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ABSTRACT

The framework for the Hall magnetohydrodynamic (MHD) model for plasma physics

is built up from kinetic theory and used to analytically solve problems of interest in the field.

The Hall MHD model describes fast magnetic reconnection processes in space and laboratory

plasmas. Specifically, the magnetic reconnection process at an X-type neutral point, where

current sheets form and store enormous amounts of magnetic energy which is later released

as magnetic storms when the sheets break up, is investigated. The phenomena of magnetic

flux pile-up driving the merging of antiparallel magnetic fields at an ion stagnation-point

flow in a thin current sheet, called the Parker problem, also receives rigorous mathematical

analysis.

iii



ACKNOWLEDGMENTS

I acknowledge with gratitude Dr. Shivamoggi for giving me entertaining problems. I am

thankful to Dr. Eastes and Dr. Rollins for serving on my committee and giving advice. My

thanks to Robert Van Gorder and John Haussermann for helpful discussions and to Emily

Lust, Jessica Hearns, Angela Siple and Dan Reger for pushing me to keep going.

iv



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 X-type Neutral Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Parker Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

CHAPTER 2 DERIVATION OF HALL MAGNETOHYDRODYNAMICS . . . . . 4

2.1 Mass and Momentum Conservation in Plasma . . . . . . . . . . . . . . . . . 4

2.2 Magnetohydrodynamic Approximation . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 3 ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 X-type Neutral Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Parker Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

CHAPTER 4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

APPENDIX X-TYPE NEUTRAL POINT FIRST INTEGRAL . . . . . . . . . . . . 37

v



LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vi



LIST OF FIGURES

Figure 2.1 Goldilock’s Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 3.1 Initial Current Density’s Effect on Sheet Collapse . . . . . . . . . . . 25

Figure 3.2 High Order Perturbation’s Effect on Sheet Collapse . . . . . . . . . . 26

Figure 3.3 In-Plane Ion Velocity’s Effect on Sheet Collapse . . . . . . . . . . . . 27

Figure 3.4 Out-of-plane Magnetic Field Strength’s Effect on Sheet Collapse . . . 28

Figure 3.5 Effect of Parameter Values on Parker Magnetic Field Profile . . . . . 36

vii



CHAPTER 1

INTRODUCTION

The Hall Magnetohydrodynamic (MHD) model is a two-fluid model often used to describe

the equilibrium state of the plasma. It becomes especially useful when considering prob-

lems containing resistivity due to the equations’ relative simplicity when compared to the

equations that the Hall MHD equations are deduced from. In particular, Hall MHD is used

extensively when studying the process of magnetic reconnection due to its ability to accu-

rately describe plasmas with large magnetic field gradients [2]. Magnetic reconnection occurs

as a result of non-ideal effects in Ohm’s law. Physically, the close encounter of magnetic

field lines causes the magnetic field gradients to become locally strong, thus enhancing the

typically weak non-ideal process in Ohm’s law. Hence, reconnection is a localized process

[3].

Rapid reconnection of magnetic fields in the neighborhood of neutral points plays a

central role in the explosive energy release of the solar flare phenomenon. The dynamics of

the fluid motion and field reconnection remains a subject of interest ever since Dungey [11]

first pointed out the exotic nature of the X-type magnetic neutral point. The solution of the

problem is essential to understanding the absence of small-scale fields in interstellar space

and the solar corona [18].
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1.1 X-type Neutral Point

X-type neutral points are essentially where hyperbolic magnetic fields meet and create mag-

netic neutral lines within the plasma flow in the form of an X-point [26]. A thin neutral

current sheet is then formed when plasma collapses near the neutral line of the applied

magnetic field. In resistive magnetohydrodynamics (MHD) the ion inflow is the only means

to transport magnetic flux into the reconnection layer. As the magnetic flux continually

accumulates in the region of the neutral sheet, the total current and the sheet width increase

until large magnetic pressure gradients develop, which inhibit the ion inflow - the ”bottle-

neck” problem [27]. The Hall effect [29] can overcome this [9, 16], thanks to the decoupling

of electrons from ions on length scales below the ion skin depth di. If the reconnection layer

width is less than di, the electron inflow can keep transporting the magnetic flux into the

reconnection layer and hence reduce the flux pile-up.

Previous numerical work [22, 21, 12, 30] indicated that the dissipation in Hall MHD, as

di increases, changes from an elongated sheet geometry (Sweet-Parker type [17, 19]) to a more

open X-point geometry (Petschek type [8]). However, fully kinetic simulations [8, 15] and

EMHD-based treatments [6] have shown that elongated current sheets are also possible. To

further the controversy, more recent particle-in-cell simulations [23] show spatial localization

of the out-of-plane current to within a few d′is of the X-line.

More recently, Shivamoggi [25] considered a non-resistive Hall plasma near an X-

type neutral point. Therein, asymptotic solutions are provided for the resulting nonlinear
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ordinary differential equations. We continue the development of this problem by working

with those nonlinear differential equations and finding suitable transformations to allow a

more detailed analysis of their behavior.

1.2 Parker Problem

When two opposite magnetic fields are pressed together via a stagnation-point plasma flow,

the fields annihilate - the Parker problem [18]. Dorelli [10] gave analytic generalizations

while considering Hall effects to the previous flux pile-up merging solution [18]. The so-

lutions therein exhibited the quadrupolar structure of the toroidal magnetic field that is

characteristic of the Hall effect and has been confirmed in laboratory experiments [20, 13].

Shivamoggi [24] generalized some of Dorelli’s results by adding a poloidal shear to

the toroidal ion flow. The differential equation characterizing the magnetic field profile was

found to have a triple-deck structure as in fluid boundary layer theory. We seek to provide

an exact solution to the magnetic field profile to better understand its characteristics.
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CHAPTER 2

DERIVATION OF HALL MAGNETOHYDRODYNAMICS

We seek to apply our knowledge of fluids to approximate the motions of collections of charged

particles moving in an electromagnetic field (a plasma). Specifically, we will be deriving

the Hall Magnetohydrodynamic (MHD) model for plasmas with the help of kinetic theory,

classical electromagnitism, and a variety of simplifying assumptions.

