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ABSTRACT 

 At the present time, most systems engineers do not have access to cognitive 

work analysis information or training in terms they can understand. This may lead to a 

disregard of the cognitive aspect of system design. The impact of this issue is system 

requirements that do not account for the cognitive strengths and limitations of users. 

Systems engineers cannot design effective decision support systems without defining 

cognitive work requirements. In order to improve system requirements, integration of 

cognitive work requirements into the systems engineering process has to be improved. 

One option to address this gap is the development of a Cognitive Work Analysis (CWA) 

framework using Systems Modeling Language (SysML). The study had two phases. 

The first involved aligning the CWA terminology with the SysML to produce a CWA 

framework using SysML. The second was the creation of an instruction using SysML to 

inform systems engineers of the process of integrating cognitive work requirements into 

the systems engineering process. This methodology provides a structured framework to 

define, manage, organize, and model cognitive work requirements. Additionally, it 

provides a tool for systems engineers to use in system design which supports a user’s 

cognitive functions, such as situational awareness, problem solving, and decision 

making. 
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CHAPTER ONE: INTRODUCTION 

Developing a set of complete and consistent requirements is the most important 

step in the systems engineering process. However, it is also becoming more 

challenging and critical as work environments have become more complex. The 

evolution of work to incorporate more computerization increases the need for more 

cognitive skills to effectively complete work. Because industry and government 

organizations have very limited resources, it is important to establish the correct 

requirements early in the development process in order to reduce errors and costs 

throughout the entire system’s life cycle. 

Cognitive work requirements are vital for defining the system requirements for an 

effective system. The primary purpose of the cognitive work requirements is to identify 

user strategies in performing cognitive tasks. Decision making, problem solving, and 

system monitoring are included in cognitive work requirements. The Surface Warfare 

Program Manager’s Guide claims that requirements typically lack completeness, 

correctness, consistency, and validity and are often ambiguous (Department of the 

Navy, 2001). The lack of accounting for cognitive factors during the systems 

engineering process contributes to incomplete system requirements. 

This study will use the Cognitive Work Analysis (CWA) framework implemented 

within the Systems Modeling Language (SysML) to address the lack of cognitive 

requirements defined by systems engineers during the systems engineering process. 

(Stoner, 2006) has stressed the significance of including cognitive strengths and 
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limitations of users in system designs. The CWA framework was developed by 

Rasmussen at Riso National Laboratory in Denmark in the 1970s. The primary purpose 

of the framework was to focus on human-centered design when developing new 

information systems. 

The CWA framework models five different aspects of a system and how the 

system impacts the worker. It is used to identify how the system will be used, the 

environment in which work will be performed, the tasks users will perform, and how the 

user will perform the tasks. Additionally, the framework determines who will be 

accountable for each task and the level of competency the user will require. The CWA 

framework functions by integrating all the information provided by the models in each 

phase of analysis. The results are utilized for design requirements that are used for 

developing complex sociotechnical systems. The field of CWA is expanding into other 

applications because it provides a holistic systems approach and a comprehensive 

evaluation of the work environment. It has been applied to various work domains which 

include, but are not limited to, the following: 

• Air traffic controller training 

• F/A-18 pilot training 

• Camera interface development 

• Design proposal evaluation for military defense systems 

• Identification of relevant information needs in an emergency 

management system 
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SysML will be employed to construct the cognitive work requirements framework. 

SysML is a system modeling tool currently used by systems engineers. SysML is vital to 

the process of the study because it transitions systems engineering from a document-

based process to a model-based process. A model-based process provides consistency 

when exchanging information between product teams. Properly structured requirements 

are essential for all stakeholders’ comprehension. SysML represents requirements as 

model elements. The formal description of system requirements in the early phases of 

development improves the understanding of the system requirements and how they 

answer the users’ needs. 

SysML is a graphical language for building models of systems that are complex, 

distributed, and large-scale. It is used to create object-oriented models of systems that 

incorporate software, people, material, and other physical resources. SysML expresses 

both structure and behavior for such systems (Huang, Ramamurthy, & McGinnis, 2007). 

SysML is designed to support the specification, analysis, design, verification, and 

validation of a broad range of systems. It is capable of graphically illustrating the 

interaction between all five models of the CWA framework. The interaction between 

phases of CWA is not typically demonstrated. 

1.1 Problem Description 

Currently, most systems engineers do not have access to cognitive work analysis 

information or training. This lack leads to a disregard of the cognitive aspect of system 

design. Inadequate descriptions of cognitive strengths and limitations of users 
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contributes to a decrease in system performance (Woods & Roth, 2005). The reasons 

systems engineers ignore the benefits of cognitive work are that they do not know how 

to do it, when to do it, or what cognitive analysis methods to use and/or suffer from an 

inadequate allocation of budget and time to cognitive analysis (Rasmussen, Pejtersen, 

& Goodstein, 1994). 

Since most systems engineers do not have access to the information or training 

that is needed to apply cognitive work analysis methods to the systems engineering 

process, cognitive work requirements are usually ignored. The result of this issue is 

system requirements that do not account for the cognitive strengths and limitations of 

users. A lack of understanding of users’ cognitive strength and limitations leads to 

imprecise system requirements. In July 2002, a report from the General Accounting 

Office to the Chairman of the Subcommittee on Technology and Procurement Policy, 

Committee on Government Reform in the House of Representatives claims that some of 

the government’s largest procurement operations are not always run efficiently, 

because requirements are not clearly defined (Cooper, 2002). The Surface Warfare 

Program Manager’s Guide affirms that requirements analysis errors constitute a 

majority of the training objective deficiencies in complex training systems (Department 

of the Navy, 2001). In 2009, the Chief of Naval Operations (CNO), Admiral Gary 

Roughead, recognized a direct link between accurate requirements and the total life 

cycle costs of procuring a new system. The CNO testified before the Subcommittee on 

Appropriations on June 2, 2009 to the effect that he would continue to demand that the 
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Navy accurately articulate requirements to deliver effective and affordable systems to 

the fleet. In order to improve system requirements, integration of cognitive work 

requirements into the systems engineering process has to be improved. 

1.2 Purpose of the Study 

 The objective of this study is to develop a Cognitive Work Analysis Framework 

using Systems Modeling Language. The study has two phases. The first is to align the 

CWA terminology with the SysML to produce a CWA framework using SysML. The 

second is to create an instruction using SysML to inform systems engineers of the 

process of incorporating cognitive requirements into their system designs. 

1.3 Significance of the Study 

The framework developed using SysML provides a structured and standard way 

to define cognitive work requirements for users of SysML, provides a tool for systems 

engineers to incorporate the cognitive strengths and limitations of the user using SysML, 

and contributes to defining more accurate use cases. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Systems Engineering 

2.1.1 Introduction 

 The term “systems engineering” was conceived in the early 1940s (Schlager, 

1956). In 1995, the International Council on Systems Engineering (INCOSE) was 

formed to address the need for improvements in systems engineering practices and 

education (Resp Group, 2010). INCOSE’s definition of systems engineering: 

 Systems Engineering is an interdisciplinary approach and means to enable the

 realization of successful systems. It focuses on defining customer needs and 

 required functionality early in the development cycle, documenting requirements, 

 then proceeding with design synthesis and system validation while considering 

 the complete problem (INCOSE, 2006). 

 The Department of Defense defines the systems engineering process as: 

 The systems engineering process is a technical management and problem-

 solving process applied through all stages of development to transform needs 

 and requirements into a set of system product and process descriptions (adding 

 value and detail with each  level of development)  

 (Defense Acquisition University, 2009). 

Booton and Ramo of TRW Electronic Systems Group defined systems engineering as: 
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 A discipline that concentrates on the design and application of the whole system. 

 It involves looking at a problem in its entirety, taking into account all the facets 

 and all the variables and relating the social to the technical aspect.  

 (Booton & Ramo, 1984) 

 Overall, systems engineering aids in better comprehension and management of 

complex systems throughout the systems’ life cycles. The applications of systems 

engineering have evolved from large, complex military and government systems to 

more business and consumer-oriented products. Presently, systems engineering is 

applied to commercial aircraft, energy systems, health care, highway  transportation, 

information technology, manufacturing, medical devices, automobiles, space exploration, 

telecommunications, agriculture, household appliances, emergency services, Internet 

banking, modeling and simulation, Internet-based applications, logistics, and many 

other organizations. Systems engineering can be applied to any system development 

(Wray, McKinney, & Whalen, 2000). 

Systems engineering reduces the risk of cost overruns, scheduling delays, and 

performance deficiencies. It increases the probability that the system will satisfy the 

user’s requirements. Other benefits include stakeholder participation, verified 

functionality, and better documentation (Boehm, Valerdi, & Honour, 2008). This 

statement of benefits has been supported by several studies. The studies demonstrated 

that the utilization of effective systems engineering results in better cost, schedule, and  

performance  (Valerdi, Miller, & Thomas, 2004), (Honour & Valerdi, 2006). Most of the 
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studies showed a 50% overrun on projects not using systems engineering (Honour, 

2006). In addition, the studies confirmed an improvement in the project cost 

performance when effectively implementing the systems engineering process (Honour, 

2004). 

A broad range of disciplines are involved in systems engineering. These 

disciplines include: industrial engineering, requirements engineering, cognitive systems 

engineering, configuration management, control engineering, interface design, 

operations research, project management, program management, performance 

engineering, reliability engineering, safety engineering, software engineering, and any 

other discipline that is involved in satisfying stakeholders’ needs. 

2.1.2 The “V” Model 

There exist many different systems engineering process models. Each version of 

the process models specifies the main steps of the systems engineering methodology. 

The “V” Model has become has become the standard way to represent systems 

engineering methodology. Figure 1 shows an adapted “V” Model from Forsberg & Mooz 

(1992). The “V” Model illustrates each phase of the system life cycle except for the 

concept development and disposal phases. 
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Adapted from Forsberg & Mooz (1992). 

Figure 1: Systems Engineering Process Model 

The horizontal arrow represents time to complete the system. The development 

process starts on the left side of the model and concludes on the right side. The left side 

of the “V” Model represents the development of system and functional requirements. 

The right side of the “V” Model represents system integration, verification, and validation. 

The “V” Model is composed of several phases. The phases are requirements analysis, 

functional analysis, component design, implementation, integration, system verification, 

and system validation. 



10 

 

2.1.2.1 Requirements Analysis 

The initial focus of the systems engineering process is to develop a complete set of 

system and user requirements. Requirements analysis is one of the most critical phases 

of systems engineering. Positive requirements analysis minimizes design changes 

through the development process (Blanchard & Fabrycky, 1990). If requirements 

analysis is done well, project cost will not exceed budget, schedule will not be extended, 

and system will maintain at least minimum performance constraints. The requirements 

are determined by the needs of the user or users. There are many different methods for 

gathering requirements. These knowledge elicitation techniques include, but are not 

limited to: interviews, case studies, simulations, observation, questionnaires, prototyping, 

and document analysis (Zowghi & Coulin, 2005). Typically, the users will be interviewed. 

The results of the interviews should include a user requirements document. The user 

requirements document should contain the system’s purpose, operational constraints, 

interaction with external systems, functionality, performance parameters, and interface 

characteristics. The user requirement document will guide system designers in the 

subsequent systems engineering phases. 

2.1.2.2 Functional Analysis 

 Functional analysis is the process of identifying and describing the functions of a 

system (Kossiakoff & Sweet, 2003). This is not a physical description of the system. It is 

a description in terms of functions and performance parameters. Functions are actions 
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that are necessary to meet system objectives. The functions are performed through the 

use of resources (i.e., equipment, personnel, facilities, etc.) (Leonard, 1999). 

 The functional analysis phase starts with identifying the system goals and 

relating them to functions the system will perform in to order to achieve those goals 

(Cockburn, 1997). The functions identified should be high-level functions of the system. 

The high-level functions should be decomposed into lower-level functions of the system. 

The lower-level functions are the steps that are required by the system to achieve the 

goals of the system. 

 “The decomposition can be carried out as deeply as needed to define the 

 transformations that the system must be able to perform.” (Buede, 2009) 

2.1.2.3 Component Design 

 The component design phase of the systems engineering process describes how 

the components will be developed (Forsberg & Mooz, 1992). The individual hardware 

and software components are sketched, blueprinted, outlined, or drafted in this phase. 

Software is modeled and documented with specifications prior to actual coding. 

Hardware is drawn or modeled and a set of specifications are developed before actual 

fabrication. This phase concludes with a Critical Design Review (CDR) to get final 

approval before components are built. All stakeholders are involved in the CDR. 



12 

 

2.1.2.4 Implementation 

 The actual fabrication of hardware and software components is accomplished in 

the implementation phase of the systems engineering process. The components are 

constructed according to the specifications established during the component design 

phase. After the system components are constructed, they are tested. The deliverables 

for this phase of the process include hardware and software components that have 

been tested and are ready for the integration phase. In addition, supporting 

documentation—which consists of user manuals, maintenance manuals, and/or 

installation manuals—will be part of the deliverables. 

2.1.2.5 Integration 

 The purpose of the integration phase is to successfully combine hardware and 

software components. Integration is a highly iterative process. Sub-components are 

incrementally combined, verified, and then combined into larger sub-components. The 

larger sub-components are combined, verified, and then combined into larger sub-

components until the whole system is finished. The interim verification ensures correct 

communication and interaction between sub-components and reduces risk and 

minimize errors (Curtis, Krasner, & Iscoe, 1988). The process of integrating the 

components of a system requires a plan to get started. The integration plan outlines the 

assembly order for the sub-components and explains how those sub-components will 

be integrated with other system components. 
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2.1.2.6 System Verification 

 The verification process confirms that the system fulfills all requirements that 

were specified in the previous phases. The focus of system verification is to make sure 

the system has been “built right” (Preece, 2001). The process is utilized by stakeholders 

before accepting the system. Verification should be thorough so that defects are 

identified early and at the lowest level possible. Isolating a defect early at the 

component level is important, because it gets more difficult to find the problem when the 

entire system is built. Any one of many components could be contributing to the defect. 

As stated before, verification is performed iteratively. So individual components are 

verified first. Then the sub-systems are verified. Finally, the whole system is verified. In 

order to start the process of system verification, a verification plan must be created. The 

verification plan outlines the step-by-step process for verifying each component of the 

system against the requirements. The verification plans should be written during the 

requirement analysis phase. 

2.1.2.7 System Validation 

 The objective of the validation phase of the systems engineering process is to 

confirm that the system fulfills its intended purpose. The focus of system validation is to 

make sure the “right system has been built” (Sheard, 1996). Validation takes place after 

the system has been deployed and is in operation. At this phase, systems engineers 

and systems designers have a good measure of the effectiveness of the system in its 
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operational environment. The validation process starts with planning. The output of the 

validation planning process will include the participants, the schedule, the location, the 

required resources, and what will be validated. The validation plan may be formal or 

informal. The choice belongs to the system owner. A formal validation plan will be 

repeatable and well-documented (Boehm, 1986). The results of the validation process 

will include a report on that satisfactory achievement of the functional purpose as well 

as any deficiencies in the system. Recommendations to upgrade aspects of the system 

will be made based on the system deficiencies identified in the report. 

2.1.3 The Three Evils of Systems engineering 

 The “three evils of systems engineering” are complexity, communication, and 

understanding (Holt & Perry, 2008). Complexity in the systems engineering domain can 

be defined as a system that has many independent parts that interact and work together 

toward a common goal (Calvano & John, 2004). The complexity of a system is based on 

the number of relationships that exist between system elements. The higher the number 

of relationships, the more complex a system will be. 

 Lack of understanding can occur in any phase of the systems engineering 

process.  A lack of understanding can lead to the needs of the user not being addressed, 

problems that are not clearly defined, improper application of systems engineering 

principles, inaccurate requirements, or incorrect component interactions. 

 Communication problems can exist between individuals, groups, systems, and 

organizations (Elm, Goldenson, El Emam, Donatelli , & Neisa, 2007). If three people 
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read a set of system requirements, more than likely there will be three different 

interpretations of the meaning (Schindel, 2005). Even different models may have 

problems communicating, sharing data, tracing requirements, or duplicating work (Doyle 

& Pennotti, 2005). 

 These three evils cannot be eliminated in systems engineering, but they can be 

minimized using model-based systems engineering. Complexity, lack of understanding, 

and communication are interrelated. Any deficiencies in one will lead to deficiencies in 

the others evils of systems engineering. However, any improvements to one will lead to 

improvements in the other factors. 

2.2 Cognitive Work Analysis 

2.2.1 Introduction  

 Cognitive Work Analysis (CWA) is described as a formative, constraint-based 

framework for analyzing complex sociotechnical systems (Rasmussen, Pejtersen, & 

Schmidt, 1990). There are three categories of work analysis modeling. They are 

normative, descriptive, and formative work analysis modeling techniques (Vicente, 

1999). Normative models describe what a user should do when interacting with a 

system. Descriptive models describe what a user actually does when interacting with a 

system. Finally, formative models describe what a user could do when interacting with a 

system. The formative approach can assist in generating new ways of doing work 

(Vicente, 1995). Traditional work analysis models fall into the normative or descriptive 

categories of modeling, which focus on specific tasks and procedures. However, CWA 
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identifies the constraints of the work environment and the operator, the purpose of the 

system, and the tasks the user can accomplish within the constraints of the work 

environment (Fidel & Pejtersen, 2004). 

 CWA has five phases of analysis. The phases of analysis include: work domain 

analysis (WDA), control task analysis (ConTA), strategies analysis (SA), social-

organizational and cooperation analysis (SOCA), and worker competencies analysis 

(WCA). Each phase of analysis uses a different modeling technique to describe a 

different aspect of a system. The modeling techniques most commonly used in CWA 

include abstraction hierarchies (AH); decision ladders (DL); information flow maps (IFM); 

and skill, rule, and knowledge-based (SRK) inventories (Naikar, 2006b). 

 The purpose of the WDA is to determine what can be accomplished with a 

system without violating the laws of nature or exceeding the capabilities of the system 

(Crone, Sanderson, & Naikar, 2003). An Abstraction Hierarchy (AH) modeling tool is 

used to map out the functional properties of a sociotechnical system. The AH has five 

level of decomposition. The highest level of the model defines the purposes and goals 

of the system. The lowest levels of the model indicate and describe the physical 

components (e.g., equipment) of the system. 

 The second phase of CWA is ConTA. The ConTA phase covers what needs to 

be done within the limits of the work domain. A Decision Ladder (DL) model is used to 

show all the tasks that could be accomplished within the limits of the work domain. A DL 

shows the alternative courses of action for a particular decision. 
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 The third phase of CWA is the SA phase. This phase focuses on how the user 

performs the control tasks to accomplish the goal. Typically, the same control task can 

be performed in many ways using different cognitive strategies (Darses, 2001). An 

Information Flow Map (IFM) model is used to represent the control tasks. IFM is a 

graphical representation of how the user can reach an end goal. All information 

processing activities are contained in IFM. 

 The fourth phase of CWA is the SOCA phase. The SOCA phase determines who 

will carry out the work and how it is shared. The IFM modeling tool can also be 

employed to identify who will do what tasks. 

 The last phase of CWA is the WCA phase. This phase identifies the physical and 

cognitive demands placed on the operator and the level of competency that the operator 

will need to function effectively. The Skill, Rule, and Knowledge-based (SRK) inventory 

model is used to determine how information should be displayed to take advantage of 

human perception and psychomotor abilities. 

2.2.2 Work Domain Analysis 

 An Internet search of a variety of databases was conducted for this literature 

review. These databases include: Proquest, Academic Search Premier, LEA Online, 

Google Scholar, the University of Central Florida online library, and First Search. 

Relevant dissertations and theses were also included in the literature review. In addition, 

relevant references located in the reference sections of the journals, dissertations, and 
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theses were used. Since the field of CWA is rapidly being employed in a variety of 

applications, the timeframe is limited to the years from 1990 to 2010. 

 The review of the literature showed very little information available for a five-

phase CWA application. The majority of studies focused efforts on the initial phases of 

CWA, which are Work Domain Analysis and Control Task Analysis (Rehak, Lamoureux, 

& Bos, 2006). The main reason cited for not using all phases of CWA is that the 

technique is too time-consuming or there was insufficient funding to complete a full 

CWA model (Sanderson, Naikar, Lintern, & Goss, 1999). 

 Naikar implemented the WDA phase of CWA to identify the training needs of 

military fighter aircraft. She used the AH to compare their functional purpose, abstract 

function, general function, physical function, and physical form to training objectives, 

measures of performance, scenario generation, physical functionality, and physical 

structure, respectively (Naikar, Sanderson, & Lintern, 1999). 

 The highest level of the AH is defined as the training objectives of a training 

domain. Training objectives are the primary purpose for the training system’s existence 

(i.e., what it will train). These training objectives can be converted into specifications for 

an actual training system. 

 The Abstract Function level of the AH is defined as the performance measures or 

measures of effectiveness of the training domain. The concept at this layer describes 

measures of effectiveness for evaluating trainees’ performance or for evaluating the 
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effectiveness of a training program. Measures of effectiveness may be translated into 

specifications for the data collection capabilities of the simulator (Naikar et al., 1999). 

 The General Function level of the AH is converted into basic training functions. 

The basic training functions are used for learning particular tasks and skills that satisfy 

the overall training objectives (Roth, 2008). The basic training functions can be used to 

identify specifications for generating scenarios for a training system or used to develop 

a part task trainer. 

 The fourth level of the AH identifies the physical devices that the trainee must 

learn to operate in order to complete the basic training functions to satisfy the overall 

training objectives. Physical Functionality may be translated into specifications for the 

functionality of the physical systems that should be available in the training system so 

that trainees can be trained to utilize this functionality in performing basic work functions 

(Naikar, Moylan, & Pearce, 2006). 

 The physical form is the lowest level of the AH; it describes the equipment, tools, 

and/or resources available in the training domain. Trainees should know the location, 

appearance, configuration, and other physical properties of these devices in performing 

the basic work functions of the training system (Naikar, 2006a). 

