure 4.7, it can be seen that TCDD observed a distinctly higher increase in overall 

persistence than the remaining persistent pollutants when forests replaced the grasslands, except 

when the forest composition was small (7%). However, among the current-use pesticides, 

diazinon, cyhalothrin and cypermethrin experienced markedly smaller decreases in atmospheric 

long range transport potential than the remaining pesticides, when the un-forested landscape was 

replaced by forested landscapes. 
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*In each scenario: 

First column – 100% deciduous forest 

Second column – 50%:50% 

deciduous:evergreen forest 

Third column – 100% evergreen forest 

 

Figure 4.7: Changes in the long-term fate metrics for the selected contaminants for various 

forested scenarios replacing the grassland scenario  

Land distribution scenarios  

I – Agriculture:forest:urban composition of 25%:60%:15% 

III – Agriculture:forest:urban composition of 34%:42%:24% 

IV – Agriculture:forest:urban composition of 25%:42%:33% 

V – Agriculture:forest:urban composition of 43%:42%:15% 

VI – Agriculture:forest:urban composition of 7%:78%:15% 
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Wania and McLachlan (2000) showed that the overall persistence of select persistent 

pollutants substantially increased when temperate forests replaced bare soils, due to enhanced 

transfers of these chemicals from the atmosphere to soils, which are the organic sinks. However, 

since the model simulation incorporated only one vegetative cover, the effect of the forests with 

co-existing land uses was not assessed. It can be seen in Figure 4.7 that the overall persistence of 

most of the examined persistent pollutants decreased when grasslands were replaced by forests 

of similar or greater acreage, as much as 22%. The observed decrease in overall persistence was 

positively correlated with the presence of evergreen trees. Some of these pollutants displayed 

increased overall persistence, up to 30%, when the forest acreage in the forested landscape was 

smaller than that of the grassland in the un-forested landscape. However, irrespective of the size 

of the forest, under all scenarios where forests were introduced into the landscape, the overall 

persistence was increasingly lower as the evergreen tree composition increased, than when the 

forests were strictly deciduous. Deciduous tropical forests possess trees that tend to lose their 

leaves at select times throughout the year, especially in the dry periods. This mechanism may be 

enhancing the transfer of the organics to the forests‘ soils, where degradation rates are typically 

slow. Therefore, this could explain the observed higher overall persistences in the landscape 

forested with deciduous trees. 

In examining the conditions in which the forested landscape replaced the un-forested 

landscape, such that the forest acreage was less than the grassland acreage in the un-forested 

landscape (42% of the forested landscape under forests compared to 60% of the un-forested 

landscape as grassland), the overall persistences of the pollutants were reduced more when the 

urban area occupied 33% of the landscape than when the urban area was 15% of the landscape. It 

is expected that, given their high octanol-air partition coefficients, these organics should possess 
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a high affinity for forest vegetation as well as the urban film over impervious surfaces. Forest 

vegetation appears to efficiently uptake the contaminants, thereafter facilitating dissipation 

and/or degradation. The reduced overall persistence when forests of similar or larger size replace 

the grasslands is therefore reasonable. Also, organic contaminants that are deposited to urban 

areas are often transferred to surface waters via wash-off. Organic chemicals typically exhibit 

shorter dissipation half-lives or residence times in surface waters than in soils. As a result, in a 

region such as the Rio Cobre watershed, which exhibits a relatively high precipitation rate, the 

observed decreased overall persistences of these chemicals, when the urban area is large, is also 

reasonable. The overall persistences of the contaminants were greater when the cropland acreage 

was larger. However, such increases in overall persistence were retarded by the presence of co-

existing evergreen forests. 

Figure 4.7 reveals that the current-use pesticides displayed a similar pattern for the 

overall persistence. Most of the pesticides experienced reduced overall persistence when an 

equally sized or larger forest replaced the grassland. This was enhanced as more evergreen trees 

were introduced into the forest compositions. It is possible that these polar current-use pesticides 

are also efficiently up-taken from the atmosphere by forests. However, their transfer to the soils 

may be retarded by efficient degradation in the canopy, leading to decreased overall persistence. 

The size of the agricultural land had a similar effect on the overall persistence of these current-

use pesticides as on the more persistent chemicals. 

The 16 evaluated organics displayed atmospheric characteristic travel distances less than 

700 km under all evaluated conditions, rendering them as class III chemicals, with regional-

scaled atmospheric long range transport potential. The atmospheric long range transport 

potentials of all assessed pollutants decreased whenever forests replaced at least some portion of 
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the grasslands. In Figure 4.7, it can be seen that not only are the evergreen forests more likely to 

cause this decrease, but also that the current-use pesticides exhibit this favorable response to a 

greater degree, with a maximum decrease of 12%, compared to a maximum of 6% for the 

persistent organics. 

The decreases in atmospheric long range transport potential were more notable for larger 

forested acreages. When the atmospheric long range transport potentials of the organic 

contaminants, in the landscape architectures exhibiting the same forest coverage (42%), were 

further examined and compared, it was found that the smallest decrease occurred when 30% of 

the forest had been converted to urban area – as it would be in urban expansion. When 

temperatures are elevated, as is characteristic of a tropical region, re-volatilization is promoted 

(Nizzetto & Perlinger, 2012). Therefore, atmospheric uptake by forests may be off-set by re-

volatilization from urban surfaces. When the urban area is maintained, reduced atmospheric long 

range transport potential is associated with increased forest coverage. 

The changes to atmospheric transport potential were generally larger for the current-use 

pesticides than the persistent pollutants. Atmospheric long range transport potential is a function 

of the partition coefficients. The organic chemicals used in this study have similarly high 

octanol-air partition coefficients. However, the current-use pesticides have lower air-water 

partition coefficients than the more persistent chemicals evaluated, and are considered more 

polar. Polar organics tend to be swimmers, whereas the less polar organic compounds, with both 

high octanol-air and air-water partition coefficients, tend to be hoppers (Lohmann et al., 2007). 

The hoppers are subject to re-volatilization. Since environmental surfaces, including forests re-

volatilize when temperatures are elevated, it can be expected that in this tropical region, the 

select persistent pollutants assessed are more likely to be re-volatilized than the assessed current-
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use pesticides. Furthermore, the current-use pesticides often display shorter half-lives in the 

vegetation than the assessed persistent chemicals. This could facilitate a faster uptake of the 

current-use pesticides, by the forests, thereby reducing atmospheric concentrations. Therefore, 

forests in tropical regions can be expected to exhibit greater capabilities at reducing the 

atmospheric long range transport potentials of many current-use pesticides, than those of the 

more persistent pollutants.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Changes in annual average atmospheric concentrations for given chemical properties 

in a landscape with a 100% evergreen forest 

 

The changes to annual average atmospheric concentrations, when a 60% evergreen forest 

coverage replaced a similarly sized grassland, were examined with respect to select chemical 

properties – molecular weight, octanol-air partition coefficient and air-water partition coefficient. 

The reductions in atmospheric concentration associated with the evergreen forests were not 

correlated with molecular weight or octanol-air partition coefficient (Koa), as illustrated in Figure 

4.8. However, there was a reasonable correlation (R
2
 = 0.767) between the reductions in 

atmospheric concentrations and air-water partition coefficient. Therefore, the more polar organic 

compounds, those with lower air-water partition coefficients (Kaw), observed greater reductions 
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in atmospheric concentrations, in the forested evergreen landscape. This trend was also noted for 

deciduous and semi-evergreen forests, albeit to lesser degrees.   

It has previously been shown that temperate forests reduce the atmospheric 

concentrations of select organic compounds, especially those with 7 < log Koa < 11 and log Kaw > 

-6. The organic contaminants, evaluated in this dissertation, exhibited 7 < log Koa < 17 and -9 < 

log Kaw < -2. This study shows that tropical forests are more apt at reducing the atmospheric 

concentrations, and, consequently, the long range transport potential of the more polar organics. 

In another assessment, control scenario I, which is also the current land-use distribution 

of the Rio Cobre watershed (agriculture:forest:urban area at 25%:60%:15% - land-use 

distribution scenario I) was employed as the control. The land-use distribution was altered as 

described in section 4.2.2.4 and land-use scenarios III to VI were utilized as comparison 

scenarios. The forest composition was also altered between deciduous, evergreen and semi-

evergreen, as before. As illustrated in Figure 4.9, the overall persistences of both the persistent 

organic pollutants and current-use pesticides generally increased when forested acreage 

decreased. Such increases were retarded as deciduous trees increased. For the current-use 

pesticides, the greatest increase in overall persistence, up to 10%, occurred during deforestation 

for urban expansion. However, the persistent pollutants generally observed the greatest increases 

in overall persistence during agricultural expansion, as much as 10%, when the co-existing forest 

was evergreen. The evaluated organics experienced reduced overall persistence during 

afforestation at the expense of agricultural land. These observed reductions in overall 

persistence, during afforestation, occurred to a greater degree and with greater variability for the 

persistent pollutants, ranging from less than 1% up to 13%.   
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Figure 4.9: Changes in the long-term fate metrics for the selected contaminants for various 

forested scenarios replacing the current forested landscape  

Land distribution scenarios  

III – Agriculture:forest:urban composition of 34%:42%:24% 

IV – Agriculture:forest:urban composition of 25%:42%:33% 

V – Agriculture:forest:urban composition of 43%:42%:15% 

VI – Agriculture:forest:urban composition of 7%:78%:15% 

 

*In each scenario: 

First column – 100% deciduous forest 

Second column – 50%:50% deciduous:evergreen forest 

Third column – 100% evergreen forest 

 

**Control scenario I was the control 

(Agriculture:forest:urban composition of 25%:60%:15%) 
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Table 4.19: Mean percent change in concentrations in the forest canopies, surface and root soils 

compartments when select forested landscapes replaced the un-forested landscape 
 Mean percent change in concentration (%)  

 Persistent Organic 

Pollutants 

Current-use Pesticides 

Land 
Distribution 

Forest 

Composition 

Forest 

canopy 

Forest 

surface 

soil 

Forest 

root 

soil 

Forest 

Canopy 

Forest 

surface 

soil 

Forest 

root 

soil 

A:F:U 

0.25:0.60:0.15 

D -40.1 11.0 61.7 -55.5 -1.5 19.3 

E -83.3 -1.8 8.9 -85.1 -8.6 -6.2 

D/E -73.1 -1.6 23.3 -76.9 -6.1 1.2 

A:F:U 

0.34:0.42:0.24 
D -23.7 18.1 83.3 -46.5 3.0 31.1 

E -76.8 3.0 26.4 -80.1 -3.7 3.6 

D/E -63.5 6.8 42.3 -70.1 -1.3 11.9 

A:F:U 

0.25:0.42:0.33 
D -22.8 19.4 85.5 -44.9 6.0 34.7 

E -76.6 4.1 27.8 -79.5 -1.0 6.4 

D/E -63.1 8.0 44.0 -69.2 1.5 14.9 

A:F:U 

0.43:0.42:0.15 
D -24.5 16.8 81.0 -48.1 0.2 27.8 

E -77.1 1.9 25.0 -80.6 -6.3 0.9 

D/E -63.9 5.7 40.7 -70.9 -4.0 8.9 

A:F:U 

0.07:0.78:0.15 
D -50.4 7.4 47.9 -61.1 -2.8 13.1 

E -86.8 -4.1 -1.8 -87.9 -10.3 -11.0 

D/E -78.6 -1.1 11.5 -80.9 -7.7 -4.1 

A – agriculture; F – forest; U – urban; D – deciduous; E – evergreen; D/E – 0.5:0.5 deciduous:evergreen 

 

Therefore, for the evaluated organic contaminants, most observed increases in overall 

persistence during deforestation, when at least some portion was allocated for agricultural 

expansion, especially if the forest lost had been 100% evergreen. However, with the exception of 

glyphosate, the contaminants saw decreases in overall persistence, as much as 13%, during 

afforestation at the expense of agriculture.  

In analyzing the changes to the atmospheric long range transport potential, the greatest 

increase, which was more distinct for the current-use pesticides, was observed when urban areas 

were expanded at the expense of forests. The observations for both types of contaminants 

examined are shown in Figure 4.9. The changes to the atmospheric long range transport potential 

displayed greater variability for the current-use pesticides than the persistent chemicals. For both 

the persistent organics and the current-use pesticides, negligible increases in atmospheric long 
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range transport potential occurred during deforestation for agriculture, less observable for 

deciduous forests. On the other hand, negligible decreases in this metric were experienced during 

afforestation of croplands, with the changes even less notable if the forest was totally deciduous.  

Tropical forests and agricultural lands appear to impact atmospheric long range transport 

potentials similarly. Leaf area index appears to display notable impact on contaminant transport 

between vegetation and the atmosphere. Since croplands and deciduous forests display similar 

leaf area indices (3.6 and 3.9, respectively), the observed negligible changes to the atmospheric 

long range transport potential is reasonable.  

The assessments demonstrated that increasing forest coverage, especially with a 100% 

evergreen composition, has the positive effect of not only reducing atmospheric long range 

transport potential, but also overall persistence.   

As shown in Table 4.19, when forested landscapes replaced the un-forested landscape, 

mean concentrations in the forest vegetations were always lower than in the vegetation of the 

grassland. This is quite likely a response to the higher leaf area index and, consequently, the 

canopy area of the forests. However, for the persistent contaminants, the mean forest surface soil 

concentrations were generally higher than the grassland surface soil, and to a greater degree 

when the forests were deciduous. There were select conditions under which this was not 

observed – such as when the forest surface soil area, especially given an evergreen or semi-

evergreen canopy, was the same or exceeded that of the grassland. For these chemicals, once a 

forest canopy existed, the forest root-zone soils exhibited higher mean concentrations than the 

grassland root-zone soils, by as much as 86%. This was more likely to occur when the forests 

were deciduous. 
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In comparing the observations for the persistent organics and the current-use pesticides in 

Table 4.19, it was also noted that in general, the forests more efficiently transferred the persistent 

contaminants to the soils below than the less persistent. Again, the impact was greater for the 

root-zone soil than the surface soil, especially for deciduous forests. This is similar to findings by 

Wania and McLachlan (2001), in which the uptake and subsequent transfer of contaminants from 

the atmosphere to forest soils by forests was reduced for the less persistent contaminants, due to 

competition between degradation processes and uptake.   

 

4.3.4 The effects of forest parameters on long-term fates 

This analysis was another comparative evaluation, in which the changes to the long term 

fate metrics, as consequences of changes in forest parameters, were examined. The control was 

the current forest coverage and composition of the Rio Cobre watershed, control scenario I (land-

use distribution scenario I). Forest parameters were altered individually, as explained in section 

4.2.2.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Leaf area index impact on mean fate metrics 
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Figure 4.11: Percent changes in long-term fate metrics for the organic contaminants given varied 

leaf area indices  
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There were negligible changes in the long term fate metrics as biomass was varied. 

However, a negative association (R
2
 value of 0.921) was observed between the mean 

atmospheric long range transport potentials of the persistent organics and the leaf area indices. 

The current-use pesticides exhibited a moderate negative correlation between the same two 

variables with a R
2
 value of 0.765, illustrated in Figure 4.10. The leaf area index is a canopy 

surface area dimension, which dictates the uptake potential of the forest canopy. Therefore, 

increasing the leaf area index increases the atmospheric uptake potential of the forest, which is 

reflected as decreased atmospheric concentrations and, consequently, long range transport 

potential, as seen in Figure 4.11.   

When the changes in the mean annual average concentrations in the forest canopy were 

assessed with respect to leaf area index, similar correlations were noted for the persistent 

organics and current-use pesticides. The leaf area index is reflective of the surface area occupied 

by the vegetation. Increases in this variable are associated with increases in the volume of the 

canopy. As a result, the decreasing annual average canopy concentrations with increasing leaf 

area indices were expected. 

However, a general relationship between leaf area index and overall persistence was not 

readily apparent. As seen in Figure 4.11, for some organics such as TCDD and cyhalothrin, 

increasing the leaf area index caused increases in their overall persistence. This particular 

observation was distinct for TCDD, compared to other similarly reacting chemicals. Alternately, 

for other organics such as OCDD and dimethoate, increases in leaf area index were associated 

with decreases in overall persistence.  
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Figure 4.12: Changes in mean overall persistence given variations in canopy drip parameter 
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Canopy drip is one mechanism by which vegetation, such as forests, transfer organic 

contaminants from the leaf surface to the surface soils. The results were similar for the persistent 

pollutants and the current-use pesticide. Figure 4.12 illustrates the changes in select relevant 

compartments, as well as the overall persistences of the persistent organics as canopy drip was 

altered. As the canopy drip parameter was increased, the concentrations in forest surface and 

root-zone soils also increased, whereas the concentrations in the forest vegetation decreased.  

Overall persistence also increased as the canopy drip parameter increased. As seen in 

Figure 4.13, there were notable similar positive correlations between the canopy drip parameter 

and the arithmetic means of the overall persistences of the current-use pesticides, as well as the 

persistent pollutants, with respective coefficients of determination (R-squared values of 0.82 and 

0.86, respectively). However, it appears that the overall persistence of the persistent pollutants 

were slightly more responsive to changes in the canopy drip parameter than of the current-use 

pesticides.  

Wax erosion and litterfall serve similar purposes, to canopy drip, in enhancing the 

delivery of contaminants from the leaves to soils. Therefore, as expected, the overall persistences 

of all evaluated chemicals increased as litterfall and wax erosion rates increased. This is 

illustrated in Figure 4.14. Given the increased delivery to soils as the canopy drip parameter, wax 

erosion rates or litterfall rates increased, the associated increases in overall persistence were 

expected. Soils are typically sinks or reservoirs for organic contaminants, which often exhibit 

longer degradation half-lives in these compartments thereby leading to amplified residence times 

and, consequently, overall persistence. 

The canopy drip parameter was simultaneously altered for the agricultural and urban 

vegetation. The expected respective increases and decreases in the annual average concentrations 
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in the surface soils and vegetation of these land uses were observed. However, concentrations in 

the root- and vadose- zone soils decreased as the canopy drip parameter increased. It was 

expected that since surface soil concentrations increased with increased canopy drip parameter, 

so should root- and vadose- zone soil concentrations, due to diffusion from upper to lower soils. 

An explanation is that leaves also transfer to root soils via phloem flow. Therefore, with 

decreased canopy concentrations due to increased canopy drip, transfers via phloem flow are 

retarded. This is associated with lower concentrations in the root and, consequently, vadose soils. 

It therefore appears that for some organics, such as octachlorodibenzodioxin (OCDD), in select 

land uses, phloem flow may be a more important transfer path to root soils than diffusion from 

surface soils.    

 

 

4.4 Conclusions 

An evaluative multimedia environmental model has been developed for the watershed 

scale. The required inputs are simple and obtainable or estimable. Computing and resource 

requirements are relatively insignificant. Additionally, both steady-state and dynamic outputs are 

speedily generated. This model may be useful for local and regional fate and health assessments, 

while remaining efficient and transparent. 

The sensitivity analysis demonstrated that long range transport potential via surface 

waters was primarily dependent on properties such as water outflow current and water depth. 

However, atmospheric long range transport potential was influenced not only by the properties of 

the atmosphere, including wind speed and area, but also by select chemical properties such as 

octanol-air partition coefficient. On the other hand, overall persistence was highly dependent on 

the compartmental half-lives, as well as the octanol-air partition coefficient of the chemical. 
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Temperature, precipitation and the emission receiving compartment were the main determinants 

of compartmental concentrations. However, of the climate variables, precipitation appears to take 

the lead role in influencing contaminants‘ fates.  

Tropical forests influence the environmental fates and, potentially, the health impacts of 

select organic contaminants. It has been shown that tropical forests reduce the atmospheric 

concentrations, and hence the atmospheric long range transport potential, of the assessed 

contaminants at the expense of forest soils. Also, these forests reduce not only the atmospheric 

concentrations and long range transport potential, but also the overall persistences, possibly 

through enhanced uptake and ensuing increased vegetative degradation. 

Tropical evergreen forests were seen to be more efficient at reducing atmospheric long 

range transport potential than tropical deciduous or semi-evergreen forests, especially for the 

more polar organic chemicals. The tropical forests appear more effective at reducing overall 

persistence than the grasslands of similar acreages. This was enhanced if the forest was 

evergreen. It also appears that tropical forests and croplands act similarly in influencing the fates 

of current-use pesticides. The canopy drip parameter, wax erosion rate and the leaf area index are 

forest parameters that exhibit notable positive influences on the surface soil concentrations, as 

well as overall persistences of the organic compounds.  

Foley (2003) highlighted that grasslands often display lower precipitation rates and 

higher surface temperatures than forests. In this first-step evaluation, this phenomenon was not 

considered. It is quite possible that the observed effects of the tropical forests would have been 

enhanced, had it been incorporated. 

Temperature has been shown to influence the fates of organic compounds in the 

watershed. Many parameters, such as the partition coefficients and the compartmental half-lives, 
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are temperature dependent. In this application, the temperature dependences of the variables 

were not considered. Future assessments should incorporate temperature dependence for a more 

realistic outcome.  

Also, many of the input parameters in this study were estimated as best as possible where 

actual values were unavailable. For more accurate assessments, future work should use actual 

data or improved estimation methods, as they become available. Needless to say, this first 

requires more research geared towards measuring region-specific landscape properties as well as 

experimental determination of the chemical properties under varying conditions, such as 

temperature and pressure. Also, many estimation methods require data that are not always 

available. Therefore, estimation methods that require more of the currently available data, 

without sacrificing accuracy, are necessary. 

In conceptualizing RioShed, accounting for the spatial heterogeneity of landscapes was 

considered important. Although the model is considered representative, it is recommended that 

more research be directed at modestly increasing the resolution of the landscape representation, 

without adding resource burden, such that more land uses can be simultaneously modeled at the 

watershed scale. Although the results, obtained in applying RioShed to the Rio Cobre watershed, 

may be applicable to other similar tropical developing regions, region-specific assessments are 

recommended when possible.   
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Chapter 5 

The climate change and land-use impacts on the environmental fates of 

organic contaminants in a tropical watershed 

5.1 Introduction 

 A number of organic compounds have raised global concern, due to their propensity for 

human and environmental toxicity, as well as their ubiquitous nature. Among these are 

pesticides, poly-brominated diphenyl ethers (PBDEs), dioxins and furan. Many of these organic 

compounds are produced for their essential services. For example, pesticides are manufactured 

and used globally to control the proliferation of pests, such as weeds, rodents, fungi, among 

others (Moore, 2007), whereas PBDEs are used as flame retardants (Sjödin, Patterson, & 

Bergman, 2003). However, some, such as dioxins and furans, are the unintentional by-products 

of combustion processes, including those processes involved in the manufacture of 

beneficial/essential organic compounds. These organic contaminants are all released in and 

distribute among environmental media, with the ensuing potential to cause harm. As a result, 

understanding the fate processes and governing factors, involved in the environmental 

distributions and fates, as well as the associated health impacts of these chemicals, is crucial for 

the development and implementation of appropriate control measures. 

Among the environmental factors known to influence the fates of organic contaminants is 

vegetative cover. Recently, focus has been directed towards assessing the role of specific 

vegetative covers such as forests in the environmental movement of these chemicals. To date, it 
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has been demonstrated that temperate and boreal forests transfer select semi-volatile organic 

compounds, those with octanol-air (Koa) and air-water (Kaw) partition coefficients such that  

7 < log Koa < 11 and log Kaw > -6, from the atmosphere to forest soils via a process termed ‗the 

filter effect‘ (McLachlan & Horstmann, 1998). A global assessment has also shown that there is 

a filter effect, for some organics, for all forests combined worldwide (Su & Wania, 2005). 

Additionally, in Chapter 4 of this dissertation, it has been demonstrated that, at the watershed 

scale, tropical forests are also influential in the environmental fates of select organic compounds. 

It was found that both the overall persistences and atmospheric long range transport potentials, of 

select persistent pollutants and current-use pesticides, were reduced when forests were present in 

the tropical watershed. Such reductions were enhanced when the tropical forest contained 

evergreen trees. However, whereas temperate and boreal forests appear to transfer the organics to 

the soils, thereby increasing overall persistences, tropical forests may be reducing overall 

persistences by enhanced degradation in the canopy. Nevertheless, the general conclusion from 

all these studies is that forests govern the fates and distribution of many organic pollutants. 

In the studies examining the influence of forests on the fates of the organic contaminants, 

it was also shown that climate drivers, especially temperature, were determinants of the forests‘ 

influences. Nizzetto et al. (2007) demonstrated that the atmospheric uptake ability of forests for 

organic contaminants was reduced at elevated temperatures. The forest filter effect appeared 

restricted when temperatures increased (McLachlan & Horstmann, 1998; Wania & McLachlan, 

2000). Also, boreal and temperate forests led to increased atmospheric levels of organics with 8 

≤ lg Koa ≤ 10.7, during periods of elevated temperatures, due to re-volatilization (Nizzetto & 

Perlinger, 2012). Therefore the ability of forests to impact the environmental distribution of 
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organic contaminants may be climate dependent. These are important considerations, especially 

as the climate changes.  

Regional assessments of the effects of forests on the fates of organic contaminants, under 

varying climatic conditions, as well as how climate change may directly affect the fates of the 

contaminants, are highly informative. Studies evaluating the potential effects of climate change 

on the environmental fates of organic compounds are increasing (Bloomfield et al., 2006b; Ma et 

al., 2011; Paul et al., 2012; Steffens, Larsbo, Moeys, Jarvis, & Lewan, 2013; Steffens, Larsbo, 

Moeys, Jarvis, Kjellström, et al., 2013; Wöhrnschimmel et al., 2013). The general observation is 

that the direct impacts of climate change depend on the specific climate change 

scenarios/conditions. Climate variables impact pollutant fates differently. For instance, increased 

precipitation and temperature are associated with respective decreases and increases in 

atmospheric concentrations of organic contaminants. Therefore, the effects of climate on 

environmental fates depend on the specific combination of climatic variables. The possible 

combinations of climate variables are numerous, thereby making it difficult to predict impacts. A 

solution is to make predictions for as many combinations of climate variables as possible at 

varying scales – regional to global. This is a current undertaking (Dalla Valle, Codato, & 

Marcomini, 2007; Lamon et al., 2009; Ma et al., 2011; Wöhrnschimmel et al., 2013). However, 

to date, the focus has been on temperate and arctic regions and, otherwise, at the global scale. 

Research focusing specifically on environmental fates in varying climatic conditions for tropical 

developing countries is limited.  

Long term fate metrics such as long range transport potential and persistence are key 

hazard indicators, often computed to evaluate environmental fates. However, these metrics 

require the use of multimedia models, since they are not measureable (Fenner et al., 2005). Other 
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long term fate metrics, including annual average cocentrations, are also often computed using 

multi-media models, since field/monitoring data are often lacking or impractical. While many 

predictive multimedia models exist, many often include only one vegetative compartment. 

Regional-scaled assessments are inadequately accomplished with such models (Cousins & 

Mackay, 2001), especially in tropical watersheds, which often have many co-existing vegetative 

covers. To assist in such evaluations, a regional dynamic predictive multimedia model, RioShed, 

incorporating three (3) co-existing vegetative compartments, has been developed. This model has 

been described in Chapter 4. Outputs include the aforementioned long-term fate metrics. 

This study sought to examine the effects of climate change on the long term 

environmental fates of select organic contaminants, released at the watershed scale, in a tropical 

developing country, using RioShed. The evaluated chemicals included some poly-brominated 

diphenyl ethers (PBDEs), dioxins, furans and some current-use pesticides. Further to this, an 

evaluation of how climate change influences the effects of tropical forests on the fates, as well as 

the ensuing health impacts, of these chemicals was conducted. To do so, a climate change 

perspective for the Caribbean, as predicted by the Intergovernmental Panel on Climate Change 

(IPCC), was applied to various forested landscapes/layouts for the Rio Cobre watershed, in the 

tropical country, Jamaica. The long-term environmental fate metrics of the organic compounds 

were computed and compared. 
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5.2 Methods 

5.2.1 Study site 

The Rio Cobre watershed is the third largest watershed in the Caribbean country, 

Jamaica. Given an area of 1249 km
2
, it drains the 52.5 km Rio Cobre River, which exhibits 

average daily stream flows of 9.8 m
3
/s. For the purpose of this dissertation, the watershed was re-

classified as being occupied primarily by agricultural lands (25.19%), forests (60.15%), and 

urban zones (14.48%) (Forestry Department of Jamaica, 2015), as explained in Chapter 4. 

The climate of the Caribbean is influenced by incident solar radiation, winds, 

precipitation and temperature. Precipitation is the most critical determinant of climate for the 

Caribbean (Granger, 1985). The Caribbean (and consequently the Rio Cobre watershed) displays 

a bi-modal precipitation pattern, with an early wet season in May-July and a late wet season in 

August-November (Taylor et al., 2002). 

For the Rio Cobre watershed, annual average precipitation and ambient temperature for 

the 1986-2005 period were 1953 mm and 302.79 K, respectively (Meteorology Service of 

Jamaica, 2015). Since there are no climate change estimates specific to this watershed, climate 

change predictions for the Caribbean were instead applied. 

 

5.2.2 Dynamic comparison of fates in two climate periods 

In this assessment, two landscapes were considered for the Rio Cobre watershed. The 

first landscape employed was the current land-use distribution, in which agriculture, forest and 

urban regions occupied 25%, 60% and 15% of the land surface, respectively. This land-use 

distribution was labeled land-use distribution scenario I. In the second landscape, the forested 

portion was replaced by grassland, thereby generating an un-forested version of the Rio Cobre 
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watershed. Therefore, this distribution, labeled land-use distribution scenario II, was such that 

agriculture, grassland and urban regions, respectively, occupied 25%, 60% and 15% of the land 

surface. 

 

Table 5.1: Averaged monthly climate values for the 1986-2005 and 2005-2014 periods  

Month 

number 

Month 1986-2005 2005-2014 

Temperature 

(K) 

Precipitation 

rate (× 10
-3

 

m.d
-1

) 

Temperature 

(K) 

Precipitation 

rate (× 10
-3

 

m.d
-1

) 

1 January 300.82 2.74 300.88 1.65 

2 February 301.26 2.32 301.47 1.18 

3 March 302.19 2.32 302.32 1.90 

4 April 302.82 4.35 303.14 3.74 

5 May 303.16 8.72 303.52 7.10 

6 June 303.91 5.03 303.80 5.61 

7 July 304.23 5.91 304.30 5.67 

8 August 304.30 6.20 304.44 10.50 

9 September 304.18 9.87 304.21 8.66 

10 October 303.34 7.63 303.28 9.92 

11 November 302.20 5.84 302.18 3.63 

12 December 301.23 3.14 301.45 2.06 
Data was obtained from the Meteorological Office of Jamaica, 2015. 

 

Although emission data for Jamaica for the chemicals evaluated in this dissertation were 

not found, it was found that 32.2 metric tons of deca-PBDE (the only formulation manufactured 

and used in the US as at 2010) was released in the US in 2007, which gives a flux emission of 

8.96 ng.m
-2

.d
-1

. Given that the Rio Cobre watershed has an area of 1249 km
2
 (FDJ, 2015), 

applying the aforementioned flux rate gave an emission rate of 11.2 g.d
-1

. Therefore, an emission 

rate of 10 g.d
-1

 (3.65 kg.y
-1

) was employed as the hypothetical emission rate for each chemical 

assessed in this dissertation.  

Applying this hypothetical emission rate of 3.65 kg.y
-1

, the daily compartmental 

concentrations of only dimethoate and PBDE-47 were computed over a one-year period, using 
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monthly averaged precipitation rates and ambient temperatures for both the 1986-2005 and 2005-

2014 periods.  

First, total rainfall (in mm) for each calendar month from 1980 to 2014 was obtained, 

from the Meteorological Service of Jamaica (2015), for a major monitoring station (Tulloch 

Estates) in the watershed. The rainfall amounts for each calendar month were averaged over the 

periods 1986-2005 and 2005-2014, and divided by the number of days in the given calendar 

month, to generate monthly averaged daily rainfall rates, in m.d
-1

. Also, the monthly rainfall 

amounts were summed for each calendar year. The annual rainfall amounts were averaged for 

each of the 1986-2005 and 2005-2014 periods, and divided by the number of calendar days in a 

year (365 days), to generate annually averaged rainfall rates for each period, in m.d
-1

. Similarly, 

mean maximum temperatures for each calendar month were obtained from 1970 to 2014, from 

the Meteorological Service of Jamaica (2015), for a major temperature monitoring station (in 

Worthy Park, Jamaica) in the Rio Cobre watershed. The monthly average temperatures as well as 

annual average temperatures for the 1986-2005, as well as 2005-2014 periods were then 

calculated. The monthly average precipitation rates and temperatures for each period are 

presented in Table 5.1. The annual average precipitation rate and temperature were 5.35e-3 m.d
-1

 

and 302.79 K, respectively, for the 1986-2005 period, and 5.15e-3 m.d
-1

 and 302.92 K, 

respectively, for the 2005-2014 period. 

Using RioShed, steady state concentrations, pre-determined assuming an initially pristine 

environment receiving atmospheric inputs of 10.0 g.d
-1

 of PBDE-47 and having the annual 

average precipitation rate and temperature of the 1986-2005 period, were inputted as initial 

compartmental concentrations at the beginning of the model run for land-use distribution 

scenario II (an un-forested landscape wherein the current forested portion of the Rio Cobre 
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watershed was replaced with grassland). With the same atmospheric input of 10 g.d
-1 

assumed, 

the model was run for the 31 days assumed for January, using the monthly averaged temperature 

and precipitation rate for January for the 1986-2005 period. The end-of month compartment 

inventories (inventories obtained on the last day of the month) were used as inputs for the 

following month and the model run for the number of calendar days associated with that 

following month using the monthly averaged temperature and precipitation rate calculated for the 

given month, for the same 1986-2005 period. This procedure was repeated for the remaining 

months of the calendar year. The entire process was repeated for land-use distribution scenario I 

(a forested landscape representing the current land-use distribution of the Rio Cobre watershed). 

All of the above was performed for dimethoate. The end-of-month compartmental concentrations 

were the outputs. The entire process was repeated for the 2005-2014 climate period. This 

allowed for the examination of the dynamic environmental fates of the two organics, in two 

different climate periods. 

The compartmental concentrations of both chemicals in the un-forested versus forested 

landscapes, for both climate periods, were compared to evaluate the impacts of forests given 

changing climate variables. 

 

5.2.3 Climate change evaluation 

This section aimed to: 1) examine the effects of climate change on the long-term 

environmental fates of the 16 organic chemicals – the persistent pollutants and the current-use 

pesticides and 2) evaluate the effects of forests under potential climate change conditions. The 

1986-2005 climatic conditions, as well as climate change scenarios, were employed in the 

calculation of long-term fate metrics, using RioShed. Not only were climatic conditions altered, 
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but so were land-use distributions. The methods to generate the climate change and landscape 

scenarios, as well as the formulation of the fate metrics are explained below. 

 

5.2.3.1 Climate change scenarios 

The Caribbean is expected to display specific changes to its climate. In their fifth climate 

change assessment report in 2013, the Intergovernmental Panel on Climate Change (IPCC) 

evaluated and synthesized the results of climate models for four emission and concentration 

scenarios. The four (4) IPCC greenhouse gas concentration projections are referred to as 

Representative Concentration Pathways (RCP) (Rogelj, 2013). In the RCP2.6 scenario, small and 

constant net reduced emission of greenhouse gases (GHGs) and aerosols were assumed after 

2070, with associated declines in the concentrations. However, in the RCP8.5 scenario, high 

emissions of greenhouse gases and aerosols were initially assumed from 2100 to 2150, with a 

steady linear decrease from 2150 to 2250, while concentrations were assumed to be stabilized by 

2250. Both RCP6.0 and RCP4.5 were intermediate scenarios, which assumed that concentrations 

of greenhouse gases and aerosols stabilized by 2150 (Rogelj, 2013).   

Given the results of the climate models for the two extreme scenarios, RCP2.6 and 

RCP8.5, it was forecasted that, for the periods 2016-2035 and 2046-2065, compared to the 1986-

2005 period, the Caribbean should observe minimum and maximum temperature increases of  

0.4 K and 2.5 K, respectively (Christensen, Kanikicharla, Marshall, & Turner, 2013). Also, 

during the same periods relative to the same 1986-2005 period, Caribbean precipitation is 

expected to decrease by a minimum of 19% or increase by a maximum of 10% (Christensen, 

Kanikicharla, Marshall, & Turner, 2013). 
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The minima and maxima of the estimates predicted by the IPCC for the Caribbean for the 

2016-2065 period were combined to create four (4) climate change conditions:  

A) a temperature increase of 0.4 K with a precipitation decrease by 19% (T1P1);  

B) a temperature increase of 0.4 K with a precipitation increase of 11% (T1P2);  

C) a temperature increase of 2.5 K with a precipitation decrease by 19% (T2P1);  

D) a temperature increase of 2.5 K with a precipitation increase of 11% (T2P2).  

To generate the climate change scenarios, these climate change conditions were applied 

to the annual average climate for the Rio Cobre watershed for the 1986-2005 period. 

Precipitation data for each month from 1980 to 2014, as well as temperature data for each month, 

from 1970 to 2014, were obtained for monitoring stations in the Rio Cobre watershed from the 

Meteorological Service of Jamaica (2015), as previously explained in section 5.2.2. The 

computed annual average maximum temperature and precipitation rate for the 1986-2006 period 

were 302.79 K and 5.35e-3 m.d
-1

, respectively.   