2.1 Mass and Momentum Conservation in Plasma

To derive the Hall MHD equations we follow the steps taken by Braginskii [5] and Goed-

bloed and Poedts [14]. First we start with time-dependent particle probability distribution

functions, fa(t, r,v), where the subscript a denotes which species of particles. The probable

number of particles of species a in the six-dimensional volume element drdv centered at (r,v)

will then be fa(t, r,v)drdv. The time evolution of these distribution functions is determined

by the Boltzmann equation.

∂fa
∂t

+
∂

∂xβ
(vβfa) +

∂

∂vβ

(
Faβ
ma

fa

)
= Ca. (2.1)
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Since we’re modeling plasma, the particles in question are affected by electric and magnetic

fields so the force applied is the Lorentz force

Fa = ea

(
E +

1

c
v ×B

)
, (2.2)

where ea is the charge of particle species a, E is the applied electric field, and B is the

applied magnetic field. Note that fa(t, r,v) is a smoothed density averaged over a volume

containing a large number of particles (fluid element approximation). The same smoothing

applies to Fa as it does not account for the microfluctuations caused by individual particles.

The collision term, Ca, in (2.1) accounts for collisions between particles of the same

species and between other species. For simplicity, we assume collisions are elastic and do

not convert particles from one species to another. This coincides with a plasma that is

characterized by being ”not too hot” and ”not too dense”. This Goldilocks plasma carries

several physical limitations on the phenomena that can be modeled by the equations, namely

(a) The long-range Coulomb interaction between charged particles should dominate over the

short-range binary collisions with neutrals. Meaning, the time scale on which collective

oscillatory motion occurs is much smaller than the mean time between collisions of

charged plasma particles with neutrals. Explicitly, if τ is the time scale of the collective

oscillatory motion, then we require

τ � 1

nnσvth
,
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where nn is the density of neutral particles, σ is the cross sectional area of an atom, and

vth is the thermal speed of the particles.

(b) The length scale of the plasma dynamics should be much larger than the minimum length

at which a quasi-neutrality condition holds. A quasi-neutral plasma satisfies the relation

|Zni − ne|
ne

� 1,

where Z is the ion charge number and ni, ne are the ion and electron densities respec-

tively, but the quasi-neutrality condition requires that locally within a certain volume

scale the plasma has a almost neutral charge. If the charge is imbalanced, then huge

electric fields produce accelerations in the particles so that the imbalance is neutralized

almost instantaneously. However, local charge imbalances may be produced by ther-

mal fluctuations. To estimate their size, one should compare the thermal energy kT

of the particles with their electostatic energy eΦ. The latter can be estimated through

Poisson’s law, so that if λ is our typical length scale then

λ� λD ≡
√
ε0kT

e2n
,

where λD is called the Debye length, ε0 is the permittivity of free space, k is the Boltz-

mann constant, T is the temperature of the plasma measured in Kelvin, e is the unit

charge, and n is the density of the plasma.

6



(c) The plasma should have sufficiently many particles present in a Debye sphere, i.e.

ND ≡
4

3
πλ3

Dn� 1.

This consideration is made so that the statistical approximations are valid.

While these may seem like a large number of conditions to satisfy, many important plasmas

carry these properties. For example, both the sun’s corona and the plasma in a Tokamak

fusion reactor fit these limitations, but very hot and dense plasmas like the core of the sun

do not fit within this regime. Figure 2.1 illustrates the regime in which these conditions

hold.

Coming back to the issue of the collision term, Ca, we decompose it into the contri-

butions Cab made by the collisions of particles of species a with particles of species b:

Ca =
∑
b

Cab,

where Cab = Cab(fa, fb). For our plasma model, we only consider two species of particles

- that of ions (i) and electons (e), so in the ion Boltzmann equation we have Cie, Cii and

the electron Boltzmann equation contains Cei, Cee. From conservation principles, we may

now observe some conditions that the collision terms must satisfy. Since the total number of

particle species a at a certain position is not changed by collisions with particles of species

b (only their velocities change), we have

∫
Cabdv = 0. (2.3)

7



Figure 2.1: Goldilock’s Plasma

This figure contains the conditions for the plasma fluid approximation, which Hall MHD

is based upon, to hold in terms of density of the plasma, n, and temperature, T . This

Goldilock’s plasma, which is not too hot or too dense, lives in the shaded area between

the curve of the mean time between collisions of charged plasma particles with neutrals, τn,

equal to one; the line of Debye length, λD, equal to one; and sufficient particles living in

a Debye sphere, ND � 1. These conditions are required so that Coulomb collisions drive

the dynamics of the system, the plasma’s microfluctuations may be neglected, and enough

particles exist for the statistical approximations to be valid.
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Momentum and energy are conserved for collisions between particles of the same species, or

in equation form, ∫
mavCkkdv = 0,∫

1
2
mav

2Ckkdv = 0,

where k = e, i. Between the ions and electrons, the total momentum and energy must be

conserved, so we have

∫
mevCeidv +

∫
mivCiedv = 0,

∫
1
2
mev

2Ceidv +
∫

1
2
miv

2Ciedv = 0.