 Finally, each level of the AH is connected by a means-end relationship. The 

means are defined as how a task or function is achieved in the AH. The end is the 

function or task. On the AH, the lower-level objects are the means and the higher-level 

objects are the ends. The means-end relationship may be used to train operators to 
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think and behave in adaptive ways to deal with unexpected or unpredictable situations 

(Sanderson et al., 1999). The results of a study showed CWA to be opportunistic and 

flexible when new knowledge elicitation activities arose and when the scope of the 

project itself expanded significantly (Paradis, Breton, Elm, & Potter, 2002). One study 

confirmed that a CWA model developed for a military command and control 

environment did not fail when the scope was expanded to include novel events 

(Paradis et al., 2002). 

2.2.3 Control Task Analysis 

 The ConTA complements the WDA by identifying what needs to be done to 

accomplish the system objectives established in the first phase of CWA. Traditional task 

analysis approaches typically break down an activity into sequences of tasks. ConTA is 

not concerned with how an activity is carried out, who carries it out, or what skills and 

training are necessary (Naikar et al., 2006). The answers to those questions are 

covered in the strategies analysis, social organization and cooperation analysis, and 

worker competencies analysis phases of the CWA framework. There are three critical 

aspects of ConTA (Naikar et al., 2006). First, ConTA recognizes that the same goals 

may be accomplished in different ways in many complex systems. Second, activities 

identified in ConTA are characterized as a set of work situations and work functions. 

Finally, ConTA recognizes that decision-making functions or control tasks are required 

for each work situation and work function (Naikar et al., 2006). Work situations in a 

ConTA model are associated with the functional purpose and abstract function of the 
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AH model. Work functions in a ConTA model are interrelated with the general function 

and physical function of the AH model of the first phase of CWA. Each work situation 

and work function will be associated with a DL. The boxes on the DL represent 

information processing activities the user should engage in and the circles represent 

states of knowledge that are the results of information processing activities (Vicente, 

1999). 

Rasmussen incorporates work functions and work situations into a matrix 

showing which activities can occur in which situation (Rasmussen et al., 1990). This is 

called a Contextual Activity Template. The work situations are located on the horizontal 

axis of the Contextual Activity Template matrix and the work functions are located on 

the vertical axis. The dotted boxes in the matrix represent all of the work situations in 

which a work function can take place. 

 In traditional task analysis, the information processing activities are completed in 

sequential order, but in ConTA not all information processing activities have to be 

completed in order to complete the task. These shortcuts are represented by the arrows 

in the center of the DL and are called shunts and leaps. The shunts link information 

processing activities to states of knowledge. The leaps link two knowledge states 

together. The application of these shortcuts depends on the level of expertise of the 

system user or operator. 

 The DL can be broken into three sections. The left side of the DL template is 

used for representing control tasks related to identifying the system state. The top part 
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of the decision ladder is used for representing control tasks related to the system goals. 

The right side of the DL template is used for representing control tasks related to 

planning and execution. During the planning and execution steps, the proper sequence 

of control actions is implemented through the process of identifying tasks and resources 

and scheduling and carrying out actions (Naikar et al., 2006). 

 The DL was added as a formative element to Naturalistic Decision-Making 

(NDM) (D. P. Jenkins, Stanton, Salmon, Walker, & Rafferty, 2010). They showed how 

decision-making can proceed within an environment, independent of situation and actor. 

The research was applied in a tank warfare environment. In this warfare environment, 

life-and-death decisions are made in a relatively short period of time. Tank crews have 

to distinguish between enemies and friendlies before the enemy identifies them. The 

benefits of integrating the ConTA phase of CWA and NDM produced critical information 

that assisted in the design of tank interfaces, helmet-mounted displays, and training 

support and in the development of operating procedures and decisions relating to the 

allocation of crew functions (Jenkins et al., 2010). 

 In 2003, Cummings and Gueriain modified the CWA method for designing a 

decision support system for a non-existent domain. The modified CWA framework was 

applied to the Navy’s new Tactical Tomahawk missile. The Tactical Tomahawk missile 

is a ship-launched, long-range, land-attack missile. It is employed against land-based 

air defenses, power plants, communications buildings, and other high-value land-based 

stationary targets. The new in-flight redirection capability added a new human- 



23 

 

computer interaction (HCI) that did not exist in any legacy missile systems. They 

deduced that most HCI modeling techniques required some knowledge of an existing 

domain, tasking procedures, and well-established organizational parameters 

(Cummings & Guerlain, 2003). Two additional phases were added to the CWA 

framework. The first addition was the Global Organizational Analysis phase. This phase 

focused on identifying the “relevant social group” (Bijker, 1997). In general, relevant 

social groups are all the stakeholders (i.e. users, engineers, SMEs, manufacturers, 

management, etc.) involved in the development of the sociotechnical system. The 

Global Organization Analysis is done prior to performing the WDA phase. The next 

modification to the CWA framework occurs after the ConTA phase.  This new phase is 

titled Creation of Pilot Domain. The pilot domain is added to validate the WDA and 

ConTA phases. Cognitive modeling, simulation, prototypes, and scenario-based design 

are techniques used to establish the pilot domain (Cummings & Guerlain, 2003). A 

prototype of the user interface for the Tactical Tomahawk was developed for this 

research based on WDA and ConTA. 

 Another application of ConTA was demonstrated by Neelam Naikar and Alyson 

Saunders in the aviation training domain. This approach was used to identify specific 

requirements for training F-111 pilots. The study reviewed and analyzed aircraft 

accident and incident reports to determine when pilots have crossed the safe 

boundaries in the past and the problem-solving difficulties they have experienced 

(Naikar & Saunders, 2003). After identifying when the safe boundary was crossed, they 
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used the DL to examine the pilot’s decision making and extract training requirements for 

other air crews. The objective is to allow air crews to cross the safe boundaries during 

training, detect the error made when they crossed the safe boundary, and then execute 

the appropriate actions to recover from the error. The research confirms how critical 

decision-making is to reducing errors. 

2.2.4 Strategies Analysis 

 The purpose of the SA phase is to explore the variety of ways in which each of 

the control tasks could be accomplished. WDA and ConTA phases are prerequisites for 

the SA phase of CWA. WDA and ConTA can be used independently of the other 

phases of CWA, but SA is dependent on the results and products of the preceding 

phases. In other words, you cannot develop a strategy on how to complete an activity 

without knowing what the activity will be, which comes from the ConTA. Additionally, 

ConTA is typically produced from the WDA. Therefore, the CWA approach provides an 

interrelated set of methodologies where different attributes of a system can be analyzed. 

Jenkins, Stanton, Salmon, Walker, & Young (2008) suggest that there has been little 

attempt in the literature to extend the CWA framework beyond the first two phases. In 

other words, there is limited research using SA and the follow-on phases of CWA. 

(Naikar, 2006b) recognized four key concepts of SA. 

• SA is not concerned with defining detailed sequences of actions. 

• Several strategies are usually possible for performing a single activity.  
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• Workers often switch between multiple strategies while performing a single 

activity. 

• It is important to identify the range of strategies that are possible as opposed to 

the range of strategies that are used by workers. 

The selection of a strategy is highly dependent on situation and actor (St-Cyr & Kilgore, 

2008). Therefore, it is difficult to identify a particular response to a given control task. 

Naikar goes on to say that the SA phase identifies potential categories of generic 

strategies. In summary, SA will derive generic strategies to complete a control task, but 

it may not be the strategy utilized by the actor. Diverse actors will normally use diverse 

strategies. 

 The typical SA modeling tool is an Information Flow Map (IFM). IFM are graphical 

representations of activities that are necessary to complete a control task. The graphical 

representation is similar to the ConTA phase. Circles are used to represent knowledge 

states and rectangles are used to represent information processing activities. 

Information processing activities are the cognitive and computational actions a trainee 

employs to complete a task. Knowledge states are defined as the products of the 

cognitive actions (St-Cyr & Kilgore, 2008). The actor has three options to resolve the 

situation. They can “hold one aircraft,” “reroute one aircraft” or “tweak one aircraft.” 

Each of these options is a control task. The process to complete each of the control 

tasks is represented by circle and rectangle objects in Figure 11. Some of the 

information from the previous phases is used to fill in the circles and rectangles in the 
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SA phase of CWA. There are numerous strategies for achieving the functional purpose 

of the system from the AH. 

2.2.5 Social Organization and Cooperation Analysis 

 The purpose of the Social Organization and Cooperation Analysis (SOCA) phase 

of the CWA framework is to allocate information processing activities and knowledge 

states responsibility among the actors in the system. In a training environment, SOCA 

models determine how tasks are distributed within the team and how the team will 

communicate. The products from the initial phases of CWA support assigning 

responsibility among the actors in the SOCA phase. The IFM model used in the SA 

phase can be used in the SOCA phase. Each actor will be assigned a color, then each 

information processing activity and knowledge state on the IFM model will be color-

coded with the responsible actor. Some information processing activity and knowledge 

states will be shared by a human operator and computer automation. To distribute each 

information processing activity and knowledge state between team members and 

computer automation, the strengths and weaknesses of each team member’s functional 

position and computer automation are compared to each task to establish the best task 

allocation for the team. Tasks that require high cognitive loads on working memory are 

normally assigned to the computer. Task that require judgment are normally assigned to 

the human operator. 

 There are several key concepts related to the SOCA model (Naikar, 2006b). First, 

SOCA does not define a single or best organizational structure. Second, the allocation 
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of work may be defined in relation to the work domain, work situations, work functions, 

control tasks, and strategies (Naikar, 2006b). 

2.2.6 Worker Competencies Analysis 

 The Worker Competencies Analysis (WCA) phase of CWA is concerned with 

making the task easier for the end-user. It identifies the competencies required for each 

team member to effectively complete the work domain’s control tasks. This is done by 

using skill and rule-based behavior when applicable and also supporting the users’ 

knowledge-based behavior when addressing unanticipated events. The modeling 

technique used in this phase is the Skill, Rule, and Knowledge (SRK) inventory. This 

taxonomy outlines basic distinctions between the three main psychological processes: 

Skill-Based Behavior (SBB), Rule-Based Behavior (RBB), and Knowledge-Based 

Behavior (KBB) (Rasmussen et al., 1990). The SRK inventory is used to outline the 

competencies that system users must have or must acquire in order to effectively 

perform control tasks across all three of the behavior types. 

 A skill-based behavior requires very little conscious effort to perform a task. 

Using a mouse to move a cursor is an example of a skill-based behavior. Very little 

conscious effort is required to move the cursor on the screen. 

  A rule-based behavior is based on the rules and/or procedures established by 

an organization, for example, user instructions or regulatory authority rules necessary to 

complete a task or use equipment. Following the procedures to start a plane would be 

considered a rule-based behavior. 
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 A knowledge-based behavior requires the highest level of conscious effort to 

complete a task.  An example of a knowledge-based behavior is a pilot response to 

losing both engines due to bird strikes and landing the airplane in the Hudson River. 

Knowledge-based behavior is used when the situation is unfamiliar or unanticipated. 

Traditionally, SBB and RBB are executed more quickly, effectively, and effortlessly than 

KBB. The SRK inventory can be used to determine employee selection, job 

prerequisites, and training. 

2.2.7 Current CWA Tools 

 Currently, most users of the CWA approach use Microsoft Word, Excel, Visio, 

post-its and string, flowcharting, and/or paper to illustrate the different phases of CWA. 

The CWA process is often criticized for being complex and time-consuming (Cummings, 

2006). The SysML has many benefits over both Microsoft software and pen and paper. 

SysML passes important data forward aiding the completion of subsequent 

representation (Balmelli, 2007). This means that minor changes to text in a diagram will 

feed through from the initial stages to the subsequent phases. This has particular 

benefits in the SOCA phase, which reuses the products generated in the previous three 

phases. This capability increase the speed and accuracy at which CWA models can be 

developed, edited and reviewed. 

2.2.8 Cognitive Work Analysis Summary 

 In conclusion, the CWA approach consists of five interrelated phases that are 

used to analyze and explore different aspects of a system. CWA provides a useful 
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complement to the systems engineering processes. The most useful aspect of CWA as 

a modeling approach is that it allows the researcher to move from a high-level 

conceptual view of purpose, intent and goals to a detailed view of functionality and 

capability (Chin, Sanderson, & Watson, 1999). The CWA framework has been applied 

to a variety of complex work and training environments, including: revolutionary and 

first-of-a-kind system development (Naikar, Pearce, Drumm, & Sanderson, 2003), (M. 

Cummings & Guerlain, 2003); system design (Bisantz et al., 2003); training needs 

analysis (Naikar & Sanderson, 1999), (Naikar et al., 1999); training system design 

(Crone et al., 2003), (Lintern & Naikar, 1998); human-system integration, (P. M. 

Sanderson & Naikar, 2000); interface design and evaluation (Jenkins, Stanton, Walker, 

Salmon, & Young, 2008), (Vicente, 2000); evaluation of system design proposal (Naikar 

& Sanderson, 2001); human error management (Naikar & Saunders, 2003); process 

control (Vicente, 1999); military command-and-control decision making,(Jenkins et al., 

2007), (Jenkins, Stanton, Salmon, & Walker, 2009), (Chin et al., 1999), (Burns, Bryant, 

& Chalmers, 2000), (Paradis et al., 2002); military aviation (Naikar, Lintern, & 

Sanderson, 2002); health care (Burns, Momtahan, & Enomoto, 2006); and air traffic 

controllers (Kilgore & St-Cyr, 2006). 
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2.3 Systems Modeling Language  

2.3.1 Introduction 

 One way to challenge the three evils of systems engineering is to model systems. 

System modeling helps to simplify understanding of complex systems. This 

simplification of complex systems can lead to more effective communication among 

project stakeholders. System Modeling Language (SysML) provides a common 

language for systems engineers to model complex systems. In 2001, the International 

Council of Systems Engineering (INCOSE) and Object Management Group (OMG) 

started the process of adapting Unified Modeling Language (UML) to a systems 

engineering modeling language. In November 2008, the OMG released SysML Version 

1.1. SysML is a visual language that supports model-based design, requirements 

analysis, verification and validation for a variety of large-scale, multidisciplinary complex 

systems. SysML graphically models system architecture, behavior, and functionality 

(Object Management Group, 2008). The language is an expansion of the UML 2.0. UML 

2.0 is typically used to model system software. SysML extends UML capabilities to 

model system hardware, software, personnel, facilities, information, and procedures. In 

addition to INCOSE and OMG, many other organizations from industry, vendors, 

government, and academia supported parts of the SysML specifications. Table 1 shows 

most of the participant organizations in SysML development. 
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Table 1: Organizations Involved in SysML Development 

Industry Vendors Government Academia 
American 
Systems 
Corporation 

ARTISAN Software 
Tools DoD/Office of the 

Secretary of 
Defense (OSD) 

Georgia Institute of 
Technology 

BAE SYSTEMS Ceira 
Technologies   

Pivot Point 
Technology I-Logix NASA/Jet 

Propulsion 
Laboratory 

  

Raytheon Mentor Graphics   

Boeing Embedded Plus 
Engineering 

National Institute 
of Standards and 
Technology (NIST) 

  
Israel Aircraft 
Industries   

Lockheed Martin 
Corporation 

Gentleware   

Sparx Systems     
Deere & 
Company Vitech     

EADS Astrium IBM     

Eurostep Telelogic     

Motorola Structured 
Software Systems 
Limited 

    
Northrop 
Grumman     
 

 One of the most important phases of a system’s life cycle is requirements 

analysis. A lack of accurate requirements leads to schedule delays and additional costs. 

The complexity of modern sociotechnical systems makes requirements analysis more 

difficult. To simplify the development process, SysML methodology represents complex 

systems graphically. Requirements analysis is traditionally represented as texts which 

are accompanied by figures and drawings. The requirements describe all the product 
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functions and the constraints under which these functions should be achieved (Balmelli, 

2007). 

 There are many challenges that exist when identifying system requirements 

during the conceptual phase. A lack of comprehensible product architecture obstructs 

team understanding and communication, which consequently increases the risk of 

integration issues (Balmelli, 2007). The Boeing 787 Dreamliner was supposed to be a 

revolutionary step forward in aircraft design. To develop and build the aircraft, Boeing 

created a sophisticated global manufacturing network. Sections of the plane are 

constructed by companies in Japan, Russia, Australia, Italy, France, South Carolina, 

Sweden, India, Washington state, and Kansas. According to Airframer.com, over 300 

companies from around the world are involved in the Dreamliner program. The 

integration of all these different components from an enormous amount of suppliers has 

created a supply chain debacle. According to a Seattle Times report, several 

specifications from Boeing provided ambiguous instructions and measurements that led 

mechanics to cut holes too shallow to attach fasteners. The specifications were 

prepared in Everett by Boeing engineering staff and were supposed to be translated by 

Boeing planners into easily followed instructions (Gates, 2008). The integration delays 

are costing Boeing and their suppliers billions of dollars. To address the manufacturing 

and logistics deficiencies, Boeing issues new design and production modification, which 

contribute to more confusion and delays by suppliers. 
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SysML is specifically designed to mitigate these challenges in the early stages of 

system development and throughout the system life cycle. Previous studies have shown 

that deficiencies in organization and management are typically responsible for problems 

associated with the development of a complex sociotechnical system (Sage & 

Armstrong, 2000). One study concluded that the main factors associated with cost 

overruns, schedule delays, and customer dissatisfaction are the result of a lack of user 

input, incomplete requirements, and continual requirement modifications (Hofmann & 

Lehner, 2001). 

2.3.2 SysML Description 

 SysML has four classifications of diagram used to construct system models. The 

diagram classifications are structure, behavior, requirements, and parametric 

relationships. These are the four pillars of Object Management Group (OMG) SysML. 

System behavior and structure diagrams had previously existed in UML 2.0. System 

requirements and parametric relationships have been added for the purpose of systems 

engineering modeling. SysML is designed to represent structure and behavior of 

systems (Graves, 2009). It is a graphical language which is advantageous for human 

comprehension (Graves, 2009). Figure 2 shows the SysML Architecture. 
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From (Friedenthal, Moore, & Steiner, 2008)) 
 

Figure 2: SysML Architecture 

 The system structure diagrams are used to represent the physical structure of 

the system. The system structure includes the hardware, software, data, procedure, 

personnel, and facilities components. The basic structural elements in SysML are 

blocks. A block is a description of the system, subsystem, part, function, human, or 

process. System components in the structure diagrams are represented by Block 

Definition Diagrams (BDD) and Internal Block Diagrams (IBD). BDDs are used to 

describe the hierarchical and component structure of the system. IBDs describe the 

internal structure of each system component which consists of parts, connectors and 

flows. The structure diagrams also identify the interconnections between BDDs through 

the IBDs. 
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 The system behavior diagrams describe the system functionality, component 

interaction, and processes. The system behavior diagrams contain use case, activity, 

sequence, and state machine diagrams. Use case diagrams illustrate system 

functionality. Activity diagrams show the flow of data and information between activities. 

Sequence diagrams describe the interaction between different parts in the system and 

the interaction of actors and the system or component of the system. The state machine 

diagram describes the actions that a system performs in order to complete an event. 

 The system requirement diagram graphically represents text-based requirements 

and associates them with related model diagrams that verify the requirements. These 

diagrams improve requirements visualization by using a graphical approach to system 

design. The requirement diagram provides traceability that bridges the gap between 

requirements and system models. The requirement diagrams also addresses the 

relationships between requirements, system design models and use cases (Hause, 

2006). This graphical approach improves communication between stakeholders by 

facilitating system understanding, explicitly maps requirements relationships, and 

mitigates design errors. 

 The system parametric diagram identifies the physical or intentional constraints 

of the system. Constraint blocks are used to represent constraints in the parametric 

diagram. Constraint block properties are expressed by mathematical equations within 

the blocks and help establish mathematical relationships between system properties 

(Johnson, Paredis, Burkhart, & Jobe, 2007). Parametric diagrams can be used to 
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identify performance parameters or other mathematical constraints which can be used 

to support trade-off analysis. Each diagram discussed so far is identified by SysML 

notation. Table 2 indicates the notation of the different diagram types. 

Table 2: SysML Notation of the Different Diagram Types. 

Diagram Type Notation 

 Activity diagram  act 
 Block definition diagram  bdd 
 Internal block diagram ibd 
 Package diagram pkg 
 Parametric diagram par 
 Requirement diagram req 
 Sequence diagram sd 
 State machine diagram stm 

 Use case diagram uc 

2.3.2.1 Structure 

2.3.2.1.1 Block Definition Diagram 

 Block Definition Diagrams (BDD) describe the components of the system. 

BDD show the components of the system and the relationships between them. 

Components can be represented by blocks, parts, packages, and constraint blocks in 

the BDD model. Packages and constraint blocks will be discussed in more detail in the 

later sections of this dissertation. Block diagrams are used to describe the architecture 

of a system in terms of systems and subsystems. More detail can be added within each 

block. Attributes, operations, and/or a description can be added to each block to provide 
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more detail about the specific block. Part diagrams are also used to describe the 

composition of block diagrams. Attributes, operations, and/or a description can be 

added to each part diagram to provide more detail about the specific part. The most 

commonly used relationships are aggregation, directed composition, dependency, 

generalization, and association. Aggregation shows a part-whole relationship—a whole 

system or component of a system made up of different parts. It is represented by a clear 

diamond shape on the aggregate end and no symbol on the other end of the line. A 

directed composition is a one-direction composition relationship between a block and 

another block. It is represented by a solid-color diamond shape on the composite end 

and an arrow symbol on the directed end of the line. A dependency relationship is 

shown when one block depends on another block. There is a client and supplier 

relationship that exists between the two blocks. A dependency is represented by a 

dashed arrow. A generalization shows how one block is derived from another. This is a 

parent and child relationship. The parents has a child. A generalization is represented 

by a clear triangle arrowhead and a solid line. The arrowhead points to the parent. 

Finally, a flow relationship indicates the flow of data and commands from one block or 

part in the system to another block or part. The flow relationship expresses that 

information can be exchanged between blocks, parts, or use cases (Weilkiens, 2008). 

Flow relationships are notated by a green dashed line with an arrowhead at one end. 

