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ABSTRACT

In many surveillance scenarios, one concern that arises is how to construct an imager that is

capable of capturing the scene with high fidelity. This could be problematic for two reasons:

first, the optics and electronics in the camera may have difficulty in dealing with so much

information; secondly, bandwidth constraints, may pose difficulty in transmitting information

from the imager to the user efficiently for reconstruction or realization.

In this thesis, we will discuss a mathematical framework that is capable of skirting the

two aforementioned issues. This framework is rooted in a technique commonly referred to

as compressive sensing. We will explore two of the seminal works in compressive sensing

and will present the key theorems and definitions from these two papers. We will then survey

three different surveillance scenarios and their respective compressive sensing solutions. The

original contribution of this thesis is the development of a distributed compressive sensing

model.
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CHAPTER 1

INTRODUCTION

Recent advances in technology have brought with them a great capacity for storing large

amounts of data. With data sets becoming increasingly large, it is becoming difficult to analyse

the data in order to make use of it. As an example, consider a network of surveillance cameras

monitoring a particular area. If the number of cameras is large, it would be difficult to have a

small group of people monitor them carefully. To remedy this situation one may want to have

a computer program to monitor the data and tell the user when a particular event of interest

is happening in the scene. An immediate issue that one would encounter in such a scenario

(in addition to many computer vision related obstacles) would be that of the program parsing

the large amount of video data quickly enough so as to alert the user of an event in a timely

manner.

Another situation in which a great amount of data is difficult to manage can be found in

signal transmission. Suppose one wanted to construct UAV (unmanned aerial vehicle) with

the capability of being able to capture (very) high resolution video of the events happening on

the ground below it. Assuming the UAV is able to have such a sensor attached to it (this is

not a trivial consideration) the data collected by the UAV must be transmitted in order to be of

use. This transmission may not always be possible, since the transmission channel will have

limited bandwidth.
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These two examples are among many where the a large amount of data is needed for a

task, but that amount is too great to manage. This motivates one to ask the questions: is there

structure in the data set that I am interested in? If so, may I exploit that structure in order to

make the data easier to use?

Depending on the data one is interested in, the answers to the above questions will vary.

Recently there has been a great deal of work in dealing with data sets which exhibit a charac-

teristic, now known as sparsity. We say that a data set is sparse if most of the values in that

data set are zero, or so close to zero so as to have little contribution to the overall information

of the data. As a frivolous example, consider the vector

[1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0] (1.1)

Suppose we were interested in sensing this vector so that we may transmit it to a user. The

vector has 16 entries, but only 6 of the entries are non-zero. This means that the information

contained in the vector only depends on the location of the 6 non-zero entries, not the values

in all 16 entries. This suggests that one may want to sense all 16 entries and then transmit the

locations of the non-zero vectors. The problem with this approach is that it requires one to

sense all of the data, parse all of it, and then determine the locations of the non-zero entries.

This process involves many calculations, which is not desirable. This begs the following

question: if we knew a priori that the vector of interest was sparse, could we take a small

number of measurements and then transmit them to the user in a way such that the user could

reconstruct the vector from the measurements provided? This would mean that the UAV would

not be tasked with the computations described earlier.
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This question has been answered affirmatively by using a technique known as compressive

sensing [ET06] . The idea behind compressive sensing is as follows: given a signal x ∈ Rn,

one may capture m << n linear measurements y ∈ Rm of x and then accurately reconstruct the

original signal from y. There are conditions that must be levied on the measurement process

and the signal of interest must be sparse; but with these two requirements met, compressive

sensing allows one to sense and compress the signal simultaneously.

In this work we will be interested in dealing with digital images and video. It has been

known for some time that natural images and videos are compressible (we will define this

precisely later). This essentially means that images and videos may be represented sparsely in

some basis. With the knowledge of this sparsity in hand, one needs only to devise a sensing

scheme which is consistent with the theory of compressed sensing in order to enable accurate

reconstruction from dramatically under-sampled data.

The work that follows is organized in the following way: first we will review some of the

mathematical results which provide support for much of the literature dealing will compressive

sensing. Second, we will look at some applications of compressive sensing to surveillance

problems. This part of the work will demonstrate different ways in which one may find sparsity

in a problem and different algorithms which may be applied a given problem. The fourth and

final chapter will conclude this work with further research questions and possible directions

to their solutions.
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CHAPTER 2

BACKGROUND

2.1 The Mathematics of Compressive Sensing

In this section we will survey two of the most important works which developed compres-

sive sensing into a rigorous mathematical theory. The first work we will present is entitled

Stable Signal Recovery from Incomplete and Inaccurate Measurements [ET06], while the sec-

ond is entitled Near Optimal Signal Recovery From Random Projections: Universal Encoding

Strategies? [CT06] The former used the restricted isometry property to prove that measure-

ments with additive noise could still be used to recover the original signal with reasonable

error. The latter established the fact that compressible signals could be recovered from com-

pressive measurements efficiently

2.1.1 Recovery From Noisy Measurements

Suppose we wish to recover a sparse vector xo ∈ R
m from incomplete measurements y ∈ Rn,

n << m, which are subject to additive noise, e, such that ||e||2 ≤ ǫ. That is, y = Axo + e, where

A is a matrix whose columns are the codes against which xo is inner producted with to produce
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linear measurements/observations of xo. the above problem is considered in the paper Stable

Signal Recovery from Incomplete and Inaccurate Measurements.

The key contributions of the paper are two-fold: first, that paper was amongst the first

to introduce an error model into the sparse recovery problem. Second, that paper contains a

theorem which bounds the error of the recovery by a multiple of the l2 norm of e. Before we

state the major result of that paper, we need to develop the concept of the restricted isometry

property.