Now, to promote clarity of writing, we make the following definitions. The number of particle

species per unit volume

na(t, r) =

∫
fa(t, r,v)dv. (2.4)

The mean velocity of the particles

ua(t, r) =
1

na

∫
vfa(t, r,v)dv = 〈v〉a. (2.5)

Now we multiply (2.1) by dv and integrate to find the zeroth moment of the Boltzmann

equation. ∫
∂

∂t
fadv +

∫
∂

∂xβ
(vβfa)dv +

∫
∂

∂vβ

(
Faβ
ma

fa

)
dv =

∫
Cabdv (2.6)

On the first two pieces on the LHS, we assume proper conditions on the probability distri-

bution function so that the derivatives may be taken out of the integral. In the third term

on the LHS, we integrate it by parts and assume that the probability distribution decays
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quickly enough at infinity, so that it goes to zero. The RHS is simply equation (2.3), so

it too goes to zero. What we’re left with, after using the definitions (2.4) and (2.5), is the

conservation of mass equation

∂na
∂t

+∇ · (naua) = 0. (2.7)

In literature, it is also referred to as the equation of continuity. When analysing an incom-

pressible plasma na is time-independent, and (2.7) reduces to just a solenoidal condition on

(2.5).

∇ · ua = 0. (2.8)

Now we calculate the first moment of the Boltzmann equation by multiplying (2.1)

by v and integrating over dv. This results in the following terms

∫
∂fa
∂t

vdv = ∂
∂t

(naua),∫
v · ∂fa

∂r
vdv = ∇ ·

∫
vvfadv = ∇ · (na〈vv〉a),∫

ea
ma

(E + 1
c
v ×B) · ∂fa

∂v
vdv = − eana

ma
(E + 1

c
ua ×B),∫

Cavdv =
∫
Cabvdv (b 6= a).

Adding these equations together we obtain the momentum equation for particles of species

a

∂

∂t
(namaua) +∇ · (nama〈vv〉a)− naea(E +

1

c
ua ×B) =

∫
Cabmavdv. (2.9)

In principle we may continue and calculate the nth moment of the Boltzmann equation and

get an infinite hierarchy. However, for our purposes we will truncate at the first moment.

Now we perform some more manipulations and definitions to get this equation to look more

10



familiar to us. First, let us separate thermal fluctuations from the macroscopic movement

of the plasma as a whole by defining the random velocity w of the particles with respect to

the average velocity ua:

w ≡ v − ua, where 〈w〉 = 0.

The random velocity part of the term 〈vv〉 in the momentum equation (2.9) gives rise to

the stress tensor Pa defined as

Pa ≡ nama〈ww〉 = paI + πa,

where the isotropic part pa(r, t) is pressure and the traceless stress tensor πa(r, t) contains

the anistropic effects of the distribution function and acts like a viscosity. The collision term

may also be simplified with the use of the random velocity and equation (2.3).

∫
Cabmavdv =

∫
Cabma(w − ua)dv =

∫
Cabmawdv = Rab

This term acts as a frictional force in the model and is the mean momentum transfer from

particles of species b to species a. Under our assumptions, the vast majority of collisions

in the plasma we are modeling are Coulomb collisions. Therefore, on physical grounds, we

expect Rab to be proportional to the Coulomb force, which is proportional to e2 for singly

charged ions. Further, Rab must be also proportional to the density of electrons ne, to the

density of scattering centers ni, and to the relative velocity of the two fluids. Thus we may

write Rei as

Rei = ηe2n2(ui − ue), (2.10)

11



where η is the proportionality constant called the specific resistivity of the plasma. Use of the

continuity equation (2.7) allows us to now rewrite our equation of momentum conversation

(2.9) as

nama

[
∂

∂t
+ (ua · ∇)

]
ua = −∇pa −∇ · πa + naea(E +

1

c
ua ×B) + Rab. (2.11)

In literature, the equation of momentum conservation is also referred to as the equation of

motion.

2.2 Magnetohydrodynamic Approximation

Now that we have established the all-important equations of continuity and momentum

conservation for plasmas using a model of two interpenetrating fluids, let us combine them

together with a variety of assumptions so that they are easier to manipulate [7]. We now

assume explicitly that the plasma is quasi-neutral with singly charged ions Z = 1. Thus we

have ei = −ee = e and ni ≈ ne = n. Using the notation mi = M and me = m for the mass

of the ions and electrons respectively, we now define the mass density ρ and current density

j as follows:

ρ ≡ niM + nem ≈ n(M +m)

j ≡ e(niui − neue) ≈ ne(ui − ue)

(2.12)
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Ignoring viscious effects (πa) the ion and electron equations of momentum conservation (2.11)

can be written as

Mn

[
∂

∂t
+ (ui · ∇)

]
ui = en(E +

1

c
ui ×B)−∇pi + Rie (2.13)

mn

[
∂

∂t
+ (ue · ∇)

]
ue = −en(E +

1

c
ue ×B)−∇pe + Rei (2.14)

We now neglect electron inertia by taking the limit m→ 0, which causes the LHS of (2.14)

to go to zero. We then add equations (2.13), (2.14) to obtain

Mn

[
∂

∂t
+ (ui · ∇)

]
ui =

en

c
(ui − ue)×B−∇p,

where p ≡ pi + pe. Note that the electric field has cancelled out as well as the collision terms

since Rie = −Rei. Rewriting using the defined quantities in (2.12), we have

ρ

[
∂

∂t
+ (ui · ∇)

]
ui =

1

c
j×B−∇p. (2.15)

This is the ion equation of motion specific to the MHD approximation. The electric field

does not appear explicitly because the fluid is neutral.

Let us now take a different linear combination of our equations of momentum con-

servation. Multiplying (2.13) by m and (2.14) by M and subtracting the two yields

Mmn
[
∂
∂t

(ui − ue) + (ui · ∇)ui − (ue · ∇)ue
]

= −m∇pi +M∇pe + ne(m+M)E

+ne
c

(mui +Mue)×B−mRie −MRei.

(2.16)
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The term being cross multiplied with the magnetic field may be reexpressed through clever

manipulations and use of (2.12)

mui +Mue = Mui +mue +M(ue − ui) +m(ui − ue)

= Mui +mue + (m−M)
j

ne
.