The arrowhead indicates where the data or commands are going. 
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 Figure 3 and Figure 4 illustrate the models discussed in this section (i.e., section 

2.3.2.1.1). Figure 3 has two blocks that have a Directed Composition relationship 

between them. Block_1 is the whole and block_2 is part of the whole. Block_2 is 

composed of two part diagrams.  The relationship that exists between block_2 and 

part_1 and part_2 is an aggregation. Which means block_2 is the whole and is 

composed of part_1 and part_2. 

 

Figure 3: A Block Definition Diagram with Directed Composition Relationship 

 Figure 4 contains two blocks and two parts. Block_3 and block_4 have the flow 

type of relationship. This means block_3 provides data or commands to block_4. 
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Block_4 has a generalization relationship with part_3 and part_4. This means part_3 

and part_4 are derived from block_4. 

 

Figure 4: A Block Definition Diagram with Flow Relationship  

2.3.2.1.2 Internal Block Diagram 

 Internal Block Diagrams (IBD) describe the internal structure of each system 

component represented by a block. IBD consist of parts, blocks, connectors, and ports. 

Connectors and ports specify interconnections of the parts or blocks. Flow ports and 

standard ports are the two main types of ports.  A flow port is used to show block input 

and output of materials, data, or energy.  A standard port is used to show the exchange 

of services. A service is a functionality that a block provides or requires. 

 Figure 5 shows an IBD of block_1 in Figure 3. The IBD is composed of block_5 

and four part diagrams. There is an exchange of services between Part_5 and Part_6 
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through standard ports. Part_5 provides service to part_6. Part_6 requires service from 

part_5. Part_7 and part_8 exchange physical items (e.g., material, data, energy, etc.) 

through flow port interaction. Finally, the blue dashed arrow lines indicate a dependency 

relationship between block_5 and part_5 and part_6. Also, part_6 depends on part_7 

and part_8. 

 

Figure 5: An Internal Block Diagram 
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2.3.2.1.3 Package 

 Package diagrams are an organizational feature of SysML for grouping model 

elements into logical components and associate dependencies between the packages. 

This organizational advantage is intended to help manage large complex systems. 

Eventually, most system models become very large and unwieldy, which makes it 

necessary to structure them into higher-level packages (Peak et al., 2007). 

 Packages can be used in Block Definition Diagrams or Requirements Diagrams. Figure 

6 shows several package diagrams. Package_2 has a dependency relationship with 

package_1 and package_3. 

 

Figure 6: A Package Diagram 
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2.3.2.2 Behavior 

 Behavior diagrams describe the system functionality, component interaction, and 

processes. The system behavior diagrams include use case, activity, sequence, and 

state machine diagrams. Use case diagrams illustrate system functionality. Activity 

diagrams show the flow of data and information between activities. Sequence diagrams 

describe the interaction between different parts of the system and the interaction 

between actors and the system or components of the system. The state machine 

diagram describes the actions that a system performs in order to complete an event. 

Activities are the basic unit of behavior used in activity, sequence, and state machine 

diagrams (Hause, 2006). 

2.3.2.2.1 Sequence Diagram 

 Sequence diagrams describe the interaction between different parts in the 

system and the interaction of actors and the system or component of the system. 

Sequence diagrams and state machines are widely used to model control flow (Viehl, 

Schönwald, Bringmann, & Rosenstiel, 2006). Sequence diagrams allow a graphical 

representation of interactions between the system and the user or interactions between 

different components of the system. Figure 7 shows a sequence diagram. It is 

composed of SysML system borders, messages and timeouts. The system borders can 

be used to represent the end user, environment, system components, and/or system 

interface.  The SysML notation is a column of diagonal lines with a rectangular box on 
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top. Message arrows are used to show the exchange of communication or interaction 

between the system and the user or between individual system components. The 

SysML notation for messages is a green arrow. The tip of the arrow indicates where the 

communication is received and the end of the arrow line indicates the origins of the 

communication. Timeouts are used to show processing time. SysML uses half a square 

with a small square on the top end and an arrow on both ends. See Figure 7 for an 

example of a timeout. Figure 7 shows a sequence diagram that represents the flow of 

exchange in chronological order between an end-user and part_1 and part_2 of the 

system. The scenario shows the end-user interacting with part_2. Part_2 processes the 

request by the end-user. Tm(7) shows part_2 processing the request. After part_2 

processes the request, it send a message to the end-user. The end-user then sends a 

message to part_1. Part_1 receives the message and responds with a message back to 

the end-user. 



44 

 

 

Figure 7: A Sequence Diagram 

2.3.2.2.2 Activity Diagram 

 Activity diagrams are used to model system process flows and describe 

operational step-by-step workflows. Activity diagrams can also indicate required inputs 

by actions and outputs produced by actions (Ahmad, 2007). In other words, activity 

diagrams serve as flowcharts for system processes. Activity diagrams are essential for 

behavioral modeling in SysML. Activity diagrams are typically constructed with action 

elements, send action elements, decision nodes, join nodes, fork nodes, swimlanes, 

and control flow lines. An action element is a unit of system functionality. The 

functionality represents a process in the modeled system. Actions elements are 

necessary to construct activity diagrams. The SysML notation for an action is a rounded 
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corners rectangle. The send action elements are used to transmit a procedure to an 

activity element. The send action elements can be used in state machine diagrams and 

activity diagrams. The SysML notation for a send action element is a rectangle with a 

triangle attached to one end. 

 A decision node provides the capability to choose between two or more possible 

paths in an activity diagram (Jarraya, Debbabi, & Bentahar, 2009). A decision node has 

one input flow and multiple output flows. Decision nodes are represented by a diamond 

shape in SysML. 

 Join and fork nodes are used to show process or workflow concurrency. A join 

node is used to show the combining of two or more input flows into a single output flow. 

The SysML notation for a join node is a horizontal bar with two red arrows pointing 

down on the top half of the bar and one red arrow pointing down on the bottom of the 

bar. A fork node is used to show the division of a single input flow into two or more 

output flows. The SysML notation for a fork node is a horizontal bar with one red arrow 

pointing down on the top half of the bar and two red arrows pointing down on the bottom 

of the bar. 

 Swimlanes are used to allocate responsibilities of actions between blocks, parts, 

or actors. A swimlane is a large rectangle located in the background of an activity 

diagram. The individual lanes are separated by vertical lines and can be labeled with 

the appropriate name of the block, part, or actor. 
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 A control flow is used to connect activity diagram elements together. Control 

flows provide a path to follow through an activity diagram. Control flows are represented 

by red dashed arrows in SysML. 

 Figure 8 shows an activity diagram. The red solid line arrow with the dot on the 

end indicates the start of the activity diagrams. Control flow runs from the start of the 

activity to the end in order. The swimlanes show who is responsible for completing each 

decision or action. The decision nodes show a condition before proceeding to the next 

action in the activity diagram. The condition is normally a yes or no question. The 

decision nodes will have one control flow input and two control flow outputs. A fork node 

is used after action_2 which leads to action_4 and decisionnode_2. A join node is used 

for decisionnode_2 and action_5 which leads to action_6. The activity diagram is 

concluded after action_6. The encircled black circle represents the end of the activity 

diagram. 
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Figure 8: An Activity Diagram 

2.3.2.2.3 State Machine Diagram 

 The state machine diagram describes a system transition between different 

states when it is performing actions to complete an event. System behavior is 

represented in terms of transitions and states. States and transitions are the main 

elements of a state machine diagram (Weilkiens, 2008). State machine diagram 

elements consist of states, send actions, and transitions. State elements are used to 

show the system’s life cycle path as it transitions from one state to another. The SysML 
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notation for a state is a rectangle with rounded corners and a line through the top half. 

The send action elements are used to transmit a procedure for changing the state of the 

system. The SysML notation for a send action element is a rectangle with a triangle 

attached to one end. Finally, transitions provide an ordered path to follow through a 

state machine diagram. Transitions are represented by solid red arrows in SysML. 

 Figure 9 shows a state machine diagram. A default transition red arrow with a dot 

on the end shows the start of the state machine diagram. The system is currently in 

state_0. The sendaction_1 elements transmit a procedure to change the state of the 

system. The new state of the system is state_1. The encircled black circle represents 

the end of the state machine diagram. 

 

Figure 9: A State Machine Diagram 



49 

 

2.3.2.2.4 Use Case Diagram 

 Use case diagrams illustrate system functionality in terms of an actor’s goals. A 

use case describes the interaction between an actor and the system. It also shows 

which system functions are performed by which actor or actors. Use case diagrams are 

typically composed of actors, use cases, associations and generalization. The actor(s) 

represent a user that interacts with the system. The SysML notation for an actor is an 

outline of a person. A use case is used to describe the functionality of a system. The 

notation for a use case is an oval. 

 An association shows interaction between an actor and a use case. Associations 

are represented by solid red lines. A generalization is another form of relationship in use 

case diagrams. A generalization is used when a use case has common properties and 

behaviors with a more general use case. The SysML notation for a generalization is a 

solid blue line with a clear triangle at the end. Include and extend is another form of 

relationship in use case diagrams. An include relationship provides more detail to 

describe one use case. Include means the use cases are required. An extend 

relationship expands on the capabilities of a use case. Extend means the use case is 

optional. The notation for include is a dashed blue arrow with the label “include” next to 

it. The notation for extend is a dashed blue arrow with the label “extend” next to it. 

 Figure 10 shows a use case diagram. The actor is associated with usecase_1 

and usecase_2 elements. Usecase_3 and usecase_4 are required for usecase_1. This 
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is an include relationship. Usecase_5 is optional for usecase_2. This illustrates the 

extends relationship. 

 

Figure 10: A Use Case Diagram 

2.3.2.3 Requirements Diagram 

 Requirements diagrams graphically represent text-based requirements. In 

addition, requirements diagrams provide traceability between requirements and system 

models (Herzog, Pandikow, & Syntell, 2005). This capability to relate model diagrams to 

system requirements is critical for system verification. One of the significant 

improvements of SysML over UML is the ability to represent requirements and relate 
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them to the model of a system (Vanderperren & Dehaene, 2005a). Requirements 

consist of requirement blocks and derive, satisfy, and verify relationships. 

 A requirement block is used to describe one or more properties of a system that 

have to be met by the system. Requirement blocks are represented by rectangular 

blocks with a requirement stereotype in the top part of the block. Satisfy relationships 

are used to show that a model element satisfies a particular requirement. The notation 

for a satisfy relationship is a blue dashed arrow with the label “satisfy” next to it. Verify 

relationships are used to determine whether a model element fulfilled a requirement. 

The notation for a verify relationship is a blue dashed arrow with the label “verify” next to 

it. Derive relationships are used to show a dependency between two requirements. One 

requirement is the source and the other is the derived requirement. The notation for a 

derive relationship is a blue dashed arrow with the label “derive” next to it. 

 Figure 11 shows a requirement diagram. The requirement diagram shows that 

package_6 satisfies requirement_1. Requirement_1  derives requirement_2. Which 

means that requirement _1 and requirement_2 are dependent on each other. Finally, in 

the last relationship shown, testcase_1 is used to verify requirement_2. 
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Figure 11: A Requirements Diagram 

 In summary, Hause and Thorn observed that systems engineers dealt with many 

different categories of requirements throughout the development life cycle. SysML 

requirements models provide systems engineers with a greater visibility of requirements, 

a direct means of traceability, and a holistic system view to conduct impact analysis 

(Hause, 2007). 
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2.3.2.4 Parametric 

 The parametric diagram graphically illustrates the physical or intentional 

constraints of the system. A constraint is an operation boundary that cannot be 

exceeded. Parametric diagrams are used to identify system performance parameters, 

quantitative analysis, and trade-off analysis. The main element of parametric diagrams 

is constraint blocks which are used to represent system constraints. Mathematical 

equations within the constraint blocks are used to express system constraints.  

Standard math symbols are used to represent relationships between properties of 

different model elements, but no formal language is used to define these relationships 

(Herzog et al., 2005). Constraint parameters represent system boundaries and 

limitations. The notation for constraint parameters is a small box located within the 

constraint block. The relationship that exists between constraints is a binding connector. 

A binding connector between two constraints indicates that the properties at both ends 

of the connector have equivalent values. The parameters used in a constraint block can 

be linked to the properties of another block or constraint block using binding connectors 

(Johnson, Paredis, & Burkhart, 2008). Figure 12 shows a parametric diagram. 
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Figure 12: A Parametric Diagram 

2.3.3 SysML Elements for Cognitive Work Analysis 

2.3.3.1 SysML Elements for Work Domain Analysis 

 The first phase is Work Domain Analysis (WDA). This phase contains the 

physical and/or intentional constraints. The WDA determines what can be accomplished 

within the boundaries of the sociotechnical system. Figure 13 illustrates the use of the 

Abstraction Hierarchy (AH) tool to determine the functional purpose and physical 

components of a system. Figure 13 was created using SysML. The AH will be 
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constructed in a Block Definition Diagram (BDD). BDDs are used to describe the 

hierarchical and component structure of the system. The BDDs also can be used to 

identify the interconnections and relationships between blocks. Elements at the highest 

level of the AH model define the purposes and goals of the system. Elements at the 

lowest levels of the model indicate and describe the physical components of the system. 

The lowest levels of the AH, Levels 4 and 5, are represented by part diagrams. Level 3, 

the General Function, is represented by block diagrams in the BDDs. Level 2, the 

Abstract Function on the AH, is represented by constraint blocks within SysML. 

Constraint blocks can be used to identify performance parameters or other 

mathematical constraints which can be used to support trade-off analysis. Level 1, the 

Functional Purpose of the system, is represented by blocks. The AH is linked to the 

Control Task Analysis (ConTA) model through the General Functions. 
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Figure 13: A Template Abstraction Heirarchy Constructed Using SysML 

2.3.3.2 SysML Elements for Control Task Analysis 

 The second phase of the CWA framework is Control Task Analysis (ConTA). 

ConTA covers what needs to be done within the limits of the work domain. The Decision 

Ladders (DL) tool is used to model the second phase. A DL shows the alternative 
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courses of action for a particular decision. It is a useful way of representing detailed 

process knowledge. A decision ladder constructed with SysML is shown in Figure 14. In 

order to complete the General Function, the tasks in the DL have to be completed, and 

the user will use the physical functions and components to accomplish the tasks. Every 

step in the DL process does not have to be accomplished in order to execute the 

completion of the General Function. This provides flexibility to the user for unanticipated 

events or adaptive learning (Lui, Watson, & Queensland, 2002). Normally, rectangles 

represent information processing activities and the circles represent resultant 

knowledge states required to complete component tasks. In SysML, information 

processing activities are represented by send action elements and knowledge states 

are represented by state elements. The ConTA phase is linked to the Strategies 

Analysis through the “Formulate Procedures” send action element in Figure 14. 
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Figure 14: A Template Decision Ladder Constructed Using SysML 
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2.3.3.3 SysML Elements for Strategies Analysis 

Strategies Analysis (SA) is the next phase in the CWA framework. The purpose 

of SA is to determine which actions are necessary to achieve the control tasks. The 

same control task can be completed in a variety of ways using different cognitive 

strategies (Jenkins et al., 2008). Information Flow Maps (IFM) are a graphical 

representation of information processing activities that depict how a user can perform a 

sequence of tasks to reach an end goal. Figure 15 illustrates the sequence of tasks and 

one way to represent an IFM in SysML. Figure 15 shows one strategy that is available 

to the system user to complete a task. Normally, there will be other user strategies 

modeled using the IFM. By performing one of the strategies, the user can complete the 

Control Task. By completing the Control Tasks, the user satisfies the Functional 

Purpose of the system. Typically, rectangles represent information processing activities 

and circles represent resultant knowledge states which are required to complete control 

tasks. State machine diagrams are used to construct the IFMs. Send action elements 

will represent information processing activities and state elements will represent 

knowledge states. 
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Figure 15: A Template Information Flow Maps Model Constructed Using SysML 

2.3.3.4 SysML Elements for Social Organization and Cooperation Analysis 

 The Social Organization and Cooperation Analysis (SOCA) phase determines 

who will carry out the work and how it is shared. The IFM tool is typically used in the 

SOCA phase of the CWA framework. The IFM identifies the actors and their roles. In 

general, the IFM answers the question of who will do what tasks by allocating 

responsibility among actors. In SysML, use case diagrams are used to show distribution 

of tasks among actors and represent the SOCA phase modeling tool. Figure 16 

illustrates how a use case diagram represents the allocation of responsibilities for 

completing a specific task. 
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Figure 16: A Template Use Case Diagram Constructed Using SysML 

2.3.3.5 SysML Elements for Worker Competencies Analysis 

 The final phase of the CWA framework is the Worker Competencies Analysis 

phase, which contains the level of conscious effort required to complete an information 

processing activity. The level of conscious effort measures the physical, perceptual, and 

cognitive demands placed on the worker using the system (Jenkins et al., 2008). Skill, 

Rule, and Knowledge-based (SRK) inventory is the modeling tool used in this phase. 

SRK ascertains the level of conscious effort an individual uses when processing 

information. The skill-based behavior (SBB) category requires almost no conscious 
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effort when completing a task. For example, when a person is approaching a red traffic 

light while driving, the person instinctually steps on the brakes. The rule-based behavior 

(RBB) category is centered on the rules of the organization or the proper procedures 

learned in training. Unlike the skill-based category, the knowledge-based behavior (KBB) 

category requires a high level of conscious effort to complete a task. Examples include 

when a person learns to drives a car for the first time or when an operator encounters 

an unanticipated event. Figure 17 shows the different levels of effort required by the 

system user to complete a task and how each task is represented in SysML. The WCA 

phase is linked to each information processing activity on the Decision Ladder (DL) in 

the Control Task Analysis (ConTA) phase and on the Information Flow Maps (IFM) in 

the Strategies Analysis (SA) phase of CWA. An activity diagram is utilized to construct 

the SRK inventory in SysML. The send action elements represent the information 

processing activity. SysML action diagrams represent skill, rule, and knowledge based-

behaviors. Finally, swimlane elements are used to organize the action diagrams into 

behavior categories. 
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Figure 17: A Template Skill, Rule, and Knowledge-Based Inventory Constructed with SysML 
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2.3.4 SysML Requirement Development Function 

 SysML employs use case diagrams, requirements diagrams, and requirements 

tables to define system requirements. A use case is a defined task of interest to the 

user. It contains the user intentions and system responsibilities in the course of 

accomplishing that task (Constantine & Lockwood, 2001). Use cases provide a means 

for describing basic functionality in terms of usages of the system by users. The main 

advantage of use cases is their simplicity. The process can be described as: find actors, 

find use cases, and describe the use cases (Armour & Miller, 2001). 

 When modeling system requirements, use cases have several disadvantages 

according to Soares & Vrancken (2008). First, SysML use case diagrams as well as 

requirements diagrams are not consistent in format or structure, which may lead to 

differences in interpretations by stakeholders (Soares & Vrancken, 2008). SysML use 

case diagram structure is not standard and normally varies between different 

organizations because the process for developing use cases varies across 

organizations. There are no generally accepted and well-defined notational standards 

existing for requirements engineering in SysML (Insfrán, Pastor, & Wieringa, 2002). 

 Secondly, current use cases narratives are not sufficient to support requirement 

development of larger and more complex sociotechnical systems (Constantine & 

Lockwood, 2001). Expressions of large, complex sociotechnical system models in UML 

and SysML are currently difficult to read and comprehend. Constantine and Lockwood 

also state: 
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 “Integrating actors with use case relationships in a single model leads to 

 bewildering jumbles of lines for all but the most trivial problems of the sort found 

 in books, articles, and tutorials.” (Constantine & Lockwood, 2001) 

 The third disadvantage of the undefined use case process is the issue of too 

many use case models. This situation is referred to as a use case explosion. It detracts 

from the user goals and describes trivial interactions or incidental actions of the users. 

Furthermore, not knowing when to stop developing use cases can led to use case 

explosion (Lilly, 2000). 
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2.4 Applications of System Modeling Language 

 Systems engineers are rapidly adopting Systems Modeling Language (SysML) 

as the new standard for modeling systems (Friedenthal et al., 2008). SysML is 

methodology- and tool-independent (Friedenthal, Moore, & Steiner, 2006). Since SysML 

is methodology- and tool-independent, it can be and has been applied to a variety of 

domains. These domains include safety engineering, requirements engineering, 

process plant control systems, manufacturing control systems, satellite communication, 

Army weapons systems, Human Systems Integration, software project management, 

and many others. 

 SysML has been implemented in modeling cognitive handoffs of wireless 

networks (Gonzalez-Horta, Enriquez-Caldera, Ramirez-Cortes, Martinez-Carballido, & 

Buenfil-Alpuche, 2010). A cognitive handoff provides a quality, seamless, and secure 

transition between mobile wireless networks. The proposed theoretical framework is 

based on a functional decomposition method and scientific problem solving. SysML was 

chosen for this domain because it shows the dynamic behavior of communications 

systems and how the wireless network will transition between states (Buede, 2009). 

 SysML has also been implemented in the safety engineering domain (Hause, 

2007). The authors state that system safety needs to be incorporated into all aspects of 

system development and operation. The study demonstrated how SysML allowed 

different engineering disciplines to model the different aspects of a system together 

while working individually. They used an integrated database and ergonomic profile to 
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support a single holistic model of the system. The main focus of the study was the 

utilization of SysML elements to support risk identification, risk management, and risk 

mitigation. 

 The next paper focused on modeling discrete processes in the production 

domain. In the past, there has been a issue with simulating complex systems and 

verifying that the simulation model adequately describes the system (Law & Kelton, 

2000). SysML has been used by many to develop production models capable of being 

transformed with simulation modeling tools into simulated systems (Schonherr, 2009). 

The research lead to the development of an automated approach for model generation 

in a simulator-based environment based on SysML models. Another study explored the 

use of SysML for modeling a system and then simulating that system automatically 

(Huang et al., 2007). 

 Leon McGinnis and Volkan Ustun also contributed to the process of automating 

the conversion of SysML models to Arena simulations (McGinnis & Ustun, 2009). They 

described how Object Management Group (OMG) SysML can be used to created a 

conceptual model of the system, which can then be automatically translated into a 

simulation program. In this case the simulation program was Arena. McGinnis and 

Ustun also demonstrated how SysML model-driven architecture provides a formal 

approach for developing a conceptual model. They also demonstrated how Extensible 

Markup Language (XML) and XML Metadata Interchange (XMI) interchange standards 
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can be used to automatically translate the modeling language into a simulation 

language. 