Let T ⊂ {1, ..,m}. Let AT be the n × |T | submatrix of A obtained by keeping only the

columns of A which correspond to the indices in T . Then we may define the S -restricted

isometry constant δS for A which is the smallest quantity such that

(1 − δS )||c||22 ≤ ||AT c||22 ≤ (1 + δS )||c||22 (2.1)

for all subsets T with |T | ≤ S and vectors c ∈ RT . We say that matrices which have an

associated restricted isometry constant exhibits the restricted isometry property (RIP). With

these definitions and notation in mind, we may now state the major result from [ET06]:

Theorem 1: Let S be such that δ3S + 3δ4S < 2. Then for any signal xo with sparsity less

that s and any perturbation e with ||e||2 ≤ ǫ, the solution x# to the minimization problem:

min ||x||1subject to ||Ax − y||2 ≤ ǫ (2.2)
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obeys

||x# − xo||2 ≤ CS · ǫ, (2.3)

where the constant CS may only depend on δ4S .

This theorem was is important due to the stability and error estimate provided for robustly

recovering a sparse signal with additive noise.

2.1.2 Recovering A Compressible Signal

In the above theorem we have assumed that the signal of interest xo was sparse in the canonical

basis. This is not a reasonable assumption for many signals, such as natural images. To appeal

to compressive sensing in the context of image acquisition we will make use of transform

coding.

Suppose I ∈ Rm denotes a vectorized natural image. Then we may represent I as a sparse

linear linear combination of appropriately chosen vectors. That is,

I = Ψx, (2.4)

where x is S -sparse. This representation introduces a sparse vector, but it is still not clear as

to how to apply the results of compressive sensing. A reasonable question that one may ask

is, for what matrix A of test vectors can we use so that the product AΨ = Θ exhibits the RIP?
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If we had such a matrix, then we would have that the solution to the minimization problem

min ||x||1subject to Θx − y = 0 (2.5)

is the sparsest solution. We could then recover the original image via I = Ψx. The answer of

the above question was addressed in the paper Near Optimal Signal Recovery From Random

Projections: Universal Encoding Strategies?

That work addressed signals whose coefficients decay like a power law in some basis.

That is, if Ψ = (ψ j) j=1,...,N is an orthonormal basis and I ∈ RN is the signal of interest. Let

x j =< I, ψ j > and let us sort the vector x according to the magnitude of its elements so that

|xk| ≥ |xk−1| ≥ ... ≥ |x1|. We say that x decays like a power law if there exists C > 0 such that

|xk| ≤ C · k−1/p, 1 ≤ k ≤ N (2.6)

If p is sufficiently small (0 ≤ p ≤ 1) then we say that I is compressible.

With this type of signal in mind, we are then introduced to two principals which the mea-

surement matrix (the role assumed by A) is to obey: the uniform uncertainty principle (UUP)

and the exact reconstruction principle (ERP). Suppose that 1 ≤ k ≤ N and Ω = {1, ..., k}. Then

we will suppose that the measurement matrix A = AΩ is a random matrix of dimension |Ω| by

N. Let the number of measurements |Ω| be a random variable and denote the expected value

of |Ω| by K. Further still, let RT denote the restriction map from RN to a set T ⊂ RN . Then

we may define R∗T : T → RN as the function which inserts zeros outside of T (if x ∈ RN , then

supp(R∗T x) ⊂ T ). Let AΩT := AΩR∗T . Then AΩT is an |Ω| by |T | matrix obtained by extracting

|T | columns from AΩ , where the jth column is chosen if j ∈ T .
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The Uniform Uncertainty Principal (UUP) [CT06]: We say that the measurement matrix

A obeys the uniform uncertainty principle with oversampling factor λ if for every sufficiently

small α > 0, the following statement is true with probability greater than or equal to 1 −

O(N−ρ/α) for some fixed ρ > 0: for all subsets T such that

|T | ≤ α · K/λ, (2.7)

the matrix A obeys the bounds

1/2 · K/N ≤ λmin(AΩT ∗ AΩT ) ≤ λmax(AΩT ∗ AΩT ) ≤ 3/2 · K/N. (2.8)

The Exact Reconstruction Principle (ERP) [CT06]: We say that the measurement matrix A

obeys the exact reconstruction principle with oversampling factor if for all sufficiently small

α > 0, each fixed subset T obeying (equation number) and each sign vector σ defined on T ,

|σ(t)| = 1 if t ∈ T , there exists with probability greater than 1−O(N−ρ/α) a vector P ∈ RN with

the following properties:

1. P(t) = ρ(t), for all t ∈ T .

2. P is a linear combination of rows from A.

3. |P(t)| ≤ 1/2 for all t ∈ T c

Now that we may describe a measurement matrix A with the UUP and ERP, we may formally

state the theorem which will allow us to use sparse representation to recover compressible

signals.
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Theorem 2 [CT06]. Let F be a measurement matrix such that the UUP and ERP hold with

oversampling factors λ1 and λ2, respectively. Let λ = max(λ1, λ2) and assume that K ≥ λ.

Suppose I is a signal satisfying the compression inequality for some fixed 0 < p < 1, and let

r := 1/p − 1/2. Then for any sufficiently small α > 0, any minimizer x# to the problem (2.4)

will obey,

||x − x#||2 ≤ Cp,α · R · (K/λ)−r (2.9)

with probability 1 − O(N−ρ/α).

This theorem, together with the fact that Gaussian measurement matrices obey the UUP

and ERP with λ = log(N), enables us to consider the reconstruction of large classes of signals

which are sparse in some orthonormal basis. This includes the class of natural images, which

are sparse in a wavelet basis. Videos may be regarded as sequences of images, and hence these

results enable us to address problems of capturing videos as well.

2.2 Review of Compressive Sensing Literature

The most cited architecture for a compressive sensing camera is the single pixel camera (SPC).