Additionally using our phenomenological approximation to the collision term (2.10) and

neglecting electron inertia by taking the limit m→ 0, (2.16) becomes

0 = M∇pe + neME +
ne

c

(
Mui −M

j

ne

)
×B− neMηj

0 =
1

ne
∇pe + E +

1

c
ui ×B− 1

nec
j×B− ηj.

Our final assumption is that the electron pressure term here can be neglected to yield a

generalization to Ohm’s law, which describes the electrical properties of the plasma.

E +
1

c
ui ×B = ηj +

1

nec
j×B. (2.17)

The j×B term is called the Hall current term. In the ideal MHD model, this term is

small enough to be neglected, but it becomes especially important in certain magnetic field

geometries that the full Hall MHD model is most suited towards, like current sheet formation

where there are large magnetic field gradients. Combined with Maxwell’s equations, the

MHD equations form a system describing the dynamics of a single ion fluid.

14



CHAPTER 3

ANALYSIS

3.1 X-type Neutral Point

We now extend the analysis of Shivamoggi [25] on the unsteady-state properties of an incom-

pressible plasma near a 2D X-type magnetic neutral point. For a more detailed discussion

on the physics and previous work on the X-type neutral point problem, see the section 1.1.

The governing equations for the dynamics of an incompressible quasineutral plasma under

appropriate assumptions (see chapter 2 for development) take the form

nM

[
∂

∂t
+ (ui · ∇)

]
ui = −∇p+

1

c
j×B, (3.1)

E +
1

c
ui ×B = ηj +

1

nec
j×B, (3.2)

∇ · ue = 0, (3.3)

∇ · ui = 0, (3.4)

∇ ·B = 0, (3.5)

∇×B =
1

c
j, (3.6)

∇× E = −1

c

∂B

∂t
, (3.7)
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where B is the magnetic field, E is the electric field, ui is the fluid velocity of the ions, ue is

the fluid velocity of the electrons, p ≡ pi + pe is the sum of the ion and electron pressures,

η is the plasma resistivity constant, n is the density of the plasma, e is the unit charge, c is

the speed of light, M is the ion mass, and j ≡ ne(ui − ue) is the current density.

We now nondimensionalize the system with a characteristic length scale a, magnetic

field strength B0, and Alfvén time scale τA ≡ a/VA0 , where VA0 ≡ B0/
√
nM . We assume

that all quantities do not vary in the z-direction and take the magnetic field and ion-fluid

velocity to have the form

B = ∇ψ × k̂ + bk̂, ui = (k̂× ui)× k̂ + wk̂ ≡ u + wk̂, (3.8)

where k̂ is the unit vector in the z-direction. Utilizing (3.6) to eliminate the current density,

(3.1) yields [
∂

∂t
+ (u · ∇)

]
u = −∇(p+ b2)− (∇2ψ)∇ψ, (3.9)[

∂

∂t
+ (u · ∇)

]
w − [b, ψ] = 0. (3.10)

The curl of (3.2) along with (3.6) and (3.7) gives

[
∂

∂t
+ (u · ∇)

]
ψ + σ[b, ψ] = η̂∇2ψ, (3.11)

[
∂

∂t
+ (u · ∇)

]
b+ σ[ψ,∇2ψ] + [ψ,w] = η̂2b, (3.12)

where [F,G] ≡ (∇F × ∇G) · k̂ = FxGy − FyGx, σ ≡ di
a

= c
aωpi

, η̂ ≡ ηc2τA
a2

. Consider

the initial-value problem for (3.9)-(3.12) near an X-type magnetic neutral point with initial

16



conditions,

t = 0 : u · î = −γ̇0x, u · ĵ = γ̇0y, w = −(kx2−y2)
σ

,

ψ = kx2 − y2 + µ0x
2y2, b = Ċ0xy,

(3.13)

where

γ̇0 > 0, k > 1, Ċ0 > 0, µ0 < 0 (3.14)

are externally determined parameters and î and ĵ are the unit vectors for the x and y direc-

tions respectively. This initial condition describes a stagnation-point plasma flow impinging

transversely onto the x = 0 plane and incorporates solenoidal constraints on u. The pa-

rameters have such constraints because we wish to direct the initial Lorentz force of the

system,

t = 0 : j×B = 4x

{
(1− k)k +

[
µ0(1− 2k)−

(
Ċ0

2

)2
]
y2 − kµ0x

2 − µ0y
2(x2 + y2)

}
î

4y

{
(k − 1) +

[
µ0(2− k)−

(
Ċ0

2

)2
]
x2 + µ0y

2 − µ2
0x

2(x2 + y2)

}
ĵ

−2Ċ2
0(kx2 + y2)k̂,

(3.15)

in a matter that maintains the prescribed initial stagnation-point flow. As is characteristic

of Hall effects, the out-of-plane magnetic field b prescribed above exhibits a quadrupolar

spatial structure.
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Let us assume that the solution of equations (3.9)-(3.12) with the initial conditions

(3.13) has a self-similar form

u(x, y, t) · î = −γ̇(t)x, u(x, y, t) · ĵ = γ̇(t)y,

w(x, y, t) = 1
σ

[β(t)y2 − kα(t)x2] ,

ψ(x, y, t) = kα(t)x2 − β(t)y2 + µ(t)(x2 + y2),

b(x, y, t) = Ċ(t)xy,

P (x, y, t) = −1
2
ν(t)(x2 − y2) + P0, ν(t) > 0,

(3.16)

where we have the initial conditions

t = 0 : α = β = 1, γ̇ = γ̇0, Ċ = Ċ0, µ = µ0. (3.17)

For this ansatze to be valid, we require the resistivity η̂ to be zero. Substituting our assumed

solution (3.16) into (3.9) yields

γ̈ = 2(k2α2 − β2), (3.18)

(3.11) gives

α̇− 2(γ̇ + σĊ)α = 0, (3.19)

β̇ + 2(γ̇ + σĊ)β = 0, (3.20)