 Another application for SysML is in the mechanical design domain. A case study 

on the design of a passenger car’s luggage compartment showed how many different 

SysML elements are suitable for mechanical concept design (Wölkl & Shea, 2009).The 

study compared traditional document-based model techniques against model-based 

techniques. Typically, document-based techniques produce incompatible documents 

because a different method is used to describe each aspect of the system (Helms, Shea, 

& Hoisl, 2009). In addition, computational support for modeling is limited to the office 

software, which has very little reuse capability (Hirtz, Stone, McAdams, Szykman, & 

Wood, 2001). In contrast, SysML diagrams and their meaning present a formal 

modeling approach and capability to integrate a variety of models. 

 As stated in previous chapters, systems are become more complex and system 

operators currently have a more difficult job of operating, maintaining, and managing 

them (Aarts & Roovers, 2003). Dobre, et al. investigated an approach based on 

Ambient Intelligence to improve the interaction between operators and sociotechnical 

systems (Dobre, Morel, Pétin, & Bajic, 2008). SysML was used to model the shared 

activities of the human operator and the automated system. 

 SysML has been used to model continuous system dynamics (Johnson et al., 

2007). Johnson et al. modeled these continuous system dynamics in SysML using 

differential algebraic equations. Continuous system dynamics models represent energy 
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or signal exchange between system components. To demonstrate the method, the 

authors modeled a hydraulic pump. 

 The next application of SysML is in the software safety domain. There exist 

deficiencies in traceability between safety requirements and software design. 

(Briand, Falessi, Nejati, Sabetzadeh, & Yue, 2010). Others contend that software and 

hardware interface development processes have not matured to a high level of safety 

confidence (Kaiser, Klaas, Schulz, Herbst, & Lascych, 2011). Another study proposed a 

framework to enable efficient software design inspections during safety certification 

(Nejati, Sabetzadeh, Falessi, Briand, & Coq, 2011). This approach helped to reduce 

cognitive load and errors attributed to overlooked safety issues. 

 SysML has been integrated with other modeling languages. One of those 

languages is SOPHIA. SOPHIA is a modeling language for representing safety-related 

concepts and relationships to system models (Cancila et al., 2009). The study by 

Cancila et al. focused on the challenges that exist when integrating safety engineering 

and system design. Another modeling language that was integrated with SysML is Petri 

Net (Wang & Dagli, 2008). Petri Net is a mathematical modeling language used to 

describe distributed systems. Wang and Dagli applied SysML and Petri Net to a C4 

network system, but it could also be used for general system design. The integration of 

the modeling languages enables static and dynamic system analysis and verification of 

system behavior and functionality. 



70 

 

 SysML has been used in the maritime domain (Ruegger, 2008). Ruegger 

modeled a Maritime Domain Awareness system using SysML. The purpose of the 

system was to monitor the oceans and waterways for any security violations. The 

system received information from multiple sources. The sources included sensors, 

databases, and intelligence information. The sources provided a big picture view for the 

user’s situational awareness. The model-based engineering method with SysML 

assisted in the development of a system with direct links between sources of 

information and the command-and-control center. This reduced the time it took for an 

operator to establish the big picture and have a high quality of situational awareness. 

 The next paper reviewed focuses on applying SysML to system-on-chip (SoC) 

and network-on-chip (NoC) development (Vanderperren & Dehaene, 2005b). There has 

been a need for model-driven development with the increased complexity of SoCs and 

NoCs (Ma & Sun, 2008). Through model-based design, researchers are able to model 

and develop more capabilities with less power consumption into smaller chips. 

 The design challenges faced by the aerospace industry present a perfect 

opportunity for SysML. SysML notation was applied to an aerospace project at Saab 

Aerosystems (Andersson, Herzog, Johansson, & Johansson, 2009). The authors 

describe their use of use case, sequence, and activity diagrams in the development of 

unmanned aerial vehicles (UAV). 
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 In summary, Model-Based Systems Engineering is becoming an accepted 

method for designing systems in industry, academia, and government. SysML is 

becoming the standard language to accomplish Model-Based Systems Engineering.   

Table 3 shows a list of other domains impacted by SysML that have not been discussed 

in this section.  

Table 3: Applications and Disciplines Supported by System Modeling Language 

REFERENCE TITLE  AUTHORS DOMAIN 
ACCIDENT PREVENTION BY CONTROL 
SYSTEM RECONFIGURATION  

(Luis de la Mata, J. 
& Rodríguez, 2009)  

Process Plant 
Control Systems 

ON THE SUITABILITY OF MODELING 
APPROACHES FOR RE-ENGINEERING 
DISTRIBUTED CONTROL SYSTEMS  

(Luder, Hundt, & 
Biffl, 2009) 

Manufacturing 
Control Systems  

COMPLEX TERMINAL SYSTEMS 
DESIGN: MINIMIZING TIME TO 
DEPLOYMENT  

 (Rittenbach, 
Kovarik, Krause-
Aiguier, & Stewart, 
2010) 

Satellite 
Communication 

ARMY STRATEGIC SOFTWARE 
IMPROVEMENT PROGRAM STUDY OF 
REAL-TIME SAFETY-CRITICAL 
EMBEDDED SOFTWARE-INTENSIVE 
SYSTEMS ENGINEERING PRACTICES  

(Feiler & De Niz, 
2008) 

Army Weapons 
System 

HUMAN SYSTEMS INTEGRATION 
SOFTWARE DEVELOPMENT BASED ON 
SYSML/UML AND IBM RATIONAL 
UNIFIED SOFTWARE DELIVERY 
PLATFORM 

 (Ahram & 
Karwowski, 2009) 

Human Systems 
Integration 

A METAMODELING APPROACH FOR 
REASONING ABOUT REQUIREMENTS 

(Goknil, Kurtev, & 
Van den Berg, 
2008)  

Web Architectures 
for Services 
Platforms 

ARCHITECTING A NET-CENTRIC 
OPERATIONS SYSTEMS OF SYSTEMS 
FOR MULTI-DOMAIN AWARENESS 

(Ruegger, 2008) Maritime System of 
Systems  

A NOVEL PROJECT MANAGEMENT 
THEORY AND ITS APPLICABILITY (Erguner, 2008) Software Project 

Management 
MULTI-VIEW MODELING TO SUPPORT 
EMBEDDED SYSTEMS ENGINEERING IN 
SYSML 

(Shah, Kerzhner, 
Schaefer, & Paredis, 
2010) 

Embedded 
Systems 
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SYSTEMS ENGINEERING IN THE 
PRODUCT LIFE CYCLE  (Bock, 2005) Systems 

Engineering 
ON THE MEANING OF SYSML ACTIVITY 
DIAGRAMS  

(Jarraya et al., 
2009) 

Verification and 
Validation  

AUTOMATIONML. THE GLUE FOR 
SEAMLESS AUTOMATION 
ENGINEERING 

(Drath, Luder, 
Peschke, & Hundt, 
2008) 

Manufacturing 
Engineering  
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2.5 Cognitive Work Analysis Framework Modeled using SysML  

 This section of the dissertation will expound on the Cognitive Work Analysis 

(CWA) framework development using SysML. It will explain how the CWA framework is 

developed with SysML, what SysML model elements are used, how the model elements 

interact with each other, and what it should look like when it is completed. The SysML 

figures in this section are approximations of what the modeling framework will look like 

at the completion of this study. 

The CWA approach consists of five interrelated phases. These five phases are: 

1. Work Domain Analysis (WDA) 

2. Control Task Analysis (ConTA) 

3. Strategies Analysis (SA) 

4. Social Organization and Cooperation Analysis (SOCA) 

5. Worker Competencies Analysis (WCA) 

Within each phase of CWA, there is a modeling technique that is commonly used to 

model cognitive work. These modeling techniques are: 

1. Abstraction Hierarchy (AH) 

2. Decision Ladders (DL) 

3. Information Flow Map (IFM) 

4. Information Flow Map (IFM) 

5. Skill, Rule, and Knowledge-based Inventory (SRK) 
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2.5.1 Cognitive Work Analysis Structure Modeled using SysML 

The first step in constructing a System Modeling Language (SysML) Cognitive 

Work Analysis (CWA) framework is to build the CWA structure. The CWA structure 

provides a way to organize the analysis. The CWA structure is created in a Block 

Definition Diagram (BDD) using blocks to represent the five phase of CWA. In addition, 

flow arrows between the block diagrams show the exchange of information between 

each phase. Also, each block includes a description of the attributes of each CWA 

phase. Within each of the blocks is an Internal Block Diagram (IBD). More detail about 

each of the CWA phases is decomposed in the IBD. Figure 18 shows a CWA structure. 

The CWA structure illustrates the five CWA phases and shows the information 

exchanged between phases. 

2.5.2 Work Domain Analysis Modeled using SysML 

 The first phase is Work Domain Analysis (WDA). This phase contains the 

physical and/or intentional constraints. The WDA determines what can be accomplished 

within the boundaries of the sociotechnical system. The Abstraction Hierarchy (AH) is 

the method used to determine the functional purpose and physical components of a 

system. Elements at highest level of the AH model define the purposes and goals of the 

system. Elements at the lowest levels of the model indicate and describe the physical 

components of the system. Figure 18 presents users with an overview of the CWA 
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structure. A description of the attributes of each phase of the CWA process is located in 

each block. Within the Work Domain Analysis block is a window that contains the  
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Figure 18: An Example of a CWA Structure
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Abstraction Hierarchy (AH), which is the model that is used in the WDA phase. Figure 

19 shows an AH model created using SysML. Figure 19 was modeled with SysML 

blocks, constraint property, and part diagrams. More blocks, constraints property, and 

parts will be added to actual systems being designed. 

 

Figure 19: An Absraction Hierarchy Model Created using SysML 
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2.5.3 Control Task Analysis Modeled using SysML 

The second phase of the CWA framework is Control Task Analysis (ConTA). 

ConTA covers what needs to be done within the limits of the work domain. The Decision 

Ladders (DL) tool is used to model the second phase. A DL shows the alternative 

courses of action for a particular decision. It is a useful way of representing detailed 

process knowledge. An example of a decision ladder is shown in Figure 21. In order to 

complete the General Function, the tasks in DL have to be completed. The user will use 

the physical functions and components from the AH to accomplish the tasks. Not every 

step in the DL process has to be accomplished in order to execute the completion of the 

General Function. This provides flexibility to the user for unanticipated events or 

adaptive learning. 

 Figure 18, Figure 20, and Figure 21 shows the ConTA phase of CWA created 

using SysML. Figure 18 presents users with the CWA structure. Within the ConTA on 

the CWA structure is a Internal Block Diagram (IBD) that contains all the control tasks 

for one general function. Each general function from the Abstraction Hierarchy will have 

an IBD created in the ConTA block on the CWA structure (i.e., Figure 18). 

 Figure 20 represents the general function and its associated control tasks. The 

model in Figure 20 is called the control task structure. The structure is modeled with 

blocks and a dependency relationship. Each control task block will have a state 

machine diagram (STM) attached to it. The STM icon will be located in the upper right 

corner of the block. The STM is used to model the DL. 
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 Figure 21 shows the DL modeled using SysML. The DL is composed of 

information processing activities and knowledge states. Information processing activities 

are the mental or cognitive activities system operators must utilize to complete a task. 

Knowledge states are the results of the information processing activities. Send action 

and state elements are used to represent information processing activities and 

knowledge states, respectively. 

 

Figure 20: Internal Block Diagram of one General Function and three Control Tasks 
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Figure 21: A Decision Ladder Created using SysML 
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2.5.4 Strategies Analysis Modeled using SysML 

The Strategies Analysis is the next phase in the CWA framework. The purpose of 

Strategies Analysis is to determine which actions are necessary to achieve the control 

tasks. The same control task can be completed in a variety of ways using different 

cognitive strategies. Information Flow Maps (IFM) are graphical representations of 

information processing activities that depict how a user can perform a sequence of 

tasks to reach an end goal. The successful execution of a strategy allows for the 

completion of a control task. By performing one of the strategies, the user completes the 

control task. By completing the control tasks, the user satisfies the functional purpose of 

the system. 

Figure 22 and Figure 23 show the Strategies Analysis (SA) phase of the CWA 

framework created using SysML. Within the SA phase on the CWA structure (i.e., 

Figure 18) is an IBD that contains a general function, control tasks and user strategies. 

The IBD is called the SA structure. The SA structure provides the capability to organize 

and manage all general functions, user control tasks, and strategies. This capability 

becomes more critical for a larger, more complex analysis and is one of the major 

advantages of using SysML. 

 Figure 22 shows a generic SA structure. Each general function from the AH will 

be an Internal Block Diagram (IBD) to the SA block on the CWA structure on Figure 18. 

The general function is decomposed into control tasks. The control tasks are 

decomposed into strategies. SysML block elements are used to represent the general 
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functions, the control tasks, and the strategies. Dependency arrows are used to 

represent the relationships between the general function and the control task blocks. 

Flow lines are used to represent the relationship between control tasks and the strategy 

blocks. Each strategy block has a State Machine Diagram(STM) attached to it. The 

STM icon is located in the upper right corner of the block. The STM is used to model the 

Information Flow Maps. 

 

Figure 22: A Template of a SA Structure 
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Figure 23 shows a generic Information Flow Map (IFM) created using SysML. 

The third step is to add a State Machine (STM) diagram to each strategy block. The IFM 

will be constructed in the STM diagram. Send action elements and state elements are 

used to represent the information processing activities and knowledge states, 

respectively. 

 

Figure 23: A Template of an IFM 
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2.5.5 Social Organization and Cooperation Analysis Modeled using SysML 

The Social Organization and Cooperation Analysis (SOCA) phase determines 

who will carry out the work and how it will be shared. IFM identifies the users and their 

roles. In general, the SOCA answers the question of who will do what tasks by 

allocating responsibility among actors. The IFM tool is typically employed in this phase 

of the CWA framework. In the CWA framework, use case diagrams are applied to the 

SOCA phase. 

 Figure 24 and Figure 25 shows the Social Organization & Cooperation Analysis 

(SOCA) phase of the CWA framework created using SysML use case elements. Within 

the SOCA phase of the CWA structure in Figure 18 is an IBD that contains a generic 

general function, a control task, and a strategy for completing one control task. Each 

general function from the AH will be an Internal Block Diagram (IBD) of the SOCA block 

of the CWA structure on Figure 18. The general function will be decomposed into 

control tasks. The control tasks will be decomposed into strategies. SysML block 

elements are used to represent the general functions, the control tasks, and the 

strategies. Dependency arrows will be used to represent the relationships between the 

general function and the control task blocks. Flow lines will be used to represent the 

relationship between control tasks and the strategy blocks. Each control task and 

strategy block will have a State Machine Diagram (STM) attached to it. The STM icon 

will be located in the upper right corner of the block. The STM is utilized to model the 

Decision Ladder (DL) and the Information Flow Maps (IFM). As stated before, the 
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ConTA, SA, and now SOCA structure are all information management tools and critical 

for large, complex system analysis. 

 

Figure 24: A Template of a Social Organization and Cooperation Analysis Structure 

 The use case diagram will be modeled with information processing activities and 

knowledge states from the Strategies Analysis phase. The actors will be based on 

information acquired from interviews with subject matter experts. The model elements 

will include actors and use cases to represent the user and the system, respectively.  

Figure 25 shows a generic CWA Use Case Diagram. 
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Figure 25: A Template of a CWA Use Case Diagram. 

2.5.6 Worker Competencies Analysis Modeled using SysML 

  The final phase of the CWA framework is the Worker Competencies Analysis 

(WCA) phase, which contains the level of conscious effort of the users when completing 

an information processing activity. The level of conscious effort determines the physical, 

perceptual, and cognitive demands placed on the worker using the system. Skill, Rule, 

and Knowledge-based (SRK) inventory is the modeling tool used in this phase. SRK 
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ascertains the level of conscious effort an individual uses when processing information. 

The skill-based category requires almost no conscious effort when completing a task. 

For example, when a person is approaching a red traffic light while driving, they 

instinctually step on the brakes. The rule-based category is centered on the rules of the 

organization or the proper procedures learned in training. The knowledge-based 

category requires a high level of conscious effort to complete a task. Examples include 

when a person learns to drives a car for the first time or when a worker encounters an 

unanticipated event. 

Figure 26 and Figure 27 show the Workers Competencies Analysis (WCA) phase 

of the CWA framework created using SysML. Within the WCA phase on the CWA 

framework is an IBD that contains a general function, a control task, and a user strategy. 

Each general function from the AH will be an Internal Block Diagram (IBD) to the WCA 

block of the CWA structure on Figure 18. The general function will be decomposed into 

control tasks. The control tasks will be decomposed into strategies. SysML block 

elements are used to represent the general functions, the control tasks, and the 

strategies. Dependency arrows will be used to represent the relationships between the 

general function and the control task blocks. Flow lines will be used to represent the 

relationship between control tasks and the strategy blocks. Each control task and 

strategy block will have a State Machine Diagram (STM) attached to it. The STM icon 

will be located in the upper right corner of the block. The STM is utilized to model the 

Decision Ladder (DL) and the Information Flow Maps (IFM). As stated before, the 
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ConTA, SA, and now SOCA structure are all information management tools and critical 

for large, complex system analysis. Finally, the general function block of the WCA 

structure is attached to a activity diagram (ACT). The ACT icon will be located in the 

upper right corner of the block. The ACT is utilized to model the Skill, Rule, and 

Knowledge (SRK) inventory. 

 

Figure 26: A Template for a Worker Competencies Analysis Structure 

 Figure 27 shows a generic SRK inventory model. There should be an activity 

diagram for each general function. SysML swimlanes, send actions, and action 

elements will be utilized to represent the level of cognitive behavior (i.e., Skill-Based 

Behavior (SBB), Rule-Based Behavior (RBB), Knowledge-Based Behavior (KBB)), the 
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information processing activities from the Control Task Analysis and Strategies Analysis 

phases, and the level of knowledge required by the user. The SysML swimlanes 

represent levels of cognitive behavior. The send action elements are used to represent 

information processing activities from the control task analysis and strategies analysis 

phases. Finally, the action elements are used to represent the level of knowledge 

required by the user. 

2.6 Literature Review Summary 

In conclusion, the CWA framework approach provides an interrelated set of 

methodologies that describe the different attributes of a system. SysML visually 

demonstrates the interrelated links between each phase of the CWA framework. 

Chapter two reviewed the literature materials related to systems engineering, CWA, and 

SysML. The literature review for systems engineering reveals the need to develop tools 

and methods to address the challenges of complexity, understanding, and 

communication that exist in system design. The literature review of SysML 

demonstrates a need for a method of defining cognitive work requirements using SysML. 

None of the numerous published materials contain the capability to bridge the gap of 

incorporating cognitive work requirements into the systems engineering process. 
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Figure 27: A Template of a Skill, Rule, and Knowledge Inventory Model
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CHAPTER THREE: METHODOLOGY 

Human work is becoming more cognitive and less physical. Evolving 

technologies such as smartphones, cloud computing, and enterprise resource planning 

have increased the number of cognitive tasks a person will perform in the work 

environment. The evolution of the work environment amplifies the need for cognitive 

analysis in the systems engineering process. The lack of cognitive factors in system 

design leads to systems that do not fully leverage the cognitive strengths of the human 

user or compensate for their limitations (Stoner et al., 2006). The proposed framework 

can fill this gap by providing systems engineers with a holistic tool that will guide them 

through the process of incorporating  cognitive work requirements into their system 

designs. 

The addition of a CWA framework implemented within SysML ensures that the 

roles and needs of human users are addressed during system development. Because 

of the diversity of available tools, it can be overwhelming for systems engineers to 

locate and select the right tools. One option would be to minimize the number of tools 

needed, while maximizing the number of areas of interest that the tools would address. 

CWA can potentially increase the number of areas of interest evaluated by one tool. 
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3.1 Development of Cognitive Work Analysis Tutorial using SysML 

3.1.1 Step 1: Create an Outline 

The tutorial is intended to provide a set of guidelines to assist systems engineers 

with the integration of cognitive work requirements into the systems engineering 

process. 

The first step in the process of developing this tutorial is to make an outline. The 

outline will form the navigation element in the CWA Tutorial (CWAT). The outline will 

identify the main topics of the tutorial. Figure 28 shows a draft outline of the tutorial 

created in SysML. A SysML Block Definition Diagram (BDD) is used to represent the 

content page of the tutorial. Within each of the blocks is an Internal Block Diagram (IBD) 

or BDD that provides more information on the section the user wants to review. 

3.1.2 Step 2: Model Introduction Section 

3.1.2.1 Overview of the Cognitive Work Analysis Framework 

 The introduction will provide a summary of the CWA framework. The summary 

will use SysML diagrams to present the user a description of CWA, the applications 

CWA, the objectives of this tutorial, and a list of acronyms. Figure 29 is the first page of 

the introduction section. It shows a description of each phase of CWA. 
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Figure 28: Cognitive Work Analysis Tutorial Outline
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Figure 29: CWAT High Level View 
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A SysML BDD is used to represent a high-level view of CWA. Blocks are used to 

represent each CWA phase. The diamond- and arrow-tipped lines are directed 

composition relationships. These relationships show that WDA, ConTA, SA, SOCA and 

WCA are part of CWA, which is the whole. The number 1 or 0 is used to represent a 

state existence. The number 1 means that the part end must always be part of the 

whole end to exist. The number 0 means that the part end can exist without the whole 

end. 

Within the CWA block on Figure 29 is an IBD that contains information about 

what is CWA, tutorial objectives, uses for CWA framework, a list of acronyms and 

definitions. Figure 30 shows the IBD of the CWA block of Figure 28. Figure 30 will 

contain text and graphics. No SysML diagrams will be used in this IBD. 

54

What is CWA?

Why is this tutorial useful? 

What can this Framework be used for?

What are the objectives of this tutorial? 