The SPC was developed by a team at Rice University [MB06]. The camera works as follows:

light from the scene is focused through a biconvex lens onto a micro-mirror array. The mirrors

in this array focus different pieces of the incoming light away from and directly at a single

sensor which aggregates all of the light and renders a single value/measurement. At each in-

stance the mirrors change their configuration so that (potentially) different set of light rays are
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focused on the sensor. The mirrors may be programmed to adjust themselves to be in line with

any configuration. Because of this, a random Bernoulli configuration is often chosen. If we

were to regard the Bernoulli configuration at each instance as a row of a matrix (vectorize the

grid of mirrors), then the resulting matrix will be randomly determined with each of the rows

being i.i.d. This means that the matrix will exhibit an RIP. Thus, measuring the scene with

the SPC is consistent with the mathematical models in most compressive sensing literature. A

graphical depiction from the University of Rice illustrates the measurement process well:

Figure 2.1: Diagram depicting how the SPC works. [MB06]

Many algorithms have been proposed to solve the l1-minimization problem. Two popular

algorithms among them are NESTA and CoSAMP [SC09] [NT08]. At its heart, NESTA is

a gradient descent method. This algorithm is derived from the work of Nestrov [Nes83].

In his seminal work, Nestrov sought to minimize any sufficiently smooth convex function

f on a convex set Ωp, where the subscript is used to denote that this is the primal feasible

set. Here when we say smooth, we mean that the function must be differentiable with its

gradient obeying a Lipschitz condition. For the purposes of compressive sensing, our goal is

to minimize ||x||1 subject to the constraint ||b − Ax||2 ≤ ǫ. The function || · ||1 is convex, but not

smooth. This means that we need to define a function which approximates || · ||1 and is smooth.
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Let us define a dual feasible set by

Qd = {u : ||u||∞ ≤ 1}. (2.10)

Then a reasonable such smooth function is

fµ(x) = maxu∈Qd
〈u, x〉 −

µ

2
||u||22. (2.11)

Defining Qp = {x : ||b − Ax||2 ≤ ǫ}, we may now reformulate the original compressive

sensing minimization problem as

minx∈Qp
fµ(x). (2.12)

The NESTA algorithm may now be used to solve the above minimization problem. A

rough sketch of the steps of the algorithm is as follows:

Algorithm 1: NESTA

input : x0

output: x̂

k = 0;

while stopping criteria not met do

yk ← argminx∈Qp

Lµ

2
||xk − x||2

2
+ 〈∇ fµ(xk), x − xk〉;

zk ← argmin x∈Qp

Lµ

2
||x − x0||

2
2
+ λ

2
||b − Ax||2

2
+ 〈

∑

i≤k αi∇ fµ(xi), x − xk〉;

xk ← τkzk + (1 − τk)yk.

A popular alternative to many of the gradient descent methods is known as CoSAMP.

The CoSAMP algorithm is greedy in nature. The reasoning behind much of what CoSAMP

is motivated by a single obstacle in signal recovery: determining the support of the largest

(highest energy) components of the signal. To this end, CoSAMP estimates the support of
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an s-sparse signal, x, with the vector y = A∗Ax. The support of the s greatest components

of y should be (approximately) the same as that of x. This is reasonable to assume when the

sensing matrix A obeys the RIP with a small RIP constant (δ << 1). After determining the

estimated support of x, a least-squares estimation of x is constructed. Normally, the least-

squares estimate of x would be rather inaccurate. However, we are able to use the estimated

support of x and restrict the least-squares process to that set. Letting u denote the least-squares

estimate, we let a = us, so that a contains only the s largest entries of u. The final steps include

updating the samples and checking the halting criteria. With the convention that b denotes the

noisy observations of x, a rough outline of the algorithm is presented now:

Algorithm 2: CoSAMP

input : A, b, s
output: x̂

a0 ← 0;

v← u;

k ← 0

while stopping criteria not met do

k ← k + 1;

y← A∗v;

Ω = supp(y2s);

T ← Ω ∪ supp(ak−1);

u|T ← A
†

T
b;

u|T c ← 0;

ak ← us;

v← b − Aak;

One of the most noteworthy applications of compressive sensing is in the field of medical

imaging. In Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging,

the authors appealed to the sparsity of different types of MR images in order to lower image

acquisition time or enhance image resolution via compressive sensing [LDP06]. While most

MR images are sparse under a linear transformation [MP07], angiograms are sparse in image
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space. That is, most of the pixels in an angiogram are naturally take on very small or zero

values, while a few take on high values. This means that one may randomly under-sample

sample the angiogram and recover the image via an appropriate non-linear reconstruction

algorithm. The authors used the SSFP angiogram data set [al04] to test their hypothesis and

the results (see figure) are promising.

Figure 2.2: Using different data rates, we see the reconstruction given by typical imaging (left column)

versus the reconstruction given by compressive sensing (right column). [LDP06]

The percentages in each reconstructed image refer to the percentage of data that was used

for the reconstruction. As one can see, randomly sampling 50% of the data renders a recon-

struction which is competitive with using 100% of the data with traditional imaging.
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CHAPTER 3

APPLICATIONS TO SURVEILLANCE PROBLEMS

This chapter is primarily concerned with application of compressive sensing to different types

of surveillance problems. The first scenario deals with a rather typical surveillance task; mon-

itoring a parking lot. The second scenario will address the need to track motion in a video

sequence. The third situation is one in which we are concerned about reconstructing a photo-

graph of a very large land area.

The acquisition and transmission of high resolution video signal is often problematic due

to the limitations of the ability of the camera to capture sufficient amounts of data and the

transmission channel’s bandwidth, which limits the amount of information that can be trans-

mitted once the data is acquired. This motivates the need to develop a framework by which

a scene can be sampled at a relatively low rate and then reconstructed in a way such that the

video is of high quality.

There are many different types of scenes that one might capture. The type of motion in

the video, the amount of the viewing area being consumed by the motion, lighting conditions,

etc. For our purposes we will assume that we want to reconstruct a video in which most of the

scene is static, and the lighting conditions are constant. This may seem rather restrictive upon

first blush, but such scenes naturally arise in the area of surveillance (traffic cameras, UAVs,

etc.). From here out we proceed with these type of surveillance applications in mind.
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The first section of this chapter deals with a stationary camera capturing a dynamic scene.