µ̇ = 0 or µ = µ0, (3.21)

(3.12) turns into

C̈ + 8σµ(kα + β) = 0, (3.22)

and (3.10) is identically satisfied. Integrating (3.19) and (3.20) produces the solutions

α = exp(2(γ + σC)), (3.23)
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β = exp(−2(γ + σC)). (3.24)

Multiplying (3.18) and (3.22) by the integration factor (γ̇+σĊ) and substituting (3.23) and

(3.24) (See Appendix A for details), we find the first integral to be

(γ̇ + σĊ)2 − (k2α2 + β2) + 8σ2µ0(kα− β) = q (3.25)

with

t = 0 : γ = C = 0, (3.26)

where q is our constant of integration given by

q = (γ̇0 + σĊ0)2 − (k2 + 1) + 8σ2µ0(k − 1). (3.27)

To analyze the behavior of this function, we introduce the change of variables ln(f) =

−2(γ + σC), which transforms (3.25) into

ḟ 2 = 4N(f) ≡ 4(f 4 + 8σ2µ0f
3 + qf 2 − 8σ2µ0kf + k2), (3.28)

with initial condition f(0) = 1. The equation admits an implicit solution

t± 1

2

∫ f(t)

1

(N(z))−1/2dz = 0, (3.29)

where the lower bound of integration is from the initial condition. The integral is in general

an elliptic form and, in certain cases, may be inverted through the use of elliptic functions

once the parameters have been given a fixed value. Note that when f(t)→ 0, |γ+σC| → ∞

so we may analytically find the time t∗ when the first singularity occurs

t∗ =
1

2

∫ 1

0

(N(z))−1/2dz. (3.30)
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We see that if the polynomial N(z) has a root of multiplicity two in the interval [0,1], then

the integral diverges and the finite-time singular collapse of the current sheet is prevented.

By utilizing the constraints on the parameters of the system, namely γ̇0 > 0, k > 1, Ċ0 > 0,

µ0 < 0, and σ > 0, we note that the coefficient of z3 is negative, the coefficient of z is

positive, and k2 > 1. Thus, by Descartes’s rule of signs, there can be either two or zero

positive roots to the polynomial and either two or zero negative roots to the polynomial. We

break the analysis down into cases.

Case 1: Two roots at z = 0. This case is trivially false because the constant term is strictly

positive.

Case 2: Two roots at z = 1. Synthetic division yields the conditions for this to occur.

γ̇0 + σĊ0 = 0

k2 − 4σ2µ0(k + 1) = 1.

Neither of these equations can be satisfied due to the constraints on the parameters of the

system, so this case leads to falsehood. Although it may be noted that if one does satisfy

the above equations, then the system is in equilibirum, i.e. γ(t) + σC(t) = 0 for all time.

Case 3: A repeated root at z = a ∈ (0, 1) with two purely imaginary complex roots.

N(z) = (z − a)2(z2 + b2)

= z4 − 2az3 + (a2 + b2)z2 − 2ab2z + a2b2.

Because a > 0 and b2 > 0 the coefficient of z cannot be positive, so this case also has no

solutions.
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Case 4: A repeated root at z = a ∈ (0, 1) with two negative roots b and c.

N(z) = (z − a)2(z + b)(z + c)

= z4 + (b+ c− 2a)z3 + (a2 − 2ac− 2ab− bc)x2 + a(a(b+ c)− 2bc)x+ a2bc.

From the z3 coefficient we have 2a > b+ c, the z coefficient yields a(b+ c)− 2bc > 0, and

the constant term gives a2bc > 1. Manipulation of these relations yields a false statement.

Case 5: A repeated root at z = a ∈ (0, 1) with two complex conjugate roots b and b̄.

N(z) = (z − a)2(z + b)(z + b̄)

= z4 + 2(<(b)− a)z3 + (a2 − 4a<(b)− |b|2)z2 + 2a(a<(b)− |b|2)z + a2|b|2,

where <(b) is the non-zero real part of b and |b|2 = bb̄. From our coefficients we have the

relations a > <(b), a<(b) > |b|2, and a2|b|2 > 1. The first and second relations imply that

1 > a > <(b) > 0. A more detailed analysis is required to determine whether the final

condition that the coefficient of z3 and z are related by a factor of −k when the constant

term of the equation is k2. Upon defining 2p ≡ −8σ2µ0 > 0, N(z) may be expressed as

N(z) = z4 − 2pz3 + qz2 + 2pkz + k2.

Defining the change of variables ζ = z − k
z
, we set N(z) equal to zero then divide by z2 to

get

0 = N(z)
z2

= z2 − 2pz + q + 2pk
z

+ k2

z2

= (z2 + k2

z2
)− 2p(z − k

z
) + q

= (ζ2 + 2k)− 2pζ + q.
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Solving the quadratic in ζ we get the roots

ζ+,− = p±
√
p2 − q − 2k.

Solving the change of variables relation, we get the four roots of N(z) to be

z1,2 = 1
2
(ζ− ±

√
ζ2
− + 4k),

z3,4 = 1
2
(ζ+ ±

√
ζ2

+ + 4k).

Note that, by symmetry, if z1 /∈ R, then z1 = z̄3. Also if z2 /∈ R, then z2 = z̄4. Assume

z1 = z3 ∈ R and z2 = z̄4 /∈ R. Then we have, upon defining r ≡
√
ζ2
− + 4k and

s ≡
√
ζ2

+ + 4k,

ζ− + r = ζ+ + s

ζ− − r = ζ̄+ − s̄,

where subtracting these equations yields r = =(ζ+) + <(s) ∈ R. Taking the complex

conjugate of the first equation and then subtracting them gives s̄ = =(ζ−) + <(r) ∈ R. By

assumption, =(ζ+ + s) = 0, which implies =(ζ+) because s is real. This is a contradiction.