List of definitions 

List of acronyms  

 

Figure 30: Internal Block Diagram Introduction to CWA 



96 

 

The CWA block in Figure 31 has another IBD, which contains the flow of 

information between the different phases of CWA and the sequence in which the 

phases should be completed. Figure 31 uses blocks and flow arrows to illustrate the 

flow of information between CWA phases. Each flow arrow contains the information 

being transferred to each CWA phase. The numbers above the blocks represent the 

order in which each phase should be done. 

3.1.3 Step 3: Detailed Description of the CWA Framework 

3.1.3.1 Align CWA Models to SysML Diagrams 

 The next section of the tutorial provides a detailed description of CWA and 

translates CWA terminology into SysML diagrams. A tutorial will not be useful to 

systems engineers if it is full of technical language that only cognitive engineers 

understand. The translation of CWA into SysML will enhance a systems engineer’s 

ability to grasp the CWA process. When the user enters this section from the contents 

page, he will see an IBD diagram similar to Figure 31. The user can select any block 

and view the IBD of the each CWA phase. For example, Figure 32 shows the IBD for 

the WDA block in Figure 31. The user will get a text and image description for WDA. In 

addition, SysML diagrams will be used to represent the components of the model of 

each phase. In this case, Figure 32 will have an Abstraction Hierarchy (AH) converted 

into SysML diagrams. To build the AH in SysML, blocks, constraints block, and part 

diagrams as well as association lines will be used.
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Figure 31: CWAT Framework Process Flow View
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Each SysML diagram will be embedded with a description or definition that will inform 

systems engineers of the diagram’s uses and significance. 

56

 

Figure 32: Work Domain Analysis Tutorial 

3.1.4 Step 4: Construct CWA Process Flow Chart 

3.1.4.1 Create CWA Process Flow Chart using Activity Diagram 

The process flow section of the tutorial begins with a CWA framework process 

flow view similar to Figure 32. A process flowchart will promote understanding of the 

CWA model building process by using graphical symbols to depict the flow of the steps 
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in the process. The user can review any CWA phase process flow chart by entering into 

the corresponding activity diagram. For example, the user can click on the activity 

diagram symbol on the WDA block on CWA framework process flow and view Figure 33. 

59

 

Figure 33: Work Domain Analysis Process Flow Chart 

Figure 33 shows an activity diagram. It is composed of initial flow symbol, action 

blocks, control flow arrows, and an activity final symbol. The initial flow represents the 

start of the process. The action blocks represent functions of the process. The control 

flow arrows represent the transition from state to another. The activity final symbol 

represents the completion of the process. In addition, each action will contain sample 

questions for the knowledge elicitation aspect of CWA. Usually the user will have to 
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interview a domain expert about the domain of interest and how the expert performs his 

tasks. The success of the interview session depends on the questions asked. 

3.1.5 Step 5: CWA Use Case 

 The CWA use case section will provide systems engineers with knowledge 

requirements to do CWA. This section will help systems engineers select the 

appropriate personnel to conduct a CWA. Additionally, this tutorial will inform and 

support a system engineer’s ability to coordinate the efforts of the CWA team. 

3.1.6 Step 6: Construct Template CWA Framework Model 

The final section of the CWAT will use appropriate SysML diagrams to represent 

CWA models. Figure 34 shows the first screen the user will view. From this screen, the 

user can navigate to the CWA phase of interest to view the template models. 

Figure 35 shows a template AH model. It is the IBD of the WDA in Figure 34. It is 

composed of SysML block, constraint property, dependency lines and part diagrams. 

The template models can be copied and pasted into a model that the user is developing. 

Once the template models are copied, the user can modified the models to the system 

being developed. 
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Figure 34: Template CWA
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Figure 35: Template Abstraction Hierarchy Model 

3.2 Methodology Summary 

 The goal of this research is to provide a set of guidelines to assist systems 

engineers with the integration of cognitive work requirements into the systems 

engineering process. Chapter 3 illustrates how a tutorial will be developed to inform 

users about the purpose of CWA, the SysML diagrams used to construct the CWA 

framework in SysML and the CWA construction process flow. The tutorial will be 
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constructed in SysML using appropriate diagrams to translate CWA terminology to 

SysML terminology for systems engineers to comprehend. 
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CHAPTER FOUR: RESULTS  

 This chapter describes and illustrates the Cognitive Work Analysis Tutorial 

(CWAT) that was developed using System Modeling Language. A walk-through of 

tutorial screenshots will be used to describe the CWAT. 

4.1 Cognitive Work Analysis Tutorial Introduction Section 

 The CWAT is composed of seven sections. The seven sections are as follows: 

1. An Introduction to Cognitive Work Analysis 

2. A Detailed Five-Phase Description 

3. Cognitive Work Analysis Process Flow Chart 

4. CWA Terminal Radar Approach Control Example 

5. CWA Automated Teller Machine Example 

6. Cognitive Team Competency Requirements  

7. Tutorial References 

 The introduction section contains a general overview of what CWA is and how it 

is used. The detailed five-phase description contains a model-based and text-based 

description of the five phases of CWA as well as a translation of CWA terminology into 

SysML diagrams. The third section contains a process flow chart for conducting CWA. 

The CWA Terminal Radar Approach Control (TRACON) example section demonstrates 

the methodology on an existing system. The fifth section focuses on the ability to collect 

information that is necessary to construct a CWA framework using SysML. The CWA 
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competency requirements contain information on qualifications for assembling a 

cognitive factors team. The final section provides additional sources of information 

about Cognitive Work Analysis. Furthermore, elements of the references were used to 

create the CWAT. 

4.1.1 Title Page 

 The title page states the purpose of the CWAT as well as how to navigate and 

view the tutorial. The tutorial was constructed to provide a set of guidelines to assist 

systems engineers and other system designers with the integration of cognitive work 

requirements into the systems engineering process. Figure 36 shows a screenshot of 

the title page. The title page was constructed using a Block Definition Diagram (BDD). 

The Next button, located at the bottom left of the page, is hyperlinked to the section 

outline page, which is the next page in the tutorial. 
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Figure 36: Title Page of Cognitive Work Analysis Tutorial 
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4.1.2 Outline 

 The outline identifies the main topics of the tutorial. Figure 37 illustrates the 

tutorial outline created in SysML. The outline was constructed in a SysML Block 

Definition Diagram (BDD). Block diagrams are used to represent the each section of the 

CWAT. Within each of the blocks is an Internal Block Diagram (IBD) that provides more 

information on the section the user wants to review. The section numbers are 

hyperlinked to the corresponding section. To navigate the CWAT, use the Previous, 

Next, and Outline buttons located at the bottom left of the page. The buttons are 

hyperlinked to the last page viewed, the ensuing page in the tutorial, and the outline 

page, respectively. 

4.2 CWAT Introduction Section 

 The first section of the CWAT is the introduction section, which provides a model-

based high-level view of the CWA structure and a text-based summary of the CWA 

framework. The high-level view is constructed in a BDD. Block diagrams are used to 

represent CWA and the composition of CWA. Figure 38 illustrates the high-level view of 

the CWA structure. The relationship that exists between CWA and the CWA phase is a 

directed composition. A directed composition in SysML is represented by a line with an 

arrow on one end and a diamond shape on the other. A directed composition is a 

relationship that exists between a block and a block that is part of that block. Directed 
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meaning “one-direction” relationship and composition meaning “composed of.” The 

diamond- and arrow-tipped line represents a directed composition relationship. 
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Figure 37: CWAT Outline 

This relationship shows that WDA, ConTA, SA, SOCA, and WCA blocks are 

parts of the CWA block, which is the whole. To navigate the CWAT the end user will 

utilize the Previous, Next, and Outline buttons located at the bottom left of the page. 

The buttons are hyperlinked to the last page viewed, the ensuing page, and the outline 

page in the tutorial, respectively. 
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Figure 38: CWAT Framework High Level View 

 The CWA text-based summary is an IBD of the CWA block in Figure 39. The 

CWA summary presents the user with a description of CWA, the applications of CWA, 

and the objectives of this tutorial. Figure 39 shows the text-based description of CWA. 

4.3 CWAT Detailed Description Section 

 Section two of the CWAT provides a detailed description of each phase of CWA 

and translates CWA terminology into SysML diagrams. A tutorial will not be useful to 

systems engineers if it is full of technical language that only cognitive engineers 

understand. 

4.3.1 CWAT Sequence and Information Exchange 

 Figure 40 shows an IBD for the CWA block in Figure 38. This IBD contains the 

flow of information between the different phases of CWA and the sequence in which the 

phases should be completed. Figure 40 uses blocks and flow arrows to illustrate the 

flow of information between CWA phases. Each phase is represented with a different 

color. Each flow arrow contains the information being transferred to each CWA phase. 

The information being transferred is written above the flow line. The numbers above the 

blocks represent the order in which each phase should be done. Each block contains 

attributes and operations for each CWA phase. The attributes describe the components 

of each phases. The operations describe the task that should be performed for each 
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phase. Table 4 to Table 13 contain all the attributes and operations descriptions used 

within 

 

Figure 39: Introduction to CWA in an Internal Block Diagram 
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the SysML diagrams. In addition, part of the operation descriptions contains sample 

questions for the knowledge elicitation aspect of CWA. Usually the user of the tutorial 

will have to conduct interviews of domain experts. The user will ask questions about the 

domain of interest and how the experts perform tasks. The success of the interview 

session depends on the questions asked.
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Figure 40: CWAT Framework Process Flow View
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Table 4: Work Domain Analysis Operations Description 

WDA Operations Description 

Knowledge 
elicitation from 
SMEs 

Interviews with subject matter experts will have to be performed to 
construct each level of the Abstraction Hierarchy. Questions may 
include, but are not limited to, the following: 
o What are the main goals of the expected system? 
o What might get in the way of achieving set goals? 
o What do you have to do to obtain the goals? 
o What resources are required to help reach goals? 
o What regulations/policies are necessary in the work domain? 

Review similar 
legacy system 
documents 

Reviewing legacy system references creates a starting point for 
system designers. It helps to identify the physical equipment, the 
goals, the functions, and the policy constraints of the system. 
These documents include, but are not limited to, instructions and 
operating manuals for the system. 

Observe domain 
experts   

Observe domain experts engaged in activities that could be 
associated with the new system. 

Populate 
abstraction 
hierarchy 

Once interviews and documentation reviews are completed, the 
Abstraction Hierarchy can be populated with the appropriate data 
for each level. SysML blocks are used to represent the data at the 
different levels of the Abstraction Hierarchy. 

Create means/ends 
relationships  

Each level is connected by means-ends relationships. The means 
are a level below the ends. For example, the general function is 
the means for the abstract function. The lower levels describe the 
actions, components, or parameters that are necessary for 
achieving the ends or upper levels of the AH. After the Abstraction 
Hierarchy blocks are filled with the appropriate data, each block 
will be connected by SysML dependency lines. 

Add descriptions A detailed description should be added to each diagram. 
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Table 5: Work Domain Analysis Attributes Description 

WDA Attributes Description 

Functional Purpose The functional purpose describes the reasons the system exists. 

 Abstract Function The abstract function level describes the performance parameters 
required for the system to meet its intended purpose. 

General Function The general function level describes the basic work functions of 
the system. 

Physical Function The physical function defines the equipment, tools, resources, 
and/or physical objects available for the system.   

Physical 
Components 

The physical component level describes the sub-components of 
the equipment, tools, resources, and/or physical objects available 
for the system. 
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Table 6: Control Task Analysis Operations Description 
ConTA 
Operations Description 

Identify user tasks 

Use interviews and other knowledge elicitation methods with 
subject matter experts to construct each level of the Decision 
Ladder. The most common knowledge elicitation method is 
directly questioning domain experts on how they conduct their 
jobs and the tasks necessary to successfully complete their jobs. 
Questions may include, but are not limited to, the following: 
o What are some of the steps taken to achieve a task? 
o What kinds of events can act as alerts? 
o What kinds of data or facts are available? 
o What kinds of assessments about the system’s condition or 
situation are possible with the information? 
o What kinds of choices or alternatives are available for the 
system’s desired or target state? 
o What kinds of aims or objectives can be relevant or influence 
decisions? 
o What kinds of target states are possible? 
o What kinds of tasks are necessary and what kinds of resources 
are available? 
o What kinds of procedures or sequences of steps are 
necessary? 

Describe cognitive 
activities 

Interview domain experts to describe cognitive activities required 
to complete a system task. 

Identify leaps and 
shunts 

During subject matter experts interviews, identify shortcuts 
experts would use when completing a task. 

Populate decision 
ladder templates 

Once interviews are completed, the Decision Ladder can be 
populated with the appropriate data for each step on the ladder. 
Use SysML state machine diagrams. Send Action and State 
diagrams are used to represent the information processing 
activities and knowledge states at the different steps in the 
Decision Ladder. 

Add descriptions A detailed description should be added to each diagram. 
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Table 7: Control Task Analysis Attributes Description 

ConTA Attributes Description 

Information 
processing 
activities 

Information processing activities are the mental or cognitive 
activities system operators must utilize to complete a task.  

Knowledge states States of knowledge are the result of information processing 
activities. 

 
Table 8: Strategies Analysis Operations Description 

SA Operations Description 

Describe user 
strategies to 
complete task  

Use interviews and other knowledge elicitation methods with 
subject matter experts to construct each level of the Decision 
Ladder. The most common knowledge elicitation method is directly 
questioning domain experts on the course of action used to 
complete a task. Questions may include, but are not limited to, the 
following: 
o What are some of the possible strategies that can be used to 
complete a task? 
o Which of the strategies mentioned before would most system 
operators use to complete a task? 
o What steps would a system novice use to complete a task? 
o What steps would a system expert use to complete a task? 

Construct 
Information flow 
maps  

Use data collected during interviews to construct information flow 
maps. Use SysML state machine diagrams. Send Action and State 
diagrams are used to represent the information processing 
activities and knowledge states respectively. 

Add descriptions  A detailed description should be added to each diagram. 
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Table 9: Strategies Analysis Attributes Description 

SA Attributes Description 

Information 
processing 
activities 

Information processing activities are the mental or cognitive 
activities system operators must utilize to complete a task.  

Knowledge states States of knowledge are the result of information processing 
activities. 

 
Table 10: Social Organization and Cooperation Analysis Operations Description 

SOCA Operations Description 

Evaluate actors’ 
strengths and 
weaknesses  

Use interviews and other knowledge elicitation methods with 
subject matter experts to identify actors and assign task 
responsibilities. The most common knowledge elicitation method is 
directly questioning domain experts about who will do what tasks. 
The tasks are the result of the Strategies analysis phase. 
Questions may include, but are not limited to, the following: 
o Describe the various teams using the system? 
o How do you allocate responsibilities for each person? 
o Who depends on who for help to complete a task? 
o What is the specific role of each team member? 
o How are decisions usually made? 

Construct use 
case diagrams 

Use data collected during interviews and information processing 
activities and knowledge states from the Strategies Analysis phase 
to construct use case diagrams. Use SysML use case diagrams. 
Actors and Use case diagrams are used to represent the system 
users, information processing activities, and knowledge states. 
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Table 11: Social Organization and Cooperation Analysis Attributes Description 

SOCA Attributes Description 
Information 
Processing 
Activities 

Information processing activities are the mental or cognitive 
activities system operators must utilize to complete a task.  

Knowledge States States of knowledge are the result of information processing 
activities. 

Actors Specify a role played by a person or thing when interacting with a 
system.  

 
Table 12: Worker Competencies Analysis Operations Description 

WCA Operations Description 

Describe skill-, 
rule-, or 
knowledge-based 
behavior   

Use interviews and other knowledge elicitation methods with subject 
matter experts to identify the level of knowledge required by the user 
to complete information processing activities. The most common 
knowledge elicitation method is direct questioning of domain 
experts. The information processing activities are the result of the 
Control Task Analysis and Strategies Analysis phases. Questions 
may include, but are not limited to, the following: 
o What information does the user have to know in order to complete 
the information processing activities? 
o What rules, regulations, or policies does the user need to know? 
o What problem solving procedures will the user have to be familiar 
with? 

Construct Skill, 
Rule Knowledge 
inventory diagram  

The information processing activities come from the Control Task 
Analysis and Strategies Analysis phases. 
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Information 
processing 
activities input 

Use data collected during interviews and information processing 
activities from the Control Task Analysis and Strategies Analysis 
phases to construct a Skill, Rule and Knowledge Inventory diagram. 
Use SysML swimlanes, Send Action diagrams and Action diagrams 
to represent the level of cognitive behavior (i.e., Skill-Based 
Behavior (SBB), Rule-Based Behavior (RBB), Knowledge-Based 
Behavior (KBB)), information processing activities from the Control 
Task Analysis and Strategies Analysis phases, and level of 
knowledge required by the user, respectively. 

 
Table 13: Workers’ Competencies Analysis Attributes Description 

WCA Attributes Description 

Skill-Based 
Behavior (SBB) 

A skill-based behavior requires very little conscious effort to perform 
a task. Using a mouse to move a cursor is an example of a skill-
based behavior.  

Rule-Based 
Behavior (RBB) 

A rule-based behavior is based on the rules and/or procedures 
established by an organization. For example, user instructions or 
regulatory authority rules necessary to complete a task or use 
equipment.  

Knowledge-Based 
Behavior (KBB) 

A knowledge-based behavior requires the highest level of 
conscious effort to complete a task. An example of a knowledge-
based behavior is a pilot response to losing both engines due to 
bird strikes and landing the airplane in the Hudson River.  

Information 
processing activity 

Information processing activities are the mental or cognitive 
activities system operators must utilize to complete a task.  
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4.3.2 CWAT Abstraction Hierarchy 

Figure 41 shows a detailed view of the Abstraction Hierarchy (AH) modeling tool 

available in the WDA phase of CWA. The AH has several levels of abstraction and 

requires a variety of diagrams to build. To build the AH in SysML, blocks, constraints 

properties, and part diagrams as well as dependency association lines are used. The 

functional purpose and general function levels is represented with block diagrams. The 

abstract function level is represented with constraint property diagrams. The physical 

function and physical component levels are represented with part diagrams. The SysML 

diagrams are embed with a description that informs systems engineers of the diagram 

uses and significance. In addition, the higher level of abstraction depends on the lower 

level of abstraction, therefore a dependency association is used to show the relationship. 

The dependency association is represented with dash lines with arrows at the end. 

Finally, there is also a text-based description of the AH and a translation of AH 

terminology to SysML diagrams.
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Figure 41: A Model-Based and Text-Based Description of an Abstraction Hierarchy
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4.3.3 CWAT Decision Ladder 

 The next topic in the tutorial is the Control Task Analysis (ConTA) phase of CWA. 

Figure 42 shows a detailed description of the Decision Ladder (DL) modeling tool 

available in the ConTA phase of CWA. Figure 42 illustrates the SysML diagram 

representation of the DL. It is constructed using a state machine diagram. The DL is 

composed of information processing activities and knowledge states. They are 

represented by send action and state diagrams respectively. The blue numbers in 

Figure 42 shows the process steps’ potential order in the DL. These numbers are a 

guide, not a strict sequence to follow. Different levels of user expertise and knowledge 

will yield different courses of action or shortcuts taken by the user. For example, an 

expert may do steps 3, 4, 7, and 8. In contrast, a novice may do all the steps. The red 

arrows are transition lines and illustrate the transitional relationships between the 

information processing activities and knowledge states. Finally, there is the text-based 

description of the DL and a translation of DL terminology into SysML diagrams. Figure 

43 shows a text-based of the ConTA phase and the DL. It is located on the same 

screen as Figure 42. 
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Figure 42: A Model-Based Description of a Decision Ladder 
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Figure 43: A Text-Based Description of a Decision Ladder 
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 4.3.4 CWAT Information Flow Maps 

 The next topic in the tutorial is the Strategies Analysis (SA) phase of CWA. 

Figure 44 shows a detailed description of the Information Flow Map (IFM) modeling tool 

available in the SA phase of CWA. Figure 44 illustrates a SysML diagram 

representation of the IFM. It is constructed using a state machine diagram. The purpose 

of the IFM is to investigate the different ways in which each of the control tasks from the 

ConTA phase could be accomplished. The IFM is composed of information processing 

activities and knowledge states. They are represented by send action and state 

diagrams respectively. The red arrows are transition lines and illustrate the transitional 

relationships between the information processing activities and knowledge states. 

Finally, there is the text-based description of the IFM and a translation of IFM 

terminology into SysML diagrams. 
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Figure 44: A Model Based and Text-basedd Description of an Information Flow Map
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4.3.5 CWAT Use Case 

 The next topic in the tutorial is the Social Organization and Cooperation Analysis 

(SOCA) phase of CWA. Figure 45 shows a detailed description of the SysML use case 

(UC) modeling tool available in the SOCA phase of CWA. Figure 45 illustrates a SysML 

use case diagram of the IFM from the SA phase. The UC is composed of information 

processing activities, knowledge states, and actors. UC diagrams are used to represent 

the information processing activities and knowledge states, while actor diagrams are 

used to represent the actors that interact with the system. The red lines are used to 

show the relationships between actors and the UC. Association lines are used to show 

an interaction between two actors and a use case. Several other types of relationships 

can be used in the SysML UC diagrams. There are generalization, specialization, 

extend, include, and flow relationships. Finally, there is the text-based description of the 

UC and a translation of SOCA phase terminology into SysML diagrams.
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Figure 45: A Model Based and Text-basedd Description of an Use Case
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 4.3.6 CWAT Skill, Rule, and Knowledge Inventory 

 The final topic in section 2 of the CWAT is the Worker Competencies Analysis 

(WCA) phase of CWA. Figure 46 illustrates an Activity diagram that provides a model-

based description of the Skill, Rule, and Knowledge (SRK) inventory modeling tool. This 

modeling illustrates the knowledge and skill required to complete an information 

processing activity. The SRK inventory is composed of information processing activities 

and three psychological processes (i.e., skill-, rule-, or knowledge-based behavior). The 

SRK inventory is created using the swimlane diagrams available in SysML. The 

swimlanes are divided into information processing activities and skill-based, rule-based, 

and knowledge-based behavior lanes. Send action diagrams are used to represent the 

information processing activities.  While action diagrams are used to represent the skill-, 

rule-, and knowledge-based behaviors. The red lines are control flow lines. The control 

flow lines show the relationship between the  information processing activity and the 

Skill-, Rule-, and Knowledge-Based Behaviors. The control flow lines show the 

transition from information processing activity to the three psychological processes. 