In this study, climatic conditions were applied to varying forest coverage and 

composition for the Rio Cobre watershed. Two land-use scenarios were employed as controls for 

comparisons. For control scenario I (also labeled land-use distribution scenario I), the current 

land-use distribution is assumed (25% for agriculture, 60% for forest, and 15% for urban). In 

control scenario II, also labeled land-use distribution scenario II, the forested portion of the Rio 

Cobre watershed was replaced by grassland. Additional land-use distribution scenarios for 

assessment/comparison were generated by applying the following changes to the current land-

use distribution (25% for agriculture, 60% for forest, 15% for urban) for the Rio Cobre 

watershed: a) 30% decrease in coverage, assuming equal distribution of the difference to the 

urban and agricultural compartments; b) 30% decrease in coverage, due to urban expansion;  
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c) 30% decrease in coverage, due to agricultural expansion; d) 30% increase in coverage, via 

afforestation of agricultural lands. These scenarios were labeled land-use distribution scenarios 

III to VI and are presented in Table 5.2. The 1986-2005 climate and the four climate change 

scenarios were applied to all land-use distribution scenarios. Therefore, a total of 30 scenarios, 

including the controls, formed this assessment. The forest composition used throughout is the 

current estimated type for the watershed, with a 55%:45% deciduous:evergreen ratio. The 

schematic process employed is illustrated in Figure 5.1. 

 

Table 5.2: Land-use distribution scenarios 

Scenarios Land-use percentage distribution (%) 

 

Agriculture Forest/Grassland 

vegetation 

Urban 

I 25 60 (forest) 15 

II 25 60 (grassland) 15 

II 34 42 (forest) 24 

IV 25 42 (forest) 33 

V 43 42 (forest) 15 

VI 7 78 (forest) 15 
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Figure 5.1: Schematics of the assessment process. 
T is the current ambient temperature (302.79 K), K; P is the current precipitation rate (5.35e-3 m.d

-1
), m.d

-1
; A is agricultural vegetation; G is grassland 

vegetation; F is forest vegetation; U is urban area; the ratios are the fractions of land occupied by agriculture, forest/grassland vegetation and urban sites, 

respectively.  

 

 

                                

Land-use 
distribution 
scenario I

A:F:U

0.25:0.60:0.15

T; 

P

T+0.4K;

0.81P

T+0.4K;

1.1P

T+2.5K;

0.81P

T+2.5K;

1.1P

Land-use 
distribution 
scenario II

A:G:U

0.25:0.60:0.15

T; 

P

T+0.4K;

0.81P

T+0.4K;

1.1P

T+2.5K;

0.81P

T+2.5K;

1.1P

Land-use 
distribution 
scenario III

A:F:U

0.34:0.42:0.24

T; 

P

T+0.4K;

0.81P

T+0.4K;

1.1P

T+2.5K;

0.81P

T+2.5K;

1.1P

Land-use 
distribution 
scenario IV

A:F:U

0.25:0.42:0.33

T; 

P

T+0.4K;

0.81P

T+0.4K;

1.1P

T+2.5K;

0.81P

T+2.5K;

1.1P

Land-use 
distribution 
scenario V

A:F:U

0.43:0.42:015

T; 

P

T+0.4K;

0.81P

T+0.4K;

1.1P

T+2.5K;

0.81P

T+2.5K;

1.1P

Land-use 
distribution 
scenario VI

A:F:U

0.07:0.78:0.15

T; 

P

T+0.4K;

0.81P

T+0.4K;

1.1P

T+2.5K;

0.81P

T+2.5K;

1.1P

Landscape 

Properties Changes in 

fate & health 

metrics 

Forest and 

climate 

change effects 

Chemical 

Properties 



149 

 

5.2.3.2 Quantification of long-term fate metrics 

The following metrics for the 16 organic compounds were quantified, as explained in 

section 4.2.4.5: overall persistence (Pov), atmospheric long range transport potentials (LRTPA) 

and annual average concentrations in each medium. Further to this, percent changes to each 

metric were calculated for each chemical, in any given scenario with respect to the control 

scenarios.   

 

5.2.3.3 Summary of assessments conducted 

A number of assessments were conducted to establish the effects of climate, climate 

change and land-use distribution on the long-term environmental fates of the selected organics. 

First, a dynamic analysis was conducted by calculating the end-of-month compartmental 

concentrations of dimethoate and PBDE-47, over a one-year period, using monthly averaged 

temperatures and precipitation rates for the 1986-2005 and 2005-2014 periods. The method 

employed is described in section 5.2.2. The environmental fates of these two (2) organics in the 

forested and un-forested landscapes were compared for the two (2) given climate periods. 

Secondly, employing land-use distribution scenario I (the current landscape of the Rio 

Cobre watershed), daily compartmental concentration outputs were generated over a 365 day 

period, using the previously described climate change scenario A, for all 16 organic 

contaminants. The assumption of an initially pristine environment (free of the specific 

contaminant) was applied, with an atmospheric input of 10 g.d
-1

. These compartmental 

concentrations were averaged over the 365-day model run. As before, overall persistence and 

atmospheric long range transport potential were also generated. This was repeated for all 

assessment chemicals, under the remaining three climate change scenarios. The comparison of 
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the outputs of these climate change scenarios with the outputs for the climate of the 1986-2005 

period allowed for the examination of the effects of climate change. 

A comparison of the effects of forests and climate change was performed. The annual 

average and steady state concentrations, as well as overall persistences and atmospheric long 

range transport potentials for the 16 organics were generated as before for land-use scenario II 

(grassland/un-forested landscape landscape), using the climatic conditions of the 1986-2005 

period. Such metrics were also generated for the organics when the climate change scenarios 

were applied to this land-use distribution scenario II (grassland/un-forested landscape). The 

changes to the outputs when the forests replaced the grassland (i.e., changes when the outputs of 

land-use distribution scenario I were compared with those from land-use distribution scenario II) 

were evaluated against those when the climate of land-use distribution scenario II changed 

(obtained when the outputs of each climate change scenario, applied to the grassland/un-forested 

landscape, were compared with those given the climate of the 1986-2005 period). In fact, the 

arithmetic means of the changes for each category consisting of the eight (8) persistent pollutants 

and the eight (8) current-use pesticides were compared in this analysis. 

In yet another assessment, the four climate change scenarios were applied to the 1986-

2005 average annual climate statistics, and used in both land-use distributions I and II, to 

compute the aforementioned output metrics for the 16 contaminants. The arithmetic mean 

outputs for each category of pollutant, for each climate change scenario, in land-use distribution 

scenario I (forested landscape), were evaluated against the outputs for the contaminant category 

in the corresponding climate change scenario, applied to land-use distribution II (grassland/un-

forested landscape). This allowed for a general analysis of the effects of forests during climate 

change. 
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The effects of varying the proportion of forests in the landscape, as well as the proportion 

of co-existing land-uses, on the long-term fates of the organics were also evaluated. Herein, the 

long-term environmental fate metrics were computed for the 16 organics, using the 1986-2005 

climatic conditions, in land-use-distribution scenario I, and compared to those calculated for 

land-use distribution scenarios III to VI. Also, the four (4) climate change scenarios were applied 

to land-use distribution I and compared to the corresponding climate change applied to land-use 

distributions III to VI, to examine the effects of climate change under various land-use 

allocations. 

 

5.3 Results & Discussion 

5.3.1 Environmental fates under varying monthly climatic conditions 

 The environmental fate metrics for PBDE-47 and dimethoate were examined, using the 

monthly varying climatic conditions for both the 1986-2005 and 2005-2014 periods. Figure 5.2 

displays the monthly trends in ambient temperature and precipitation rate for both climate 

periods.  

 
 1986-2005 

 2005-2014  

 

Figure 5.2: Average monthly variations in climate variable in two climate periods 
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Figure 5.3 displays the atmospheric and surface water concentrations of PBDE-47 and 

dimethoate in the forested and un-forested landscapes of the Rio Cobre watershed, given 

monthly varying climatic conditions for the 1986-2005 and 2005-2014 periods, having assumed 

initial steady state concentrations. Throughout the year, the concentrations predicted using 

varying monthly climatic conditions were either over- or under-estimates of the initial steady-

state concentrations.  

Under the dynamic weather assessment, atmospheric concentrations of PBDE-47 and 

dimethoate, in both the forested and un-forested landscapes, were highest in the months February 

and March, during which both temperature and rainfall rates were low, as seen when figures 5.2 

and 5.3 are compared. The lowest recordings of atmospheric concentrations were obtained in the 

months May and September, in which precipitation rates were high. The atmospheric 

concentrations of these chemicals were always higher under grassland conditions, than in the 

forested landscape. On the other hand, surface water concentrations for both chemicals were 

highest in May and September, months in which precipitation rates observed the highest 

recordings.  
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Figure 5.3: Monthly varying concentrations of PBDE-47 and dimethoate in select compartments 

in two climate periods 
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Figure 5.4: Compartmental concentrations of PBDE-47 with respect to given climate variables in 

the forested landscape (1986-2005)
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Table 5.3: Coefficients of determination for compartmental concentrations of PBDE-47 and dimethoate with respect to precipitation 

and temperature 

Compartment Coefficient of determination/R-squared value (R
2
) 

Precipitation Temperature 

PBDE-47 Dimethoate PBDE-47 Dimethoate 

Forested 

landscape 

Un-forested 

landscape 

Forested 

landscape 

Un-forested 

landscape 

Forested 

landscape 

Un-forested 

landscape 

Forested 

landscape 

Un-forested 

landscape 

Atmosphere -0.996 -0.996 -0.859 -0.860 -0.588 -0.587 -0.619 -0.619 

Surface water 0.996 0.996 0.868 0.868 0.584 0.583 0.618 0.618 

Sediment 0.980 0.980 0.844 0.843 0.573 0.572 0.642 0.637 

Impervious Surface 0.996 0.996 0.859 0.860 0.585 0.583 0.619 0.619 

Agricultural 

vegetation 

-0.910 -0.909 0.801 0.809 -0.610 -0.610 0.607 0.609 

Forest/grassland 

vegetation 

0.764 0.781 0.847 0.845 0.497 0.529 0.615 0.616 

Urban vegetation -0.875 -0.875 0.736 0.754 -0.634 -0.634 0.592 0.597 

Agricultural surface 

soil 

0.339 0.338 0.892 0.890 0.049 0.049 0.619 0.620 

Forest/grassland 

surface soil 

0.228 0.289 0.869 0.868 0.029 0.030 0.619 0.619 

Urban surface soil 0.299 0.299 0.890 0.888 0.034 0.034 0.598 0.619 

Agricultural root soil -0.330 -0.323 0.835 0.837 -0.817 -0.809 0.602 0.599 

Forest/grassland root 

soil 

-0.210 -0.211 0.853 0.852 -0.678 -0.679 0.602 0.598 

Urban root soil -0.326 -0.292 0.822 0.826 -0.811 -0.770 0.595 0.596 

Agricultural vadose 

soil 

-0.441 -0.444 0.784 0.786 -0.334 -0.339 0.530 0.531 

Forest/grassland 

vadose soil 

-0.492 -0.491 0.796 0.788 -0.418 -0.417 0.528 0.521 

Urban vadose soil -0.454 -0.464 0.768 0.772 -0.347 -0.367 0.523 0.525 
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For PBDE-47, surface water concentrations were similar in the forested and un-forested 

landscape, with such concentrations in the un-forested landscape slightly higher than those in the 

forested landscape –irrespective of whether the climate varied monthly or if steady-state was 

assumed throughout the year. However, for dimethoate, surface water concentrations in the un-

forested landscape were always distinctly higher than in the forested landscape, as seen in Figure 

5.3.   

Therefore, it appears that tropical forests more effectively reduce the atmospheric 

compared to surface water concentrations, for a chemical such as PBDE-47. Also, the reduction 

in atmospheric concentrations was more distinct for PBDE-47 than dimethoate. However, 

dimethoate, which has the lower air-water partition coefficient, observed notable reductions in 

surface water concentrations compared to PBDE-47, when the forest was present than when it 

was not.    

Interesting patterns were unveiled when the atmospheric and surface water concentrations 

of both organics were compared for the forested and un-forested landscapes, given average 

monthly and annual climatic inputs. Both chemicals displayed similar atmospheric concentration 

patterns throughout the year of assessment, which were inverses of the bi-modal climate pattern 

for the region. On the other hand, surface water concentrations displayed a bi-modal pattern, 

consistent with the bi-modal climate pattern of the region. In fact, using PBDE-47 as the 

example, Figure 5.4 shows that atmospheric concentrations of this chemical in the forested 

landscape displayed a strong negative correlation with precipitation rate. However, a high 

correlation could not be established, in the forested landscape, between the atmospheric 

concentration of the contaminant and ambient temperature, or between the climate variables and 

concentrations in other compartments such as forest surface soil, as seen in Table 5.3. 
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Figure 5.5: Monthly varying PBDE-47 concentrations (1986-2005) 

Solid line – forested scenario 

Dashed line – un-forested scenario 

 

To calculate concentrations, the average monthly temperature and precipitation for the 1986-2005 period were used with 

initial concentrations set at steady-state concentrations in all compartments and source input thereafter to the atmosphere 

only.   
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Figure 5.6: Monthly varying dimethoate concentrations (1986-2005) 

Solid line – forested scenario 

Dashed line – un-forested scenario 

 

To calculate concentrations, the average monthly temperature and precipitation for the 1986-2005 period were used with initial 

concentrations set at steady-state concentrations in all compartments and source input thereafter to the atmosphere only.   
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Although the end-of-year atmospheric concentrations (end of day 365) for both organics 

were higher, end-of-year surface water concentrations were lower, given monthly averaged 

climate inputs versus the annually averaged inputs. This can be seen in Figure 5.3. Therefore, for 

environmental or health impact assessments of effects in any given compartment, the use of 

known dynamic inputs is recommended, when available, as this should yield more realistic 

results. However, as before, the similarities in the outputs for the forested versus un-forested 

watershed, despite the nature of the inputs (dynamic or averaged) indicate that steady state 

conditions are relatively representative in comparative assessments. 

Figure 5.5 shows that PBDE-47 concentrations, in the sediment and impervious surface, 

displayed similar relationships with the precipitation pattern as did surface water. Concentrations 

in the vegetation displayed a negative correlation with the precipitation pattern, with a delay of 

1-2 months in the effect. Surface soil concentrations appeared to vary positively with the 

precipitation pattern with a 1-2 month delay in the response. However, no obvious relationship 

was apparent for this chemical in the root and vadose soils of the forested and un-forested 

landscapes.  

Figure 5.6 displays the concentrations of dimethoate given the varying monthly climatic 

inputs. It can be seen that for this polar chemical, concentrations in the sediment, impervious 

surface, vegetation, surface soils, root soils as well as vadose soils were similarly correlated with 

the precipitation pattern, as was surface water concentration. Precipitation was therefore a 

determinant of the environmental fates of both PBDE-47 and dimethoate. 
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5.3.2 Comparing environmental fates in two climate periods 

It can be seen in Figure 5.3 that in any given climate period, assuming initial steady state 

conditions, atmospheric concentrations of PBDE-47 observed the same distribution patterns in 

both the forested and un-forested landscapes. However, as expected, atmospheric concentrations 

were always higher in the grassland scenarios.  

In the 1986-2005 period, PBDE-47 atmospheric and surface water concentrations 

fluctuated throughout the year in tandem with monthly precipitation rates. During the 1986-2005 

period, the lowest recordings of atmospheric concentrations coincided with the highest 

recordings of surface water concentrations, occurring in the months of May and September when 

precipitation rates were highest. Similarly, for the 2005-2014 period, precipitation rates were 

highest in August to October, coinciding with respective lowest and highest atmospheric and 

surface water concentrations of PBDE-47. 

As also seen in Figure 5.3, the 1986-2005 atmospheric concentrations of PBDE-47 

exceeded those during the 2005-2014 period only in the months of June, August and October. On 

the other hand, the surface water concentrations of PBDE-47 in the 2005-2014 period exceeded 

those in the 1986-2005 period only in the aforementioned months – June, August and October. 

These were the only months that precipitation rates in 2005-2014 exceeded rates in 

corresponding months in the 1986-2005 period, as seen in Figure 5.2. In general, for this 

chemical, the atmospheric and surface water concentration patterns throughout the year copied 

the precipitation pattern, with negligible influence by temperature.    

A relationship between the surface soil concentration pattern of PBDE-47 and the climate 

variables was not immediately apparent. However, a comparison between the patterns generated 

for the surface soil concentrations of this chemical in the 1986-2005 period and those for the 
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2005-2014, in Figure 5.3, revealed that the concentrations in 2005-2014 were higher only in the 

months of August and October. These were two (2) of the three (3) months during which 

precipitation rates in the 2005-2014 period exceeded those in the same months in the 1986-2005 

period. Also, for both climate periods, forest surface soil concentrations always exceeded 

grassland surface soil concentrations, except in the months January to March (see Table H.1 and 

Table H.2 in Appendix H, as well as Table I.1 and Table I.2 in Appendix I for the monthly 

compartmental concentrations of PBDE-47 in both climate periods). During these months, 

average precipitation rates were the lowest recorded. 

 Dimethoate displayed similar climate-associated trends in the assessed compartments. 

However, as seen in Figure 5.3, the presence of forests appeared to be a notable determinant of 

concentrations with marked differences in concentration patterns in the forested versus un-

forested landscapes. In both climate periods, atmospheric, surface water and surface soil 

concentrations in the forested landscape were always lower than in the un-forested landscape 

(see Table H.3 and Table H.4 in Appendix H, as well as Table I.3 and Table I.4 in Appendix I 

for the monthly compartmental concentrations of dimethoate in both climate periods). 

 

5.3.3  Climate change effects 

In this section of the assessment, land-use distribution scenario I was employed as the 

control, whereby approximately 60.15% of the land was considered occupied by forests, with a 

deciduous:evergreen distribution of 55%:45%. The remaining land was considered occupied by 

agricultural vegetation/crops (25.19%), urban centers (14.48%) and surface waters (0.18%). The 

ambient temperature (302.79 K) and precipitation rate (5.35e-3 m.d
-1

) in this control scenario 
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were altered according to climate change scenarios, as described in the Methods section, and the 

outputs compared to those generated for the aforementioned control scenario.  

  
      
 
 

Atmosphere 

 

Surface water 

  

 

 

 

Figure 5.7: Atmospheric and surface water concentration changes 

 

In terms of atmospheric long range transport potential, the 16 assessed contaminants were 

found to be class III chemicals, having displayed characteristic travel distances less than 700 km 

under all climatic conditions in the watershed. They therefore displayed only regional-scaled 
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atmospheric long range transport potential in this tropical watershed. For all 16 contaminants, 

annual average atmospheric concentrations were reduced, by up to 10% for the current-use 

pesticides and 6% for the persistent pollutants, whenever the precipitation was increased by the 

predicted 11% whereas concentrations increased, by as much as 25%, whenever precipitation 

was reduced by the estimated 19% - Figure 5.7 illustrates this. On the other hand, surface water 

concentrations increased and decreased with the respective increases and decreases in 

precipitation, as demonstrated in the same Figure 5.7. The effects of temperature were less 

noticeable for most of the 16 evaluated chemicals. However, annual average atmospheric 

concentrations of PBDE-99 and OCDD were notably lower during the increase in temperature of 

2.5 K than the increase of 0.4 K. Of the current-use pesticides, the annual atmospheric 

concentration of diuron was higher when the temperature increased by 2.5 K than when it 

increased by 0.4 K. 

The effects of the climate change scenarios were different for the persistent pollutants 

compared to the more polar pollutants. Figure 5.7 shows that the degree of the effect on surface 

water and atmospheric concentrations was generally more varied for the current-use pesticides, 

demonstrated by the wider spread in the percentage changes. The mean atmospheric 

concentrations of the current-use pesticides and persistent pollutants observed general decreases 

and increases given respective increases and decreases in precipitation. For the current-use 

pesticides, a respective minimum and maximum increase in annual average atmospheric 

concentration of approximately 4% and 25% (denoted by an arithmetic mean increase of 

approximately 16%) were noted during decreased precipitation rates. However, the annual 

average atmospheric concentration decreased during increased precipitation, ranging from 0.1% 

to 10%, (with an arithmetic mean of 7%).   
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When the precipitation rate was increased, the larger temperature rise of 2.5 K (an 

ambient temperature of 305.29 K) led to larger reductions in the average annual atmospheric 

concentrations of the persistent chemicals than the smaller 0.4 K temperature rise (an ambient 

temperature of 303.19 K). This suggests that for these contaminants, increases in atmospheric 

concentrations due to temperature increases may potentially be tempered by co-occurring 

increases in precipitation. Further examination showed that for these persistent organics, the 

increases in average annual atmospheric concentrations during reduced precipitation was 

enhanced by the larger 2.5 K temperature increase. It is probable that, for these organics, 

temperature-dependent fate processes such as re-volatilization play greater roles as the 

temperature increases. 

For the persistent pollutants, in scenarios with decreased precipitation (to a precipitation 

rate of 4.33e-3 m.d
-1

), surface water concentrations were lower than under the 1986-2005 

precipitation condition, as much as 16% (with an arithmetic means of 11.6%) when the 

temperature increased by 0.4 K, and up to 12% (with an arithmetic mean of 8.5%) when the 

change was 2.5 K. However, when precipitation increased to a precipitation rate of 5.89e-3 m.d
-1

, 

arithmetic averages of the surface water concentrations consequently increased by 6.8% and 

10.4% for the respective temperature increases of 0.4 K and 2.5 K. When the surface water 

concentrations of the current-use pesticides were assessed, it was found that the effects of 

temperature change on these chemicals in this medium were not as notable as for the persistent 

chemicals. In fact, irrespective of the temperature, the arithmetic averages observed increases of 

approximately 2.3% and decreases of approximately 5.2% in surface water concentrations of the 

current-use pesticides, given the respective increases and decreases in precipitation rates. 
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In comparing Figure 5.7 and Figure 5.8, whereas the overall persistences of the current-

use pesticides changed by amounts similar to the surface water concentrations, the persistent 

pollutants observed changes that were similar in trend, but dissimilar in degree/value to the 

surface water concentration changes. As seen in Figure 5.8, when the temperature increased by 

0.4 K and 2.5 K (to temperatures of 303.19 K and 305.29 K, respectively) during reduced 

precipitation (to 4.33e-3 m/d), the overall persistences of the persistent pollutants, decreased with 

ranges of 0.22%-4.64% and 0.17%-3.38%, respectively (with respective average decreases of 

2.7% and 1.8%). However, during increased precipitation (a rate of 5.89e-3 m.d
-1

), and given 

temperature increases of 0.4 K and 2.5 K, overall persistence increased with respective ranges of 

0.12%-2.54% and 0.19%-4.23% (with respective mean increases of 1.5% and 2.4%).  

The current-use pesticides experienced similar decreases in overall persistence in the 

ranges of 0.02-13.94% and 0.02-13.44% for the respective increases of 0.4 K and 2.5 K when the 

precipitation rate was decreased to 4.33e-3 m.d
-1

. However, when the precipitation rate was 

increased to 5.89e-3 m.d
-1

, increasing the temperature by 0.4 K and 2.5 K resulted in respective 

increases in the overall persistences of the current-use pesticides in respective, and similar, 

ranges of 0.01%-7.00% and 0.01%-7.60% (with respective averages of 2.02% and 2.20%). 

Temperature changes appear to more greatly affect the overall persistence of the persistent 

pollutants than the more polar current-use pesticides. 
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Figure 5.8: Percent changes in long-term fate metrics under given climate change scenarios compared to current climate conditions 

 

Climate Change Scenarios 

A: Temperature – 303.19K; Precipitation rate – 4.33e-3 m/d 

B: Temperature – 303.19K; Precipitation rate – 5.89e-3 m/d 

C: Temperature – 305.29K; Precipitation rate – 4.33e-3 m/d 

D: Temperature – 305.29K; Precipitation rate – 5.89e-3 m/d 
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Figure 5.8 illustrates the changes to atmospheric long range transport potential, which can 

be seen to reflect the changes to atmospheric concentrations previously described. During 

reduced precipitation (4.33e-3 m.d
-1

), the persistent contaminants observed mean increases in 

atmospheric long range transport potential of 3.47% and 2.81% (with respective ranges of 

0.18%-9.78% and 0.11%-9.68%), when the temperature increased, respectively, by 0.4 K and  

2.5 K. However, when the precipitation rate was increased to 5.89 e-3 m.d
-1

, and temperature 

also increased by 0.4 K and later by 2.5 K, the atmospheric long range transport potential 

decreased, respectively, by mean values of 1.87% and 2.60% (the respective ranges for the 

decreases were 0.12%-4.51% and 0.20%-5.39%). For the current-use pesticides, the respective 

ranges for the decrease in atmospheric long range transport potential, when the precipitation rate 

increased and the temperatures increased by 0.4 K and 2.5 K, were 1.95%-9.18% and 2.11%-

9.80% (with respective averages of 6.6% and 6.5%). When the precipitation rate decreased by 

11% to 4.33e-3 m.d
-1

, the atmospheric long range transport potentials of the current-use 

pesticides increased in ranges of 3.84%-23.20% (with an average of 16.3%) and 3.71%-25.00% 

(with an average of 16.4%), given respective increases in temperature of 0.4 K and 2.5 K. 

Temperature is marginally influential in the atmospheric long range transport potentials of the 

contaminants, more so for the current-use pesticides.   

Climate change is therefore expected to affect the long-term environmental fates of the 

organic contaminants. Precipitation changes are expected to be particularly influential in the 

atmospheric concentrations and long range transport potential for the more polar current-use 

pesticides. This is so because precipitation is key in ‗washing out‘ atmospheric organic 

contaminants, especially the more polar chemicals. For the persistent organic pollutants, 
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temperature changes are expected to have notable effects on their surface water concentrations 

and overall persistence.  

The observed smaller net effect of temperature on atmospheric fates is expected for the 

persistent pollutants, due to co-occurring temperature-regulated processes, such as re-

volatilization. The current-use pesticides appear to be less subject to these types of processes, 

with more notable effects on atmospheric fates given temperature changes. However, ambient 

temperature changes appear to have greater effects on the overall persistences of the persistent 

pollutants than the more polar current-use pesticides. Although it has been shown that 

temperature is a major determinant of atmospheric (Lamon et al., 2009; Paul et al., 2012), and 

hence, environmental fates, in this tropical region, precipitation appears to be the major climate 

determinant of the environmental fates of the evaluated contaminants. 

 

5.3.4 Forest versus climate change 

The effects of replacing grasslands with forests and the potential effects of climate 

change were compared. In this evaluation, land-use distribution scenario II was employed as the 

control. Land-use distribution scenario I was used as the representative forested landscape.  

The percent changes to the fate metrics, given the various scenarios for the 16 chemicals, 

are given in Table 5.4 and Table 5.5, whereas Table 5.6 highlights the arithmetic means of the 

changes (with given ranges in brackets). It can be seen that for the persistent pollutants, 

decreasing precipitation led to increased atmospheric long range transport potential by 0.1% - 

9.2%. On the other hand, increased precipitation led to decreased atmospheric long range 

transport potential by a maximum of 5.1%. 
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Table 5.4: Changes in given fate metrics when climate change scenarios are applied to an un-forested landscape versus replacing the 

un-forested landscape with a forested landscape given the 1986-2005 climate – Persistent pollutants 
 Percent change (%) 

Fate metric Scenario PBDE-47 PBDE-99 PBDE-153 PBDE-209 TCDD OCDD PeCDF HxCDF 

Overall 

persistence 

A -4.34 -1.14 -1.75 -0.43 -5.21 -1.65 -4.16 -2.45 

B 2.28 0.54 0.91 0.21 3.17 0.90 2.40 1.35 

C -3.13 -0.85 -1.29 -0.37 -3.66 -1.09 -2.54 -1.54 

D 3.43 0.77 1.37 0.28 4.94 1.45 4.03 2.23 

Forest -6.16 -1.49 -7.58 -6.29 13.79 -5.14 -4.39 -9.50 

Atmospheric 

long range 

transport 

potential 

A 1.30 3.99 3.82 9.19 0.17 5.90 0.48 0.91 

B -0.80 -2.28 -2.24 -4.27 -0.11 -3.34 -0.32 -0.60 

C 0.89 3.01 2.71 9.09 0.12 4.23 0.27 0.50 

D -1.28 -3.38 -3.49 -4.37 -0.17 -5.09 -0.58 -1.10 

Forest -2.27 -3.46 -3.39 -5.42 -1.72 -4.26 -1.92 -2.11 

 

Table 5.5: Changes in given fate metrics when climate change scenarios are applied to an un-forested landscape versus replacing the 

un-forested landscape with a forested landscape given the 1986-2005 climate – Current-use pesticides 
 Percent change (%) 

Fate metric Scenario Diazinon Dimethoate Carbaryl Methomyl Cyhalothrin Cypermethrin Diuron Glyphosate 

Overall 

persistence 

A -14.48 -0.34 -0.09 -0.02 -10.42 -5.43 -3.20 -0.06 

B 7.32 0.14 0.05 0.01 5.11 2.54 1.26 0.03 

C -13.96 -0.33 -0.08 -0.01 -10.16 -5.06 -3.45 -0.06 

D 7.94 0.15 0.06 0.01 5.41 2.92 1.08 0.03 

Forest 1.15 -5.12 -6.99 -9.65 0.10 -3.04 -2.07 0.28 

Atmospheric 

long range 

transport 

potential 

A 3.52 22.67 23.17 23.15 5.08 7.67 20.40 23.19 

B -1.79 -9.03 -9.14 -9.17 -2.48 -3.66 -7.32 -9.18 

C 3.40 21.85 22.54 22.33 5.08 7.51 24.56 22.35 

D -1.94 -9.64 -9.60 -9.77 -2.49 -3.81 -3.97 -9.80 

Forest -1.56 -10.43 -10.58 -10.59 -3.18 -4.66 -9.35 -10.60 
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Table 5.6: Mean percent changes to fate metrics (with ranges in brackets) for various scenarios in 

the Rio Cobre watershed using grassland given the 1986-2005 climate as the control 

 

Scenario Mean (range) percent change in select fate 

metrics for the persistent pollutants (%) 

Mean (range) percent change in select fate 

metrics for the current-use pesticides (%) 

Overall persistence Atmospheric long 

range transport 

potential 

Overall persistence Atmospheric long 

range transport 

potential 

A -2.6 

(-5.21: -0.43) 

3.2 

(0.12: 9.19) 

-4.3 

(-14.48: -0.01) 

16.1 

(3.52: 23.19) 

B 1.5 

(0.21: 3.17) 

-1.7 

(-4.27: -0.11) 

2.1 

(0.01: 7.32) 

-6.5 

(-9.18: -1.79) 

C -1.8 

(-3.67: -0.37) 

2.6 

(0.12: 9.09) 

-4.1 

(-13.96: -0.01) 

16.2 

(3.40: 24.56) 

D 2.3 

(0.28: 4.94) 

-2.4 

(-5.09: -0.17) 

2.2 

(0.01: 7.94) 

-6.4 

(-9.80: -1.94) 

Forest -3.8 

(-9.50: 13.79) 

-3.1 

(-5.42: -1.72) 

-3.3 

(-9.65: 1.15) 

-7.9 

(-10.60: -2.58) 

 

 

 

Replacing the grasslands with forests led to decreases in atmospheric long range transport 

potentials in the range of 1.7% - 5.4%. This suggests that for these pollutants, in this tropical 

region, replacing grasslands with forests may negate or even obliterate the negative effects of 

reduced precipitation on their atmospheric concentrations and, consequently, atmospheric long 

range transport potentials. 

The atmospheric long range transport potential for the current-use pesticides in this 

tropical grassland scenario escalated, with mean increases of 16% (with ranges of 3.4% to 

24.6%) when precipitation was reduced. However, replacing the grassland with forests saw a 

decrease in this metric for these contaminants by almost 8% (with decreases ranging from 2.6% 

to 10.6%).  

Generally, overall persistence in the grassland increased during higher precipitation. 

However, this metric decreased when the vegetative cover was tropical forest. Therefore, it is 

A: Temperature – 303.19K; Precipitation rate – 4.33e-3 m/d 

B: Temperature – 303.19K; Precipitation rate – 5.89e-3 m/d 

C: Temperature – 305.29K; Precipitation rate – 4.33e-3 m/d 

D: Temperature – 305.29K; Precipitation rate – 5.89e-3 m/d 
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possible that having forests, during conditions of increased precipitation, could reduce/obliterate 

the associated increases in overall persistence. Also, decreased precipitation was associated with 

increased atmospheric long range transport potential, a negative impact that can then be 

tempered/mitigated by replacing grasslands with forests, which has now been shown to reduce 

this metric in the tropical landscape. 

Given the ability of forests to reduce overall persistence and atmospheric long range 

transport potential, it appears that forests could temper or obliterate the negative impacts of 

climate change. On the other hand, it can be expected that health risks would be enhanced in a 

deforestation project and could be exacerbated if deforestation is performed during select climate 

change conditions.   

 

5.3.5 Forest effects given climate change 

This section of the assessment involved computing fate metrics when the climate change 

scenarios were applied to land-use distribution scenarios I (forested landscape) and II (un-

forested landscape). These were then compared to those obtained in an un-forested landscape 

under the 1986-2005 climate conditions.  

The changes to overall persistence, atmospheric long range transport potential and annual 

average concentrations for both the forested and un-forested landscapes in equivalent climate 

change scenarios over the control climate (temperature - 302.79 K; precipitation - 5.35e-3 m.d
-1

) 

were comparable to each other, with average differences typically less than 1%.  For example, 

when the ambient temperature and precipitation were respectively increased by 0.4 K (to 303.19 

K) and 11% (5.89e-3 m.d
-1

), the mean atmospheric long range transport of the persistent 

pollutants in the grassland watershed (control) reduced by 1.77%. Also, applying the same 
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climate change scenario to the current forested land resulted in a reduction of 1.89% in the 

atmospheric long range transport potential.  

When the same climate change scenario was applied for the current-use pesticides in the 

grassland, the atmospheric long range transport potential was reduced by 6.57%. However, in the 

forested watershed, the pesticides displayed a reduction in the same metric of 6.65%, given the 

same climate change scenario. This trend was generally observed for all the assessed chemicals, 

whereby the long-term fate metrics were similarly altered by climate change in both the 

grassland and forest, with marginally larger effects in the forest. It can be concluded that fate 

metrics are similarly affected by climate change in both forests and grasslands over control 

climatic conditions, despite the observance of a slightly larger effect for forests.  

 

Table 5.7: Percent changes in fate metrics for the tropical forest over the grassland for given 

climate change conditions 

Climate 
Change 

Scenario 

Percent change in fate metrics for 
persistent pollutants (%) 

Percent change in fate metrics for 
current-use pesticides (%) 

Overall persistence Atmospheric long 

range transport 

potential 

Overall 

persistence 

Atmospheric long 

range transport 

potential 

Current -3.77 -3.08 -3.30 -7.86 

A -3.77 -2.82 -3.07 -7.42 

B -3.76 -3.23 -3.39 -8.05 

C -3.74 -2.87 -3.05 -7.42 

D -3.73 -3.28 -3.36 -8.05 

 

 

 

 

 

 

Current: Temperature – 302.79 K; Precipitation rate – 5.35e-3 m/d 

A: Temperature – 303.19K; Precipitation rate – 4.33e-3 m/d 

B: Temperature – 303.19K; Precipitation rate – 5.89e-3 m/d 

C: Temperature – 305.29K; Precipitation rate – 4.33e-3 m/d 

D: Temperature – 305.29K; Precipitation rate – 5.89e-3 m/d 
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Another evaluation involved computing the fate metrics for land-use distribution scenario 

II (grassland/un-forested landscape), given the 1986-2005 climate conditions, as well as using 

climate change scenarios. The metrics were also computed for land-use distribution I (forested 

landscape), given the 1986-2005 climate conditions for the Rio Cobre watershed, as well as 

having applied climate change scenarios. The metrics computed for equivalent climate 

conditions in land-use distribution I and II were compared. The results in Table 5.7, which 

include the arithmetic means of the changes observed, reveal that for the persistent pollutants, the 

forest was able to reduce atmospheric transport potential compared to grasslands, by up to 3.3% 

during increased precipitation (a rate of 5.89e-3 m.d
-1

), compared to 3.1% under current (control) 

conditions. However, the ability of the tropical forest to reduce this fate metric over grassland 

was retarded during decreased precipitation (a rate of 4.33e-3 m.d
-1

): -2.82% and -2.87%, for the 

respective temperature increase of 0.4 K and 2.5 K (ambient temperatures of 303.19 K and 

305.29 K, respectively), compared to -3.08% under control climate conditions. For these 

persistent chemicals, the forest was more effective at reducing the atmospheric long range 

transport potentials when precipitation increased, especially when the higher 2.5 K temperature 

rise was applied. The tropical forest was less effective at reducing these metrics during reduced 

precipitation, especially at the lower temperature rise of 0.4 K. On the other hand, the forest 

reduced the overall persistence of the persistent pollutants over grasslands similarly, between 

3.73% and 3.77%, under all climatic conditions.  

For the pesticides, having a forest in the landscape resulted in a reduction in the 

atmospheric long range transport potential, in the region of 8.1%, during increased precipitation 

compared to 7.9% with a forest under the current climate. The overall persistence of the 

pesticides were lowered by the forest compared to grassland, under all climatic conditions. 
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However, the reductions in the overall persistence of these chemicals were enhanced during 

increased precipitation, but reduced when precipitation rates decreased. The enhanced reductions 

in the overall persistence, due to increased precipitation rates, were lower when the temperature 

increase was the greater value – 2.5 K. The effect of temperature on the atmospheric long range 

transport potentials for these pesticides was negligible.  

These all suggest that even as the climate changes, tropical forests may be more effective 

than grasslands at reducing the overall persistences of the organics through enhanced uptake and 

the ensuing vegetative degradation, especially the persistent pollutants. However, for the 

evaluated current-use pesticides, it appears that the tropical forests may be less effective in 

reducing overall persistence during lowered precipitation, but more effective during increased 

precipitation.  