The second section also involves a stationary camera, but explores the idea of using compres-

sive sensing to capture purely motion information from a scene. In the third and final section

we deal with the problem of surveying a large piece of land. The contents of this final section

are largely taken from a recent work written by the author of this thesis which appeared in the

proceedings of an SPIE conference [HM11].

3.1 Video Reconstruction Using the LDS Model

One potential solution for compressive sensing of such video sequences was offered in Com-

pressive Acquisition of Dynamic Scenes [AC10]. In the paper the authors modelled the com-

pressive sensing of a scene in time as a linear dynamical system. The basic model of a linear

dynamical system is as follows: let {It, t = 0, ...,T } be a sequence of frames indexed by time t.

Then we may model each frame of video It ∈ R
N as

xt = Czt,

where C ∈ RN×d is the observation matrix and zt ∈ R
d is the hidden state vector. Let yt denote

the compressive measurement of xt. That is,

yt = Φtxt. (3.1)

where Φt is the sensing matrix to be used at time t. At each time instance we encode the

static portions of the scene as well as the dynamic portions. Let y̌t and ỹt denote the static and
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dynamic measurements, respectively. Let Φ̌ and Φ̃t denote the measurement matrices for the

static and dynamic portions of the scene, respectively.

Then at each time instant t, we take the following measurements:

yt =

































y̌t

ỹt

































=

































Φ̌

Φ̃t

































It = Φtyt, (3.2)

where y̌t ∈ R
M̌ denotes the constant measurements associated with the constant sensing matrix

Φ̌ (essentially encoding the constant motion from the scene), and ỹt denotes the dynamic

measurements associated with the matrix Φ̃t.

To recover the video sequence [xt] via the LDS model, we will first solve for the state

sequence [zt] and then solve for the observation matrix C (the notation [xt] denotes the matrix

with columns equal to xt, t = 1, ...,N). To solve for the state sequence we make the following

observation: if [x] lies in the column span of C, then
[

y̌t

]

lies in the column span of Φ̌C. This

implies that the SVD of
[

y̌t

]

will render an approximation of the state sequence [ẑ]. More

precisely, if M̌ ≥ d, and
[

y̌t

]

= US VT , then [ẑt] = S dVT
d

, where S d is the d × d principal sub-

matrix of S and Vd is the T × d matrix formed by columns of V corresponding to the singular

values in S d. We have that this estimate of the state sequence is reasonably accurate when xt

is compressible [ref].

Once the estimated state sequence [x̂t] has been constructed, we can recover C by solving

the following problem

min

d
∑

k=1

||ΨT ck||1 subject to ||ΦtCẑ − yt||2 ≤ ǫ,∀t. (3.3)
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Rather than solving this problem directly, we may use a modified CoSAMP algorithm in

order to take advantage of the redundancy in the common measurements. The pseudo-code

for this algorithm is provided below:

Algorithm 3: LDS CoSAMP

input : Φt,Ψyt, ẑt,K
output: Ĉ

Θt ← ΦtΨ;

vt ← 0;

Ω← 0;

while stopping criteria not met do

R←
∑

t Θ
T
t vtẑt;

∀k ∈ {1, ...,N}, r(k)←
∑d

i=1 R2(k, i);
Ω← Ω ∪ r2K;

A← argmin
∑

t ||yt − (Θt)·,ΩAẑt||2;

BΩ,· ← A;

BΩc,· ← 0;

∀k ∈ {1, ...,N}, b(k)←
∑d

i=1 B2(k, i);
Ω← bK;

S Ω,· ← BΩ,·;

S Ωc,· ← 0;

Ĉ ← ΨB;

vt = yt − ΘtS ẑt;

This version of the CoSAMP algorithm can be interpreted as a special case of the model-

based CoSAMP algorithm developed in [ref]. This interpretation offers the advantage of al-

lowing the calculation of the number of measurements required for stable recovery by simply

looking at the model sparsity of the signal. Specifically, if the sparsity of the signal(in our case

Ĉ) is s, then results about model-based CoSAMP guarantee that O(slog(Nd)) are needed. The

results in [ref] show that if the columns of C are K-sparse, then the sparsity of Ĉ is equal to

dK. Thus, we need M = O(slog(Nd)) measurements at each time instant in order to guarantee

that the recovery will be accurate. That is, M = O(dKlog(Nd)/T ). This implies that as the

number of frames increases, the number of measurements needed decreases.
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3.1.1 Experiments with the LDS Model

The original paper which used the CS-LDS model focused on mainly on scenes which resem-

bles changing textures. One such scene is one which contains a flame from a lighter. To show

how well this model works with such a scene, we present results of different reconstructions

below. In each reconstruction we vary the number of frames used. This illustrates the model’s

ability to allow very few measurements per frame to be used, so long as enough frames are

used.

Figure 3.1: Frame 30 ground

truth.

Figure 3.2: Frame 30 recon-

struction with 74 frames.

Figure 3.3: Frame 30 recon-

struction with 200 frames.

Figure 3.4: Frame 30 recon-

struction with 560 frames.
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For our next experiment we will consider a portion of video which captures a car passing

through a static background.

Figure 3.5: Using the CSLDS-mean model.

One notices that the static portion of the scene is reconstructed very accurately, but that

the dynamic portion of the scene is hardly reconstructed at all. In fact, the cars driving by are

reconstructed as faint spectres. Their positions can be gathered from the reconstruction, but

their features are completely gone. In the next experiment we consider a scene with people

walking around. The first example considers only a portion of the scene where the people are

pacing in the same small area, turning and walking a very small distance. The second example

is of the same general scene, except that now we have a person walking a significant distance

through the scene.