Each psychological process is a level of competency required by the system end user to 

complete an information processing activity.
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Figure 46: A Model Based Description of the Skill, Rule, and Knowledge Inventory
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Finally,  

Figure 47 shows a text-based description of the SRK inventory and a translation of SRK 

inventory terminology into SysML diagrams. 

 

Figure 47: A Text-Based Description of the Skill, Rule, and Knowledge Inventory 
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4.4 Process Flow Charts Section 

 The process flow charts section of the tutorial begins with a CWAT process flow 

overview. Figure 48 illustrates the CWAT process flow overview. The process flow chart 

promotes understanding of the CWA model-building process by using graphical 

symbols to depict the flow of the steps in the process. The user can review any CWA 

phase process flow chart by entering into the corresponding activity diagram. For 

example, the user can click on the activity diagram symbol on the WDA block on CWAT 

process flow and view Figure 48. 

 The CWAT process flow chart overview is constructed similarly to Figure 40 with 

the exception of the activity diagrams located in the upper right side corner of each 

CWA phase block and the addition of the CWA block. Figure 40 illustrates an IBD for 

the CWA Process Flow Chart  block in Figure 37. This IBD contains the flow of 

information between the different phases of CWA and the sequence in which the 

phases should be completed. Figure 48 uses blocks and flow arrows to illustrate the 

flow of information between CWA phases. Each phase is represented by a different 

color. Each flow arrow contains the information being transferred to each CWA phase. 

The information being transferred is written above the flow line. The CWA block has a 

dependency relationship with the five phases. The numbers above the blocks represent 

the order in which each phase should be done. Each block contain attributes and 

operations for each CWA phase. The attributes describe the components of each phase. 

The operations describe the task that should be performed for each phase. In addition, 
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each action diagram will contain sample questions for the knowledge elicitation aspect 

of CWA. Usually the user will have to interview a domain expert about the domain of 

interest and how the expert performs tasks. 

4.4.1 CWAT Process Flow for Constructing a CWA Structure 

 The first step in section three of the CWAT is the construction of a CWA 

structure. Figure 49 illustrates an activity diagram that shows the process for building a 

CWA structure with SysML. It is composed of initial flow symbol, action blocks, control 

flow arrows, and an activity final symbol. The initial flow represents the start of the 

process. The action blocks represent functions of the process. The control flow arrows 

represent the transition from one state to another. The activity final symbol represents 

the completion of the process. Each action block contains a number that corresponds to 

a step in the process. Each step number matches a step in the example image in Figure 

50. Additionally, there are step-by-step instructions located within the description 

section of each action block on the process flow chart. 
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Figure 48: CWAT Process Flow Overview
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Figure 49: Process Flow Chart for Building a Cognitive Work Analysis Structure
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Figure 50: Process Flow Chart Steps for Building a Cognitive Work Analysis Structure



138 

 

 Each action block on Figure 49 contains more detail on how to complete the 

process step associated with that block. The detailed process steps are located in the 

description tab of each action block. The following detailed process steps are contained 

in each action block for constructing a CWA structure: 

1. Use Block Definition Diagram for Cognitive Work Analysis structure. 

a. Go to Tools-->Add New Diagram-->Block Definition Diagram. 

b. Enter name of new diagram. 

2. Insert 5 “blocks” for each CWA phase. 

a. Select the Block icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Repeat step four more times. 

d. To customize block, move cursor over to block and right-click on mouse, then 

select Format and/or Display Options. 

3. Label blocks with names of each phase. 

a. Double-click on block and enter the following phases per block in the 

Name area of the pop-up window: 

• Work Domain Analysis (WDA) 

• Control Task Analysis (ConTA)  

• Strategies Analysis (SA) 
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• Social Organization and Cooperation Analysis (SOCA) 

• Worker Competencies Analysis (WCA) 

4. Insert flow lines. 

a. Select the Flow icon on the right-side menu. 

b. Move cursor over to the Work Domain Analysis block. 

c. Left-click mouse, 

d. Move cursor over to the Control Task Analysis. 

e. Left-click mouse. 

f. Repeat step for other flow lines (From ConTA to SA and WCA, from SA to 

SOCA and WCA.) 

5. Label flow lines with the appropriate exchange of information: 

a. from WDA to ConTA = General Functions; 

b. from ConTA to SA = Control Tasks; 

c. from ConTA to WCA = Information Processing Activities (IPA); 

d. from SA to SOCA = Information Processing Activities and Knowledge 

States (IPA & KS); 
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e. from SA to WCA = Information Processing Activities (IPA); and 

f. from SA to ConTA = Information Processing Activities and Knowledge 

States (IPA & KS). 

4.4.2 CWAT Process Flow for Constructing an Abstraction Hierarchy 

 The second step in section three of the CWAT is the construction of the 

Abstraction Hierarchy (AH). Figure 51 illustrates an activity diagram that shows the 

process for building an AH using SysML. It is composed of the same diagrams as 

Figure 49 (i.e., initial flow symbol, action blocks, control flow arrows, and an activity final 

symbol). The numbers contained in the action blocks in Figure 51 correspond to the 

steps in Figure 52. Each process step number matches a step number in Figure 52. To 

view the diagrams used to create the AH, refer to the CWA detailed description section 

of this dissertation. Additionally, there are step-by-step instructions located within the 

description section of each action block on the process flow chart. Within each action 

block is an explanation of which SysML menus and diagrams to select to complete the 

models. 
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Figure 51: A Process Flow Chart for Building an Abstraction Hierarchy 
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Figure 52: Process Flow Chart Steps for Building an Abstraction Hierarchy 
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 Each action block on Figure 51 contains more detail on how to complete the 

process step associated with that block. The detailed process steps are located in the 

description tab of each action block. The following detailed process steps are contained 

in each action block for constructing an Abstraction Hierarchy: 

1. Insert Internal Block Diagrams (IBD) in the Work Domain Analysis block of the 

CWA structure and construct an Abstraction Hierarchy (AH) in the Work Domain 

Analysis Internal Block Diagram. 

      a. Move cursor over Work Domain Analysis block. 

      b. Right-click mouse. 

      c. Select Add New --> Internal Block Diagram 

2. Use block diagrams to represent the purpose of the system (the top level of the 

AH). 

a. Select the Block icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the primary goals or intention of the system. 

d. Repeat step for additional system purposes. 

3. Use constraint properties diagrams for the 2nd level of the AH. 

a. Select the Constraint Properties icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 
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c. Name and describe system parameters that are required to achieve 

system goals. 

d. Repeat step for additional system constraints. 

4. Use block diagrams to represent the general functions of the system. This is the 

3rd level of the AH. 

a. Select the Block icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the functions of the system in order to achieve the 

system goals. 

d. Repeat step for additional general function. 

5. Use part diagrams to represent system components and sub-components. 

a. Select the Part icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the components of the system. 

d. Repeat step for additional components and sub-components. 

6. Use dependency relationships to represent means-ends relationship. 

a. Select the Dependency icon on the right-side menu. 
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b. Move cursor over to the Purpose block. 

c. Left-click mouse. 

d. Move cursor over to the Constraint Properties icon. 

e. Left-click mouse. 

4.4.3 CWAT Process Flow for Constructing a Decision Ladder 

 The third step in section three of the tutorial is the construction of the Decision 

Ladder (DL). Figure 53 illustrates an activity diagram that shows the process for building 

a DL using SysML. It is composed of an initial flow symbol, action blocks, control flow 

arrows, and an activity final symbol. The numbers contained in the action blocks in 

Figure 53 correspond to the steps in  

Figure 54 and Figure 55. In other words, each process flow chart step number matches 

a step number in 

Figure 54 and Figure 55. To view the diagrams used to create the DL, refer to the CWA 

Detailed Description section of this dissertation. Additionally, there are step-by-step 

instructiosn located within the description section of each action block on the process 

flow chart. Within each action block is an explanation of which SysML menus and 

diagrams to select to complete the models. Figure 53 contains the instruction within 

each process flow chart action block. 
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Figure 53: A Process Flow Chart for Constructing a Decision Ladder 
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Figure 54: Process Flow Chart Steps for Building a Control Task Analysis Structure
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Figure 55: Process Flow Chart Steps for Building a Decision Ladder
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 Each action block on Figure 53 contains more detail on how to complete the 

process step associated with that block. The detailed process steps are located in the 

description tab of each action block. The following detailed process steps are contained 

in each action block for constructing a Decision Ladder: 

1. Insert Internal Block Diagrams (IBD) in the Control Task Analysis block of the 

CWA structure for each general function from the Abstraction Hierarchy. 

      a. Move cursor over the Control Task Analysis block. 

      b. Right-click mouse, 

      c. Select Add New --> Internal Block Diagram. 

2. Use block diagram to represent general function in the ConTA IBD. 

a. Select the Block icon on the right-side menu. 

b. Move the cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the general function. 

3. Use block diagram to represent Control Task below the general function block. 

a. Select the Block icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the Control Task. 

d. Repeat step for additional Control Tasks. 
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4. Relate general function block to control task with dependency relationship.  

 a.  Select the Dependency icon on the Diagram Tools menu located on the  

      right side of screen. 

 b. Move cursor over to the General Function block. 

 c. Left-click mouse. 

 d. Move cursor over to the Control Task block. 

 e. Left-click mouse. 

 f.  Repeat step for each additional Control Task. 

5. Add state machine diagram (STM) to Control Task block. 

a. Move cursor over Control Task block. 

b. Right-click on mouse. 

c. Select Add New --> State Chart. 

6. Construct Decision Ladder (DL) in the Control Task STM diagram. 

a. Refer to Figure 4. 

7. Use Send Action diagrams to represent information processing activities. 

a. Select the Send Action icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the Send Action diagram. 

d. Repeat step for each additional information processing activity. 

8. Use State diagrams to represent knowledge states. 
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a. Select the State icon on the right-side menu 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the State diagram. 

d. Repeat step for each additional knowledge state. 

9. Insert Default Transition at the start of the DL (i.e., Activation Send Action 

diagram). 

a. Select the Default Transition icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Connect  Default Transition to first Send Action diagram. 

10. Use transition arrows for the relationship between information processing 

activities and knowledge states. 

a. Select the Transition icon on the right-side menu. 

b. Move cursor over to the Send Action diagram. 

c. Left-click mouse. 

d. Move cursor over to the State diagram. 

e. Left-click mouse. 

f.  Repeat step for each additional Send Action and State diagram. 

11. Use Termination diagram to indicate completion of determining appropriate tasks 

to satisfy overall goal for the system. 

a. Select the Termination State icon on the right-side menu. 
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b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Connect  Termination State to last State diagram. 

12. Repeat steps 3–11 for each additional control task. 

13. Repeat steps 1–12 for each additional general function. 
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4.4.4 CWAT Process Flow for Constructing an Information Flow Maps 

 The fourth step in the process flow chart section of the tutorial is the construction 

of  an Information Flow Map (IFM). Figure 56 is an activity diagram that presents a 

process flow chart for building an IFM using SysML. The process flow chart is 

composed of the same diagrams used in the previous steps. Finally, each process flow 

chart step number in Figure 56 matches each step number in Figure 57 and Figure 58. 

To view the diagrams used to create the IFM, refer to section 4.3.4 CWAT Information 

Flow Maps. Additionally, there are step-by-step instructions located within the 

description section of each action block on the process flow chart. Within each action 

block is an explanation of which SysML menus and diagrams to select to complete the 

models. 
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Figure 56: A Process Flow Chart for Constructing an Information Flow Map 
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Figure 57: Process Flow Chart Steps for Building a Strategies Analysis Structure 
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Figure 58: Process Flow Chart Steps for Building a Information Flow Maps 

 Each action block on Figure 56 contains more detail on how to complete the 

process step associated with that block. The detailed process steps are located in the 

description tab of each action block. The following detailed process steps are contained 

in each action block for constructing an Information Flow Map: 
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Strategies Analysis 
1. Insert Internal Block Diagrams (IBD) in the Strategies Analysis block of the CWA 

structure for each general function from the Abstraction Hierarchy. 

a. Move cursor over Strategies Analysis block. 

b. Right-click mouse. 

c. Select Add New --> Internal Block Diagram. 

2. Use block diagram to represent general function in the Strategies Analysis (SA) 

IBD. 

a. Select the Block icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse 

c. Name and describe the general function 

3. Use block diagram to represent Control Task below the general function block. 

a. Select the Block icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the Control Task. 

d. Repeat step 3 for each additional Control Task. 

4. Use block diagram to represent strategies below the control task. 

a. Select the Block icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the Control Task. 

d. Repeat step 4 for each additional strategy. 
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5. Relate general function block to control task block with dependency relationship. 

 a. Select the Dependency icon on the right-side menu. 

b. Move cursor over to the General Function block. 

c. Left-click mouse. 

d. Move cursor over to the Control Task block. 

e. Left-click mouse. 

f. Repeat step for each additional Control Task. 

6. Associate the strategies block to the control task block with flow relationship. 

a. Select the Flow icon on the right-side menu. 

b. Move cursor over to the strategy block. 

c. Left-click mouse. 

d. Move cursor over to the Control Task block. 

e. Left-click mouse. 

f. Repeat step for each additional strategy block. 

7. Add new state machine diagram (STM) to the strategies block. 

a. Move cursor over Control Task block. 

b. Right-click on mouse. 

c. Select Add New --> State Chart. 
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8. Construct Information Flow Map (IFM) in the Strategies STM diagram. 

a. Refer to figure. 

9. Use send action diagrams to represent information processing activities. 

a. Select the Send Action icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the Send Action diagram. 

d. Repeat step for each additional information processing activity. 

10. Use state diagrams to represent knowledge states. 

a. Select the State icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the State diagram. 

d. Repeat step for additional knowledge states. 

11. Insert Default Transition at the start of the DL (i.e., Activation Send Action 

diagram). 

a. Select the Default Transition icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse 

c. Connect  Default Transition to first Send Action or State diagram 

12. Use transition arrows for the relationship between information processing 

activities and knowledge states. 
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a. Select the Transition icon on the right-side menu. 

b. Move cursor over to the Send Action diagram. 

c. Left-click mouse. 

d. Move cursor over to the State diagram. 

e. Left-click mouse. 

f.  Repeat step for each additional Send Action and State diagram. 

13. Use termination state diagram to indicate completion of strategy. 

a. Select the Termination State icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Connect Termination State to last State diagrams. 

14. Repeat steps 4–13 for each additional strategy. 

15. Repeat steps 1–14 for each additional general function. 

 4.4.5 CWAT Process Flow for Constructing a Use Case  

 The fifth step in the process flow chart section of the CWAT is the construction of 

a Use Case diagram for the Social Organization and Cooperation Analysis (SOCA) 

phase of CWA. Figure 59 is an activity diagram that presents a process flow chart for 

building a UC using SysML. The process flow chart is composed of the same diagrams 

used in the previous steps. Each process flow chart step number in Figure 59 matches 
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each step number in 

 

Figure 60 and Figure 61. To view the diagrams used to create the UC, refer to the CWA 

Detailed Description section of this dissertation. Additionally, there are step-by-step 

instructions located within the description section of each action block on the process 

flow chart. Within each action block is an explanation of which SysML menus and 

diagrams to select to complete the models. 
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Figure 59: A Process Flow Chart for Constructing a Social Organization and 

Cooperation Analysis Use Case 
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Figure 60: Process Flow Chart Steps for Building a Social Organization and 

Cooperation Analysis 
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Figure 61: Process Flow Chart Steps for Building a Use Case 

 Each action block on Figure 59 contains more detail on how to complete the 

process step associated with that block. The detailed process steps are located in the 
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description tab of each action block. The following detailed process steps are contained 

in each action block for constructing a Use Case Diagram: 

1. Insert Internal Block Diagrams (IBD) in the Social Organization and Cooperation 

Analysis block of the CWA structure for each general function in the Abstraction 

Hierarchy. 

a. Move cursor over Social Organization and Cooperation Analysis block. 

b. Right-click mouse. 

c. Select Add New --> Internal Block Diagram. 

2. Use block diagram to represent the general function in the Social Organization 

and Cooperation Analysis (SOCA) IBD. 

a. Select the Block icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the general function. 

3. Use block diagram to represent control task below the general function block. 

a. Select the Block icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the Control Task. 

d. Repeat step 3 for each additional Control Task. 

4. Use block diagram to represent strategies below the control task.  

a. Select the Block icon on the right-side menu. 
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b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the strategy. 

d. Repeat step 4 for each additional strategy. 

5. Associate general function block to control task block with dependency 

relationship. 

 a. Select the Dependency icon on the right-side menu/ 

b. Move cursor over to the General Function block. 

c. Left-click mouse. 

d. Move cursor over to the Control Task block. 

e. Left-click mouse. 

f. Repeat step for each additional Control Task. 

6. Relate the strategies block to the control task block with flow relationship.  

a. Select the Flow icon on the right-side menu. 

b. Move cursor over to the strategy block. 

c. Left-click mouse. 

d. Move cursor over to the Control Task block. 

e. Left-click mouse. 

f. Repeat step for each additional strategy block. 

7. Add new use case diagram (UC) for each strategy block. 
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a. Go to Tools menu and select Add New --> Use Case 

8. Use results of SA phase to construct UC diagram. 

a. Refer to result of Strategies Analysis phase. 

9. Utilize use case diagrams to represent information processing activities and 

knowledge states. 

 a. Select the Use Case icon on the right-side menu 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the use case. 

d. Name and description come from the information processing activities and 

    knowledge states in the Strategies Analysis phase. 

10. Use actor diagram to represent human users and system automation. 

a. Select the Actor icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the actor. 

11. Use appropriate relationship for each information processing activity and 

knowledge state. Generally, an association relationship will be used. 

a. Select the Generalization, Dependency, Flow, or Association icon on the right-

side menu. 

b. Move cursor over to the Actor diagram. 

c. Left-click mouse. 
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d. Move cursor over to the Use Case diagram. 

e. Left-click mouse. 

f.  Repeat step for each additional actor and use case diagram. 

12. Repeat steps 7–11 for each additional use case. 

13. Repeat steps 1–12 for each additional general function. 

4.4.6 CWAT Process Flow for Constructing a Skill Rule and Knowledge Inventory 

 The sixth and final step in the process flow chart section of the tutorial is the 

construction of  a Skill, Rule, and Knowledge (SRK) Inventory. Figure 62 is an activity 

diagram that presents a process flow chart for building an SRK inventory using SysML. 

The process flow chart is composed of the same diagrams used in the previous steps.  

Each process flow chart step number in Figure 62 matches each step number in Figure 

63 and Figure 64. To view the diagrams used to create a SRK Inventory, refer to the 

CWA Detailed Description section of this dissertation. Additionally, there are step-by-

step instructions located within the description section of each action block on the 

process flow chart. Within each action block is an explanation of which SysML menus 

and diagrams to select to complete the models. 
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Figure 62: A Process Flow Chart for Constructing a Skill, Rule, and Knowledge 

Inventory using SysML 



170 

 

 
Figure 63: Process Flow Chart Steps for Building a Worker Competencies Analysis 

Structure
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Figure 64: Process Flow Chart Steps for Building a Skill, Rule, and Knowledge Inventory 
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 Each action block on Figure 62 contains more detail on how to complete the 

process step associated with that block. The detailed process steps are located in the 

description tab of each action block. The following detailed process steps are contained 

in  each action block on for constructing a Skill, Rule and Knowledge Inventory: 

1. Insert Internal Block Diagrams (IBD) in the Worker Competencies Analysis block 

of the CWA structure for each General Function in the Abstraction Hierarchy.   

a. Move cursor over Worker Competencies Analysis block. 

b. Right click mouse. 

c. Select Add New --> Internal Block Diagram. 

2. Use block diagram to represent general function in the Worker Competencies 

Analysis IBD. 

a. Select the Block icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the General Function. 

3. Use block diagram to represent control task below the general function block. 

a. Select the Block icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the Control Task. 

d. Repeat step 3 for each additional Control Task. 

4. Use block diagram to represent strategies below the control task. 
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a. Select the Block icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the strategy 

d. Repeat step 4 for each additional strategy. 

5. Associate general function block with control task block in a dependency 

relationship. 

 a. Select the Dependency icon on the right-side menu. 

b. Move cursor over to the General Function block. 

c. Left-click mouse. 

d. Move cursor over to the Control Task block. 

e. Left-click mouse. 

f.  Repeat step for each additional Control Task. 

6. Associate the strategies block to the control task block in a flow relationship.  

a. Select the Flow icon on the right-side menu. 

b. Move cursor over to the strategy block. 

c. Left-click mouse. 

d. Move cursor over to the Control Task block. 

e. Left-click mouse. 

f. Repeat step for each additional strategy block. 
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7. Add new Activity diagram (ACT) for each General Function block. 

a. Move cursor over General Function block. 

b. Right-click on mouse. 

c. Select Add New --> Activity. 

8. Use results of ConTA and SA phase to construct Swimlanes diagram within the 

ACT diagram. 

a. Select Swimlane Frame icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Extend Swimlane Frame. 

d. Select Swimlane icon on the right-side menu. 

e. Move cursor over to the Swimlane Frame area and left-click on mouse. This 

step divides the lane into two lanes. 

f. Repeat step “e” two more times. 

g. Label each swimlane, from left to right with “Information Processing Activity”, 

“Skill-Based Behavior”, “Rule-Based Behavior”, and “Knowledge-Based 

Behavior”. 

9. Use send action diagrams to represent information processing activities. 

a. Select the Send Action icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the Send Action diagram. 
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d. Name and description come from the information processing activities in the 

Control Task and Strategies Analysis phases. 

e. Repeat step for each additional information processing activity. 