It appears then that tropical forests are better able to temper or counteract some of the 

negative effects of climate change than tropical grasslands. For instance, the tropical forest was 

notably better at reducing atmospheric long range transport potentials, during increased 

precipitation, than grassland. Also, the tropical forest was better at decreasing the atmospheric 

long range transport potential of the persistent pollutants during higher temperature rises, for any 

given precipitation rate. However, the tropical forest was slightly more effective at lowering the 

mean overall persistences of both the persistent contaminants and current-use pesticides during 

the lower temperature rise – they were marginally less capable at the higher temperature rise. 

The reductions in atmospheric long range potential due to the presence of the tropical forest were 

collectively greater for the current-use pesticides (given arithmetic means of 7.4% to 8.0%) 

compared to the collective reductions in this metric for the persistent pollutants (with arithmetic 

means of 2.8% to 3.3%), irrespective of climatic conditions. However, the presence of the forest 
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in the landscape led to marginally larger reductions in the collective overall persistence of the 

persistent pollutants (with arithmetic means ranging from 3.7%-3.8%) than for the current-use 

pesticides (displaying arithmetic means of 3.1% to 3.4%). Therefore, tropical forests may 

become more important in regulating the environmental fates and health impacts of organic 

contaminants, especially the more polar ones, as the climate changes. The outgoing conclusion 

though is that climatic conditions dictate the effect of tropical forests on the fates, and ensuing 

health impacts, of organic contaminants, with the change also dependent on the properties of the 

chemical. 

 

5.3.6 Land-use effects 

The overall persistence and atmospheric long range transport potential for all 16 organic 

compounds were calculated for land-use distribution scenarios III to VI and compared to those 

calculated for land-use distribution scenario I, assuming the 1986-2005 climatic conditions. The 

changes to the computed fate metrics for land-use distribution scenarios III to VI over land-use 

distribution scenario I are illustrated in Figure 5.9. There is a general increase in the overall 

persistence of the persistent pollutants when the forest portion is reduced by 30%. The greater 

the allocation of this reduced forested portion for agricultural expansion, the greater the increase 

in overall persistence. In fact, for the persistent contaminants, reducing the forested portion, by 

30% solely for agricultural expansion, was associated with increases in overall persistence, by up 

to 5%, whereas increasing the forested portion, by 30% through afforestation of agricultural land, 

led to decreased overall persistence, by as much as 12%. 
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Figure 5.9: Percent change in long-term fate metrics in given land-use distribution scenarios 

compared to the current land-use distribution 

 

Most of the current-use pesticides experienced increased overall persistence when the 

forested portion of the landscape decreased by 30%. Typically, for these contaminants, the 

increases in overall persistence were higher as the portion of the forest allotted to urban sites 

increased. For a select few, such as diazinon and cypermethrin, the increases in the overall 

persistence during deforestation correlated with the amount turned into agricultural land. The 
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overall persistence of the current-use pesticides generally decreased, by at most 9%, when 

afforestation of agricultural lands was employed.  

The atmospheric long range transport potential of the 16 evaluated organics increased 

when deforestation was employed. The increases were more notable for the current-use 

pesticides. For example, when the forests were reduced by 30% solely for urban expansion, the 

increase in the atmospheric long range transport potentials of the pesticides ranged from 1.8% to 

8.3%, whereas those for the persistent pollutants ranged from 0.8% to 4.8%. When the landscape 

was deforested for both urban and agricultural expansion, the atmospheric long range transport 

potentials of the persistent organics and the current-use pesticides increased with similar and 

respective ranges of 0.14%-0.20% and 0.14%-0.50%. Also, similar decreases in the atmospheric 

long range transport potentials of all 16 assessed chemicals were observed when the forested 

portion of the landscape was enhanced at the expense of agricultural land.  

In this evaluation, the weighted leaf area index used for the forest in the Rio Cobre 

watershed was 4.3, whereas the leaf area indices for agricultural and urban lands were 3.6 and 

1.2, respectively. Therefore, the uptake of chemicals from the atmosphere by forest vegetation 

should be marginally larger than by agricultural vegetation. Consequently, the observed marginal 

increases and reductions in the atmospheric long range transport potentials of the organics, given 

the respective deforestation for agricultural expansion and afforestation of agricultural lands, are 

reasonable. On the other hand, agricultural lands may be more effectively transferring the 

uptaken chemicals to the soils than forests, thereby allowing for the observed enhanced overall 

persistence during agricultural expansion.  

It can be seen that land-use allocation impacts the environmental fates, and consequently 

the health impacts, of select organic compounds. Also, the type of co-existing land-use appears 
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to affect the ability of forests to regulate the environmental fates of the contaminants. As a result, 

environmental modeling assessments should, as best as possible, employ detailed representation 

of the landscape. 

 

5.3.7 Climate change effects given varying forested proportions 

In the previous section, it was shown that land-use allocations impact the overall 

persistence and atmospheric long range transport potentials of select organics within the Rio 

Cobre watershed. In this section, the aim was to examine the combined effects of climate change 

and land-use allocations on the select fate metrics. Therefore, the fate metrics were computed 

when the four (4) climate change scenarios were applied to land-use distribution scenarios I and 

III to VI. The outputs of land-use distribution scenarios III to VI were compared to those in land-

use distribution I with equivalent climatic conditions.  

Figure 5.10 shows that for the persistent pollutants, differences in the effects of climate 

change, especially changes to the ambient temperature, on the fate metrics were almost 

imperceptible compared to those due to land-use allocations. In fact, compared to land-use 

allocation effects on environmental fates, changes to ambient temperature caused negligible 

effects. The effects of precipitation on environmental fates as land-use varied were more notable. 

When agricultural lands were converted to forests, overall persistence was generally less 

efficiently reduced during increased precipitation. For example, for the persistent organics, when 

the forests were reduced solely for urban expansion, increased precipitation generated changes in 

overall persistences in the range of 0.38%-7.88%, whereas reduced precipitation generated 

changes with a range of 0.35%-7.79%.  

 



179 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Land-use distribution effects during climate change 
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When some agricultural lands were converted to forests (during afforestation), the 

reductions in the overall persistence of some persistent organics, such as PBDE-153, were 

enhanced during increased precipitation, whereas for most of the remaining persistent organics, 

the reductions in overall persistence were tempered during increased precipitation (with 

reductions ranging from 0.75% to 11.79%). For some pollutants, such as PBDE-99, PBDE-153 

and Hx-CDF, there were observed increases in their overall persistence during increased 

precipitation given deforestation, especially for urban expansion.  

In general, the increases in the overall persistence of the current-use pesticides during 

deforestation were marginally enhanced during increased precipitation and maginally retarded 

during decreased precipitation, especially when deforestation occurred for some degree of urban 

expansion.  

In all landscapes with reduced forest coverage, the atmospheric long range transport 

potentials of the organic chemicals were generally increased – enhanced whenever precipitation 

increased (given a range in this metric of 0.14%-8.28%) and tempered during decreased 

precipitation (given a range in this metric of 0.14%-8.27%). The increases were further enhanced 

during the higher temperature rise of 2.5 K. The effects of climate change, given deforestation 

for urban expansion and afforestation of agricultural lands, were not as notable. 

Although land-use allocations have been shown to affect the environmental fates and 

consequent health impacts of select organics, the effects of these are also influenced by climate 

and climate change, and vice versa. Land use allocation therefore impacts the long-term fates of 

the organic pollutants and also the effects of climate change on the environmental fates. 

Additionally, climate change appears to impact the effects of land-use allocation on the 

environmental fates of the examined organics.  
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5.4 Conclusions  

Climate change in tropical regions has the potential to substantially affect the long-term 

environmental fates of select organic pollutants. The dynamic assessment highlighted that the 

surface water, atmospheric, sediment and urban film concentrations of both PBDE-47 and 

dimethoate were regulated by the precipitation rate. Increased precipitation was associated with 

increased overall persistence but decreased atmospheric long range transport potential. Although 

precipitation appears to be the major determinant of the fates of the evaluated organics in the 

given tropical region, changes to ambient temperature also produce effects, which appear to be 

more important in the overall persistences of the persistent pollutants than the more polar 

organics. 

The changes to the long term fate metrics were similar when climate change was applied 

to a tropical forested landscape and to the tropical un-forested landscape. However, when the 

absolute metrics in both biomes were compared, tropical forests were slightly more effective at 

combating the effects of climate change. However, the absolute effect depends not only on the 

properties of the pollutant, but also on the climate change scenario. Therefore, climatic 

conditions do influence the effects of tropical forests on the fates and, potentially, the health 

impacts of the evaluated organic compounds. There are indications that forests, in tropical 

regions, may temper any health risks associated with the evaluated contaminants under climate 

change conditions. 

The influence of tropical forests on the environmental fates of the assessed contaminants 

during climate change appears to be dependent on the size of the forest as well as land-use 

allocations. Co-existing land-uses also appear to co-determine the long-term fates of the 

pollutants.   
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This study was considered among the first to attempt to quantify and evaluate the 

influence of forests, together with climate change and land-use distribution, on the environmental 

fates of select organic contaminants in a tropical region. The evaluation was associated with a 

number of limitations. Many input parameters had to be estimated and/or approximated when 

unavailable. Also, the temperature dependences of the variables were not considered for the 

climate change scenarios. At the same time, due to a lack actual data, a hypothetical emission 

scenario was applied. However, the evaluation was comparative, allowing for some 

compensation for the uncertainties in the parameters. It is recommended that future work be 

directed towards measuring/ascertaining currently unavailable parameters and, thereafter, re-

evaluating the effects of climate, climate change and land-use distribution, together with forests 

on the environmental fates of the organics.   

This analysis did not attempt to ascertain the role of specific mechanisms such as re-

volatilization or uptake in the influence of tropical forests for various climatic conditions or 

according to climatic drivers. Such studies are recommended to elucidate the potential impacts of 

forests in different tropical climates. 

Consideration must be given to the fact that this assessment employed grasslands as the 

control. Grasslands are a type of vegetative cover, as are forests, and therefore may be more 

similar to forests in their effects than other land covers/uses, such as bare rock or urban centers. 

Although differences between forests and grasslands, on the influence on the environmental 

fates, were notable, the effects of climate change on fates were comparable. It is expected that 

the comparisons between tropical forests and bare rock or even urban areas in varying climatic 

conditions will produce more considerable differences.  
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This evaluation showed that the long-term fates of the organic contaminants differed for 

various landscape architectures/layouts. When forest acreage was maintained, the fate metrics 

changed, depending on the proportions of the co-existing land uses or vegetation. This implies 

that landscape architecture (land-use allocation) influence the fates of organic contaminants in 

tropical watersheds. Also, the effects of forest versus the grassland on chemical fates varied, 

albeit slightly, depending on the land portions allocated to the co-existing vegetation or land-

uses. This therefore demonstrated that the effect of tropical forests was influenced by land-use 

allocations or co-existing land uses. These are important considerations for regional land-use 

planning. Therefore, any assessment of contaminant fates and health impacts requires careful 

description and representation of the land. 

For the purpose of land-use planning for sustainable development, the roles of other types 

of vegetative cover in governing the environmental fates of organic contaminants should be 

individually examined.  

The results of this study are considered applicable to other regions displaying similar 

characteristics to the Rio Cobre watershed. However, site-specific evaluations are recommended, 

when possible. 
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Chapter 6 

Summary 

 

The overarching aim of this dissertation was to contribute to characterizing the role of 

tropical forests and climate change on the environmental fates of select organic compounds. A 

few organic compounds were chosen for this assessment with the criteria that they were of 

current global concern, ubiquitous and associated with adverse health and/or environmental 

effects. Among those chosen were some poly-brominated diphenyl ethers (PBDEs), current-use 

pesticides, dioxins and furans. To complete this assessment, a number of specific objectives were 

generated. The methods to achieve the objectives were then developed. The execution of the 

developed methods furnished information on the influence of tropical forests. These are 

summarized below. 

The first objective was to ascertain, via field measurements, whether tropical forests filter 

organic pollutants. The Rio Cobre watershed in Jamaica was chosen as the study site. Within this 

area, samples of soil, bulk deposition, litterfall and air were collected from a forest and a nearby 

clearing. The concentrations of select polybrominated diphenyl ethers (PBDEs) in the samples 

were quantified and used to compute filter, accumulation and depletion factors. Filter and 

accumulation factors greater than one (> 1) and depletion factors less than one (< 1) signify a 

filter effect. It was found the tropical forests do filter the PBDEs by transferring them from the 

atmosphere to the forest soils. They therefore operate similarly to their temperate counterparts.  
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The goal of the second objective was to evaluate the effects of tropical forest parameters 

on the long-term fates of the select organic contaminants, using multimedia modeling. 

Multimedia modeling was the chosen method, since it allows for transparent assessment when 

monitoring data are unavailable or lacking. The challenges, encountered during the field 

measurements for the first objective, confirmed that field measurements are still encumbered for 

some developing countries, and that the practical alternative is the use of multimedia 

environmental models. In the absence of an appropriate spatially heterogeneous level IV 

evaluative environmental model, one was developed in this objective. To do so, components of 

the Multimedia Urban Model (MUM) were integrated into the domain of CalTOX 1.5 to create a 

16-compartment dynamic multimedia model. The model, RioShed, was then applied to the Rio 

Cobre watershed using a hypothetical emission scenario. The outputs of various forested 

comparison scenarios were compared to those generated in select control scenarios, thereby also 

compensating for the uncertainties in the input parameters. The surface water long range 

transport potential was sensitive to parameters associated with the water, such as aquatic half-

life, water depth, amongst others. The remaining long-term fate metrics were responsive to 

parameters not necessarily associated with specific compartments. The two forest parameters 

with substantial effects on the fates of the 16 evaluated organic chemicals were canopy drip and 

leaf area index.  

The tropical forest generally decreased the overall persistence of the current-use 

pesticides and persistent pollutants, with evergreen forests being more effective in achieving the 

decrease. Additionally, the tropical forests, especially the evergreen, were more effective at 

reducing the atmospheric long range transport potential of all the contaminants, especially the 

current-use pesticides. The conclusion was that tropical forests do influence the long term fates 
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of the select organic compounds, and that such influence depends on the properties of the 

chemicals, as well as the composition and other properties of the forest.   

The final objective was to determine the effects of tropical climatic conditions, climate 

change and land use on the long-term environmental fates of the contaminants, as well as 

whether these phenomena also altered the effect of tropical forests on the aforementioned fates. 

Since field measurements were not possible, RioShed, developed in the second objective, was 

employed using a hypothetical emission scenario. The assessment scenarios were generated 

using the 2013 Intergovernmental Panel on Climate Change (IPCC) climate change predictions 

for the Caribbean. Under conditions of increased precipitation, overall persistence increased, 

whereas atmospheric long range transport potential decreased, with alternate outcomes given the 

alternate climate condition. In terms of overall persistence, the effect of forests was retarded 

under conditions of increased precipitation and decreased precipitation for the persistent 

pollutants and the current-use pesticides, respectively. Changes to precipitation rates were more 

important for the more polar current-use pesticides. However, although the changes to fate 

metrics were less perceptible given changes in temperature, this climatic variable appeared to 

more greatly affect the overall persistence of the persistent pollutants than the current-use 

pesticides. Even during climate change, co-existing land uses were found to influence the 

environmental fates of the chemicals. Nevertheless, it was established that tropical climate 

change will affect not only the long-term fates of organic contaminants, but that this phenomena 

will also impact the influence of tropical forests and landscape architecture on these fate and 

potential health impacts.  

This study was associated with a number of limitations. The field measurements were 

impeded by inadequate resources, thereby restricting the scope of the assessment. In the 
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modeling exercises, a number of the parameters were estimated, due to an unavailability of 

actual values. Emission data was absent for the study area and, as such, a reasonable but 

hypothetical emission scenario was applied in the modeling exercises. Also, this study was 

considered to be a first-step evaluation. 

Future work should be directed towards measuring/ascertaining site-specific parameters, 

such as soil organic carbon content, porosity, leaf area index, among others. These were not 

available for the study area, and had to be estimated. Many of the properties, such as partition 

coefficients, are temperature-dependent. However, the values, which were typically available and 

therefore used, had been pre-determined at 25 ⁰C. Values determined at the mean temperature of 

the study site (29 ⁰C or 30 ⁰ C) were generally unavailable. It is recommended that for improved 

accuracy, studies quantifying these variables at different temperatures should increase. Once 

more appropriate properties are available, this same study should be re-conducted using those 

ascertained parameters and properties.  

This dissertation identified the presence of the select PBDEs only in the surface soils, 

atmosphere, litterfall and bulk deposition at two sites in the Rio Cobre watershed. Attempts were 

not made to quantify the presence in other media, such as surface water or root soils. Also, no 

attempt was made to identify the sources of the PBDEs in the given watershed. In order to 

elucidate the role of the forests, as well as assist decision-making regarding environmental 

contamination, these additional assessments are necessary and, as such, are recommended. It is 

also suggested that the scope be widened to include other forests and sites in the same watershed. 

It is considered worthwhile to expand the nature of the current study to include 

assessments of the individual roles of other land uses or vegetative covers in the environmental 

fates and health impacts of the evaluated and/or other organic contaminants. Such assessments 
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should also incorporate the influence of co-existing land uses on the fates and health impacts 

within the region. Regression analyses should be considered, which may require the inclusion of 

more scenarios.  

Although the results of this dissertation are considered applicable to similar regions, 

region-specific evaluations are more informative, and are therefore recommended when possible. 

Also, making RioShed GIS compatible and integrating select GIS capabilities should produce 

more visual results, which are often helpful. With that said, improving the spatial heterogeneity 

of RioShed, without adding complexity and resource requirements, is also a worthwhile 

endeavor to undertake, thereby contributing to the ability of scientists and regulating agencies to 

quickly garner information about the environmental fates of organic contaminants in tropical 

developing countries. 

In order to conduct some parts of the suggested research, such as field measurements, the 

challenges encountered in the current study would have to be alleviated. Some of the challenges 

were primarily associated with the developing status of the study area. For example, in order for 

this study to be relatively cost-effective, many of the sampling apparatus had to be transported 

from the US. Only one laboratory was found adequately equipped to perform the extraction and 

clean-up according to international standards. However, the cost to do so was exorbitant. 

Unfortunately also, shipping the soil, litterfall and deposition samples to the US was difficult. As 

a result, such samples were extracted and cleaned in Jamaica while the air samples were shipped 

to the US for extraction and clean-up. All samples were instrumentally analyzed in the US as the 

cost to do so in Jamaica was excessively high – above the available resources.These are common 

challenges in developing countries, such as Jamaica, where financial resources and analytical 

facilities are limited. Until they can be overcome, alternative tools such as multimedia 
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environmental models should be employed to conduct the research/studies recommended above, 

so as to contribute knowledge of the role of tropical forests in the fates and health impacts of the 

evaluated organics, as well as other organic contaminants.  
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Appendix A 

 
Field monitoring data for the Rio Cobre watershed 

 

 

Table A.1: PBDE masses in the atmosphere of a forest and adjacent clearing in Rio Cobre watershed sampled using poly-urethane 

foam (PUF) disks 
 Contaminant mass (pg) 

Sampling area Forest Clearing 

PUF disk number 1 2 3 4 5 1 2 3 4 5 

           

PBDE-28 3.14 2.64 2.59 2.54 2.55 2.85 5.40 2.45 2.49 4.33 

PBDE-47 4.05 9.36 6.61 6.88 6.07 7.23 34.22 3.66 6.77 10.43 

PBDE-100 3.32 3.54 3.28 2.50 2.97 2.63 6.80 2.61 3.03 3.19 

PBDE-99 20.01 11.83 21.98 2.54 12.24 33.86 28.76 3.09 16.74 6.78 

PBDE-154 2.71 2.96 3.13 - 2.69 3.12 4.17 3.13 2.80 12.26 

PBDE-153 2.59 3.21 3.68 3.02 2.76 2.60 4.37 2.59 2.78 4.27 

PBDE-183 2.71 3.13 6.02 - 2.63 3.01 3.66 2.59 2.84 2.68 

PBDE-209 4.16 4.40 4.91 5.11 4.13 8.50 7.65 4.23 17.75 11.12 

Total 42.69 41.08 52.19 - 36.04 63.81 95.04 24.34 55.20 55.06 

           

Sampling rate (m
3
.d

-1
) 3 3 3 3 3 3 3 3 3 3 

Sampling period (days) 105 105 105 105 105 105 105 105 105 105 
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Table A.2: PBDE masses in the depositions of a forest and adjacent clearing in the Rio Cobre watershed  
Contaminant Contaminant mass (pg) 

 Forest Clearing 

PBDE-28 268.25 265.75 267.25 658.75 310.75 352.75 263.75 318.25 

PBDE-47 475.62 285.12 327.12 283.12 447.62 303.62 316.12 254.62 

PBDE-100 300.62 266.62 271.12 259.62 287.12 263.62 265.62 259.62 

PBDE-99 466.06 290.06 307.06 275.56 412.06 265.56 282.06 267.56 

PBDE-154 1624.68 262.68 260.18 260.68 272.68 262.68 260.68 262.18 

PBDE-153 626.48 269.98 269.98 270.48 288.48 286.98 269.98 270.48 

PBDE-183 1804.44 297.94 272.44 271.44 279.44 346.44 271.44 271.44 

PBDE-209 7456.56 436.56 453.06 435.06 644.56 434.06 435.06 434.06 

         

Sampling days 30 21 21 30 30 30 21 21 

Sampling cross-sectional 

area (m
2
) 

5.67e-3 5.67e-3 5.67e-3 5.67e-3 5.67e-3 5.67e-3 5.67e-3 5.67e-3 
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Table A.3: PBDE mass concentrations in the litterfall of a forest and adjacent clearing in the Rio Cobre watershed 

Contaminant Contaminant mass concentration (pg.g
-1

) 

 Forest Clearing 

PBDE-28 43.24 65.86 65.73 399.25 

PBDE-47 50.99 86.47 94.81 352.59 

PBDE-100 36.69 68.93 72.54 271.40 

PBDE-99 41.86 77.25 100.39 297.09 

PBDE-154 34.11 64.72 64.72 284.34 

PBDE-153 34.93 67.16 67.16 283.65 

PBDE-183 35.31 67.52 67.65 326.67 

PBDE-209 59.13 107.85 111.21 434.22 

 

Table A.4: PBDE mass concentrations in soils of a forest and adjacent clearing in the Rio Cobre watershed 

Contaminant Contaminant mass concentration (pg.g
-1

) 

 Forest Clearing 

PBDE-28 68.82 26.87 39.35 37.15 49.22 50.71 57.89 26.89 28.92 25.75 

PBDE-47 35.01 42.89 56.35 35.64 78.58 48.65 82.91 37.77 32.10 25.63 

PBDE-100 27.38 27.50 28.85 32.25 50.39 44.02 42.45 27.08 26.71 25.93 

PBDE-99 34.50 42.83 30.79 40.67 78.48 55.53 45.31 27.02 26.40 26.33 

PBDE-154 27.19 26.16 27.41 26.27 47.93 35.86 40.34 26.49 26.12 26.14 

PBDE-153 43.67 142.83 162.07 102.04 261.68 139.30 238.47 27.56 27.14 26.92 

PBDE-183 27.91 28.38 29.49 35.57 52.00 48.56 43.38 28.95 27.54 27.11 

PBDE-209 44.17 45.18 47.36 46.11 82.77 62.95 69.69 44.28 43.37 43.28 
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Appendix B 
 

Formulation details for RioShed 

 

 

Table B.1: Compartment gains and losses for RioShed 
Environmental 

Compartment 

Gains Losses 

Atmosphere (A)  Diffusion from forest canopy 

Diffusion from surface water 

Diffusion from agricultural vegetation 

Diffusion from urban vegetation 

Diffusion from urban film 

Diffusion from forest surface soil 

Diffusion from agricultural surface soil 

Diffusion from urban surface soil 

Evapotranspiration from forest root soil 

Evapotranspiration from urban root soil 

Evapotranspiration from agricultural root 

soil 

Re-suspension of particles from forest 

surface soil 

 Re-suspension of particles from 

agricultural surface soil  

Re-suspension of particles from urban 

surface soil  

Sources 

Inflow from external environment 

Degradation/transformation 

Diffusion to forest canopy 

Diffusion to surface water 

Diffusion to agricultural vegetation 

Diffusion to urban vegetation 

Diffusion to urban film 

Diffusion to forest surface soil 

Diffusion to agricultural surface soil 

Diffusion to urban surface soil 

Deposition (wet, particle & gaseous) to 

forest canopy 

Deposition (wet, particle & gaseous) to 

agricultural vegetation 

Deposition (wet & particle) to urban 

vegetation 

Deposition (wet & particle) to urban 

film 

Deposition (wet & particle) to surface 

water 

Deposition (wet & particle) to forest 

surface soil 

Deposition (wet & particle) to 

agricultural surface soil 

Deposition (wet & particle) to urban 

surface soil 

Outflow to external environment 

 

Forest Canopy (Cf) Diffusion from atmosphere 

Deposition (wet & particle) from 

atmosphere 

Root uptake from forest root soil 

Sources 

Degradation/transformation 

Diffusion to atmosphere 

Deposition (litterfall, wax erosion, 

canopy drip) to forest surface soil 

Phloem flow to forest root soil 

Agricultural Vegetation 

(Ca) 

Diffusion from atmosphere 

Deposition (wet & particle) from 

atmosphere 

Root uptake from agricultural root soil 

Sources 

Degradation/transformation 

Diffusion to atmosphere 

Deposition (litterfall, wax erosion, 

canopy drip) to agricultural surface 

soil 

Phloem flow to agricultural root soil 

Urban Vegetation (Cu)  Diffusion from atmosphere 

Diffusion from urban surface soil 

Deposition (wet & particle) from 

atmosphere 

Degradation/transformation 

Diffusion to atmosphere 

Deposition (litterfall, wax erosion, 

canopy drip) to urban surface soil 



209 

 

Root uptake from urban root soil 

Sources 

Phloem flow to urban root soil 

Urban Organic Film (Iu)  Diffusion from atmosphere 

Deposition (wet & particle) from 

atmosphere 

Sources 

Diffusion to atmosphere 

Surface run-off to surface water 

 

Surface Water (W) Diffusion from atmosphere 

Diffusion from sediment 

Deposition (wet & particle) from 

atmosphere 

Surface run-off from urban film 

Run-off (surface and erosion) from 

agricultural surface soil 

Run-off (surface and erosion) from forest 

surface soil 

Run-off (surface and erosion) from urban 

surface soil 

Re-suspension from sediment 

Sources 

Inflow from external environment 

Degradation/transformation 

Diffusion to atmosphere 

Diffusion to sediment 

Deposition to sediment 

Outflow to external environment 

Forest Surface Soil (Sf) Diffusion from atmosphere 

Diffusion from forest root soil 

Deposition (litterfall, wax erosion, canopy 

drip) from forest canopy 

Deposition (wet & particle) from 

atmosphere 

Sources 

Degradation/transformation 

Diffusion to atmosphere 

Diffusion to forest root soil 

Leaching to forest root soil 

Re-suspension to atmosphere 

Run-off (surface and erosion) to surface 

water 

Urban Surface Soil  (Su) Diffusion from atmosphere 

Diffusion from urban root soil 

Deposition (wet & particle) from 

atmosphere 

Deposition (litterfall, wax erosion, canopy 

drip) from urban vegetation 

Sources 

Degradation/transformation 

Diffusion to atmosphere 

Diffusion to urban root soil 

Leaching to urban root soil 

Re-suspension to atmosphere 

Run-off (surface and erosion) to surface 

water 

 

Agricultural Surface Soil 

(Sa)  

Diffusion from atmosphere 

Diffusion from agricultural root soil 

Deposition (wet & particle) from 

atmosphere 

Deposition (litterfall, wax erosion, canopy 

drip) from agricultural vegetation 

Sources 

Degradation/transformation 

Diffusion to atmosphere 

Diffusion to agricultural root soil 

Leaching to agricultural root soil 

Re-suspension to atmosphere 

Run-off (surface and erosion) to surface 

water 

 

Forest Root Soil (Rf) Phloem flow from forest canopy 

Diffusion from forest surface soil 

Leaching from forest surface soil 

Sources 

Degradation/transformation 

Diffusion to forest surface soil 

Leaching to forest vadose soil 

Evapotranspiration to atmosphere 

Xylem sap flow to forest canopy 

 

Urban Root Soil (Ru) Diffusion from urban surface soil 

Leaching from urban surface soil 

Phloem flow from urban vegetation 

Sources 

Degradation/transformation 

Evapotranspiration to atmosphere 

Xylem sap flow to urban vegetation 

Diffusion to urban surface soil 

Leaching to urban vadose soil 
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Agricultural Root Soil 

(Ra) 

Diffusion from agricultural surface soil 

Phloem flow from agricultural vegetation 

Leaching from agricultural surface soil 

Sources 

 

Degradation/transformation 

Evapotranspiration to atmosphere 

Diffusion to agricultural surface soil 

Leaching to agricultural vadose soil 

Xylem sap flow to agricultural 

vegetation 

 

Forest Vadose Soil (Vf) Leaching from forest root soil 

Sources 

Degradation/transformation 

Leaching to groundwater 

Urban Vadose Soil (Vu) Leaching from urban root soil 

Sources 

Degradation/transformation 

Leaching to groundwater 

Agricultural Vadose Soil 

(Va) 

Leaching from agricultural root soil 

Sources 

Degradation/transformation 

Leaching to groundwater 

Sediment (d)  Diffusion from surface water 

Deposition from surface water 

Sources 

Degradation/transformation 

Diffusion to surface water 

Re-suspension to surface water  

 

Advective transport from compartment i to j (TAij) includes non-particle deposition, evapo-

transpiration, root uptake, leaching, run-off, xylem sap flow and phloem flow; non-

diffusive/advective physical transport (TNij) includes re-suspension and particle deposition; 

diffusive transport from compartment i to j (TDij) includes diffusion; losses from compartment i 

(Li) includes degradation, burial and outflows to the external environment; source input into 

compartment i (Si) includes sources and inflow from the external environment. 
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𝑁𝐴

𝑁𝑤

𝑁𝑑

𝑁𝑖𝑢

𝑁𝑐𝑎

𝑁𝑐𝑓

𝑁𝑐𝑢

𝑁𝑠𝑎

𝑁𝑠𝑓

𝑁𝑠𝑢

𝑁𝑟𝑎

𝑁𝑟𝑓

𝑁𝑟𝑢

𝑁𝑣𝑎

𝑁𝑣𝑓

𝑁𝑣𝑢  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= −  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
− 𝐿𝐴 𝑇𝑤 ,𝐴 0 𝑇𝑖𝑢 ,𝐴 𝑇𝑐𝑎 ,𝐴 𝑇𝑐𝑓 ,𝐴 𝑇𝑐𝑢 ,𝐴 𝑇𝑠𝑎 ,𝐴 𝑇𝑠𝑓 ,𝐴 𝑇𝑠𝑢 ,𝐴 0 0 0 0 0 0

𝑇𝐴,𝑤 −𝐿𝑤 𝑇𝑑 ,𝑤 𝑇𝑖𝑢 ,𝑤 0 0 0 𝑇𝑠𝑎 ,𝑤 𝑇𝑠𝑓 ,𝑤 𝑇𝑠𝑓 ,𝑤 0 0 0 0 0 0

0 𝑇𝑤 ,𝑑 −𝐿𝑑 0 0 0 0 0 0 0 0 0 0 0 0 0

𝑇𝐴,𝑖𝑢 0 0 − 𝐿𝑖𝑢 0 0 0 0 0 0 0 0 0 0 0 0

𝑇𝐴,𝑐𝑎 0 0 0 − 𝐿𝑐𝑎 0 0 0 0 0 𝑇𝑟𝑎 ,𝑐𝑎 0 0 0 0 0

𝑇𝐴,𝑐𝑓 0 0 0 0 − 𝐿𝑐𝑓 0 0 0 0 0 𝑇𝑟𝑓 ,𝑐𝑓 0 0 0 0

𝑇𝐴,𝑐𝑢 0 0 0 0 0 − 𝐿𝑐𝑢 0 0 0 0 0 𝑇𝑟𝑢 ,𝑐𝑢 0 0 0

𝑇𝐴,𝑠𝑎 0 0 0 𝑇𝑐𝑎 ,𝑠𝑎 0 0 − 𝐿𝑠𝑎 0 0 𝑇𝑟𝑎 ,𝑠𝑎 0 0 0 0 0

𝑇𝐴,𝑠𝑓 0 0 0 0 𝑇𝑐𝑓 ,𝑠𝑓 0 0 − 𝐿𝑠𝑓 0 0 𝑇𝑟𝑓 ,𝑠𝑓 0 0 0 0

𝑇𝐴,𝑠𝑢 0 0 0 0 0 𝑇𝑐𝑢 ,𝑠𝑢 0 0 − 𝐿𝑠𝑢 0 0 𝑇𝑟𝑢 ,𝑠𝑢 0 0 0

0 0 0 0 𝑇𝑐𝑎 ,𝑟𝑎 0 0 𝑇𝑠𝑎 ,𝑟𝑎 0 0 − 𝐿𝑟𝑎 0 0 0 0 0

0 0 0 0 0 𝑇𝑐𝑓 ,𝑟𝑓 0 0 𝑇𝑠𝑓 ,𝑟𝑓 0 0 − 𝐿𝑟𝑓 0 0 0 0

0 0 0 0 0 0 𝑇𝑐𝑢 ,𝑟𝑢 0 0 𝑇𝑠𝑢 ,𝑟𝑢 0 0 − 𝐿𝑟𝑢 0 0 0

0 0 0 0 0 0 0 0 0 0 𝑇𝑟𝑎 ,𝑣𝑎 0 0 − 𝐿𝑣𝑎 0 0

0 0 0 0 0 0 0 0 0 0 0 𝑇𝑟𝑓 ,𝑣𝑓 0 0 − 𝐿𝑣𝑓 0

0 0 0 0 0 0 0 0 0 0 0 0 𝑇𝑟𝑢 ,𝑣𝑢 0 0 − 𝐿𝑣𝑢  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−1
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Figure B.1: Matrix format for steady state solution of mass balance equations for RioShed. 

Li is the loss rate constant for compartment i (which includes reaction losses, as well as transport to other compartments and the external environment), d
-1

; Ni is 

the i
th

 compartmental inventory, mol; Ti,j is the transport rate constant from compartment i to j, d
-1

; and Si is the i
th

 compartmental input rate, mol.d
-1

. 

 

 



212 

 

 

Table B.2: Equations for fugacity capacities (in mol.m
-3

.Pa
-1

) in respective media in RioShed 
Medium Fugacity Capacity Equation Data Source 

Pure water (water) 𝑍𝑤𝑎𝑡𝑒𝑟 =  𝐻−1 California Environmental 

Protection Agency (CEPA), 

1993 

Pure air (air) 𝑍𝑎𝑖𝑟  =  (𝑅𝑇)−1 CEPA, 1993 

Aerosol particles (ap) 𝑍𝑎𝑝  =  
3×106𝑍𝑎𝑖𝑟

𝑉𝑃  
  CEPA, 1993 

Soil/sediment particles 

((i = s, r, v, w or d)p) 
𝑍𝑖𝑝 = 𝜌𝑖𝑝𝐾𝑜𝑐𝑓𝑜𝑐𝑖𝑝 𝑍𝑤𝑎𝑡𝑒𝑟  CEPA, 1993 

Aquatic biota (ab) 𝑍𝑎𝑏 = 𝐵𝐶𝐹 𝜌𝑤𝑎𝑡𝑒𝑟 𝑍𝑤𝑎𝑡𝑒𝑟  Yang, 2007 

Phloem (phl) 𝑍𝑝ℎ𝑙 = 𝑓𝑝ℎ𝑙𝑤𝑍𝑤𝑎𝑡𝑒𝑟  McKone et al., 1997 

Leaf Cuticle (l) 𝑍𝑙 = 𝑓𝑜𝑐𝑝 𝐾𝑂𝑊𝑍𝑤𝑎𝑡𝑒𝑟  Diamond et al., 2001 

Dissolved phase of 

urban film (h) 
𝑍ℎ = 𝑍𝑎𝑖𝑟 𝐾𝑂𝐴𝑓𝑜𝑐ℎ Diamond et al., 2001 

Bulk Surface Water 

(w) 
𝑍𝑤 = 𝑓𝑤𝑤 𝑍𝑤𝑎𝑡𝑒𝑟 + 𝑓𝑤𝑝𝑍𝑤𝑝 + 𝑓𝑤𝑎𝑏 𝑍𝑎𝑏  Yang, 2007 

Atmosphere (A) 𝑍𝐴 = 𝑓𝐴𝑎𝑝𝑍𝑎𝑝 + 𝑓𝐴𝑎𝑖𝑟 𝑍𝑎𝑖𝑟  Yang, 2007 

Plant canopy (cm: m = 

a, f, u)  
𝑍𝑐𝑚 = 𝐾𝑝𝑎𝜌𝑝𝑚 𝑍𝑎𝑖𝑟 + 𝐾𝑝𝑎

𝑎𝑝
𝑍𝑎𝑝𝜌𝑝𝑚 𝛽𝐴𝜌𝑠𝑚𝑝

−1   (for 

inorganic and dissociating organics, 𝑍𝑎𝑖𝑟 = 0) 

Cousins and Mackay, 2000 

Plant root (tm: m = a, f, 

u) 
𝑍𝑡𝑚 = 𝐾𝑝𝑠𝜌𝑝𝜌𝑟𝑚

−1𝑓𝑟𝑚𝑝
−1 (𝑓𝑟𝑚𝑎 𝑍𝑎𝑖𝑟 + 𝑓𝑟𝑚𝑤 𝑍𝑤𝑎𝑡𝑒𝑟

+ 𝑓𝑟𝑚𝑝 𝑍𝑟𝑚𝑝 ) 

McKone et al., 1997 

Root-zone soil (rm: m 

= a, f, u) 
𝑍𝑟𝑚 =  𝑓𝑟𝑚𝑎 𝑍𝑎𝑖𝑟 + 𝑓𝑟𝑚𝑤 𝑍𝑤𝑎𝑡𝑒𝑟 + 𝑓𝑟𝑚𝑡 𝑍𝑡𝑚 + 𝑓𝑟𝑚𝑝 𝑍𝑟𝑚𝑝  McKone et al., 1997 

Surface-zone soil (sm: 

m = a, f, u) 
𝑍𝑠𝑚 =  𝑓𝑠𝑚𝑎 𝑍𝑎𝑖𝑟 + 𝑓𝑠𝑚𝑤 𝑍𝑤𝑎𝑡𝑒𝑟 + 𝑓𝑠𝑚𝑝 𝑍𝑠𝑚𝑝  CEPA, 1993 

Vadose-zone soil (vm: 

m = a, f, u) 
𝑍𝑣𝑚 =  𝑓𝑣𝑚𝑎 𝑍𝑎𝑖𝑟 + 𝑓𝑣𝑚𝑤 𝑍𝑤𝑎𝑡𝑒𝑟 + 𝑓𝑣𝑚𝑝 𝑍𝑣𝑚𝑝  CEPA, 1993 

Sediment (d) 𝑍𝑑 =  𝑓𝑑𝑤𝑍𝑤𝑎𝑡𝑒𝑟 + 𝑓𝑑𝑑𝑍𝑑𝑝  CEPA, 1993 

Impervious surface (iu) 𝑍𝑖𝑢 = 𝑓𝑖𝑢ℎ𝑍ℎ + 𝑓𝑖𝑢𝑎𝑝 𝑍𝑎𝑝   Diamond et al., 2001 

 

𝑓𝑟𝑚𝑡 =
0.5𝑃𝑑𝑚 𝐴𝑐𝑚

𝑉𝑟𝑚 𝜌𝑝𝑚 𝜃𝑑𝑓
    (iii).  