Looking at these results, we notice that the appearance of the figures which pace around,

but stay entirely within the frame, are well recovered while the person who walks off frame

is poorly reconstructed (see Figures 3.6 and 3.7 in the next page), with their features being

dissolved in the same way in which the features of the moving cars in the preceding experiment

were. This begs the following question: why does this model reconstruct persistently visible
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Figure 3.6: Pedestrians with little motion.

Figure 3.7: Pedestrians with significant motion.

objects well, while failing to reconstruct objects which are not always within the scene? A

rigorous answer to this question is a great opportunity for further research, as this answer may

lead to a better model which will be more robust to a variety of scenes.
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3.2 Monitoring Motion in a Scene

In certain scenarios, the user might not be interested in what the scene looks like, but rather,

what is happening in the scene. For example, one might want to know when there are moving

objects in the scene and the nature of their motion, rather than the look of the scene itself. To

address this surveillance concern we will demonstrate a method developed in Compressive

Sensing for Background Subtraction [VC08]. In this work, the authors make use of the

following observation: given a scene with a static background and a changing foreground,

the difference image from two adjacent frames will have a higher degree of sparsity than the

frames themselves.

To be more precise, let us introduce some notation. Let xb denote the background image, xc

the current frame, and xd the difference image, with xd = xc − xb. Let Sd denote the support of

the difference image. Then by parsing Sd one may determine the overall shape and location of

motion in the frame. A conventional imaging scheme would sense xb and xc and then directly

construct xd. Since we are not concerned with the actual appearance of the scheme, the work

needed to capture xb and xc is excessive. We instead seek a way to use compressive sensing to

reconstruct the difference image in a way such that we never need to reconstruct xb or xc.

Indeed, let us observe the following:

yb = Φxb, and, (3.4)

yc = Φxc. (3.5)
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Therefore

yb − yc = Φ(xb − xc), or, (3.6)

yd = Φxd, (3.7)

where yd = yb−yc denotes the difference compressive measurements. This simple idea give us

a way by which to reconstruct the difference image by requiring that we only compressively

sense the background and current images. Further still, when one looks at a difference image,

one notices that it is mostly black. This suggests that xd should be sparser than xb and xc.

Indeed, let suppose that the sparsity of the xb and xc is K (it is reasonable to make this

assumption because of the similarities between the two images). Let Kd denote the sparsity

of the difference image, xd. Because much of the difference image will be empty, but for

any motion, we may conclude that the wavelet coefficients used to represent the information

contained in the static portion of the scene may be discarded. Hence, Kd ≤ K. This means

that we should be able to take few compressive measurements of xb and xc and still be able to

reconstruct the difference image at the level of quality it would have been seen at if we took all

K measurements of xb and xc. We will demonstrate this point empirically in the next section.

3.2.1 Experiments with Motion Tracking

In this section we will present numerical experiments which will demonstrate that a reasonable

difference image may be reconstructed from the compressive measurements of the scene, and

that the number of measurements required to reconstruct the difference scene is much less than
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the number required to reconstruct the scene itself. We will use the Coiflet wavelet basis as the

sparsifying basis for each frame of video. We will recover images via the NESTA algorithm.

In our first experiment our objective is to reconstruct a scene of a parking lot with a car

driving past. The field of view is 64 by 64 pixels. We will reconstruct the difference images in

two ways: first we will sense the video in the traditional manner and construct the difference

images from the actual image sequence, providing the ground-truth. Second, we will compres-

sively sense the scene and construct the difference image from the difference of compressive

measurements.

Figure 3.8: The ground truth difference image.

The results of the first experiment are presented in figures 3.7-3.10. Upon first blush, one

may look at these results and be left feeling that the compressive sensing scheme does not

offer much of a benefit. The amount of data the sensor needs to process is far lower with the

compressive sensing scheme, but in exchange the reconstruction quality is far worse, both in

terms of the appearance of the reconstruction and the error measured in terms of the L2-norm.

However, when one looks closely at the reconstructed difference image one notices that the

outline of a car is clearly visible and distinct from the noise. Also, the noise looks like noise.

To be exact, it is clear that the errors in the reconstruction are extraneous. This gives reason
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Figure 3.9: Frame 30 recon-

struction using 5 percent of the

data.

Figure 3.10: Frame 30 recon-

struction using 10 percent of the

data.

Figure 3.11: Frame 30 recon-

struction using 20 percent of the

data.

Figure 3.12: Frame 30 recon-

struction using 30 percent of the

data.

to believe that a filtering process may be performed on the reconstructed difference images in

order to produce more accurate results.
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Figure 3.13: Frame 30 filtered

reconstruction using 5 percent of

the data.

Figure 3.14: Frame 30 filtered

reconstruction using 10 percent

of the data.

Figure 3.15: Frame 30 filtered

reconstruction using 20 percent

of the data.

Figure 3.16: Frame 30 filtered

reconstruction using 30 percent

of the data.

As can be seen in figures 3.11-3.14, even a very naive thresholding technique can dramat-

ically improve the quality of the reconstructed image. In particular, the portion of the scene

with the moving car peaks high enough so that its motion is sensed correctly in every frame of

video. This means that the motion sensing problem may in fact be resolved via a compressive

sensing approach.
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Figure 3.17: Using 5 percent of the data. Figure 3.18: Using 10 percent of the data.

Figure 3.19: Using 20 percent of the data. Figure 3.20: Using 30 percent of the data.

3.2.2 Using a Compressive Background Model for Object Detection

Often, it is the case that there is no new object in the scene. This implies that there is nothing

of interest taking place in the scene. The above model calls for an l1 minimization for each and

every difference image. This is computationally taxing, and so it is worthwhile to investigate

whether or not the minimization step really needs to be performed at every time instance.