10. Use action diagrams to represent behavioral tasks. 

a. Select the Action icon on the right-side menu. 

b. Move cursor over to the diagram frame area and left-click on mouse. 

c. Name and describe the skill, rule, or knowledge based behavior. 

d. Repeat step 10 for each skill, rule, or knowledge based behavior. 

11. Repeat steps 1–10 for each additional general function. 

4.5 CWA Cognitive Factors Team 

 The Cognitive Factors Team section of the tutorial will provide systems engineers 

with a description of the educational background and experience members that a 

cognitive factors team should possess in order to employ CWA and other human factor 

assessment methods. This section will help systems engineers select the appropriate 

personnel to conduct a CWA. Additionally, the UC section will inform and support a 

system engineer’s ability to coordinate the effort of the cognitive factors team. The UC 

section is composed of an actor, use cases, association relationships, and 

generalization relationships. The actor diagram represents the cognitive factors team. A 

cognitive factors team is a group of experts that study the problem solving, decision 

making and information processing activities of a human being interacting with a system. 

The use case diagrams represent the educational background and experience of the 
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cognitive factors team. The educational background describes the knowledge and skills 

a cognitive factors team member should possess. Member should have at least a 

bachelor’s degree in one or more of the recommended fields of study. The experience 

use cases describe the knowledge and skill the cognitive factors members gained 

through involvement in cognitive factors domain. Figure 65 illustrates a use case 

diagram of the education and experience requirements a member of a cognitive factors 

team should have. Table 14 and Table 15 show the contents of the description section 

of each educational background and experience use case.
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Figure 65: A Use Case Diagram of the Education and Experience Requirements of a Cognitive Factors Team
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Table 14: Cognitive Factors Team Educational Background Description 
 

Educational Background Description  

Human Factors Engineering 

Human Factors Engineering is the application of knowledge about 
human beings’ physical and cognitive strengths and weaknesses to the 
design of systems, processes, and work environments. The objective 
of Human Factors Engineering is to improve human and system 
performance, improve ease of use, and increase user satisfaction 
(Wickens, Gordon, & Liu, 2004). 

Human-Computer Interaction 
Human-computer interaction is the study of the interactions between 
human users and computers. Human-computer interaction focuses on 
the human interaction with the computer interface. 

Behavioral Psychology Behavioral psychology is the study of how human behaviors are 
acquired by interaction with the environment (Skinner, 1984). 

Experimental Psychology 
Experimental psychology is an area of psychology that utilizes scientific 
methods to research the cognitive processes and behavior (Khaleefa, 
1999). 

Industrial & Organizational 
Psychology 

Industrial and organizational psychology is concerned with the study of 
workplace behavior. The objective of industrial and organizational 
psychologists is to increase workplace productivity, employee selection 
and training programs, and system testing (Ones & Viswesvaran, 
2003). 
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Cognitive Science/Psychology 
Cognitive science is the scientific study of how human perception, 
language, and reasoning of information are represented and 
transformed (Thagard, 2004). 

Cognitive engineering Cognitive engineering is a field of study focused on user-centered 
design that promotes effective human system interaction. 

Cognitive ergonomics 

Cognitive ergonomics focuses on analyzing human cognitive 
processes such as decision making and planning. Cognitive ergonomic 
professionals develop training programs and information technology 
systems that support cognitive tasks. This helps to improve human 
performance of cognitive tasks. For example, designing of a software 
interface or an airplane cockpit (Vicente, 1999). 

Ergonomics 

Ergonomics is the study of designing equipment and devices that fit the 
human body (i.e., body movements and cognitive abilities). Ergonomist 
apply theories, principles, and methods to design in order to optimize 
human well-being and overall system performance (Stanton, Hedge, 
Hendrick, Salas, & Brookhuis, 2004). 

Human factors 

Human factors is a multidisciplinary field incorporating contributions 
from psychology, engineering, industrial design, statistics, operations 
research and anthropometry. The study of human factor focuses on the 
physical or cognitive property of an individual or group when interacting 
with a system (Stanton, Salmon, Walker, Baber, & Jenkins, 2005). 
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Table 15: Cognitive Factors Team Experience Description 

Experience Type Description 

Interface Design Designing cognitively and/or perceptually-based interfaces. 

Conducting Research Conducting research to develop methods of understanding 
factors affecting human performance. 

User Centered Design Principals An applied knowledge in a variety of human system integration 
tools and user centered design principals. 

Experimental design Familiar with experimental design, data collection, cognitive 
walkthroughs and analysis. 

Usability Testing 
Human factors engineering experience with system interface 
design and usability testing to determine and assess total system 
performance. 
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4.6 CWA Method Example for the Terminal Radar Approach Control System 

 4.6.1 Example CWA method introduction 

 To demonstrate the Cognitive Work Analysis (CWA) method, an example was 

created within the tutorial. The example is adapted from Human Factors and 

Ergonomics Society Annual Meeting Proceedings. It is titled “A five-phase CWA for air 

traffic control: Example from a Terminal Radar Approach Control (TRACON) 

Microworld” (St-Cyr & Kilgore, 2008). TRACON is a software program that simulates an 

air traffic control environment on a personal computer. TRACON provides a training 

environment for air traffic controllers to direct aircraft during the departure, descent, and 

approach phases of flight. Air traffic controllers direct the movement of aircraft by 

monitoring a radar screen and maintaining voice contact with pilots. The example shows 

what the CWA framework should look like when applied to an actual system. Figure 66 

illustrates the introduction to the TRACON example. Background information about the 

system’s capabilities, resources, and users is written in this screen of the tutorial. 
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Figure 66: Background Information of Terminal Radar Approach Control System 
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 4.6.2 Example of a CWA Structure 

 The first step in constructing the TRACON CWA framework is to build the CWA 

structure. The CWA structure provides a way to organize the analysis. The CWA 

structure is created in a Block Definition Diagram(BDD) using blocks to represent the 

five phase of CWA. In addition, flow arrows between the block diagrams show the 

exchange of information between each phase. Also, each block includes a description 

of the attributies of each CWA phase as it relates to the TRACON system and the Air 

Traffic Controller (ATC) who uses the system. Within each of the blocks is an Internal 

Block Diagram (IBD). More detail about each of the CWA phases is decomposed in the 

IBD. Figure 67 illustrates a model of the CWA structure composed for the TRACON 

example.
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Figure 67: Cognitive Work Analysis Structure Model for TRACON System
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4.6.3 Example of a CWA Abstraction Hierarchy 

 The next step is to construct the Abstraction Hierarchy (AH), which is the 

modeling technique used in the first CWA phase. The AH is composed of blocks, 

constraint properties, and part diagrams. Figure 68 shows an AH model of the TRACON 

system. The model is an Abstraction Hierarchy of the TRACON domain. The highest 

level is the function purpose of the TRACON system. In this case, the TRACON was 

developed to train users to route aircraft safely and efficiently. The second level from 

the top identifies the constraints and performance parameters of the TRACON system. 

The constraints include: aircraft responsibility, pilot situation awareness, scheduling 

demands, performance abilities of individual aircraft, passenger comfort parameters, 

and maintenance of a field of safe travel. The third level from the top contains the 

general functions the user will perform when interacting with the system. The general 

functions include: negotiating with neighboring regional ATC centers, establishing and 

updating aircraft flight paths, locomotion of aircraft through the sector, and the transition 

between airspace. The fourth level from the top holds the components of the TRACON 

work domain. The components of the TRACON work domain include systems that the 

TRACON system interact with: for example, aircraft, external regianal ATC centers, and 

landings. Finally, the fifth level contains the sub-components of the TRACON work 

domain components.
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Figure 68: An Abstraction Hiearchy Model of the TRACON System
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4.6.4 Example of a CWA Decision Ladder  

 The next step in conducting CWA is to identify the tasks that the user will do with 

the system. This aspect is covered in the second phase of CWA. The first step in 

constructing the second phase of CWA is to build a Control Task Analysis (ConTA) 

structure. This structure provides the capability to organize and manage all general 

functions and user control tasks. This capability becomes more critical for a larger, more 

complex analysis and is one of the major advantages of using SysML. 

Figure 69 shows an example of a ConTA structure. The ConTA structure is built in an 

IBD of the Control Task Analysis block on Figure 67. The input to the ConTA phase is 

the general functions from the AH. Each general function will have a ConTA structure 

created in an IBD of the Control Task Analysis block on Figure 67. In this case, there 

would be four IBDs for the TRACON system (i.e., negotiating with neighboring regional 

ATC centers, establishing and updating aircraft flight paths, locomotion of aircraft 

through the sector, and the transition between airspace). One general function will be 

represented by a block diagram in each IBD. The example will focus on the 

“establishing and updating aircraft flight paths” general function as illustrated by 

Figure 69. The “establishing and updating aircraft flight paths” general function is further 

decomposed into three control tasks. The control tasks are approaching, receiving, and 

rerouting. The definition of each is located in the description tab of each block. To 

access the definitions, double-click the block diagram for the control task. The control 

tasks are represent by block diagrams. The general function is linked to the control 
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tasks by a dependency relationship. Completion of the control task satisfies the general 

function. The general function can only accomplished if the control tasks are 

successfully completed. 

 

Figure 69: An Example of a ConTA Structure for the TRACON System. 
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 The second step in the ConTA phase is to construct a Decision Ladder (DL). A 

State Machine (STM) diagram is used to construct the DL. The STM is attached to the 

“rerouting” control task block on  Figure 69. The STM is the icon located on the upper 

right side of the rerouting block. Figure 70 shows an example of a DL for the TRACON 

user. Send action and state diagrams are used to represent information processing 

activities and knowledge states, respectively. The green highlighted send action and 

state diagrams show a potential expert pathway through the DL. Other DLs for other 

potential pathways will have to be constructed within the same STM diagram for the 

“rerouting” control task. The example only includes one potential pathway. Each control 

task will have a STM diagram. 
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Figure 70: An Example of a Decision Ladder for the TRACON User 
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 4.6.5 Example of a CWA Information Flow Maps 

  The goal of the third CWA phase is to identify the course of action the user will 

take to complete the control tasks established in the secoond CWA phase. The first step 

in the third phase is to construct a Strategies Analysis (SA) structure. This structure 

provides the capability to organize and manage all general functions, user control tasks, 

and user strategies. This capability becomes more critical in a larger, more complex 

analysis and is one of the major advantages of using SysML. Figure 71 shows an 

example of a SA structure for the TRACON system. The SA structure is built in an IBD 

of the Strategies Analysis block on the CWA structure (i.e. Figure 67). The input to the 

SA phase is the control tasks from the ConTA phase. The SA structure is built with the 

same diagrams as the ConTA structure, with the exception of the strategies that are 

added to this phase. Each general function will have an SA structure created in an IBD 

of the Strategies Analysis block on Figure 67. For the purpose of the TRACON example, 

only one general function will be spotlighted. The “establishing and updating aircraft 

flight paths” general function is further decomposed into three control tasks. The 

“rerouting” control task is further decomposed into three courses of action. The 

strategies include: hold one aircraft, reroute one aircraft, and tweak one aircraft. 

Definitions of each strategies are located in the description tab of each block. To access 

the definitions, double-click the block diagram for the strategy. The strategies are 

represented by block diagrams. The strategies are linked to the control tasks by an 

information flow relationship. The strategies provide the course of action required to 
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complete a control task which satisfies the general function. Each control task will have 

strategies linked to it. So the framework will increase exponentially as more general 

functions, control tasks, and strategies are added. The potential expansion of the CWA 

framework emphasizes the importance of the organizational features of SysML. 

 

Figure 71: A Strategies Analysis Structure for the TRACON System 
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 The second step in the third CWA phase is to construct an Information Flow Map 

(IFM). A State Machine (STM) diagram is used to construct the IFM. An STM is 

attached to each strategy on Figure 71. The STM is the icon located on the upper right 

side of each strategy block. Figure 72, Figure 73, and Figure 74 are examples of IFMs 

for the TRACON user. 

 
Figure 72: An Information Flow Map Model of the User’s Strategy to Hold One Aircraft 
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Send action and state diagrams are used to represent information processing activities 

and knowledge states, respectively. The send action diagrams are the arrow-shaped 

diagrams and the state diagrams are the rectangle-shaped diagrams. 

 
Figure 73: An Information Flow Map Model of the User’s Strategy to Reroute One 

Aircraft 
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Figure 74: An Information Flow Map Model of the User’s Strategy to Tweak One Aircraft 

 4.6.6 Example of a CWA Use Case 

 The goal of the Social Organization and Cooperation Analysis (SOCA) phase is 

to allocate task responsibilities between the actors which interact with the system. The 
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first step in the SOCA phase is to construct a SOCA structure. This structure provides 

the capability to organize and manage all general functions, user control tasks, and user 

strategies. Figure 75 shows an example of a SOCA structure for the TRACON system. 

The SOCA structure is built in an IBD of the Social Organization and Cooperation 

Analysis block on the CWA structure (i.e., Figure 67). The input to the SOCA phase is 

the strategies from the SA phase. The SOCA structure is built with the same diagrams 

as the SA structure. Each general function will have an SOCA structure created in an 

IBD of the Social Organization and Cooperation Analysis block on the CWA structure 

(i.e., Figure 67). For the purpose of the TRACON example, only one general function is 

spotlighted. The “establishing and updating aircraft flight paths” general function is 

further decomposed into three control tasks. The “rerouting” control task is further 

decomposed into three strategies. The strategies are represented by block diagrams. 

The strategies are linked to the control tasks by information flow relationships. The 

strategies provide the course of action required to complete a control task which 

satisfies the general function. 
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Figure 75: A Social Organization and Cooperation Analysis Structure for the TRACON 

System. 
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 The second step in the SOCA phase is to construct a Use Case (UC) diagram. A 

UC is constructed with the resultant information of the SA phase. The UC diagrams 

consist of use cases, which are the information processing activities and knowledge 

states identified in the SA phase (i.e., strategies 1, 2, and 3). The UC also consists of 

actors, which are humans or things that have specific roles when interacting with the 

system. The actors in the TRACON example are the Air Traffic Controller (ATC) and the 

automation of the TRACON system. Finally, UC diagrams have a variety of 

relationships that could exist between actors, between actors and use cases, or 

between use cases. The relationships include: association, generalization, include, 

extend, and dependency. Figure 76, Figure 77, and Figure 78 are examples of UCs for 

the TRACON user and system. 
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Figure 76: A Use Case Diagram Showing Allocation of Tasks Between TRACON User 

and the System for Holding One Aircraft. 
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Figure 77: A Use Case Diagram Showing Allocation of Tasks Between TRACON User 

and the System for Rerouting One Aircraft 
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Figure 78: A Use Case Diagram Showing Allocation of Tasks Between TRACON User 

and the System for Tweaking One Aircraft 
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4.6.7 Example of a CWA Skill, Rule, and Knowledge Inventory 

 In the final CWA phase of the Worker Competencies Analysis (WCA) phase, the 

goal is to identify the knowledge and skills required by the end users to operate the 

system. The phase is critical to personnel selection and training. The first step in the 

WCA phase is to construct a WCA structure. This structure provides the capability to 

organize and manage all general functions, user control tasks, and user strategies. 

Figure 79 shows an example of a WCA structure for the TRACON system. The WCA 

structure is built in an IBD of the Worker Competencies Analysis block on the CWA 

structure. The input to the WCA phase is the information processing actitivies from the 

ConTA and SA phases. The WCA structure is built with the same diagrams as the 

ConTA, SA, and SOCA structures. Each general function will have a WCA structure 

created in an IBD of the Worker Competencies Analysis block on the CWA structure. 

For the purpose of the TRACON example, only one general function is spotlighted. The 

“establishing and updating aircraft flight paths” general function is further decomposed 

into three control tasks. The “rerouting” control task is further decomposed into three 

strategies. The strategies are represented by block diagrams. The strategies are linked 

to the control tasks by information flow relationships. The strategies provide the course 

of action required to complete a control task which satisfies the general function. 



203 

 

 

Figure 79: A Worker Competencies Analysis Structure for the TRACON System 

 The second step in the WCA phase is to construct an SRK inventory. An SRK 

inventory is constructed with the resultant information processing activities of the ConTA 

SA phases. The SRK inventory is created using the swimlane diagrams available in 
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SysML. The swimlanes are divided into information processing activities and skill-based, 

rule-based, and knowledge-based behavior lanes. Send Action diagrams are used to 

represent information processing activities, while Action diagrams are used to represent 

Skill-, Rule-, and Knowledge-Based Behaviors. The red lines are control flow lines. The 

control flow lines show the relationship between the information processing activity and 

the Skill-, Rule-, and Knowledge-Based Behaviors. The control flow lines show the 

transition from information processing activity to the three psychological processes. 

Each psychological process is a level of competency required by the system end-user 

to complete an information processing activity. Figure 80 shows two information 

processing activities, which are “Scan for aircraft presence in area of responsibility” and 

“Determine the  criticality of a pending convergence”  as well as the end-user’s level of 

competency required to complete the information processing activities.
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Figure 80: A Use Case Diagram Showing Allocation of Tasks 
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4.7 CWA Framework ATM Example 

 This section presents an example of how to apply the CWA framework to an 

Automated Teller Machine (ATM). Unlike the TRACON example, this example focuses 

on gathering the information to be modeled. The TRACON example focused on 

modeling the results of CWA and translating CWA terminology into SysML diagrams. 

This example focuses on performing the CWA method. 

 Most people in an industrialized country have used an ATM before. So most 

system designers using this tutorial can relate to the cognitive tasks that are performed 

when interacting with an ATM.  The scope of this example is limited to showing how 

each phase of CWA is constructed in SysML. Therefore, the breadth of the analysis is 

limited, but the depth is thorough. 

 Figure 81 shows the introduction page in the tutorial for the ATM example. It 

describes the process of performing CWA. Before the systems engineer can start 

constructing CWA models with SysML, there has to be some data collection. More 

information about the system and the end-user is required. Knowledge elicitation 

methods should be implemented in order to acquire the necessary system and end-user 

information. There are many knowledge elicitation methods that can be used for 

acquiring system design requirements. The options include questionnaires, focus 

groups, group task analysis, case studies, etc. The CWAT only focuses on interviews, 

review of legacy system references, and observations of end-user performing tasks that 

the new system is required to carry out. Interviewing SMEs or end-users is the most 
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popular form of knowledge elicitation. How many interviews and who will be interviewed 

will vary across projects. Interviews will have to be performed for all CWA phases, and 

the focus of the questions will vary at each CWA phase. Subject Matter Experts (SMEs), 

system operators, or other system stakeholders should be actively involved in the 

interview process. 

 

Figure 81: Introduction Page for the ATM Example 
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4.7.1 CWA Structure for ATM Example 

 The Cognitive Work Analysis (CWA) structure does not require any analysis to 

construction. The structure provides the capability to organize and manage the analysis 

of the different aspects of the system. This capability is critical for a larger, more 

complex analysis and is one of the major advantages of using SysML. 

 The CWA structure is created in a Block Definition Diagram (BDD) using blocks 

to represent the five phases of CWA. In addition, flow arrows between the block 

diagrams show the exchange of information between each phase. Also, each block 

includes a description of each CWA phase as it relates to an Automated Teller Machine 

(ATM) and the customers who use the system. Within each of the blocks is an Internal 

Block Diagram(IBD). More detail about each of the CWA phases is decomposed in the 

IBD. Figure 82 represents a CWA structure. 



209 

 

 

Figure 82: CWA Structure for ATM example 

4.7.2 Work Domain Analysis 

 The first step in acquiring information about the system to be designed is to 

review similar legacy system documents. Getting background information and domain 

terminology prior to interviews is essential in establishing a knowledge base. Reviewing 

legacy system references creates a starting point for system designers. It helps to 

identify the physical equipment, the goals, the functions, and the policy constraints of 

the system. These documents include, but are not limited to, instructions, operating 
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manuals, and maintenance manuals for the system. Figure 83 shows a text-based 

description of the knowledge elicitation process for the Work Domain Analysis (WDA) of 

CWA. 

 The second step in acquiring information about the system and the end-user is to 

conduct interviews of SMEs, system operators, or other system stakeholders. The 

following questions are typically asked during the interview process: 

• What are the main goals of the expected system? 

• What might get in the way of achieving set goals? 

• What do you have to do to obtain the goals? 

• What resources are required to help reach the goals? 

• What regulations/policies are necessary in the work domain? 

• What resources or parameters are required to achieve upper level of AH? 
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Figure 83: A Text-Based Description of the Knowledge Elicitation Process  for the WDA 

Phase 

Other questions may be discussed during the interview. The number of questions and 

the subject of each question will vary across projects. Part of the questions asked in the 

WDA phase are the means/ends relationships that exist between the upper and lower 

levels of the Abstraction Hierarchy. Each level is connected by means-ends 

relationships. The means is a level below the ends. For example, the general function is 



212 

 

the means for the abstract function. The lower levels describe the actions, components 

or parameters that are necessary for achieving the ends or upper levels of  the AH. 

Another form of obtaining information about the new system is to observe domain 

experts performing tasks the new system will be required to carry out. 

 The third step is to populate abstraction hierarchy. Once interviews and 

documentation reviews have been completed, the Abstraction Hierarchy can be 

populated with the appropriate data for each level. SysML blocks are used to represent 

the data at the different levels of the Abstraction Hierarchy. Block diagrams should be 

used to represent the functional purpose and general function levels. Part diagrams 

should be used to represent the physical function and component levels. Constraint 

property diagrams should be used to represent the abstract function level. A detailed 

description should be added to each diagram. After the Abstraction Hierarchy blocks are 

filled with the appropriate data, each block will be connected by SysML dependency 

lines. Dependency lines are used to show the means-ends relationships. Figure 84 

illustrates the results of questions asked and the construction of the Abstraction 

Hierarchy for the ATM. 
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Figure 84: An Abstraction Hierarchy Model for the ATM Example 

4.7.3 Control Task Analysis 

 The Control Task Analysis (ConTA) phase requires a similar interview of SMEs 

to identify user tasks. Questions that should be asked to domain experts should focus 

on the tasks necessary to successfully complete their jobs. Domain experts should 
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describe the cognitive activities required to complete a system task and identify 

shortcuts experts would use when completing a task. The questions may include, but 

are not limited to, the following: 

• What are some of the steps taken to achieve a task? 