Medium i is symbolized with s, r, v, w, and d, such that s, r, v, w, and d represent surface 

soil, root-zone soil, vadose-zone soil, surface water, and sediments respectively; 

vegetative cover m is symbolized with a, f, and u, such that a, f, u represent agricultural, 

forest and urban respectively; VP represents vapor pressure (Pa); H is the Henry‘s law 

constant (Pa.m
3
.mol

-1
); R is the Universal gas constant (J.K

-1
.mol

-1
); T is the temperature 

(K); ρip represents the density of particles in i
th

 medium (kg.m
-3

); ρwater is the density of 

water; KOA and KOW are the octanol/air and octanol/water partition coefficients, 

respectively; fphlmw and fphlmnw are the volume fractions of water and non-water (nutrients, 

etc.) in phloem, respectively (fphlmw is assumed to be 0.99); focip represents the fraction of 

organic carbon in soil/sediment particles in the i
th

 medium where medium i is s, r, v, w, or 

d; foch and focp are the volume fractions of organic carbon in the dissolved phase of urban 

film and plant leaf, respectively; fww, fwp, fwab represent the fractions of water, particles 

and aquatic biota in surface water, respectively; fAap and fAair represent the fractions of 

aerosol particles and pure air in the atmosphere, respectively; ρpm is the density of the 

plant (kg.m
-3

) in the m
th

 vegetative cover; Kpa, Kpaap, Kps are the plant/air and plant/air 
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particle and plant/soil partition coefficients, respectively (m
3
.kg

-1
); βA is the atmospheric 

dust load (kg.m
-3

)2; ρsmp is the density of surface soil particles in the m
th

 vegetative cover 

(kg.m
-3

);  frma, frmw, frmp, frmt are the fractions of air, water, particle and plant root in the 

root-zone soils of the m
th

 vegetative cover; fsma, fsmw, fsmp are the fractions of air, water 

and particle in the surface soils of the m
th

 vegetative cover;  fvma, fvmw, fvmp are the 

fractions of air, water and particle in the vadose-zone soils of the m
th

 vegetative cover; fdw 

and fdd are the fractions of water and particles in the sediment medium; fiuh is the volume 

fraction of urban film that is dissolved phase;  fiuap is the volume fraction of urban film 

that is aerosol particles; 0.5 is the fraction of plant in the root-zone medium; Pdm is the 

vegetation dry mass inventory (kg.m
-2

); Acm is the canopy area of the m
th

 vegetative 

cover (m
2
); Vrm is the volume of the root-zone soil compartment of the m

th
 vegetative 

cover (m
3
); θdf is the ratio of dry vegetation mass to fresh mass.       
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Table B.3: First-order transport rate constants estimation for RioShed 
Medium i to j/d

-

1
 

Process Transport Rate Equations Data Source 

Air – Water 

(TA,w) 

Gaseous diffusion 
𝑇𝐷𝐴 ,𝑤 = 𝐴𝐴𝑤 (

𝛿𝐴𝑤

𝑍𝐴𝐷𝐴

+
𝛿𝑤𝐴

𝑍𝑤𝐷𝑤

)−1𝑍𝐴
−1𝑉𝐴

−1 
Yang, 2007 

Wet deposition of 

gas 
𝑇𝐴𝐴 ,𝑤 = 𝐴𝐴𝑤𝑍𝑤𝑎𝑡𝑒𝑟 𝑢𝑟𝑎𝑖𝑛 𝑍𝐴

−1𝑉𝐴
−1 Yang, 2007 

Wet deposition of 

aerosol particles 
𝑇𝑤𝑑𝐴 ,𝑤 = 𝐴𝑎𝑤 𝑍𝑎𝑝𝑢𝑟𝑎𝑖𝑛 𝑓𝐴𝑎𝑝 𝑄𝑟𝑍𝐴

−1𝑉𝐴
−1 Yang, 2007 

Dry deposition of 

aerosol particles 
𝑇𝑑𝑑𝐴 ,𝑤 = 𝐴𝐴𝑤𝑍𝑎𝑝𝑢𝑑𝑒𝑝𝑜 𝑓𝐴𝑎𝑝 𝑍𝐴

−1𝑉𝐴
−1 Yang, 2007 

Total 𝑻𝑨,𝒘 = 𝑻𝑫𝑨,𝒘 + 𝑻𝑨𝑨,𝒘 + 𝑻𝑵𝒘𝒅𝑨,𝒘 + 𝑻𝑵𝒅𝒅𝑨,𝒘  

Air – mth 

Canopy (TA,cm : 

m = a, f, u) 

Gaseous diffusion 
𝑇𝐷𝐴 ,𝑐𝑚 = 𝐿𝐴𝐼 𝐴𝐴𝑐𝑚 (

𝛿𝐴𝑐𝑚

𝑍𝐴𝐷𝐴

+
𝛿𝑠𝑐𝑚𝐴

𝑍𝑠𝑚 ∗ 𝐷𝑠𝑚 ∗
)−1𝑍𝐴

−1𝑉𝐴
−1 

McKone et al., 1997 

Wet deposition of 

gas 
𝑇𝐴𝐴 ,𝑐𝑚 = 𝐴𝐴𝑐𝑚 𝑍𝑤𝑎𝑡𝑒𝑟 𝐼𝑤𝑐𝑚 𝑢𝑟𝑎𝑖𝑛 𝑍𝐴

−1𝑉𝐴
−1 Diamond et al., 2001; 

Yang, 2007 

Wet deposition of 

aerosol particles 
𝑇𝑁𝑤𝑑𝐴 ,𝑐𝑚 = 𝐴𝐴𝑐𝑚 𝑍𝑎𝑝𝑢𝑟𝑎𝑖𝑛 𝐼𝑤𝑐𝑚 𝑄𝑟𝑍𝐴

−1𝑉𝐴
−1 Diamond et al., 2001 

California 

Environmental 

Protection Agency 

(CEPA), 1993; 

McKone et al., 1997 

Dry deposition of 

aerosol particles 
𝑇𝑁𝑑𝑑𝐴 ,𝑐𝑚 = 𝐴𝐴𝑐𝑚 𝑍𝑎𝑝 𝐼𝑑𝑐𝑚 𝑢𝑑𝑒𝑝𝑜 𝑓𝐴𝑎𝑝 𝑍𝐴

−1𝑉𝐴
−1 Diamond et al., 2001; 

Yang, 2007 

Stomatal transfer 𝑇𝑆𝑡𝐴 ,𝑐𝑚

= (5.67𝑒 − 3)−1𝐴𝑐𝑚  𝐿𝐴𝐼 𝑍𝑎𝑖𝑟 𝐷𝑎𝑖𝑟  𝑍𝐴
−1𝑉𝐴

−1 

McKone et al., 1997 

Total 𝑻𝑨,𝒄𝒎 = 𝑻𝑫𝑨,𝒄𝒎 + 𝑻𝑨𝑨,𝒄𝒎 + 𝑻𝑵𝒘𝒅𝑨,𝒄𝒎

+ 𝑻𝑵𝒅𝒅𝑨,𝒄𝒎 

 

Air – mth 

Surface Soil 

(TA,sm : m = a, f, 

u) 

Gaseous diffusion 
𝑇𝐷𝐴 ,𝑠𝑚 = 𝐴𝐴𝑠𝑚 (

𝛿𝐴𝑠𝑚

𝑍𝐴𝐷𝐴

+
𝛿𝑠𝑚𝐴

𝑍𝑠𝑚𝐷𝑠𝑚

)−1𝑍𝐴
−1𝑉𝐴

−1 
Yang, 2007 

Wet deposition of 

gas 
𝑇𝐴𝐴 ,𝑠𝑚 = 𝐴𝐴𝑠𝑚 𝑍𝑤𝑎𝑡𝑒𝑟 𝑢𝑟𝑎𝑖𝑛 𝑍𝐴

−1𝑉𝐴
−1 Yang, 2007 

Wet deposition of 

aerosol particles 
𝑇𝑁𝑤𝑑𝐴 ,𝑠𝑚 = 𝐴𝐴𝑠𝑚 𝑍𝑎𝑝𝑢𝑟𝑎𝑖𝑛 𝑓𝐴𝑎𝑝𝑄𝑟𝑍𝐴

−1𝑉𝐴
−1 Yang, 2007 

Dry deposition of 

aerosol particles 
𝑇𝑁𝑑𝑑𝐴 ,𝑠𝑚 = 𝐴𝐴𝑠𝑚𝑍𝑎𝑝𝑢𝑑𝑒𝑝𝑜 𝑓𝐴𝑎𝑝𝑍𝐴

−1𝑉𝐴
−1 Yang, 2007 

Total 𝑻𝑨,𝒔𝒎 = 𝑻𝑫𝑨,𝒔𝒎 + 𝑻𝑨𝑨,𝒔𝒎 + 𝑻𝑵𝒘𝒅𝑨,𝒔𝒎

+ 𝑻𝑵𝒅𝒅𝑨,𝒔𝒎 

 

Air – Urban 

film (TA,iu) 

Gaseous diffusion 
𝑇𝐷𝐴 ,𝑖𝑢 = [(

𝛿𝐴𝑖𝑢

𝑍𝐴𝐷𝐴

+
𝛿𝑖𝑢𝐴

𝑍𝑖𝑢𝐷𝑖𝑢

)−1]𝐴𝐴𝑖𝑢𝑍𝐴
−1𝑉𝐴

−1 
Diamond et al., 2001 

Wet deposition of 

gas 
𝑇𝐴𝐴 ,𝑖𝑢 = 𝐴𝐴𝑖𝑢𝑍𝑤𝑎𝑡𝑒𝑟 𝑢𝑟𝑎𝑖𝑛 𝑍𝐴

−1𝑉𝐴
−1 Diamond et al., 2001 

Wet deposition of 

aerosol particles 
𝑇𝑁𝑤𝑑𝐴 ,𝑖𝑢 = 𝐴𝐴𝑖𝑢𝑍𝑎𝑝𝑢𝑟𝑎𝑖𝑛 𝑓𝐴𝑎𝑝 𝑄𝑟𝑍𝐴

−1𝑉𝐴
−1 Diamond et al., 2001 

Dry deposition of 

aerosol particles 
𝑇𝑁𝑑𝑑𝐴 ,𝑖𝑢 = 𝐴𝐴𝑖𝑢𝑍𝑎𝑝𝑢𝑑𝑒𝑝𝑜 𝑓𝐴𝑎𝑝𝑍𝐴

−1𝑉𝐴
−1 Diamond et al., 2001 

Total 𝑻𝑨,𝒊𝒖 = 𝑻𝑫𝑨,𝒊𝒖 + 𝑻𝑨𝑨,𝒊𝒖 + 𝑻𝑵𝒘𝒅𝑨,𝒊𝒖

+ 𝑻𝑵𝒅𝒅𝑨,𝒊𝒖 

 

Urban film – 

Air(Tiu,A) 

Gaseous diffusion 
𝑻𝑫𝒊𝒖,𝑨 = [(

𝜹𝑨𝒊𝒖

𝒁𝑨𝑫𝑨

+
𝜹𝒊𝒖𝑨

𝒁𝒊𝒖𝑫𝒊𝒖

)−𝟏]𝑨𝑨𝒊𝒖𝒁𝒊𝒖
−𝟏𝑽𝒊𝒖

−𝟏 
Diamond et al., 2001 
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Urban film – 

Water (Tiu,w) 

Surface run-off 𝑻𝒊𝒖,𝒘 = 𝑻𝑨𝒊𝒖,𝒘 = 𝑨𝒊𝒖𝒁𝒊𝒖𝒖𝒊𝒖𝒓𝒖𝒏𝒐𝒇𝒇𝒁𝒊𝒖
−𝟏𝑽𝒊𝒖

−𝟏 Diamond et al., 2001 

Water – Air 

(Tw,A) 

Vapor diffusion 
𝑻𝒘,𝑨 = 𝑻𝑫𝒘,𝑨 = 𝑨𝑨𝒘(

𝜹𝑨𝒘

𝒁𝑨𝑫𝑨

+
𝜹𝒘𝑨

𝒁𝒘𝑫𝒘

)−𝟏𝒁𝒘
−𝟏𝑽𝒘

−𝟏 

Yang, 2007 

Water – 

Sediment (Tw,d) 

Diffusion 
𝑇𝐷𝑤 ,𝑑 = 𝐴𝑤𝑑 (

𝛿𝑤𝑑

𝑍𝑤𝐷𝑤

+
𝛿𝑑𝑤

𝑍𝑑𝐷𝑑

)−1𝑍𝑤
−1𝑉𝑤

−1 
CEPA, 1993 

Sediment deposition 𝑇𝑁𝑤 ,𝑑 = 𝐴𝑤𝑑𝑍𝑤𝑝𝑢𝑠𝑒𝑑𝑖 𝑓𝑤𝑤𝑝 𝑍𝑤
−1𝑉𝑤

−1 Yang, 2007 

Total 𝑻𝒘,𝒅 = 𝑻𝑫𝒘,𝒅 + 𝑻𝑵𝒘,𝒅  

Sediment – 

Water (Td,w) 

Diffusion 
𝑇𝐷𝑑 ,𝑤 = 𝐴𝑤𝑑 (

𝛿𝑤𝑑

𝑍𝑤𝐷𝑤

+
𝛿𝑑𝑤

𝑍𝑑𝐷𝑑

)−1𝑍𝑑
−1𝑉𝑑

−1 
CEPA, 1993 

Resuspension 𝑇𝑁𝑑 ,𝑤 = 𝐴𝑤𝑑𝑍𝑤𝑝 𝑢𝑟𝑒𝑠𝑢𝑠 𝑓𝑤𝑝𝑍𝑑
−1𝑉𝑑

−1 Yang, 2007 

Total 𝑻𝒅,𝒘 = 𝑻𝑫𝒅,𝒘 + 𝑻𝑵𝒅,𝒘  

mth Surface Soil 

– Air (Tsm,A : m 

= a, f, u) 

Diffusion 
𝑇𝐷𝑠𝑚 ,𝐴 = 𝐴𝐴𝑠𝑚 (

𝛿𝐴𝑠𝑚

𝑍𝐴𝐷𝐴

+
𝛿𝑠𝑚𝐴

𝑍𝑠𝑚𝐷𝑠𝑚

)−1𝑍𝑠𝑚
−1𝑉𝑠𝑚

−1 
CEPA, 1993 

Wind resuspension 𝑇𝑁𝑠𝑚 ,𝐴 = 𝐴𝐴𝑠𝑚 𝑍𝑠𝑚𝑝 𝑢𝑤𝑖𝑛𝑟𝑒𝑠 𝑓𝑠𝑚𝑝 𝑍𝑠𝑚
−1𝑉𝑠𝑚

−1 Yang, 2007 

Total 𝑻𝒔𝒎,𝑨 = 𝑻𝑫𝒔𝒎,𝑨 + 𝑻𝑵𝒔𝒎,𝑨  

mth Surface Soil 

– Water (Tsm,w : 

m = a, f, u) 

 

Soil run-off 𝑇𝐴𝑟𝑠𝑚 ,𝑤 = 𝐴𝑠𝑚𝑍𝑤𝑎𝑡𝑒𝑟 𝑢𝑠𝑟𝑢𝑛𝑜𝑓𝑓 𝑍𝑠𝑚
−1𝑉𝑠𝑚

−1 CEPA, 1993 

Erosion run-off 𝑇𝐴𝑒𝑠𝑚 ,𝑤 = 𝐴𝑠𝑚𝑍𝑠𝑝𝑓𝑠𝑚𝑝 𝑢𝑒𝑟𝑜𝑠 𝑍𝑠𝑚
−1𝑉𝑠𝑚

−1 Yang, 2007 

Total 𝑻𝒔𝒎,𝒘 = 𝑻𝑨𝒓𝒔𝒎,𝒘 + 𝑻𝑨𝒆𝒔𝒎,𝒘  

mth Surface Soil 

– mth Root-zone 

Soil (Tsm,rm : m = 

a, f, u) 

Diffusion 
𝑇𝐷𝑠𝑚 ,𝑟𝑚 = 𝐴𝑠𝑚𝑟𝑚 (

𝛿𝑠𝑚𝑟𝑚

𝑍𝑠𝑚𝐷𝑠𝑚

+
𝛿𝑟𝑚𝑠𝑚

𝑍𝑟𝑚𝐷𝑟𝑚

)−1𝑍𝑠𝑚
−1𝑉𝑠𝑚

−1 

McKone et al., 1997 

Leaching 𝑇𝐴𝑠𝑚 ,𝑟𝑚 = 𝐴𝑠𝑚𝑍𝑤𝑎𝑡𝑒𝑟 𝑢𝑙𝑒𝑎𝑐 ℎ𝑍𝑠𝑚
−1𝑉𝑠𝑚

−1 Yang, 2007 

Total 𝑻𝒔𝒎,𝒓𝒎 = 𝑻𝑫𝒔𝒎,𝒓𝒎 + 𝑻𝑨𝒔𝒎,𝒓𝒎  

mth Canopy - 

Air 

Diffusion 
𝑇𝐷𝑐𝑚 ,𝐴 = 𝐿𝐴𝐼 𝐴𝐴𝑐𝑚 (

𝛿𝐴𝑐𝑚

𝑍𝐴𝐷𝐴

+
𝛿𝑐𝑚𝐴

𝑍𝑐𝑚 𝐷𝑐𝑚

)−1𝑍𝑐𝑚
−1𝑉𝑐𝑚

−1 

McKone et al., 1997 

Wind re-suspension 

from leaves 
𝑇𝐴𝑐𝑚 ,𝐴 = 𝐴𝑐𝑚𝑍𝑎𝑝𝑓𝐴𝑎𝑝 𝑢𝑤𝑖𝑛𝑟𝑒𝑠 𝑍𝑐𝑚

−1𝑉𝑐𝑚
−1 Yang, 2007 

Total 𝑻𝑨,𝒄𝒎 = 𝑻𝑫𝒄𝒎,𝑨 + 𝑻𝑨𝒄𝒎,𝑨  

mth Canopy – 

mth Surface Soil 

(Tcm,sm : m = a, f, 

u) 

Litterfall 𝑇𝐴𝐿𝑐𝑚 ,𝑠𝑚 = 𝐴𝑐𝑚𝑍𝑐𝑚 𝑢𝑙𝑖𝑡𝑡𝑒𝑟 𝑍𝑐𝑚
−1𝑉𝑐𝑚

−1 Diamond et al., 2001 

Wax Erosion 𝑇𝐴𝐸𝑐𝑚 ,𝑠𝑚 = 𝐴𝑐𝑚 𝑍𝑙𝑢𝑤𝑎𝑥𝑒𝑟 𝑍𝑐𝑚
−1𝑉𝑐𝑚

−1  Diamond et al., 2001 

Canopy drip 𝑇𝐴𝐶𝑐𝑚 ,𝑠𝑚 = 𝐴𝑐𝑚𝑍𝑎𝑝𝐶𝑑𝑢𝑟𝑎𝑖𝑛 (𝐼𝑤𝑐𝑚

− 𝐼𝑤𝑐𝑚𝑒𝑣𝑎𝑝 )𝑍𝑐𝑚
−1𝑉𝑐𝑚

−1 

Diamond et al., 2001 

Total 𝑻𝒄𝒎,𝒔𝒎 = 𝑻𝑨𝑳𝒄𝒎,𝒔𝒎 + 𝑻𝑨𝑬𝒄𝒎,𝒔𝒎 + 𝑻𝑨𝑪𝒄𝒎,𝒔𝒎   

mth Canopy – 

mth Root-zone 

Soil (Tcm,rm : m = 

a, f, u) 

Phloem flow 𝑻𝒄𝒎,𝒓𝒎 = 𝑻𝑨𝒑𝒄𝒎,𝒓𝒎 = 𝑨𝒄𝒎𝒁𝒑𝒉𝒍𝒖𝒑𝒉𝒍𝒁𝒄𝒎
−𝟏𝑽𝒄𝒎

−𝟏  Yang, 2007 

mth Root-zone 

Soil – mth 

Canopy (Trm,cm : 

m = a, f, u) 

Plant uptake 𝑻𝒓𝒎,𝒄𝒎 = 𝑻𝑨𝒖𝒓𝒎,𝒄𝒎

= 𝑨𝒓𝒎𝒁𝒘𝒂𝒕𝒆𝒓𝒖𝒖𝒑𝒕𝒂𝒌𝒆𝒁𝒓𝒎
−𝟏𝑽𝒓𝒎

−𝟏  

McKone et al., 1997 
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mth Root-zone 

Soil – mth 

Surface Soil 

(Trm,sm : m = a, f, 

u) 

Diffusion 𝑻𝒓𝒎,𝒔𝒎 = 𝑻𝑫𝒓𝒎,𝒔𝒎

= 𝑨𝒔𝒎𝒓𝒎(
𝜹𝒓𝒎𝒔𝒎

𝒁𝒓𝒎𝑫𝒓𝒎

+
𝜹𝒔𝒎𝒓𝒎

𝒁𝒔𝒎𝑫𝒔𝒎

)−𝟏𝒁𝒓𝒎
−𝟏𝑽𝒓𝒎

−𝟏  

CEPA, 1993 

Mth Root-zone 

Soil – mth 

Vadose-zone 

Soil (Trm,vm : m = 

a, f, u) 

Leaching 𝑻𝒓𝒎,𝒗𝒎 = 𝑻𝑨𝒓𝒎,𝒗𝒎

= 𝑨𝒓𝒎𝒁𝒘𝒂𝒕𝒆𝒓𝒖𝒍𝒆𝒂𝒄𝒉𝒁𝒓𝒎
−𝟏𝑽𝒓𝒎

−𝟏  

Yang, 2007 

*Assume soil layer on plant/leaf surface 

 

δi and δj are the boundary layer depths for media i and j at the ij interface, respectively (m); Di 

and Dj are chemical bulk diffusitivities in media i and j, respectively(m
2
.d

-1
); Vi is the volume of 

compartment i (m
3
); Aij is the interfacial area of the i

th
 and j

th
 compartments (m

2
); Ai is the area 

of the i
th

 compartment (m
2
); urain, udepo, uwinres, uresus, uiurunoff, usedi, usrunoff, ulitter, uleach, uwaxer, ueros, 

uphl, uuptake are the rates of precipitation, dry deposition, wind resuspension, sediment 

resuspension, urban run-off, sedimentation, surface soil runoff, litterfall, leaching/infiltration, 

wax erosion, surface erosion, phloem flow and plant uptake, respectively (m.d
-1

); fAap, fwp and 

fsmp are the volume fractions of particles in the atmosphere, surface water and m
th

 surface soil 

compartments, respectively; Cd is the canopy drip parameter; Iwcm and Idcm are the respective 

fractions of wet and dry deposition intercepted by the m
th

 canopy; Iwcmevap is the fraction of the 

wet deposition intercepted by the m
th

 canopy that evaporates; Qr is the particle scavenging ratio 

for rain; LAI is the leaf area index. 
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Table B.4: Formulae to calculate required bulk diffusivity, compartmental boundary layer 

thickness and/or mass transfer coefficients 
Variable Compartment  Interface Formula or value used Reference 

Diffusion 

coefficient in 

compartment i 

(Di), m
2
.d

-1
  

Air N/A 

23
1

2
1

75.13

])(7.2[

]
29

29
[

106.8

x

x

x

V

M

M

T




 
 

California 

Environmental 

Protection 

Agency 

(CEPA), 1993 

Surface water N/A 

6.0

2
1

7 )(105.6

xy

y

V

TM




 

CEPA, 1993 

Surface-zone 

soil (s)  

N/A 

water

s

s

s

water
air

s

s

s

air D
Z

Z
D

Z

Z
2

3
10

2

3
10








  

CEPA, 1993 

Root-zone soil 

(r)  

N/A 

water

r

r

r

water
air

r

r

r

air D
Z

Z
D

Z

Z
2

3
10

2

3
10








  

CEPA, 1993 

Vadose-zone 

soil (v)  

N/A 

water

v

v

v

water
air

v

v

v

air D
Z

Z
D

Z

Z
2

3
10

2

3
10








  

CEPA, 1993 

Sediment (d) N/A 

water

d

d

d

water
air

d

d

d

air D
Z

Z
D

Z

Z
2

3
10

2

3
10








  

CEPA, 1993 

Boundary 

layer depth in 

compartment i 

(δi), m 

Surface-zone 

soil (s) 

N/A 229.0108.0 sD  CEPA, 1993 

Root-zone soil 

(r) 

N/A 683.0318 rD  CEPA, 1993 

Water (w) Water-

sediment 

0.02 CEPA, 1993 

Sediment (d) Water-

sediment 

683.0318 dD  CEPA, 1993 

Air (a) Air-urban 

film 2
1

)(6
w

iu

v

l
 

Diamond et al., 

2001 

Air (a) Air-surface 

soil 

5E-3 CEPA, 1993 

Air (a) Air-

vegetation 

5E-3 CEPA, 1993 

Vegetation (c) Air-

vegetation 

5E-6 CEPA, 1993 

Mass transfer 

coefficient in 

compartment i 

(

i

iD


), m.d

-1
 

Water Air-water 
0.24 when currentw < 0.04 × vw

0.67; 

2
1

673.0

969.0

)
32

()(64.5
xw

w

MWd

current
 when vw < 

1.9 m.s
-1

; 

 

)9.1(526.02
1

673.0

969.0

)
32

()(64.5
wv

xw

w e
MWd

current
 

when vw > 1.9 m.s
-1

 

CEPA, 1993 
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Air Air-water 
2

1

)
18

()(273
x

ww
MW

currentv   when vw + 

currentw > 0.5 m.s
-1

; 

 

2
1

)
18

(140
xMW

 when vw + currentw <  

0.5 m.s
-1

 

CEPA, 1993 

Urban film (iu) Air-urban 

film 

awow KK /)2.11log704.0(
1086400


  Diamond et al., 

2001 

Vegetation (c) Air-

vegetation 

awow KK /)2.11log704.0(
1086400


  Diamond et al., 

2001 

 

Dair, Dwater, Ds, Dr, Dd are the diffusivities in air, water, surface-zone soil, root-zone soil and 

sediment, respectively, m
2
.d

-1
; δi is the boundary layer depth in compartment i, m; T is the air 

temperature, K; MWx is the molecular weight of compound x, g.mol
-1

 ; Vx is the molecular 

volume of compound x, cm
3
.mol

-1
; φ is the association factor for the solvent; My is the molecular 

weight of the solvent, g.mol
-1

; ηy is the viscosity of the solvent y, cP; Zair, Zwater, Zs, Zr, Zv, Zd are 

the fugacity capacities of air, water, surface-zone soil, root-zone soil, vadose-zone soil and 

sediment, respectively, mol.m
-3

.Pa
-1

; ϕs, ϕr, ϕv, ϕd are the void fractions in the surface-zone soil, 

root-zone soil, vadose-zone soil and sediment, respectively; αs, αr, αv, αd are the volume fractions 

of air in the surface-zone soil, root-zone soil, vadose-zone soil and sediment, respectively; βs, βr, 

βv, βd are the volume fractions of water in the surface-zone soil, root-zone soil, vadose-zone soil 

and sediment, respectively; liu is the mean length of the impervious surface in the direction of the 

wind, m; vw is the wind speed, m.s
-1

; dw is the mean depth of the surface water compartment, m; 

currentw is the surface water current, m.s
-1

;  Kow is the octanol-water partition coefficient; Kaw is 

the air-water partition coefficient.   
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Summary of the fugacity approach 

 

Fugacity describes the escaping potential of trace organic contaminant from a phase. In 

any given single phase, contaminants typically move from regions of high concentration to low 

concentration. However, such a phenomenon is not always observed at phase transfer interfaces 

(Mackay & Paterson, 1982). Instead, contaminants move across a fugacity gradient, moving 

from high fugacity to low fugacity. Hence, fugacity is used in lieu of concentration to describe 

the movement of trace organics across environmental media wherein phase changes commonly 

occur. Also, the fugacity approach is considered best for those nonionic organic compounds 

whose partitioning is highly associated with their physicochemical properties (Rong-Rong, Che-

Sheng, Zhong-Peng &Xiao-Meng, 2012). At low concentrations, the fugacity-concentration 

relationship is: 

𝐶 = 𝑓𝑍,      (i) 

where C is concentration, mol.m
-3

; Z is the fugacity capacity of the medium, which acts 

as the constant of proportionality, mol.m
-3

.Pa
-1

; f is the fugacity, Pa (Mackay & Paterson, 1981). 

At equilibrium, the chemical‘s fugacity in corresponding phases, i and j, are equal such that  

𝑓𝑖 = 𝑓𝑗 = 𝑓.      (ii) 

This concept is applied to the different inter-media transport mechanisms – diffusive, 

advective and non-advective physical transport, such as rainfall or dust deposition – as well as 

for reaction losses.  

As an example, in RioShed, diffusive transport, between any two well-mixed 

(homogenous) media, i and j, with differing phases (such as the atmosphere and surface water 
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with the phases air and water), is calculated using the utilized two-film model. This two-film 

model is commonly employed and has been well described (Ramaswami, Milford, & Small, 

2005). In this model, a chemical diffusing from one phase to the next is considered to have 

differing uniform concentrations in the bulks of both media, i and j, and to also display different 

concentration gradients in the stagnant films at either side of the interface between the two 

media. Fick‘s law,  

,
x

C
DJ



       (iii) 

(where J is the molar mass flux rate of a chemical in a given phase in mol.m
-2

.d
-1

; 
x

C




  is 

the concentration gradient in mol.m
-4

; and D is the diffusion coefficient in m
2
.d

-1
), is employed to 

explain the diffusion of a chemical from the bulk portion of the medium across the film to the 

interface. For diffusion across the stagnant film in medium i to the interface, Ji, is such that 

,
)(

1


ni
ii

CC
DJ


        (iv) 

where Ci and Cn are the concentrations in medium i and at the interface, respectively, in 

mol.m
-3

; Di is the diffusion coefficient in medium i, in m
2
.d

-1
 and; δi is the film thickness in m. 

Applying the same concept to medium j, and at the same time employing the aforementioned 

fugacity-concentration relationship, as well as assuming that the diffusive flux rates are equal 

such that ji JJJ  , then  

)()( jjnj

j

j

niii

i

i fZfZ
D

fZfZ
D

J 


.   (v) 

Eliminating fn and solving for J yields  
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1])[( 
jj

j

ii

i
ij

DZDZ
ffJ


.     (vi) 

The diffusive flux rate in any medium i is the rate of change of inventory/molar amount 

)(
t

N i




 due to diffusion per unit area such that  

At

N
J i

i

1





  .        (vii) 

A is the interfacial area in m
2
. Therefore, given that the fugacity in any medium i is given by  

11  iiii ZVNf
,
       (viii) 

where fi, Ni, Vi and Zi are the fugacity in Pa, molar inventory in mol, volume in m
3
 and fugacity 

capacity in mol.m
-3

.Pa
-1

 of medium i, respectively, then the rate of change of inventory in any 

medium i due to diffusion is  

1

1

1

1

1

1

22

2

11

1
2

1

2

1

2

1

22

2

11

1 ][][ NZV
DZDZ

ANZV
DZDZ

A
t

Nm  


 
. (ix)  

In RioShed, the transport rate constants for diffusion from medium i to j, Ti,j, in which media i 

and j both have different phases, are calculated using  

111

, ][  ii

jj

j

ii

i
ji ZV

DZDZ
AT



.