This section proposes a way of determining whether or not the scene is changing. To do this

we develop a statistical model for the compressive background measurements and then use

the compressive measurements directly in order to determine of a new object has entered the

scene.
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Suppose that we have a collection of compressive measurements of the background im-

ages. Let ybi ∈ R
M denote the ith compressive measurement vector of the background of the

scene with i = 1, ...B. Let yb denote the mean of the background images. Let us consider the

distribution of l2 distances of the background images about their mean:

||ybi − yb||
2
2 = σ

2

M
∑

k=1

(

ybi(k) − yb(k)

σ

)2

(3.8)

If we take M > 30, then the central limit theorem gives us that the distribution of l2 distances

may be approximated by a Gaussian distribution. That is

||ybi − yb||
2
2
∼ N(Mσ2, 2Mσ4). (3.9)

Now suppose that we are comparing a test image to the mean background. Then we may

derive the following distribution:

||yt − yb||
2
2
∼ N(Mσ2 + ||µd||

2
2, 2Mσ2 + 4σ4||µd||

2
2). (3.10)

We can simplify matters by considering the logarithms of the l2 distances. Using this approach

we may write that

log ||ybi − yb||
2
2
∼ N(µb, σ

2
b). (3.11)
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and

||yt − yb||
2
2
∼ N(µt, σ

2
t ). (3.12)

Our goal is to use these statistics to determine if a new object has entered a scene without

having to perform a costly l1 minimization to reconstruct the difference image. Toward this

end, we learn the parameters in (3.11) via maximum likelihood estimates. With µb and σb

known, we have that if σ2
t is sufficiently different from σ2

b
, then a simple two-sided threshold

test is optimal for discriminating between another background image and an image with a new

object in it [Tre68]. Thus, we say that there is a new object in the scene if

| log ||yt − yb||
2
2 − µb| ≥ aσb, (3.13)

where a is a constant to be chosen by the user.

3.3 Monitoring a Large Track of Land

High resolution imaging sensors used in observing terrestrial activities over a very wide field-

of-view will be required to produce gigapixel images at standard video rates. This data deluge

affects not just the sensor but all of the processing, communication, and exploitation systems

downstream. A key challenge is to achieve the resolution needed to observe and make infer-

ences regarding events and objects of interest while maintaining the area coverage, and min-

imizing the cost, size, and power of the sensor system. One particularly promising approach
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to the data deluge problem is to apply the theory of compressive sensing, which enables one

to collect fewer, information-rich measurements, rather than the many information-poor mea-

surements from a traditional pixel-based imager.

For the wide field-of-view imaging application, Muise [Mui09] designed a compressive

imaging algorithm with associated measurement kernels and has simulated results based upon

a field-of-view multiplexing sensor described by Mahalanobis et al. [AB09]. These works

show a viable concept for wide area imaging at high resolution. In this section, we explore con-

cepts of collecting measurements of a wide area through multiple cameras and reconstructing

the entire wide area image. This process is known as distributed compressive imaging (DCI).

Consider an N-pixel area to be sensed with multiple cameras and suppose we have lim-

ited bandwidth for communications. The bandwidth restriction precludes us from allowing

for intra-camera communication. Compressive sensing theory tells us that M = β log
N

K
mea-

surements are sufficient to guarantee an accurate signal recovery (here K denotes the sparsity

of the area of interest). Suppose we have α cameras at our disposal and that as these cameras

have overlapping fields-of-view. Then, assuming the cameras end up covering the entire area

in aggregate, each camera need only take
M

α
compressive measurements in order to facili-

tate accurate signal reconstruction. The clear benefit here is that as the number of cameras

increases, the amount of information each camera is responsible for acquiring decreases.
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3.3.1 DCI Model

Here we propose a simple extension to the traditional compressive sensing model in order to

make use of a camera ensemble. The naive DCI model is

Y = PBx + ǫ, (3.14)

where P is a concatenation of the random Gaussian sensing matrices of each of the α cameras

in our ensemble and B is the sparsity basis for the scene, x. That is,

P = [P1,P2, ... ,Pα]T = [p1
1
, p1

2
, ..., p1

k/α, p2
1
, ..., p2

k/α, ...p
α
1
, ..., pα

k/α]T .

Each entry of Y is an inner product of the image with a random projection vector pi
j
and so its

form is

Y = [〈p1
1
,Bx〉, 〈p1

2
,Bx〉, ... , 〈p1

k/α,Bx〉, ... , 〈pα
1
,Bx〉, ... , 〈pα

k/α,Bx〉]T + ǫ.

Our interest lies in having multiple cameras, all surveying a large region from different

perspective. As such, if we take an absolute coordinate system for the entire region we model

the differences in perspectives with an operator Oi so that Oi(Bα) generates the underlying

scene Bα from the point of view of the ith camera. With this idea we may rewrite the observed

measurements as

Y = [〈p1
1
,O1(Bx)〉, 〈p1

2
,O1(Bx)〉, ... , 〈p1

k/α,O1(Bx)〉, ... , 〈pα
1
,Oα(Bx)〉, ... , 〈pα

k/α,Oα(Bx)〉]T .

For a particular perspective operator, Oi, we wish to derive the adjoint (for lack of a better

term), O∗, so that
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〈h,Oi(y)〉 = 〈O∗i (h), y〉, for all h, y.

For example, if Oi translates an image by [a, b] pixels, then O∗i would translate the mea-

surement mask by [−a,−b] pixels for an equivalent inner product. With this idea in mind we

may once again rewrite our observation vector, Y, as

Y = [〈O∗1(p1
1),Bx〉, 〈O∗1(p1

2),Bx〉, ... , 〈O∗1(p1
k/α),Bx〉, ... , 〈O∗α(pα1 ),Bx〉, ... , 〈O∗α(pαk/α),Bx〉]T + ǫ

= P∗Bx + ǫ.