A similar outcome occurs when assuming z1 = z̄3 /∈ R and z2 = z4 ∈ R. Thus, the

finite-time singularity cannot be prevented while still matching the initial conditions to

preserve the initial stagnation-point flow.

Since the finite-time singularity cannot be prevented, let us try to characterize its

behavior. We have from (3.30)

∂t∗

∂k
= −1

4

∫ 1

0

8σ2µ0(z2 − z) + 2k(1− z2)

(N(z))3/2
dz (3.31)
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Assuming N(z) has no roots in [0, 1] the integral will converge and T− < N(z) < T+ for all

z ∈ [0, 1], where T−,+ are some positive numbers. Thus we have

∂t∗

∂k
= −1

4

∫ 1

0
8σ2µ0(z2−z)+2k(1−z2)

(N(z))3/2
dz

≤ − 1
4T−

∫ 1

0
[8σ2µ0(z2 − z) + 2k(1− z2)]dz

= − 1
3T−

(k − σ2µ0)

< 0

(3.32)

Similarly under the same assumption on N(z),

∂t∗

∂µ0

≥ 1

6T+
σ2(1 + 2k) > 0, (3.33)

∂t∗

∂(γ̇0 + σĊ0)
≤ − γ̇0 + σĊ0

2T−
< 0, (3.34)

∂t∗

∂σ
≤ 1

6T−

(
2σµ0(1 + 2k)− Ċ0(γ̇0 + σĊ0)

)
< 0, (3.35)

Thus an increase in k, γ̇0, Ċ0, or σ decreases the time until singularity while an increase in

µ0 delays the singularity when N(z) has no roots in [0, 1] as is confirmed in figures 3.1-3.4.

Indeed, following the methodology of [1], we may express (3.30) in terms of elliptic

functions by using the change of variables

t =
z − τ−
z − τ+

,
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where

τ+,− ≡
√

z1z3+λ+,−z2z4
1+λ+,−

,

λ+,− ≡ −b±
√
b2−ac
a

,

a ≡ (z2 − z4)2,

b ≡ (z1 + z3)(z2 + z4)− 2(z1z3 + z2z4)

c ≡ (z1 − z3)2,

(3.36)

which yields

t∗ =
|λ+ − λ−|

2

∫ 1−τ−
1−τ+

τ−
τ+

dt√
(Ft2 −G)(Ht2 − J)

, (3.37)

where

H ≡ 1 + λ+,

J ≡ 1 + λ−,

F ≡ λ+H,

G ≡ λ−J.

(3.38)

Now (3.37) can be integrated to give an elliptic form

t∗ = − |λ+ − λ−|
2
√
FJ

√
(Ft2 +G)(Ht2 + J)

(Ft2 −G)(Ht2 − J)
EllipticF

(
t

√
F

G
,

√
λ−
λ+

)∣∣∣∣∣
t=

1−τ−
1−τ+

t=
τ−
τ+

(3.39)

Here we have assumed that the roots of N(z) all have multiplicity one, λ+ 6= λ−, λ+ 6= −1,

and λ− 6= −1. EllipticF is the incomplete elliptic integral of the first kind, meaning

EllipticF(z, k) ≡
∫ z

0

1√
1−m2

√
1− k2m2

dm.
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Figure 3.1: Initial Current Density’s Effect on Sheet Collapse

We fix the initial in-plane ion velocity and out-of-plane magnetic field strength to unity and

higher order in-plane magnetic field perturbation to negative unity, i.e. γ̇0 = Ċ0 = −µ0 = 1,

and vary the initial current density k and strength of the Hall parameter σ and note their

effects on the time for the current sheet to collapse t∗, which is calculated from (3.30). As

expected from our analytical results (3.35) and (3.32), increasing k and σ decreases t∗.
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Figure 3.2: High Order Perturbation’s Effect on Sheet Collapse

We fix the initial in-plane ion velocity and out-of-plane magnetic field strength to unity and

initial current density to two, i.e. γ̇0 = Ċ0 = 1 and k = 2, and vary the strength of the higher

order perturbation of the in-plane magnetic field µ0 and strength of the Hall parameter σ

and note their effects on the time for the current sheet to collapse t∗, which is calculated

from (3.30). As expected from our analytical results (3.35) and (3.33), decreasing µ0 and

increasing σ decreases t∗. When σ is small, changes in µ0 have little effect on t∗ because of

the heavy amount of coupling of µ0 and σ in (3.30). Indeed, µ0 only appears in t∗ in σ2µ0

pairs.
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Figure 3.3: In-Plane Ion Velocity’s Effect on Sheet Collapse

We fix the initial out-of-plane magnetic field strength to unity and higher order in-plane

magnetic field perturbation to negative unity and initial current density to two , i.e. Ċ0 =

−µ0 = 1 and k = 2, and vary the initial in-plane ion velocity γ̇0 and strength of the Hall

parameter σ and note their effects on the time for the current sheet to collapse t∗, which is

calculated from (3.30). As expected from our analytical results (3.35) and (3.34), increasing

γ̇0 and σ decreases t∗.
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Figure 3.4: Out-of-plane Magnetic Field Strength’s Effect on Sheet Collapse

We fix the initial in-plane ion velocity to unity and higher order in-plane magnetic field

perturbation to negative unity and initial current density to two , i.e. Ċ0 = −µ0 = 1 and

k = 2, and vary the initial out-of-plane magnetic field strength Ċ0 and strength of the Hall

parameter σ and note their effects on the time for the current sheet to collapse t∗, which is

calculated from (3.30). As expected from our analytical results (3.35) and (3.34), increasing

Ċ0 and σ decreases t∗. When σ is small, Ċ0 has very little effect on t∗ because it is directly

tied to σ and only appears in σĊ0 pairs.
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3.2 Parker Problem

We now extend the analysis of Shivamoggi [24] on the Parker problem where magnetic flux

pile-up drives the merging of antiparallel magnetic fields at a ion stagnation-point flow in a

thin current sheet. For a more detailed discussion on the physics and previous work on the

Parker problem, see section 1.2.