      (x)  

As employed for GIM3 by Luo et al. (2007), the general formats for the computation of 

the various terms, for transport from medium i to j, are as follows: 

Advective transport, TAij, such that 𝑇𝐴𝑖𝑗 = 𝐴𝑖𝑗 𝑍𝑖𝑐𝑢𝑖𝑍𝑖
−1𝑉𝑖

−1;     (xi) 

Non-diffusive/advective physical transport, TNij, such that 𝑇𝑁𝑖𝑗 = 𝐴𝑖𝑗 𝑍𝑖𝑝𝑢𝑖𝑓𝑖𝑝𝑍𝑖
−1𝑉𝑖

−1; (xii) 

Diffusive transport, TDij, such that 𝑇𝐷𝑖𝑗 = 𝐴𝑖𝑗 (
𝛿𝑖

𝑍𝑖𝐷𝑖
+

𝛿𝑗

𝑍𝑗𝐷𝑗
)−1𝑍𝑖

−1𝑉𝑖
−1;   (xiii) 
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where δi and δj are the boundary layer depths for compartments i and j at the ij interface, 

respectively, m; Di and Dj are chemical bulk diffusitivities in compartments i and j, respectively, 

m
2
.d

-1
; Vi is the volume of compartment i, m

3
; Aij is the area of the interface between 

compartments i and j, m
2
; ui is the velocity of the carrying medium in the direction of interface 

transfer, m.d
-1

; fip is the volume fraction of particles in compartment i; Zi, Zip and Zic are the 

fugacity capacities of compartment i, particles in compartment i, and the carrying medium in 

compartment i, respectively. 
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Appendix C 

 
Physicochemical data for the select organics 

 

 

Figure C.1: Chemical structures for the evaluated pollutants 
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Table C.1: Physicochemical input properties for all considered poly-brominated diphenyl ethers (PBDEs) 
 Poly-brominated diphenyl ethers (PBDEs)  

Parameter PBDE-28 PBDE-47 PBDE-99 PBDE-100 PBDE-153 PBDE-154 PBDE-183 PBDE-209 Data Source 

                  

Henry's constant 

(Pa.m3/mol) 

1.924 1.107 0.53 0.384 0.342 0.24 7.40E-03 U Mackay et al., 2006 

Henry's constant 

(Pa.m3/mol) - 30oC 

7.92 1.78 0.96 0.53 0.44 0.29 U 0.11 Cetin & Odabasi, 
2005 

Melting Point (K) 337.4 357.15 365.65 383.15 434.65 404.15-405.65 444.15-

446.15 

575.65 Mackay et al., 2006 

Vapor Pressure (Pa) 1.57E-03 2.15E-04 3.63E-05 3.68E-05 8.87E-06 3.80E-06 4.68E-07 2.95E-09 as above 

Koc, Organic carbon 

partition coefficient 

(L/kg)  

 1.26E+06 2.36E+05  4.92E+06   3.83E+09 as above 

Kow, Octanol-water 

partition coefficient 

6.31E+05 2.46E+06 5.75E+05 3.38E+05 1.20E+07 2.46E+07 1.38E+07 9.33E+09 as above 

Kaw, Air-water partition 

coefficient 

U 4.47E-04 U U U U U U as above 

Koa, Octanol-air partition 

coefficient 

2.57E+09 2.75E+10 1.82E+11 1.05E+11 7.76E+11 6.05E+11 4.24E+12 U as above 

Kpaap, Plant-air particle 

partition coefficient 

(m3/kg)  

3000 3.00E+03 3.00E+03 3.00E+03 3.00E+03 3.00E+03 3.00E+03 3.00E+03 McKone et al., 1997 

Kps, Plant root-soil 

partition coefficient 

(kg/kg)  

5.38E-01 5.38E-01 5.38E-01 5.38E-01 5.38E-01 5.38E-01 5.38E-01 5.38E-01 CalTOX 2.3 

Molecular Weight 

(g/mol) 

406.895 4.86E+02 564.687 564.687 643.583 643.583 722.479 959.167 Mackay et al., 2006 

Molecular Volume 

(cm3/mol) 

265.5 2.89E+02 312.1 312.1 335.4 335.4 358.7 428.6 as above 

Bioconcentration factor 

fish/water (m3/kg)  

U 0.00E+00 U U U U U U as above 

Atmospheric half-life (d) 5.33 1.07E+01 19.46 14.88 46.25 U 64.17 317.5 as above 

Half-life in surface water 

(d) 

60 1.50E+02 150 150 150 150 150 150 as above 

Half-life in sediment (d) 240 6.00E+02 600 600 600 600 600 600 as above 

Average half-life in 

vegetation (d) 

U - 60 Half-life in 

surface soil/4 

Half-life in 

surface soil/4 

Half-life in 

surface soil/4 

Half-life in 

surface soil/4 

Half-life in 

surface soil/4 

Half-life in 

surface soil/4 

Half-life in 

surface soil/4 

Juraske et al., 2008 

Half-life in agricultural 

vegetation (d) 

U - 60 3.75E+01 37.5 37.5 37.5 37.5 37.5 37.5 as above 
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Half-life in forest 

vegetation (d) 

U - 60 3.75E+01 37.5 37.5 37.5 37.5 37.5 37.5 as above 

Half-life in urban 

vegetation (d) 

U - 60 3.75E+01 37.5 37.5 37.5 37.5 37.5 37.5 as above 

Half-life in surface soil 

(d) 

60 150 150 150 150 150 150 150 Mackay et al., 2006 

Half-life in agricultural 

surface soil (d) 

60 150 150 150 150 150 150 150 as above 

Half-life in forest surface 

soil (d) 

60 150 150 150 150 150 150 150 as above 

Half-life in urban surface 

soil (d) 

60 150 150 150 150 150 150 150 as above 

Half-life in root-zone soil 

(d) 

60 150 150 150 150 150 150 150 as above 

Half-life in agricultural 

root-zone soil (d) 

60 150 150 150 150 150 150 150 as above 

Half-life in forest root-

zone soil (d) 

60 150 150 150 150 150 150 150 as above 

Half-life in urban root-

zone soil (d) 

60 150 150 150 150 150 150 150 as above 

Half-life in vadose-zone 

soil (d) 

60 150 150 150 150 150 150 150 as above 

Half-life in agricultural 

vadose-zone soil (d) 

60 150 150 150 150 150 150 150 as above 

Half-life in forest vadose-

zone soil (d) 

60 150 150 150 150 150 150 150 as above 

Half-life in urban vadose-

zone soil (d) 

60 150 150 150 150 150 150 150 as above 

Half-life in urban organic 

film (d) 

60 150 150 150 150 150 150 150 as above 

Half-life in biota (d) 36.5 - carp 30.1 - carp 5.6 - mussels U 13.6 - carp 35 - carp U 50 - carp as above 

Toxicity Equivalent 

Factor 

N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Reference Dose (mg/kg/d) U 1.00E-04 1.00E-04 U 2.00E-04 U U 7.00E-03 EPA, 2016 

No observed effect level/ 

No observed adverse 

effect level 

U 0.7 0.4 U 0.45 U U 2.22 EPA, 2016 

Oral cancer slope factor 

(mg/kg/d)-1  

U U U U U U U 7.00E-04 EPA, 2016 

*U – Unknown/unavailable   
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Table C.2: Physicochemical input properties for the remaining considered persistent pollutants 
 Polychlorinated dibenzodioxins 

(PCDDs) 
Polychlorinated dibenzofurans (PCDFs)  

Parameter 2,3,7,8-TCDD OCDD 2,3,4,7,8-PeDF 1,2,3,4,7,8-HxCDF Data Source 

          

Henry's constant (Pa.m
3
/mol) - 

25ºC 

1.62 0.513 2.57 1.91 Mackay et al., 2006 

Henry's constant (Pa.m
3
/mol) - 

30
o
C 

U U U U N/A 

Melting Point (K) 568.15 604.15 469.65 498.65-499.65 Mackay et al., 2006 

Vapor Pressure (Pa) 5.75E-05 6.61E-08 5.50E-05 1.38E-05 as above 

Koc, Organic carbon partition 

coefficient (L/kg)  

6.31E+06 3.17E+10 1.59E+08 6.31E+08 as above 

Kow, Octanol-water partition 

coefficient 

1.15E+07 3.02E+08 1.29E+07 3.39E+07 as above 

Kaw, Air-water partition coefficient U U U U - 

Koa, Octanol-air partition 

coefficient 

8.91E+09 6.31E+10 1.23E+10 4.37E+10 as above 

Kpaap, Plant-air particle partition 

coefficient (m
3
/kg)  

3.00E+03 3.00E+03 3.00E+03 3.00E+03 McKone et al., 1997 

Kps, Plant root-soil partition 

coefficient (kg/kg)  

5.38E-01 5.38E-01 5.38E-01 5.38E-01 CalTOX 2.3 

Molecular Weight (g/mol) 321.971 459.751 340.418 374.863 Mackay et al., 2006 

Molecular Volume (cm
3
/mol) 260.6 344.2 281.2 302.1 as above 

Bioconcentration factor fish/water 

(m
3
/kg)  

1.12E+06 3.39E+07 6.17E+04 3.71E+04 as above 

Atmospheric half-life (d) 3 9.6 15 5.9-22 or 58.3 as above 

Half-life in surface water (d) 420 853.22 1.29E-01 1166.67 (7
o
C) as above 

Half-life in sediment (d) 7300-73000 7300-73000 7300-73000 7300-73000 as above 

Average half-life in vegetation (d) Half-life 

surface soil/4 

Half-life surface 

soil/4 

Half-life surface 

soil/4 

Half-life surface 

soil/4 

Juraske et al., 2008 

Half-life in agricultural vegetation 

(d) 

as above as above as above as above as above 
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Half-life in forest vegetation (d) as above as above as above as above as above 

Half-life in urban vegetation (d) as above as above as above as above as above 

Half-life in surface soil (d) 3650-36500 3650-36500 1825-18250 1825-18250 Mackay e al., 2006 

Half-life in agricultural surface soil 

(d) 

3650-36500 3650-36500 1825-18250 1825-18250 as above 

Half-life in forest surface soil (d) 3650-36500 3650-36500 1825-18250 1825-18250 as above 

Half-life in urban surface soil (d) 3650-36500 3650-36500 1825-18250 1825-18250 as above 

Half-life in root-zone soil (d) 3650-36500 3650-36500 1825-18250 1825-18250 as above 

Half-life in agricultural root-zone 

soil (d) 

3650-36500 3650-36500 1825-18250 1825-18250 as above 

Half-life in forest root-zone soil (d) 3650-36500 3650-36500 1825-18250 1825-18250 as above 

Half-life in urban root-zone soil (d) 3650-36500 3650-36500 1825-18250 1825-18250 as above 

Half-life in vadose-zone soil (d) 3650-36500 3650-36500 1825-18250 1825-18250 as above 

Half-life in agricultural vadose-

zone soil (d) 

3650-36500 3650-36500 1825-18250 1825-18250 as above 

Half-life in forest vadose-zone soil 

(d) 

3650-36500 3650-36500 1825-18250 1825-18250 as above 

Half-life in urban vadose-zone soil 

(d) 

3650-36500 3650-36500 1825-18250 1825-18250 as above 

Half-life in urban organic film (d) 3650-36500 3650-36500 1825-18250 1825-18250 as above 

Half-life in biota (d) 8 15 - trout 6-69 24 - mussels as above 

Toxicity Equivalent Factor 1 3.00E-04 0.3 0.1 EPA, 2010 

Reference Dose (mg/kg/d) 7.00E-10 U U U EPA, 2016 

No observed effect level/ No 

observed adverse effect level 

2.00E-08 U U U EPA, 2016 

Oral cancer slope factor (mg/kg/d)
-

1
 

1.50E+05 U U U EPA, 2016 

*U – Unknown/unavailable 
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Table C.3: Physicochemical input properties for the current-use pesticides 
 Current-Use Pesticides  

Parameter Organophosphates Carbamates  Pyrethroids  Herbicides  Data Source 

 Diazinon Dimethoate Carbaryl Methomyl λ-

Cyhalothrin 

Cypermethrin Diuron Glyphosate  

Henry's constant 

(Pa.m3/mol) - 25ºC 

2.16E-02 1.15E-04 4.48E-05 6.48E-05 1.80E-02 1.95E-02 5.10E-05 1.41E-05 Mackay et al., 2006 

Henry's constant 

(Pa.m3/mol) - 30oC 

U U U U U U U U N/A 

Melting Point (K) U 325.15 418.15 351.15 322.35 343.15 431.15 503.15 Mackay et al., 2006 

Vapor Pressure (Pa) 7.30E-03 3.63E-02 1.60E-04 6.67E-03 2.00E-07 3.23E-06 9.00E-06 1.00E-03 as above 

Koc, Organic carbon 

partition coefficient 

(L/kg)  

2.29E+02 15.85 3.02E+02 72.44 2.47E5-3.3E5 3.47E+05 4.85E+02 2.63E+03 as above 

Kow, Octanol-water 

partition coefficient 

6.46E+03 6.03 229.09 3.98 1.00E+07 4.17E+05 3.98E+02 8.71E+00 as above 

Kaw, Air-water 

partition coefficient 

8.58029E-06 4.56821E-08 1.77962E-08 2.57409E-08 7.15025E-06 7.7461E-06 2.0259E-08 5.60103E-09 as above 

Koa, Octanol-air 

partition coefficient 

7.41E+08 11341388.14 3293680784 11728015.63 8.82428E+12 1.30946E+11 5932385514 149195607.4 as above 

Kpaap, Plant-air 

particle partition 

coefficient (m3/kg)  

3.00E+03 3.00E+03 3.00E+03 3.00E+03 3.00E+03 3.00E+03 3.00E+03 3.00E+03 McKone et al., 1997 

Kps, Plant root-soil 

partition coefficient 

(kg/kg)  

5.38E-01 5.38E-01 5.38E-01 5.38E-01 5.38E-01 5.38E-01 5.38E-01 5.38E-01 CalTOX 2.3 

Molecular Weight 

(g/mol) 

304.345 229.258 201.221 162.21 449.85 416.297 233.093 169.074 Mackay et al., 2006 

Molecular Volume 

(cm3/mol) 

320.2 205.6 218.7 179.9 Density=1.33 

g/cm3 

457.7 223.8 Density=1.74 

g/cm3 

as above 

Bioconcentration 

factor fish/water 

(m3/kg)  

2.46E+02 100 3.02E+01 1.29 U 8.32E+02 3.02E+02 1.82E+02 as above 

Atmospheric half-

life (d) 

1.71E-01 1.95E-01 5.25E-01 34.2 1.70E-01 0.75 (hydroyl 

radical) 

0.12 0.125 as above 

Half-life in surface 

water (d) 

43 29 9 262 24.5 
(photolysis) 

5 10 70 as above 

Half-life in sediment 

(d) 

21.1 7 125 30 20 30 10 47 as above 

Average half-life in 

vegetation (d) 

10 2.95 Half-life in 

surface soil/4 

2.5 Half-life in 

surface soil/4 

Half-life in 

surface soil/4 

50 60 Mackay et al., 2006; 

Juraske et al., 2008 

Half-life in 

agricultural 

vegetation (d) 

as above as above as above as above as above as above as above as above as above 
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Half-life in forest 

vegetation (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in urban 

vegetation (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in surface 

soil (d) 

40 7 10 30 28 30 200 47 Mackay e al., 2006 

Half-life in 

agricultural surface 

soil (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in forest 

surface soil (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in urban 

surface soil (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in root-

zone soil (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in 

agricultural root-

zone soil (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in forest 

root-zone soil (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in urban 

root-zone soil (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in vadose-

zone soil (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in 

agricultural vadose-

zone soil (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in forest 

vadose-zone soil (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in urban 

vadose-zone soil (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in urban 

organic film (d) 

as above as above as above as above as above as above as above as above as above 

Half-life in biota (d) 32 2.95 - cabbage 22 2.5 - 

Bermuda 
grass 

U U 328 60 Mackay et al., 2006 

Toxicity Equivalent 

Factor 

N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Reference Dose 

(mg/kg/d) 

2.00E-04 2.00E-04 1.00E-02 2.50E-02 5.00E-03 1.00E-02 3.00E-03 1.00E-01 EPA, 2016; RRD, 2015 

No observed effect 

level/ No observed 

adverse effect level 

6.50E-02 0.05 9.6 2.5 0.5 1 0.625 10 EPA, 2016 

Oral cancer slope 
factor (mg/kg/d)-1 

U U U U U U 1.9E-2 U RRD, 2015 

*U – Unknown/unavailable 
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Appendix D 
 

Input Parameters for RioShed 

Table D.1: Input parameters used in RioShed 
Input Data Value or Estimation Equation Data Source 

Universal gas constant (R), Pa.m
3
/mol/K R=8.314  

Density of water (rhow), kg/m3  rhow=1000  

   

Ambient air temperature (T), K T=302.79                    Meteorological Service 

of Jamaica (MOJ), 

2015 

   

Compartment Areas/m
2
   

Area of atmosphere (AA), m
2
  AA=1249e6               Forestry Department 

of Jamaica (FDJ), 

2015 

Area of surface water compartment (Aw), m
2
 Aw=1.759e-3

⁋
×AA

 
FDJ, 2015 

Area of agricultural compartment (Aca), m
2
 Aca=2.519e-1

⁋
×AA FDJ, 2015 

Area of forest compartment (Acf), m
2
 Acf=6.015e-1

⁋
×AA FDJ, 2015 

Area of urban canopy (Acu), m
2
 Acu=0.3

⸸
 × 1.448e-1

⁋
×AA;     Arnold & Gibbons, 

1996; FDJ, 2015 

Area of impervious surface (Aiu), m
2
 Aiu=0.7

⸸
 ×  1.448e-1

⁋
×AA;     Arnold & Gibbons, 

1996; FDJ, 2015 

Area of sediment (Ad), m
2
  Ad=Aw                 - 

Area of agricultural surface soil (Asa), m
2
 Asa=Aca - 

Area of forest surface soil (Asf), m
2
 Asf=Acf - 

Area of urban surface soil (Asu), m
2
 Asu=Acu - 

Area of agricultural root soil (Ara), m
2
 Ara=Aca - 

Area of forest root soil (Arf), m
2
 Arf=Acf - 

Area of urban root soil (Aru), m
2
 Aru=Acu - 

Area of agricultural vadose soil (Ava), m
2
 Ava=Aca - 

Area of forest vadose soil (Avf), m
2
 Avf=Acf - 

Area of urban vadose soil (Avu), m
2
 Avu=Acu - 

   

Densities (kg/m
3
)   

Atmospheric dust load (betaA), kg/m
3
 betaA=4.96e-8

† 
National Environment 

and Planning Agency, 

2013 

Density of particles in soil (rhomp), kg/m
3
  rhomp=2650 CalTOX 2.3 

Density of particles in agricultural surface soil 

(rhosap), kg/m
3
 

rhosap=rhomp CalTOX 2.3 

Density of particles in forest surface  soil 

(rhosfp), kg/m
3
 

rhosfp=rhomp CalTOX 2.3 

Density of particles in urban surface soil 

(rhosup), kg/m
3
 

rhosup=rhomp           CalTOX 2.3 

Density of particles in agricultural root-zone soil 

(rhorap), kg/m
3
 

rhorap=rhomp  CalTOX 2.3 

Density of particles in forest root-zone soil rhorfp=rhomp CalTOX 2.3 
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(rhorfp), kg/m
3
 

Density of particles in urban root-zone soil 

(rhorup), kg/m
3
 

rhorup=rhomp CalTOX 2.3 

Density of particles in agri vadose-zone soil 

(rhovap), kg/m
3
 

rhovap=rhomp CalTOX 2.3 

Density of particles in forest vadose-zone soil 

(rhovfp), kg/m
3
 

rhovfp=rhomp CalTOX 2.3 

Density of particles in urban vadose-zone soil 

(rhovup), kg/m
3
 

rhovup=rhomp CalTOX 2.3 

Agricultural plant density (rhopa), kg/m
3
 rhopa=830               CalTOX 2.3 

Forest plant density (rhopf), kg/m
3
 rhopf=rhopa             CalTOX 2.3 

Urban plant density (rhopu), kg/m
3
 rhopu=rhopa CalTOX 2.3 

Particle density in sediment (rhod), kg/m
3
 rhod=2650 CalTOX 2.3 

Lipid density in plants (rholp), kg/m
3
 rholp=850 Diamond et al., 2001 

Density of root-zone compartment (rhorm), 

kg/m
3
 

rhorm=1300 Diamond et al., 2001 

Density of agricultural root-zone compartment 

(rhora), kg/m
3
 

rhora=rhorm Diamond et al., 2001 

Density of forest root-zone compartment (rhorf), 

kg/m
3
 

rhorf=rhorm Diamond et al., 2001 

Density of urban root-zone compartment (rhoru), 

kg/m
3
 

rhoru=rhorm Diamond et al., 2001 

Total suspended sediment in water (rhodw), 

kg/m
3
 

rhodw=0.088 CalTOX 2.3 

Density of aquatic biota (rhoab), kg/m
3
 rhoab=0 N/A – arbitrary 

selection 

   

Fractions    

Deciduous fraction of forest (fdd)    ffd=0.55  FDJ, 2015    

Evergreen fraction of forest (ffe) ffe=0.45 as above    

Plantation fraction of forest (ffp) ffp=0 as above    

Fraction of atmosphere occupied by aerosol 

particles (fAap)   

fAap=betaA/rhomp Mackay, 2001 

Volume fraction of water in phloem (fphlmw)  fphlmw=0.99        McKone et al., 1997  

Volume fraction of phloem that is  not water 

(fphlmnw) 

fphlmnw=0.01 McKone et al., 1997 

Organic carbon fraction in pure film (foch)  foch=0.74 Diamond et al., 2001 

Organic carbon fraction in plants (focpl) focpl=0.02 Diamond et al., 2001 

Organic carbon fraction in sediments (focdp) focdp=0.02 CalTOX 2.3 

Organic carbon fraction in agricultural surface 

soil (focsap) 

focsap=0.036 Hennemann & Mantel, 

1995 

Organic carbon fraction in forest surface soil 

(focsfp) 

focsfp=0.036 Hennemann & Mantel, 

1995 

Organic carbon fraction in urban surface soil 

(focsup) 

focsup=0.036 Hennemann & Mantel, 

1995 

Organic carbon fraction in agricultural root soil 

(focrap) 

focrap=focsap Hennemann & Mantel, 

1995 

Organic carbon fraction in forest root soil 

(focrfp) 

focrfp=focsfp Hennemann & Mantel, 

1995 

Organic carbon fraction in urban root soil 

(focrup) 

focrup=focsup Hennemann & Mantel, 

1995 

Organic carbon fraction in agri vadose soil 

(focvap) 

focvap=focsap Hennemann & Mantel, 

1995 

Organic carbon fraction in forest vadose soil focvfp=focsfp Hennemann & Mantel, 
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(focvfp) 1995 

Organic carbon fraction in urban vadose soil 

(focvup) 

focvup=focsup Hennemann & Mantel, 

1995 

Fraction of air in agricultural foliage (fcaa) fcaa=0.18  Cousins and Mackay, 

2000  

Fraction of water in agricultural foliage (fcaw) fcaw=0.80 Cousins and Mackay, 

2000 

Fraction of lipid in agricultural foliage (fcal)  fcal=0.02 Cousins and Mackay, 

2000 

Fraction of air in forest foliage (fcfa) fcfa=0.18  Cousins and Mackay, 

2000  

Fraction of water in forest foliage (fcfw) fcfw=0.80 Cousins and Mackay, 

2000 

Fraction of lipid in forest foliage (fcfl) fcfl=0.02 Cousins and Mackay, 

2000 

Fraction of air in urban foliage (fcua)  fcua=0.18  Cousins and Mackay, 

2000  

Fraction of water in urban foliage (fcuw) fcuw=0.80 Cousins and Mackay, 

2000 

Fraction of lipid in urban foliage (fcul) fcul=0.02 Cousins and Mackay, 

2000 

Air content of agricultural surface soil (fsaa) fsaa=0.068;             (clay-loam)  Baver, 1963 

Water content of agricultural surface soil (fsaw) fsaw=0.339;             (clay-loam) Baver, 1963 

Particle content of agricultural surface soil (fsap) fsap=0.593;             (clay-loam) Baver, 1963 

Air content of forest surface soil (fsfa) fsfa=0.068;             (clay-loam) Baver, 1963 

Water content of forest surface soil (fsfw) fsfw=0.339;             (clay-loam) Baver, 1963 

Particle content of forest surface soil (fsfp) fsfp=0.593;             (clay-loam) Baver, 1963 

Air content of urban surface soil (fsua) fsua=0.068;             (clay-loam) Baver, 1963 

Water content of urban surface soil (fsuw) fsuw=0.339;             (clay-loam) Baver, 1963 

Particle content of urban surface soil (fsup) fsup=0.593;             (clay-loam) Baver, 1963 

Air content of agricultural vadose-zone (fvaa) fvaa=0.068;             (clay-loam) Baver, 1963 

Water content of agricultural vadose-zone soil 

(fvaw) 

fvaw=0.339;             (clay-loam) Baver, 1963 

Particle content of agricultural vadose-zone soil 

(fvap) 

fvap=0.593;             (clay-loam) Baver,1963 

Air content of forest vadose-zone soil (fvfa) fvfa=0.068;             (clay-loam) Baver,1963 

Water content of forest vadose-zone soil (fvfw) fvfw=0.339;             (clay-loam) Baver,1963 

Particle content of forest vadose-zone soil (fvfp) fvfp=0.593;             (clay-loam) Baver,1963 

Air content of urban vadose-zone soil (fvua) fvua=0.068;             (clay-loam) Baver,1963 

Water content of urban vadose-zone soil (fvuw) fvuw=0.339;             (clay-loam) Baver,1963 

Particle content of urban vadose-zone soil (fvup) fvup=0.593;             (clay-loam) Baver,1963 

Fraction of particulate matter in urban film 

(fiuap) 

fiuap=0.70 Diamond et al., 2001 

Dissolved phase or pure film fraction in urban 

film (fiuh) 

fiuh=0.30 Diamond et al., 2001 

Fraction of surface water that is biota (fwab) fwab=0 Arbitrary selection 

Fraction of surface water that is particles (fwp) fwp=rhodw/rhod - 

Water content of surface waters (fww) fww=1-fwp-fwab - 

Water content of sediment compartment (fdw) fdw=0.2 CalTOX 2.3 

Particle fraction in sediment compartment (fdd) fdd=0.8 CalTOX 2.3 

Fraction of landscape that is surface water 

(fAAw)  

fAAw=Aw/AA;              - 

Fraction of rainfall that evaporates from 

agricultural canopy (Iwcaevap)  

Iwcaevap=0.08 Dijk and Bruijnzeel , 

2001 
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Fraction of rainfall that evaporates from forest 

canopy (Iwcfevap)  

Iwcfevap=0.18 Dykes, 1997 

Fraction of rainfall that evaporates from urban 

canopy (Iwcuevap) 

Iwcuevap=0.08 Dykes, 1997 

   

Areal densities (kg/m
2
)   

Plant dry mass inventory for tropical broadleaf 

deciduous forest (Pdfd), kg/m
2
 

Pdfd=6.2 Vogt et al., 1995 

Plant dry mass inventory for tropical broadleaf 

evergreen forest (Pdfe), kg/m
2
 

Pdfe=25.5 Vogt et al., 1995 

Plant dry mass inventory tropical plantation 

forest (Pdfp), kg/m
2
 

Pdfp=25.5;                       as above 

Plant dry mass inventory for agricultural canopy 

(Pda), kg/m
2
 

Pda=2.8 CalTOX 2.3 

Plant dry mass inventory for forest canopy (Pdf), 

kg/m
2
   

Pdf=ffe×Pdfe+ffd×Pdfd+ffp×Pdfp  - 

Plant dry mass inventory for urban vegetation 

(Pdu), kg/m
2
 

Pdu=0.4 Diamond et al., 2001 

Plant dry mass inventory for urban grassland 

vegetation (Pdg), kg/m
2
 

Pdg=0.8 Singh and Yadava, 

1974 

   

Dimensionless quantities/ratios   

Leaf area index for deciduous forest (LAIdf) LAIdf=3.9 Asner et al., 2003 

Leaf area index for evergreen forest (LAIef) LAIef=4.8 Asner et al., 2003 

Leaf area index for forested plantations (LAIpf) LAIpf=8.7 Asner et al., 2003 

Leaf area index for forest (LAIf) LAIf=ffe×LAIef+ffd×LAIdf+ffp×LAI

pf 

- 

Leaf area index for agricultural crops (LAIa) LAIa=3.6 Asner et al., 2003 

Leaf area index for urban vegetation (LAIu) LAIu=1.2 Diamond et al., 2001 

Rain particle scavenging ratio (Qr) Qr=2e5 Mackay et al., 1997 

Canopy drip parameter (Cd) Cd=8.7e-4 Diamond et al., 2001 

Ratio of vegetation dry to fresh mass for 

agricultural canopy (thetadfa) 

thetadfa=0.22 CalTOX 2.3 

Ratio of vegetation dry to fresh mass for forest 

canopy (thetadff) 

thetadff= thetadfa CalTOX 2.3 

Ratio of vegetation dry to fresh mass for urban 

canopy (thetadfu) 

thetadfu= thetadfa CalTOX 2.3 

   

Landscape mass fluxes (kg/m
2
/d)   

Total litterfall production, dry deciduous forest 

(litdpr), kg/m
2
/d 

litdpr=1.452e-3 Sundarapandian & 

Swamy, 1999 

Total litterfall production, dry evergreen forest 

(litepr), kg/m
2
/d 

litepr=3.255e-3 Sundarapandian & 

Swamy, 1999 

Total litterfall production, dry plantation forest 

(litppr), kg/m
2
/d 

litppr=3.04e-3 Cuevas & Lugo, 1998  

   

Landscape rates (m/d)   

Annual average windspeed (W), m/d  W=3.51e5 Amarakoon & Chen, 

2001 

Surface water current (wcur), m/d wcur=3763.2 CalTOX 2.3 

Surface water outflow rate (wout), m/d wout=2.46e-3 Setegn et al., 2014 

Groundwater recharge rate (gwrech), m/d gwrech=1.09e-3 Setegn et al., 2014 

Total litterfall rate, dry deciduous forest 

(ulitterfd), m/d 

ulitterfd=litdpr/rhopf - 
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Total litterfall rate, dry evergreen forest 

(ulitterfe), m/d 

ulitterfe=litepr/rhopf - 

Total litterfall rate, dry plantation forest 

(ulitterfp), m/d 

ulitterfp=litppr/rhopf - 

Total litterfall rate for forest (ulitterf), m/d ulitterf=ffe*ulitterfe+ffd*ulitterfd+ffp

*ulitterfp 

- 

Litterfall rate for agricultural canopy (ulittera), 

m/d 

ulittera=1.51e-6  average of five tropical 

fields (Crespo et al., 

2005; Cadisch et al., 

1994; Christanty et al., 

1996) 

Litterfall rate for urban canopy (ulitteru), m/d ulitteru=5.62e-7 Jo & McPherson, 1995  

Precipitation rate (urain), m/d urain=5.35e-3 MOJ, 2015 

Dry deposition rate (udepo), m/d udepo=259.2 Mackay et al., 1997 

Wind resuspension rate (uwinres), m/d uwinres=udepo - 

Sedimentation rate (usedi), m/d usedi=3.962e-3 CalTOX 2.3 

Sediment resuspension rate (uresus), m/d uresus=usedi - 

Urban run-off rate (uiurunoff), m/d uiurunoff=4.2e-7 Diamond et al., 2001 

Surface soil run-off rate (usrunoff), m/d usrunoff=2.82e-4 Setegn et al., 2014 

Leaching rate (uleach), m/d uleach=gwrech Setegn et al., 2014 

Wax erosion rate (uwaxer), m/d uwaxer=1.932e-6 Diamond et al., 2001 

Surface soil erosion rate (ueros), m/d ueros=usrunoff/3e4 Yang, 2007 

Agricultural transpiration rate (utranspa), m/d utranspa=4.8e-3×LAIa Yang, 2007 

Forest transpiration rate (utranspf), m/d utranspf=4.8e-3×LAIf Yang, 2007 

Urban vegetation transpiration rate (utranspu), 

m/d 

utranspu=4.8e-3×LAIu Yang, 2007 

Sediment burial rate (usedibury), m/d usedibury=1e-6 CalTOX 2.3 

   

Compartment depths or lengths (m)   

Average atmospheric depth (dA), m dA=700 (if area of the atmosphere, 

AA<6e8 m); 

dA=0.22×AA^0.4 (otherwise) 

California 

Environmental 

Protection Agency 

(CEPA), 1993 

Average depth of surface water (dw), m dw=5 Arbitrary selection 

Sediment layer depth (dd), m dd=0.05 Santschi et al., 1990; 

Wang et al., 2003 

Effective depth of agricultural canopy (dca), m dca=0.5×Aca×Pda/(rhopa×thetadfa×A

A) 

CalTOX 2.3 

Effective depth of forest canopy (dcf), m dcf=0.5×Acf×(ffd×Pdfd+ffe×Pdfe+ffp

×Pdfp)/(rhopf×thetadff×AA) 

CalTOX 2.3 

Effective depth of urban canopy (dcu), m dcu=0.5×Acu×Pdu/(rhopu×thetadfu×

AA) 

CalTOX 2.3 

Depth of agricultural surface soil (dsa), m dsa=0.01 CEPA, 1993 

Depth of forest surface soil (dsf), m dsf=0.01 CEPA, 1993 

Depth of urban surface soil (dsu), m dsu=0.01 CEPA, 1993 

Depth of agricultural root-zone soil (dra), m dra=1 CalTOX 2.3 

Depth of forest root-zone soil (drf), m drf=1 CalTOX 2.3 

Depth of urban root-zone soil (dru), m dru=1 CalTOX 2.3 

Depth of agricultural vadose-zone soil (dva), m dva=34 CalTOX 2.3 

Depth of forest vadose-zone soil (dvf), m dvf=34 CalTOX 2.3 

Depth of urban vadose soil (dvu), m dvu=34 CalTOX 2.3 

Depth of urban film (diu), m diu=70e-9  Diamond et al., 2001 

Length of impervious surface in wind direction 

(liu), m 

liu=100 Diamond et al., 2001 
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Root-Zone Soil compartment fractions   

Air content of agricultural root-zone soil (fraa) fraa=0.068;             (clay-loam) Baver, 1963 

Water content of agricultural root-zone soil 

(fraw) 

fraw=0.339;             (clay-loam) Baver, 1963 

Plant root fraction in agricultural root-zone soil 

(frat) 

frat=0; 

if required use: 

0.5×Pda/(thetadfa×dra×rhopa)  

CalTOX 2.3 

Particle content of agricultural root-zone soil 

(frap) 

frap=1-(fraa+fraw+frat)  - 

Air content of forest root-zone soil (frfa) frfa=0.068;             (clay-loam) Baver, 1963 

Water content of forest root-zone soil (frfw) frfw=0.339;             (clay-loam) Baver, 1963 

Plant root fraction in forest root-zone soil (frft) frft=0;                              

if required use: 

0.5×Pdf/(thetadff×drf×rhopf)  

CalTOX 2.3 

Particle content of forest root-zone soil (frfp) frfp=1-(frfa+frfw+frft) - 

Air content of urban root-zone soil (frua) frua=0.068;             (clay-loam) Baver, 1963 

Water content of urban root-zone soil (fruw) fruw=0.339;             (clay-loam) Baver, 1963 

Plant root fraction in urban root-zone soil (frut) frut=0; 

if required, use: 

0.5×Pdu/(thetadfu×dru×rhopu) 

CalTOX 2.3 

Particle content of urban root-zone soil (frup) frup=1-(frua+fruw+frut) - 

 
⁋
 The fraction of the landscape occupied by each surface compartment was provided by the  

Forestry Department of Jamaica (FDJ). 
⸸
 Impervious surface fraction coverage for commercial land use in Olympia, Washington (Arnold  

& Gibbons, 1996) used in the absence of values for the Ro Cobre watershed. 
†
 Mean total suspended particles in the atmosphere was obtained from measurements at six 

monitoring stations in the Rio Cobre watershed.  
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Appendix E 
 

Matlab codes for RioShed 

 

 

%********************* 

%Run RioShed1.0 

%********************* 

 

%Instructions: 1) Complete the input file changing values as necessary 

%              2) Save modified input file as user_a_input.m 

%              3) Press the green button labeled 'run' under the editor 

%              tab. 