Thus we take as the general DCI model

Y = P∗Bx + ǫ, (3.15)

where ǫ is included to take into consideration additive error in the sensing process. Also,

unlike (3.1), this accounts for different camera perspectives. Thus we will be solving

min
P̂,x
||x||1 subject to ||Y − P̂Bx||2 ≤ c (3.16)
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where P̂ = P∗ + Pe, the ideal perspective operator plus an error. This alters our model for the

observations to

Y = P̂Bx + ǫ

= (P∗ + Pe)Bx + ǫ

= P∗Bx + PeBx + ǫ

= P∗Bx + ǫ′

where our new error term is bounded by

||ǫ′||22 = ||P
eBx + ǫ ||22

≤ ||Pe||22||Bx||22 + ||ǫ||
2
2

≤ E||Pe|| + c,

where E is the overall energy in the image. Appealing to the result from Candes, Romberg,

and Tao, we can solve (3.10) for x♯ with the guarantee that

||xtrue − x♯||2 ≤ O(E||Pe|| + c).

Although the behaviour of E||Pe|| is difficult to characterize, there are several observations:

• When the ideal perspective estimates are known, P⌉ = 0 and thus E||Pe|| is a minimum,

and equation (3.4) distils down to the case studied by Candes, Romberg, and Tao.
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• An iteration of (3.5) while perturbing the perspective estimates should generate a surface

which has a global minimum when P̂ = P∗.

Hence, we are left with a procedure and an optimality criterion which theoretically should

give us estimates for x and the camera perspectives by minimizing the l1 norm of x while

fitting the observed data.

3.3.2 Experiments with Large Area Monitoring

Given a wide field-of-regard image we wish to collect image projections from multiple cam-

eras and rebuild the scene with minimal data being transmitted. Assuming that we know the

perspective parameters for the multiple cameras, we have a sequence of cameras depicted by

figure (3.1).

Figure 3.21: A wide field of regard image being sensed with multiple cameras.

We assume that the bandwidth of the data-link can only afford to send down 0.2% of the

image over the support of its field of view. For example, if a camera generated a 128x128 im-

age, then the amount of information transmitted for reconstruction would be approximately 24

numbers. The reconstruction from the non-compressed sensing is accomplished by observing
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the image, calculating the compression coefficients assuming a DCT basis set, and sending the

top 0.2% of the coefficients to the reconstruction algorithm. Under this paradigm, the results

of the scene reconstruction are shown in figure (3.2).

Figure 3.22: The scene being surveyed by traditional cameras with reconstruction via traditional

compression.

For a distributed compressive imaging scenario, we assume the entire scene of interest can

be compactly represented in a DCT basis and each individual camera would sample an image

projection of a limited FOV of the scene. The projection masks should be randomized (to

guarantee incoherence with the DCT basis) but should also have a notion of random sampling

(as this is optimally incoherent with the DCT basis). We choose a methodology of projection

mask construction as the following:

1. Randomly generate a size and location for the pixel sampling.

2. Iterate until roughly 1/4 of the pixels are contributing to the projection (this will ensure

an SNR advantage through multiplexing).

An example of a projection mask used for this experiment is given in figure (3.3).
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Figure 3.23: A typical projec-

tion mask.

Figure 3.24: Projection masks placed

in the scene’s coordinate system.

With the camera perspective parameters assumed to be known, we calculate the projection

mask in terms of the underlying scene coordinate system. This results in calculating the rows

of the projection matrix P. Two of these example perspective masks are given in figure (3.4).

With this calculation of the projection masks into the underlying scene coordinate system

we use the STOMP [DS06] as our compressive sensing reconstruction algorithm with less

than 0.2% of the underlying dimension of each camera’s FOV. The results are shown in figure

(3.5).

Figure 3.25: The scene being surveyed by compressive sensing cameras.

One notices that while new information is collected and transmitted, all of the areas of the

underlying scene experience higher fidelity reconstruction. The final reconstruction with and

without DCI are shown in figure (3.6).
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Figure 3.26: On the left is the complete reconstruction via traditional imaging. On the right is the

reconstruction via compressive sensing.

One notices a very low frequency image from the standard compression which results from

only 0.2% of the information being transmitted. The overall shape of the larger buildings is

successfully reconstructed as well as the general large road network. With DCI, the recon-

struction contains far more high-frequency content with many smaller buildings visible and

the texture and shape of the trees on the right being of higher quality.

3.3.3 Multi-Camera Registration Issues

The above experiment was conducted under the assumption that the camera perspectives were

known. Such information is not generally known and an image registration step would be

required. For standard video cameras, this registration can be non-trivial, but solvable with

standard tie-point correlation and re-sampling, or other techniques. For DCI, the imagery is

unavailable to calculate correlations and we are required to register the imagery without access

to the images. This problem was solved with manifold lifting techniques by Wakin [7], while

we wish to test whether equation (3) gives us a general optimization criterion for estimating

the camera perspectives from the image projection data stream.
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Again, equation (3) suggests that the same criteria used for estimate the nonzero coeffi-

cients of a sparse model can be used to iteratively estimate the perspective parameters of our

distributed compressive imaging system. To see the intuition, imagine that our perspective

estimates for the cameras are incorrect. It should take more coefficients to reconstruct the

incorrect scene than it would take to reconstruct the correctly registered information. Thus,

finding the sparsest solution (or equivalently, the minimum l1 solution) over all possible per-

spectives parameters should lead to the correct perspective estimates. We test this through a

nine camera DCI test with the Lena image as described in the next section.

3.3.4 A DCI Model with Unknown Registration

In this experiment we treat the image of Lena as the field of regard and we have nine cameras

surveying the image, each of which has a limited field of view. While no two cameras share

the same field of view, each camera’s field of view overlaps with at least one other camera’s.

Figure 3.27: How the Lena image is being sensed.

The registration of the center camera’s position is assumed to be unknown; and for the

purposes of this experiment, all other camera perspective parameters are assumed to be known.
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Also, although the results of our experiments should generalize to most camera perspective

parameters, we test only unknown x, y translation.