The governing equations for the dynamics of an incompressible quasineutral plasma

under appropriate assumptions (see chapter 2 for development) take the form

nM

[
∂

∂t
+ (ui · ∇)

]
ui = −∇p+

1

c
j×B, (3.40)

E +
1

c
ui ×B = ηj +

1

nec
j×B, (3.41)

∇ · ue = 0, (3.42)

∇ · ui = 0, (3.43)

∇ ·B = 0, (3.44)

∇×B =
1

c
j, (3.45)

∇× E = −1

c

∂B

∂t
, (3.46)

where B is the magnetic field, E is the electric field, ui is the fluid velocity of the ions, ue is

the fluid velocity of the electrons, p ≡ pi + pe is the sum of the ion and electron pressures,

η is the plasma resistivity constant, n is the density of the plasma, e is the unit charge, c is

the speed of light, M is the ion mass, and j ≡ ne(ui − ue) is the current density.
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We now nondimensionalize the system with a characteristic length scale a, magnetic

field strength B0, Alfvén time scale τA ≡ a/VA0 , where VA0 ≡ B0/
√
nM . We assume that all

quantities do not vary in the z-direction and take the magnetic field and ion-fluid velocity

to have the form

B = ∇ψ × k̂ + bk̂

ui = ∇φ× k̂ + wk̂,

(3.47)

where k̂ is the unit vector in the z-direction. Using (3.45) to eliminate current density, (3.40)

yields

∂w

∂t
+ [w, φ] = [b, ψ]. (3.48)

Taking the curl of (3.41) and substituting (3.45) and (3.46) gives

∂ψ

∂t
+ [ψ, φ] + σ[b, ψ] = η̂∇2ψ, (3.49)

∂b

∂t
+ [b, φ] + σ[ψ,∇2ψ] + [ψ,w] = η̂∇2b, (3.50)

where [F,G] ≡ (∇F ×∇G) · k̂ = FxGy − FyGx, σ ≡ di
a

= c
aωpi

, η̂ ≡ ηc2τA
a2

.

Consider a stagnation-point ion flow at a current sheet separating plasmas of opposite

magnetizations (the Parker problem) in Hall MHD. Let us assume that the magnetic field

lines are straight and parallel to the current sheet. Here, pure resistive annihilation without

reconnection of antiparallel magnetic fields (in the x,y-plane) occurs. Specifically, consider

a unidirectional applied magnetic field

B0 = B0(x)̂j (3.51)

30



with boundary condition B0(0) = 0 which is carried towards a neutral sheet at x = 0 by a

stagnation-point ion flow,

ui = −ax̂i + aŷj + wk̂, (3.52)

where î, ĵ, and k̂ are the unit vectors for the x, y and z-directions respectively.

The process in question is steady and when the magnetic field is prescribed as in

(3.51), equations (3.48)-(3.50) become

E +
∂ψ

∂x

∂φ

∂y
− σ ∂b

∂y

∂ψ

∂x
= η̂

∂2ψ

∂x2
, (3.53)

∂b

∂x

∂φ

∂y
− ∂b

∂y

∂φ

∂x
+
∂ψ

∂x

∂w

∂y
= η̂∇2b, (3.54)

∂w

∂x

∂φ

∂y
− ∂w

∂y

∂φ

∂x
+
∂φ

∂x

∂b

∂y
= 0, (3.55)

where E ≡ ∂ψ
∂t

. We look for a solution of the form

b = yf(x), (3.56)

w = αg(x) +
β

2
y2h(x), (3.57)

where α and β are constants that characterize the toroidal flow and poloidal shear respec-

tively. Using (3.56), (3.57), and (3.52) on (3.55) gives

(αg′ +
β

2
y2h′)(−ax)− (βyh)(−ay) +

∂ψ

∂x
f ′ = 0, (3.58)

where prime denotes differentiation with respect to x, which has possible solution

(−ax)(αg′) = −∂ψ
∂x

f ′, (3.59)

h(x) = x2. (3.60)
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Substituting (3.56), (3.57), (3.59), (3.60) into (3.54) we obtain

f ′′ +
a

η̂
(xf ′ − f) =

β

η̂
x2∂ψ

∂x
, (3.61)

which has approximate solution

f(x) ≈ Ax− β

a
x2∂ψ

∂x
, (3.62)

where A is a constant. Using equations (3.56) and (3.62) gives

E = η̂B′0 + (a+ σA)xB0 + σ
β

a
x2B2

0 . (3.63)

Defining ε ≡ η̂
E

, α ≡ β
a2

, and letting a
E

= 1 and A
E

= 1, this equation takes the form

εB′0 + (1 + σ)xB0 + σαx2B(x)2 = 1. (3.64)

Noting that this equation is of special Riccati-type form, we may use the substitution B0(x) =

− εC′(x)
σαx2C(x)

to convert it into a linear second-order ODE

C ′′(x) +

(
1 + σ

ε
x− 2

x

)
C ′(x)− σα

ε2
C(x) = 0. (3.65)

Because this equation is linear, we may solve it and transform the problem backwards to get

a solution to the Ricatti equation. Doing so gives a solution

B0(x) = − cε(σα + χ)KU,9 + (γx2 − ε)χ(cKU,5 +KM,5) + (χ− 6γ)KM,9

2γ2σαx3(cKU,5 +KM,5)
, (3.66)

where

γ ≡
√

(1 + σ)2 + 4σα,

c ≡ 3
4
√
π

(5γ−σ−1)Γ( 3γ−1−σ
4γ )

χ+σα
,

χ ≡ γ2 + (1 + σ)γ,

KG,a(x) ≡ KummerG
(
aγ−1−σ

4γ
, 5

2
, γx

2

2ε

)
,

(3.67)
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Γ(x) is the Gamma function, and the KummerU(a, b, z) and KummerM(a, b, z) functions

satisfy the differential equation

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0.