                 

%U=input('Have you completed the input data, type Y for yes and N for no: ','s');  

%while U=='N', fprintf('Please complete input file!\n'); 

%U=input('Have you completed the input data, type Y for yes and N for no: ','s');     

%end; 

%if 'Y', fprintf('Save file as user_a_input.m.\n'); end; 

user_a_input;  

b_vec_input; 

c_calc_prop; 

d_output;  

%O=input('Do you want health impact assessment?, type Y for yes and N for no: ','s'); if O=='Y', 

e_risk; end;  

e_risk; 

 

 

%******************************* 

%Input Data 

%******************************* 

 

%********************** 

% Standard Properties 

%********************** 

R=8.314; %universal gas constant (Pa.m3/mol/K) 

rhow=1000; %density of water (kg/m3) 

 

%********************************** 

%Landscape Properties 

%************************************ 

T=302.79+2.5;                   %Ambient air temperature (K) 
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%Compartment Areas/m2 

AA=1249e6;              %area of atmosphere (m2) - Rio Cobre default 

Aw=1.759e-3*AA;         %area of surface water compartment (m2) - Rio Cobre River default 

Aca=2.519e-1*AA;        %area of agricultural compartment (m2) 

Acf=0.5*6.015e-1*AA;        %area of forest compartment (m2)- Rio Cobre default 

Acu=0.3*(0.5*6.015e-1+1.448e-1)*AA;    %area of urban canopy (m2) 

Aiu=0.7*(0.5*6.015e-1+1.448e-1)*AA;    %area of impervious surface (m2) 

Ad=Aw;                  %area of sediment (m2) 

Asa=Aca;                %area of agri surface soil (m2) 

Asf=Acf;                %area of forest surface soil (m2) 

Asu=Acu;                %area of urban surface soil (m2) 

Ara=Aca;                %area of agri root soil(m2) 

Arf=Acf;                %area of forest root soil (m2) 

Aru=Acu;                %area of urban root soil (m2) 

Ava=Aca;                %area of agri vadose soil (m2) 

Avf=Acf;                %area of forest vadose soil (m2) 

Avu=Acu;                %area of urban vadose soil (m2) 

 

%Densities (kg/m3) 

betaA=4.96e-8;          %atmospheric dust load (kg/m3) - Jamaica default (Caltox - 6.15e-8) 

rhomp=2650;             %density of particles in soil (kg/m3) - Caltox default 

rhosap=rhomp;           %density of particles in agri surf soil (kg/m3) 

rhosfp=rhomp;           %density of particles in forest surf soil (kg/m3) 

rhosup=rhomp;           %density of particles in urban surf soil (kg/m3) 

rhorap=rhomp;           %density of particles in agri root-zone soil (kg/m3)  

rhorfp=rhomp;           %density of particles in forest root-zone soil (kg/m3) 

rhorup=rhomp;           %density of particles in urban root-zone soil (kg/m3) 

rhovap=rhomp;           %density of particles in agri vadose-zone soil (kg/m3) 

rhovfp=rhomp;           %density of particles in forest vadose-zone soil (kg/m3) 

rhovup=rhomp;           %density of particles in urban vadose-zone soil (kg/m3) 

rhopa=830;              %agri plant density (kg/m3) - Caltox 

rhopf=830;              %forest plant density (kg/m3) - Caltox 

rhopu=830;              %urban plant density (kg/m3) - Caltox 

rhod=2650;              %particle density in sediment (kg/m3) - Caltox default 

rholp=850;              %lipid density in plants (kg/m3) - MUM 

rhorm=1300;             %density of root-zone compartment (kg/m3) 

rhora=rhorm;            %density of agricultural root-zone compartment (kg/m3) 

rhorf=rhorm;            %density of forest root-zone compartment (kg/m3) 

rhoru=rhorm;            %density of urban root-zone compartment (kg/m3) 

rhodw=0.088;            %total suspended sediment in water (kg/m3) 

rhoab=0;                %density of aquatic biota (kg/m3) 

 

%Fractions (exempt root-zone soil) 

ffd=0.55;                  %deciduous fraction of forest    

ffe=0.45;                  %evergreen fraction of forest 
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ffp=0;                  %plantation fraction of forest 

fAap=betaA/rhomp;        %calculated fraction of atmosphere occupied by aerosol particles   

fphlmw=0.99;            %volume fraction of water in phloem  

fphlmnw=0.01;           %volume fraction non-water (nutrients,etc.) in phloem 

foch=0.74;              %organic carbon fraction in pure film - MUM 

focpl=0.02;             %organic carbon fraction in plants - MUM 

focdp=0.02;             %organic carbon fraction in sediments - Caltox 

focsap=0.036;           %organic carbon fraction in agri surface soil - Jamaica, Worthy Park 

focsfp=0.036;           %organic carbon fraction in forest surface soil - Jamaica, Worthy Park 

focsup=0.036;           %organic carbon fraction in urban surface soil - Jamaica, Worthy Park 

focrap=focsap;          %organic carbon fraction in agri root soil 

focrfp=focsfp;          %organic carbon fraction in forest root soil 

focrup=focsup;          %organic carbon fraction in urban root soil 

focvap=focsap;          %organic carbon fraction in agri vadose soil 

focvfp=focsfp;          %organic carbon fraction in forest vadose soil 

focvup=focsup;          %organic carbon fraction in urban vadose soil 

fcaa=0.18;              %fraction of air in agri canopy (foliage) - Cousins and Mackay, 2000  

fcaw=0.80;              %fraction of water in agri canopy (foliage) - Cousins and Mackay 2000 

fcal=0.02;              %fraction of lipid in agri canopy (foliage) - Cousins and Mackay 2000 

fcaap=0;                %fraction of aerosol particles in agri canopy (foliage) 

fcfa=0.18;              %fraction of air in forest canopy (foliage) - Cousins and Mackay, 2000  

fcfw=0.80;              %fraction of water in forest canopy (foliage) - Cousins and Mackay 2000 

fcfl=0.02;              %fraction of lipid in forest canopy (foliage) - Cousins and Mackay 2000 

fcfap=0;                %fraction of aerosol particles in forest canopy (foliage)  

fcua=0.18;              %fraction of air in urban canopy (foliage) - Cousins and Mackay, 2000  

fcuw=0.80;              %fraction of water in urban canopy (foliage) - Cousins and Mackay 2000 

fcul=0.02;              %fraction of lipid in urban canopy (foliage) - Cousins and MacKay 2000 

fcuap=0;                %fraction of aerosol particles in urban canopy (foliage)  

fsaa=0.068;             %air content of agricultural surface soil - clay-loam as default, Baver 1963 

fsaw=0.339;             %water content of agricultural surface soil - clay-loam as default, Baver 

1963 

fsap=0.593;             %particle content of agricultural surface soil - 1-porosity of clay-loam as 

default, Baver 1963 

fsfa=0.068;             %air content of forest surface soil - clay-loam as default, Baver 1963 

fsfw=0.339;             %water content of forest surface soil - clay-loam as default, Baver 1963 

fsfp=0.593;             %particle content of forest surface soil - 1-porosity of clay-loam as default, 

Baver 1963 

fsua=0.068;             %air content of urban surface soil - clay-loam as default, Baver 1963 

fsuw=0.339;             %water content of urban surface soil - clay-loam as default, Baver 1963 

fsup=0.593;             %particle content of urban surface soil - 1-porosity of clay-loam as default, 

Baver 1963 

fvaa=0.068;             %air content of agricultural vadose-zone soil - clay-loam as default, Baver 

1963 

fvaw=0.339;             %water content of agricultural vadose-zone soil - clay-loam as default, 

Baver 1963 
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fvap=0.593;             %particle content of agricultural vadose-zone soil - 1-porosity of clay-loam 

as default, Baver 1963 

fvfa=0.068;             %air content of forest vadose-zone soil - clay-loam as default, Baver 1963 

fvfw=0.339;             %water content of forest vadose-zone soil - clay-loam as default, Baver 

1963 

fvfp=0.593;             %particle content of forest vadose-zone soil - 1-porosity of clay-loam as 

default, Baver 1963 

fvua=0.068;             %air content of urban vadose-zone soil - clay-loam as default, Baver 1963 

fvuw=0.339;             %water content of urban vadose-zone soil - clay-loam as default, Baver 

1963 

fvup=0.593;             %particle content of urban vadose-zone soil - 1-porosity of clay-loam as 

default, Baver 1963 

fiuap=0.70;             %fraction of particulate matter in urban film - MUM 

fiuh=0.30;              %dissolved phase or pure film fraction in urban film - MUM 

fwab=0;                 %fraction of surface water that is biota 

fwp=3.32e-5;            %fraction of surface water that is particles 

fww=1-fwp-fwab;         %water content of surface waters 

fdw=0.2;                %water content of sediment compartment - Caltox 

fdd=0.8;                %particle fraction in sediment compartment - Caltox 

fAAw=Aw/AA;             %fraction of landscape that is surface water - Rio Cobre watershed 

Iwcaevap=0.08;          %fraction of rainfall that evaporates from agri canopy (Dijk and Bruijnzeel 

2001) 

Iwcfevap=0.18;          %fraction of rainfall that evaporates from forest canopy (Dykes 1997) 

Iwcuevap=0.08;          %fraction of rainfall that evaporates from urban canopy 

 

%Areal densities (kg/m2) 

Pdfd=6.2;                       %plant dry mass inventory for tropical broadleaf deciduous forest 

(kg/m2) - Vogt et al. 1995 

Pdfe=25.5;                      %plant dry mass inventory for tropical broadleaf evergreen forest 

(kg/m2) - Vogt et al. 1995 

Pdfp=25.5;                      %plant dry mass inventory tropical plantation forest (kg/m2) - default 

for evergreen forest 

Pda=2.8;                        %plant dry mass inventory for agricultural canopy (kg/m2) - default in 

Caltox 

Pdf=ffe*Pdfe+ffd*Pdfd+ffp*Pdfp; %plant dry mass inventory for forest canopy (kg/m2)   

Pdu=0.4;                        %plant dry mass inventory for urban vegetation (kg/m2) - MUM 

 

%Dimensionless quantities/ratios 

LAIdf=3.9;                      %Leaf area index for deciduous forest - Asner et al 2003 

LAIef=4.8;                      %Leaf area index for evergreen forest - Asner et al 2003 

LAIpf=8.7;                      %Leaf area index for forested plantations - Asner et al 2003 

LAIf=ffe*LAIef+ffd*LAIdf+ffp*LAIpf; %Leaf area index for forest 

LAIa=3.6;                       %Leaf area index for agricultural crops - Asner et al 2003 

LAIu=1.2;                       %Leaf area index for urban vegetation - MUM 

Qr=2e5;                         %Rain particle scavenging ratio - MacKay et al. 1997 

Cd=8.7e-4;                      %canopy drip parameter - MUM 
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thetadff=0.22;                  %ratio of vegetation dry to fresh mass for forest canopy - Caltox 

default 

thetadfa=0.22;                  %ratio of vegetation dry to fresh mass for agricultural canopy - Caltox 

default 

thetadfu=0.22;                  %ratio of vegetation dry to fresh mass for urban canopy - Caltox 

default 

 

%Landscape mass fluxes (kg/m2/d) 

litdpr=1.452e-3;        %total litterfall production, dry deciduous forest(kg/m2/d) 

litepr=3.255e-3;        %total litterfall production, dry evergreen forest (kg/m2/d) 

litppr=3.04e-3;         %total litterfall production, dry plantation forest (kg/m2/d)- Cuevas & Lugo 

1998 (For. Ecol. & Managem.) 

 

%Landscape rates (m/d) 

W=3.51e5;               %Annual average windspeed (m/d)-Norman Manley Airport default 

wcur=3763.2;            %surface water current (m/d) - Caltox default 

wout=2.46e-3;           %surface water outflow rate (m/d) - Rio Cobre watershed, Setegn et al 

2014 

gwrech=1.09e-3;         %groundwater recharge rate (m/d) - Rio Cobre watershed, Setegn et al 

2014 

ulitterfd=litdpr/rhopf;  %total litterfall rate, dry deciduous forest (m/d) 

ulitterfe=litepr/rhopf;  %total litterfall rate, dry evergreen forest (m/d) 

ulitterfp=litppr/rhopf;  %total litterfall rate, dry plantation forest (m/d) 

ulitterf=ffe*ulitterfe+ffd*ulitterfd+ffp*ulitterfp; %total litterfall rate for forest (m/d) 

ulittera=1.51e-6;      %litterfall rate for agricultural canopy (m/d) - average of five tropical fields 

ulitteru=5.62e-7;      %litterfall rate for urban canopy (m/d) - lower estimate urban grass, Jo & 

McPherson 1995 - Chicago 

urain=5.35e-3;          %precipitation rate (m/d) 

udepo=259.2;            %dry deposition rate (m/d) - MacKay et al. 1997 

uwinres=udepo;          %wind resuspension rate (m/d) 

usedi=3.962e-3;           %sedimentation rate (m/d) - Caltox 

uresus=usedi;           %sediment resuspension rate (m/d) 

uiurunoff=4.2e-7;       %urban run-off rate (m/d) - MUM 

usrunoff=2.82e-4;       %surface soil run-off rate (m/d) - Rio Cobre watershed, Setegn et al 2014 

uleach=gwrech;          %leaching rate (m/d) - default aquifer recharge rate for Rio Cobre 

watershed (Setegn et al 2014) 

uwaxer=1.932e-6;        %wax erosion rate (m/d)- MUM 

ueros=usrunoff/3e4;     %surface soil erosion rate (m/d) - GIM3 

utranspa=4.8e-3*LAIa;   %transpiration rate (m/d) - GIM3 

utranspf=4.8e-3*LAIf;   %transpiration rate (m/d) - GIM3 

utranspu=4.8e-3*LAIu;   %transpiration rate (m/d) - GIM3 

usedibury=1e-6;         %sediment burial rate (m/d) - Caltox 

 

%Compartment depths or lengths (m) 

dA=700; if AA<6e8, dA=0.22*AA^0.4; end; %average atmospheric depth (m) 

dw=5;                   %average depth of surface water (m) 
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dd=0.05;                %sediment layer depth (m) 

dca=0.5*Aca*Pda/(rhopa*thetadfa*AA);                            %effective depth of agricultural 

canopy (m) 

dcf=0.5*Acf*(ffd*Pdfd+ffe*Pdfe+ffp*Pdfp)/(rhopf*thetadff*AA);   %effective depth of forest 

canopy (m) 

dcu=0.5*Acu*Pdu/(rhopu*thetadfu*AA);                            %effective depth of urban canopy (m) 

dsa=0.01;               %depth of agricultural surface soil (m) 

dsf=0.01;               %depth of forest surface soil (m) 

dsu=0.01;               %depth of urban surface soil (m) 

dra=1;                  %depth of agricultural root-zone soil (m) 

drf=1;                  %depth of forest root-zone soil (m) 

dru=1;                  %depth of urban root-zone soil (m) 

dva=34;                  %depth of agricultural vadose-zone soil (m) - Caltox default 

dvf=34;                  %depth of forest vadose-zone soil (m) - Caltox default 

dvu=34;                  %depth of urban vadose soil (m) - Caltox default 

diu=70e-9;              %depth of urban film (m) - MUM  

liu=100;                %length of impervious surface in wind direction (m) 

 

%Root-Zone Soil compartment fraction data 

fraa=0.068;                         %air content of agricultural root-zone soil - clay-loam as default, 

Baver 1963 

fraw=0.339;                         %water content of agricultural root-zone soil - clay-loam as default, 

Baver 1963 

frat=0;                             %plant root fraction in agricultural root-zone soil; if required use: 

0.5*Pda/(thetadfa*dra*rhopa) - Caltox 

frap=1-(fraa+fraw+frat);            %particle content of agricultural root-zone soil - 1-porosity of 

clay-loam as default, Baver 1963 

frfa=0.068;                         %air content of forest root-zone soil - clay-loam as default, Baver 

1963 

frfw=0.339;                         %water content of forest root-zone soil - clay-loam as default, Baver 

1963 

frft=0;                             %plant root fraction in forest root-zone soil; if required use: 

0.5*Pdf/(thetadff*drf*rhopf) - Caltox 

frfp=1-(frfa+frfw+frft);            %particle content of forest root-zone soil - 1-porosity of clay-

loam as default, Baver 1963 

frua=0.068;                         %air content of urban root-zone soil - clay-loam as default, Baver 

1963 

fruw=0.339;                         %water content of urban root-zone soil - clay-loam as default, Baver 

1963 

frut=0;                             %plant root fraction in urban root-zone soil; if required, use: 

0.5*Pdu/(thetadfu*dru*rhopu) - Caltox 

frup=1-(frua+fruw+frut);            %particle content of urban root-zone soil - 1-porosity of clay-

loam as default, Baver 1963 
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%********************************** 

%Chemical Properties 

%********************************** 

Name_chem='Dimethoate';     %Chemical name 

H=1.15e-4;                %Henry's constant (Pa.m3/mol) 

MP=325.15;              %Melting Point (K) 

VP=3.63e-2;             %Vapor Pressure (Pa) 

Koc=15.85;            %Organic carbon partition coefficient (L/kg) - if unavailable use: Kd/foc or 

0.41*Kow  

Kow=6.03;            %Octanol-water partition coefficient 

Kaw=H/(R*T);           %Air-water partition coefficient - if unavailable, use: H/(RT) or 

10^(log10(Kow/Koa)-0.1+(0.3*log10(Kow)-1.20)) when Kow>1e4 and 10^(log10(Kow/Kaw)-

0.1 when Kow<1e4 

Koa=10^(log10(Kow/Kaw)-0.1+(0.3*log10(Kow)-1.20));           %Octanol-air partition 

coefficient - If unavailable, use: Kow*(RT)/H; or 10^(log10(Kow/Kaw)-0.1+(0.3*log10(Kow)-

1.20)) when Kow>1e4 and 10^(log10(Kow/Kaw)-0.1 when Kow<1e4 - MacKay 2006 

Kpaap=3000;             %Plant-air particle partition coefficient (m3/kg) - Caltox 

Kps=7.7*(Kow^(-0.578)); %Plant root-soil partition coefficient (kg/kg) - If unavailable, use: 

7.7*(Kow^(-0.578)) - Caltox 

MW=229.258;             %Molecular Weight (g/mol) 

MV=205.6;               %Molecular Volume (cm3/mol) 

BCF=0;                  %Bioconcentration factor fish/water (m3/kg) - if unavailable, use 

BCF=0.048*Kow  

HlA=1.95e-1;             %Atmospheric half-life (d) 

Hlw=29;                %Half-life in surface water (d) 

Hld=7;                %Half-life in sediment (d) 

Hlc=2.95;               %Average half-life in vegetation (d); if unavailable, use HLs/4 - Juraske et al. 

2008 

Hlca=Hlc;               %Half-life in agricultural vegetation (d) 

Hlcf=Hlc;               %Half-life in forest vegetation (d) 

Hlcu=Hlc;               %Half-life in urban vegetation (d) 

Hls=7;                %Half-life in surface soil (d) 

Hlsa=Hls;               %Half-life in agricultural surface soil (d) 

Hlsf=Hls;               %Half-life in forest surface soil (d) 

Hlsu=Hls;               %Half-life in urban surface soil (d) 

Hlr=7;                %Half-life in root-zone soil (d) 

Hlra=Hlr;               %Half-life in agricultural root-zone soil (d) 

Hlrf=Hlr;               %Half-life in forest root-zone soil (d) 

Hlru=Hlr;               %Half-life in urban root-zone soil (d) 

Hlv=7;                %Half-life in vadose-zone soil (d) 

Hlva=Hlv;               %Half-life in agricultural vadose-zone soil (d) 

Hlvf=Hlv;               %Half-life in forest vadose-zone soil (d) 

Hlvu=Hlv;               %Half-life in urban vadose-zone soil (d) 

Hlh=7;                %Half-life in urban organic film 
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%********************* 

%Source Terms (mol/d) 

%********************* 

 

SA=10/MW;   %Source term to atmosphere (mol/d) - 3.65kg/y 

Sw=0;   %Source term to surface water (mol/d) 

Sd=0;   %Source term to sediment (mol/d) 

Siu=0;  %Source term to urban impervious surface (mol/d) 

Sca=0;  %Source term to agricultural canopy (mol/d) 

Scf=0;  %Source term to forest canopy (mol/d) 

Scu=0;  %Source term to urban canopy (mol/d) 

Ssa=0;  %Source term to agricultural surface soil (mol/d) 

Ssf=0;  %Source term to forest surface soil (mol/d) 

Ssu=0;  %Source term to urban surface soil (mol/d) 

Sra=0;  %Source term to agricultural root-zone soil (mol/d) 

Srf=0;  %Source term to forest root-zone soil (mol/d) 

Sru=0;  %Source term to urban root-zone soil (mol/d) 

Sva=0;  %Source term to agricultural vadose-zone soil (mol/d) 

Svf=0;  %Source term to forest vadose-zone soil (mol/d) 

Svu=0;  %Source term to urban vadose-zone soil (mol/d) 

 

 

%************************* 

%Initial conditions (mol) 

%************************* 

NAin=0;     %Atmospheric inventory at time 0s (mol) 

Nwin=0;     %Surface water inventory at time 0s (mol) 

Ndin=0;     %Sediment inventory at time 0s (mol) 

Niuin=0;    %Urban Film inventory at time 0s (mol) 

Ncain=0;    %Agricultural canopy inventory at time 0s (mol)     

Ncfin=0;    %Forest canopy inventory at time 0s (mol)     

Ncuin=0;    %Urban canopy inventory at time 0s (mol)     

Nsain=0;    %Agricultural surface soil inventory at time 0s (mol)     

Nsfin=0;    %Forest surface soil inventory at time 0s (mol)     

Nsuin=0;    %Urban surface soil inventory at time 0s (mol)     

Nrain=0;    %Agricultural root-zone soil inventory at time 0s (mol)     

Nrfin=0;    %Forest root-zone soil inventory at time 0s (mol)     

Nruin=0;    %Urban root-zone soil inventory at time 0s (mol) 

Nvain=0;    %Agricultural vadose-zone soil inventory at time 0s (mol)     

Nvfin=0;    %Forest vadose-zone soil inventory at time 0s (mol)     

Nvuin=0;    %Urban vadose-zone soil inventory at time 0s (mol) 
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%******************************* 

%Vectorize Input Data 

%******************************* 

 

Vec_A=[AA,Aw,Ad,Aiu,Aca,Acf,Acu,Asa,Asf,Asu,Ara,Arf,Aru,Ava,Avf,Avu];                           

%1x16 compartmental areas (m2) 

Vec_d=[dA,dw,dd,diu,dca,dcf,dcu,dsa,dsf,dsu,dra,drf,dru,dva,dvf,dvu];                           %1x16 

compartmental depths (m) 

Vec_HL=[HlA,Hlw,Hld,Hlh,Hlca,Hlcf,Hlcu,Hlsa,Hlsf,Hlsu,Hlra,Hlrf,Hlru,Hlva,Hlvf,Hlvu];           

%1x16 compartment half-lives (d)              

Vec_fcm=[fcaa,fcfa,fcua,fcaw,fcfw,fcuw,fcal,fcfl,fcul,fcaap,fcfap,fcuap];                       %1x12 

canopy fractions 

Vec_fma=[fsaa,fsfa,fsua,fraa,frfa,frua,fvaa,fvfa,fvua];                                         %1x9 air content 

of soil 

Vec_fmw=[fsaw,fsfw,fsuw,fraw,frfw,fruw,fvaw,fvfw,fvuw];                                         %1x9 

water content of soil 

Vec_fmp=[fsap,fsfp,fsup,frap,frfp,frup,fvap,fvfp,fvup];                                         %1x9 particle 

fraction of soil 

Vec_fra=[fraa,frfa,frua];                                                                       %1x3 air content of root 

soil 

Vec_frw=[fraw,frfw,fruw];                                                                       %1x3 water content of 

root soil 

Vec_Pdc=[Pda,Pdf,Pdu];                                                                          %1x3 plant drymass 

inventory (kg/m2) 

Vec_rhop=[rhopa,rhopf,rhopu];                                                                   %1x3 densities of 

plants in mth canopy (kg/m3) 

Vec_frt=[frat,frft,frut];                                                                       %1x3 plant root fraction in 

mth root-zone soil - Caltox 

Vec_frp=[frap,frfp,frup];                                                                       %1x3 particle fraction of 

root-zone soil - Caltox                                                                   %1x3 particle fraction in root 

soil 

Vec_ftm=[0,0,0,Vec_frt,0,0,0];                                                                  %1x9 fraction of plant 

roots in mth soil 

Vec_urates=[urain,udepo,uwinres,usedi,uresus,uiurunoff,usrunoff,ulittera,ulitterf,ulitteru,uleach,

uwaxer,ueros,utranspa,utranspf,utranspu,usedibury]; %1x17 landscape rates (m/d) 

Vec_dfr=[thetadfa,thetadff,thetadfu];                                                           %1x3 plant dry to 

fresh mass ratio 

Vec_focmp=[focsap,focsfp,focsup,focrap,focrfp,focrup,focvap,focvfp,focvup];                     

%1x9 OC fraction in soils 

Vec_rhomp=[rhosap,rhosfp,rhosup,rhorap,rhorfp,rhorup,rhovap,rhovfp,rhovup];                     

%1x9 densities of particles in soil compartments (kg/m3) 

Vec_rhosmp=Vec_rhomp(1:3);                                                                      %1x3 densities of 

particles in surface soil (kg/m3) 

Vec_rhorm=[rhora,rhorf,rhoru];                                                                  %1x3 densities of root-

zone soil compartments (kg/m3) 

Vec_LAIc=[LAIa,LAIf,LAIu];                                                                      %1x3 LAI  
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Vec_Kij=[Koc,Kow,Koa,Kpaap,Kps,Kaw];                                                                %1x5 

partition coefficients 

Vec_uphl=4.8e-4.*(Vec_LAIc);                                                                    %1x3 phloem flow 

rates 

Vec_Iwcevap=[Iwcaevap,Iwcfevap,Iwcuevap];                                                       %1x3 Fraction 

of intercepted wet deposition that evaporates from canopy 

 

%************************************ 

%Compute Landscape Properties 

%************************************ 

 

%**************************** 

%Compartment Volumes (m3) 

%**************************** 

 

Vec_V=Vec_A.*Vec_d.*[1,1,1,1,Vec_LAIc,1,1,1,1,1,1,1,1,1];   %Compartment volumes (m3) 

 

 

%********************************************* 

%Fugacity Capacities (FC) in mol/m3/Pa 

%********************************************* 

 

Zwater=1/H;                                         %FC Pure water - Caltox 

Zair=1/(R*T);                                       %FC Pure air - Caltox 

if T<MP, Zap=3e6*Zair*exp(6.81*(1-MP/T))/VP; else Zap=3e6*Zair/VP; end;    %FC Aerosol 

particles - Caltox 

Zdp=1e-3*Vec_Kij(1)*Zwater*rhod*focdp;              %FC Particles in sediment - Caltox 

Vec_Zmp=(1e-3*Vec_Kij(1)*Zwater).*(Vec_rhomp.*Vec_focmp); %1x9 FC Particles in soil - 

Caltox 

Vec_Zrmp=Vec_Zmp(4:6);                              %1x3 FC Particles in root soil 

Zab=1e-3*BCF*rhoab*Zwater;                          %FC Aquatic biota - GIM3 

Zlc=focpl*Zwater*Vec_Kij(2);                        %FC leaf cuticle - MUM, Caltox 

Zl=Kow*Zwater;                                      %FC lipid 

Zphl=0.9*Zwater;                                    %FC Phloem - Caltox 

Zh=Zair*Vec_Kij(3)*foch;                            %FC Urban film - MUM 

Vec_Kpa=(0.5+(0.4+0.01*Vec_Kij(2))*Zwater/Zair)./Vec_rhop; 

 

%Bulk Fugacity Capacities in mol/m3/Pa 

Zw=fww*Zwater+fwp*Zdp+fwab*Zab;                                             %FC Bulk surface water - 

Caltox 

ZA=fAap*Zap+(1-fAap)*Zair;                                                  %FC Atmosphere - Caltox 

Vec_Zcm=Vec_fcm(1:3)*Zair+Vec_fcm(4:6)*Zwater+Vec_fcm(7:9)*Zl+Vec_fcm(10:12)*Zap;                               

%1x3 FC mth canopy - Caltox 

Vec_Zt=((Vec_Kij(5).*Vec_rhop)./(Vec_rhomp(4:6).*Vec_frp)).*(Zair*Vec_fra+Zwater*Vec_f

rw+(Vec_Zrmp.*Vec_frp));  %1x3 FC mth plant roots 

Vec_Ztm=[0,0,0,Vec_Zt(1:3),0,0,0]; 
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Vec_Zmm=Zair.*Vec_fma+Zwater.*Vec_fmw+Vec_fmp.*Vec_Zmp+Vec_ftm.*Vec_Ztm;     

%1x9 FC soils - Caltox 

Zd=fdw*Zwater+fdd*Zdp;                                                       %FC sediment - Caltox 

Ziu=fiuh*Zh+fiuap*Zap;                                                       %FC impervious surface - MUM 

 

 

%****************************************** 

%Calculate Diffusion Coefficients (m^2/d) 

%****************************************** 

 

Dair=0.001*T^1.75*sqrt((28.97+MW)/(28.97*MW))/((20.1^(1/3)+MV^(1/3))^2);   %calulated 

diffusion coefficient in pure air (m2/d) - Caltox 

Dwater=7.4e-8*sqrt(2.6*18)*T/(0.80*MV^(0.6));                              %calculated diffusion 

coefficient in pure water at 30 deg cel (m2/d) - Caltox 

 

ZaiD=Zair*Dair; 

ZwaD=Zwater*Dwater; 

Vec_fmpor=Vec_fma+Vec_fmw; 

 

DA=ZaiD/ZA;             %Diffusion coefficient in atmosphere (m2/d) - GIM3 

Dw=ZwaD/Zw;             %Diffusion coefficient in surface water (m2/d) - GIM3 

Dd=ZwaD*fdw^(4/3)/Zd;   %Diffusion coefficient in sediment (m2/d) - Caltox 

Vec_Dmm=(ZaiD.*(Vec_fma.^(10/3))+ZwaD.*(Vec_fmw.^(10/3)))./(Vec_Zmm.*(Vec_fmpor).

^2);    %1x9 Effective diffusion coefficient in soils (m2/d) - Caltox 

 

 

%**************************** 

%Estimate Parameters 

%**************************** 

 

%Compartment boundary layer depths (m) 

Vec_deltasm=0.108*(Vec_Dmm(1:3).^(0.229));    %calculated surface soil boundary layer depth 

(m) - Caltox 

Vec_deltarm=318*(Vec_Dmm(4:6).^(0.683));      %calculated root soil boundary layer depth 

(m) - Caltox 

if (wcur/86400)/(W/86400)^0.673<0.04, Uaw_w=0.24; elseif W<=1.64e5, 

Uaw_w=5.64*((wcur/86400)^0.969/dw^0.673)*sqrt(32/MW); else 

Uaw_w=5.64*(wcur/86400)^0.969/dw^0.673*sqrt(32/MW)*exp(0.526*(W/86400-1.9)); end; 

%water-side mass trans coeff (m/d)) 

if (wcur+W)<4.32e4, Uaw_a=140*sqrt(18/MW); else 

Uaw_a=273*(wcur+W)/86400*sqrt(18/MW); end; %air-side mass trans coeff (m/d) 

deltaaw=Dair/Uaw_a;                           %air-side atmos-wat boundary layer depth (m) - Caltox 

deltawa=Dwater/Uaw_w;                         %water-side atmos-wat boundary layer depth (m) - 

Caltox 

deltadw=318*(Dd^(0.683));                     %calculated sediment-side wat-sed boundary layer 

depth (m) - Caltox 
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deltaAiu=6*sqrt(liu*86400/W);                 %calculated air-side air-film boundary layer depth (m) 

- MUM 

Uiu=86400*10^(0.704*log10(Kow)-11.2)/Kaw;     %film-side mass trans coeff (m/d) 

Ulc=86400*10^(0.704*log10(Kow)-11.2)/Kaw;     %cuticle-side atm-canopy mass trans coeff 

(m/d) 

deltaAcm=0.005;           %airside atmos-canopy boundary layer depth (m) - Caltox 

deltacmA=5e-6;            %canopy atmos-canopy boundary layer depth (m) - Caltox 

deltaAsm=0.005;           %airside atmosphere-surface soil boundary layer depth (m) - Caltox 

deltawd=0.02;             %waterside water-sediment boundary layer depth (m) - Caltox 

 

%Diffusion mass transfer coefficients (MTC) (mol/m2/Pa/d) 

Yaw_a=ZA*DA/deltaaw;        %air-side atmos-wat diff MTC - Caltox 

Yaw_w=Zw*Dw/deltawa;        %water-side atmos-wat diff MTC - Caltox 

Yaw=(1/Yaw_w+1/Yaw_a)^-1;   %atmos-wat diff MTC - Caltox 

Ywd_w=Zw*Dwater/deltawd;    %water-side wat-sed diff MTC - Caltox 

Ywd_d=Zd*Dd/deltadw;        %sediment-side wat-sed diff MTC - Caltox 

Ywd=(1/Ywd_w+1/Ywd_d)^-1;   %wat-sed diff MTC - Caltox 

YAiu_A=ZA*Dair/deltaAiu;    %air-side atm-film diff MTC - MUM 

YAiu_iu=Zh*Uiu;            %film-side atm-film diff MTC - MUM 

YAiu=(1/YAiu_A+1/YAiu_iu)^-1;   %atm-film diff MTC - MUM 

YAcm_A=Zair*Dair/deltaAcm;      %air-side atm-can diff MTC 

YAcm_cm=Zlc*Ulc;                %leaf-side atm-can diff MTC - MUM 

YAcm=(1/YAcm_A+1/YAcm_cm)^-1;   %atm-can diff MTC - MUM 

Vec_PzmmDmm=Vec_Zmm.*Vec_Dmm;   %1x9 vector 

Vec_YAcm_cm=Vec_PzmmDmm(1:3)./deltacmA; %1x3 vector of canopy-side atm-can diff 

MTC 

Vec_YAcm=(1/YAcm_A+1./Vec_YAcm_cm).^-1; %1x3 vector of atm-can diff MTC - Caltox 

YAsm_A=ZA*Dair/deltaAsm;                  %air-side atm-surf soil diff MTC - Caltox 

Vec_YAsm_sm=Vec_PzmmDmm(1:3)./Vec_deltasm; %1x3 vector of surf soil-side atm-surf 

soil diff MTC - Caltox 

Vec_YAsm=(1/YAsm_A+1./Vec_YAsm_sm).^-1; %1x3 vector of atm-surf soil diff MTC - 

Caltox 

Vec_Ysmrm_sm=Vec_PzmmDmm(1:3)./Vec_deltasm; %1x3 vector of surf soil-side surf-root 

soil diff MTC - Caltox 

Vec_Ysmrm_rm=Vec_PzmmDmm(4:6)./Vec_deltarm; %1x3 vector of root soil-side surf-root 

soil diff MTC - Caltox 

Vec_Ysmrm=(1./Vec_Ysmrm_sm+1./Vec_Ysmrm_rm).^-1;    %1x3 vector of surf-root soil diff 

MTC - Caltox 

 

%Interception factors 

Vec_Idc=1-exp(-2.8*Vec_Pdc);     %dry deposition interception factor for canopies 

Vec_Iwc=1-exp(-0.5*Vec_LAIc);    %wet deposition interception fraction for canopies - assume 

canopy is not saturated during rain event - Bulcock and Jewitt 2012 (Hydrol. Earth Syst. Sci.) 
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%*********************************** 

%Calculate Reaction rates (1/d) 

%*********************************** 

 

Vec_adjR=ones(1,16);                                    %1by16 array of ones 

Vec_adjR(3)=Zwater*fdw/Zd;                              %change column 3 

Vec_adjR(11:16)=(Zwater.*Vec_fmw(4:9))./Vec_Zmm(4:9); %optional change columns 

11:16 

Vec_R=(0.693./Vec_HL).*Vec_adjR;                        %1by16 Compartment Reaction rates 

vector (1/d)- Caltox 

 

 

%************************************* 

%Calculate Transport Rates (mol/d) 

%************************************* 

 

%****Precursors**** 

PzaDa=ZA*DA; 

Pzava=ZA*Vec_V(1); 

Pzwur=Zwater*Vec_urates(1); 

Pzwusr=Zwater*Vec_urates(7); 

Vec_Pzwut=Zwater.*Vec_urates(14:16); 

Pzwul=Zwater*Vec_urates(11); 

Vec_Pzpup=Zphl.*Vec_uphl; 

PzufQ=Zap*Vec_urates(1)*fAap*Qr; 

Pzudf=Zap*Vec_urates(2)*fAap; 

Vec_Pzmmdmm=Vec_Zmm.*Vec_d(8:16);                       %1x9 vector 

Vec_Pzcmdcm=Vec_Zcm.*Vec_d(5:7);                        %1x3 vector 

Vec_PzCurI=Zap*Cd*Vec_urates(1).*(Vec_Iwc-Vec_Iwcevap); %1x3 vector 

fuZ=fAap*Vec_urates(3)*Zap; 

Vec_fuZs=Vec_urates(3)*fAap.*Vec_Zmm(1:3); 

Pzluw=Zlc*Vec_urates(12); 

PzwZQZf=Pzwur+PzufQ+Pzudf; 

 

%**** Transport Rate Constants (mol/d)**** 

TAw=(Aw/Pzava)*(Yaw+PzwZQZf);              %Transport rate constant for atmosphere to water 

TwA=Yaw/(Zw*dw);                           %Transport rate constant for water to atmosphere 

Twd=(Ywd+Zdp*fwp*Vec_urates(4))/(dw*Zw);   %Transport rate constant for water to 

sediment 

Tdw=(Ywd+Zdp*fdd*Vec_urates(5))/(dd*Zd);   %Transport rate constant for sediment to water 

Tiuw=Vec_urates(6)/diu;                    %Transport rate constant for urban film to surface water 

TAiu=(Aiu/Pzava)*(YAiu+PzwZQZf);           %Transport rate constant for atmosphere to urban 

film 

TiuA=YAiu/(diu*Ziu);                       %Transport rate constant for film to atmosphere 
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Vec_TAcm=(Vec_A(5:7)./Pzava).*((Vec_YAcm+ZaiD/5.67e-

3).*Vec_LAIc+(Pzwur+PzufQ).*Vec_Iwc+Pzudf.*Vec_Idc); %Transport rate constant for 

atmos to mth canopy - Assume soil layer on plants 

Vec_TAsm=(Vec_A(8:10)./Pzava).*(Vec_YAsm+PzwZQZf);      %1x3 Transport rate constant 

for atmosphere to mth surface soil  

Vec_TcmA=(Vec_LAIc.*Vec_YAcm+fuZ*Vec_Idc)./Vec_Pzcmdcm; %1x3 Transport rate 

constant for canopy to atmos - GIM 3 

Vec_TsmA=(Vec_YAsm+Vec_fuZs)./Vec_Pzmmdmm(1:3);         %1x3 Transport rate constant 

for surface soil to atmos 

Vec_Tcmsm=(Vec_urates(8:10)./Vec_d(5:7))+((Pzluw+Vec_PzCurI)./Vec_Pzcmdcm);     %1x3 

Transport rate constant for mth canopy to same surface soil  

Vec_Tcmrm=Vec_Pzpup./Vec_Pzcmdcm;                                               %1x3 Transport rate 

constant for agri canopy to same root-zone soil 

Vec_Tsmw=(Pzwusr+Vec_Zmp(1:3).*Vec_fmp(1:3).*Vec_urates(13))./Vec_Pzmmdmm(1:3); 

%1x3 Transport rate constant for mth surface soil to water 

Vec_Tsmrm=(Vec_Ysmrm+Pzwul)./Vec_Pzmmdmm(1:3);   %1x3 Transport rate constant for 

mth surface soil to same root-zone soil 

Vec_Trmsm=Vec_Ysmrm./Vec_Pzmmdmm(4:6);           %1x3 Transport rate constant for mth 

root-zone soil to same surface soil 

Vec_Trmcm=Vec_Pzwut./Vec_Pzmmdmm(4:6);           %1x3 Transport rate constant for forest 

root-zone soil to same cano 

Vec_Trmvm=Pzwul./Vec_Pzmmdmm(4:6);               %1x3 Transport rate constant for mth root 

soil to same vadose soil 

 

 

%*************************** 

%External Losses (1/d) 

%*************************** 

 

XA=0.23*W/sqrt(AA);                                     %Outflow rate constant from atmosphere to 

external environment 

Xw=wout*(Zwater+(Zdp*fwp))/(dw*Zw*fAAw);                %Outflow rate constant from 

surface water to external environment 

Xd=Vec_urates(17)*fdd*Zdp/(Zd*dd);                          %Sediment burial rate constant 

Vec_Xvg=Zwater*gwrech./(Vec_d(14:16).*Vec_Zmm(7:9));    %Outflow rate constant from 

vadose-zone soil to groundwater 

 

 

%************************* 

%Transport Loss Rate Constants (1/d) 

%************************* 

 

T_LA=TAw+sum(Vec_TAcm)+sum(Vec_TAsm)+TAiu+XA;   %Transport Loss rate constant 

for atmosphere (1/d) 

T_Lw=TwA+Twd+Xw;                                %Transport Loss rate constant for surface water 

(1/d) 
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T_Ld=Tdw+Xd;                                       %Transport Loss rate constant for sediment (1/d) 

T_Liu=TiuA+Tiuw;                                %Transport Loss rate constant for urban impervious 

surface (1/d) 

T_Lca=Vec_TcmA(1)+Vec_Tcmsm(1)+Vec_Tcmrm(1);    %Transport Loss rate constant for 

agri canopy (1/d) 

T_Lcf=Vec_TcmA(2)+Vec_Tcmsm(2)+Vec_Tcmrm(2);    %Transport Loss rate constant for 

forest canopy (1/d) 

T_Lcu=Vec_TcmA(3)+Vec_Tcmsm(3)+Vec_Tcmrm(3);    %Transport Loss rate constant for 

urban canopy (1/d) 

T_Lsa=Vec_TsmA(1)+Vec_Tsmw(1)+Vec_Tsmrm(1);     %Transport Loss rate constant for 

agricultural surface soil (1/d) 

T_Lsf=Vec_TsmA(2)+Vec_Tsmw(2)+Vec_Tsmrm(2);     %Transport Loss rate constant for 

forest surface soil (1/d) 

T_Lsu=Vec_TsmA(3)+Vec_Tsmw(3)+Vec_Tsmrm(3);     %Transport Loss rate constant for 

urban surface soil (1/d) 

T_Lra=Vec_Trmcm(1)+Vec_Trmsm(1)+Vec_Trmvm(1);   %Transport Loss rate constant for 

agri root-zone soil (1/d) 

T_Lrf=Vec_Trmcm(2)+Vec_Trmsm(2)+Vec_Trmvm(2);   %Transport Loss rate constant for 

forest root-zone soil (1/d) 

T_Lru=Vec_Trmcm(3)+Vec_Trmsm(3)+Vec_Trmvm(3);   %Transport Loss rate constant for 

urban root-zone soil (1/d) 

T_Lva=Vec_Xvg(1);                               %Transport Loss rate constant for agri vadose-zone soil 