With real surveillance applications in mind, it is reasonable to assume that one will have

approximate camera registration parameters available. These approximate values will serve

as an initial guess. Our experiment takes in the measurements from all nine cameras (the

only unknown is the position of the center camera, denoted as γ), then takes in the estimate

for γ, calculates the projection masks in terms of the underlying scene coordinate system,

recovers an image through l1 minimization, and saves the associated l1 norm of the scene

coefficients. We then make another estimate for γ and repeat this process, always saving the

l1 norms associated with each reconstruction. This process is meant to visualize the function

from equation (3), which should give us an optimality criteria for estimating x and the camera

registration parameters (which are embedded in the estimate for x).

Graphing the l1 norms for each of the reconstructions as a function of the unknown param-

eter γ we have the following result in figure (8).

Figure 3.28: The x and y axis represent the guess for γ, while the z axis represents the l1 norm of the

reconstruction given γ. There are 81 nodes in both the x and y directions.
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The noisy nature of this surface suggests that determining the optimal camera parameters

based on the l1 norm would be a difficult task. However, if we smooth this function be con-

volving it with a Gaussian mask of size 7x7 we gain insight into the nature of how this function

behaves.

Figure 3.29: The smoothed graph of the l1 norms as a function of γ.

This graph suggests that this function is locally quadratic. This offers one the intuition that

one can find the global minimum of the function by taking a smoothed version of ||x||1 as our

optimality criteria. To this end, for each test value of γ we solve (4) for several values close to

γ and take the average value of ||x||1 as our objective function. The gradient of this new surface

(represented in figure (9)) should now be relatively continuous and should give us insight into

the possible convergence of a gradient descent algorithm. These gradients were calculated for

the raw and smoothed versions of our objective function and are shown in figure (10) as arrows

overlaid on an image of our objective function. The ideal perspective perspective estimates

correspond to the center of each image.

The results of this experiment are promising and lend support to the argument that the

minimum l1 norm taken over different image reconstructions is minimized when the projection

masks are correctly positioned within the scene’s coordinate system.
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Figure 3.30: The graph on the left displays the gradient of ||x||1 before being smoothed. There is no

indication that a gradient descent search will converge to the correct solution. The graph on the right

displays the gradient of the smoothed l1 function. There is a clear convergence to a point which is very

close to the ideal perspective estimates.

Figure 3.31: The red diamond displays the location of the true camera registration. The circle displays

the location of the point that the graph’s gradient converges to.

The analysis and experiment from section 3, coupled with the calculations in section 4

bode well for the concept of distributed compressive imaging. Randomized projections of

limited field-of-view images seem to contain enough information to not only recover the un-

derlying large area image, but also estimate the viewing geometry of each individual camera.

This conclusion is also supported by the experiments conducted by Wakin in [ref].
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CHAPTER 4

CONCLUSIONS AND FURTHER RESEARCH

The preceding work we have looked at different surveillance problems and the results that

compressive sensing approaches can deliver. The LDS method is capable of reconstructing

certain types of surveillance scenes with a high degree of accuracy. This model also enjoys

the ability to reduce the number of measurements needed of each frame of video, so long as

there is a sufficiently large number of frames available. The major drawback of this model

is that it fails to reconstruct the features of dynamics which are not present in each frame.

This drawback presents us with an opportunity for future research, with questions of why this

model fails in these instances and whether or not it can be generalized to allow it to reconstruct

additional classes of video.

In the context of motion sensing, we have presented results which show that motion in-

formation can be sensed directly by a compressive imager. The results were noisy, but the

silhouettes of the moving objects were preserved. Further, we demonstrated that even a very

naive filtering method could get rid of most of the noise. There are limitations to this method,

however. In the scene we observed the object of interest was fairly large relative to the field of

view. If the object(s) of interest was smaller, say a group of pedestrians from far above, then

the pedestrian silhouettes may look like noise. As such, our filtering technique may disregard

valuable motion information. One potential solution might be to use optical flow data. If one

looks at the optical flow of the reconstructed sequence, surely one will observe mostly erratic
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motion vectors. However, the (small) portions of the scene which are actually representative

of motion should still exhibit stable motion vectors. The portions of the scene associated with

the smoothly changing motion vectors could be weighted heavily in a new filtering process.

This will help prevent legitimate motion from being regarded as noise.

The third problem we looked at was that of wide-area surveillance. We have shown

through analysis and simulation that there is significant benefit in distributed compressive

imaging (DCI) to sense a very large area with significant benefits when there are severe band-

width transmission restrictions. We have shown that the same criteria which allows com-

pressive sensing to work (namely minimizing the L1-norm of the reconstruction coefficients)

is also a viable criteria to estimate the registration parameters of the multiple cameras. It

is particularly beneficial that one can take advantage of the redundancy of multiple cameras

without intra-camera communications (something unattainable with traditional compression).

A topic for further research is some combination of the manifold lifting algorithm developed

by Wakin [Wak09] with the L1-minimization techniques outlined in this paper. This might

lead to a faster method by which to accurately estimate the camera registration parameters.

Another topic for further research would be to determine an effective way to incorporate

prior information about a scene into the model. This information should be used in a way that

would increase the sparsity of the system (so that fewer measurements need to be taken) and/or

decrease the number of iterations needed to converge to an accurate solution to the system. As

an example, consider the wide-area surveillance application we discussed. Suppose that a

low resolution photo of the entire track of land was available (this could be thought of as

being given by a satellite with typical optics, without need of high-resolution capabilities).

The resolution would be relatively poor, but the overall shape of the image could be captured.
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A good question to ask, then, would be if one could use this information to speed up the

reconstruction process. The CoSAMP algorithm uses a support pruning procedure. Could

knowing roughly what the scene should look like help to more efficiently hone in on what the

correct support of the sparse solution is? The ability to use such information would make for

a novel algorithm and would contribute greatly in the applicability of compressive sensing to

surveillance and imaging problems.
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