• What kinds of events can act as alerts? 

• What kinds of data or facts are available? 

• What kinds of assessments about the system’s condition or situation are possible 

with the information? 

• What kinds of choices or alternatives are available for the system’s desired or 

target state? 

• What kinds of aims or objectives can be relevant or influence decisions? 

• What kinds of target states are possible? 

• What kinds of tasks are necessary and what kinds of resources are available? 

• What kinds of procedures or sequences of steps are necessary? 

 Figure 85 shows a text-based description of the knowledge elicitation process for 

the ConTA phase of CWA and a ConTA structure. The ConTA structure provides the 

capability to organize and manage the general functions and control tasks of the system. 

This capability is critical for a larger, more complex analysis. 
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Figure 85: A Text-Based Description of the Knowledge Elicitation Process  for the 

ConTA Phase 

 Once interviews have been completed, the Decision Ladder (DL) can be 

populated with the appropriate data for each information processing activity and 

knowledge state. The ConTA is built in an Internal Block Diagram (IBD) of the Control 

Task Analysis block on the CWA structure (i.e., Figure 82) The input to the ConTA 

phase is the general functions from the AH. Each general function will have a ConTA 
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structure created in an IBD of the Control Task Analysis block on the CWA structure (i.e. 

Figure 82). In this case, there would be four IBDs for the ATM system (i.e., withdrawals, 

deposits, transfers, and inquiries). In this example, one general function will be 

represented by a block diagram in each IBD. The example will focus on the “deposits” 

general function. The “deposits” general function is further decomposed into two control 

tasks. The control tasks are “deposit cash” or “deposit checks.” The definition of each is 

located in the description tab of each block. To access the definitions, double-click the 

block diagram for the control task. The control tasks and the general function are 

represented by block diagrams. A state machine diagram is attached to the “deposit 

cash” block diagram. The notation is an icon located in the upper right hand corner of 

the “deposit cash” block diagram. The relationship that exists between the general 

function and the control tasks is a dependency relationship. The general function needs 

the control tasks to be completed by the user. Once the user completes the control task, 

the general function is satisfied. When the general functions are satisfied, the purpose 

of the system can be fulfilled. 

 The state machine diagrams are used to construct the Decision Ladder. The 

Send Action and State elements are used to represent the information processing 

activities and knowledge states at the different steps of the DL. A detailed description 

should be added to each element. Transition lines are used to shows the transition from 

information processing activities to knowledge states. Figure 86 shows the answers to 

some of the questions asked and the construction of the DL. 
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Figure 86: A Decsion Ladder Model for the ATM Example 
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4.7.4 Strategies Analysis 

 The Strategies Analysis (SA) phase also requires an interview of SMEs to 

identify user task strategies. The questions should focus on the course of action used 

and the options available to complete a task. Questions may include, but are not limited 

to, the following: 

• What are some of the possible strategies that can be used to complete a task? 

• Which of the strategies mentioned before would most system operators use to 

complete a task? 

• What steps would a system novice use to complete a task? 

• What steps would a system expert use to complete a task? 

 Figure 87 shows a text-based description of the knowledge elicitation process for 

the SA phase of CWA and an SA structure. The ConTA structure provides the capability 

to organize and manage the general functions, the control tasks, and the user strategies. 

The SA phase is built in an Internal Block Diagram (IBD) of the Strategies Analysis 

block on the CWA structure (i.e., Figure 82). The input to the SA phase is the general 

functions from the AH and the control tasks of each DL. Each general function will have 

a SA structure created in an IBD of the Strategies Analysis block on the CWA structure 

(i.e., Figure 82). In this case, there would be four IBDs for the ATM system (i.e., 

withdrawals, deposits, transfers, and inquiries). In this example, one general function 

will be represented by a block diagram in each IBD. The example will focus on the 
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“deposits” general function. The “deposits” general function is further decomposed into 

two control tasks. The control tasks are “deposit cash” or “deposit checks.” The control 

tasks are further decomposed into user strategies, which are “deposit individual bills” or 

“all cash at once.” The example focuses on the “all cash at once” user strategy. 

The definition of each block is located in the description tab of each block. To access 

the definitions, double-click the block diagram for the control task. 

 

Figure 87: A Text-Based Description of the Knowledge Elicitation Process for the SA 

Phase 
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A state machine diagram is attached to the “all cash at once” block diagram. The 

notation is an icon located in the upper right hand corner of the “all cash at once” block 

diagram. The relationship that exists between the general function and the control tasks 

is a dependency relationship. The relationship that exist between the user strategies 

and the control tasks is a flow relationship. The control tasks and user strategies 

exchange information between them. The control task identifies the task that the user 

needs to complete and the strategy block states how the task will be completed. 

 Once interviews have been completed, the Information Flow Map (IFM) can be 

populated with the appropriate data for completing a control task. Use data collected 

during interviews to construct the IFM. Send Action and State diagrams are used to 

represent the information processing activities and knowledge states, respectively. 

Transition lines are used to shows the transition from information processing activities to 

knowledge states. Finally, a detailed description to each diagram should be added. 

Figure 88 shows an IFM strategy for depositing all cash bills at once for the ATM 

example. 
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Figure 88: An Information Processing Activity Model for the ATM Example 

4.7.5 Social Organization and Cooperation Analysis 

 The Social Organization and Cooperation Analysis (SOCA) phase considers the 

actors’ strengths and weaknesses to determine allocation of task responsibility. The 

ATM example is simplistic and very intuitive. So an in-depth analysis is not required. An 

interview of SMEs should be carried out if a more in-depth analysis is required. The 

interview should identify actors and assign task responsibilities among the actors. 

Questions may include, but are not limited to, the following: 

• Can you describe the various teams using the system? 

• How do you allocate responsibilities for each person? 
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• Who depends on whom for help to complete a task? 

• What is the specific role of each team member? 

• How are decisions usually made? 

  Figure 89 shows a text-based description of the knowledge elicitation process for 

the SOCA phase of CWA and a SOCA structure. The SOCA structure is used to keep 

track of each general function and all associated control tasks and user strategies. The 

SOCA structure is created in the same format as the ConTA and SA structures. The 

SOCA phase is built in an Internal Block Diagram (IBD) of the Social Organization and 

Cooperation Analysis block on the CWA structure (i.e., Figure 82).  The input to the 

SOCA phase is the information processing activities and knowledge states generated in 

the SA phase of CWA. 

 The ATM example focuses on the “all cash at once” user strategy. A use case 

diagram will be constructed for the “all cash at once” user strategy. Data collected 

during the interview process and the information processing activities and knowledge 

states from the Strategies Analysis phase are utilized in constructing the use case 

diagrams. Actors and use case elements are used to represent the system users, 

information processing activities, and knowledge states. Figure 90 shows a use case 

diagram for depositing all cash bills at once for the ATM example. In the description 

section of each use case element is a explanation of its meaning. 
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Figure 89: A Text-Based Description of the Knowledge Elicitation Process  for the 

SOCA Phase 
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Figure 90: A Use Case Diagram for the ATM Example 

4.7.6 Worker Competencies Analysis 

 The Worker Competencies Analysis (WCA) phase is the final phase of CWA. It 

outlines the competencies that the system users must have or acquire in order to 

effectively perform control tasks. As with all the other phases, knowledge about the 

system and the end-user is critical to modeling a Skill, Rule, and Knowledge (SRK) 

inventory. SMEs will be queried about the level of knowledge required by the user to 

complete information processing activities. The information processing activities are 
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outputs of the Control Task Analysis and Strategies Analysis phases. Questions may 

include, but are not limited to, the following: 

• What information does the user have to know in order to complete the 

information processing activities?  

• What rules, regulations, or policies does the user need to know? 

• What problem solving procedures will the user have to be familiar with?  

 Figure 91 shows a text-based description of the knowledge elicitation process for 

the WCA phase of CWA and a WCA structure. The WCA structure is used to keep track 

of each general function and all associated control tasks and user strategies. The WCA 

structure is created in the same format as the SA and SOCA structures. The WCA 

phase is built in an IBD of the Worker Competencies Analysis block on the CWA 

structure (i.e., Figure 82). The input to the WCA phase is the information processing 

activities generated in the ConTA and SA phase of CWA. The definition of each block is 

located in the description tab of each block. To access the definitions, double-click the 

block diagram for the control task. An activity diagram is attached to the “deposit” block 

diagram. The notation is an icon located in the upper right hand corner of the “deposit” 

block diagram. The activity diagram will contain the SRK inventory modeling tool for the 

WCA phase. Each general function should have an activity diagram attached to it.  
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Figure 91: A Text-Based Description of the Knowledge Elicitation Process for the WDA 

Phase 

 Data collected during interviews and information processing activities from the 

Control Task Analysis and Strategies Analysis phases will be used to construct an SRK 

inventory model. Swimlanes elements are used to create a table which separates the 

level of cognitive behaviors (i.e., Skill-Based Behavior (SBB), Rule-Based Behavior 

(RBB), Knowledge-Based Behavior (KBB)).  Send action elements represent 

information processing activities from the ConTA and SA phases. Action elements 

represent the level of knowledge required by the user. Transition lines are used to show 
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the transition from information processing activities to higher levels of cognitive behavior. 

Finally, a detailed description of each level of cognitive behavior should be added. 

Figure 92 shows a SRK inventory for the “collect cash” and “confirm total” information 

processing activities in the ATM example. 

 

 

Figure 92: A Skill, Rule, and Knowledge Inventory Model for the ATM Example 
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4.8 Preliminary Usability Evaluation 

 A usability assessment of the CWAT was conducted by four college graduate 

students. They reported any navigational errors, uncertainty in understanding, usability 

issues, or confusion using the tutorial. Table 16 through Table 19 show the feedback 

received from the graduate students. Each graduate student had no experience using 

SysML or the Rational Rhapsody software. Each graduate had no experience using the 

Cognitive Work Analysis (CWA) methodology. Two out of the four graduate students 

have knowledge of ergonomic and human factors. The students provided their feedback 

on a discrepancy sheet that was given to them. Most of the recommendations have 

been incorporated into the CWAT. 

Table 16: Usability Evaluation for User 1 

Section # Diagram Title Usability Issue 

2 CWA Structure Add “Icon” word for click-on attributes 
and operations 

2 CWA Structure Picture of icons in word instructions 

2 SRK Inventory description WCA --> SRK Inventory title change to 
skill, rule, and knowledge 

3 Process Flow CWA 
Structure 

Adjust flowlines of SA and adjust blocks 
and lines 

3 CWA Structure Lines instead of arrows from CWA 
structure 

3 All Likes colors representing each phase 

3 Abstraction Hierarchy Change AH (clean it up) 

3 All AH process flow remove ----> transition 
lines 

4 TRACON Example Adjust flow lines 
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Table 17: Usability Evaluation for User 2 

Section # Diagram Title Usability Issue 

0 Title Page  Needs to be more explanatory 

0 Title Page Reword “construction of a CWA 
framework”  

0 Title Page Reword “within their designs” 

0 Section Outline When clicked, some word content 
disappears 

0 Section Outline Font needs to be bigger 

1 CWA Introduction Objective of tutorial should be moved 
to the beginning of tutorial 

1 High Level Overview Include icons for picture 

1 CWA sequence and 
information Enlarge State Machine Diagram icon 

All  All Acronyms must be written out on each 
page  

2 Abstraction Hierarchy  Need an acronym key per page  

2 & 3 All “State Machine Diagram” needs to 
have “Back” button 

2 All Add SysML translation, model-based 
and text-based description 

3 Process flow chart No description in each block 
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Table 18: Usability Evaluation for User 3 
 

Section # Diagram Title Usability Issue 

2 CWA sequence and 
information 

The zoom pan should be added before 

2 State chart and strategies Slides key should be more obvious 

2 CWA Structure Enlarge font of Attributes and operation 

  CWA Structure Change structural view to  

3 AH Process flow Decide diagram letters are mistake 

3 AH Process flow Bold (Step 1, Step 2, etc.) 

3 AH Process flow Place Figures Next to Process Flow 

 3 UC process flow “Previous” Button not working 

All All  Verify all  “Previous” buttons 

All All  Move “End of Section X” to middle and 
make large 

All  All  Add key user instruction/summary of 

 4 AH   Change aircraft responsibility to 

   4 DL Explain pathway through DL with more 

 4 IFM Add Strategy 1, 2, and 3 to each 

  4 IFM TRACON Example Explain order of IFM and add sequence 

 4 UC  Add Strategy 1, 2, and 3 to each UC 

5 Generic Models Use template instead of generic 

5 All  Space out words 
 



231 

 

Table 19: Usability Evaluation for User 4 
 

 Section # Diagram Title Usability Issue 

0 Section Outline CWA definition 

1 CWA Overview 3rd line typo “incorporated” 

1 CWA Overview Bottom of page blue ribbon text. Not 
sure what is the instruction or 
suggestion 

1 CWA High Level view Diagram fonts are small in the upper 
boxes 

1 CWA High Level view Use icons to help users to learn the 
different CWA components 

1 CWA Sequence and Info Paragraph: ”the icons in the upper…” 
What icons?? Do you mean the 
attributes in the upper part of the box? 

1 CWA Sequence and Info Diagram: Some text on boxes is not 
showing 

1 CWA Sequence and Info Blue text should mention that you are 
going to section 2 model description. 

2 Abstraction Hierarchy Bullets for the five levels of abstraction 

2 Information flow Map End of first sentence needs to be 
reviewed (first paragraph) 

3 Process Flow Chart When double-clicking the boxes, there 
is no description 

3 All diagrams 
Numbers in flow diagrams should start 
with the word “step”, if they match the 
examples (some steps are repeated 
steps) 
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4.9 Results Summary 

 Chapter 4 illustrated how this methodology can be applied by systems engineers. 

The tutorial informs users about the purpose of CWA, knowledge elicitation methods,  

SysML diagrams used to construct the CWA framework, and CWA construction process 

flow. The tutorial is constructed in SysML using appropriate diagrams to translate CWA 

terminology into SysML terminology for systems engineers to comprehend. The scope 

of this study was limited to the development of the cognitive work analysis framework 

tutorial using system modeling language. A formal evaluation of the cognitive work 

analysis framework tutorial using system modeling language should be done in the 

future. 
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CHAPTER FIVE: CONCLUSION 

5.1 Summary of Study 

 The purpose of this study was to develop a Cognitive Work Analysis Tutorial 

(CWAT) using Systems Modeling Language. The study had two phases. The first was 

to align the CWA terminology with the SysML to produce a CWA framework using 

SysML. The second was to create an instruction using SysML to inform systems 

engineers of the process of incorporating cognitive requirements into their system 

designs. 

 The initial focus of the systems engineering process involves developing a set of 

complete, consistent, and achievable requirements. Cognitive work requirements are 

critical for defining effective systems. The systems engineering process lacks cognitive 

factors in system design (Stoner et al., 2006). This deficiency can be attributed to time 

constraints, budget limits, a lack of access to the information or training, or 

underestimation of the value of cognitive requirements methods. Additionally, 

cognitive engineers have difficulty in translating their findings into a format that systems 

engineers can understand and use. Most cognitive engineers have an excellent 

understanding of the human user, but have a poor grasp of how to incorporate their 

understanding of the human user into the development of a set of design requirements 

(Rasmussen, 1986). 



234 

 

 At the present time, most systems engineers do not have access to cognitive 

work analysis information or training in terms they can understand. This lack of access 

leads to a disregard of the cognitive aspect of system design. The result of this issue is 

system requirements that do not account for the cognitive strengths and limitations of 

users. Systems engineers cannot design effective decision support systems without 

defining cognitive work requirements. In order to improve system requirements, 

integration of cognitive work requirements into the systems engineering process has to 

be improved. One option to address this gap is to develop a CWA Framework using 

SysML. The CWAT developed in this study translated CWA terminology into a system 

design language (i.e., SysML) that systems engineers currently use. 

5.2 Using SysML to Model a CWA Framework  

 Complex sociotechnical systems developed using the CWA methodology require 

large amounts of documentation to assess the design parameters of the system. The 

SysML Model-Based Systems Engineering (MBSE) approach can reduce the amount of 

documentation required, which contributes to better communication, understanding, and 

coordination of cognitive work requirements. In addition, relationships among different 

CWA modeling techniques can be easily established with a model-based approach. 

This capability is not available with the paper-based and Microsoft software currently 

used to document cognitive work requirements. Studies have shown that the graphics 

and text modeling frameworks help alleviate cognitive loads (Dori, 2008). Combining 
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graphics and text to represent cognitive work requirements contributes to an easier 

understand of complex sociotechincal systems. 

 Another benefit of using SysML to model CWA phases is the ability to pass 

changes to one modeling element forward to association model elements in other CWA 

phases. This means that minor changes to text in a diagram will feed through from the 

initial stages to the subsequent phases. This has particular benefits in the CWA 

framework because each phase builds upon the preceding phase. This capability 

increase the speed and accuracy at which CWA framework models can be developed, 

edited, and reviewed. 

5.3 Challenge to the Three Evils of Systems engineering  

 The three evils of systems engineering are “complexity,” “a lack of 

understanding,” and “communication issues”(Holt & Perry, 2008). Complexity, lack of 

understanding, and communication are interrelated. Any deficiencies in one will lead to 

deficiencies in the others evils of systems engineering. Likewise, any improvements to 

one will lead to improvements in the other factors. 

 The complexity of a system is based on the number of relationships that exist 

between system elements. The higher the number of relationships, the more complex a 

system will be. This method confronts the complexity evil by providing systems 

engineers with a structured framework to define, manage, organize, and model 

cognitive work requirements. 



236 

 

 Lack of understanding can occur in any phase of the systems engineering 

process.  A lack of understanding can lead to the needs of the user not being addressed, 

problems that are not clearly defined, improper application of systems engineering 

principles, inaccurate requirements, or incorrect component interactions. CWA 

frameworks provide a tool for systems engineers to incorporate the cognitive strengths 

and limitations of a system user in system design. Additionally, it contributes to defining 

more accurate use cases. This increases all stakeholders’ understanding of the system 

and the user. 

 Communication problems can exist between all system stakeholders. A set of 

system requirements can be interpreted differently by different system stakeholders. 

The CWA framework developed in SysML provides systems engineers with a structured 

and standard way to define cognitive work requirements when designing a system. 

5.4 Future Research 

 Future research may include a formal usability evaluation of the CWAT, an 

expanded use of other SysML capabilities, or a mapping of the CWA framework to 

Human System Integration(HSI) domains. 

 A formal usability evaluation could assess the user’s ability to learn and apply 

CWA framework method. There are several methods that can be implemented to 

evaluate the CWAT users. These methods include cognitive walkthroughs, interviews, 

Goal-Operators-Method-Selection Rules (GOMS), Function Mechanism Hierarchy, and 

pluralistic walkthroughs. A usability evaluation of the CWAT could assess the following: 
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• How easily the user can navigate the tutorial. 

• Verify information organization and format. 

• Verify the ease of use and understanding of CWA and SysML diagrams. 

5.4.1 Trade-off Analysis Capability 

 One capability that deserves further exploration is trade-off analysis of cognitive 

work requirements. SysML provides a model-based form of documentation. This form of 

documentation allows for meaningful tradeoffs to be considered. Models are critical to 

trade-off analysis and the evaluation of alternatives (Karwowski & Ahram, 2009). SysML 

requirement and parametric diagrams can be utilized to support cognitive work 

requirements tradeoff analysis. Parametric diagrams can represent the relationship 

between measures of effectiveness and system properties to evaluate the effectiveness 

of a particular system model (Friedenthal et al., 2006). A parametric relation can be 

defined to represent an evaluation function to evaluate alternative solutions. The 

evaluation function produces one or more outputs that represent a measure of 

effectiveness (Weilkiens, 2008). This evaluation function may include a weighting of the 

functions associated with various criteria used to evaluate the alternatives. The criteria 

may be associated with system performance, cost, or schedule. For example, the 

values of the criteria are X and Y. The weights of importance would be wtX and wtY. 

The criteria, weights and resulting scores must be combined in order to select the 

preferred alternative. The combining function in SysML is called an objective function. 
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The corresponding properties from each alternative are put into the evaluation function 

to determine the overall measure of effectiveness. 
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5.4.2 Human Systems Integration  

 Another area for future research is mapping the CWA framework to the Human 

System Integration (HSI) domains. There are many HSI tools available to systems 

engineers. The abundance of options can make it difficult for systems engineers to 

locate the right tool to address the appropriate HSI domains. One option would be to 

minimize the number of tools needed, while maximizing the number of HSI domains that 

one tool would address. CWA can potentially increase the number of HSI domains 

evaluated by one tool to approximately five HSI domains. SysML can provide the 

capability to explicitly link five domains of HSI. 

 Currently, most HSI tools tend to be domain-specific. Most tools used for HSI do 

not provide an explicit means of mapping cognitive work requirements to HSI 

requirements. HSI domains consists of manpower, personnel, training, Human Factors 

Engineering (HFE), system safety, health hazards, and personnel survivability. Most 

HSI tools cover four of the seven HSI domains. These four are HFE, training, manpower, 

and personnel (Hale, Ching, Brett, & Rothblum, 2009). This coverage is not uniform 

among HSI tools. A USCG survey of HSI tools discovered that about two-thirds of the 

tools in the survey are software applications. One-third of the tools are based on 

specific techniques and methodologies. About half of the tools are general-purpose 

tools, while the others are more specialized. The Improved Performance Research 

Integration Tool (IMPRINT), Information and Functional Flow Analysis (IFFA), Jack, and 

Job Assessment Software System (JASS) can each be used to conduct analyses 
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related to three or four of the seven HSI domains. CWA can potentially increase the 

number of HSI domain evaluated by one tool to approximately five HSI domains. None 

of the HSI tools reviewed provide an explicit means of mapping cognitive work 

requirements to HSI requirements. 

5.5 Concluding Statement  

 In conclusion, the three evils cannot be eliminated in systems engineering, but 

they can be minimized using model-based systems engineering. CWAT guides systems 

engineers with integrating cognitive work requirements in system design to support 

users’ cognitive functions, including situational awareness, problem solving, and 

decision making.
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