(1/d) 

T_Lvf=Vec_Xvg(2);                               %Transport Loss rate constant for forest vadose-zone 

soil (1/d) 

T_Lvu=Vec_Xvg(3);                               %Transport Loss rate constant for urban vadose-zone 

soil (1/d) 

 

 

%************************** 

%Generate Outputs  

%************************** 
 

dt=1; %time step of 1 day 

Vec_Nin=[NAin;Nwin;Ndin;Niuin;Ncain;Ncfin;Ncuin;Nsain;Nsfin;Nsuin;Nrain;Nrfin;Nruin;Nv

ain;Nvfin;Nvuin];    %Column array for compartment inventories at time 0 - initial conditions 

Vec_X=[XA;Xw;Xd;zeros(10,1);(Vec_Xvg)'];    %16x1 vector of external loss rates (1/d) 

Vec_Si=[SA;Sw;Sd;Siu;Sca;Scf;Scu;Ssa;Ssf;Ssu;Sra;Srf;Sru;Sva;Svf;Svu]; %Emissions/Sources 

into compartments (mol/d) 

Vec_S=dt.*Vec_Si;  %Column array for compartment sources by time increment 

Vec_L=[T_LA;T_Lw;T_Ld;T_Liu;T_Lca;T_Lcf;T_Lcu;T_Lsa;T_Lsf;T_Lsu;T_Lra;T_Lrf;T_Lr

u;T_Lva;T_Lvf;T_Lvu]+(Vec_R)';   %Column array of loss rate constants (1/d) 

Vec_L %#ok<NOPTS> 

Mat_T=[0,TwA,0,TiuA,Vec_TcmA(1),Vec_TcmA(2),Vec_TcmA(3),Vec_TsmA(1),Vec_TsmA(

2),Vec_TsmA(3),0,0,0,0,0,0; 

    TAw,0,Tdw,Tiuw,0,0,0,Vec_Tsmw(1),Vec_Tsmw(2),Vec_Tsmw(3),0,0,0,0,0,0; 
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    0,Twd,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 

    TAiu,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 

    Vec_TAcm(1),0,0,0,0,0,0,0,0,0,Vec_Trmcm(1),0,0,0,0,0; 

    Vec_TAcm(2),0,0,0,0,0,0,0,0,0,0,Vec_Trmcm(2),0,0,0,0; 

    Vec_TAcm(3),0,0,0,0,0,0,0,0,0,0,0,Vec_Trmcm(3),0,0,0; 

    Vec_TAsm(1),0,0,0,Vec_Tcmsm(1),0,0,0,0,0,Vec_Trmsm(1),0,0,0,0,0; 

    Vec_TAsm(2),0,0,0,0,Vec_Tcmsm(2),0,0,0,0,0,Vec_Trmsm(2),0,0,0,0; 

    Vec_TAsm(3),0,0,0,0,0,Vec_Tcmsm(3),0,0,0,0,0,Vec_Trmsm(3),0,0,0; 

    0,0,0,0,Vec_Tcmrm(1),0,0,Vec_Tsmrm(1),0,0,0,0,0,0,0,0; 

    0,0,0,0,0,Vec_Tcmrm(2),0,0,Vec_Tsmrm(2),0,0,0,0,0,0,0; 

    0,0,0,0,0,0,Vec_Tcmrm(3),0,0,Vec_Tsmrm(3),0,0,0,0,0,0; 

    0,0,0,0,0,0,0,0,0,0,Vec_Trmvm(1),0,0,0,0,0; 

    0,0,0,0,0,0,0,0,0,0,0,Vec_Trmvm(2),0,0,0,0; 

    0,0,0,0,0,0,0,0,0,0,0,0,Vec_Trmvm(3),0,0,0]; 

Mat_T %#ok<NOPTS> 

 

%**************************************************** 

%Dynamic Solution - Compartment Inventories (mol) 

%**************************************************** 

 

Mat_A=zeros(16,16);  

for i=1:16;  

    for j=1:16;  

        if i==j, Mat_A(i,j)=1+dt*Vec_L(i);  

        else Mat_A(i,j)=-dt*Mat_T(i,j);  

        end;  

    end;  

end; 

Mat_A %#ok<NOPTS> 

 

%****************Method 1 of Mass budget check****************************** 

%T_check=300; %Mass balance check time (d) 

%To_check=T_check/dt; 

%Mat_Ncheck=zeros(16,To_check); 

%Mat_Ncheck(:,1)=(Mat_A)\(Vec_Nin+Vec_S);                   %Initial solution for time 0.01 d 

 %     for n=2:To_check, 

  %       Mat_Ncheck(:,n)=(Mat_A)\(Mat_Ncheck(:,n-1)+Vec_S); end; %Loop to calculate 

inventory at check time t days (d)  

 

%Mat_Ncheck(:,To_check) 

      

%Mass balance for specific time steps - method 1 

%perMBCdtp=100*(sum(-Mat_Ncheck(:,1)+(1+(Vec_R)'+Vec_X).*Mat_Ncheck(:,2)-

Vec_S))/sum(Mat_Ncheck(:,1)+Vec_S) %#ok<NOPTS> 

%perMBCdtq=100*(sum(-Mat_Ncheck(:,4)+(1+(Vec_R)'+Vec_X).*Mat_Ncheck(:,5)-

Vec_S))/sum(Mat_Ncheck(:,4)+Vec_S) %#ok<NOPTS> 
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%perMBCdtr=100*(sum(-Mat_Ncheck(:,9)+(1+(Vec_R)'+Vec_X).*Mat_Ncheck(:,10)-

Vec_S))/sum(Mat_Ncheck(:,9)+Vec_S) %#ok<NOPTS> 

%perMBCdts=100*(sum(-Mat_Ncheck(:,19)+(1+(Vec_R)'+Vec_X).*Mat_Ncheck(:,20)-

Vec_S))/sum(Mat_Ncheck(:,19)+Vec_S) %#ok<NOPTS> 

%perMBCdtu=100*(sum(-Mat_Ncheck(:,39)+(1+(Vec_R)'+Vec_X).*Mat_Ncheck(:,40)-

Vec_S))/sum(Mat_Ncheck(:,39)+Vec_S) %#ok<NOPTS> 

 

 

%***Inventories and required data at user-defined output 

%time******* 

 

To=3650; %input('output time (d): '); %Output time, d 

Tou=To/dt; 

Mat_N=zeros(16,Tou); 

Mat_N(:,1)=(Mat_A)\(Vec_Nin+Vec_S);                   %Initial solution for time 0.01 d 

      for n=2:Tou, 

         Mat_N(:,n)=(Mat_A)\(Mat_N(:,n-1)+Vec_S);  

      end; %Loop to calculate inventory at time t days (d)  

 

Vec_Nt=Mat_N(:,Tou);            %Column array of inventories at time t (mol) 

Vec_Nt %#ok<NOPTS> 

Ntt=sum(Vec_Nt);            %Sum-total inventory at time t (mol) 

 

%*********************** 

%Steady-State Solution 

%*********************** 

 

Mat_Tss=Mat_T;  

for i=1:16;  

    for j=1:16;  

        if (i==j), Mat_Tss(i,j)=-Vec_L(i);  

        end;  

    end;  

end; %16by16 matrix for steady-state solution 

 

Mat_Tss %#ok<NOPTS> 

Vec_Sneg=-(Vec_Si); %Emission inventory into compartments (mol) 

Vec_Nss=Mat_Tss\Vec_Sneg;     %Steady-state inventory column array (mol) 

Vec_Nss %#ok<NOPTS> 

Nsst=sum(Vec_Nss);          %Sum-total steady state inventory (mol) 
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%************************* 

%Residence Times (d) 

%************************* 

 

Vec_Rt=1./Vec_L;            %Column array of compartment residence times/persistence (d) - 

Caltox 

 

%************************* 

%Persistence (d) 

%************************* 

 

Vec_Ksys=Vec_X+(Vec_R)';                %16x1 vector of system loss rates (1/d) 

Pov_sys=Nsst/sum(Vec_Nss.*Vec_Ksys)    %#ok<NOPTS> %System overall persistence (d) 

 

Vec_Kenv=(Vec_R)';                      %16x1 vector of degradation loss rates (1/d) 

Vec_Kenv(3)=Vec_Kenv(3)+Xd;             %adjust sediment loss rate to include sediment burial 

(1/d) 

Pov_env=Nsst/sum(Vec_Nss.*Vec_Kenv)    %#ok<NOPTS> %Environmental overall 

persistence (d) 

 

 

%************************************* 

%Long Range Transport Potential (m) 

%************************************* 

LRTPA=Vec_Rt(1)*W   %#ok<NOPTS> %Atmospheric LRTP (m) 

LRTPw=Vec_Rt(2)*wcur    %#ok<NOPTS> %LRTP via surface water (m) 

 

 

%************************************ 

%Concentrations (mol/m3) 

%************************************ 

 

Vec_Ct=Vec_Nt./(Vec_V)';    %Column array of compartment concentrations at time t (mol/m3) 

Ctt=sum(Vec_Ct);            %Sum-total concentration at time t (mol/m3) 

 

Vec_Css=Vec_Nss./(Vec_V)';  %Column array of compartment steady state concentrations 

(mol/m3) 

Csst=sum(Vec_Css);          %Sum-total steady state concentration (mol/m3) 

 

Vec_Cavt=sum(Mat_N,2)./((Vec_V)'*Tou);    %Column array of average compartmental 

concentrations over time period To (mol/m3)  
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%*********************** 

%Outputs 

%************************ 

 

Com={'Atmosphere';'Water';'Sediment';'Impervious Surface';'Agriculture Vegetation';'Forest 

Canopy';'Urban Vegetation';'Agricultural Surf Soil';'Forest Surf Soil';'Urban Surf Soil'; 

    'Agriculture Root Soil';'Forest Root Soil';'Urban Root Soil';'Agriculture Vadose Soil';'Forest 

Vadose Soil';'Urban Vadose Soil'};   %Cell array of compartments 

 

Outputs=struct('Compartments',Com,'Inventory_mol',num2cell(Vec_Nt),'SteadyState_Inventory

_mol',num2cell(Vec_Nss),'Concentration_mol_m3',num2cell(Vec_Ct),'SteadyState_Concentrati

on_mol_m3',num2cell(Vec_Css),'Residence_Time_d',num2cell(Vec_Rt));  

 

fprintf('           Compartments               Inventory_mol   SteadyState_Inventory_mol     

Concentration_mol_m3    SteadyState_Concentration_mol_m3    Residence_Time_d\n\n'); 

for n=1:length(Outputs), fprintf('\n%26s             %4.4e                  %4.4e                      %4.4e                      

%4.4e                        %4.4e\n\n',... 

        

Outputs(n).Compartments,Outputs(n).Inventory_mol,Outputs(n).SteadyState_Inventory_mol,Out

puts(n).Concentration_mol_m3,Outputs(n).SteadyState_Concentration_mol_m3,Outputs(n).Resi

dence_Time_d); 

end;                              %Table of Outputs 

                         

 

%******************************************* 

%Calculate Health Impact 

%******************************************* 

 

Age=25;  %Individual's age (y) 

IRw=2e-3;  %Surface water intake rate (m3/d), check EPA Exposure Factors Handbook 2011 

for specific values 

IRa=15;  %Inhalation rate (m3/d), check EPA Exposure Factors Handbook 2011 for 

specific values 

EF=350;  %Frequency of exposure (d/y) 

ED=30;   %Exposure durations (y) 

Ca=Vec_Ct(1)*MW*1000; %Concentration of chemical in atmosphere (mg/m3) 

Cw=Vec_Ct(2)*MW*1000; %Concentration of chemical in drinking water (mg/m3) 

ATnc=10950;   %Averaging time (d) - default of 30 years for non-cancer risk 

ATc=25550;   %Averaging time (d) - default of 70 years for cancer risk  

BW=70;  %Average adult BW (kg), check EPA Exposure Factors Handbook 2011 for 

specific values 

RfDo=7e-10;      %Oral reference dose for the chemical (mg/kg/d) 

RfDi=7e-10; %Inhalation reference dose for the chemical (mg/kg/d) 

NOEL=2e-8;     %No observed effect level or no observed adverse effect level for contaminant 

TDI=4e-9;      %Tolerable daily intake (mgTEQ/kg/d) 

TEF=1;      %Toxic equivalency factor for dioxin & dioxin-like compounds 
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Po= 516218;    %Population - St. Catherine parish default 

K=0.5;  %volatilization factor 

rhoa=1.225; %density of air (kg/m3) 

SFo=1.5e5;  %oral slope factor (mg/kg/d)^-1 

SFi=1.5e5;  %inhalation slope factor (mg/kg/d)^-1 

ED_50nc=6.3e-9;  %Non-cancer effect dose-50 (kg/person/lifetime) - if no value in literature 

for non-carcinogenic chemical, use ED_50nc=NOEL*9 

ED_50c=5.3e-6;  %Cancer effect dose-50 (kg/person/lifetime) - if no value in literature, use 

ED_50c=0.8/SF 

 

 

%******************************************************** 

%Calculate Hazard Index - inhalation and surface water 

%******************************************************** 

HQncw=((Cw*EF*ED)*(IRw/RfDo+IRa*K/RfDi))/(BW*ATnc); %Non-cancer hazard quotient 

for surface water 

HQnca=(Ca*IRa*EF*ED)/(RfDi*BW*ATnc); %Non-cancer hazard quotient for inhalation of air 

Iwnc=((Cw*EF*ED)*(IRw+IRa*K))/(BW*ATnc); %Intake of contaminant in surface water 

(mg/kg/d) 

Ianc=(Ca*IRa*EF*ED)/(BW*ATnc); %Intake of contaminant in atmosphere (mg/kg/d) 

if RfD==0, HQncw=Iwnc*TEF/TDI; end;    %Water Non-cancer hazard quotient for dioxins & 

dioxin-like compounds  

if RfD==0, HQnca=Ianc*TEF/TDI; end;    %Inhalation Non-cancer hazard quotient for dioxins 

& dioxin-like compounds 

HI=HQncw+HQnca; %Hazard index 

 

%****************************************************** 

%Calculate Cancer Risk - inhalation and surface water 

%****************************************************** 

CRw=((Cw*EF*ED)*(SFo*IRw+SFi*IRa*K))/(BW*ATc); %Surface water cancer risk  

CRa=(Ca*IRa*EF*ED*SFi)/(BW*ATc); %Cancer risk for inhalation of air  

CR=CRw+CRa; %Cancer risk 

 

%******************************************************************* 

%Calculate Human Toxicity Potential  (diseases per kg of emission) 

%******************************************************************* 

IRiw=3.9e-6; %Chemical intake rate from water, kg/d/person (Use IRiw=IRw*rhow/Po when 

unavailable) 

IRia=3.6e-5; %Chemical intake rate from air, kg/d/person (Use IRia=IRa*rhoa/Po when 

unavailable)  

HTPncw=(Vec_Rt(2)*IRiw*Po)/(rhow*Vec_V(2)*ED_50nc*2); %Non-cancer human toxicity 

potential for surface water (cases/kg) 

HTPnca=(Vec_Rt(1)*IRia*Po)/(rhoa*Vec_V(1)*ED_50nc*2); %Non-cancer human toxicity 

potential for inhalation (cases/kg) 

HTPcw=(Vec_Rt(2)*IRiw*Po)/(rhow*Vec_V(2)*ED_50c*2); %Cancer human toxicity 

potential for surface water (cases/kg) 
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HTPca=(Vec_Rt(1)*IRia*Po)/(rhoa*Vec_V(1)*ED_50c*2); %Cancer human toxicity potential 

for inhalation (cases/kg) 

HTP=HTPncw+HTPcw+HTPnca+HTPca; %human toxicity potential (cases/kg) 

 

%********** 

%Outputs 

%*********** 

fprintf('The non-cancer hazard index for a %d year old is %.4f\n', Age, HI); 

fprintf('The cancer risk for a %d year old is %.4f\n', Age, CR); 

fprintf('The human toxicity potential is %d cases per kg', HTP); 
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Appendix F 
 

Sensitivity Analysis Data 

 

Table F.1a: Ratios of outputs in the control and comparison scenario (scenario given indicated adjustment) for sensitivity analysis 
Parameter Adjustment Overall 

persistence 

Atmospheric 

long range 
transport 

potential 

Surface 

water long 
range 

transport 

potential 

Annual 

average 
atmospheric 

concentration  

Annual 

average 
surface water 

concentration 

Annual 

average 
sediment 

concentration 

Annual 

average urban 
film 

concentration 

Annual 

average 
agricultural 

crop 

concentration 

Annual 

average forest 
canopy 

concentration 

Annual 

average urban 
vegetation 

concentration 

Octanol-water 

partition coefficient 

Halved 

0.641806 1 1 0.996653 0.989301 0.989526 0.996653 313.4472 30.54277 681.5275 

Air-water partition 

coefficient 

Halved 

1 1 1 1 1 1 1 1 1 1 

Octanol-air partition 

coefficient 

Halved 

1 1 1 1 1.000034 1.000034 1.000042 1 1 1 

Molecular weight 
(g.mol-1) 

Halved 
0.984322 1.001515 1.001199 0.500752 0.482905 0.482904 0.500749 0.483982 0.483651 0.4853 

Half-life in 

atmosphere (d) 

Halved 

1.643897 1.087277 1 1.087197 1.087195 1.087192 1.087197 1.087134 1.087115 1.087193 

Half-life in surface 
water (d) 

Halved 
1.000039 1 1.005814 1 1.005773 1.00577 1 1 1 1 

Half-life in soil (d) Halved 1.641545 1 1 1 1.000055 1.000051 1 1 1 1 

Half-life in canopy 

(d) 

Halved 

1.317627 1 1 1.000007 1.00005 1.000046 1.000007 1.076789 1.088928 1.010779 

Half-life in urban 

film (d) 

Halved 

1 1 1 1 1.000025 1.000025 1.000032 1 1 1 

Half-life in 

sediment (d) 

Halved 

1 1 1 1 1 1 1 1 1 1 

            

Atmospheric dust 

load (kg.m-3) 

Halved 

1.028404 0.998463 1 0.998468 1.128322 1.128328 1.163235 1.015823 1.013735 1.026884 

Temperature (K) Halved 1.102145 0.994887 1.00016 0.994904 1.161749 1.166468 1.200904 1.064945 1.094397 1.009837 

Precipitation rate 
(m.d-1) 

Halved 
1.136214 0.99479 1 0.9948 1.61604 1.616072 1.884432 1.02102 1.046965 0.985556 

Wind speed (m.d-1) Halved 0.999999 1.136827 0.997887 0.568816 0.608556 0.60858 0.56884 0.569125 0.56922 0.568836 

Dry deposition 

velocity (m.d-1) 

Halved 

1.005079 0.999672 1 0.999674 1.02285 1.02285 1.028292 1.00377 1.003185 1.007268 

Surface water 
outflow rate (m.d-1) 

Halved 
1.000018 1 0.507208 0.999996 0.510774 0.510954 0.999996 0.999996 0.999996 0.999996 



259 

 

Area of urban film 

(m2) 

Halved 

0.970535 1.000885 1 1.000879 1.665922 1.666057 1.000879 1.000879 1.000879 1.065374 

Area of atmosphere 
(m2) 

Halved 
1 1.357494 1 0.678581 0.678579 0.678571 0.678581 0.678453 0.678414 0.678573 

            

Depth of 

atmosphere (m) 

Halved 

0.678876 1.049657 1 0.52475 0.52475 0.524751 0.52475 0.524744 0.52474 0.524751 

Depth of urban film 

(m) 

Doubled 

0.999999 1 1 1 1.000394 1.000408 1.000489 1 1 1 

Depth of surface 

water (m) 

Doubled 

1.000018 1 0.502907 1 1.015688 1.016048 1 1 1 1 

            

Atmosphere 

emission rate  

(mol.d-1) 

Doubled 

1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Emission rate 

(mol.d-1) 

Agricultura

l surface 

soil only 0.217907 1 1 4497.006 4.395459 4.543442 4499.002 6134.554 6497.565 4673.905 

Emission rate in 
agricultural surface 

soil (mol.d-1) 

Doubled 

0.217907 1 1 2248.503 2.19773 2.271721 2249.501 3067.277 3248.783 2336.953 

Emission rate 
(mol.d-1) 

Both 
atmosphere 

and 

agricultural 
surface soil 0.240592 1 1 0.999778 0.814659 0.819607 0.999778 0.999837 0.999846 0.999786 

            

Particle fraction in 

surface water 

Doubled 

1 1 0.997328 1.000002 0.997248 0.960886 1.000002 1.000002 1.000002 1.000002 

Film fraction in 

urban zone 

Doubled 

1 1 1 1 0.999999 0.999999 0.999999 1 1 1 

 

  



260 

 

Table F.1b: Ratios of outputs in the control and comparison scenario (scenario given indicated adjustment) for sensitivity analysis  
Parameter Adjustment Annual 

average 
agricultural 

surface soil 

concentration 

Annual 

average 
forest surface 

soil 

concentration 

Annual 

average 
urban surface 

soil 

concentration 

Annual 

average 
agricultural 

root soil 

concentration 

Annual 

average 
forest root 

soil 

concentration 

Annual 

average urban 
root soil 

concentration 

Annual average 

agricultural 
vadose soil 

concentration 

Annual 

average 
forest vadose 

soil 

concentration 

Annual 

average urban 
vadose soil 

concentration 

Octanol-water partition 
coefficient 

Halved 
0.382794 0.188874 0.967783 0.08016 0.012201 0.254806 0.062888 0.009397 0.2333 

Air-water partition 

coefficient 

Halved 

1 1 1 1 1 1 1 1 1 

Octanol-air partition 
coefficient 

Halved 
1 1 1 1 1 1 1 1 1 

Molecular weight (g.mol-1) Halved 0.490692 0.496496 0.490297 0.485262 0.489969 0.4867 0.48522 0.489989 0.486472 

Half-life in atmosphere (d) Halved 1.08707 1.087095 1.087102 1.087028 1.087016 1.087073 1.086938 1.086927 1.086986 

Half-life in surface water (d) Halved 1 1 1 1 1 1 1 1 1 

Half-life in soil (d) Halved 1.020496 1.022314 1.022532 1.020763 1.025827 1.02574 1.030842 1.034931 1.035752 

Half-life in canopy (d) Halved 1.030598 1.008624 1.006365 1.052247 1.035829 1.009086 1.043151 1.029111 1.00894 

Half-life in urban film (d) Halved 1 1 1 1 1 1 1 1 1 

Half-life in sediment (d) Halved 1 1 1 1 1 1 1 1 1 

Atmospheric dust load 

(kg.m-3) 

Halved 

1.059635 1.099482 1.058679 1.024434 1.055636 1.036211 1.024219 1.055763 1.034731 

Temperature (K) Halved 1.198634 1.173678 1.136921 1.098657 1.14835 1.05614 1.099821 1.14729 1.051785 

Precipitation rate (m.d-1) Halved 1.328443 1.463655 1.233539 1.075289 1.222459 1.051866 1.076504 1.221874 1.044581 

Wind speed (m.d-1) Halved 0.569441 0.569318 0.569284 0.569649 0.56971 0.569427 0.570097 0.570148 0.569859 

Dry deposition velocity 

(m.d-1) 

Halved 

1.011538 1.018138 1.012294 1.005348 1.010744 1.008776 1.005314 1.010768 1.008545 

Surface water outflow rate  

(m.d-1) 

Halved 

0.999996 0.999996 0.999996 0.999996 0.999996 0.999996 0.999996 0.999996 0.999996 

Area of urban film (m2)  1.000879 1.000879 1.065561 1.000879 1.000879 1.103236 1.000879 1.000878 1.139493 

Area of atmosphere (m2) Halved 0.678322 0.678374 0.678387 0.678237 0.678211 0.678328 0.678051 0.67803 0.67815 

           

Depth of atmosphere (m) Halved 0.524732 0.524736 0.524738 0.524724 0.524721 0.524732 0.524703 0.524701 0.524714 

Depth of urban film (m) Doubled 1 1 1 1 1 1 1 1 1 

Depth of surface water (m) Doubled 1 1 1 1 1 1 1 1 1 

Atmospheric emission rate 
(mol.d-1) 

Doubled 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Emission rate (mol.d-1) 

Agricultural 

surface soil  0.004577 6868.203 6803.258 0.022524 8826.755 7406.835 0.023096 10968.43 9545.096 

Emission rate in agricultural 
surface soil (mol.d-1) 

Doubled 
0.002289 3434.102 3401.629 0.011262 4413.378 3703.417 0.011548 5484.214 4772.548 

Emission rate (mol.d-1) 

Atmosphere 

and 

agricultural 
surface soil 0.004557 0.999854 0.999853 0.022028 0.999887 0.999865 0.022574 0.999909 0.999895 

Particle fraction in surface 

water 

Doubled 

1.000002 1.000002 1.000002 1.000002 1.000002 1.000002 1.000002 1.000002 1.000002 

Film fraction in urban zone Doubled 1 1 1 1 1 1 1 1 1 
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APPENDIX G 
 

Fate metrics data for the evaluated organics 

 

Table G.1: Long-term fate metrics generated for the persistent pollutants in land-use distribution scenario II (un-forested scenario) 
Fate Metrics 

 

PBDE-47 PBDE-99 PBDE-153 PBDE-209 TCDD OCDD PeCDF HxCDF 

Overall Persistence 1.50E+02 2.03E+02 1.67E+02 1.56E+02 1.01E+03 4.39E+03 1.58E+03 2.05E+03 

Atmospheric long range transport 

potential 

1.33E+05 1.09E+05 1.11E+05 6.62E+04 1.35E+05 8.92E+04 1.42E+05 1.40E+05 

Atmospheric concentration (mol.m-3) 8.93E-15 6.28E-15 5.63E-15 2.25E-15 1.36E-14 6.32E-15 1.36E-14 1.21E-14 

Surface water concentration (mol.m-3) 3.72E-11 9.40E-11 8.08E-11 1.19E-10 7.99E-12 1.75E-10 1.08E-12 3.62E-11 

Sediment concentration (mol.m-3) 2.76E-11 3.35E-11 7.56E-11 1.22E-10 7.72E-12 1.79E-10 1.12E-12 3.74E-11 

Impervious surface concentration 

 (mol.m-3) 

2.16E-06 5.58E-06 4.69E-06 6.95E-06 3.77E-07 1.00E-05 1.17E-06 2.01E-06 

Agricultural vegetation concentration 

(mol.m-3) 

1.45E-09 2.69E-10 6.09E-09 1.50E-08 1.95E-08 5.61E-08 1.16E-08 1.68E-08 

Forest canopy concentration (mol.m-3) 1.47E-09 6.62E-10 3.26E-09 4.86E-09 4.96E-09 2.49E-08 5.60E-09 7.12E-09 

Urban vegetation concentration (mol.m-3) 2.48E-09 4.51E-10 1.78E-08 1.67E-07 5.38E-08 1.68E-07 1.99E-08 3.67E-08 

Agricultural surface soil concentration 

(mol.m-3) 

2.26E-08 5.17E-08 3.38E-08 3.57E-08 8.22E-09 1.03E-07 2.28E-08 2.79E-08 

Forest surface soil concentration (mol.m-3) 1.34E-08 4.15E-08 2.39E-08 3.31E-08 4.18E-09 7.92E-08 1.11E-08 1.72E-08 

Urban surface soil concentration (mol.m-3) 1.74E-08 4.03E-08 3.39E-08 4.66E-08 1.03E-08 1.13E-07 1.88E-08 2.72E-08 

Agricultural root soil concentration 

(mol.m-3) 

1.33E-13 1.05E-12 6.79E-14 2.94E-16 7.59E-14 7.34E-15 4.00E-14 2.08E-14 

Forest root soil concentration (mol.m-3) 7.16E-14 8.33E-13 3.93E-14 2.34E-16 1.10E-14 7.95E-16 4.91E-15 2.40E-15 

Urban root soil concentration (mol.m-3) 9.61E-14 8.11E-13 6.38E-14 4.47E-16 6.99E-14 6.33E-15 1.92E-14 1.29E-14 

Agricultural vadose soil concentration 

(mol.m-3) 

4.66E-21 1.93E-19 6.12E-22 3.37E-27 6.39E-22 1.29E-26 1.46E-23 1.87E-24 

Forest vadose soil concentration (mol.m-3) 2.45E-21 1.53E-19 3.46E-22 2.65E-27 9.00E-23 1.32E-27 1.62E-24 1.99E-25 

Urban vadose soil concentration (mol.m-3) 3.35E-21 1.49E-19 5.80E-22 5.30E-27 6.94E-22 1.34E-26 7.86E-24 1.34E-24 
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Table G.2: Long-term fate metrics generated for the persistent pollutants in land-use distribution scenario I (forested scenario) 
Fate Metrics 

 

PBDE-47 PBDE-99 PBDE-153 PBDE-209 TCDD OCDD PeCDF HxCDF 

Overall Persistence 1.41E+02 2.00E+02 1.54E+02 1.46E+02 1.15E+03 4.17E+03 1.52E+03 1.86E+03 

Atmospheric long range transport 

potential 

1.30E+05 1.05E+05 1.08E+05 6.26E+04 1.33E+05 8.54E+04 1.39E+05 1.37E+05 

Atmospheric concentration (mol.m-3) 8.72E-15 6.07E-15 5.44E-15 2.12E-15 1.34E-14 6.05E-15 1.33E-14 1.19E-14 

Surface water concentration (mol.m-3) 3.64E-11 9.08E-11 7.81E-11 1.13E-10 7.85E-12 1.68E-10 1.06E-12 3.54E-11 

Sediment concentration (mol.m-3) 2.70E-11 3.23E-11 7.30E-11 1.15E-10 7.59E-12 1.71E-10 1.10E-12 3.66E-11 

Impervious surface concentration  

(mol.m-3) 

2.11E-06 5.39E-06 4.53E-06 6.57E-06 3.70E-07 9.60E-06 1.15E-06 1.97E-06 

Agricultural vegetation concentration 

(mol.m-3) 

1.42E-09 2.60E-10 5.88E-09 1.42E-08 1.92E-08 5.37E-08 1.14E-08 1.65E-08 

Forest canopy concentration (mol.m-3) 4.56E-10 2.04E-10 8.13E-10 1.08E-09 1.90E-09 5.84E-09 1.92E-09 2.19E-09 

Urban vegetation concentration (mol.m-3) 2.42E-09 4.36E-10 1.72E-08 1.58E-07 5.29E-08 1.61E-07 1.95E-08 3.60E-08 

Agricultural surface soil concentration 

(mol.m-3) 

2.21E-08 4.99E-08 3.26E-08 3.38E-08 8.08E-09 9.84E-08 2.23E-08 2.73E-08 

Forest surface soil concentration (mol.m-3) 1.43E-08 4.65E-08 2.33E-08 3.13E-08 4.37E-09 7.62E-08 1.17E-08 1.74E-08 

Urban surface soil concentration (mol.m-3) 1.70E-08 3.89E-08 3.28E-08 4.40E-08 1.01E-08 1.09E-07 1.84E-08 2.66E-08 

Agricultural root soil concentration 

(mol.m-3) 

1.30E-13 1.01E-12 6.56E-14 2.78E-16 7.46E-14 7.03E-15 3.92E-14 2.04E-14 

Forest root soil concentration (mol.m-3) 7.99E-14 9.39E-13 3.94E-14 2.23E-16 1.61E-14 1.11E-15 9.04E-15 3.98E-15 

Urban root soil concentration (mol.m-3) 9.39E-14 7.83E-13 6.17E-14 4.22E-16 6.87E-14 6.06E-15 1.88E-14 1.26E-14 

Agricultural vadose soil concentration 

(mol.m-3) 

4.56E-21 1.86E-19 5.91E-22 3.19E-27 6.28E-22 1.24E-26 1.43E-23 1.83E-24 

Forest vadose soil concentration (mol.m-3) 2.74E-21 1.71E-19 3.48E-22 2.53E-27 1.32E-22 1.83E-27 2.99E-24 3.31E-25 

Urban vadose soil concentration (mol.m-3) 3.28E-21 1.44E-19 5.60E-22 5.01E-27 6.82E-22 1.28E-26 7.70E-24 1.31E-24 
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Table G.3: Long-term fate metrics generated for the current-use pesticides in land-use distribution scenario II (un-forested scenario) 
Fate Metrics 

 

Diazinon Dimethoate Carbaryl Methomyl Cyhalothrin Cypermethrin Diuron Glyphosate 

Overall Persistence 1.01E+01 8.95E+00 1.10E+01 3.38E+01 1.47E+01 2.82E+01 3.63E+01 6.84E+01 

Atmospheric long range transport 

potential 

4.50E+04 1.30E+03 5.30E+02 7.49E+02 3.72E+04 5.74E+04 5.58E+03 1.63E+02 

Atmospheric concentration 

(mol.m-3) 

4.83E-15 1.85E-16 8.58E-17 1.51E-16 2.69E-15 4.50E-15 7.81E-16 3.14E-17 

Surface water concentration 

(mol.m-3) 

1.90E-10 1.58E-09 9.54E-10 2.48E-09 1.34E-10 1.56E-10 9.59E-10 1.30E-09 

Sediment concentration (mol.m-3) 5.11E-12 1.16E-11 3.30E-11 4.62E-11 4.86E-11 6.61E-11 3.55E-11 1.31E-10 

Impervious surface concentration 

(mol.m-3) 

7.15E-06 5.08E-05 5.91E-05 7.40E-05 8.47E-06 1.33E-05 4.51E-05 7.11E-05 

Agricultural vegetation 

concentration (mol.m-3) 

4.73E-09 2.73E-09 6.91E-09 3.69E-09 6.08E-10 9.62E-10 8.29E-10 4.30E-09 

Forest canopy concentration 

(mol.m-3) 

1.48E-09 2.40E-09 2.82E-09 3.03E-09 7.97E-10 1.30E-09 1.76E-09 1.12E-08 

Urban vegetation concentration 

(mol.m-3) 

4.22E-08 1.43E-08 4.79E-08 2.01E-08 1.22E-09 1.90E-09 1.61E-09 1.93E-08 

Agricultural surface soil 

concentration (mol.m-3) 

1.03E-08 1.01E-08 3.16E-08 5.33E-08 2.24E-08 3.77E-08 1.01E-07 1.55E-07 

Forest surface soil concentration 

(mol.m-3) 

9.53E-09 1.00E-08 3.11E-08 5.30E-08 1.59E-08 2.69E-08 7.98E-08 1.55E-07 

Urban surface soil concentration 

(mol.m-3) 

1.21E-08 1.01E-08 3.22E-08 5.33E-08 1.91E-08 3.20E-08 8.17E-08 1.55E-07 

Agricultural root soil 

concentration (mol.m-3) 

5.21E-11 2.21E-10 1.30E-10 1.24E-09 1.62E-13 2.23E-13 2.50E-10 1.45E-09 

Forest root soil concentration 

(mol.m-3) 

4.15E-11 1.14E-10 4.02E-11 6.48E-10 1.15E-13 1.49E-13 1.92E-10 8.82E-10 

Urban root soil concentration 

(mol.m-3) 

7.12E-11 1.82E-10 1.65E-10 1.04E-09 1.38E-13 1.80E-13 1.95E-10 8.41E-10 

Agricultural vadose soil 

concentration (mol.m-3) 

5.78E-15 5.63E-14 3.30E-15 3.34E-13 1.29E-20 1.34E-20 1.38E-14 1.64E-14 

Forest vadose soil concentration 

(mol.m-3) 

4.60E-15 2.90E-14 1.02E-15 1.74E-13 9.13E-21 8.92E-21 1.06E-14 9.88E-15 

Urban vadose soil concentration 

(mol.m-3) 

7.92E-15 4.64E-14 4.20E-15 2.82E-13 1.10E-20 1.08E-20 1.08E-14 9.49E-15 
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Table G.4: Long-term fate metrics generated for the current-use pesticides in land-use distribution scenario I (forested scenario) 
Fate Metrics 

 

Diazinon Dimethoate Carbaryl Methomyl Cyhalothrin Cypermethrin Diuron Glyphosate 

Overall Persistence 1.02E+01 8.49E+00 1.02E+01 3.05E+01 1.47E+01 2.73E+01 3.56E+01 6.85E+01 

Atmospheric long range transport 

potential 

4.38E+04 1.17E+03 4.74E+02 6.70E+02 3.60E+04 5.48E+04 5.06E+03 1.46E+02 

Atmospheric concentration 

(mol.m-3) 

4.70E-15 1.66E-16 7.67E-17 1.35E-16 2.61E-15 4.29E-15 7.08E-16 2.81E-17 

Surface water concentration 

(mol.m-3) 

1.85E-10 1.42E-09 8.53E-10 2.22E-09 1.30E-10 1.49E-10 8.91E-10 1.16E-09 

Sediment concentration (mol.m-3) 4.98E-12 1.04E-11 2.95E-11 4.13E-11 4.70E-11 6.30E-11 3.30E-11 1.17E-10 

Impervious surface concentration 

(mol.m-3) 

6.97E-06 4.55E-05 5.29E-05 6.61E-05 8.20E-06 1.27E-05 4.08E-05 6.36E-05 

Agricultural vegetation 

concentration (mol.m-3) 

4.61E-09 2.44E-09 6.18E-09 3.29E-09 5.89E-10 9.17E-10 7.52E-10 3.85E-09 

Forest canopy concentration 

(mol.m-3) 

3.88E-10 5.62E-10 6.40E-10 7.10E-10 2.01E-10 3.26E-10 4.94E-10 2.45E-09 

Urban vegetation concentration 

(mol.m-3) 

4.12E-08 1.28E-08 4.28E-08 1.80E-08 1.18E-09 1.81E-09 1.46E-09 1.72E-08 

Agricultural surface soil 

concentration (mol.m-3) 