Taking a Taylor series expansion of the solution (3.66) about x = 0 recovers Parker’s solution

B0(x) ≈ εx =
η̂

E
x.

When x is large, KummerU� KummerM so we have the asymptotics

B0(x) ≈ (6γ − χ)KM,9

2γσαx3KM,5

,

which is comparable to the asymptotic behavior of the solution given previously by Shiva-

moggi [24] as

B0(x) ≈
[

σβ

2a(a+ σA)

][
−1 +

√
+

4E(a+ σA)a2

σ2β2

]
1

x

because KM,9/KM,5 grows on the order of x2 for large x.

To get a picture on how the solution behaves with modification of the parameters ε,

α, and σ we may simply plot the numerical solutions, as in figure 3.5. Overall, the behavior

of the solution does not change with the parameters. It follows the same curve: a linear

climb from the origin, which tapers off at a peak that transfers into behavior on the order

1/x3, and finally a slow decay on the order of 1/x, which is the triple-deck structure of the

Parker problem for Hall MHD as originally proposed by Terasawa [31].

Neither α nor σ significantly affect the rate at which B0(x) increases near the origin.

Instead, increasing α and/or σ decreases the x value at which B(x) changes its behavior from
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a rapid linear climb from the origin to the O(1/x3) descent, and hence affect the maximal

value attained by B0(x), although α seems to have much less of an effect than σ. The plasma

resistivity parameter ε has the strongest effect on the solution B0(x). This results from the

fact that the Kummer functions in the analytic solution spatially scale on the order 1/ε.

(a) Poloidal Shear
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(b) Hall Effect
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(c) Plasma Resistivity

Figure 3.5: Effect of Parameter Values on Parker Magnetic Field Profile

In these graphs, the unspecified parameters are set to unity and we observe how the magnetic

field profile B0(x) changes as the third parameter is varied. The strength of the poloidal

shear and Hall parameter, α and σ respectively, both increase the peakedness of the solution

profile as they increase in value with the Hall parameter having a more significant effect.

Plasma resistivity ε is the only parameter that changes how localized the peak is to the origin

and affects the slope of the solution near the origin.

36



CHAPTER 4

CONCLUSIONS

In our analysis of the dynamics of an incompressible, nonresistive plasma at an X-type

neutral point, we derived an implicit solution to the system, which indicated a finite-time

collapse of the current sheet. An exact equation for the time of collapse (3.30) was found

and characterized by the roots of the fourth-degree polynomial N(f) (3.28). For all initial

conditions satisfying the constraints to preserve the initial stagnation-point flow (3.14), the

singular finite-time collapse of the current sheet cannot be prevented. Relations between

initial conditions to the system and the time of singularity were also deduced (3.32)-(3.35).

A strengthening of the Hall effect, which is parametrized by σ, appears to speed up the

collapse of the current sheet.

We presented an analytic solution to the profile of magnetic field for the phenom-

ena of magnetic flux pile-up driving the merging of antiparallel magnetic fields at an ion

stagnation-point flow in a thin current sheet, called the Parker problem. It exhibits the

triple-deck structure proposed by Terasawa [31] and shares asymptotic properties of the

solution previously given by Shivamoggi [24].
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APPENDIX A

X-TYPE NEUTRAL POINT FIRST INTEGRAL

APPENDIX AAPPENDIX AAPPENDIX AAPPENDIX
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In this section we fill in the details to get from (3.18)-(3.22) to (3.25). We begin with

the four coupled differential equations

α̇− 2(γ̇ + σĊ)α = 0 (A.1)

β̇ + 2(γ̇ + σĊ)β = 0 (A.2)

C̈ + 8σµ0(kα + β) = 0 (A.3)

γ̈ − 2(k2α2 − β2) = 0 (A.4)

with the initial conditions for t = 0 :

α = β = 1; C = γ = 0; Ċ = Ċ0; γ̇ = γ̇0 (A.5)

With the initial conditions (A.5), (A.1) and (A.2) immediately lead to

α(t) = exp(2γ + 2σC) (A.6)

β(t) = exp(−2γ − 2σC) (A.7)

Now we multiply both equations (A.3) and (A.4) by the factor 2(γ̇ + σĊ) and integrate the

equations. For C(t) we get∫
2(γ̇ + σĊ)C̈ + 16(γ̇ + σĊ)σµ0(ke2(γ+σC) + e−2(γ+σC)) = 0

σĊ2 + 8σµ0(ke2(γ+σC) − e−2(γ+σC)) + 2

∫
γ̇C̈ = q1 (A.8)

where q1 is the constant of integration. Similarly for γ(t) we have∫
2(γ̇ + σĊ)[γ̈ − 2(k2e4(γ+σC) − e−4(γ+σC)] = 0

γ̇2 − k2e4(γ+σC) − e−4(γ+σC) + 2σ

∫
Ċγ̈ = q2 (A.9)
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where q2 is the constant of integration. We may integrate the
∫
Ċγ̈ term in (A.9) by parts

to get

γ̇2 − k2e4(γ+σC) − e−4(γ+σC) + 2σĊγ̇ − 2σ

∫
γ̇C̈ = q2 (A.10)

Now we may solve for the
∫
γ̇C̈ term in (A.8) and substitute it into (A.10) to form our exact

invariant

(γ̇ + σĊ)2 + 8σ2µ0(ke2(γ+σC) − e−2(γ+σC))− k2e4(γ+σC) − e−4(γ+σC) = q

(γ̇ + σĊ)2 + 8σ2µ0(kα− β)− k2α2 − β2 = q, (A.11)

where q = (γ̇0 +σĊ0)2− (k2 +1)+8σ2µ0(k−1) is the constant of integration from our initial

conditions (A.5).
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