1.00E-08 9.04E-09 2.83E-08 4.77E-08 2.17E-08 3.59E-08 9.15E-08 1.38E-07 

Forest surface soil concentration 

(mol.m-3) 

9.30E-09 9.00E-09 2.78E-08 4.74E-08 1.59E-08 2.66E-08 8.08E-08 1.38E-07 

Urban surface soil concentration 

(mol.m-3) 

1.17E-08 9.03E-09 2.88E-08 4.76E-08 1.85E-08 3.05E-08 7.41E-08 1.38E-07 

Agricultural root soil 

concentration (mol.m-3) 

5.07E-11 1.98E-10 1.16E-10 1.11E-09 1.57E-13 2.13E-13 2.26E-10 1.30E-09 

Forest root soil concentration 

(mol.m-3) 

3.93E-11 1.10E-10 4.06E-11 6.12E-10 1.15E-13 1.52E-13 2.00E-10 1.18E-09 

Urban root soil concentration 

(mol.m-3) 

6.93E-11 1.63E-10 1.48E-10 9.34E-10 1.34E-13 1.71E-13 1.76E-10 7.52E-10 

Agricultural vadose soil 

concentration (mol.m-3) 

5.63E-15 5.04E-14 2.95E-15 2.99E-13 1.25E-20 1.28E-20 1.25E-14 1.47E-14 

Forest vadose soil concentration 

(mol.m-3) 

4.37E-15 2.80E-14 1.03E-15 1.65E-13 9.15E-21 1.03E-20 1.11E-14 1.32E-14 

Urban vadose soil concentration 

(mol.m-3) 

7.72E-15 4.16E-14 3.76E-15 2.52E-13 1.06E-20 9.11E-21 9.75E-15 8.49E-15 
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Appendix H 

 
Steady state and monthly varying concentrations of PBDE-47 and dimethoate in the forested and un-forested landscapes in the 

1986-2005 climate period 

 

Table H.1: Steady state and monthly varying concentrations of PBDE-47 in land-use distribution scenario I (forested scenario) given 

the 1986-2005 climate conditions 
 Concentration (mol.m

-3
) 

 Atmosphere Surface Water Sediment Impervious 

Surface 

Agriculture 

Vegetation 

Forest 

Vegetation 

Urban 

Vegetation 

Agriculture 

Surface Soil 

Steady state 8.73E-15 3.68E-11 2.83E-11 2.12E-06 1.45E-09 5.09E-10 4.82E-09 4.35E-08 

January 9.10E-15 2.24E-11 1.87E-11 1.27E-06 1.93E-09 4.93E-10 7.09E-09 4.13E-08 

February 9.16E-15 2.04E-11 1.61E-11 1.15E-06 2.10E-09 4.83E-10 7.82E-09 3.93E-08 

March 9.14E-15 2.08E-11 1.60E-11 1.17E-06 2.12E-09 4.79E-10 7.77E-09 3.76E-08 

April 8.86E-15 3.18E-11 2.32E-11 1.82E-06 1.62E-09 4.91E-10 5.37E-09 3.80E-08 

May 8.31E-15 5.32E-11 3.86E-11 3.08E-06 1.17E-09 5.13E-10 3.82E-09 4.11E-08 

June 8.75E-15 3.61E-11 2.93E-11 2.07E-06 1.47E-09 5.11E-10 4.93E-09 4.12E-08 

July 8.63E-15 4.07E-11 3.10E-11 2.35E-06 1.38E-09 5.15E-10 4.54E-09 4.21E-08 

August 8.59E-15 4.23E-11 3.23E-11 2.44E-06 1.35E-09 5.17E-10 4.43E-09 4.30E-08 

September 8.15E-15 5.94E-11 4.38E-11 3.45E-06 1.10E-09 5.25E-10 3.59E-09 4.61E-08 

October 8.44E-15 4.83E-11 3.81E-11 2.80E-06 1.24E-09 5.24E-10 4.05E-09 4.73E-08 

November 8.68E-15 3.88E-11 3.10E-11 2.23E-06 1.40E-09 5.17E-10 4.63E-09 4.69E-08 

December 9.05E-15 2.47E-11 2.05E-11 1.40E-06 1.82E-09 5.00E-10 6.52E-09 4.46E-08 
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Table H.1 continued 
 Concentration (mol.m

-3
) 

 Forest Surface 

Soil 

Urban  

Surface Soil 

Agriculture 

Root Soil 

Forest Root 

Soil 

Urban Root 

Soil 

Agriculture 

Vadose Soil 

Forest Vadose 

Soil 

Urban 

Vadose Soil 

Steady state 2.91E-08 3.28E-08 5.62E-13 3.70E-13 4.10E-13 5.47E-20 3.60E-20 3.99E-20 

January 2.75E-08 3.13E-08 5.61E-13 3.68E-13 4.10E-13 5.47E-20 3.60E-20 3.99E-20 

February 2.59E-08 3.00E-08 5.58E-13 3.65E-13 4.08E-13 5.47E-20 3.60E-20 3.99E-20 

March 2.45E-08 2.87E-08 5.52E-13 3.59E-13 4.03E-13 5.46E-20 3.59E-20 3.98E-20 

April 2.45E-08 2.87E-08 5.45E-13 3.53E-13 3.98E-13 5.44E-20 3.57E-20 3.97E-20 

May 2.70E-08 3.10E-08 5.41E-13 3.50E-13 3.95E-13 5.42E-20 3.55E-20 3.96E-20 

June 2.72E-08 3.11E-08 5.40E-13 3.50E-13 3.94E-13 5.40E-20 3.53E-20 3.94E-20 

July 2.79E-08 3.18E-08 5.40E-13 3.50E-13 3.94E-13 5.38E-20 3.52E-20 3.93E-20 

August 2.87E-08 3.25E-08 5.41E-13 3.52E-13 3.95E-13 5.36E-20 3.50E-20 3.92E-20 

September 3.15E-08 3.48E-08 5.45E-13 3.56E-13 3.98E-13 5.35E-20 3.49E-20 3.91E-20 

October 3.26E-08 3.57E-08 5.52E-13 3.63E-13 4.03E-13 5.35E-20 3.49E-20 3.91E-20 

November 3.24E-08 3.55E-08 5.58E-13 3.69E-13 4.08E-13 5.36E-20 3.50E-20 3.91E-20 

December 3.06E-08 3.39E-08 5.63E-13 3.72E-13 4.12E-13 5.37E-20 3.52E-20 3.92E-20 
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Table H.2: Steady state and monthly varying concentrations of PBDE-47 in land-use distribution scenario II (un-forested scenario) 

given the 1986-2005 climate conditions 
 Concentration (mol.m

-3
) 

 Atmosphere Surface 

Water 

Sediment Impervious 

Surface 

Agriculture 

Vegetation 

Forest 

Vegetation 

Urban 

Vegetation 

Agriculture 

Surface Soil 

Steady state 8.94E-15 3.77E-11 2.90E-11 2.17E-06 1.48E-09 1.62E-09 4.93E-09 4.45E-08 

January 9.28E-15 2.29E-11 1.90E-11 1.29E-06 1.96E-09 1.56E-09 7.22E-09 4.22E-08 

February 9.33E-15 2.08E-11 1.64E-11 1.17E-06 2.14E-09 1.52E-09 7.97E-09 4.02E-08 

March 9.32E-15 2.12E-11 1.63E-11 1.20E-06 2.16E-09 1.51E-09 7.91E-09 3.84E-08 

April 9.06E-15 3.25E-11 2.37E-11 1.86E-06 1.65E-09 1.56E-09 5.48E-09 3.88E-08 

May 8.54E-15 5.46E-11 3.96E-11 3.17E-06 1.20E-09 1.64E-09 3.92E-09 4.21E-08 

June 8.95E-15 3.69E-11 3.00E-11 2.12E-06 1.51E-09 1.63E-09 5.05E-09 4.21E-08 

July 8.84E-15 4.17E-11 3.17E-11 2.41E-06 1.41E-09 1.64E-09 4.65E-09 4.31E-08 

August 8.80E-15 4.33E-11 3.31E-11 2.50E-06 1.38E-09 1.65E-09 4.54E-09 4.40E-08 

September 8.39E-15 6.12E-11 4.51E-11 3.55E-06 1.14E-09 1.68E-09 3.69E-09 4.73E-08 

October 8.66E-15 4.96E-11 3.91E-11 2.87E-06 1.27E-09 1.67E-09 4.15E-09 4.84E-08 

November 8.89E-15 3.97E-11 3.17E-11 2.29E-06 1.43E-09 1.65E-09 4.74E-09 4.81E-08 

December 9.23E-15 2.52E-11 2.09E-11 1.43E-06 1.86E-09 1.58E-09 6.65E-09 4.57E-08 
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Table H.2 continued 
 Concentration (mol.m

-3
) 

 Forest Surface 

Soil 

Urban  

Surface Soil 

Agriculture 

Root Soil 

Forest Root 

Soil 

Urban Root 

Soil 

Agriculture 

Vadose Soil 

Forest 

Vadose Soil 

Urban 

Vadose Soil 

Steady state 2.68E-08 3.36E-08 5.75E-13 3.33E-13 4.19E-13 5.60E-20 3.24E-20 4.08E-20 

January 2.53E-08 3.20E-08 5.74E-13 3.31E-13 4.19E-13 5.60E-20 3.24E-20 4.08E-20 

February 2.39E-08 3.06E-08 5.71E-13 3.28E-13 4.16E-13 5.59E-20 3.24E-20 4.08E-20 

March 2.26E-08 2.93E-08 5.65E-13 3.23E-13 4.12E-13 5.58E-20 3.23E-20 4.07E-20 

April 2.26E-08 2.94E-08 5.58E-13 3.17E-13 4.06E-13 5.57E-20 3.21E-20 4.06E-20 

May 2.49E-08 3.17E-08 5.53E-13 3.15E-13 4.03E-13 5.55E-20 3.19E-20 4.04E-20 

June 2.51E-08 3.18E-08 5.52E-13 3.14E-13 4.02E-13 5.53E-20 3.18E-20 4.03E-20 

July 2.57E-08 3.25E-08 5.52E-13 3.15E-13 4.02E-13 5.50E-20 3.16E-20 4.01E-20 

August 2.64E-08 3.32E-08 5.54E-13 3.16E-13 4.04E-13 5.49E-20 3.15E-20 4.00E-20 

September 2.89E-08 3.56E-08 5.58E-13 3.20E-13 4.07E-13 5.48E-20 3.14E-20 3.99E-20 

October 2.99E-08 3.65E-08 5.64E-13 3.26E-13 4.12E-13 5.48E-20 3.14E-20 3.99E-20 

November 2.97E-08 3.64E-08 5.71E-13 3.32E-13 4.18E-13 5.48E-20 3.15E-20 4.00E-20 

December 2.81E-08 3.47E-08 5.76E-13 3.35E-13 4.21E-13 5.50E-20 3.16E-20 4.01E-20 
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Table H.3: Steady state and monthly varying concentrations of dimethoate in land-use distribution scenario I (forested scenario) given 

the 1986-2005 climate conditions 
 Concentration (mol.m

-3
) 

 Atmosphere Surface 

Water 

Sediment Impervious 

Surface 

Agriculture 

Vegetation 

Forest 

Vegetation 

Urban 

Vegetation 

Agriculture 

Surface Soil 

Steady state 1.66E-16 1.44E-09 1.10E-11 4.55E-05 2.46E-09 5.69E-10 1.37E-08 9.15E-09 

January 3.20E-16 1.41E-09 1.08E-11 4.47E-05 2.42E-09 5.60E-10 1.35E-08 8.97E-09 

February 3.75E-16 1.40E-09 1.07E-11 4.44E-05 2.41E-09 5.56E-10 1.35E-08 8.90E-09 

March 3.74E-16 1.40E-09 1.07E-11 4.44E-05 2.41E-09 5.56E-10 1.35E-08 8.90E-09 

April 2.03E-16 1.43E-09 1.09E-11 4.53E-05 2.45E-09 5.67E-10 1.37E-08 9.11E-09 

May 1.03E-16 1.45E-09 1.10E-11 4.59E-05 2.47E-09 5.73E-10 1.38E-08 9.25E-09 

June 1.76E-16 1.44E-09 1.10E-11 4.55E-05 2.46E-09 5.69E-10 1.37E-08 9.14E-09 

July 1.50E-16 1.44E-09 1.10E-11 4.56E-05 2.47E-09 5.70E-10 1.37E-08 9.18E-09 

August 1.43E-16 1.44E-09 1.10E-11 4.57E-05 2.47E-09 5.71E-10 1.38E-08 9.19E-09 

September 9.05E-17 1.45E-09 1.11E-11 4.59E-05 2.47E-09 5.74E-10 1.38E-08 9.27E-09 

October 1.17E-16 1.45E-09 1.10E-11 4.58E-05 2.47E-09 5.73E-10 1.38E-08 9.22E-09 

November 1.53E-16 1.44E-09 1.10E-11 4.56E-05 2.47E-09 5.70E-10 1.38E-08 9.17E-09 

December 2.81E-16 1.42E-09 1.08E-11 4.49E-05 2.43E-09 5.62E-10 1.36E-08 9.01E-09 
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Table H.3 continued 
 Concentration (mol.m

-3
) 

 Forest 

Surface Soil 

Urban  

Surface Soil 

Agriculture 

Root Soil 

Forest Root 

Soil 

Urban Root 

Soil 

Agriculture 

Vadose Soil 

Forest 

Vadose Soil 

Urban 

Vadose Soil 

Steady state 9.12E-09 9.15E-09 2.05E-10 1.14E-10 1.69E-10 5.37E-14 2.99E-14 4.43E-14 

January 8.95E-09 8.96E-09 2.02E-10 1.12E-10 1.66E-10 5.30E-14 2.95E-14 4.37E-14 

February 8.89E-09 8.90E-09 2.00E-10 1.11E-10 1.65E-10 5.26E-14 2.92E-14 4.33E-14 

March 8.89E-09 8.90E-09 2.00E-10 1.11E-10 1.65E-10 5.25E-14 2.92E-14 4.32E-14 

April 9.08E-09 9.10E-09 2.04E-10 1.13E-10 1.68E-10 5.32E-14 2.96E-14 4.38E-14 

May 9.20E-09 9.24E-09 2.06E-10 1.15E-10 1.70E-10 5.39E-14 3.00E-14 4.44E-14 

June 9.11E-09 9.14E-09 2.05E-10 1.14E-10 1.69E-10 5.38E-14 2.99E-14 4.43E-14 

July 9.14E-09 9.17E-09 2.05E-10 1.14E-10 1.69E-10 5.38E-14 2.99E-14 4.43E-14 

August 9.15E-09 9.18E-09 2.06E-10 1.14E-10 1.69E-10 5.39E-14 3.00E-14 4.43E-14 

September 9.21E-09 9.26E-09 2.07E-10 1.15E-10 1.70E-10 5.41E-14 3.01E-14 4.45E-14 

October 9.18E-09 9.22E-09 2.06E-10 1.15E-10 1.70E-10 5.40E-14 3.01E-14 4.45E-14 

November 9.14E-09 9.17E-09 2.05E-10 1.14E-10 1.69E-10 5.39E-14 3.00E-14 4.44E-14 

December 8.99E-09 9.01E-09 2.03E-10 1.13E-10 1.67E-10 5.32E-14 2.96E-14 4.39E-14 
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Table H.4: Steady state and monthly varying concentrations of dimethoate in land-use distribution scenario II (un-forested scenario) 

given the 1986-2005 climate conditions 
 Concentration (mol.m

-3
) 

 Atmosphere Surface 

Water 

Sediment Impervious 

Surface 

Agriculture 

Vegetation 

Forest 

Vegetation 

Urban 

Vegetation 

Agriculture 

Surface Soil 

Steady state 1.85E-16 1.61E-09 1.22E-11 5.08E-05 2.75E-09 2.43E-09 1.53E-08 1.02E-08 

January 3.57E-16 1.57E-09 1.20E-11 4.98E-05 2.70E-09 2.38E-09 1.51E-08 9.99E-09 

February 4.18E-16 1.56E-09 1.19E-11 4.94E-05 2.68E-09 2.36E-09 1.50E-08 9.91E-09 

March 4.17E-16 1.56E-09 1.19E-11 4.94E-05 2.68E-09 2.36E-09 1.50E-08 9.91E-09 

April 2.27E-16 1.60E-09 1.21E-11 5.06E-05 2.74E-09 2.42E-09 1.53E-08 1.02E-08 

May 1.15E-16 1.62E-09 1.23E-11 5.13E-05 2.76E-09 2.45E-09 1.54E-08 1.03E-08 

June 1.96E-16 1.60E-09 1.22E-11 5.08E-05 2.75E-09 2.42E-09 1.53E-08 1.02E-08 

July 1.68E-16 1.61E-09 1.23E-11 5.09E-05 2.75E-09 2.43E-09 1.54E-08 1.02E-08 

August 1.60E-16 1.61E-09 1.23E-11 5.10E-05 2.76E-09 2.43E-09 1.54E-08 1.03E-08 

September 1.01E-16 1.62E-09 1.24E-11 5.14E-05 2.77E-09 2.45E-09 1.54E-08 1.04E-08 

October 1.31E-16 1.62E-09 1.23E-11 5.12E-05 2.76E-09 2.44E-09 1.54E-08 1.03E-08 

November 1.71E-16 1.61E-09 1.23E-11 5.09E-05 2.75E-09 2.43E-09 1.54E-08 1.02E-08 

December 3.13E-16 1.58E-09 1.20E-11 5.00E-05 2.71E-09 2.39E-09 1.52E-08 1.00E-08 
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Table H.4 continued 
 Concentration (mol.m

-3
) 

 Forest 

Surface Soil 

Urban  

Surface Soil 

Agriculture 

Root Soil 

Forest Root 

Soil 

Urban Root 

Soil 

Agriculture 

Vadose Soil 

Forest 

Vadose Soil 

Urban 

Vadose Soil 

Steady state 1.02E-08 1.02E-08 2.29E-10 1.18E-10 1.89E-10 6.00E-14 3.10E-14 4.94E-14 

January 9.97E-09 9.99E-09 2.25E-10 1.16E-10 1.85E-10 5.91E-14 3.06E-14 4.87E-14 

February 9.89E-09 9.91E-09 2.23E-10 1.15E-10 1.84E-10 5.85E-14 3.03E-14 4.82E-14 

March 9.89E-09 9.91E-09 2.23E-10 1.15E-10 1.84E-10 5.84E-14 3.02E-14 4.81E-14 

April 1.01E-08 1.02E-08 2.28E-10 1.18E-10 1.87E-10 5.94E-14 3.07E-14 4.89E-14 

May 1.03E-08 1.03E-08 2.30E-10 1.19E-10 1.90E-10 6.02E-14 3.12E-14 4.96E-14 

June 1.02E-08 1.02E-08 2.29E-10 1.18E-10 1.88E-10 6.00E-14 3.11E-14 4.94E-14 

July 1.02E-08 1.02E-08 2.29E-10 1.19E-10 1.89E-10 6.01E-14 3.11E-14 4.95E-14 

August 1.02E-08 1.03E-08 2.30E-10 1.19E-10 1.89E-10 6.01E-14 3.11E-14 4.95E-14 

September 1.03E-08 1.04E-08 2.31E-10 1.20E-10 1.90E-10 6.04E-14 3.13E-14 4.97E-14 

October 1.03E-08 1.03E-08 2.30E-10 1.19E-10 1.90E-10 6.04E-14 3.13E-14 4.97E-14 

November 1.02E-08 1.02E-08 2.29E-10 1.19E-10 1.89E-10 6.02E-14 3.11E-14 4.95E-14 

December 1.00E-08 1.00E-08 2.26E-10 1.17E-10 1.86E-10 5.94E-14 3.07E-14 4.89E-14 
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Appendix I 

 
Steady state and monthly varying concentrations of PBDE-47 and dimethoate in the forested and un-forested landscapes in the 

2005-2014 climate period 
 

 

Table I.1: Steady state and monthly varying concentrations of PBDE-47 in land-use distribution scenario I (forested scenario) given 

the 2005-2014 climate conditions  
 Concentration (mol.m

-3
) 

 Atmosphere Surface 

Water 

Sediment Impervious 

Surface 

Agriculture 

Vegetation 

Forest 

Vegetation 

Urban 

Vegetation 

Agriculture 

Surface 

Soil 

Steady state 8.73E-15 3.68E-11 2.83E-11 2.12E-06 1.45E-09 5.09E-10 4.82E-09 3.53E-08 

January 9.25E-15 1.67E-11 1.49E-11 9.31E-07 2.27E-09 4.86E-10 9.75E-09 4.03E-08 

February 9.31E-15 1.44E-11 1.16E-11 7.92E-07 2.66E-09 4.72E-10 1.21E-08 3.74E-08 

March 9.20E-15 1.86E-11 1.39E-11 1.04E-06 2.38E-09 4.70E-10 8.80E-09 3.57E-08 

April 8.94E-15 2.88E-11 2.1E-11 1.65E-06 1.74E-09 4.84E-10 5.81E-09 3.60E-08 

May 8.50E-15 4.59E-11 3.35E-11 2.66E-06 1.28E-09 5.06E-10 4.18E-09 3.85E-08 

June 8.68E-15 3.89E-11 3.05E-11 2.24E-06 1.41E-09 5.10E-10 4.67E-09 3.94E-08 

July 8.66E-15 3.96E-11 3.04E-11 2.28E-06 1.40E-09 5.13E-10 4.63E-09 4.03E-08 

August 8.07E-15 6.25E-11 4.58E-11 3.64E-06 1.07E-09 5.25E-10 3.49E-09 4.43E-08 

September 8.29E-15 5.40E-11 4.22E-11 3.13E-06 1.16E-09 5.27E-10 3.80E-09 4.64E-08 

October 8.17E-15 5.87E-11 4.47E-11 3.41E-06 1.11E-09 5.28E-10 3.60E-09 4.89E-08 

November 8.97E-15 2.78E-11 2.46E-11 1.58E-06 1.69E-09 5.09E-10 5.95E-09 4.67E-08 

December 9.19E-15 1.92E-11 1.59E-11 1.07E-06 2.16E-09 4.90E-10 8.41E-09 4.35E-08 
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Table I.1 continued 

  
 Concentration (mol.m

-3
) 

 Forest 

Surface Soil 

Urban  

Surface Soil 

Agriculture 

Root Soil 

Forest 

Root Soil 

Urban Root 

Soil 

Agriculture 

Vadose 

Soil 

Forest 

Vadose Soil 

Urban 

Vadose Soil 

Steady state 2.91E-08 3.28E-08 5.62E-13 3.70E-13 4.10E-13 5.47E-20 3.60E-20 3.99E-20 

January 2.68E-08 3.07E-08 5.61E-13 3.68E-13 4.11E-13 5.47E-20 3.60E-20 3.99E-20 

February 2.48E-08 2.88E-08 5.57E-13 3.63E-13 4.08E-13 5.47E-20 3.60E-20 3.99E-20 

March 2.32E-08 2.75E-08 5.49E-13 3.55E-13 4.02E-13 5.46E-20 3.58E-20 3.98E-20 

April 2.30E-08 2.74E-08 5.41E-13 3.48E-13 3.95E-13 5.44E-20 3.56E-20 3.97E-20 

May 2.49E-08 2.91E-08 5.34E-13 3.42E-13 3.9E-13 5.41E-20 3.53E-20 3.95E-20 

June 2.57E-08 2.98E-08 5.30E-13 3.40E-13 3.87E-13 5.38E-20 3.51E-20 3.93E-20 

July 2.64E-08 3.05E-08 5.28E-13 3.39E-13 3.86E-13 5.35E-20 3.48E-20 3.91E-20 

August 3.00E-08 3.34E-08 5.30E-13 3.42E-13 3.88E-13 5.32E-20 3.46E-20 3.89E-20 

September 3.19E-08 3.50E-08 5.37E-13 3.49E-13 3.93E-13 5.30E-20 3.45E-20 3.88E-20 

October 3.42E-08 3.70E-08 5.46E-13 3.58E-13 4.00E-13 5.30E-20 3.45E-20 3.87E-20 

November 3.26E-08 3.55E-08 5.54E-13 3.67E-13 4.07E-13 5.31E-20 3.46E-20 3.88E-20 

December 3.01E-08 3.33E-08 5.59E-13 3.70E-13 4.11E-13 5.32E-20 3.47E-20 3.89E-20 
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Table I.2: Steadystate and monthly varying concentrations of PBDE-47 in land-use distribution scenario II (un-forested scenario) 

given the 2005-2014 climate conditions  

 Concentration (mol.m
-3

) 

 Atmosphere Surface 

Water 

Sediment Impervious 

Surface 

Agriculture 

Vegetation 

Forest 

Vegetation 

Urban 

Vegetation 

Agriculture 

Surface Soil 

Steady state 8.94E-15 3.77E-11 2.90E-11 2.17E-06 1.48E-09 1.62E-09 4.93E-09 4.45E-08 

January 9.42E-15 1.7E-11 1.52E-11 9.47E-07 2.31E-09 1.53E-09 9.93E-09 4.12E-08 

February 9.47E-15 1.46E-11 1.18E-11 8.06E-07 2.71E-09 1.48E-09 1.23E-08 3.83E-08 

March 9.37E-15 1.89E-11 1.42E-11 1.06E-06 2.42E-09 1.47E-09 8.97E-09 3.65E-08 

April 9.13E-15 2.94E-11 2.14E-11 1.68E-06 1.78E-09 1.53E-09 5.94E-09 3.68E-08 

May 8.72E-15 4.71E-11 3.43E-11 2.73E-06 1.31E-09 1.62E-09 4.29E-09 3.94E-08 

June 8.88E-15 3.98E-11 3.12E-11 2.29E-06 1.44E-09 1.63E-09 4.78E-09 4.03E-08 

July 8.87E-15 4.05E-11 3.11E-11 2.34E-06 1.43E-09 1.64E-09 4.74E-09 4.12E-08 

August 8.32E-15 6.44E-11 4.71E-11 3.74E-06 1.10E-09 1.68E-09 3.59E-09 4.54E-08 

September 8.52E-15 5.55E-11 4.34E-11 3.22E-06 1.20E-09 1.69E-09 3.90E-09 4.75E-08 

October 8.41E-15 6.04E-11 4.60E-11 3.51E-06 1.14E-09 1.69E-09 3.71E-09 5.02E-08 

November 9.15E-15 2.83E-11 2.52E-11 1.61E-06 1.73E-09 1.62E-09 6.08E-09 4.79E-08 

December 9.36E-15 1.95E-11 1.62E-11 1.09E-06 2.20E-09 1.54E-09 8.57E-09 4.46E-08 
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Table I.2 continued 

 

 

 

 

  

 Concentration (mol.m
-3

) 

 Forest 

Surface 

Soil 

Urban  

Surface Soil 

Agriculture 

Root Soil 

Forest Root 

Soil 

Urban Root 

Soil 

Agriculture 

Vadose Soil 

Forest 

Vadose 

Soil 

Urban 

Vadose Soil 

Steady state 2.68E-08 3.36E-08 5.75E-13 3.33E-13 4.19E-13 5.60E-20 3.24E-20 4.08E-20 

January 2.47E-08 3.14E-08 5.74E-13 3.31E-13 4.19E-13 5.60E-20 3.24E-20 4.08E-20 

February 2.28E-08 2.95E-08 5.70E-13 3.26E-13 4.17E-13 5.59E-20 3.23E-20 4.08E-20 

March 2.14E-08 2.81E-08 5.62E-13 3.19E-13 4.11E-13 5.58E-20 3.22E-20 4.07E-20 

April 2.13E-08 2.80E-08 5.53E-13 3.13E-13 4.04E-13 5.56E-20 3.20E-20 4.06E-20 

May 2.30E-08 2.97E-08 5.46E-13 3.08E-13 3.98E-13 5.53E-20 3.18E-20 4.04E-20 

June 2.37E-08 3.05E-08 5.42E-13 3.06E-13 3.95E-13 5.50E-20 3.15E-20 4.01E-20 

July 2.44E-08 3.12E-08 5.40E-13 3.05E-13 3.94E-13 5.47E-20 3.13E-20 3.99E-20 

August 2.75E-08 3.42E-08 5.42E-13 3.08E-13 3.96E-13 5.44E-20 3.11E-20 3.97E-20 

September 2.93E-08 3.59E-08 5.49E-13 3.14E-13 4.01E-13 5.43E-20 3.10E-20 3.96E-20 

October 3.14E-08 3.79E-08 5.59E-13 3.22E-13 4.09E-13 5.42E-20 3.10E-20 3.96E-20 

November 2.99E-08 3.64E-08 5.68E-13 3.29E-13 4.16E-13 5.43E-20 3.11E-20 3.97E-20 

December 2.76E-08 3.41E-08 5.73E-13 3.33E-13 4.20E-13 5.45E-20 3.12E-20 3.98E-20 
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Table I.3: Steady state and monthly varying concentrations of dimethoate in land-use distribution scenario I (forested scenario) given 

the 2005-2014 climate conditions  
 Concentration (mol.m

-3
) 

 Atmosphere Surface 

Water 

Sediment Impervious 

Surface 

Agriculture 

Vegetation 

Forest 

Vegetation 

Urban 

Vegetation 

Agriculture 

Surface Soil 

Steady state 1.66E-16 1.44E-09 1.10E-11 4.55E-05 2.46E-09 5.69E-10 1.37E-08 9.15E-09 

January 5.19E-16 1.38E-09 1.05E-11 4.36E-05 2.37E-09 5.47E-10 1.32E-08 8.74E-09 

February 7.07E-16 1.34E-09 1.03E-11 4.25E-05 2.31E-09 5.34E-10 1.29E-08 8.53E-09 

March 4.52E-16 1.39E-09 1.05E-11 4.39E-05 2.39E-09 5.51E-10 1.33E-08 8.81E-09 

April 2.35E-16 1.43E-09 1.08E-11 4.51E-05 2.44E-09 5.65E-10 1.37E-08 9.07E-09 

May 1.26E-16 1.45E-09 1.10E-11 4.58E-05 2.47E-09 5.72E-10 1.38E-08 9.21E-09 

June 1.58E-16 1.44E-09 1.10E-11 4.56E-05 2.46E-09 5.70E-10 1.37E-08 9.17E-09 

July 1.56E-16 1.44E-09 1.10E-11 4.56E-05 2.46E-09 5.70E-10 1.37E-08 9.17E-09 

August 8.5E-17 1.45E-09 1.11E-11 4.60E-05 2.47E-09 5.74E-10 1.38E-08 9.28E-09 

September 1.03E-16 1.45E-09 1.11E-11 4.59E-05 2.47E-09 5.73E-10 1.38E-08 9.25E-09 

October 9.03E-17 1.45E-09 1.11E-11 4.60E-05 2.48E-09 5.74E-10 1.38E-08 9.27E-09 

November 2.43E-16 1.42E-09 1.09E-11 4.51E-05 2.44E-09 5.65E-10 1.36E-08 9.06E-09 

December 4.2E-16 1.39E-09 1.06E-11 4.41E-05 2.4E-09 5.53E-10 1.34E-08 8.85E-09 
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Table I.3 continued 
 Concentration (mol.m

-3
) 

 Forest 

Surface Soil 

Urban  

Surface Soil 

Agriculture 

Root Soil 

Forest Root 

Soil 

Urban Root 

Soil 

Agriculture 

Vadose Soil 

Forest 

Vadose Soil 

Urban 

Vadose Soil 

Steady state 9.12E-09 9.15E-09 2.05E-10 1.14E-10 1.69E-10 5.37E-14 2.99E-14 4.43E-14 

January 8.73E-09 8.74E-09 1.97E-10 1.10E-10 1.63E-10 5.21E-14 2.90E-14 4.29E-14 

February 8.52E-09 8.53E-09 1.93E-10 1.07E-10 1.59E-10 5.08E-14 2.82E-14 4.18E-14 

March 8.80E-09 8.81E-09 1.98E-10 1.10E-10 1.63E-10 5.16E-14 2.87E-14 4.25E-14 

April 9.04E-09 9.06E-09 2.03E-10 1.13E-10 1.67E-10 5.29E-14 2.94E-14 4.36E-14 

May 9.17E-09 9.21E-09 2.06E-10 1.15E-10 1.69E-10 5.38E-14 2.99E-14 4.43E-14 

June 9.13E-09 9.16E-09 2.05E-10 1.14E-10 1.69E-10 5.38E-14 2.99E-14 4.43E-14 

July 9.13E-09 9.16E-09 2.05E-10 1.14E-10 1.69E-10 5.38E-14 2.99E-14 4.43E-14 

August 9.22E-09 9.27E-09 2.07E-10 1.15E-10 1.70E-10 5.41E-14 3.01E-14 4.45E-14 

September 9.20E-09 9.24E-09 2.06E-10 1.15E-10 1.70E-10 5.41E-14 3.01E-14 4.45E-14 

October 9.21E-09 9.26E-09 2.07E-10 1.15E-10 1.70E-10 5.41E-14 3.02E-14 4.46E-14 

November 9.03E-09 9.05E-09 2.04E-10 1.13E-10 1.68E-10 5.35E-14 2.98E-14 4.41E-14 

December 8.84E-09 8.85E-09 1.99E-10 1.11E-10 1.64E-10 5.24E-14 2.92E-14 4.32E-14 
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Table I.4: Steady state and monthly varying concentrations of dimethoate in land-use distribution scenario II (un-forested scenario) 

given the 2005-2014 climate conditions  
 Concentration (mol.m

-3
) 

 Atmosphere Surface 

Water 

Sediment Impervious 

Surface 

Agriculture 

Vegetation 

Forest 

Vegetation 

Urban 

Vegetation 

Agriculture 

Surface Soil 

Steady state 3.57E-16 1.57E-09 1.2E-11 4.98E-05 2.7E-09 2.38E-09 1.51E-08 9.99E-09 

January 5.77E-16 1.53E-09 1.17E-11 4.84E-05 2.63E-09 2.32E-09 1.47E-08 9.71E-09 

February 7.83E-16 1.49E-09 1.14E-11 4.71E-05 2.57E-09 2.26E-09 1.43E-08 9.46E-09 

March 5.03E-16 1.54E-09 1.17E-11 4.89E-05 2.65E-09 2.34E-09 1.48E-08 9.80E-09 

April 2.63E-16 1.59E-09 1.21E-11 5.04E-05 2.73E-09 2.41E-09 1.52E-08 1.01E-08 

May 1.4E-16 1.62E-09 1.23E-11 5.11E-05 2.76E-09 2.44E-09 1.54E-08 1.03E-08 

June 1.77E-16 1.61E-09 1.23E-11 5.09E-05 2.75E-09 2.43E-09 1.53E-08 1.02E-08 

July 1.74E-16 1.61E-09 1.23E-11 5.09E-05 2.75E-09 2.43E-09 1.53E-08 1.02E-08 

August 9.5E-17 1.63E-09 1.24E-11 5.14E-05 2.77E-09 2.45E-09 1.54E-08 1.04E-08 

September 1.15E-16 1.62E-09 1.24E-11 5.13E-05 2.76E-09 2.45E-09 1.54E-08 1.03E-08 

October 1.01E-16 1.62E-09 1.24E-11 5.14E-05 2.77E-09 2.45E-09 1.54E-08 1.04E-08 

November 2.71E-16 1.59E-09 1.21E-11 5.03E-05 2.73E-09 2.4E-09 1.52E-08 1.01E-08 

December 4.67E-16 1.55E-09 1.18E-11 4.91E-05 2.67E-09 2.35E-09 1.49E-08 9.85E-09 
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Table I.4 continued 

 Concentration (mol.m
-3

) 

 Forest 

Surface Soil 

Urban  

Surface Soil 

Agriculture 

Root Soil 

Forest Root 

Soil 

Urban Root 

Soil 

Agriculture 

Vadose 

Soil 

Forest 

Vadose 

Soil 

Urban 

Vadose Soil 

Steady state 9.97E-09 9.99E-09 2.25E-10 1.16E-10 1.85E-10 5.91E-14 3.06E-14 4.87E-14 

January 9.70E-09 9.71E-09 2.19E-10 1.13E-10 1.81E-10 5.79E-14 3.00E-14 4.77E-14 

February 9.44E-09 9.45E-09 2.14E-10 1.10E-10 1.76E-10 5.63E-14 2.91E-14 4.64E-14 

March 9.78E-09 9.80E-09 2.20E-10 1.14E-10 1.81E-10 5.74E-14 2.96E-14 4.72E-14 

April 1.01E-08 1.01E-08 2.26E-10 1.17E-10 1.87E-10 5.90E-14 3.05E-14 4.86E-14 

May 1.02E-08 1.03E-08 2.30E-10 1.19E-10 1.89E-10 6.00E-14 3.11E-14 4.94E-14 

June 1.02E-08 1.02E-08 2.29E-10 1.19E-10 1.89E-10 6.01E-14 3.11E-14 4.95E-14 

July 1.02E-08 1.02E-08 2.29E-10 1.19E-10 1.89E-10 6.01E-14 3.11E-14 4.95E-14 

August 1.03E-08 1.04E-08 2.31E-10 1.20E-10 1.90E-10 6.04E-14 3.13E-14 4.97E-14 

September 1.03E-08 1.03E-08 2.31E-10 1.20E-10 1.90E-10 6.05E-14 3.13E-14 4.98E-14 

October 1.03E-08 1.04E-08 2.31E-10 1.20E-10 1.90E-10 6.05E-14 3.13E-14 4.98E-14 

November 1.01E-08 1.01E-08 2.27E-10 1.17E-10 1.87E-10 5.97E-14 3.09E-14 4.92E-14 

December 9.83E-09 9.85E-09 2.22E-10 1.15E-10 1.83E-10 5.84E-14 3.02E-14 4.81E-14 
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